1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125
126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
127 EXPORT_SYMBOL(udp_memory_allocated);
128
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 const struct udp_hslot *hslot,
134 unsigned long *bitmap,
135 struct sock *sk, unsigned int log)
136 {
137 struct sock *sk2;
138 kuid_t uid = sock_i_uid(sk);
139
140 sk_for_each(sk2, &hslot->head) {
141 if (net_eq(sock_net(sk2), net) &&
142 sk2 != sk &&
143 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 (!sk2->sk_reuse || !sk->sk_reuse) &&
145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 inet_rcv_saddr_equal(sk, sk2, true)) {
148 if (sk2->sk_reuseport && sk->sk_reuseport &&
149 !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 uid_eq(uid, sock_i_uid(sk2))) {
151 if (!bitmap)
152 return 0;
153 } else {
154 if (!bitmap)
155 return 1;
156 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 bitmap);
158 }
159 }
160 }
161 return 0;
162 }
163
164 /*
165 * Note: we still hold spinlock of primary hash chain, so no other writer
166 * can insert/delete a socket with local_port == num
167 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 struct udp_hslot *hslot2,
170 struct sock *sk)
171 {
172 struct sock *sk2;
173 kuid_t uid = sock_i_uid(sk);
174 int res = 0;
175
176 spin_lock(&hslot2->lock);
177 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 if (net_eq(sock_net(sk2), net) &&
179 sk2 != sk &&
180 (udp_sk(sk2)->udp_port_hash == num) &&
181 (!sk2->sk_reuse || !sk->sk_reuse) &&
182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 inet_rcv_saddr_equal(sk, sk2, true)) {
185 if (sk2->sk_reuseport && sk->sk_reuseport &&
186 !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 uid_eq(uid, sock_i_uid(sk2))) {
188 res = 0;
189 } else {
190 res = 1;
191 }
192 break;
193 }
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 struct net *net = sock_net(sk);
202 kuid_t uid = sock_i_uid(sk);
203 struct sock *sk2;
204
205 sk_for_each(sk2, &hslot->head) {
206 if (net_eq(sock_net(sk2), net) &&
207 sk2 != sk &&
208 sk2->sk_family == sk->sk_family &&
209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 inet_rcv_saddr_equal(sk, sk2, false)) {
214 return reuseport_add_sock(sk, sk2,
215 inet_rcv_saddr_any(sk));
216 }
217 }
218
219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221
222 /**
223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
224 *
225 * @sk: socket struct in question
226 * @snum: port number to look up
227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228 * with NULL address
229 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 unsigned int hash2_nulladdr)
232 {
233 struct udp_hslot *hslot, *hslot2;
234 struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 int error = 1;
236 struct net *net = sock_net(sk);
237
238 if (!snum) {
239 int low, high, remaining;
240 unsigned int rand;
241 unsigned short first, last;
242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243
244 inet_get_local_port_range(net, &low, &high);
245 remaining = (high - low) + 1;
246
247 rand = prandom_u32();
248 first = reciprocal_scale(rand, remaining) + low;
249 /*
250 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 */
252 rand = (rand | 1) * (udptable->mask + 1);
253 last = first + udptable->mask + 1;
254 do {
255 hslot = udp_hashslot(udptable, net, first);
256 bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 spin_lock_bh(&hslot->lock);
258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 udptable->log);
260
261 snum = first;
262 /*
263 * Iterate on all possible values of snum for this hash.
264 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 * give us randomization and full range coverage.
266 */
267 do {
268 if (low <= snum && snum <= high &&
269 !test_bit(snum >> udptable->log, bitmap) &&
270 !inet_is_local_reserved_port(net, snum))
271 goto found;
272 snum += rand;
273 } while (snum != first);
274 spin_unlock_bh(&hslot->lock);
275 cond_resched();
276 } while (++first != last);
277 goto fail;
278 } else {
279 hslot = udp_hashslot(udptable, net, snum);
280 spin_lock_bh(&hslot->lock);
281 if (hslot->count > 10) {
282 int exist;
283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284
285 slot2 &= udptable->mask;
286 hash2_nulladdr &= udptable->mask;
287
288 hslot2 = udp_hashslot2(udptable, slot2);
289 if (hslot->count < hslot2->count)
290 goto scan_primary_hash;
291
292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 if (!exist && (hash2_nulladdr != slot2)) {
294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 sk);
297 }
298 if (exist)
299 goto fail_unlock;
300 else
301 goto found;
302 }
303 scan_primary_hash:
304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 goto fail_unlock;
306 }
307 found:
308 inet_sk(sk)->inet_num = snum;
309 udp_sk(sk)->udp_port_hash = snum;
310 udp_sk(sk)->udp_portaddr_hash ^= snum;
311 if (sk_unhashed(sk)) {
312 if (sk->sk_reuseport &&
313 udp_reuseport_add_sock(sk, hslot)) {
314 inet_sk(sk)->inet_num = 0;
315 udp_sk(sk)->udp_port_hash = 0;
316 udp_sk(sk)->udp_portaddr_hash ^= snum;
317 goto fail_unlock;
318 }
319
320 sk_add_node_rcu(sk, &hslot->head);
321 hslot->count++;
322 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323
324 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 spin_lock(&hslot2->lock);
326 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 sk->sk_family == AF_INET6)
328 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 &hslot2->head);
330 else
331 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 &hslot2->head);
333 hslot2->count++;
334 spin_unlock(&hslot2->lock);
335 }
336 sock_set_flag(sk, SOCK_RCU_FREE);
337 error = 0;
338 fail_unlock:
339 spin_unlock_bh(&hslot->lock);
340 fail:
341 return error;
342 }
343 EXPORT_SYMBOL(udp_lib_get_port);
344
udp_v4_get_port(struct sock * sk,unsigned short snum)345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 {
347 unsigned int hash2_nulladdr =
348 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 unsigned int hash2_partial =
350 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351
352 /* precompute partial secondary hash */
353 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 return udp_lib_get_port(sk, snum, hash2_nulladdr);
355 }
356
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)357 static int compute_score(struct sock *sk, struct net *net,
358 __be32 saddr, __be16 sport,
359 __be32 daddr, unsigned short hnum,
360 int dif, int sdif)
361 {
362 int score;
363 struct inet_sock *inet;
364 bool dev_match;
365
366 if (!net_eq(sock_net(sk), net) ||
367 udp_sk(sk)->udp_port_hash != hnum ||
368 ipv6_only_sock(sk))
369 return -1;
370
371 if (sk->sk_rcv_saddr != daddr)
372 return -1;
373
374 score = (sk->sk_family == PF_INET) ? 2 : 1;
375
376 inet = inet_sk(sk);
377 if (inet->inet_daddr) {
378 if (inet->inet_daddr != saddr)
379 return -1;
380 score += 4;
381 }
382
383 if (inet->inet_dport) {
384 if (inet->inet_dport != sport)
385 return -1;
386 score += 4;
387 }
388
389 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 dif, sdif);
391 if (!dev_match)
392 return -1;
393 if (sk->sk_bound_dev_if)
394 score += 4;
395
396 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
397 score++;
398 return score;
399 }
400
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)401 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
402 const __u16 lport, const __be32 faddr,
403 const __be16 fport)
404 {
405 static u32 udp_ehash_secret __read_mostly;
406
407 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
408
409 return __inet_ehashfn(laddr, lport, faddr, fport,
410 udp_ehash_secret + net_hash_mix(net));
411 }
412
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)413 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
414 struct sk_buff *skb,
415 __be32 saddr, __be16 sport,
416 __be32 daddr, unsigned short hnum)
417 {
418 struct sock *reuse_sk = NULL;
419 u32 hash;
420
421 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
422 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
423 reuse_sk = reuseport_select_sock(sk, hash, skb,
424 sizeof(struct udphdr));
425 }
426 return reuse_sk;
427 }
428
429 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)430 static struct sock *udp4_lib_lookup2(struct net *net,
431 __be32 saddr, __be16 sport,
432 __be32 daddr, unsigned int hnum,
433 int dif, int sdif,
434 struct udp_hslot *hslot2,
435 struct sk_buff *skb)
436 {
437 struct sock *sk, *result;
438 int score, badness;
439
440 result = NULL;
441 badness = 0;
442 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 score = compute_score(sk, net, saddr, sport,
444 daddr, hnum, dif, sdif);
445 if (score > badness) {
446 result = lookup_reuseport(net, sk, skb,
447 saddr, sport, daddr, hnum);
448 /* Fall back to scoring if group has connections */
449 if (result && !reuseport_has_conns(sk, false))
450 return result;
451
452 result = result ? : sk;
453 badness = score;
454 }
455 }
456 return result;
457 }
458
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum,const int dif)459 static struct sock *udp4_lookup_run_bpf(struct net *net,
460 struct udp_table *udptable,
461 struct sk_buff *skb,
462 __be32 saddr, __be16 sport,
463 __be32 daddr, u16 hnum, const int dif)
464 {
465 struct sock *sk, *reuse_sk;
466 bool no_reuseport;
467
468 if (udptable != &udp_table)
469 return NULL; /* only UDP is supported */
470
471 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
472 daddr, hnum, dif, &sk);
473 if (no_reuseport || IS_ERR_OR_NULL(sk))
474 return sk;
475
476 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
477 if (reuse_sk)
478 sk = reuse_sk;
479 return sk;
480 }
481
482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
483 * harder than this. -DaveM
484 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
486 __be16 sport, __be32 daddr, __be16 dport, int dif,
487 int sdif, struct udp_table *udptable, struct sk_buff *skb)
488 {
489 unsigned short hnum = ntohs(dport);
490 unsigned int hash2, slot2;
491 struct udp_hslot *hslot2;
492 struct sock *result, *sk;
493
494 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
495 slot2 = hash2 & udptable->mask;
496 hslot2 = &udptable->hash2[slot2];
497
498 /* Lookup connected or non-wildcard socket */
499 result = udp4_lib_lookup2(net, saddr, sport,
500 daddr, hnum, dif, sdif,
501 hslot2, skb);
502 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
503 goto done;
504
505 /* Lookup redirect from BPF */
506 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
507 sk = udp4_lookup_run_bpf(net, udptable, skb,
508 saddr, sport, daddr, hnum, dif);
509 if (sk) {
510 result = sk;
511 goto done;
512 }
513 }
514
515 /* Got non-wildcard socket or error on first lookup */
516 if (result)
517 goto done;
518
519 /* Lookup wildcard sockets */
520 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
521 slot2 = hash2 & udptable->mask;
522 hslot2 = &udptable->hash2[slot2];
523
524 result = udp4_lib_lookup2(net, saddr, sport,
525 htonl(INADDR_ANY), hnum, dif, sdif,
526 hslot2, skb);
527 done:
528 if (IS_ERR(result))
529 return NULL;
530 return result;
531 }
532 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
533
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)534 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
535 __be16 sport, __be16 dport,
536 struct udp_table *udptable)
537 {
538 const struct iphdr *iph = ip_hdr(skb);
539
540 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
541 iph->daddr, dport, inet_iif(skb),
542 inet_sdif(skb), udptable, skb);
543 }
544
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)545 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
546 __be16 sport, __be16 dport)
547 {
548 const struct iphdr *iph = ip_hdr(skb);
549
550 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
551 iph->daddr, dport, inet_iif(skb),
552 inet_sdif(skb), &udp_table, NULL);
553 }
554
555 /* Must be called under rcu_read_lock().
556 * Does increment socket refcount.
557 */
558 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)559 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
560 __be32 daddr, __be16 dport, int dif)
561 {
562 struct sock *sk;
563
564 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
565 dif, 0, &udp_table, NULL);
566 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
567 sk = NULL;
568 return sk;
569 }
570 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
571 #endif
572
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)573 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
574 __be16 loc_port, __be32 loc_addr,
575 __be16 rmt_port, __be32 rmt_addr,
576 int dif, int sdif, unsigned short hnum)
577 {
578 struct inet_sock *inet = inet_sk(sk);
579
580 if (!net_eq(sock_net(sk), net) ||
581 udp_sk(sk)->udp_port_hash != hnum ||
582 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
583 (inet->inet_dport != rmt_port && inet->inet_dport) ||
584 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
585 ipv6_only_sock(sk) ||
586 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
587 return false;
588 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
589 return false;
590 return true;
591 }
592
593 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)594 void udp_encap_enable(void)
595 {
596 static_branch_inc(&udp_encap_needed_key);
597 }
598 EXPORT_SYMBOL(udp_encap_enable);
599
udp_encap_disable(void)600 void udp_encap_disable(void)
601 {
602 static_branch_dec(&udp_encap_needed_key);
603 }
604 EXPORT_SYMBOL(udp_encap_disable);
605
606 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
607 * through error handlers in encapsulations looking for a match.
608 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)609 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
610 {
611 int i;
612
613 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
614 int (*handler)(struct sk_buff *skb, u32 info);
615 const struct ip_tunnel_encap_ops *encap;
616
617 encap = rcu_dereference(iptun_encaps[i]);
618 if (!encap)
619 continue;
620 handler = encap->err_handler;
621 if (handler && !handler(skb, info))
622 return 0;
623 }
624
625 return -ENOENT;
626 }
627
628 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
629 * reversing source and destination port: this will match tunnels that force the
630 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
631 * lwtunnels might actually break this assumption by being configured with
632 * different destination ports on endpoints, in this case we won't be able to
633 * trace ICMP messages back to them.
634 *
635 * If this doesn't match any socket, probe tunnels with arbitrary destination
636 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
637 * we've sent packets to won't necessarily match the local destination port.
638 *
639 * Then ask the tunnel implementation to match the error against a valid
640 * association.
641 *
642 * Return an error if we can't find a match, the socket if we need further
643 * processing, zero otherwise.
644 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)645 static struct sock *__udp4_lib_err_encap(struct net *net,
646 const struct iphdr *iph,
647 struct udphdr *uh,
648 struct udp_table *udptable,
649 struct sock *sk,
650 struct sk_buff *skb, u32 info)
651 {
652 int (*lookup)(struct sock *sk, struct sk_buff *skb);
653 int network_offset, transport_offset;
654 struct udp_sock *up;
655
656 network_offset = skb_network_offset(skb);
657 transport_offset = skb_transport_offset(skb);
658
659 /* Network header needs to point to the outer IPv4 header inside ICMP */
660 skb_reset_network_header(skb);
661
662 /* Transport header needs to point to the UDP header */
663 skb_set_transport_header(skb, iph->ihl << 2);
664
665 if (sk) {
666 up = udp_sk(sk);
667
668 lookup = READ_ONCE(up->encap_err_lookup);
669 if (lookup && lookup(sk, skb))
670 sk = NULL;
671
672 goto out;
673 }
674
675 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
676 iph->saddr, uh->dest, skb->dev->ifindex, 0,
677 udptable, NULL);
678 if (sk) {
679 up = udp_sk(sk);
680
681 lookup = READ_ONCE(up->encap_err_lookup);
682 if (!lookup || lookup(sk, skb))
683 sk = NULL;
684 }
685
686 out:
687 if (!sk)
688 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
689
690 skb_set_transport_header(skb, transport_offset);
691 skb_set_network_header(skb, network_offset);
692
693 return sk;
694 }
695
696 /*
697 * This routine is called by the ICMP module when it gets some
698 * sort of error condition. If err < 0 then the socket should
699 * be closed and the error returned to the user. If err > 0
700 * it's just the icmp type << 8 | icmp code.
701 * Header points to the ip header of the error packet. We move
702 * on past this. Then (as it used to claim before adjustment)
703 * header points to the first 8 bytes of the udp header. We need
704 * to find the appropriate port.
705 */
706
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)707 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
708 {
709 struct inet_sock *inet;
710 const struct iphdr *iph = (const struct iphdr *)skb->data;
711 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
712 const int type = icmp_hdr(skb)->type;
713 const int code = icmp_hdr(skb)->code;
714 bool tunnel = false;
715 struct sock *sk;
716 int harderr;
717 int err;
718 struct net *net = dev_net(skb->dev);
719
720 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
721 iph->saddr, uh->source, skb->dev->ifindex,
722 inet_sdif(skb), udptable, NULL);
723
724 if (!sk || udp_sk(sk)->encap_type) {
725 /* No socket for error: try tunnels before discarding */
726 if (static_branch_unlikely(&udp_encap_needed_key)) {
727 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
728 info);
729 if (!sk)
730 return 0;
731 } else
732 sk = ERR_PTR(-ENOENT);
733
734 if (IS_ERR(sk)) {
735 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
736 return PTR_ERR(sk);
737 }
738
739 tunnel = true;
740 }
741
742 err = 0;
743 harderr = 0;
744 inet = inet_sk(sk);
745
746 switch (type) {
747 default:
748 case ICMP_TIME_EXCEEDED:
749 err = EHOSTUNREACH;
750 break;
751 case ICMP_SOURCE_QUENCH:
752 goto out;
753 case ICMP_PARAMETERPROB:
754 err = EPROTO;
755 harderr = 1;
756 break;
757 case ICMP_DEST_UNREACH:
758 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
759 ipv4_sk_update_pmtu(skb, sk, info);
760 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
761 err = EMSGSIZE;
762 harderr = 1;
763 break;
764 }
765 goto out;
766 }
767 err = EHOSTUNREACH;
768 if (code <= NR_ICMP_UNREACH) {
769 harderr = icmp_err_convert[code].fatal;
770 err = icmp_err_convert[code].errno;
771 }
772 break;
773 case ICMP_REDIRECT:
774 ipv4_sk_redirect(skb, sk);
775 goto out;
776 }
777
778 /*
779 * RFC1122: OK. Passes ICMP errors back to application, as per
780 * 4.1.3.3.
781 */
782 if (tunnel) {
783 /* ...not for tunnels though: we don't have a sending socket */
784 if (udp_sk(sk)->encap_err_rcv)
785 udp_sk(sk)->encap_err_rcv(sk, skb, iph->ihl << 2);
786 goto out;
787 }
788 if (!inet->recverr) {
789 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
790 goto out;
791 } else
792 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
793
794 sk->sk_err = err;
795 sk_error_report(sk);
796 out:
797 return 0;
798 }
799
udp_err(struct sk_buff * skb,u32 info)800 int udp_err(struct sk_buff *skb, u32 info)
801 {
802 return __udp4_lib_err(skb, info, &udp_table);
803 }
804
805 /*
806 * Throw away all pending data and cancel the corking. Socket is locked.
807 */
udp_flush_pending_frames(struct sock * sk)808 void udp_flush_pending_frames(struct sock *sk)
809 {
810 struct udp_sock *up = udp_sk(sk);
811
812 if (up->pending) {
813 up->len = 0;
814 up->pending = 0;
815 ip_flush_pending_frames(sk);
816 }
817 }
818 EXPORT_SYMBOL(udp_flush_pending_frames);
819
820 /**
821 * udp4_hwcsum - handle outgoing HW checksumming
822 * @skb: sk_buff containing the filled-in UDP header
823 * (checksum field must be zeroed out)
824 * @src: source IP address
825 * @dst: destination IP address
826 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)827 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
828 {
829 struct udphdr *uh = udp_hdr(skb);
830 int offset = skb_transport_offset(skb);
831 int len = skb->len - offset;
832 int hlen = len;
833 __wsum csum = 0;
834
835 if (!skb_has_frag_list(skb)) {
836 /*
837 * Only one fragment on the socket.
838 */
839 skb->csum_start = skb_transport_header(skb) - skb->head;
840 skb->csum_offset = offsetof(struct udphdr, check);
841 uh->check = ~csum_tcpudp_magic(src, dst, len,
842 IPPROTO_UDP, 0);
843 } else {
844 struct sk_buff *frags;
845
846 /*
847 * HW-checksum won't work as there are two or more
848 * fragments on the socket so that all csums of sk_buffs
849 * should be together
850 */
851 skb_walk_frags(skb, frags) {
852 csum = csum_add(csum, frags->csum);
853 hlen -= frags->len;
854 }
855
856 csum = skb_checksum(skb, offset, hlen, csum);
857 skb->ip_summed = CHECKSUM_NONE;
858
859 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
860 if (uh->check == 0)
861 uh->check = CSUM_MANGLED_0;
862 }
863 }
864 EXPORT_SYMBOL_GPL(udp4_hwcsum);
865
866 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
867 * for the simple case like when setting the checksum for a UDP tunnel.
868 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)869 void udp_set_csum(bool nocheck, struct sk_buff *skb,
870 __be32 saddr, __be32 daddr, int len)
871 {
872 struct udphdr *uh = udp_hdr(skb);
873
874 if (nocheck) {
875 uh->check = 0;
876 } else if (skb_is_gso(skb)) {
877 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
878 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
879 uh->check = 0;
880 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
881 if (uh->check == 0)
882 uh->check = CSUM_MANGLED_0;
883 } else {
884 skb->ip_summed = CHECKSUM_PARTIAL;
885 skb->csum_start = skb_transport_header(skb) - skb->head;
886 skb->csum_offset = offsetof(struct udphdr, check);
887 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
888 }
889 }
890 EXPORT_SYMBOL(udp_set_csum);
891
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)892 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
893 struct inet_cork *cork)
894 {
895 struct sock *sk = skb->sk;
896 struct inet_sock *inet = inet_sk(sk);
897 struct udphdr *uh;
898 int err;
899 int is_udplite = IS_UDPLITE(sk);
900 int offset = skb_transport_offset(skb);
901 int len = skb->len - offset;
902 int datalen = len - sizeof(*uh);
903 __wsum csum = 0;
904
905 /*
906 * Create a UDP header
907 */
908 uh = udp_hdr(skb);
909 uh->source = inet->inet_sport;
910 uh->dest = fl4->fl4_dport;
911 uh->len = htons(len);
912 uh->check = 0;
913
914 if (cork->gso_size) {
915 const int hlen = skb_network_header_len(skb) +
916 sizeof(struct udphdr);
917
918 if (hlen + cork->gso_size > cork->fragsize) {
919 kfree_skb(skb);
920 return -EINVAL;
921 }
922 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
923 kfree_skb(skb);
924 return -EINVAL;
925 }
926 if (sk->sk_no_check_tx) {
927 kfree_skb(skb);
928 return -EINVAL;
929 }
930 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
931 dst_xfrm(skb_dst(skb))) {
932 kfree_skb(skb);
933 return -EIO;
934 }
935
936 if (datalen > cork->gso_size) {
937 skb_shinfo(skb)->gso_size = cork->gso_size;
938 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
939 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
940 cork->gso_size);
941 }
942 goto csum_partial;
943 }
944
945 if (is_udplite) /* UDP-Lite */
946 csum = udplite_csum(skb);
947
948 else if (sk->sk_no_check_tx) { /* UDP csum off */
949
950 skb->ip_summed = CHECKSUM_NONE;
951 goto send;
952
953 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
954 csum_partial:
955
956 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
957 goto send;
958
959 } else
960 csum = udp_csum(skb);
961
962 /* add protocol-dependent pseudo-header */
963 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
964 sk->sk_protocol, csum);
965 if (uh->check == 0)
966 uh->check = CSUM_MANGLED_0;
967
968 send:
969 err = ip_send_skb(sock_net(sk), skb);
970 if (err) {
971 if (err == -ENOBUFS && !inet->recverr) {
972 UDP_INC_STATS(sock_net(sk),
973 UDP_MIB_SNDBUFERRORS, is_udplite);
974 err = 0;
975 }
976 } else
977 UDP_INC_STATS(sock_net(sk),
978 UDP_MIB_OUTDATAGRAMS, is_udplite);
979 return err;
980 }
981
982 /*
983 * Push out all pending data as one UDP datagram. Socket is locked.
984 */
udp_push_pending_frames(struct sock * sk)985 int udp_push_pending_frames(struct sock *sk)
986 {
987 struct udp_sock *up = udp_sk(sk);
988 struct inet_sock *inet = inet_sk(sk);
989 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
990 struct sk_buff *skb;
991 int err = 0;
992
993 skb = ip_finish_skb(sk, fl4);
994 if (!skb)
995 goto out;
996
997 err = udp_send_skb(skb, fl4, &inet->cork.base);
998
999 out:
1000 up->len = 0;
1001 up->pending = 0;
1002 return err;
1003 }
1004 EXPORT_SYMBOL(udp_push_pending_frames);
1005
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1006 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1007 {
1008 switch (cmsg->cmsg_type) {
1009 case UDP_SEGMENT:
1010 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1011 return -EINVAL;
1012 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1013 return 0;
1014 default:
1015 return -EINVAL;
1016 }
1017 }
1018
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1019 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1020 {
1021 struct cmsghdr *cmsg;
1022 bool need_ip = false;
1023 int err;
1024
1025 for_each_cmsghdr(cmsg, msg) {
1026 if (!CMSG_OK(msg, cmsg))
1027 return -EINVAL;
1028
1029 if (cmsg->cmsg_level != SOL_UDP) {
1030 need_ip = true;
1031 continue;
1032 }
1033
1034 err = __udp_cmsg_send(cmsg, gso_size);
1035 if (err)
1036 return err;
1037 }
1038
1039 return need_ip;
1040 }
1041 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1042
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1043 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1044 {
1045 struct inet_sock *inet = inet_sk(sk);
1046 struct udp_sock *up = udp_sk(sk);
1047 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1048 struct flowi4 fl4_stack;
1049 struct flowi4 *fl4;
1050 int ulen = len;
1051 struct ipcm_cookie ipc;
1052 struct rtable *rt = NULL;
1053 int free = 0;
1054 int connected = 0;
1055 __be32 daddr, faddr, saddr;
1056 __be16 dport;
1057 u8 tos;
1058 int err, is_udplite = IS_UDPLITE(sk);
1059 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1060 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1061 struct sk_buff *skb;
1062 struct ip_options_data opt_copy;
1063
1064 if (len > 0xFFFF)
1065 return -EMSGSIZE;
1066
1067 /*
1068 * Check the flags.
1069 */
1070
1071 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1072 return -EOPNOTSUPP;
1073
1074 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1075
1076 fl4 = &inet->cork.fl.u.ip4;
1077 if (up->pending) {
1078 /*
1079 * There are pending frames.
1080 * The socket lock must be held while it's corked.
1081 */
1082 lock_sock(sk);
1083 if (likely(up->pending)) {
1084 if (unlikely(up->pending != AF_INET)) {
1085 release_sock(sk);
1086 return -EINVAL;
1087 }
1088 goto do_append_data;
1089 }
1090 release_sock(sk);
1091 }
1092 ulen += sizeof(struct udphdr);
1093
1094 /*
1095 * Get and verify the address.
1096 */
1097 if (usin) {
1098 if (msg->msg_namelen < sizeof(*usin))
1099 return -EINVAL;
1100 if (usin->sin_family != AF_INET) {
1101 if (usin->sin_family != AF_UNSPEC)
1102 return -EAFNOSUPPORT;
1103 }
1104
1105 daddr = usin->sin_addr.s_addr;
1106 dport = usin->sin_port;
1107 if (dport == 0)
1108 return -EINVAL;
1109 } else {
1110 if (sk->sk_state != TCP_ESTABLISHED)
1111 return -EDESTADDRREQ;
1112 daddr = inet->inet_daddr;
1113 dport = inet->inet_dport;
1114 /* Open fast path for connected socket.
1115 Route will not be used, if at least one option is set.
1116 */
1117 connected = 1;
1118 }
1119
1120 ipcm_init_sk(&ipc, inet);
1121 ipc.gso_size = READ_ONCE(up->gso_size);
1122
1123 if (msg->msg_controllen) {
1124 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1125 if (err > 0)
1126 err = ip_cmsg_send(sk, msg, &ipc,
1127 sk->sk_family == AF_INET6);
1128 if (unlikely(err < 0)) {
1129 kfree(ipc.opt);
1130 return err;
1131 }
1132 if (ipc.opt)
1133 free = 1;
1134 connected = 0;
1135 }
1136 if (!ipc.opt) {
1137 struct ip_options_rcu *inet_opt;
1138
1139 rcu_read_lock();
1140 inet_opt = rcu_dereference(inet->inet_opt);
1141 if (inet_opt) {
1142 memcpy(&opt_copy, inet_opt,
1143 sizeof(*inet_opt) + inet_opt->opt.optlen);
1144 ipc.opt = &opt_copy.opt;
1145 }
1146 rcu_read_unlock();
1147 }
1148
1149 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1150 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1151 (struct sockaddr *)usin, &ipc.addr);
1152 if (err)
1153 goto out_free;
1154 if (usin) {
1155 if (usin->sin_port == 0) {
1156 /* BPF program set invalid port. Reject it. */
1157 err = -EINVAL;
1158 goto out_free;
1159 }
1160 daddr = usin->sin_addr.s_addr;
1161 dport = usin->sin_port;
1162 }
1163 }
1164
1165 saddr = ipc.addr;
1166 ipc.addr = faddr = daddr;
1167
1168 if (ipc.opt && ipc.opt->opt.srr) {
1169 if (!daddr) {
1170 err = -EINVAL;
1171 goto out_free;
1172 }
1173 faddr = ipc.opt->opt.faddr;
1174 connected = 0;
1175 }
1176 tos = get_rttos(&ipc, inet);
1177 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1178 (msg->msg_flags & MSG_DONTROUTE) ||
1179 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1180 tos |= RTO_ONLINK;
1181 connected = 0;
1182 }
1183
1184 if (ipv4_is_multicast(daddr)) {
1185 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1186 ipc.oif = inet->mc_index;
1187 if (!saddr)
1188 saddr = inet->mc_addr;
1189 connected = 0;
1190 } else if (!ipc.oif) {
1191 ipc.oif = inet->uc_index;
1192 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1193 /* oif is set, packet is to local broadcast and
1194 * uc_index is set. oif is most likely set
1195 * by sk_bound_dev_if. If uc_index != oif check if the
1196 * oif is an L3 master and uc_index is an L3 slave.
1197 * If so, we want to allow the send using the uc_index.
1198 */
1199 if (ipc.oif != inet->uc_index &&
1200 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1201 inet->uc_index)) {
1202 ipc.oif = inet->uc_index;
1203 }
1204 }
1205
1206 if (connected)
1207 rt = (struct rtable *)sk_dst_check(sk, 0);
1208
1209 if (!rt) {
1210 struct net *net = sock_net(sk);
1211 __u8 flow_flags = inet_sk_flowi_flags(sk);
1212
1213 fl4 = &fl4_stack;
1214
1215 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1216 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1217 flow_flags,
1218 faddr, saddr, dport, inet->inet_sport,
1219 sk->sk_uid);
1220
1221 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1222 rt = ip_route_output_flow(net, fl4, sk);
1223 if (IS_ERR(rt)) {
1224 err = PTR_ERR(rt);
1225 rt = NULL;
1226 if (err == -ENETUNREACH)
1227 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1228 goto out;
1229 }
1230
1231 err = -EACCES;
1232 if ((rt->rt_flags & RTCF_BROADCAST) &&
1233 !sock_flag(sk, SOCK_BROADCAST))
1234 goto out;
1235 if (connected)
1236 sk_dst_set(sk, dst_clone(&rt->dst));
1237 }
1238
1239 if (msg->msg_flags&MSG_CONFIRM)
1240 goto do_confirm;
1241 back_from_confirm:
1242
1243 saddr = fl4->saddr;
1244 if (!ipc.addr)
1245 daddr = ipc.addr = fl4->daddr;
1246
1247 /* Lockless fast path for the non-corking case. */
1248 if (!corkreq) {
1249 struct inet_cork cork;
1250
1251 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1252 sizeof(struct udphdr), &ipc, &rt,
1253 &cork, msg->msg_flags);
1254 err = PTR_ERR(skb);
1255 if (!IS_ERR_OR_NULL(skb))
1256 err = udp_send_skb(skb, fl4, &cork);
1257 goto out;
1258 }
1259
1260 lock_sock(sk);
1261 if (unlikely(up->pending)) {
1262 /* The socket is already corked while preparing it. */
1263 /* ... which is an evident application bug. --ANK */
1264 release_sock(sk);
1265
1266 net_dbg_ratelimited("socket already corked\n");
1267 err = -EINVAL;
1268 goto out;
1269 }
1270 /*
1271 * Now cork the socket to pend data.
1272 */
1273 fl4 = &inet->cork.fl.u.ip4;
1274 fl4->daddr = daddr;
1275 fl4->saddr = saddr;
1276 fl4->fl4_dport = dport;
1277 fl4->fl4_sport = inet->inet_sport;
1278 up->pending = AF_INET;
1279
1280 do_append_data:
1281 up->len += ulen;
1282 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1283 sizeof(struct udphdr), &ipc, &rt,
1284 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1285 if (err)
1286 udp_flush_pending_frames(sk);
1287 else if (!corkreq)
1288 err = udp_push_pending_frames(sk);
1289 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1290 up->pending = 0;
1291 release_sock(sk);
1292
1293 out:
1294 ip_rt_put(rt);
1295 out_free:
1296 if (free)
1297 kfree(ipc.opt);
1298 if (!err)
1299 return len;
1300 /*
1301 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1302 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1303 * we don't have a good statistic (IpOutDiscards but it can be too many
1304 * things). We could add another new stat but at least for now that
1305 * seems like overkill.
1306 */
1307 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1308 UDP_INC_STATS(sock_net(sk),
1309 UDP_MIB_SNDBUFERRORS, is_udplite);
1310 }
1311 return err;
1312
1313 do_confirm:
1314 if (msg->msg_flags & MSG_PROBE)
1315 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1316 if (!(msg->msg_flags&MSG_PROBE) || len)
1317 goto back_from_confirm;
1318 err = 0;
1319 goto out;
1320 }
1321 EXPORT_SYMBOL(udp_sendmsg);
1322
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1323 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1324 size_t size, int flags)
1325 {
1326 struct inet_sock *inet = inet_sk(sk);
1327 struct udp_sock *up = udp_sk(sk);
1328 int ret;
1329
1330 if (flags & MSG_SENDPAGE_NOTLAST)
1331 flags |= MSG_MORE;
1332
1333 if (!up->pending) {
1334 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1335
1336 /* Call udp_sendmsg to specify destination address which
1337 * sendpage interface can't pass.
1338 * This will succeed only when the socket is connected.
1339 */
1340 ret = udp_sendmsg(sk, &msg, 0);
1341 if (ret < 0)
1342 return ret;
1343 }
1344
1345 lock_sock(sk);
1346
1347 if (unlikely(!up->pending)) {
1348 release_sock(sk);
1349
1350 net_dbg_ratelimited("cork failed\n");
1351 return -EINVAL;
1352 }
1353
1354 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1355 page, offset, size, flags);
1356 if (ret == -EOPNOTSUPP) {
1357 release_sock(sk);
1358 return sock_no_sendpage(sk->sk_socket, page, offset,
1359 size, flags);
1360 }
1361 if (ret < 0) {
1362 udp_flush_pending_frames(sk);
1363 goto out;
1364 }
1365
1366 up->len += size;
1367 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1368 ret = udp_push_pending_frames(sk);
1369 if (!ret)
1370 ret = size;
1371 out:
1372 release_sock(sk);
1373 return ret;
1374 }
1375
1376 #define UDP_SKB_IS_STATELESS 0x80000000
1377
1378 /* all head states (dst, sk, nf conntrack) except skb extensions are
1379 * cleared by udp_rcv().
1380 *
1381 * We need to preserve secpath, if present, to eventually process
1382 * IP_CMSG_PASSSEC at recvmsg() time.
1383 *
1384 * Other extensions can be cleared.
1385 */
udp_try_make_stateless(struct sk_buff * skb)1386 static bool udp_try_make_stateless(struct sk_buff *skb)
1387 {
1388 if (!skb_has_extensions(skb))
1389 return true;
1390
1391 if (!secpath_exists(skb)) {
1392 skb_ext_reset(skb);
1393 return true;
1394 }
1395
1396 return false;
1397 }
1398
udp_set_dev_scratch(struct sk_buff * skb)1399 static void udp_set_dev_scratch(struct sk_buff *skb)
1400 {
1401 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1402
1403 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1404 scratch->_tsize_state = skb->truesize;
1405 #if BITS_PER_LONG == 64
1406 scratch->len = skb->len;
1407 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1408 scratch->is_linear = !skb_is_nonlinear(skb);
1409 #endif
1410 if (udp_try_make_stateless(skb))
1411 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1412 }
1413
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1414 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1415 {
1416 /* We come here after udp_lib_checksum_complete() returned 0.
1417 * This means that __skb_checksum_complete() might have
1418 * set skb->csum_valid to 1.
1419 * On 64bit platforms, we can set csum_unnecessary
1420 * to true, but only if the skb is not shared.
1421 */
1422 #if BITS_PER_LONG == 64
1423 if (!skb_shared(skb))
1424 udp_skb_scratch(skb)->csum_unnecessary = true;
1425 #endif
1426 }
1427
udp_skb_truesize(struct sk_buff * skb)1428 static int udp_skb_truesize(struct sk_buff *skb)
1429 {
1430 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1431 }
1432
udp_skb_has_head_state(struct sk_buff * skb)1433 static bool udp_skb_has_head_state(struct sk_buff *skb)
1434 {
1435 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1436 }
1437
1438 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1439 static void udp_rmem_release(struct sock *sk, int size, int partial,
1440 bool rx_queue_lock_held)
1441 {
1442 struct udp_sock *up = udp_sk(sk);
1443 struct sk_buff_head *sk_queue;
1444 int amt;
1445
1446 if (likely(partial)) {
1447 up->forward_deficit += size;
1448 size = up->forward_deficit;
1449 if (size < (sk->sk_rcvbuf >> 2) &&
1450 !skb_queue_empty(&up->reader_queue))
1451 return;
1452 } else {
1453 size += up->forward_deficit;
1454 }
1455 up->forward_deficit = 0;
1456
1457 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1458 * if the called don't held it already
1459 */
1460 sk_queue = &sk->sk_receive_queue;
1461 if (!rx_queue_lock_held)
1462 spin_lock(&sk_queue->lock);
1463
1464
1465 sk->sk_forward_alloc += size;
1466 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1467 sk->sk_forward_alloc -= amt;
1468
1469 if (amt)
1470 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1471
1472 atomic_sub(size, &sk->sk_rmem_alloc);
1473
1474 /* this can save us from acquiring the rx queue lock on next receive */
1475 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1476
1477 if (!rx_queue_lock_held)
1478 spin_unlock(&sk_queue->lock);
1479 }
1480
1481 /* Note: called with reader_queue.lock held.
1482 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1483 * This avoids a cache line miss while receive_queue lock is held.
1484 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1485 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1486 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1487 {
1488 prefetch(&skb->data);
1489 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1490 }
1491 EXPORT_SYMBOL(udp_skb_destructor);
1492
1493 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1494 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1495 {
1496 prefetch(&skb->data);
1497 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1498 }
1499
1500 /* Idea of busylocks is to let producers grab an extra spinlock
1501 * to relieve pressure on the receive_queue spinlock shared by consumer.
1502 * Under flood, this means that only one producer can be in line
1503 * trying to acquire the receive_queue spinlock.
1504 * These busylock can be allocated on a per cpu manner, instead of a
1505 * per socket one (that would consume a cache line per socket)
1506 */
1507 static int udp_busylocks_log __read_mostly;
1508 static spinlock_t *udp_busylocks __read_mostly;
1509
busylock_acquire(void * ptr)1510 static spinlock_t *busylock_acquire(void *ptr)
1511 {
1512 spinlock_t *busy;
1513
1514 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1515 spin_lock(busy);
1516 return busy;
1517 }
1518
busylock_release(spinlock_t * busy)1519 static void busylock_release(spinlock_t *busy)
1520 {
1521 if (busy)
1522 spin_unlock(busy);
1523 }
1524
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1525 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1526 {
1527 struct sk_buff_head *list = &sk->sk_receive_queue;
1528 int rmem, delta, amt, err = -ENOMEM;
1529 spinlock_t *busy = NULL;
1530 int size;
1531
1532 /* try to avoid the costly atomic add/sub pair when the receive
1533 * queue is full; always allow at least a packet
1534 */
1535 rmem = atomic_read(&sk->sk_rmem_alloc);
1536 if (rmem > sk->sk_rcvbuf)
1537 goto drop;
1538
1539 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1540 * having linear skbs :
1541 * - Reduce memory overhead and thus increase receive queue capacity
1542 * - Less cache line misses at copyout() time
1543 * - Less work at consume_skb() (less alien page frag freeing)
1544 */
1545 if (rmem > (sk->sk_rcvbuf >> 1)) {
1546 skb_condense(skb);
1547
1548 busy = busylock_acquire(sk);
1549 }
1550 size = skb->truesize;
1551 udp_set_dev_scratch(skb);
1552
1553 /* we drop only if the receive buf is full and the receive
1554 * queue contains some other skb
1555 */
1556 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1557 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1558 goto uncharge_drop;
1559
1560 spin_lock(&list->lock);
1561 if (size >= sk->sk_forward_alloc) {
1562 amt = sk_mem_pages(size);
1563 delta = amt << SK_MEM_QUANTUM_SHIFT;
1564 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1565 err = -ENOBUFS;
1566 spin_unlock(&list->lock);
1567 goto uncharge_drop;
1568 }
1569
1570 sk->sk_forward_alloc += delta;
1571 }
1572
1573 sk->sk_forward_alloc -= size;
1574
1575 /* no need to setup a destructor, we will explicitly release the
1576 * forward allocated memory on dequeue
1577 */
1578 sock_skb_set_dropcount(sk, skb);
1579
1580 __skb_queue_tail(list, skb);
1581 spin_unlock(&list->lock);
1582
1583 if (!sock_flag(sk, SOCK_DEAD))
1584 sk->sk_data_ready(sk);
1585
1586 busylock_release(busy);
1587 return 0;
1588
1589 uncharge_drop:
1590 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1591
1592 drop:
1593 atomic_inc(&sk->sk_drops);
1594 busylock_release(busy);
1595 return err;
1596 }
1597 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1598
udp_destruct_sock(struct sock * sk)1599 void udp_destruct_sock(struct sock *sk)
1600 {
1601 /* reclaim completely the forward allocated memory */
1602 struct udp_sock *up = udp_sk(sk);
1603 unsigned int total = 0;
1604 struct sk_buff *skb;
1605
1606 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1607 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1608 total += skb->truesize;
1609 kfree_skb(skb);
1610 }
1611 udp_rmem_release(sk, total, 0, true);
1612
1613 inet_sock_destruct(sk);
1614 }
1615 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1616
udp_init_sock(struct sock * sk)1617 int udp_init_sock(struct sock *sk)
1618 {
1619 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1620 sk->sk_destruct = udp_destruct_sock;
1621 return 0;
1622 }
1623 EXPORT_SYMBOL_GPL(udp_init_sock);
1624
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1625 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1626 {
1627 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1628 bool slow = lock_sock_fast(sk);
1629
1630 sk_peek_offset_bwd(sk, len);
1631 unlock_sock_fast(sk, slow);
1632 }
1633
1634 if (!skb_unref(skb))
1635 return;
1636
1637 /* In the more common cases we cleared the head states previously,
1638 * see __udp_queue_rcv_skb().
1639 */
1640 if (unlikely(udp_skb_has_head_state(skb)))
1641 skb_release_head_state(skb);
1642 __consume_stateless_skb(skb);
1643 }
1644 EXPORT_SYMBOL_GPL(skb_consume_udp);
1645
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1646 static struct sk_buff *__first_packet_length(struct sock *sk,
1647 struct sk_buff_head *rcvq,
1648 int *total)
1649 {
1650 struct sk_buff *skb;
1651
1652 while ((skb = skb_peek(rcvq)) != NULL) {
1653 if (udp_lib_checksum_complete(skb)) {
1654 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1655 IS_UDPLITE(sk));
1656 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1657 IS_UDPLITE(sk));
1658 atomic_inc(&sk->sk_drops);
1659 __skb_unlink(skb, rcvq);
1660 *total += skb->truesize;
1661 kfree_skb(skb);
1662 } else {
1663 udp_skb_csum_unnecessary_set(skb);
1664 break;
1665 }
1666 }
1667 return skb;
1668 }
1669
1670 /**
1671 * first_packet_length - return length of first packet in receive queue
1672 * @sk: socket
1673 *
1674 * Drops all bad checksum frames, until a valid one is found.
1675 * Returns the length of found skb, or -1 if none is found.
1676 */
first_packet_length(struct sock * sk)1677 static int first_packet_length(struct sock *sk)
1678 {
1679 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1680 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1681 struct sk_buff *skb;
1682 int total = 0;
1683 int res;
1684
1685 spin_lock_bh(&rcvq->lock);
1686 skb = __first_packet_length(sk, rcvq, &total);
1687 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1688 spin_lock(&sk_queue->lock);
1689 skb_queue_splice_tail_init(sk_queue, rcvq);
1690 spin_unlock(&sk_queue->lock);
1691
1692 skb = __first_packet_length(sk, rcvq, &total);
1693 }
1694 res = skb ? skb->len : -1;
1695 if (total)
1696 udp_rmem_release(sk, total, 1, false);
1697 spin_unlock_bh(&rcvq->lock);
1698 return res;
1699 }
1700
1701 /*
1702 * IOCTL requests applicable to the UDP protocol
1703 */
1704
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1705 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1706 {
1707 switch (cmd) {
1708 case SIOCOUTQ:
1709 {
1710 int amount = sk_wmem_alloc_get(sk);
1711
1712 return put_user(amount, (int __user *)arg);
1713 }
1714
1715 case SIOCINQ:
1716 {
1717 int amount = max_t(int, 0, first_packet_length(sk));
1718
1719 return put_user(amount, (int __user *)arg);
1720 }
1721
1722 default:
1723 return -ENOIOCTLCMD;
1724 }
1725
1726 return 0;
1727 }
1728 EXPORT_SYMBOL(udp_ioctl);
1729
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1730 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1731 int *off, int *err)
1732 {
1733 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1734 struct sk_buff_head *queue;
1735 struct sk_buff *last;
1736 long timeo;
1737 int error;
1738
1739 queue = &udp_sk(sk)->reader_queue;
1740 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1741 do {
1742 struct sk_buff *skb;
1743
1744 error = sock_error(sk);
1745 if (error)
1746 break;
1747
1748 error = -EAGAIN;
1749 do {
1750 spin_lock_bh(&queue->lock);
1751 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1752 err, &last);
1753 if (skb) {
1754 if (!(flags & MSG_PEEK))
1755 udp_skb_destructor(sk, skb);
1756 spin_unlock_bh(&queue->lock);
1757 return skb;
1758 }
1759
1760 if (skb_queue_empty_lockless(sk_queue)) {
1761 spin_unlock_bh(&queue->lock);
1762 goto busy_check;
1763 }
1764
1765 /* refill the reader queue and walk it again
1766 * keep both queues locked to avoid re-acquiring
1767 * the sk_receive_queue lock if fwd memory scheduling
1768 * is needed.
1769 */
1770 spin_lock(&sk_queue->lock);
1771 skb_queue_splice_tail_init(sk_queue, queue);
1772
1773 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1774 err, &last);
1775 if (skb && !(flags & MSG_PEEK))
1776 udp_skb_dtor_locked(sk, skb);
1777 spin_unlock(&sk_queue->lock);
1778 spin_unlock_bh(&queue->lock);
1779 if (skb)
1780 return skb;
1781
1782 busy_check:
1783 if (!sk_can_busy_loop(sk))
1784 break;
1785
1786 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1787 } while (!skb_queue_empty_lockless(sk_queue));
1788
1789 /* sk_queue is empty, reader_queue may contain peeked packets */
1790 } while (timeo &&
1791 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1792 &error, &timeo,
1793 (struct sk_buff *)sk_queue));
1794
1795 *err = error;
1796 return NULL;
1797 }
1798 EXPORT_SYMBOL(__skb_recv_udp);
1799
udp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1800 int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
1801 sk_read_actor_t recv_actor)
1802 {
1803 int copied = 0;
1804
1805 while (1) {
1806 struct sk_buff *skb;
1807 int err, used;
1808
1809 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1810 if (!skb)
1811 return err;
1812
1813 if (udp_lib_checksum_complete(skb)) {
1814 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1815 IS_UDPLITE(sk));
1816 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1817 IS_UDPLITE(sk));
1818 atomic_inc(&sk->sk_drops);
1819 kfree_skb(skb);
1820 continue;
1821 }
1822
1823 used = recv_actor(desc, skb, 0, skb->len);
1824 if (used <= 0) {
1825 if (!copied)
1826 copied = used;
1827 kfree_skb(skb);
1828 break;
1829 } else if (used <= skb->len) {
1830 copied += used;
1831 }
1832
1833 kfree_skb(skb);
1834 if (!desc->count)
1835 break;
1836 }
1837
1838 return copied;
1839 }
1840 EXPORT_SYMBOL(udp_read_sock);
1841
1842 /*
1843 * This should be easy, if there is something there we
1844 * return it, otherwise we block.
1845 */
1846
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1847 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1848 int *addr_len)
1849 {
1850 struct inet_sock *inet = inet_sk(sk);
1851 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1852 struct sk_buff *skb;
1853 unsigned int ulen, copied;
1854 int off, err, peeking = flags & MSG_PEEK;
1855 int is_udplite = IS_UDPLITE(sk);
1856 bool checksum_valid = false;
1857
1858 if (flags & MSG_ERRQUEUE)
1859 return ip_recv_error(sk, msg, len, addr_len);
1860
1861 try_again:
1862 off = sk_peek_offset(sk, flags);
1863 skb = __skb_recv_udp(sk, flags, &off, &err);
1864 if (!skb)
1865 return err;
1866
1867 ulen = udp_skb_len(skb);
1868 copied = len;
1869 if (copied > ulen - off)
1870 copied = ulen - off;
1871 else if (copied < ulen)
1872 msg->msg_flags |= MSG_TRUNC;
1873
1874 /*
1875 * If checksum is needed at all, try to do it while copying the
1876 * data. If the data is truncated, or if we only want a partial
1877 * coverage checksum (UDP-Lite), do it before the copy.
1878 */
1879
1880 if (copied < ulen || peeking ||
1881 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1882 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1883 !__udp_lib_checksum_complete(skb);
1884 if (!checksum_valid)
1885 goto csum_copy_err;
1886 }
1887
1888 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1889 if (udp_skb_is_linear(skb))
1890 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1891 else
1892 err = skb_copy_datagram_msg(skb, off, msg, copied);
1893 } else {
1894 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1895
1896 if (err == -EINVAL)
1897 goto csum_copy_err;
1898 }
1899
1900 if (unlikely(err)) {
1901 if (!peeking) {
1902 atomic_inc(&sk->sk_drops);
1903 UDP_INC_STATS(sock_net(sk),
1904 UDP_MIB_INERRORS, is_udplite);
1905 }
1906 kfree_skb(skb);
1907 return err;
1908 }
1909
1910 if (!peeking)
1911 UDP_INC_STATS(sock_net(sk),
1912 UDP_MIB_INDATAGRAMS, is_udplite);
1913
1914 sock_recv_cmsgs(msg, sk, skb);
1915
1916 /* Copy the address. */
1917 if (sin) {
1918 sin->sin_family = AF_INET;
1919 sin->sin_port = udp_hdr(skb)->source;
1920 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1921 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1922 *addr_len = sizeof(*sin);
1923
1924 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1925 (struct sockaddr *)sin);
1926 }
1927
1928 if (udp_sk(sk)->gro_enabled)
1929 udp_cmsg_recv(msg, sk, skb);
1930
1931 if (inet->cmsg_flags)
1932 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1933
1934 err = copied;
1935 if (flags & MSG_TRUNC)
1936 err = ulen;
1937
1938 skb_consume_udp(sk, skb, peeking ? -err : err);
1939 return err;
1940
1941 csum_copy_err:
1942 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1943 udp_skb_destructor)) {
1944 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1945 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1946 }
1947 kfree_skb(skb);
1948
1949 /* starting over for a new packet, but check if we need to yield */
1950 cond_resched();
1951 msg->msg_flags &= ~MSG_TRUNC;
1952 goto try_again;
1953 }
1954
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1955 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1956 {
1957 /* This check is replicated from __ip4_datagram_connect() and
1958 * intended to prevent BPF program called below from accessing bytes
1959 * that are out of the bound specified by user in addr_len.
1960 */
1961 if (addr_len < sizeof(struct sockaddr_in))
1962 return -EINVAL;
1963
1964 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1965 }
1966 EXPORT_SYMBOL(udp_pre_connect);
1967
__udp_disconnect(struct sock * sk,int flags)1968 int __udp_disconnect(struct sock *sk, int flags)
1969 {
1970 struct inet_sock *inet = inet_sk(sk);
1971 /*
1972 * 1003.1g - break association.
1973 */
1974
1975 sk->sk_state = TCP_CLOSE;
1976 inet->inet_daddr = 0;
1977 inet->inet_dport = 0;
1978 sock_rps_reset_rxhash(sk);
1979 sk->sk_bound_dev_if = 0;
1980 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1981 inet_reset_saddr(sk);
1982 if (sk->sk_prot->rehash &&
1983 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1984 sk->sk_prot->rehash(sk);
1985 }
1986
1987 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1988 sk->sk_prot->unhash(sk);
1989 inet->inet_sport = 0;
1990 }
1991 sk_dst_reset(sk);
1992 return 0;
1993 }
1994 EXPORT_SYMBOL(__udp_disconnect);
1995
udp_disconnect(struct sock * sk,int flags)1996 int udp_disconnect(struct sock *sk, int flags)
1997 {
1998 lock_sock(sk);
1999 __udp_disconnect(sk, flags);
2000 release_sock(sk);
2001 return 0;
2002 }
2003 EXPORT_SYMBOL(udp_disconnect);
2004
udp_lib_unhash(struct sock * sk)2005 void udp_lib_unhash(struct sock *sk)
2006 {
2007 if (sk_hashed(sk)) {
2008 struct udp_table *udptable = sk->sk_prot->h.udp_table;
2009 struct udp_hslot *hslot, *hslot2;
2010
2011 hslot = udp_hashslot(udptable, sock_net(sk),
2012 udp_sk(sk)->udp_port_hash);
2013 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2014
2015 spin_lock_bh(&hslot->lock);
2016 if (rcu_access_pointer(sk->sk_reuseport_cb))
2017 reuseport_detach_sock(sk);
2018 if (sk_del_node_init_rcu(sk)) {
2019 hslot->count--;
2020 inet_sk(sk)->inet_num = 0;
2021 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2022
2023 spin_lock(&hslot2->lock);
2024 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2025 hslot2->count--;
2026 spin_unlock(&hslot2->lock);
2027 }
2028 spin_unlock_bh(&hslot->lock);
2029 }
2030 }
2031 EXPORT_SYMBOL(udp_lib_unhash);
2032
2033 /*
2034 * inet_rcv_saddr was changed, we must rehash secondary hash
2035 */
udp_lib_rehash(struct sock * sk,u16 newhash)2036 void udp_lib_rehash(struct sock *sk, u16 newhash)
2037 {
2038 if (sk_hashed(sk)) {
2039 struct udp_table *udptable = sk->sk_prot->h.udp_table;
2040 struct udp_hslot *hslot, *hslot2, *nhslot2;
2041
2042 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2043 nhslot2 = udp_hashslot2(udptable, newhash);
2044 udp_sk(sk)->udp_portaddr_hash = newhash;
2045
2046 if (hslot2 != nhslot2 ||
2047 rcu_access_pointer(sk->sk_reuseport_cb)) {
2048 hslot = udp_hashslot(udptable, sock_net(sk),
2049 udp_sk(sk)->udp_port_hash);
2050 /* we must lock primary chain too */
2051 spin_lock_bh(&hslot->lock);
2052 if (rcu_access_pointer(sk->sk_reuseport_cb))
2053 reuseport_detach_sock(sk);
2054
2055 if (hslot2 != nhslot2) {
2056 spin_lock(&hslot2->lock);
2057 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2058 hslot2->count--;
2059 spin_unlock(&hslot2->lock);
2060
2061 spin_lock(&nhslot2->lock);
2062 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2063 &nhslot2->head);
2064 nhslot2->count++;
2065 spin_unlock(&nhslot2->lock);
2066 }
2067
2068 spin_unlock_bh(&hslot->lock);
2069 }
2070 }
2071 }
2072 EXPORT_SYMBOL(udp_lib_rehash);
2073
udp_v4_rehash(struct sock * sk)2074 void udp_v4_rehash(struct sock *sk)
2075 {
2076 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2077 inet_sk(sk)->inet_rcv_saddr,
2078 inet_sk(sk)->inet_num);
2079 udp_lib_rehash(sk, new_hash);
2080 }
2081
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2082 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2083 {
2084 int rc;
2085
2086 if (inet_sk(sk)->inet_daddr) {
2087 sock_rps_save_rxhash(sk, skb);
2088 sk_mark_napi_id(sk, skb);
2089 sk_incoming_cpu_update(sk);
2090 } else {
2091 sk_mark_napi_id_once(sk, skb);
2092 }
2093
2094 rc = __udp_enqueue_schedule_skb(sk, skb);
2095 if (rc < 0) {
2096 int is_udplite = IS_UDPLITE(sk);
2097 int drop_reason;
2098
2099 /* Note that an ENOMEM error is charged twice */
2100 if (rc == -ENOMEM) {
2101 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2102 is_udplite);
2103 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2104 } else {
2105 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2106 is_udplite);
2107 drop_reason = SKB_DROP_REASON_PROTO_MEM;
2108 }
2109 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2110 kfree_skb_reason(skb, drop_reason);
2111 trace_udp_fail_queue_rcv_skb(rc, sk);
2112 return -1;
2113 }
2114
2115 return 0;
2116 }
2117
2118 /* returns:
2119 * -1: error
2120 * 0: success
2121 * >0: "udp encap" protocol resubmission
2122 *
2123 * Note that in the success and error cases, the skb is assumed to
2124 * have either been requeued or freed.
2125 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2126 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2127 {
2128 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2129 struct udp_sock *up = udp_sk(sk);
2130 int is_udplite = IS_UDPLITE(sk);
2131
2132 /*
2133 * Charge it to the socket, dropping if the queue is full.
2134 */
2135 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2136 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2137 goto drop;
2138 }
2139 nf_reset_ct(skb);
2140
2141 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2142 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2143
2144 /*
2145 * This is an encapsulation socket so pass the skb to
2146 * the socket's udp_encap_rcv() hook. Otherwise, just
2147 * fall through and pass this up the UDP socket.
2148 * up->encap_rcv() returns the following value:
2149 * =0 if skb was successfully passed to the encap
2150 * handler or was discarded by it.
2151 * >0 if skb should be passed on to UDP.
2152 * <0 if skb should be resubmitted as proto -N
2153 */
2154
2155 /* if we're overly short, let UDP handle it */
2156 encap_rcv = READ_ONCE(up->encap_rcv);
2157 if (encap_rcv) {
2158 int ret;
2159
2160 /* Verify checksum before giving to encap */
2161 if (udp_lib_checksum_complete(skb))
2162 goto csum_error;
2163
2164 ret = encap_rcv(sk, skb);
2165 if (ret <= 0) {
2166 __UDP_INC_STATS(sock_net(sk),
2167 UDP_MIB_INDATAGRAMS,
2168 is_udplite);
2169 return -ret;
2170 }
2171 }
2172
2173 /* FALLTHROUGH -- it's a UDP Packet */
2174 }
2175
2176 /*
2177 * UDP-Lite specific tests, ignored on UDP sockets
2178 */
2179 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2180
2181 /*
2182 * MIB statistics other than incrementing the error count are
2183 * disabled for the following two types of errors: these depend
2184 * on the application settings, not on the functioning of the
2185 * protocol stack as such.
2186 *
2187 * RFC 3828 here recommends (sec 3.3): "There should also be a
2188 * way ... to ... at least let the receiving application block
2189 * delivery of packets with coverage values less than a value
2190 * provided by the application."
2191 */
2192 if (up->pcrlen == 0) { /* full coverage was set */
2193 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2194 UDP_SKB_CB(skb)->cscov, skb->len);
2195 goto drop;
2196 }
2197 /* The next case involves violating the min. coverage requested
2198 * by the receiver. This is subtle: if receiver wants x and x is
2199 * greater than the buffersize/MTU then receiver will complain
2200 * that it wants x while sender emits packets of smaller size y.
2201 * Therefore the above ...()->partial_cov statement is essential.
2202 */
2203 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2204 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2205 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2206 goto drop;
2207 }
2208 }
2209
2210 prefetch(&sk->sk_rmem_alloc);
2211 if (rcu_access_pointer(sk->sk_filter) &&
2212 udp_lib_checksum_complete(skb))
2213 goto csum_error;
2214
2215 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2216 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2217 goto drop;
2218 }
2219
2220 udp_csum_pull_header(skb);
2221
2222 ipv4_pktinfo_prepare(sk, skb);
2223 return __udp_queue_rcv_skb(sk, skb);
2224
2225 csum_error:
2226 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2227 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2228 drop:
2229 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2230 atomic_inc(&sk->sk_drops);
2231 kfree_skb_reason(skb, drop_reason);
2232 return -1;
2233 }
2234
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2235 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2236 {
2237 struct sk_buff *next, *segs;
2238 int ret;
2239
2240 if (likely(!udp_unexpected_gso(sk, skb)))
2241 return udp_queue_rcv_one_skb(sk, skb);
2242
2243 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2244 __skb_push(skb, -skb_mac_offset(skb));
2245 segs = udp_rcv_segment(sk, skb, true);
2246 skb_list_walk_safe(segs, skb, next) {
2247 __skb_pull(skb, skb_transport_offset(skb));
2248
2249 udp_post_segment_fix_csum(skb);
2250 ret = udp_queue_rcv_one_skb(sk, skb);
2251 if (ret > 0)
2252 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2253 }
2254 return 0;
2255 }
2256
2257 /* For TCP sockets, sk_rx_dst is protected by socket lock
2258 * For UDP, we use xchg() to guard against concurrent changes.
2259 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2260 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2261 {
2262 struct dst_entry *old;
2263
2264 if (dst_hold_safe(dst)) {
2265 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2266 dst_release(old);
2267 return old != dst;
2268 }
2269 return false;
2270 }
2271 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2272
2273 /*
2274 * Multicasts and broadcasts go to each listener.
2275 *
2276 * Note: called only from the BH handler context.
2277 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2278 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2279 struct udphdr *uh,
2280 __be32 saddr, __be32 daddr,
2281 struct udp_table *udptable,
2282 int proto)
2283 {
2284 struct sock *sk, *first = NULL;
2285 unsigned short hnum = ntohs(uh->dest);
2286 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2287 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2288 unsigned int offset = offsetof(typeof(*sk), sk_node);
2289 int dif = skb->dev->ifindex;
2290 int sdif = inet_sdif(skb);
2291 struct hlist_node *node;
2292 struct sk_buff *nskb;
2293
2294 if (use_hash2) {
2295 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2296 udptable->mask;
2297 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2298 start_lookup:
2299 hslot = &udptable->hash2[hash2];
2300 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2301 }
2302
2303 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2304 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2305 uh->source, saddr, dif, sdif, hnum))
2306 continue;
2307
2308 if (!first) {
2309 first = sk;
2310 continue;
2311 }
2312 nskb = skb_clone(skb, GFP_ATOMIC);
2313
2314 if (unlikely(!nskb)) {
2315 atomic_inc(&sk->sk_drops);
2316 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2317 IS_UDPLITE(sk));
2318 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2319 IS_UDPLITE(sk));
2320 continue;
2321 }
2322 if (udp_queue_rcv_skb(sk, nskb) > 0)
2323 consume_skb(nskb);
2324 }
2325
2326 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2327 if (use_hash2 && hash2 != hash2_any) {
2328 hash2 = hash2_any;
2329 goto start_lookup;
2330 }
2331
2332 if (first) {
2333 if (udp_queue_rcv_skb(first, skb) > 0)
2334 consume_skb(skb);
2335 } else {
2336 kfree_skb(skb);
2337 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2338 proto == IPPROTO_UDPLITE);
2339 }
2340 return 0;
2341 }
2342
2343 /* Initialize UDP checksum. If exited with zero value (success),
2344 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2345 * Otherwise, csum completion requires checksumming packet body,
2346 * including udp header and folding it to skb->csum.
2347 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2348 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2349 int proto)
2350 {
2351 int err;
2352
2353 UDP_SKB_CB(skb)->partial_cov = 0;
2354 UDP_SKB_CB(skb)->cscov = skb->len;
2355
2356 if (proto == IPPROTO_UDPLITE) {
2357 err = udplite_checksum_init(skb, uh);
2358 if (err)
2359 return err;
2360
2361 if (UDP_SKB_CB(skb)->partial_cov) {
2362 skb->csum = inet_compute_pseudo(skb, proto);
2363 return 0;
2364 }
2365 }
2366
2367 /* Note, we are only interested in != 0 or == 0, thus the
2368 * force to int.
2369 */
2370 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2371 inet_compute_pseudo);
2372 if (err)
2373 return err;
2374
2375 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2376 /* If SW calculated the value, we know it's bad */
2377 if (skb->csum_complete_sw)
2378 return 1;
2379
2380 /* HW says the value is bad. Let's validate that.
2381 * skb->csum is no longer the full packet checksum,
2382 * so don't treat it as such.
2383 */
2384 skb_checksum_complete_unset(skb);
2385 }
2386
2387 return 0;
2388 }
2389
2390 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2391 * return code conversion for ip layer consumption
2392 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2393 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2394 struct udphdr *uh)
2395 {
2396 int ret;
2397
2398 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2399 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2400
2401 ret = udp_queue_rcv_skb(sk, skb);
2402
2403 /* a return value > 0 means to resubmit the input, but
2404 * it wants the return to be -protocol, or 0
2405 */
2406 if (ret > 0)
2407 return -ret;
2408 return 0;
2409 }
2410
2411 /*
2412 * All we need to do is get the socket, and then do a checksum.
2413 */
2414
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2415 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2416 int proto)
2417 {
2418 struct sock *sk;
2419 struct udphdr *uh;
2420 unsigned short ulen;
2421 struct rtable *rt = skb_rtable(skb);
2422 __be32 saddr, daddr;
2423 struct net *net = dev_net(skb->dev);
2424 bool refcounted;
2425 int drop_reason;
2426
2427 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2428
2429 /*
2430 * Validate the packet.
2431 */
2432 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2433 goto drop; /* No space for header. */
2434
2435 uh = udp_hdr(skb);
2436 ulen = ntohs(uh->len);
2437 saddr = ip_hdr(skb)->saddr;
2438 daddr = ip_hdr(skb)->daddr;
2439
2440 if (ulen > skb->len)
2441 goto short_packet;
2442
2443 if (proto == IPPROTO_UDP) {
2444 /* UDP validates ulen. */
2445 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2446 goto short_packet;
2447 uh = udp_hdr(skb);
2448 }
2449
2450 if (udp4_csum_init(skb, uh, proto))
2451 goto csum_error;
2452
2453 sk = skb_steal_sock(skb, &refcounted);
2454 if (sk) {
2455 struct dst_entry *dst = skb_dst(skb);
2456 int ret;
2457
2458 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2459 udp_sk_rx_dst_set(sk, dst);
2460
2461 ret = udp_unicast_rcv_skb(sk, skb, uh);
2462 if (refcounted)
2463 sock_put(sk);
2464 return ret;
2465 }
2466
2467 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2468 return __udp4_lib_mcast_deliver(net, skb, uh,
2469 saddr, daddr, udptable, proto);
2470
2471 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2472 if (sk)
2473 return udp_unicast_rcv_skb(sk, skb, uh);
2474
2475 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2476 goto drop;
2477 nf_reset_ct(skb);
2478
2479 /* No socket. Drop packet silently, if checksum is wrong */
2480 if (udp_lib_checksum_complete(skb))
2481 goto csum_error;
2482
2483 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2484 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2485 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2486
2487 /*
2488 * Hmm. We got an UDP packet to a port to which we
2489 * don't wanna listen. Ignore it.
2490 */
2491 kfree_skb_reason(skb, drop_reason);
2492 return 0;
2493
2494 short_packet:
2495 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2496 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2497 proto == IPPROTO_UDPLITE ? "Lite" : "",
2498 &saddr, ntohs(uh->source),
2499 ulen, skb->len,
2500 &daddr, ntohs(uh->dest));
2501 goto drop;
2502
2503 csum_error:
2504 /*
2505 * RFC1122: OK. Discards the bad packet silently (as far as
2506 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2507 */
2508 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2509 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2510 proto == IPPROTO_UDPLITE ? "Lite" : "",
2511 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2512 ulen);
2513 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2514 drop:
2515 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2516 kfree_skb_reason(skb, drop_reason);
2517 return 0;
2518 }
2519
2520 /* We can only early demux multicast if there is a single matching socket.
2521 * If more than one socket found returns NULL
2522 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2523 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2524 __be16 loc_port, __be32 loc_addr,
2525 __be16 rmt_port, __be32 rmt_addr,
2526 int dif, int sdif)
2527 {
2528 struct sock *sk, *result;
2529 unsigned short hnum = ntohs(loc_port);
2530 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2531 struct udp_hslot *hslot = &udp_table.hash[slot];
2532
2533 /* Do not bother scanning a too big list */
2534 if (hslot->count > 10)
2535 return NULL;
2536
2537 result = NULL;
2538 sk_for_each_rcu(sk, &hslot->head) {
2539 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2540 rmt_port, rmt_addr, dif, sdif, hnum)) {
2541 if (result)
2542 return NULL;
2543 result = sk;
2544 }
2545 }
2546
2547 return result;
2548 }
2549
2550 /* For unicast we should only early demux connected sockets or we can
2551 * break forwarding setups. The chains here can be long so only check
2552 * if the first socket is an exact match and if not move on.
2553 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2554 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2555 __be16 loc_port, __be32 loc_addr,
2556 __be16 rmt_port, __be32 rmt_addr,
2557 int dif, int sdif)
2558 {
2559 unsigned short hnum = ntohs(loc_port);
2560 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2561 unsigned int slot2 = hash2 & udp_table.mask;
2562 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2563 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2564 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2565 struct sock *sk;
2566
2567 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2568 if (inet_match(net, sk, acookie, ports, dif, sdif))
2569 return sk;
2570 /* Only check first socket in chain */
2571 break;
2572 }
2573 return NULL;
2574 }
2575
udp_v4_early_demux(struct sk_buff * skb)2576 int udp_v4_early_demux(struct sk_buff *skb)
2577 {
2578 struct net *net = dev_net(skb->dev);
2579 struct in_device *in_dev = NULL;
2580 const struct iphdr *iph;
2581 const struct udphdr *uh;
2582 struct sock *sk = NULL;
2583 struct dst_entry *dst;
2584 int dif = skb->dev->ifindex;
2585 int sdif = inet_sdif(skb);
2586 int ours;
2587
2588 /* validate the packet */
2589 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2590 return 0;
2591
2592 iph = ip_hdr(skb);
2593 uh = udp_hdr(skb);
2594
2595 if (skb->pkt_type == PACKET_MULTICAST) {
2596 in_dev = __in_dev_get_rcu(skb->dev);
2597
2598 if (!in_dev)
2599 return 0;
2600
2601 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2602 iph->protocol);
2603 if (!ours)
2604 return 0;
2605
2606 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2607 uh->source, iph->saddr,
2608 dif, sdif);
2609 } else if (skb->pkt_type == PACKET_HOST) {
2610 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2611 uh->source, iph->saddr, dif, sdif);
2612 }
2613
2614 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2615 return 0;
2616
2617 skb->sk = sk;
2618 skb->destructor = sock_efree;
2619 dst = rcu_dereference(sk->sk_rx_dst);
2620
2621 if (dst)
2622 dst = dst_check(dst, 0);
2623 if (dst) {
2624 u32 itag = 0;
2625
2626 /* set noref for now.
2627 * any place which wants to hold dst has to call
2628 * dst_hold_safe()
2629 */
2630 skb_dst_set_noref(skb, dst);
2631
2632 /* for unconnected multicast sockets we need to validate
2633 * the source on each packet
2634 */
2635 if (!inet_sk(sk)->inet_daddr && in_dev)
2636 return ip_mc_validate_source(skb, iph->daddr,
2637 iph->saddr,
2638 iph->tos & IPTOS_RT_MASK,
2639 skb->dev, in_dev, &itag);
2640 }
2641 return 0;
2642 }
2643
udp_rcv(struct sk_buff * skb)2644 int udp_rcv(struct sk_buff *skb)
2645 {
2646 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2647 }
2648
udp_destroy_sock(struct sock * sk)2649 void udp_destroy_sock(struct sock *sk)
2650 {
2651 struct udp_sock *up = udp_sk(sk);
2652 bool slow = lock_sock_fast(sk);
2653
2654 /* protects from races with udp_abort() */
2655 sock_set_flag(sk, SOCK_DEAD);
2656 udp_flush_pending_frames(sk);
2657 unlock_sock_fast(sk, slow);
2658 if (static_branch_unlikely(&udp_encap_needed_key)) {
2659 if (up->encap_type) {
2660 void (*encap_destroy)(struct sock *sk);
2661 encap_destroy = READ_ONCE(up->encap_destroy);
2662 if (encap_destroy)
2663 encap_destroy(sk);
2664 }
2665 if (up->encap_enabled)
2666 static_branch_dec(&udp_encap_needed_key);
2667 }
2668 }
2669
2670 /*
2671 * Socket option code for UDP
2672 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2673 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2674 sockptr_t optval, unsigned int optlen,
2675 int (*push_pending_frames)(struct sock *))
2676 {
2677 struct udp_sock *up = udp_sk(sk);
2678 int val, valbool;
2679 int err = 0;
2680 int is_udplite = IS_UDPLITE(sk);
2681
2682 if (optlen < sizeof(int))
2683 return -EINVAL;
2684
2685 if (copy_from_sockptr(&val, optval, sizeof(val)))
2686 return -EFAULT;
2687
2688 valbool = val ? 1 : 0;
2689
2690 switch (optname) {
2691 case UDP_CORK:
2692 if (val != 0) {
2693 WRITE_ONCE(up->corkflag, 1);
2694 } else {
2695 WRITE_ONCE(up->corkflag, 0);
2696 lock_sock(sk);
2697 push_pending_frames(sk);
2698 release_sock(sk);
2699 }
2700 break;
2701
2702 case UDP_ENCAP:
2703 switch (val) {
2704 case 0:
2705 #ifdef CONFIG_XFRM
2706 case UDP_ENCAP_ESPINUDP:
2707 case UDP_ENCAP_ESPINUDP_NON_IKE:
2708 #if IS_ENABLED(CONFIG_IPV6)
2709 if (sk->sk_family == AF_INET6)
2710 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2711 else
2712 #endif
2713 up->encap_rcv = xfrm4_udp_encap_rcv;
2714 #endif
2715 fallthrough;
2716 case UDP_ENCAP_L2TPINUDP:
2717 up->encap_type = val;
2718 lock_sock(sk);
2719 udp_tunnel_encap_enable(sk->sk_socket);
2720 release_sock(sk);
2721 break;
2722 default:
2723 err = -ENOPROTOOPT;
2724 break;
2725 }
2726 break;
2727
2728 case UDP_NO_CHECK6_TX:
2729 up->no_check6_tx = valbool;
2730 break;
2731
2732 case UDP_NO_CHECK6_RX:
2733 up->no_check6_rx = valbool;
2734 break;
2735
2736 case UDP_SEGMENT:
2737 if (val < 0 || val > USHRT_MAX)
2738 return -EINVAL;
2739 WRITE_ONCE(up->gso_size, val);
2740 break;
2741
2742 case UDP_GRO:
2743 lock_sock(sk);
2744
2745 /* when enabling GRO, accept the related GSO packet type */
2746 if (valbool)
2747 udp_tunnel_encap_enable(sk->sk_socket);
2748 up->gro_enabled = valbool;
2749 up->accept_udp_l4 = valbool;
2750 release_sock(sk);
2751 break;
2752
2753 /*
2754 * UDP-Lite's partial checksum coverage (RFC 3828).
2755 */
2756 /* The sender sets actual checksum coverage length via this option.
2757 * The case coverage > packet length is handled by send module. */
2758 case UDPLITE_SEND_CSCOV:
2759 if (!is_udplite) /* Disable the option on UDP sockets */
2760 return -ENOPROTOOPT;
2761 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2762 val = 8;
2763 else if (val > USHRT_MAX)
2764 val = USHRT_MAX;
2765 up->pcslen = val;
2766 up->pcflag |= UDPLITE_SEND_CC;
2767 break;
2768
2769 /* The receiver specifies a minimum checksum coverage value. To make
2770 * sense, this should be set to at least 8 (as done below). If zero is
2771 * used, this again means full checksum coverage. */
2772 case UDPLITE_RECV_CSCOV:
2773 if (!is_udplite) /* Disable the option on UDP sockets */
2774 return -ENOPROTOOPT;
2775 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2776 val = 8;
2777 else if (val > USHRT_MAX)
2778 val = USHRT_MAX;
2779 up->pcrlen = val;
2780 up->pcflag |= UDPLITE_RECV_CC;
2781 break;
2782
2783 default:
2784 err = -ENOPROTOOPT;
2785 break;
2786 }
2787
2788 return err;
2789 }
2790 EXPORT_SYMBOL(udp_lib_setsockopt);
2791
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2792 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2793 unsigned int optlen)
2794 {
2795 if (level == SOL_UDP || level == SOL_UDPLITE)
2796 return udp_lib_setsockopt(sk, level, optname,
2797 optval, optlen,
2798 udp_push_pending_frames);
2799 return ip_setsockopt(sk, level, optname, optval, optlen);
2800 }
2801
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2802 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2803 char __user *optval, int __user *optlen)
2804 {
2805 struct udp_sock *up = udp_sk(sk);
2806 int val, len;
2807
2808 if (get_user(len, optlen))
2809 return -EFAULT;
2810
2811 len = min_t(unsigned int, len, sizeof(int));
2812
2813 if (len < 0)
2814 return -EINVAL;
2815
2816 switch (optname) {
2817 case UDP_CORK:
2818 val = READ_ONCE(up->corkflag);
2819 break;
2820
2821 case UDP_ENCAP:
2822 val = up->encap_type;
2823 break;
2824
2825 case UDP_NO_CHECK6_TX:
2826 val = up->no_check6_tx;
2827 break;
2828
2829 case UDP_NO_CHECK6_RX:
2830 val = up->no_check6_rx;
2831 break;
2832
2833 case UDP_SEGMENT:
2834 val = READ_ONCE(up->gso_size);
2835 break;
2836
2837 case UDP_GRO:
2838 val = up->gro_enabled;
2839 break;
2840
2841 /* The following two cannot be changed on UDP sockets, the return is
2842 * always 0 (which corresponds to the full checksum coverage of UDP). */
2843 case UDPLITE_SEND_CSCOV:
2844 val = up->pcslen;
2845 break;
2846
2847 case UDPLITE_RECV_CSCOV:
2848 val = up->pcrlen;
2849 break;
2850
2851 default:
2852 return -ENOPROTOOPT;
2853 }
2854
2855 if (put_user(len, optlen))
2856 return -EFAULT;
2857 if (copy_to_user(optval, &val, len))
2858 return -EFAULT;
2859 return 0;
2860 }
2861 EXPORT_SYMBOL(udp_lib_getsockopt);
2862
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2863 int udp_getsockopt(struct sock *sk, int level, int optname,
2864 char __user *optval, int __user *optlen)
2865 {
2866 if (level == SOL_UDP || level == SOL_UDPLITE)
2867 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2868 return ip_getsockopt(sk, level, optname, optval, optlen);
2869 }
2870
2871 /**
2872 * udp_poll - wait for a UDP event.
2873 * @file: - file struct
2874 * @sock: - socket
2875 * @wait: - poll table
2876 *
2877 * This is same as datagram poll, except for the special case of
2878 * blocking sockets. If application is using a blocking fd
2879 * and a packet with checksum error is in the queue;
2880 * then it could get return from select indicating data available
2881 * but then block when reading it. Add special case code
2882 * to work around these arguably broken applications.
2883 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2884 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2885 {
2886 __poll_t mask = datagram_poll(file, sock, wait);
2887 struct sock *sk = sock->sk;
2888
2889 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2890 mask |= EPOLLIN | EPOLLRDNORM;
2891
2892 /* Check for false positives due to checksum errors */
2893 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2894 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2895 mask &= ~(EPOLLIN | EPOLLRDNORM);
2896
2897 /* psock ingress_msg queue should not contain any bad checksum frames */
2898 if (sk_is_readable(sk))
2899 mask |= EPOLLIN | EPOLLRDNORM;
2900 return mask;
2901
2902 }
2903 EXPORT_SYMBOL(udp_poll);
2904
udp_abort(struct sock * sk,int err)2905 int udp_abort(struct sock *sk, int err)
2906 {
2907 lock_sock(sk);
2908
2909 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2910 * with close()
2911 */
2912 if (sock_flag(sk, SOCK_DEAD))
2913 goto out;
2914
2915 sk->sk_err = err;
2916 sk_error_report(sk);
2917 __udp_disconnect(sk, 0);
2918
2919 out:
2920 release_sock(sk);
2921
2922 return 0;
2923 }
2924 EXPORT_SYMBOL_GPL(udp_abort);
2925
2926 struct proto udp_prot = {
2927 .name = "UDP",
2928 .owner = THIS_MODULE,
2929 .close = udp_lib_close,
2930 .pre_connect = udp_pre_connect,
2931 .connect = ip4_datagram_connect,
2932 .disconnect = udp_disconnect,
2933 .ioctl = udp_ioctl,
2934 .init = udp_init_sock,
2935 .destroy = udp_destroy_sock,
2936 .setsockopt = udp_setsockopt,
2937 .getsockopt = udp_getsockopt,
2938 .sendmsg = udp_sendmsg,
2939 .recvmsg = udp_recvmsg,
2940 .sendpage = udp_sendpage,
2941 .release_cb = ip4_datagram_release_cb,
2942 .hash = udp_lib_hash,
2943 .unhash = udp_lib_unhash,
2944 .rehash = udp_v4_rehash,
2945 .get_port = udp_v4_get_port,
2946 .put_port = udp_lib_unhash,
2947 #ifdef CONFIG_BPF_SYSCALL
2948 .psock_update_sk_prot = udp_bpf_update_proto,
2949 #endif
2950 .memory_allocated = &udp_memory_allocated,
2951 .sysctl_mem = sysctl_udp_mem,
2952 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2953 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2954 .obj_size = sizeof(struct udp_sock),
2955 .h.udp_table = &udp_table,
2956 .diag_destroy = udp_abort,
2957 };
2958 EXPORT_SYMBOL(udp_prot);
2959
2960 /* ------------------------------------------------------------------------ */
2961 #ifdef CONFIG_PROC_FS
2962
udp_get_first(struct seq_file * seq,int start)2963 static struct sock *udp_get_first(struct seq_file *seq, int start)
2964 {
2965 struct sock *sk;
2966 struct udp_seq_afinfo *afinfo;
2967 struct udp_iter_state *state = seq->private;
2968 struct net *net = seq_file_net(seq);
2969
2970 if (state->bpf_seq_afinfo)
2971 afinfo = state->bpf_seq_afinfo;
2972 else
2973 afinfo = pde_data(file_inode(seq->file));
2974
2975 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2976 ++state->bucket) {
2977 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2978
2979 if (hlist_empty(&hslot->head))
2980 continue;
2981
2982 spin_lock_bh(&hslot->lock);
2983 sk_for_each(sk, &hslot->head) {
2984 if (!net_eq(sock_net(sk), net))
2985 continue;
2986 if (afinfo->family == AF_UNSPEC ||
2987 sk->sk_family == afinfo->family)
2988 goto found;
2989 }
2990 spin_unlock_bh(&hslot->lock);
2991 }
2992 sk = NULL;
2993 found:
2994 return sk;
2995 }
2996
udp_get_next(struct seq_file * seq,struct sock * sk)2997 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2998 {
2999 struct udp_seq_afinfo *afinfo;
3000 struct udp_iter_state *state = seq->private;
3001 struct net *net = seq_file_net(seq);
3002
3003 if (state->bpf_seq_afinfo)
3004 afinfo = state->bpf_seq_afinfo;
3005 else
3006 afinfo = pde_data(file_inode(seq->file));
3007
3008 do {
3009 sk = sk_next(sk);
3010 } while (sk && (!net_eq(sock_net(sk), net) ||
3011 (afinfo->family != AF_UNSPEC &&
3012 sk->sk_family != afinfo->family)));
3013
3014 if (!sk) {
3015 if (state->bucket <= afinfo->udp_table->mask)
3016 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3017 return udp_get_first(seq, state->bucket + 1);
3018 }
3019 return sk;
3020 }
3021
udp_get_idx(struct seq_file * seq,loff_t pos)3022 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3023 {
3024 struct sock *sk = udp_get_first(seq, 0);
3025
3026 if (sk)
3027 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3028 --pos;
3029 return pos ? NULL : sk;
3030 }
3031
udp_seq_start(struct seq_file * seq,loff_t * pos)3032 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3033 {
3034 struct udp_iter_state *state = seq->private;
3035 state->bucket = MAX_UDP_PORTS;
3036
3037 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3038 }
3039 EXPORT_SYMBOL(udp_seq_start);
3040
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3041 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3042 {
3043 struct sock *sk;
3044
3045 if (v == SEQ_START_TOKEN)
3046 sk = udp_get_idx(seq, 0);
3047 else
3048 sk = udp_get_next(seq, v);
3049
3050 ++*pos;
3051 return sk;
3052 }
3053 EXPORT_SYMBOL(udp_seq_next);
3054
udp_seq_stop(struct seq_file * seq,void * v)3055 void udp_seq_stop(struct seq_file *seq, void *v)
3056 {
3057 struct udp_seq_afinfo *afinfo;
3058 struct udp_iter_state *state = seq->private;
3059
3060 if (state->bpf_seq_afinfo)
3061 afinfo = state->bpf_seq_afinfo;
3062 else
3063 afinfo = pde_data(file_inode(seq->file));
3064
3065 if (state->bucket <= afinfo->udp_table->mask)
3066 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3067 }
3068 EXPORT_SYMBOL(udp_seq_stop);
3069
3070 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3071 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3072 int bucket)
3073 {
3074 struct inet_sock *inet = inet_sk(sp);
3075 __be32 dest = inet->inet_daddr;
3076 __be32 src = inet->inet_rcv_saddr;
3077 __u16 destp = ntohs(inet->inet_dport);
3078 __u16 srcp = ntohs(inet->inet_sport);
3079
3080 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3081 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3082 bucket, src, srcp, dest, destp, sp->sk_state,
3083 sk_wmem_alloc_get(sp),
3084 udp_rqueue_get(sp),
3085 0, 0L, 0,
3086 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3087 0, sock_i_ino(sp),
3088 refcount_read(&sp->sk_refcnt), sp,
3089 atomic_read(&sp->sk_drops));
3090 }
3091
udp4_seq_show(struct seq_file * seq,void * v)3092 int udp4_seq_show(struct seq_file *seq, void *v)
3093 {
3094 seq_setwidth(seq, 127);
3095 if (v == SEQ_START_TOKEN)
3096 seq_puts(seq, " sl local_address rem_address st tx_queue "
3097 "rx_queue tr tm->when retrnsmt uid timeout "
3098 "inode ref pointer drops");
3099 else {
3100 struct udp_iter_state *state = seq->private;
3101
3102 udp4_format_sock(v, seq, state->bucket);
3103 }
3104 seq_pad(seq, '\n');
3105 return 0;
3106 }
3107
3108 #ifdef CONFIG_BPF_SYSCALL
3109 struct bpf_iter__udp {
3110 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3111 __bpf_md_ptr(struct udp_sock *, udp_sk);
3112 uid_t uid __aligned(8);
3113 int bucket __aligned(8);
3114 };
3115
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3116 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3117 struct udp_sock *udp_sk, uid_t uid, int bucket)
3118 {
3119 struct bpf_iter__udp ctx;
3120
3121 meta->seq_num--; /* skip SEQ_START_TOKEN */
3122 ctx.meta = meta;
3123 ctx.udp_sk = udp_sk;
3124 ctx.uid = uid;
3125 ctx.bucket = bucket;
3126 return bpf_iter_run_prog(prog, &ctx);
3127 }
3128
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3129 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3130 {
3131 struct udp_iter_state *state = seq->private;
3132 struct bpf_iter_meta meta;
3133 struct bpf_prog *prog;
3134 struct sock *sk = v;
3135 uid_t uid;
3136
3137 if (v == SEQ_START_TOKEN)
3138 return 0;
3139
3140 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3141 meta.seq = seq;
3142 prog = bpf_iter_get_info(&meta, false);
3143 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3144 }
3145
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3146 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3147 {
3148 struct bpf_iter_meta meta;
3149 struct bpf_prog *prog;
3150
3151 if (!v) {
3152 meta.seq = seq;
3153 prog = bpf_iter_get_info(&meta, true);
3154 if (prog)
3155 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3156 }
3157
3158 udp_seq_stop(seq, v);
3159 }
3160
3161 static const struct seq_operations bpf_iter_udp_seq_ops = {
3162 .start = udp_seq_start,
3163 .next = udp_seq_next,
3164 .stop = bpf_iter_udp_seq_stop,
3165 .show = bpf_iter_udp_seq_show,
3166 };
3167 #endif
3168
3169 const struct seq_operations udp_seq_ops = {
3170 .start = udp_seq_start,
3171 .next = udp_seq_next,
3172 .stop = udp_seq_stop,
3173 .show = udp4_seq_show,
3174 };
3175 EXPORT_SYMBOL(udp_seq_ops);
3176
3177 static struct udp_seq_afinfo udp4_seq_afinfo = {
3178 .family = AF_INET,
3179 .udp_table = &udp_table,
3180 };
3181
udp4_proc_init_net(struct net * net)3182 static int __net_init udp4_proc_init_net(struct net *net)
3183 {
3184 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3185 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3186 return -ENOMEM;
3187 return 0;
3188 }
3189
udp4_proc_exit_net(struct net * net)3190 static void __net_exit udp4_proc_exit_net(struct net *net)
3191 {
3192 remove_proc_entry("udp", net->proc_net);
3193 }
3194
3195 static struct pernet_operations udp4_net_ops = {
3196 .init = udp4_proc_init_net,
3197 .exit = udp4_proc_exit_net,
3198 };
3199
udp4_proc_init(void)3200 int __init udp4_proc_init(void)
3201 {
3202 return register_pernet_subsys(&udp4_net_ops);
3203 }
3204
udp4_proc_exit(void)3205 void udp4_proc_exit(void)
3206 {
3207 unregister_pernet_subsys(&udp4_net_ops);
3208 }
3209 #endif /* CONFIG_PROC_FS */
3210
3211 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3212 static int __init set_uhash_entries(char *str)
3213 {
3214 ssize_t ret;
3215
3216 if (!str)
3217 return 0;
3218
3219 ret = kstrtoul(str, 0, &uhash_entries);
3220 if (ret)
3221 return 0;
3222
3223 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3224 uhash_entries = UDP_HTABLE_SIZE_MIN;
3225 return 1;
3226 }
3227 __setup("uhash_entries=", set_uhash_entries);
3228
udp_table_init(struct udp_table * table,const char * name)3229 void __init udp_table_init(struct udp_table *table, const char *name)
3230 {
3231 unsigned int i;
3232
3233 table->hash = alloc_large_system_hash(name,
3234 2 * sizeof(struct udp_hslot),
3235 uhash_entries,
3236 21, /* one slot per 2 MB */
3237 0,
3238 &table->log,
3239 &table->mask,
3240 UDP_HTABLE_SIZE_MIN,
3241 64 * 1024);
3242
3243 table->hash2 = table->hash + (table->mask + 1);
3244 for (i = 0; i <= table->mask; i++) {
3245 INIT_HLIST_HEAD(&table->hash[i].head);
3246 table->hash[i].count = 0;
3247 spin_lock_init(&table->hash[i].lock);
3248 }
3249 for (i = 0; i <= table->mask; i++) {
3250 INIT_HLIST_HEAD(&table->hash2[i].head);
3251 table->hash2[i].count = 0;
3252 spin_lock_init(&table->hash2[i].lock);
3253 }
3254 }
3255
udp_flow_hashrnd(void)3256 u32 udp_flow_hashrnd(void)
3257 {
3258 static u32 hashrnd __read_mostly;
3259
3260 net_get_random_once(&hashrnd, sizeof(hashrnd));
3261
3262 return hashrnd;
3263 }
3264 EXPORT_SYMBOL(udp_flow_hashrnd);
3265
__udp_sysctl_init(struct net * net)3266 static void __udp_sysctl_init(struct net *net)
3267 {
3268 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3269 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3270
3271 #ifdef CONFIG_NET_L3_MASTER_DEV
3272 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3273 #endif
3274 }
3275
udp_sysctl_init(struct net * net)3276 static int __net_init udp_sysctl_init(struct net *net)
3277 {
3278 __udp_sysctl_init(net);
3279 return 0;
3280 }
3281
3282 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3283 .init = udp_sysctl_init,
3284 };
3285
3286 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3287 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3288 struct udp_sock *udp_sk, uid_t uid, int bucket)
3289
3290 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3291 {
3292 struct udp_iter_state *st = priv_data;
3293 struct udp_seq_afinfo *afinfo;
3294 int ret;
3295
3296 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3297 if (!afinfo)
3298 return -ENOMEM;
3299
3300 afinfo->family = AF_UNSPEC;
3301 afinfo->udp_table = &udp_table;
3302 st->bpf_seq_afinfo = afinfo;
3303 ret = bpf_iter_init_seq_net(priv_data, aux);
3304 if (ret)
3305 kfree(afinfo);
3306 return ret;
3307 }
3308
bpf_iter_fini_udp(void * priv_data)3309 static void bpf_iter_fini_udp(void *priv_data)
3310 {
3311 struct udp_iter_state *st = priv_data;
3312
3313 kfree(st->bpf_seq_afinfo);
3314 bpf_iter_fini_seq_net(priv_data);
3315 }
3316
3317 static const struct bpf_iter_seq_info udp_seq_info = {
3318 .seq_ops = &bpf_iter_udp_seq_ops,
3319 .init_seq_private = bpf_iter_init_udp,
3320 .fini_seq_private = bpf_iter_fini_udp,
3321 .seq_priv_size = sizeof(struct udp_iter_state),
3322 };
3323
3324 static struct bpf_iter_reg udp_reg_info = {
3325 .target = "udp",
3326 .ctx_arg_info_size = 1,
3327 .ctx_arg_info = {
3328 { offsetof(struct bpf_iter__udp, udp_sk),
3329 PTR_TO_BTF_ID_OR_NULL },
3330 },
3331 .seq_info = &udp_seq_info,
3332 };
3333
bpf_iter_register(void)3334 static void __init bpf_iter_register(void)
3335 {
3336 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3337 if (bpf_iter_reg_target(&udp_reg_info))
3338 pr_warn("Warning: could not register bpf iterator udp\n");
3339 }
3340 #endif
3341
udp_init(void)3342 void __init udp_init(void)
3343 {
3344 unsigned long limit;
3345 unsigned int i;
3346
3347 udp_table_init(&udp_table, "UDP");
3348 limit = nr_free_buffer_pages() / 8;
3349 limit = max(limit, 128UL);
3350 sysctl_udp_mem[0] = limit / 4 * 3;
3351 sysctl_udp_mem[1] = limit;
3352 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3353
3354 __udp_sysctl_init(&init_net);
3355
3356 /* 16 spinlocks per cpu */
3357 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3358 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3359 GFP_KERNEL);
3360 if (!udp_busylocks)
3361 panic("UDP: failed to alloc udp_busylocks\n");
3362 for (i = 0; i < (1U << udp_busylocks_log); i++)
3363 spin_lock_init(udp_busylocks + i);
3364
3365 if (register_pernet_subsys(&udp_sysctl_ops))
3366 panic("UDP: failed to init sysctl parameters.\n");
3367
3368 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3369 bpf_iter_register();
3370 #endif
3371 }
3372