1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96 typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110
111 struct sock;
112 struct proto;
113 struct net;
114
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117
118 /**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163 struct sock_common {
164 union {
165 __addrpair skc_addrpair;
166 struct {
167 __be32 skc_daddr;
168 __be32 skc_rcv_saddr;
169 };
170 };
171 union {
172 unsigned int skc_hash;
173 __u16 skc_u16hashes[2];
174 };
175 /* skc_dport && skc_num must be grouped as well */
176 union {
177 __portpair skc_portpair;
178 struct {
179 __be16 skc_dport;
180 __u16 skc_num;
181 };
182 };
183
184 unsigned short skc_family;
185 volatile unsigned char skc_state;
186 unsigned char skc_reuse:4;
187 unsigned char skc_reuseport:1;
188 unsigned char skc_ipv6only:1;
189 unsigned char skc_net_refcnt:1;
190 int skc_bound_dev_if;
191 union {
192 struct hlist_node skc_bind_node;
193 struct hlist_node skc_portaddr_node;
194 };
195 struct proto *skc_prot;
196 possible_net_t skc_net;
197
198 #if IS_ENABLED(CONFIG_IPV6)
199 struct in6_addr skc_v6_daddr;
200 struct in6_addr skc_v6_rcv_saddr;
201 #endif
202
203 atomic64_t skc_cookie;
204
205 /* following fields are padding to force
206 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 * assuming IPV6 is enabled. We use this padding differently
208 * for different kind of 'sockets'
209 */
210 union {
211 unsigned long skc_flags;
212 struct sock *skc_listener; /* request_sock */
213 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 };
215 /*
216 * fields between dontcopy_begin/dontcopy_end
217 * are not copied in sock_copy()
218 */
219 /* private: */
220 int skc_dontcopy_begin[0];
221 /* public: */
222 union {
223 struct hlist_node skc_node;
224 struct hlist_nulls_node skc_nulls_node;
225 };
226 unsigned short skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 unsigned short skc_rx_queue_mapping;
229 #endif
230 union {
231 int skc_incoming_cpu;
232 u32 skc_rcv_wnd;
233 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
234 };
235
236 refcount_t skc_refcnt;
237 /* private: */
238 int skc_dontcopy_end[0];
239 union {
240 u32 skc_rxhash;
241 u32 skc_window_clamp;
242 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 };
244 /* public: */
245 };
246
247 struct bpf_local_storage;
248 struct sk_filter;
249
250 /**
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
304 * @sk_busy_poll_budget: napi processing budget when busypolling
305 * @sk_priority: %SO_PRIORITY setting
306 * @sk_type: socket type (%SOCK_STREAM, etc)
307 * @sk_protocol: which protocol this socket belongs in this network family
308 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309 * @sk_peer_pid: &struct pid for this socket's peer
310 * @sk_peer_cred: %SO_PEERCRED setting
311 * @sk_rcvlowat: %SO_RCVLOWAT setting
312 * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 * @sk_sndtimeo: %SO_SNDTIMEO setting
314 * @sk_txhash: computed flow hash for use on transmit
315 * @sk_txrehash: enable TX hash rethink
316 * @sk_filter: socket filtering instructions
317 * @sk_timer: sock cleanup timer
318 * @sk_stamp: time stamp of last packet received
319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320 * @sk_tsflags: SO_TIMESTAMPING flags
321 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322 * for timestamping
323 * @sk_tskey: counter to disambiguate concurrent tstamp requests
324 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
325 * @sk_socket: Identd and reporting IO signals
326 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
327 * @sk_frag: cached page frag
328 * @sk_peek_off: current peek_offset value
329 * @sk_send_head: front of stuff to transmit
330 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331 * @sk_security: used by security modules
332 * @sk_mark: generic packet mark
333 * @sk_cgrp_data: cgroup data for this cgroup
334 * @sk_memcg: this socket's memory cgroup association
335 * @sk_write_pending: a write to stream socket waits to start
336 * @sk_state_change: callback to indicate change in the state of the sock
337 * @sk_data_ready: callback to indicate there is data to be processed
338 * @sk_write_space: callback to indicate there is bf sending space available
339 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
340 * @sk_backlog_rcv: callback to process the backlog
341 * @sk_validate_xmit_skb: ptr to an optional validate function
342 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
343 * @sk_reuseport_cb: reuseport group container
344 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
345 * @sk_rcu: used during RCU grace period
346 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
347 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
348 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
349 * @sk_txtime_unused: unused txtime flags
350 * @ns_tracker: tracker for netns reference
351 * @sk_bind2_node: bind node in the bhash2 table
352 */
353 struct sock {
354 /*
355 * Now struct inet_timewait_sock also uses sock_common, so please just
356 * don't add nothing before this first member (__sk_common) --acme
357 */
358 struct sock_common __sk_common;
359 #define sk_node __sk_common.skc_node
360 #define sk_nulls_node __sk_common.skc_nulls_node
361 #define sk_refcnt __sk_common.skc_refcnt
362 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
363 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
364 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
365 #endif
366
367 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
368 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
369 #define sk_hash __sk_common.skc_hash
370 #define sk_portpair __sk_common.skc_portpair
371 #define sk_num __sk_common.skc_num
372 #define sk_dport __sk_common.skc_dport
373 #define sk_addrpair __sk_common.skc_addrpair
374 #define sk_daddr __sk_common.skc_daddr
375 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
376 #define sk_family __sk_common.skc_family
377 #define sk_state __sk_common.skc_state
378 #define sk_reuse __sk_common.skc_reuse
379 #define sk_reuseport __sk_common.skc_reuseport
380 #define sk_ipv6only __sk_common.skc_ipv6only
381 #define sk_net_refcnt __sk_common.skc_net_refcnt
382 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
383 #define sk_bind_node __sk_common.skc_bind_node
384 #define sk_prot __sk_common.skc_prot
385 #define sk_net __sk_common.skc_net
386 #define sk_v6_daddr __sk_common.skc_v6_daddr
387 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
388 #define sk_cookie __sk_common.skc_cookie
389 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
390 #define sk_flags __sk_common.skc_flags
391 #define sk_rxhash __sk_common.skc_rxhash
392
393 /* early demux fields */
394 struct dst_entry __rcu *sk_rx_dst;
395 int sk_rx_dst_ifindex;
396 u32 sk_rx_dst_cookie;
397
398 socket_lock_t sk_lock;
399 atomic_t sk_drops;
400 int sk_rcvlowat;
401 struct sk_buff_head sk_error_queue;
402 struct sk_buff_head sk_receive_queue;
403 /*
404 * The backlog queue is special, it is always used with
405 * the per-socket spinlock held and requires low latency
406 * access. Therefore we special case it's implementation.
407 * Note : rmem_alloc is in this structure to fill a hole
408 * on 64bit arches, not because its logically part of
409 * backlog.
410 */
411 struct {
412 atomic_t rmem_alloc;
413 int len;
414 struct sk_buff *head;
415 struct sk_buff *tail;
416 } sk_backlog;
417
418 #define sk_rmem_alloc sk_backlog.rmem_alloc
419
420 int sk_forward_alloc;
421 u32 sk_reserved_mem;
422 #ifdef CONFIG_NET_RX_BUSY_POLL
423 unsigned int sk_ll_usec;
424 /* ===== mostly read cache line ===== */
425 unsigned int sk_napi_id;
426 #endif
427 int sk_rcvbuf;
428
429 struct sk_filter __rcu *sk_filter;
430 union {
431 struct socket_wq __rcu *sk_wq;
432 /* private: */
433 struct socket_wq *sk_wq_raw;
434 /* public: */
435 };
436 #ifdef CONFIG_XFRM
437 struct xfrm_policy __rcu *sk_policy[2];
438 #endif
439
440 struct dst_entry __rcu *sk_dst_cache;
441 atomic_t sk_omem_alloc;
442 int sk_sndbuf;
443
444 /* ===== cache line for TX ===== */
445 int sk_wmem_queued;
446 refcount_t sk_wmem_alloc;
447 unsigned long sk_tsq_flags;
448 union {
449 struct sk_buff *sk_send_head;
450 struct rb_root tcp_rtx_queue;
451 };
452 struct sk_buff_head sk_write_queue;
453 __s32 sk_peek_off;
454 int sk_write_pending;
455 __u32 sk_dst_pending_confirm;
456 u32 sk_pacing_status; /* see enum sk_pacing */
457 long sk_sndtimeo;
458 struct timer_list sk_timer;
459 __u32 sk_priority;
460 __u32 sk_mark;
461 unsigned long sk_pacing_rate; /* bytes per second */
462 unsigned long sk_max_pacing_rate;
463 struct page_frag sk_frag;
464 netdev_features_t sk_route_caps;
465 int sk_gso_type;
466 unsigned int sk_gso_max_size;
467 gfp_t sk_allocation;
468 __u32 sk_txhash;
469
470 /*
471 * Because of non atomicity rules, all
472 * changes are protected by socket lock.
473 */
474 u8 sk_gso_disabled : 1,
475 sk_kern_sock : 1,
476 sk_no_check_tx : 1,
477 sk_no_check_rx : 1,
478 sk_userlocks : 4;
479 u8 sk_pacing_shift;
480 u16 sk_type;
481 u16 sk_protocol;
482 u16 sk_gso_max_segs;
483 unsigned long sk_lingertime;
484 struct proto *sk_prot_creator;
485 rwlock_t sk_callback_lock;
486 int sk_err,
487 sk_err_soft;
488 u32 sk_ack_backlog;
489 u32 sk_max_ack_backlog;
490 kuid_t sk_uid;
491 u8 sk_txrehash;
492 #ifdef CONFIG_NET_RX_BUSY_POLL
493 u8 sk_prefer_busy_poll;
494 u16 sk_busy_poll_budget;
495 #endif
496 spinlock_t sk_peer_lock;
497 int sk_bind_phc;
498 struct pid *sk_peer_pid;
499 const struct cred *sk_peer_cred;
500
501 long sk_rcvtimeo;
502 ktime_t sk_stamp;
503 #if BITS_PER_LONG==32
504 seqlock_t sk_stamp_seq;
505 #endif
506 u16 sk_tsflags;
507 u8 sk_shutdown;
508 atomic_t sk_tskey;
509 atomic_t sk_zckey;
510
511 u8 sk_clockid;
512 u8 sk_txtime_deadline_mode : 1,
513 sk_txtime_report_errors : 1,
514 sk_txtime_unused : 6;
515
516 struct socket *sk_socket;
517 void *sk_user_data;
518 #ifdef CONFIG_SECURITY
519 void *sk_security;
520 #endif
521 struct sock_cgroup_data sk_cgrp_data;
522 struct mem_cgroup *sk_memcg;
523 void (*sk_state_change)(struct sock *sk);
524 void (*sk_data_ready)(struct sock *sk);
525 void (*sk_write_space)(struct sock *sk);
526 void (*sk_error_report)(struct sock *sk);
527 int (*sk_backlog_rcv)(struct sock *sk,
528 struct sk_buff *skb);
529 #ifdef CONFIG_SOCK_VALIDATE_XMIT
530 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
531 struct net_device *dev,
532 struct sk_buff *skb);
533 #endif
534 void (*sk_destruct)(struct sock *sk);
535 struct sock_reuseport __rcu *sk_reuseport_cb;
536 #ifdef CONFIG_BPF_SYSCALL
537 struct bpf_local_storage __rcu *sk_bpf_storage;
538 #endif
539 struct rcu_head sk_rcu;
540 netns_tracker ns_tracker;
541 struct hlist_node sk_bind2_node;
542 };
543
544 enum sk_pacing {
545 SK_PACING_NONE = 0,
546 SK_PACING_NEEDED = 1,
547 SK_PACING_FQ = 2,
548 };
549
550 /* flag bits in sk_user_data
551 *
552 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
553 * not be suitable for copying when cloning the socket. For instance,
554 * it can point to a reference counted object. sk_user_data bottom
555 * bit is set if pointer must not be copied.
556 *
557 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
558 * managed/owned by a BPF reuseport array. This bit should be set
559 * when sk_user_data's sk is added to the bpf's reuseport_array.
560 *
561 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
562 * sk_user_data points to psock type. This bit should be set
563 * when sk_user_data is assigned to a psock object.
564 */
565 #define SK_USER_DATA_NOCOPY 1UL
566 #define SK_USER_DATA_BPF 2UL
567 #define SK_USER_DATA_PSOCK 4UL
568 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
569 SK_USER_DATA_PSOCK)
570
571 /**
572 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
573 * @sk: socket
574 */
sk_user_data_is_nocopy(const struct sock * sk)575 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
576 {
577 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
578 }
579
580 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
581
582 /**
583 * __locked_read_sk_user_data_with_flags - return the pointer
584 * only if argument flags all has been set in sk_user_data. Otherwise
585 * return NULL
586 *
587 * @sk: socket
588 * @flags: flag bits
589 *
590 * The caller must be holding sk->sk_callback_lock.
591 */
592 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)593 __locked_read_sk_user_data_with_flags(const struct sock *sk,
594 uintptr_t flags)
595 {
596 uintptr_t sk_user_data =
597 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
598 lockdep_is_held(&sk->sk_callback_lock));
599
600 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
601
602 if ((sk_user_data & flags) == flags)
603 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
604 return NULL;
605 }
606
607 /**
608 * __rcu_dereference_sk_user_data_with_flags - return the pointer
609 * only if argument flags all has been set in sk_user_data. Otherwise
610 * return NULL
611 *
612 * @sk: socket
613 * @flags: flag bits
614 */
615 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)616 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
617 uintptr_t flags)
618 {
619 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
620
621 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
622
623 if ((sk_user_data & flags) == flags)
624 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
625 return NULL;
626 }
627
628 #define rcu_dereference_sk_user_data(sk) \
629 __rcu_dereference_sk_user_data_with_flags(sk, 0)
630 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
631 ({ \
632 uintptr_t __tmp1 = (uintptr_t)(ptr), \
633 __tmp2 = (uintptr_t)(flags); \
634 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
635 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
636 rcu_assign_pointer(__sk_user_data((sk)), \
637 __tmp1 | __tmp2); \
638 })
639 #define rcu_assign_sk_user_data(sk, ptr) \
640 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
641
642 static inline
sock_net(const struct sock * sk)643 struct net *sock_net(const struct sock *sk)
644 {
645 return read_pnet(&sk->sk_net);
646 }
647
648 static inline
sock_net_set(struct sock * sk,struct net * net)649 void sock_net_set(struct sock *sk, struct net *net)
650 {
651 write_pnet(&sk->sk_net, net);
652 }
653
654 /*
655 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
656 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
657 * on a socket means that the socket will reuse everybody else's port
658 * without looking at the other's sk_reuse value.
659 */
660
661 #define SK_NO_REUSE 0
662 #define SK_CAN_REUSE 1
663 #define SK_FORCE_REUSE 2
664
665 int sk_set_peek_off(struct sock *sk, int val);
666
sk_peek_offset(const struct sock * sk,int flags)667 static inline int sk_peek_offset(const struct sock *sk, int flags)
668 {
669 if (unlikely(flags & MSG_PEEK)) {
670 return READ_ONCE(sk->sk_peek_off);
671 }
672
673 return 0;
674 }
675
sk_peek_offset_bwd(struct sock * sk,int val)676 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
677 {
678 s32 off = READ_ONCE(sk->sk_peek_off);
679
680 if (unlikely(off >= 0)) {
681 off = max_t(s32, off - val, 0);
682 WRITE_ONCE(sk->sk_peek_off, off);
683 }
684 }
685
sk_peek_offset_fwd(struct sock * sk,int val)686 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
687 {
688 sk_peek_offset_bwd(sk, -val);
689 }
690
691 /*
692 * Hashed lists helper routines
693 */
sk_entry(const struct hlist_node * node)694 static inline struct sock *sk_entry(const struct hlist_node *node)
695 {
696 return hlist_entry(node, struct sock, sk_node);
697 }
698
__sk_head(const struct hlist_head * head)699 static inline struct sock *__sk_head(const struct hlist_head *head)
700 {
701 return hlist_entry(head->first, struct sock, sk_node);
702 }
703
sk_head(const struct hlist_head * head)704 static inline struct sock *sk_head(const struct hlist_head *head)
705 {
706 return hlist_empty(head) ? NULL : __sk_head(head);
707 }
708
__sk_nulls_head(const struct hlist_nulls_head * head)709 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
710 {
711 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
712 }
713
sk_nulls_head(const struct hlist_nulls_head * head)714 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
715 {
716 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
717 }
718
sk_next(const struct sock * sk)719 static inline struct sock *sk_next(const struct sock *sk)
720 {
721 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
722 }
723
sk_nulls_next(const struct sock * sk)724 static inline struct sock *sk_nulls_next(const struct sock *sk)
725 {
726 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
727 hlist_nulls_entry(sk->sk_nulls_node.next,
728 struct sock, sk_nulls_node) :
729 NULL;
730 }
731
sk_unhashed(const struct sock * sk)732 static inline bool sk_unhashed(const struct sock *sk)
733 {
734 return hlist_unhashed(&sk->sk_node);
735 }
736
sk_hashed(const struct sock * sk)737 static inline bool sk_hashed(const struct sock *sk)
738 {
739 return !sk_unhashed(sk);
740 }
741
sk_node_init(struct hlist_node * node)742 static inline void sk_node_init(struct hlist_node *node)
743 {
744 node->pprev = NULL;
745 }
746
__sk_del_node(struct sock * sk)747 static inline void __sk_del_node(struct sock *sk)
748 {
749 __hlist_del(&sk->sk_node);
750 }
751
752 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)753 static inline bool __sk_del_node_init(struct sock *sk)
754 {
755 if (sk_hashed(sk)) {
756 __sk_del_node(sk);
757 sk_node_init(&sk->sk_node);
758 return true;
759 }
760 return false;
761 }
762
763 /* Grab socket reference count. This operation is valid only
764 when sk is ALREADY grabbed f.e. it is found in hash table
765 or a list and the lookup is made under lock preventing hash table
766 modifications.
767 */
768
sock_hold(struct sock * sk)769 static __always_inline void sock_hold(struct sock *sk)
770 {
771 refcount_inc(&sk->sk_refcnt);
772 }
773
774 /* Ungrab socket in the context, which assumes that socket refcnt
775 cannot hit zero, f.e. it is true in context of any socketcall.
776 */
__sock_put(struct sock * sk)777 static __always_inline void __sock_put(struct sock *sk)
778 {
779 refcount_dec(&sk->sk_refcnt);
780 }
781
sk_del_node_init(struct sock * sk)782 static inline bool sk_del_node_init(struct sock *sk)
783 {
784 bool rc = __sk_del_node_init(sk);
785
786 if (rc) {
787 /* paranoid for a while -acme */
788 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
789 __sock_put(sk);
790 }
791 return rc;
792 }
793 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
794
__sk_nulls_del_node_init_rcu(struct sock * sk)795 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
796 {
797 if (sk_hashed(sk)) {
798 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
799 return true;
800 }
801 return false;
802 }
803
sk_nulls_del_node_init_rcu(struct sock * sk)804 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
805 {
806 bool rc = __sk_nulls_del_node_init_rcu(sk);
807
808 if (rc) {
809 /* paranoid for a while -acme */
810 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
811 __sock_put(sk);
812 }
813 return rc;
814 }
815
__sk_add_node(struct sock * sk,struct hlist_head * list)816 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
817 {
818 hlist_add_head(&sk->sk_node, list);
819 }
820
sk_add_node(struct sock * sk,struct hlist_head * list)821 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
822 {
823 sock_hold(sk);
824 __sk_add_node(sk, list);
825 }
826
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)827 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
828 {
829 sock_hold(sk);
830 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
831 sk->sk_family == AF_INET6)
832 hlist_add_tail_rcu(&sk->sk_node, list);
833 else
834 hlist_add_head_rcu(&sk->sk_node, list);
835 }
836
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)837 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
838 {
839 sock_hold(sk);
840 hlist_add_tail_rcu(&sk->sk_node, list);
841 }
842
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)843 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
844 {
845 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
846 }
847
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)848 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
849 {
850 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
851 }
852
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)853 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
854 {
855 sock_hold(sk);
856 __sk_nulls_add_node_rcu(sk, list);
857 }
858
__sk_del_bind_node(struct sock * sk)859 static inline void __sk_del_bind_node(struct sock *sk)
860 {
861 __hlist_del(&sk->sk_bind_node);
862 }
863
sk_add_bind_node(struct sock * sk,struct hlist_head * list)864 static inline void sk_add_bind_node(struct sock *sk,
865 struct hlist_head *list)
866 {
867 hlist_add_head(&sk->sk_bind_node, list);
868 }
869
__sk_del_bind2_node(struct sock * sk)870 static inline void __sk_del_bind2_node(struct sock *sk)
871 {
872 __hlist_del(&sk->sk_bind2_node);
873 }
874
sk_add_bind2_node(struct sock * sk,struct hlist_head * list)875 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
876 {
877 hlist_add_head(&sk->sk_bind2_node, list);
878 }
879
880 #define sk_for_each(__sk, list) \
881 hlist_for_each_entry(__sk, list, sk_node)
882 #define sk_for_each_rcu(__sk, list) \
883 hlist_for_each_entry_rcu(__sk, list, sk_node)
884 #define sk_nulls_for_each(__sk, node, list) \
885 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
886 #define sk_nulls_for_each_rcu(__sk, node, list) \
887 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
888 #define sk_for_each_from(__sk) \
889 hlist_for_each_entry_from(__sk, sk_node)
890 #define sk_nulls_for_each_from(__sk, node) \
891 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
892 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
893 #define sk_for_each_safe(__sk, tmp, list) \
894 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
895 #define sk_for_each_bound(__sk, list) \
896 hlist_for_each_entry(__sk, list, sk_bind_node)
897 #define sk_for_each_bound_bhash2(__sk, list) \
898 hlist_for_each_entry(__sk, list, sk_bind2_node)
899
900 /**
901 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
902 * @tpos: the type * to use as a loop cursor.
903 * @pos: the &struct hlist_node to use as a loop cursor.
904 * @head: the head for your list.
905 * @offset: offset of hlist_node within the struct.
906 *
907 */
908 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
909 for (pos = rcu_dereference(hlist_first_rcu(head)); \
910 pos != NULL && \
911 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
912 pos = rcu_dereference(hlist_next_rcu(pos)))
913
sk_user_ns(const struct sock * sk)914 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
915 {
916 /* Careful only use this in a context where these parameters
917 * can not change and must all be valid, such as recvmsg from
918 * userspace.
919 */
920 return sk->sk_socket->file->f_cred->user_ns;
921 }
922
923 /* Sock flags */
924 enum sock_flags {
925 SOCK_DEAD,
926 SOCK_DONE,
927 SOCK_URGINLINE,
928 SOCK_KEEPOPEN,
929 SOCK_LINGER,
930 SOCK_DESTROY,
931 SOCK_BROADCAST,
932 SOCK_TIMESTAMP,
933 SOCK_ZAPPED,
934 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
935 SOCK_DBG, /* %SO_DEBUG setting */
936 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
937 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
938 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
939 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
940 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
941 SOCK_FASYNC, /* fasync() active */
942 SOCK_RXQ_OVFL,
943 SOCK_ZEROCOPY, /* buffers from userspace */
944 SOCK_WIFI_STATUS, /* push wifi status to userspace */
945 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
946 * Will use last 4 bytes of packet sent from
947 * user-space instead.
948 */
949 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
950 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
951 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
952 SOCK_TXTIME,
953 SOCK_XDP, /* XDP is attached */
954 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
955 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
956 };
957
958 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
959
sock_copy_flags(struct sock * nsk,const struct sock * osk)960 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
961 {
962 nsk->sk_flags = osk->sk_flags;
963 }
964
sock_set_flag(struct sock * sk,enum sock_flags flag)965 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
966 {
967 __set_bit(flag, &sk->sk_flags);
968 }
969
sock_reset_flag(struct sock * sk,enum sock_flags flag)970 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
971 {
972 __clear_bit(flag, &sk->sk_flags);
973 }
974
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)975 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
976 int valbool)
977 {
978 if (valbool)
979 sock_set_flag(sk, bit);
980 else
981 sock_reset_flag(sk, bit);
982 }
983
sock_flag(const struct sock * sk,enum sock_flags flag)984 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
985 {
986 return test_bit(flag, &sk->sk_flags);
987 }
988
989 #ifdef CONFIG_NET
990 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)991 static inline int sk_memalloc_socks(void)
992 {
993 return static_branch_unlikely(&memalloc_socks_key);
994 }
995
996 void __receive_sock(struct file *file);
997 #else
998
sk_memalloc_socks(void)999 static inline int sk_memalloc_socks(void)
1000 {
1001 return 0;
1002 }
1003
__receive_sock(struct file * file)1004 static inline void __receive_sock(struct file *file)
1005 { }
1006 #endif
1007
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1008 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1009 {
1010 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1011 }
1012
sk_acceptq_removed(struct sock * sk)1013 static inline void sk_acceptq_removed(struct sock *sk)
1014 {
1015 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1016 }
1017
sk_acceptq_added(struct sock * sk)1018 static inline void sk_acceptq_added(struct sock *sk)
1019 {
1020 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1021 }
1022
1023 /* Note: If you think the test should be:
1024 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1025 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1026 */
sk_acceptq_is_full(const struct sock * sk)1027 static inline bool sk_acceptq_is_full(const struct sock *sk)
1028 {
1029 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1030 }
1031
1032 /*
1033 * Compute minimal free write space needed to queue new packets.
1034 */
sk_stream_min_wspace(const struct sock * sk)1035 static inline int sk_stream_min_wspace(const struct sock *sk)
1036 {
1037 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1038 }
1039
sk_stream_wspace(const struct sock * sk)1040 static inline int sk_stream_wspace(const struct sock *sk)
1041 {
1042 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1043 }
1044
sk_wmem_queued_add(struct sock * sk,int val)1045 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1046 {
1047 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1048 }
1049
1050 void sk_stream_write_space(struct sock *sk);
1051
1052 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1053 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1054 {
1055 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1056 skb_dst_force(skb);
1057
1058 if (!sk->sk_backlog.tail)
1059 WRITE_ONCE(sk->sk_backlog.head, skb);
1060 else
1061 sk->sk_backlog.tail->next = skb;
1062
1063 WRITE_ONCE(sk->sk_backlog.tail, skb);
1064 skb->next = NULL;
1065 }
1066
1067 /*
1068 * Take into account size of receive queue and backlog queue
1069 * Do not take into account this skb truesize,
1070 * to allow even a single big packet to come.
1071 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1072 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1073 {
1074 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1075
1076 return qsize > limit;
1077 }
1078
1079 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1080 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1081 unsigned int limit)
1082 {
1083 if (sk_rcvqueues_full(sk, limit))
1084 return -ENOBUFS;
1085
1086 /*
1087 * If the skb was allocated from pfmemalloc reserves, only
1088 * allow SOCK_MEMALLOC sockets to use it as this socket is
1089 * helping free memory
1090 */
1091 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1092 return -ENOMEM;
1093
1094 __sk_add_backlog(sk, skb);
1095 sk->sk_backlog.len += skb->truesize;
1096 return 0;
1097 }
1098
1099 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1100
1101 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1102 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1103
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1104 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1105 {
1106 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1107 return __sk_backlog_rcv(sk, skb);
1108
1109 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1110 tcp_v6_do_rcv,
1111 tcp_v4_do_rcv,
1112 sk, skb);
1113 }
1114
sk_incoming_cpu_update(struct sock * sk)1115 static inline void sk_incoming_cpu_update(struct sock *sk)
1116 {
1117 int cpu = raw_smp_processor_id();
1118
1119 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1120 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1121 }
1122
sock_rps_record_flow_hash(__u32 hash)1123 static inline void sock_rps_record_flow_hash(__u32 hash)
1124 {
1125 #ifdef CONFIG_RPS
1126 struct rps_sock_flow_table *sock_flow_table;
1127
1128 rcu_read_lock();
1129 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1130 rps_record_sock_flow(sock_flow_table, hash);
1131 rcu_read_unlock();
1132 #endif
1133 }
1134
sock_rps_record_flow(const struct sock * sk)1135 static inline void sock_rps_record_flow(const struct sock *sk)
1136 {
1137 #ifdef CONFIG_RPS
1138 if (static_branch_unlikely(&rfs_needed)) {
1139 /* Reading sk->sk_rxhash might incur an expensive cache line
1140 * miss.
1141 *
1142 * TCP_ESTABLISHED does cover almost all states where RFS
1143 * might be useful, and is cheaper [1] than testing :
1144 * IPv4: inet_sk(sk)->inet_daddr
1145 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1146 * OR an additional socket flag
1147 * [1] : sk_state and sk_prot are in the same cache line.
1148 */
1149 if (sk->sk_state == TCP_ESTABLISHED)
1150 sock_rps_record_flow_hash(sk->sk_rxhash);
1151 }
1152 #endif
1153 }
1154
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1155 static inline void sock_rps_save_rxhash(struct sock *sk,
1156 const struct sk_buff *skb)
1157 {
1158 #ifdef CONFIG_RPS
1159 if (unlikely(sk->sk_rxhash != skb->hash))
1160 sk->sk_rxhash = skb->hash;
1161 #endif
1162 }
1163
sock_rps_reset_rxhash(struct sock * sk)1164 static inline void sock_rps_reset_rxhash(struct sock *sk)
1165 {
1166 #ifdef CONFIG_RPS
1167 sk->sk_rxhash = 0;
1168 #endif
1169 }
1170
1171 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1172 ({ int __rc; \
1173 release_sock(__sk); \
1174 __rc = __condition; \
1175 if (!__rc) { \
1176 *(__timeo) = wait_woken(__wait, \
1177 TASK_INTERRUPTIBLE, \
1178 *(__timeo)); \
1179 } \
1180 sched_annotate_sleep(); \
1181 lock_sock(__sk); \
1182 __rc = __condition; \
1183 __rc; \
1184 })
1185
1186 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1187 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1188 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1189 int sk_stream_error(struct sock *sk, int flags, int err);
1190 void sk_stream_kill_queues(struct sock *sk);
1191 void sk_set_memalloc(struct sock *sk);
1192 void sk_clear_memalloc(struct sock *sk);
1193
1194 void __sk_flush_backlog(struct sock *sk);
1195
sk_flush_backlog(struct sock * sk)1196 static inline bool sk_flush_backlog(struct sock *sk)
1197 {
1198 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1199 __sk_flush_backlog(sk);
1200 return true;
1201 }
1202 return false;
1203 }
1204
1205 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1206
1207 struct request_sock_ops;
1208 struct timewait_sock_ops;
1209 struct inet_hashinfo;
1210 struct raw_hashinfo;
1211 struct smc_hashinfo;
1212 struct module;
1213 struct sk_psock;
1214
1215 /*
1216 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1217 * un-modified. Special care is taken when initializing object to zero.
1218 */
sk_prot_clear_nulls(struct sock * sk,int size)1219 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1220 {
1221 if (offsetof(struct sock, sk_node.next) != 0)
1222 memset(sk, 0, offsetof(struct sock, sk_node.next));
1223 memset(&sk->sk_node.pprev, 0,
1224 size - offsetof(struct sock, sk_node.pprev));
1225 }
1226
1227 /* Networking protocol blocks we attach to sockets.
1228 * socket layer -> transport layer interface
1229 */
1230 struct proto {
1231 void (*close)(struct sock *sk,
1232 long timeout);
1233 int (*pre_connect)(struct sock *sk,
1234 struct sockaddr *uaddr,
1235 int addr_len);
1236 int (*connect)(struct sock *sk,
1237 struct sockaddr *uaddr,
1238 int addr_len);
1239 int (*disconnect)(struct sock *sk, int flags);
1240
1241 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1242 bool kern);
1243
1244 int (*ioctl)(struct sock *sk, int cmd,
1245 unsigned long arg);
1246 int (*init)(struct sock *sk);
1247 void (*destroy)(struct sock *sk);
1248 void (*shutdown)(struct sock *sk, int how);
1249 int (*setsockopt)(struct sock *sk, int level,
1250 int optname, sockptr_t optval,
1251 unsigned int optlen);
1252 int (*getsockopt)(struct sock *sk, int level,
1253 int optname, char __user *optval,
1254 int __user *option);
1255 void (*keepalive)(struct sock *sk, int valbool);
1256 #ifdef CONFIG_COMPAT
1257 int (*compat_ioctl)(struct sock *sk,
1258 unsigned int cmd, unsigned long arg);
1259 #endif
1260 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1261 size_t len);
1262 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1263 size_t len, int flags, int *addr_len);
1264 int (*sendpage)(struct sock *sk, struct page *page,
1265 int offset, size_t size, int flags);
1266 int (*bind)(struct sock *sk,
1267 struct sockaddr *addr, int addr_len);
1268 int (*bind_add)(struct sock *sk,
1269 struct sockaddr *addr, int addr_len);
1270
1271 int (*backlog_rcv) (struct sock *sk,
1272 struct sk_buff *skb);
1273 bool (*bpf_bypass_getsockopt)(int level,
1274 int optname);
1275
1276 void (*release_cb)(struct sock *sk);
1277
1278 /* Keeping track of sk's, looking them up, and port selection methods. */
1279 int (*hash)(struct sock *sk);
1280 void (*unhash)(struct sock *sk);
1281 void (*rehash)(struct sock *sk);
1282 int (*get_port)(struct sock *sk, unsigned short snum);
1283 void (*put_port)(struct sock *sk);
1284 #ifdef CONFIG_BPF_SYSCALL
1285 int (*psock_update_sk_prot)(struct sock *sk,
1286 struct sk_psock *psock,
1287 bool restore);
1288 #endif
1289
1290 /* Keeping track of sockets in use */
1291 #ifdef CONFIG_PROC_FS
1292 unsigned int inuse_idx;
1293 #endif
1294
1295 #if IS_ENABLED(CONFIG_MPTCP)
1296 int (*forward_alloc_get)(const struct sock *sk);
1297 #endif
1298
1299 bool (*stream_memory_free)(const struct sock *sk, int wake);
1300 bool (*sock_is_readable)(struct sock *sk);
1301 /* Memory pressure */
1302 void (*enter_memory_pressure)(struct sock *sk);
1303 void (*leave_memory_pressure)(struct sock *sk);
1304 atomic_long_t *memory_allocated; /* Current allocated memory. */
1305 int __percpu *per_cpu_fw_alloc;
1306 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1307
1308 /*
1309 * Pressure flag: try to collapse.
1310 * Technical note: it is used by multiple contexts non atomically.
1311 * All the __sk_mem_schedule() is of this nature: accounting
1312 * is strict, actions are advisory and have some latency.
1313 */
1314 unsigned long *memory_pressure;
1315 long *sysctl_mem;
1316
1317 int *sysctl_wmem;
1318 int *sysctl_rmem;
1319 u32 sysctl_wmem_offset;
1320 u32 sysctl_rmem_offset;
1321
1322 int max_header;
1323 bool no_autobind;
1324
1325 struct kmem_cache *slab;
1326 unsigned int obj_size;
1327 slab_flags_t slab_flags;
1328 unsigned int useroffset; /* Usercopy region offset */
1329 unsigned int usersize; /* Usercopy region size */
1330
1331 unsigned int __percpu *orphan_count;
1332
1333 struct request_sock_ops *rsk_prot;
1334 struct timewait_sock_ops *twsk_prot;
1335
1336 union {
1337 struct inet_hashinfo *hashinfo;
1338 struct udp_table *udp_table;
1339 struct raw_hashinfo *raw_hash;
1340 struct smc_hashinfo *smc_hash;
1341 } h;
1342
1343 struct module *owner;
1344
1345 char name[32];
1346
1347 struct list_head node;
1348 #ifdef SOCK_REFCNT_DEBUG
1349 atomic_t socks;
1350 #endif
1351 int (*diag_destroy)(struct sock *sk, int err);
1352 } __randomize_layout;
1353
1354 int proto_register(struct proto *prot, int alloc_slab);
1355 void proto_unregister(struct proto *prot);
1356 int sock_load_diag_module(int family, int protocol);
1357
1358 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1359 static inline void sk_refcnt_debug_inc(struct sock *sk)
1360 {
1361 atomic_inc(&sk->sk_prot->socks);
1362 }
1363
sk_refcnt_debug_dec(struct sock * sk)1364 static inline void sk_refcnt_debug_dec(struct sock *sk)
1365 {
1366 atomic_dec(&sk->sk_prot->socks);
1367 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1368 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1369 }
1370
sk_refcnt_debug_release(const struct sock * sk)1371 static inline void sk_refcnt_debug_release(const struct sock *sk)
1372 {
1373 if (refcount_read(&sk->sk_refcnt) != 1)
1374 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1375 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1376 }
1377 #else /* SOCK_REFCNT_DEBUG */
1378 #define sk_refcnt_debug_inc(sk) do { } while (0)
1379 #define sk_refcnt_debug_dec(sk) do { } while (0)
1380 #define sk_refcnt_debug_release(sk) do { } while (0)
1381 #endif /* SOCK_REFCNT_DEBUG */
1382
1383 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1384
sk_forward_alloc_get(const struct sock * sk)1385 static inline int sk_forward_alloc_get(const struct sock *sk)
1386 {
1387 #if IS_ENABLED(CONFIG_MPTCP)
1388 if (sk->sk_prot->forward_alloc_get)
1389 return sk->sk_prot->forward_alloc_get(sk);
1390 #endif
1391 return sk->sk_forward_alloc;
1392 }
1393
__sk_stream_memory_free(const struct sock * sk,int wake)1394 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1395 {
1396 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1397 return false;
1398
1399 return sk->sk_prot->stream_memory_free ?
1400 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1401 tcp_stream_memory_free, sk, wake) : true;
1402 }
1403
sk_stream_memory_free(const struct sock * sk)1404 static inline bool sk_stream_memory_free(const struct sock *sk)
1405 {
1406 return __sk_stream_memory_free(sk, 0);
1407 }
1408
__sk_stream_is_writeable(const struct sock * sk,int wake)1409 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1410 {
1411 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1412 __sk_stream_memory_free(sk, wake);
1413 }
1414
sk_stream_is_writeable(const struct sock * sk)1415 static inline bool sk_stream_is_writeable(const struct sock *sk)
1416 {
1417 return __sk_stream_is_writeable(sk, 0);
1418 }
1419
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1420 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1421 struct cgroup *ancestor)
1422 {
1423 #ifdef CONFIG_SOCK_CGROUP_DATA
1424 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1425 ancestor);
1426 #else
1427 return -ENOTSUPP;
1428 #endif
1429 }
1430
sk_has_memory_pressure(const struct sock * sk)1431 static inline bool sk_has_memory_pressure(const struct sock *sk)
1432 {
1433 return sk->sk_prot->memory_pressure != NULL;
1434 }
1435
sk_under_memory_pressure(const struct sock * sk)1436 static inline bool sk_under_memory_pressure(const struct sock *sk)
1437 {
1438 if (!sk->sk_prot->memory_pressure)
1439 return false;
1440
1441 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1442 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1443 return true;
1444
1445 return !!*sk->sk_prot->memory_pressure;
1446 }
1447
1448 static inline long
proto_memory_allocated(const struct proto * prot)1449 proto_memory_allocated(const struct proto *prot)
1450 {
1451 return max(0L, atomic_long_read(prot->memory_allocated));
1452 }
1453
1454 static inline long
sk_memory_allocated(const struct sock * sk)1455 sk_memory_allocated(const struct sock *sk)
1456 {
1457 return proto_memory_allocated(sk->sk_prot);
1458 }
1459
1460 /* 1 MB per cpu, in page units */
1461 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1462
1463 static inline void
sk_memory_allocated_add(struct sock * sk,int amt)1464 sk_memory_allocated_add(struct sock *sk, int amt)
1465 {
1466 int local_reserve;
1467
1468 preempt_disable();
1469 local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1470 if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1471 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1472 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1473 }
1474 preempt_enable();
1475 }
1476
1477 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1478 sk_memory_allocated_sub(struct sock *sk, int amt)
1479 {
1480 int local_reserve;
1481
1482 preempt_disable();
1483 local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1484 if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1485 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1486 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1487 }
1488 preempt_enable();
1489 }
1490
1491 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1492
sk_sockets_allocated_dec(struct sock * sk)1493 static inline void sk_sockets_allocated_dec(struct sock *sk)
1494 {
1495 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1496 SK_ALLOC_PERCPU_COUNTER_BATCH);
1497 }
1498
sk_sockets_allocated_inc(struct sock * sk)1499 static inline void sk_sockets_allocated_inc(struct sock *sk)
1500 {
1501 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1502 SK_ALLOC_PERCPU_COUNTER_BATCH);
1503 }
1504
1505 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1506 sk_sockets_allocated_read_positive(struct sock *sk)
1507 {
1508 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1509 }
1510
1511 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1512 proto_sockets_allocated_sum_positive(struct proto *prot)
1513 {
1514 return percpu_counter_sum_positive(prot->sockets_allocated);
1515 }
1516
1517 static inline bool
proto_memory_pressure(struct proto * prot)1518 proto_memory_pressure(struct proto *prot)
1519 {
1520 if (!prot->memory_pressure)
1521 return false;
1522 return !!*prot->memory_pressure;
1523 }
1524
1525
1526 #ifdef CONFIG_PROC_FS
1527 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1528 struct prot_inuse {
1529 int all;
1530 int val[PROTO_INUSE_NR];
1531 };
1532
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1533 static inline void sock_prot_inuse_add(const struct net *net,
1534 const struct proto *prot, int val)
1535 {
1536 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1537 }
1538
sock_inuse_add(const struct net * net,int val)1539 static inline void sock_inuse_add(const struct net *net, int val)
1540 {
1541 this_cpu_add(net->core.prot_inuse->all, val);
1542 }
1543
1544 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1545 int sock_inuse_get(struct net *net);
1546 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1547 static inline void sock_prot_inuse_add(const struct net *net,
1548 const struct proto *prot, int val)
1549 {
1550 }
1551
sock_inuse_add(const struct net * net,int val)1552 static inline void sock_inuse_add(const struct net *net, int val)
1553 {
1554 }
1555 #endif
1556
1557
1558 /* With per-bucket locks this operation is not-atomic, so that
1559 * this version is not worse.
1560 */
__sk_prot_rehash(struct sock * sk)1561 static inline int __sk_prot_rehash(struct sock *sk)
1562 {
1563 sk->sk_prot->unhash(sk);
1564 return sk->sk_prot->hash(sk);
1565 }
1566
1567 /* About 10 seconds */
1568 #define SOCK_DESTROY_TIME (10*HZ)
1569
1570 /* Sockets 0-1023 can't be bound to unless you are superuser */
1571 #define PROT_SOCK 1024
1572
1573 #define SHUTDOWN_MASK 3
1574 #define RCV_SHUTDOWN 1
1575 #define SEND_SHUTDOWN 2
1576
1577 #define SOCK_BINDADDR_LOCK 4
1578 #define SOCK_BINDPORT_LOCK 8
1579
1580 struct socket_alloc {
1581 struct socket socket;
1582 struct inode vfs_inode;
1583 };
1584
SOCKET_I(struct inode * inode)1585 static inline struct socket *SOCKET_I(struct inode *inode)
1586 {
1587 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1588 }
1589
SOCK_INODE(struct socket * socket)1590 static inline struct inode *SOCK_INODE(struct socket *socket)
1591 {
1592 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1593 }
1594
1595 /*
1596 * Functions for memory accounting
1597 */
1598 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1599 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1600 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1601 void __sk_mem_reclaim(struct sock *sk, int amount);
1602
1603 #define SK_MEM_SEND 0
1604 #define SK_MEM_RECV 1
1605
1606 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1607 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1608 {
1609 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1610 }
1611
sk_mem_pages(int amt)1612 static inline int sk_mem_pages(int amt)
1613 {
1614 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1615 }
1616
sk_has_account(struct sock * sk)1617 static inline bool sk_has_account(struct sock *sk)
1618 {
1619 /* return true if protocol supports memory accounting */
1620 return !!sk->sk_prot->memory_allocated;
1621 }
1622
sk_wmem_schedule(struct sock * sk,int size)1623 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1624 {
1625 int delta;
1626
1627 if (!sk_has_account(sk))
1628 return true;
1629 delta = size - sk->sk_forward_alloc;
1630 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1631 }
1632
1633 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1634 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1635 {
1636 int delta;
1637
1638 if (!sk_has_account(sk))
1639 return true;
1640 delta = size - sk->sk_forward_alloc;
1641 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1642 skb_pfmemalloc(skb);
1643 }
1644
sk_unused_reserved_mem(const struct sock * sk)1645 static inline int sk_unused_reserved_mem(const struct sock *sk)
1646 {
1647 int unused_mem;
1648
1649 if (likely(!sk->sk_reserved_mem))
1650 return 0;
1651
1652 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1653 atomic_read(&sk->sk_rmem_alloc);
1654
1655 return unused_mem > 0 ? unused_mem : 0;
1656 }
1657
sk_mem_reclaim(struct sock * sk)1658 static inline void sk_mem_reclaim(struct sock *sk)
1659 {
1660 int reclaimable;
1661
1662 if (!sk_has_account(sk))
1663 return;
1664
1665 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1666
1667 if (reclaimable >= (int)PAGE_SIZE)
1668 __sk_mem_reclaim(sk, reclaimable);
1669 }
1670
sk_mem_reclaim_final(struct sock * sk)1671 static inline void sk_mem_reclaim_final(struct sock *sk)
1672 {
1673 sk->sk_reserved_mem = 0;
1674 sk_mem_reclaim(sk);
1675 }
1676
sk_mem_charge(struct sock * sk,int size)1677 static inline void sk_mem_charge(struct sock *sk, int size)
1678 {
1679 if (!sk_has_account(sk))
1680 return;
1681 sk->sk_forward_alloc -= size;
1682 }
1683
sk_mem_uncharge(struct sock * sk,int size)1684 static inline void sk_mem_uncharge(struct sock *sk, int size)
1685 {
1686 if (!sk_has_account(sk))
1687 return;
1688 sk->sk_forward_alloc += size;
1689 sk_mem_reclaim(sk);
1690 }
1691
1692 /*
1693 * Macro so as to not evaluate some arguments when
1694 * lockdep is not enabled.
1695 *
1696 * Mark both the sk_lock and the sk_lock.slock as a
1697 * per-address-family lock class.
1698 */
1699 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1700 do { \
1701 sk->sk_lock.owned = 0; \
1702 init_waitqueue_head(&sk->sk_lock.wq); \
1703 spin_lock_init(&(sk)->sk_lock.slock); \
1704 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1705 sizeof((sk)->sk_lock)); \
1706 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1707 (skey), (sname)); \
1708 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1709 } while (0)
1710
lockdep_sock_is_held(const struct sock * sk)1711 static inline bool lockdep_sock_is_held(const struct sock *sk)
1712 {
1713 return lockdep_is_held(&sk->sk_lock) ||
1714 lockdep_is_held(&sk->sk_lock.slock);
1715 }
1716
1717 void lock_sock_nested(struct sock *sk, int subclass);
1718
lock_sock(struct sock * sk)1719 static inline void lock_sock(struct sock *sk)
1720 {
1721 lock_sock_nested(sk, 0);
1722 }
1723
1724 void __lock_sock(struct sock *sk);
1725 void __release_sock(struct sock *sk);
1726 void release_sock(struct sock *sk);
1727
1728 /* BH context may only use the following locking interface. */
1729 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1730 #define bh_lock_sock_nested(__sk) \
1731 spin_lock_nested(&((__sk)->sk_lock.slock), \
1732 SINGLE_DEPTH_NESTING)
1733 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1734
1735 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1736
1737 /**
1738 * lock_sock_fast - fast version of lock_sock
1739 * @sk: socket
1740 *
1741 * This version should be used for very small section, where process wont block
1742 * return false if fast path is taken:
1743 *
1744 * sk_lock.slock locked, owned = 0, BH disabled
1745 *
1746 * return true if slow path is taken:
1747 *
1748 * sk_lock.slock unlocked, owned = 1, BH enabled
1749 */
lock_sock_fast(struct sock * sk)1750 static inline bool lock_sock_fast(struct sock *sk)
1751 {
1752 /* The sk_lock has mutex_lock() semantics here. */
1753 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1754
1755 return __lock_sock_fast(sk);
1756 }
1757
1758 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1759 static inline bool lock_sock_fast_nested(struct sock *sk)
1760 {
1761 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1762
1763 return __lock_sock_fast(sk);
1764 }
1765
1766 /**
1767 * unlock_sock_fast - complement of lock_sock_fast
1768 * @sk: socket
1769 * @slow: slow mode
1770 *
1771 * fast unlock socket for user context.
1772 * If slow mode is on, we call regular release_sock()
1773 */
unlock_sock_fast(struct sock * sk,bool slow)1774 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1775 __releases(&sk->sk_lock.slock)
1776 {
1777 if (slow) {
1778 release_sock(sk);
1779 __release(&sk->sk_lock.slock);
1780 } else {
1781 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1782 spin_unlock_bh(&sk->sk_lock.slock);
1783 }
1784 }
1785
1786 void sockopt_lock_sock(struct sock *sk);
1787 void sockopt_release_sock(struct sock *sk);
1788 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1789 bool sockopt_capable(int cap);
1790
1791 /* Used by processes to "lock" a socket state, so that
1792 * interrupts and bottom half handlers won't change it
1793 * from under us. It essentially blocks any incoming
1794 * packets, so that we won't get any new data or any
1795 * packets that change the state of the socket.
1796 *
1797 * While locked, BH processing will add new packets to
1798 * the backlog queue. This queue is processed by the
1799 * owner of the socket lock right before it is released.
1800 *
1801 * Since ~2.3.5 it is also exclusive sleep lock serializing
1802 * accesses from user process context.
1803 */
1804
sock_owned_by_me(const struct sock * sk)1805 static inline void sock_owned_by_me(const struct sock *sk)
1806 {
1807 #ifdef CONFIG_LOCKDEP
1808 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1809 #endif
1810 }
1811
sock_owned_by_user(const struct sock * sk)1812 static inline bool sock_owned_by_user(const struct sock *sk)
1813 {
1814 sock_owned_by_me(sk);
1815 return sk->sk_lock.owned;
1816 }
1817
sock_owned_by_user_nocheck(const struct sock * sk)1818 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1819 {
1820 return sk->sk_lock.owned;
1821 }
1822
sock_release_ownership(struct sock * sk)1823 static inline void sock_release_ownership(struct sock *sk)
1824 {
1825 if (sock_owned_by_user_nocheck(sk)) {
1826 sk->sk_lock.owned = 0;
1827
1828 /* The sk_lock has mutex_unlock() semantics: */
1829 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1830 }
1831 }
1832
1833 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1834 static inline bool sock_allow_reclassification(const struct sock *csk)
1835 {
1836 struct sock *sk = (struct sock *)csk;
1837
1838 return !sock_owned_by_user_nocheck(sk) &&
1839 !spin_is_locked(&sk->sk_lock.slock);
1840 }
1841
1842 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1843 struct proto *prot, int kern);
1844 void sk_free(struct sock *sk);
1845 void sk_destruct(struct sock *sk);
1846 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1847 void sk_free_unlock_clone(struct sock *sk);
1848
1849 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1850 gfp_t priority);
1851 void __sock_wfree(struct sk_buff *skb);
1852 void sock_wfree(struct sk_buff *skb);
1853 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1854 gfp_t priority);
1855 void skb_orphan_partial(struct sk_buff *skb);
1856 void sock_rfree(struct sk_buff *skb);
1857 void sock_efree(struct sk_buff *skb);
1858 #ifdef CONFIG_INET
1859 void sock_edemux(struct sk_buff *skb);
1860 void sock_pfree(struct sk_buff *skb);
1861 #else
1862 #define sock_edemux sock_efree
1863 #endif
1864
1865 int sk_setsockopt(struct sock *sk, int level, int optname,
1866 sockptr_t optval, unsigned int optlen);
1867 int sock_setsockopt(struct socket *sock, int level, int op,
1868 sockptr_t optval, unsigned int optlen);
1869
1870 int sk_getsockopt(struct sock *sk, int level, int optname,
1871 sockptr_t optval, sockptr_t optlen);
1872 int sock_getsockopt(struct socket *sock, int level, int op,
1873 char __user *optval, int __user *optlen);
1874 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1875 bool timeval, bool time32);
1876 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1877 unsigned long data_len, int noblock,
1878 int *errcode, int max_page_order);
1879
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1880 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1881 unsigned long size,
1882 int noblock, int *errcode)
1883 {
1884 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1885 }
1886
1887 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1888 void sock_kfree_s(struct sock *sk, void *mem, int size);
1889 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1890 void sk_send_sigurg(struct sock *sk);
1891
sock_replace_proto(struct sock * sk,struct proto * proto)1892 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1893 {
1894 if (sk->sk_socket)
1895 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1896 WRITE_ONCE(sk->sk_prot, proto);
1897 }
1898
1899 struct sockcm_cookie {
1900 u64 transmit_time;
1901 u32 mark;
1902 u16 tsflags;
1903 };
1904
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1905 static inline void sockcm_init(struct sockcm_cookie *sockc,
1906 const struct sock *sk)
1907 {
1908 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1909 }
1910
1911 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1912 struct sockcm_cookie *sockc);
1913 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1914 struct sockcm_cookie *sockc);
1915
1916 /*
1917 * Functions to fill in entries in struct proto_ops when a protocol
1918 * does not implement a particular function.
1919 */
1920 int sock_no_bind(struct socket *, struct sockaddr *, int);
1921 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1922 int sock_no_socketpair(struct socket *, struct socket *);
1923 int sock_no_accept(struct socket *, struct socket *, int, bool);
1924 int sock_no_getname(struct socket *, struct sockaddr *, int);
1925 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1926 int sock_no_listen(struct socket *, int);
1927 int sock_no_shutdown(struct socket *, int);
1928 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1929 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1930 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1931 int sock_no_mmap(struct file *file, struct socket *sock,
1932 struct vm_area_struct *vma);
1933 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1934 size_t size, int flags);
1935 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1936 int offset, size_t size, int flags);
1937
1938 /*
1939 * Functions to fill in entries in struct proto_ops when a protocol
1940 * uses the inet style.
1941 */
1942 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1943 char __user *optval, int __user *optlen);
1944 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1945 int flags);
1946 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1947 sockptr_t optval, unsigned int optlen);
1948
1949 void sk_common_release(struct sock *sk);
1950
1951 /*
1952 * Default socket callbacks and setup code
1953 */
1954
1955 /* Initialise core socket variables */
1956 void sock_init_data(struct socket *sock, struct sock *sk);
1957
1958 /*
1959 * Socket reference counting postulates.
1960 *
1961 * * Each user of socket SHOULD hold a reference count.
1962 * * Each access point to socket (an hash table bucket, reference from a list,
1963 * running timer, skb in flight MUST hold a reference count.
1964 * * When reference count hits 0, it means it will never increase back.
1965 * * When reference count hits 0, it means that no references from
1966 * outside exist to this socket and current process on current CPU
1967 * is last user and may/should destroy this socket.
1968 * * sk_free is called from any context: process, BH, IRQ. When
1969 * it is called, socket has no references from outside -> sk_free
1970 * may release descendant resources allocated by the socket, but
1971 * to the time when it is called, socket is NOT referenced by any
1972 * hash tables, lists etc.
1973 * * Packets, delivered from outside (from network or from another process)
1974 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1975 * when they sit in queue. Otherwise, packets will leak to hole, when
1976 * socket is looked up by one cpu and unhasing is made by another CPU.
1977 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1978 * (leak to backlog). Packet socket does all the processing inside
1979 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1980 * use separate SMP lock, so that they are prone too.
1981 */
1982
1983 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1984 static inline void sock_put(struct sock *sk)
1985 {
1986 if (refcount_dec_and_test(&sk->sk_refcnt))
1987 sk_free(sk);
1988 }
1989 /* Generic version of sock_put(), dealing with all sockets
1990 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1991 */
1992 void sock_gen_put(struct sock *sk);
1993
1994 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1995 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1996 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1997 const int nested)
1998 {
1999 return __sk_receive_skb(sk, skb, nested, 1, true);
2000 }
2001
sk_tx_queue_set(struct sock * sk,int tx_queue)2002 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2003 {
2004 /* sk_tx_queue_mapping accept only upto a 16-bit value */
2005 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2006 return;
2007 sk->sk_tx_queue_mapping = tx_queue;
2008 }
2009
2010 #define NO_QUEUE_MAPPING USHRT_MAX
2011
sk_tx_queue_clear(struct sock * sk)2012 static inline void sk_tx_queue_clear(struct sock *sk)
2013 {
2014 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
2015 }
2016
sk_tx_queue_get(const struct sock * sk)2017 static inline int sk_tx_queue_get(const struct sock *sk)
2018 {
2019 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
2020 return sk->sk_tx_queue_mapping;
2021
2022 return -1;
2023 }
2024
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2025 static inline void __sk_rx_queue_set(struct sock *sk,
2026 const struct sk_buff *skb,
2027 bool force_set)
2028 {
2029 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2030 if (skb_rx_queue_recorded(skb)) {
2031 u16 rx_queue = skb_get_rx_queue(skb);
2032
2033 if (force_set ||
2034 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2035 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2036 }
2037 #endif
2038 }
2039
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2040 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2041 {
2042 __sk_rx_queue_set(sk, skb, true);
2043 }
2044
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2045 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2046 {
2047 __sk_rx_queue_set(sk, skb, false);
2048 }
2049
sk_rx_queue_clear(struct sock * sk)2050 static inline void sk_rx_queue_clear(struct sock *sk)
2051 {
2052 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2053 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2054 #endif
2055 }
2056
sk_rx_queue_get(const struct sock * sk)2057 static inline int sk_rx_queue_get(const struct sock *sk)
2058 {
2059 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2060 if (sk) {
2061 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2062
2063 if (res != NO_QUEUE_MAPPING)
2064 return res;
2065 }
2066 #endif
2067
2068 return -1;
2069 }
2070
sk_set_socket(struct sock * sk,struct socket * sock)2071 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2072 {
2073 sk->sk_socket = sock;
2074 }
2075
sk_sleep(struct sock * sk)2076 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2077 {
2078 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2079 return &rcu_dereference_raw(sk->sk_wq)->wait;
2080 }
2081 /* Detach socket from process context.
2082 * Announce socket dead, detach it from wait queue and inode.
2083 * Note that parent inode held reference count on this struct sock,
2084 * we do not release it in this function, because protocol
2085 * probably wants some additional cleanups or even continuing
2086 * to work with this socket (TCP).
2087 */
sock_orphan(struct sock * sk)2088 static inline void sock_orphan(struct sock *sk)
2089 {
2090 write_lock_bh(&sk->sk_callback_lock);
2091 sock_set_flag(sk, SOCK_DEAD);
2092 sk_set_socket(sk, NULL);
2093 sk->sk_wq = NULL;
2094 write_unlock_bh(&sk->sk_callback_lock);
2095 }
2096
sock_graft(struct sock * sk,struct socket * parent)2097 static inline void sock_graft(struct sock *sk, struct socket *parent)
2098 {
2099 WARN_ON(parent->sk);
2100 write_lock_bh(&sk->sk_callback_lock);
2101 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2102 parent->sk = sk;
2103 sk_set_socket(sk, parent);
2104 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2105 security_sock_graft(sk, parent);
2106 write_unlock_bh(&sk->sk_callback_lock);
2107 }
2108
2109 kuid_t sock_i_uid(struct sock *sk);
2110 unsigned long sock_i_ino(struct sock *sk);
2111
sock_net_uid(const struct net * net,const struct sock * sk)2112 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2113 {
2114 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2115 }
2116
net_tx_rndhash(void)2117 static inline u32 net_tx_rndhash(void)
2118 {
2119 u32 v = get_random_u32();
2120
2121 return v ?: 1;
2122 }
2123
sk_set_txhash(struct sock * sk)2124 static inline void sk_set_txhash(struct sock *sk)
2125 {
2126 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2127 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2128 }
2129
sk_rethink_txhash(struct sock * sk)2130 static inline bool sk_rethink_txhash(struct sock *sk)
2131 {
2132 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2133 sk_set_txhash(sk);
2134 return true;
2135 }
2136 return false;
2137 }
2138
2139 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)2140 __sk_dst_get(struct sock *sk)
2141 {
2142 return rcu_dereference_check(sk->sk_dst_cache,
2143 lockdep_sock_is_held(sk));
2144 }
2145
2146 static inline struct dst_entry *
sk_dst_get(struct sock * sk)2147 sk_dst_get(struct sock *sk)
2148 {
2149 struct dst_entry *dst;
2150
2151 rcu_read_lock();
2152 dst = rcu_dereference(sk->sk_dst_cache);
2153 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2154 dst = NULL;
2155 rcu_read_unlock();
2156 return dst;
2157 }
2158
__dst_negative_advice(struct sock * sk)2159 static inline void __dst_negative_advice(struct sock *sk)
2160 {
2161 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2162
2163 if (dst && dst->ops->negative_advice) {
2164 ndst = dst->ops->negative_advice(dst);
2165
2166 if (ndst != dst) {
2167 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2168 sk_tx_queue_clear(sk);
2169 sk->sk_dst_pending_confirm = 0;
2170 }
2171 }
2172 }
2173
dst_negative_advice(struct sock * sk)2174 static inline void dst_negative_advice(struct sock *sk)
2175 {
2176 sk_rethink_txhash(sk);
2177 __dst_negative_advice(sk);
2178 }
2179
2180 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2181 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2182 {
2183 struct dst_entry *old_dst;
2184
2185 sk_tx_queue_clear(sk);
2186 sk->sk_dst_pending_confirm = 0;
2187 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2188 lockdep_sock_is_held(sk));
2189 rcu_assign_pointer(sk->sk_dst_cache, dst);
2190 dst_release(old_dst);
2191 }
2192
2193 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2194 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2195 {
2196 struct dst_entry *old_dst;
2197
2198 sk_tx_queue_clear(sk);
2199 sk->sk_dst_pending_confirm = 0;
2200 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2201 dst_release(old_dst);
2202 }
2203
2204 static inline void
__sk_dst_reset(struct sock * sk)2205 __sk_dst_reset(struct sock *sk)
2206 {
2207 __sk_dst_set(sk, NULL);
2208 }
2209
2210 static inline void
sk_dst_reset(struct sock * sk)2211 sk_dst_reset(struct sock *sk)
2212 {
2213 sk_dst_set(sk, NULL);
2214 }
2215
2216 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2217
2218 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2219
sk_dst_confirm(struct sock * sk)2220 static inline void sk_dst_confirm(struct sock *sk)
2221 {
2222 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2223 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2224 }
2225
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2226 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2227 {
2228 if (skb_get_dst_pending_confirm(skb)) {
2229 struct sock *sk = skb->sk;
2230
2231 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2232 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2233 neigh_confirm(n);
2234 }
2235 }
2236
2237 bool sk_mc_loop(struct sock *sk);
2238
sk_can_gso(const struct sock * sk)2239 static inline bool sk_can_gso(const struct sock *sk)
2240 {
2241 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2242 }
2243
2244 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2245
sk_gso_disable(struct sock * sk)2246 static inline void sk_gso_disable(struct sock *sk)
2247 {
2248 sk->sk_gso_disabled = 1;
2249 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2250 }
2251
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2252 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2253 struct iov_iter *from, char *to,
2254 int copy, int offset)
2255 {
2256 if (skb->ip_summed == CHECKSUM_NONE) {
2257 __wsum csum = 0;
2258 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2259 return -EFAULT;
2260 skb->csum = csum_block_add(skb->csum, csum, offset);
2261 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2262 if (!copy_from_iter_full_nocache(to, copy, from))
2263 return -EFAULT;
2264 } else if (!copy_from_iter_full(to, copy, from))
2265 return -EFAULT;
2266
2267 return 0;
2268 }
2269
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2270 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2271 struct iov_iter *from, int copy)
2272 {
2273 int err, offset = skb->len;
2274
2275 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2276 copy, offset);
2277 if (err)
2278 __skb_trim(skb, offset);
2279
2280 return err;
2281 }
2282
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2283 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2284 struct sk_buff *skb,
2285 struct page *page,
2286 int off, int copy)
2287 {
2288 int err;
2289
2290 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2291 copy, skb->len);
2292 if (err)
2293 return err;
2294
2295 skb_len_add(skb, copy);
2296 sk_wmem_queued_add(sk, copy);
2297 sk_mem_charge(sk, copy);
2298 return 0;
2299 }
2300
2301 /**
2302 * sk_wmem_alloc_get - returns write allocations
2303 * @sk: socket
2304 *
2305 * Return: sk_wmem_alloc minus initial offset of one
2306 */
sk_wmem_alloc_get(const struct sock * sk)2307 static inline int sk_wmem_alloc_get(const struct sock *sk)
2308 {
2309 return refcount_read(&sk->sk_wmem_alloc) - 1;
2310 }
2311
2312 /**
2313 * sk_rmem_alloc_get - returns read allocations
2314 * @sk: socket
2315 *
2316 * Return: sk_rmem_alloc
2317 */
sk_rmem_alloc_get(const struct sock * sk)2318 static inline int sk_rmem_alloc_get(const struct sock *sk)
2319 {
2320 return atomic_read(&sk->sk_rmem_alloc);
2321 }
2322
2323 /**
2324 * sk_has_allocations - check if allocations are outstanding
2325 * @sk: socket
2326 *
2327 * Return: true if socket has write or read allocations
2328 */
sk_has_allocations(const struct sock * sk)2329 static inline bool sk_has_allocations(const struct sock *sk)
2330 {
2331 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2332 }
2333
2334 /**
2335 * skwq_has_sleeper - check if there are any waiting processes
2336 * @wq: struct socket_wq
2337 *
2338 * Return: true if socket_wq has waiting processes
2339 *
2340 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2341 * barrier call. They were added due to the race found within the tcp code.
2342 *
2343 * Consider following tcp code paths::
2344 *
2345 * CPU1 CPU2
2346 * sys_select receive packet
2347 * ... ...
2348 * __add_wait_queue update tp->rcv_nxt
2349 * ... ...
2350 * tp->rcv_nxt check sock_def_readable
2351 * ... {
2352 * schedule rcu_read_lock();
2353 * wq = rcu_dereference(sk->sk_wq);
2354 * if (wq && waitqueue_active(&wq->wait))
2355 * wake_up_interruptible(&wq->wait)
2356 * ...
2357 * }
2358 *
2359 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2360 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2361 * could then endup calling schedule and sleep forever if there are no more
2362 * data on the socket.
2363 *
2364 */
skwq_has_sleeper(struct socket_wq * wq)2365 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2366 {
2367 return wq && wq_has_sleeper(&wq->wait);
2368 }
2369
2370 /**
2371 * sock_poll_wait - place memory barrier behind the poll_wait call.
2372 * @filp: file
2373 * @sock: socket to wait on
2374 * @p: poll_table
2375 *
2376 * See the comments in the wq_has_sleeper function.
2377 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2378 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2379 poll_table *p)
2380 {
2381 if (!poll_does_not_wait(p)) {
2382 poll_wait(filp, &sock->wq.wait, p);
2383 /* We need to be sure we are in sync with the
2384 * socket flags modification.
2385 *
2386 * This memory barrier is paired in the wq_has_sleeper.
2387 */
2388 smp_mb();
2389 }
2390 }
2391
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2392 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2393 {
2394 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2395 u32 txhash = READ_ONCE(sk->sk_txhash);
2396
2397 if (txhash) {
2398 skb->l4_hash = 1;
2399 skb->hash = txhash;
2400 }
2401 }
2402
2403 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2404
2405 /*
2406 * Queue a received datagram if it will fit. Stream and sequenced
2407 * protocols can't normally use this as they need to fit buffers in
2408 * and play with them.
2409 *
2410 * Inlined as it's very short and called for pretty much every
2411 * packet ever received.
2412 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2413 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2414 {
2415 skb_orphan(skb);
2416 skb->sk = sk;
2417 skb->destructor = sock_rfree;
2418 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2419 sk_mem_charge(sk, skb->truesize);
2420 }
2421
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2422 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2423 {
2424 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2425 skb_orphan(skb);
2426 skb->destructor = sock_efree;
2427 skb->sk = sk;
2428 return true;
2429 }
2430 return false;
2431 }
2432
skb_prepare_for_gro(struct sk_buff * skb)2433 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2434 {
2435 if (skb->destructor != sock_wfree) {
2436 skb_orphan(skb);
2437 return;
2438 }
2439 skb->slow_gro = 1;
2440 }
2441
2442 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2443 unsigned long expires);
2444
2445 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2446
2447 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2448
2449 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2450 struct sk_buff *skb, unsigned int flags,
2451 void (*destructor)(struct sock *sk,
2452 struct sk_buff *skb));
2453 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2454
2455 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2456 enum skb_drop_reason *reason);
2457
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2458 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2459 {
2460 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2461 }
2462
2463 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2464 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2465
2466 /*
2467 * Recover an error report and clear atomically
2468 */
2469
sock_error(struct sock * sk)2470 static inline int sock_error(struct sock *sk)
2471 {
2472 int err;
2473
2474 /* Avoid an atomic operation for the common case.
2475 * This is racy since another cpu/thread can change sk_err under us.
2476 */
2477 if (likely(data_race(!sk->sk_err)))
2478 return 0;
2479
2480 err = xchg(&sk->sk_err, 0);
2481 return -err;
2482 }
2483
2484 void sk_error_report(struct sock *sk);
2485
sock_wspace(struct sock * sk)2486 static inline unsigned long sock_wspace(struct sock *sk)
2487 {
2488 int amt = 0;
2489
2490 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2491 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2492 if (amt < 0)
2493 amt = 0;
2494 }
2495 return amt;
2496 }
2497
2498 /* Note:
2499 * We use sk->sk_wq_raw, from contexts knowing this
2500 * pointer is not NULL and cannot disappear/change.
2501 */
sk_set_bit(int nr,struct sock * sk)2502 static inline void sk_set_bit(int nr, struct sock *sk)
2503 {
2504 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2505 !sock_flag(sk, SOCK_FASYNC))
2506 return;
2507
2508 set_bit(nr, &sk->sk_wq_raw->flags);
2509 }
2510
sk_clear_bit(int nr,struct sock * sk)2511 static inline void sk_clear_bit(int nr, struct sock *sk)
2512 {
2513 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2514 !sock_flag(sk, SOCK_FASYNC))
2515 return;
2516
2517 clear_bit(nr, &sk->sk_wq_raw->flags);
2518 }
2519
sk_wake_async(const struct sock * sk,int how,int band)2520 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2521 {
2522 if (sock_flag(sk, SOCK_FASYNC)) {
2523 rcu_read_lock();
2524 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2525 rcu_read_unlock();
2526 }
2527 }
2528
2529 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2530 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2531 * Note: for send buffers, TCP works better if we can build two skbs at
2532 * minimum.
2533 */
2534 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2535
2536 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2537 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2538
sk_stream_moderate_sndbuf(struct sock * sk)2539 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2540 {
2541 u32 val;
2542
2543 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2544 return;
2545
2546 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2547 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2548
2549 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2550 }
2551
2552 /**
2553 * sk_page_frag - return an appropriate page_frag
2554 * @sk: socket
2555 *
2556 * Use the per task page_frag instead of the per socket one for
2557 * optimization when we know that we're in process context and own
2558 * everything that's associated with %current.
2559 *
2560 * Both direct reclaim and page faults can nest inside other
2561 * socket operations and end up recursing into sk_page_frag()
2562 * while it's already in use: explicitly avoid task page_frag
2563 * usage if the caller is potentially doing any of them.
2564 * This assumes that page fault handlers use the GFP_NOFS flags.
2565 *
2566 * Return: a per task page_frag if context allows that,
2567 * otherwise a per socket one.
2568 */
sk_page_frag(struct sock * sk)2569 static inline struct page_frag *sk_page_frag(struct sock *sk)
2570 {
2571 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2572 (__GFP_DIRECT_RECLAIM | __GFP_FS))
2573 return ¤t->task_frag;
2574
2575 return &sk->sk_frag;
2576 }
2577
2578 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2579
2580 /*
2581 * Default write policy as shown to user space via poll/select/SIGIO
2582 */
sock_writeable(const struct sock * sk)2583 static inline bool sock_writeable(const struct sock *sk)
2584 {
2585 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2586 }
2587
gfp_any(void)2588 static inline gfp_t gfp_any(void)
2589 {
2590 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2591 }
2592
gfp_memcg_charge(void)2593 static inline gfp_t gfp_memcg_charge(void)
2594 {
2595 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2596 }
2597
sock_rcvtimeo(const struct sock * sk,bool noblock)2598 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2599 {
2600 return noblock ? 0 : sk->sk_rcvtimeo;
2601 }
2602
sock_sndtimeo(const struct sock * sk,bool noblock)2603 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2604 {
2605 return noblock ? 0 : sk->sk_sndtimeo;
2606 }
2607
sock_rcvlowat(const struct sock * sk,int waitall,int len)2608 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2609 {
2610 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2611
2612 return v ?: 1;
2613 }
2614
2615 /* Alas, with timeout socket operations are not restartable.
2616 * Compare this to poll().
2617 */
sock_intr_errno(long timeo)2618 static inline int sock_intr_errno(long timeo)
2619 {
2620 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2621 }
2622
2623 struct sock_skb_cb {
2624 u32 dropcount;
2625 };
2626
2627 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2628 * using skb->cb[] would keep using it directly and utilize its
2629 * alignement guarantee.
2630 */
2631 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2632 sizeof(struct sock_skb_cb)))
2633
2634 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2635 SOCK_SKB_CB_OFFSET))
2636
2637 #define sock_skb_cb_check_size(size) \
2638 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2639
2640 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2641 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2642 {
2643 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2644 atomic_read(&sk->sk_drops) : 0;
2645 }
2646
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2647 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2648 {
2649 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2650
2651 atomic_add(segs, &sk->sk_drops);
2652 }
2653
sock_read_timestamp(struct sock * sk)2654 static inline ktime_t sock_read_timestamp(struct sock *sk)
2655 {
2656 #if BITS_PER_LONG==32
2657 unsigned int seq;
2658 ktime_t kt;
2659
2660 do {
2661 seq = read_seqbegin(&sk->sk_stamp_seq);
2662 kt = sk->sk_stamp;
2663 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2664
2665 return kt;
2666 #else
2667 return READ_ONCE(sk->sk_stamp);
2668 #endif
2669 }
2670
sock_write_timestamp(struct sock * sk,ktime_t kt)2671 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2672 {
2673 #if BITS_PER_LONG==32
2674 write_seqlock(&sk->sk_stamp_seq);
2675 sk->sk_stamp = kt;
2676 write_sequnlock(&sk->sk_stamp_seq);
2677 #else
2678 WRITE_ONCE(sk->sk_stamp, kt);
2679 #endif
2680 }
2681
2682 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2683 struct sk_buff *skb);
2684 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2685 struct sk_buff *skb);
2686
2687 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2688 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2689 {
2690 ktime_t kt = skb->tstamp;
2691 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2692
2693 /*
2694 * generate control messages if
2695 * - receive time stamping in software requested
2696 * - software time stamp available and wanted
2697 * - hardware time stamps available and wanted
2698 */
2699 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2700 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2701 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2702 (hwtstamps->hwtstamp &&
2703 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2704 __sock_recv_timestamp(msg, sk, skb);
2705 else
2706 sock_write_timestamp(sk, kt);
2707
2708 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2709 __sock_recv_wifi_status(msg, sk, skb);
2710 }
2711
2712 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2713 struct sk_buff *skb);
2714
2715 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2716 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2717 struct sk_buff *skb)
2718 {
2719 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2720 (1UL << SOCK_RCVTSTAMP) | \
2721 (1UL << SOCK_RCVMARK))
2722 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2723 SOF_TIMESTAMPING_RAW_HARDWARE)
2724
2725 if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2726 __sock_recv_cmsgs(msg, sk, skb);
2727 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2728 sock_write_timestamp(sk, skb->tstamp);
2729 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2730 sock_write_timestamp(sk, 0);
2731 }
2732
2733 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2734
2735 /**
2736 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2737 * @sk: socket sending this packet
2738 * @tsflags: timestamping flags to use
2739 * @tx_flags: completed with instructions for time stamping
2740 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2741 *
2742 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2743 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2744 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2745 __u8 *tx_flags, __u32 *tskey)
2746 {
2747 if (unlikely(tsflags)) {
2748 __sock_tx_timestamp(tsflags, tx_flags);
2749 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2750 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2751 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2752 }
2753 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2754 *tx_flags |= SKBTX_WIFI_STATUS;
2755 }
2756
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2757 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2758 __u8 *tx_flags)
2759 {
2760 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2761 }
2762
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2763 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2764 {
2765 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2766 &skb_shinfo(skb)->tskey);
2767 }
2768
sk_is_tcp(const struct sock * sk)2769 static inline bool sk_is_tcp(const struct sock *sk)
2770 {
2771 return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2772 }
2773
2774 /**
2775 * sk_eat_skb - Release a skb if it is no longer needed
2776 * @sk: socket to eat this skb from
2777 * @skb: socket buffer to eat
2778 *
2779 * This routine must be called with interrupts disabled or with the socket
2780 * locked so that the sk_buff queue operation is ok.
2781 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2782 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2783 {
2784 __skb_unlink(skb, &sk->sk_receive_queue);
2785 __kfree_skb(skb);
2786 }
2787
2788 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2789 skb_sk_is_prefetched(struct sk_buff *skb)
2790 {
2791 #ifdef CONFIG_INET
2792 return skb->destructor == sock_pfree;
2793 #else
2794 return false;
2795 #endif /* CONFIG_INET */
2796 }
2797
2798 /* This helper checks if a socket is a full socket,
2799 * ie _not_ a timewait or request socket.
2800 */
sk_fullsock(const struct sock * sk)2801 static inline bool sk_fullsock(const struct sock *sk)
2802 {
2803 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2804 }
2805
2806 static inline bool
sk_is_refcounted(struct sock * sk)2807 sk_is_refcounted(struct sock *sk)
2808 {
2809 /* Only full sockets have sk->sk_flags. */
2810 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2811 }
2812
2813 /**
2814 * skb_steal_sock - steal a socket from an sk_buff
2815 * @skb: sk_buff to steal the socket from
2816 * @refcounted: is set to true if the socket is reference-counted
2817 */
2818 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2819 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2820 {
2821 if (skb->sk) {
2822 struct sock *sk = skb->sk;
2823
2824 *refcounted = true;
2825 if (skb_sk_is_prefetched(skb))
2826 *refcounted = sk_is_refcounted(sk);
2827 skb->destructor = NULL;
2828 skb->sk = NULL;
2829 return sk;
2830 }
2831 *refcounted = false;
2832 return NULL;
2833 }
2834
2835 /* Checks if this SKB belongs to an HW offloaded socket
2836 * and whether any SW fallbacks are required based on dev.
2837 * Check decrypted mark in case skb_orphan() cleared socket.
2838 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2839 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2840 struct net_device *dev)
2841 {
2842 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2843 struct sock *sk = skb->sk;
2844
2845 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2846 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2847 #ifdef CONFIG_TLS_DEVICE
2848 } else if (unlikely(skb->decrypted)) {
2849 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2850 kfree_skb(skb);
2851 skb = NULL;
2852 #endif
2853 }
2854 #endif
2855
2856 return skb;
2857 }
2858
2859 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2860 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2861 */
sk_listener(const struct sock * sk)2862 static inline bool sk_listener(const struct sock *sk)
2863 {
2864 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2865 }
2866
2867 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2868 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2869 int type);
2870
2871 bool sk_ns_capable(const struct sock *sk,
2872 struct user_namespace *user_ns, int cap);
2873 bool sk_capable(const struct sock *sk, int cap);
2874 bool sk_net_capable(const struct sock *sk, int cap);
2875
2876 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2877
2878 /* Take into consideration the size of the struct sk_buff overhead in the
2879 * determination of these values, since that is non-constant across
2880 * platforms. This makes socket queueing behavior and performance
2881 * not depend upon such differences.
2882 */
2883 #define _SK_MEM_PACKETS 256
2884 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2885 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2886 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2887
2888 extern __u32 sysctl_wmem_max;
2889 extern __u32 sysctl_rmem_max;
2890
2891 extern int sysctl_tstamp_allow_data;
2892 extern int sysctl_optmem_max;
2893
2894 extern __u32 sysctl_wmem_default;
2895 extern __u32 sysctl_rmem_default;
2896
2897 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2898 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2899
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2900 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2901 {
2902 /* Does this proto have per netns sysctl_wmem ? */
2903 if (proto->sysctl_wmem_offset)
2904 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2905
2906 return READ_ONCE(*proto->sysctl_wmem);
2907 }
2908
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2909 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2910 {
2911 /* Does this proto have per netns sysctl_rmem ? */
2912 if (proto->sysctl_rmem_offset)
2913 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2914
2915 return READ_ONCE(*proto->sysctl_rmem);
2916 }
2917
2918 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2919 * Some wifi drivers need to tweak it to get more chunks.
2920 * They can use this helper from their ndo_start_xmit()
2921 */
sk_pacing_shift_update(struct sock * sk,int val)2922 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2923 {
2924 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2925 return;
2926 WRITE_ONCE(sk->sk_pacing_shift, val);
2927 }
2928
2929 /* if a socket is bound to a device, check that the given device
2930 * index is either the same or that the socket is bound to an L3
2931 * master device and the given device index is also enslaved to
2932 * that L3 master
2933 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2934 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2935 {
2936 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2937 int mdif;
2938
2939 if (!bound_dev_if || bound_dev_if == dif)
2940 return true;
2941
2942 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2943 if (mdif && mdif == bound_dev_if)
2944 return true;
2945
2946 return false;
2947 }
2948
2949 void sock_def_readable(struct sock *sk);
2950
2951 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2952 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2953 int sock_set_timestamping(struct sock *sk, int optname,
2954 struct so_timestamping timestamping);
2955
2956 void sock_enable_timestamps(struct sock *sk);
2957 void sock_no_linger(struct sock *sk);
2958 void sock_set_keepalive(struct sock *sk);
2959 void sock_set_priority(struct sock *sk, u32 priority);
2960 void sock_set_rcvbuf(struct sock *sk, int val);
2961 void sock_set_mark(struct sock *sk, u32 val);
2962 void sock_set_reuseaddr(struct sock *sk);
2963 void sock_set_reuseport(struct sock *sk);
2964 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2965
2966 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2967
2968 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2969 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2970 sockptr_t optval, int optlen, bool old_timeval);
2971
sk_is_readable(struct sock * sk)2972 static inline bool sk_is_readable(struct sock *sk)
2973 {
2974 if (sk->sk_prot->sock_is_readable)
2975 return sk->sk_prot->sock_is_readable(sk);
2976 return false;
2977 }
2978 #endif /* _SOCK_H */
2979