1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/udp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116 #include <linux/prefetch.h>
117 #include <linux/compat.h>
118 #include <linux/mroute.h>
119 #include <linux/mroute6.h>
120 #include <linux/icmpv6.h>
121
122 #include <linux/uaccess.h>
123
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
136
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
139 #include <net/bpf_sk_storage.h>
140
141 #include <trace/events/sock.h>
142
143 #include <net/tcp.h>
144 #include <net/busy_poll.h>
145 #include <net/phonet/phonet.h>
146
147 #include <linux/ethtool.h>
148
149 #include "dev.h"
150
151 static DEFINE_MUTEX(proto_list_mutex);
152 static LIST_HEAD(proto_list);
153
154 static void sock_def_write_space_wfree(struct sock *sk);
155 static void sock_def_write_space(struct sock *sk);
156
157 /**
158 * sk_ns_capable - General socket capability test
159 * @sk: Socket to use a capability on or through
160 * @user_ns: The user namespace of the capability to use
161 * @cap: The capability to use
162 *
163 * Test to see if the opener of the socket had when the socket was
164 * created and the current process has the capability @cap in the user
165 * namespace @user_ns.
166 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)167 bool sk_ns_capable(const struct sock *sk,
168 struct user_namespace *user_ns, int cap)
169 {
170 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
171 ns_capable(user_ns, cap);
172 }
173 EXPORT_SYMBOL(sk_ns_capable);
174
175 /**
176 * sk_capable - Socket global capability test
177 * @sk: Socket to use a capability on or through
178 * @cap: The global capability to use
179 *
180 * Test to see if the opener of the socket had when the socket was
181 * created and the current process has the capability @cap in all user
182 * namespaces.
183 */
sk_capable(const struct sock * sk,int cap)184 bool sk_capable(const struct sock *sk, int cap)
185 {
186 return sk_ns_capable(sk, &init_user_ns, cap);
187 }
188 EXPORT_SYMBOL(sk_capable);
189
190 /**
191 * sk_net_capable - Network namespace socket capability test
192 * @sk: Socket to use a capability on or through
193 * @cap: The capability to use
194 *
195 * Test to see if the opener of the socket had when the socket was created
196 * and the current process has the capability @cap over the network namespace
197 * the socket is a member of.
198 */
sk_net_capable(const struct sock * sk,int cap)199 bool sk_net_capable(const struct sock *sk, int cap)
200 {
201 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
202 }
203 EXPORT_SYMBOL(sk_net_capable);
204
205 /*
206 * Each address family might have different locking rules, so we have
207 * one slock key per address family and separate keys for internal and
208 * userspace sockets.
209 */
210 static struct lock_class_key af_family_keys[AF_MAX];
211 static struct lock_class_key af_family_kern_keys[AF_MAX];
212 static struct lock_class_key af_family_slock_keys[AF_MAX];
213 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
214
215 /*
216 * Make lock validator output more readable. (we pre-construct these
217 * strings build-time, so that runtime initialization of socket
218 * locks is fast):
219 */
220
221 #define _sock_locks(x) \
222 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
223 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
224 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
225 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
226 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
227 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
228 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
229 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
230 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
231 x "27" , x "28" , x "AF_CAN" , \
232 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
233 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
234 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
235 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
236 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
237 x "AF_MCTP" , \
238 x "AF_MAX"
239
240 static const char *const af_family_key_strings[AF_MAX+1] = {
241 _sock_locks("sk_lock-")
242 };
243 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
244 _sock_locks("slock-")
245 };
246 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
247 _sock_locks("clock-")
248 };
249
250 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
251 _sock_locks("k-sk_lock-")
252 };
253 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
254 _sock_locks("k-slock-")
255 };
256 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
257 _sock_locks("k-clock-")
258 };
259 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
260 _sock_locks("rlock-")
261 };
262 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
263 _sock_locks("wlock-")
264 };
265 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
266 _sock_locks("elock-")
267 };
268
269 /*
270 * sk_callback_lock and sk queues locking rules are per-address-family,
271 * so split the lock classes by using a per-AF key:
272 */
273 static struct lock_class_key af_callback_keys[AF_MAX];
274 static struct lock_class_key af_rlock_keys[AF_MAX];
275 static struct lock_class_key af_wlock_keys[AF_MAX];
276 static struct lock_class_key af_elock_keys[AF_MAX];
277 static struct lock_class_key af_kern_callback_keys[AF_MAX];
278
279 /* Run time adjustable parameters. */
280 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
281 EXPORT_SYMBOL(sysctl_wmem_max);
282 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
283 EXPORT_SYMBOL(sysctl_rmem_max);
284 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
285 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
286
287 /* Maximal space eaten by iovec or ancillary data plus some space */
288 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
289 EXPORT_SYMBOL(sysctl_optmem_max);
290
291 int sysctl_tstamp_allow_data __read_mostly = 1;
292
293 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
294 EXPORT_SYMBOL_GPL(memalloc_socks_key);
295
296 /**
297 * sk_set_memalloc - sets %SOCK_MEMALLOC
298 * @sk: socket to set it on
299 *
300 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
301 * It's the responsibility of the admin to adjust min_free_kbytes
302 * to meet the requirements
303 */
sk_set_memalloc(struct sock * sk)304 void sk_set_memalloc(struct sock *sk)
305 {
306 sock_set_flag(sk, SOCK_MEMALLOC);
307 sk->sk_allocation |= __GFP_MEMALLOC;
308 static_branch_inc(&memalloc_socks_key);
309 }
310 EXPORT_SYMBOL_GPL(sk_set_memalloc);
311
sk_clear_memalloc(struct sock * sk)312 void sk_clear_memalloc(struct sock *sk)
313 {
314 sock_reset_flag(sk, SOCK_MEMALLOC);
315 sk->sk_allocation &= ~__GFP_MEMALLOC;
316 static_branch_dec(&memalloc_socks_key);
317
318 /*
319 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
320 * progress of swapping. SOCK_MEMALLOC may be cleared while
321 * it has rmem allocations due to the last swapfile being deactivated
322 * but there is a risk that the socket is unusable due to exceeding
323 * the rmem limits. Reclaim the reserves and obey rmem limits again.
324 */
325 sk_mem_reclaim(sk);
326 }
327 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
328
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)329 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
330 {
331 int ret;
332 unsigned int noreclaim_flag;
333
334 /* these should have been dropped before queueing */
335 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
336
337 noreclaim_flag = memalloc_noreclaim_save();
338 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
339 tcp_v6_do_rcv,
340 tcp_v4_do_rcv,
341 sk, skb);
342 memalloc_noreclaim_restore(noreclaim_flag);
343
344 return ret;
345 }
346 EXPORT_SYMBOL(__sk_backlog_rcv);
347
sk_error_report(struct sock * sk)348 void sk_error_report(struct sock *sk)
349 {
350 sk->sk_error_report(sk);
351
352 switch (sk->sk_family) {
353 case AF_INET:
354 fallthrough;
355 case AF_INET6:
356 trace_inet_sk_error_report(sk);
357 break;
358 default:
359 break;
360 }
361 }
362 EXPORT_SYMBOL(sk_error_report);
363
sock_get_timeout(long timeo,void * optval,bool old_timeval)364 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
365 {
366 struct __kernel_sock_timeval tv;
367
368 if (timeo == MAX_SCHEDULE_TIMEOUT) {
369 tv.tv_sec = 0;
370 tv.tv_usec = 0;
371 } else {
372 tv.tv_sec = timeo / HZ;
373 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
374 }
375
376 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
377 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
378 *(struct old_timeval32 *)optval = tv32;
379 return sizeof(tv32);
380 }
381
382 if (old_timeval) {
383 struct __kernel_old_timeval old_tv;
384 old_tv.tv_sec = tv.tv_sec;
385 old_tv.tv_usec = tv.tv_usec;
386 *(struct __kernel_old_timeval *)optval = old_tv;
387 return sizeof(old_tv);
388 }
389
390 *(struct __kernel_sock_timeval *)optval = tv;
391 return sizeof(tv);
392 }
393 EXPORT_SYMBOL(sock_get_timeout);
394
sock_copy_user_timeval(struct __kernel_sock_timeval * tv,sockptr_t optval,int optlen,bool old_timeval)395 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
396 sockptr_t optval, int optlen, bool old_timeval)
397 {
398 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
399 struct old_timeval32 tv32;
400
401 if (optlen < sizeof(tv32))
402 return -EINVAL;
403
404 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
405 return -EFAULT;
406 tv->tv_sec = tv32.tv_sec;
407 tv->tv_usec = tv32.tv_usec;
408 } else if (old_timeval) {
409 struct __kernel_old_timeval old_tv;
410
411 if (optlen < sizeof(old_tv))
412 return -EINVAL;
413 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
414 return -EFAULT;
415 tv->tv_sec = old_tv.tv_sec;
416 tv->tv_usec = old_tv.tv_usec;
417 } else {
418 if (optlen < sizeof(*tv))
419 return -EINVAL;
420 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
421 return -EFAULT;
422 }
423
424 return 0;
425 }
426 EXPORT_SYMBOL(sock_copy_user_timeval);
427
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)428 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
429 bool old_timeval)
430 {
431 struct __kernel_sock_timeval tv;
432 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
433 long val;
434
435 if (err)
436 return err;
437
438 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
439 return -EDOM;
440
441 if (tv.tv_sec < 0) {
442 static int warned __read_mostly;
443
444 WRITE_ONCE(*timeo_p, 0);
445 if (warned < 10 && net_ratelimit()) {
446 warned++;
447 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
448 __func__, current->comm, task_pid_nr(current));
449 }
450 return 0;
451 }
452 val = MAX_SCHEDULE_TIMEOUT;
453 if ((tv.tv_sec || tv.tv_usec) &&
454 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
455 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
456 USEC_PER_SEC / HZ);
457 WRITE_ONCE(*timeo_p, val);
458 return 0;
459 }
460
sock_needs_netstamp(const struct sock * sk)461 static bool sock_needs_netstamp(const struct sock *sk)
462 {
463 switch (sk->sk_family) {
464 case AF_UNSPEC:
465 case AF_UNIX:
466 return false;
467 default:
468 return true;
469 }
470 }
471
sock_disable_timestamp(struct sock * sk,unsigned long flags)472 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
473 {
474 if (sk->sk_flags & flags) {
475 sk->sk_flags &= ~flags;
476 if (sock_needs_netstamp(sk) &&
477 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
478 net_disable_timestamp();
479 }
480 }
481
482
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)483 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
484 {
485 unsigned long flags;
486 struct sk_buff_head *list = &sk->sk_receive_queue;
487
488 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
489 atomic_inc(&sk->sk_drops);
490 trace_sock_rcvqueue_full(sk, skb);
491 return -ENOMEM;
492 }
493
494 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
495 atomic_inc(&sk->sk_drops);
496 return -ENOBUFS;
497 }
498
499 skb->dev = NULL;
500 skb_set_owner_r(skb, sk);
501
502 /* we escape from rcu protected region, make sure we dont leak
503 * a norefcounted dst
504 */
505 skb_dst_force(skb);
506
507 spin_lock_irqsave(&list->lock, flags);
508 sock_skb_set_dropcount(sk, skb);
509 __skb_queue_tail(list, skb);
510 spin_unlock_irqrestore(&list->lock, flags);
511
512 if (!sock_flag(sk, SOCK_DEAD))
513 sk->sk_data_ready(sk);
514 return 0;
515 }
516 EXPORT_SYMBOL(__sock_queue_rcv_skb);
517
sock_queue_rcv_skb_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason * reason)518 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
519 enum skb_drop_reason *reason)
520 {
521 enum skb_drop_reason drop_reason;
522 int err;
523
524 err = sk_filter(sk, skb);
525 if (err) {
526 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
527 goto out;
528 }
529 err = __sock_queue_rcv_skb(sk, skb);
530 switch (err) {
531 case -ENOMEM:
532 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
533 break;
534 case -ENOBUFS:
535 drop_reason = SKB_DROP_REASON_PROTO_MEM;
536 break;
537 default:
538 drop_reason = SKB_NOT_DROPPED_YET;
539 break;
540 }
541 out:
542 if (reason)
543 *reason = drop_reason;
544 return err;
545 }
546 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
547
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)548 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
549 const int nested, unsigned int trim_cap, bool refcounted)
550 {
551 int rc = NET_RX_SUCCESS;
552
553 if (sk_filter_trim_cap(sk, skb, trim_cap))
554 goto discard_and_relse;
555
556 skb->dev = NULL;
557
558 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
559 atomic_inc(&sk->sk_drops);
560 goto discard_and_relse;
561 }
562 if (nested)
563 bh_lock_sock_nested(sk);
564 else
565 bh_lock_sock(sk);
566 if (!sock_owned_by_user(sk)) {
567 /*
568 * trylock + unlock semantics:
569 */
570 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
571
572 rc = sk_backlog_rcv(sk, skb);
573
574 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
575 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
576 bh_unlock_sock(sk);
577 atomic_inc(&sk->sk_drops);
578 goto discard_and_relse;
579 }
580
581 bh_unlock_sock(sk);
582 out:
583 if (refcounted)
584 sock_put(sk);
585 return rc;
586 discard_and_relse:
587 kfree_skb(skb);
588 goto out;
589 }
590 EXPORT_SYMBOL(__sk_receive_skb);
591
592 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
593 u32));
594 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
595 u32));
__sk_dst_check(struct sock * sk,u32 cookie)596 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
597 {
598 struct dst_entry *dst = __sk_dst_get(sk);
599
600 if (dst && dst->obsolete &&
601 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
602 dst, cookie) == NULL) {
603 sk_tx_queue_clear(sk);
604 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
605 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
606 dst_release(dst);
607 return NULL;
608 }
609
610 return dst;
611 }
612 EXPORT_SYMBOL(__sk_dst_check);
613
sk_dst_check(struct sock * sk,u32 cookie)614 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
615 {
616 struct dst_entry *dst = sk_dst_get(sk);
617
618 if (dst && dst->obsolete &&
619 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
620 dst, cookie) == NULL) {
621 sk_dst_reset(sk);
622 dst_release(dst);
623 return NULL;
624 }
625
626 return dst;
627 }
628 EXPORT_SYMBOL(sk_dst_check);
629
sock_bindtoindex_locked(struct sock * sk,int ifindex)630 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
631 {
632 int ret = -ENOPROTOOPT;
633 #ifdef CONFIG_NETDEVICES
634 struct net *net = sock_net(sk);
635
636 /* Sorry... */
637 ret = -EPERM;
638 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
639 goto out;
640
641 ret = -EINVAL;
642 if (ifindex < 0)
643 goto out;
644
645 /* Paired with all READ_ONCE() done locklessly. */
646 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
647
648 if (sk->sk_prot->rehash)
649 sk->sk_prot->rehash(sk);
650 sk_dst_reset(sk);
651
652 ret = 0;
653
654 out:
655 #endif
656
657 return ret;
658 }
659
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)660 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
661 {
662 int ret;
663
664 if (lock_sk)
665 lock_sock(sk);
666 ret = sock_bindtoindex_locked(sk, ifindex);
667 if (lock_sk)
668 release_sock(sk);
669
670 return ret;
671 }
672 EXPORT_SYMBOL(sock_bindtoindex);
673
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)674 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
675 {
676 int ret = -ENOPROTOOPT;
677 #ifdef CONFIG_NETDEVICES
678 struct net *net = sock_net(sk);
679 char devname[IFNAMSIZ];
680 int index;
681
682 ret = -EINVAL;
683 if (optlen < 0)
684 goto out;
685
686 /* Bind this socket to a particular device like "eth0",
687 * as specified in the passed interface name. If the
688 * name is "" or the option length is zero the socket
689 * is not bound.
690 */
691 if (optlen > IFNAMSIZ - 1)
692 optlen = IFNAMSIZ - 1;
693 memset(devname, 0, sizeof(devname));
694
695 ret = -EFAULT;
696 if (copy_from_sockptr(devname, optval, optlen))
697 goto out;
698
699 index = 0;
700 if (devname[0] != '\0') {
701 struct net_device *dev;
702
703 rcu_read_lock();
704 dev = dev_get_by_name_rcu(net, devname);
705 if (dev)
706 index = dev->ifindex;
707 rcu_read_unlock();
708 ret = -ENODEV;
709 if (!dev)
710 goto out;
711 }
712
713 sockopt_lock_sock(sk);
714 ret = sock_bindtoindex_locked(sk, index);
715 sockopt_release_sock(sk);
716 out:
717 #endif
718
719 return ret;
720 }
721
sock_getbindtodevice(struct sock * sk,sockptr_t optval,sockptr_t optlen,int len)722 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
723 sockptr_t optlen, int len)
724 {
725 int ret = -ENOPROTOOPT;
726 #ifdef CONFIG_NETDEVICES
727 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
728 struct net *net = sock_net(sk);
729 char devname[IFNAMSIZ];
730
731 if (bound_dev_if == 0) {
732 len = 0;
733 goto zero;
734 }
735
736 ret = -EINVAL;
737 if (len < IFNAMSIZ)
738 goto out;
739
740 ret = netdev_get_name(net, devname, bound_dev_if);
741 if (ret)
742 goto out;
743
744 len = strlen(devname) + 1;
745
746 ret = -EFAULT;
747 if (copy_to_sockptr(optval, devname, len))
748 goto out;
749
750 zero:
751 ret = -EFAULT;
752 if (copy_to_sockptr(optlen, &len, sizeof(int)))
753 goto out;
754
755 ret = 0;
756
757 out:
758 #endif
759
760 return ret;
761 }
762
sk_mc_loop(struct sock * sk)763 bool sk_mc_loop(struct sock *sk)
764 {
765 if (dev_recursion_level())
766 return false;
767 if (!sk)
768 return true;
769 /* IPV6_ADDRFORM can change sk->sk_family under us. */
770 switch (READ_ONCE(sk->sk_family)) {
771 case AF_INET:
772 return inet_test_bit(MC_LOOP, sk);
773 #if IS_ENABLED(CONFIG_IPV6)
774 case AF_INET6:
775 return inet6_sk(sk)->mc_loop;
776 #endif
777 }
778 WARN_ON_ONCE(1);
779 return true;
780 }
781 EXPORT_SYMBOL(sk_mc_loop);
782
sock_set_reuseaddr(struct sock * sk)783 void sock_set_reuseaddr(struct sock *sk)
784 {
785 lock_sock(sk);
786 sk->sk_reuse = SK_CAN_REUSE;
787 release_sock(sk);
788 }
789 EXPORT_SYMBOL(sock_set_reuseaddr);
790
sock_set_reuseport(struct sock * sk)791 void sock_set_reuseport(struct sock *sk)
792 {
793 lock_sock(sk);
794 sk->sk_reuseport = true;
795 release_sock(sk);
796 }
797 EXPORT_SYMBOL(sock_set_reuseport);
798
sock_no_linger(struct sock * sk)799 void sock_no_linger(struct sock *sk)
800 {
801 lock_sock(sk);
802 WRITE_ONCE(sk->sk_lingertime, 0);
803 sock_set_flag(sk, SOCK_LINGER);
804 release_sock(sk);
805 }
806 EXPORT_SYMBOL(sock_no_linger);
807
sock_set_priority(struct sock * sk,u32 priority)808 void sock_set_priority(struct sock *sk, u32 priority)
809 {
810 lock_sock(sk);
811 WRITE_ONCE(sk->sk_priority, priority);
812 release_sock(sk);
813 }
814 EXPORT_SYMBOL(sock_set_priority);
815
sock_set_sndtimeo(struct sock * sk,s64 secs)816 void sock_set_sndtimeo(struct sock *sk, s64 secs)
817 {
818 lock_sock(sk);
819 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
820 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
821 else
822 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
823 release_sock(sk);
824 }
825 EXPORT_SYMBOL(sock_set_sndtimeo);
826
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)827 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
828 {
829 if (val) {
830 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
831 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
832 sock_set_flag(sk, SOCK_RCVTSTAMP);
833 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
834 } else {
835 sock_reset_flag(sk, SOCK_RCVTSTAMP);
836 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
837 }
838 }
839
sock_enable_timestamps(struct sock * sk)840 void sock_enable_timestamps(struct sock *sk)
841 {
842 lock_sock(sk);
843 __sock_set_timestamps(sk, true, false, true);
844 release_sock(sk);
845 }
846 EXPORT_SYMBOL(sock_enable_timestamps);
847
sock_set_timestamp(struct sock * sk,int optname,bool valbool)848 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
849 {
850 switch (optname) {
851 case SO_TIMESTAMP_OLD:
852 __sock_set_timestamps(sk, valbool, false, false);
853 break;
854 case SO_TIMESTAMP_NEW:
855 __sock_set_timestamps(sk, valbool, true, false);
856 break;
857 case SO_TIMESTAMPNS_OLD:
858 __sock_set_timestamps(sk, valbool, false, true);
859 break;
860 case SO_TIMESTAMPNS_NEW:
861 __sock_set_timestamps(sk, valbool, true, true);
862 break;
863 }
864 }
865
sock_timestamping_bind_phc(struct sock * sk,int phc_index)866 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
867 {
868 struct net *net = sock_net(sk);
869 struct net_device *dev = NULL;
870 bool match = false;
871 int *vclock_index;
872 int i, num;
873
874 if (sk->sk_bound_dev_if)
875 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
876
877 if (!dev) {
878 pr_err("%s: sock not bind to device\n", __func__);
879 return -EOPNOTSUPP;
880 }
881
882 num = ethtool_get_phc_vclocks(dev, &vclock_index);
883 dev_put(dev);
884
885 for (i = 0; i < num; i++) {
886 if (*(vclock_index + i) == phc_index) {
887 match = true;
888 break;
889 }
890 }
891
892 if (num > 0)
893 kfree(vclock_index);
894
895 if (!match)
896 return -EINVAL;
897
898 WRITE_ONCE(sk->sk_bind_phc, phc_index);
899
900 return 0;
901 }
902
sock_set_timestamping(struct sock * sk,int optname,struct so_timestamping timestamping)903 int sock_set_timestamping(struct sock *sk, int optname,
904 struct so_timestamping timestamping)
905 {
906 int val = timestamping.flags;
907 int ret;
908
909 if (val & ~SOF_TIMESTAMPING_MASK)
910 return -EINVAL;
911
912 if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
913 !(val & SOF_TIMESTAMPING_OPT_ID))
914 return -EINVAL;
915
916 if (val & SOF_TIMESTAMPING_OPT_ID &&
917 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
918 if (sk_is_tcp(sk)) {
919 if ((1 << sk->sk_state) &
920 (TCPF_CLOSE | TCPF_LISTEN))
921 return -EINVAL;
922 if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
923 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
924 else
925 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
926 } else {
927 atomic_set(&sk->sk_tskey, 0);
928 }
929 }
930
931 if (val & SOF_TIMESTAMPING_OPT_STATS &&
932 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
933 return -EINVAL;
934
935 if (val & SOF_TIMESTAMPING_BIND_PHC) {
936 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
937 if (ret)
938 return ret;
939 }
940
941 WRITE_ONCE(sk->sk_tsflags, val);
942 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
943
944 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
945 sock_enable_timestamp(sk,
946 SOCK_TIMESTAMPING_RX_SOFTWARE);
947 else
948 sock_disable_timestamp(sk,
949 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
950 return 0;
951 }
952
sock_set_keepalive(struct sock * sk)953 void sock_set_keepalive(struct sock *sk)
954 {
955 lock_sock(sk);
956 if (sk->sk_prot->keepalive)
957 sk->sk_prot->keepalive(sk, true);
958 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
959 release_sock(sk);
960 }
961 EXPORT_SYMBOL(sock_set_keepalive);
962
__sock_set_rcvbuf(struct sock * sk,int val)963 static void __sock_set_rcvbuf(struct sock *sk, int val)
964 {
965 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
966 * as a negative value.
967 */
968 val = min_t(int, val, INT_MAX / 2);
969 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
970
971 /* We double it on the way in to account for "struct sk_buff" etc.
972 * overhead. Applications assume that the SO_RCVBUF setting they make
973 * will allow that much actual data to be received on that socket.
974 *
975 * Applications are unaware that "struct sk_buff" and other overheads
976 * allocate from the receive buffer during socket buffer allocation.
977 *
978 * And after considering the possible alternatives, returning the value
979 * we actually used in getsockopt is the most desirable behavior.
980 */
981 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
982 }
983
sock_set_rcvbuf(struct sock * sk,int val)984 void sock_set_rcvbuf(struct sock *sk, int val)
985 {
986 lock_sock(sk);
987 __sock_set_rcvbuf(sk, val);
988 release_sock(sk);
989 }
990 EXPORT_SYMBOL(sock_set_rcvbuf);
991
__sock_set_mark(struct sock * sk,u32 val)992 static void __sock_set_mark(struct sock *sk, u32 val)
993 {
994 if (val != sk->sk_mark) {
995 WRITE_ONCE(sk->sk_mark, val);
996 sk_dst_reset(sk);
997 }
998 }
999
sock_set_mark(struct sock * sk,u32 val)1000 void sock_set_mark(struct sock *sk, u32 val)
1001 {
1002 lock_sock(sk);
1003 __sock_set_mark(sk, val);
1004 release_sock(sk);
1005 }
1006 EXPORT_SYMBOL(sock_set_mark);
1007
sock_release_reserved_memory(struct sock * sk,int bytes)1008 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1009 {
1010 /* Round down bytes to multiple of pages */
1011 bytes = round_down(bytes, PAGE_SIZE);
1012
1013 WARN_ON(bytes > sk->sk_reserved_mem);
1014 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1015 sk_mem_reclaim(sk);
1016 }
1017
sock_reserve_memory(struct sock * sk,int bytes)1018 static int sock_reserve_memory(struct sock *sk, int bytes)
1019 {
1020 long allocated;
1021 bool charged;
1022 int pages;
1023
1024 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1025 return -EOPNOTSUPP;
1026
1027 if (!bytes)
1028 return 0;
1029
1030 pages = sk_mem_pages(bytes);
1031
1032 /* pre-charge to memcg */
1033 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1034 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1035 if (!charged)
1036 return -ENOMEM;
1037
1038 /* pre-charge to forward_alloc */
1039 sk_memory_allocated_add(sk, pages);
1040 allocated = sk_memory_allocated(sk);
1041 /* If the system goes into memory pressure with this
1042 * precharge, give up and return error.
1043 */
1044 if (allocated > sk_prot_mem_limits(sk, 1)) {
1045 sk_memory_allocated_sub(sk, pages);
1046 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1047 return -ENOMEM;
1048 }
1049 sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1050
1051 WRITE_ONCE(sk->sk_reserved_mem,
1052 sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1053
1054 return 0;
1055 }
1056
sockopt_lock_sock(struct sock * sk)1057 void sockopt_lock_sock(struct sock *sk)
1058 {
1059 /* When current->bpf_ctx is set, the setsockopt is called from
1060 * a bpf prog. bpf has ensured the sk lock has been
1061 * acquired before calling setsockopt().
1062 */
1063 if (has_current_bpf_ctx())
1064 return;
1065
1066 lock_sock(sk);
1067 }
1068 EXPORT_SYMBOL(sockopt_lock_sock);
1069
sockopt_release_sock(struct sock * sk)1070 void sockopt_release_sock(struct sock *sk)
1071 {
1072 if (has_current_bpf_ctx())
1073 return;
1074
1075 release_sock(sk);
1076 }
1077 EXPORT_SYMBOL(sockopt_release_sock);
1078
sockopt_ns_capable(struct user_namespace * ns,int cap)1079 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1080 {
1081 return has_current_bpf_ctx() || ns_capable(ns, cap);
1082 }
1083 EXPORT_SYMBOL(sockopt_ns_capable);
1084
sockopt_capable(int cap)1085 bool sockopt_capable(int cap)
1086 {
1087 return has_current_bpf_ctx() || capable(cap);
1088 }
1089 EXPORT_SYMBOL(sockopt_capable);
1090
1091 /*
1092 * This is meant for all protocols to use and covers goings on
1093 * at the socket level. Everything here is generic.
1094 */
1095
sk_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)1096 int sk_setsockopt(struct sock *sk, int level, int optname,
1097 sockptr_t optval, unsigned int optlen)
1098 {
1099 struct so_timestamping timestamping;
1100 struct socket *sock = sk->sk_socket;
1101 struct sock_txtime sk_txtime;
1102 int val;
1103 int valbool;
1104 struct linger ling;
1105 int ret = 0;
1106
1107 /*
1108 * Options without arguments
1109 */
1110
1111 if (optname == SO_BINDTODEVICE)
1112 return sock_setbindtodevice(sk, optval, optlen);
1113
1114 if (optlen < sizeof(int))
1115 return -EINVAL;
1116
1117 if (copy_from_sockptr(&val, optval, sizeof(val)))
1118 return -EFAULT;
1119
1120 valbool = val ? 1 : 0;
1121
1122 sockopt_lock_sock(sk);
1123
1124 switch (optname) {
1125 case SO_DEBUG:
1126 if (val && !sockopt_capable(CAP_NET_ADMIN))
1127 ret = -EACCES;
1128 else
1129 sock_valbool_flag(sk, SOCK_DBG, valbool);
1130 break;
1131 case SO_REUSEADDR:
1132 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1133 break;
1134 case SO_REUSEPORT:
1135 sk->sk_reuseport = valbool;
1136 break;
1137 case SO_TYPE:
1138 case SO_PROTOCOL:
1139 case SO_DOMAIN:
1140 case SO_ERROR:
1141 ret = -ENOPROTOOPT;
1142 break;
1143 case SO_DONTROUTE:
1144 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1145 sk_dst_reset(sk);
1146 break;
1147 case SO_BROADCAST:
1148 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1149 break;
1150 case SO_SNDBUF:
1151 /* Don't error on this BSD doesn't and if you think
1152 * about it this is right. Otherwise apps have to
1153 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1154 * are treated in BSD as hints
1155 */
1156 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1157 set_sndbuf:
1158 /* Ensure val * 2 fits into an int, to prevent max_t()
1159 * from treating it as a negative value.
1160 */
1161 val = min_t(int, val, INT_MAX / 2);
1162 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1163 WRITE_ONCE(sk->sk_sndbuf,
1164 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1165 /* Wake up sending tasks if we upped the value. */
1166 sk->sk_write_space(sk);
1167 break;
1168
1169 case SO_SNDBUFFORCE:
1170 if (!sockopt_capable(CAP_NET_ADMIN)) {
1171 ret = -EPERM;
1172 break;
1173 }
1174
1175 /* No negative values (to prevent underflow, as val will be
1176 * multiplied by 2).
1177 */
1178 if (val < 0)
1179 val = 0;
1180 goto set_sndbuf;
1181
1182 case SO_RCVBUF:
1183 /* Don't error on this BSD doesn't and if you think
1184 * about it this is right. Otherwise apps have to
1185 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1186 * are treated in BSD as hints
1187 */
1188 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1189 break;
1190
1191 case SO_RCVBUFFORCE:
1192 if (!sockopt_capable(CAP_NET_ADMIN)) {
1193 ret = -EPERM;
1194 break;
1195 }
1196
1197 /* No negative values (to prevent underflow, as val will be
1198 * multiplied by 2).
1199 */
1200 __sock_set_rcvbuf(sk, max(val, 0));
1201 break;
1202
1203 case SO_KEEPALIVE:
1204 if (sk->sk_prot->keepalive)
1205 sk->sk_prot->keepalive(sk, valbool);
1206 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1207 break;
1208
1209 case SO_OOBINLINE:
1210 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1211 break;
1212
1213 case SO_NO_CHECK:
1214 sk->sk_no_check_tx = valbool;
1215 break;
1216
1217 case SO_PRIORITY:
1218 if ((val >= 0 && val <= 6) ||
1219 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1220 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1221 WRITE_ONCE(sk->sk_priority, val);
1222 else
1223 ret = -EPERM;
1224 break;
1225
1226 case SO_LINGER:
1227 if (optlen < sizeof(ling)) {
1228 ret = -EINVAL; /* 1003.1g */
1229 break;
1230 }
1231 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1232 ret = -EFAULT;
1233 break;
1234 }
1235 if (!ling.l_onoff) {
1236 sock_reset_flag(sk, SOCK_LINGER);
1237 } else {
1238 unsigned long t_sec = ling.l_linger;
1239
1240 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1241 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1242 else
1243 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1244 sock_set_flag(sk, SOCK_LINGER);
1245 }
1246 break;
1247
1248 case SO_BSDCOMPAT:
1249 break;
1250
1251 case SO_PASSCRED:
1252 assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1253 break;
1254
1255 case SO_PASSPIDFD:
1256 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1257 break;
1258
1259 case SO_TIMESTAMP_OLD:
1260 case SO_TIMESTAMP_NEW:
1261 case SO_TIMESTAMPNS_OLD:
1262 case SO_TIMESTAMPNS_NEW:
1263 sock_set_timestamp(sk, optname, valbool);
1264 break;
1265
1266 case SO_TIMESTAMPING_NEW:
1267 case SO_TIMESTAMPING_OLD:
1268 if (optlen == sizeof(timestamping)) {
1269 if (copy_from_sockptr(×tamping, optval,
1270 sizeof(timestamping))) {
1271 ret = -EFAULT;
1272 break;
1273 }
1274 } else {
1275 memset(×tamping, 0, sizeof(timestamping));
1276 timestamping.flags = val;
1277 }
1278 ret = sock_set_timestamping(sk, optname, timestamping);
1279 break;
1280
1281 case SO_RCVLOWAT:
1282 {
1283 int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1284
1285 if (val < 0)
1286 val = INT_MAX;
1287 if (sock)
1288 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1289 if (set_rcvlowat)
1290 ret = set_rcvlowat(sk, val);
1291 else
1292 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1293 break;
1294 }
1295 case SO_RCVTIMEO_OLD:
1296 case SO_RCVTIMEO_NEW:
1297 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1298 optlen, optname == SO_RCVTIMEO_OLD);
1299 break;
1300
1301 case SO_SNDTIMEO_OLD:
1302 case SO_SNDTIMEO_NEW:
1303 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1304 optlen, optname == SO_SNDTIMEO_OLD);
1305 break;
1306
1307 case SO_ATTACH_FILTER: {
1308 struct sock_fprog fprog;
1309
1310 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1311 if (!ret)
1312 ret = sk_attach_filter(&fprog, sk);
1313 break;
1314 }
1315 case SO_ATTACH_BPF:
1316 ret = -EINVAL;
1317 if (optlen == sizeof(u32)) {
1318 u32 ufd;
1319
1320 ret = -EFAULT;
1321 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1322 break;
1323
1324 ret = sk_attach_bpf(ufd, sk);
1325 }
1326 break;
1327
1328 case SO_ATTACH_REUSEPORT_CBPF: {
1329 struct sock_fprog fprog;
1330
1331 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1332 if (!ret)
1333 ret = sk_reuseport_attach_filter(&fprog, sk);
1334 break;
1335 }
1336 case SO_ATTACH_REUSEPORT_EBPF:
1337 ret = -EINVAL;
1338 if (optlen == sizeof(u32)) {
1339 u32 ufd;
1340
1341 ret = -EFAULT;
1342 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1343 break;
1344
1345 ret = sk_reuseport_attach_bpf(ufd, sk);
1346 }
1347 break;
1348
1349 case SO_DETACH_REUSEPORT_BPF:
1350 ret = reuseport_detach_prog(sk);
1351 break;
1352
1353 case SO_DETACH_FILTER:
1354 ret = sk_detach_filter(sk);
1355 break;
1356
1357 case SO_LOCK_FILTER:
1358 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1359 ret = -EPERM;
1360 else
1361 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1362 break;
1363
1364 case SO_PASSSEC:
1365 assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1366 break;
1367 case SO_MARK:
1368 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1369 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1370 ret = -EPERM;
1371 break;
1372 }
1373
1374 __sock_set_mark(sk, val);
1375 break;
1376 case SO_RCVMARK:
1377 sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1378 break;
1379
1380 case SO_RXQ_OVFL:
1381 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1382 break;
1383
1384 case SO_WIFI_STATUS:
1385 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1386 break;
1387
1388 case SO_PEEK_OFF:
1389 {
1390 int (*set_peek_off)(struct sock *sk, int val);
1391
1392 set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1393 if (set_peek_off)
1394 ret = set_peek_off(sk, val);
1395 else
1396 ret = -EOPNOTSUPP;
1397 break;
1398 }
1399
1400 case SO_NOFCS:
1401 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1402 break;
1403
1404 case SO_SELECT_ERR_QUEUE:
1405 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1406 break;
1407
1408 #ifdef CONFIG_NET_RX_BUSY_POLL
1409 case SO_BUSY_POLL:
1410 if (val < 0)
1411 ret = -EINVAL;
1412 else
1413 WRITE_ONCE(sk->sk_ll_usec, val);
1414 break;
1415 case SO_PREFER_BUSY_POLL:
1416 if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1417 ret = -EPERM;
1418 else
1419 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1420 break;
1421 case SO_BUSY_POLL_BUDGET:
1422 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1423 ret = -EPERM;
1424 } else {
1425 if (val < 0 || val > U16_MAX)
1426 ret = -EINVAL;
1427 else
1428 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1429 }
1430 break;
1431 #endif
1432
1433 case SO_MAX_PACING_RATE:
1434 {
1435 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1436
1437 if (sizeof(ulval) != sizeof(val) &&
1438 optlen >= sizeof(ulval) &&
1439 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1440 ret = -EFAULT;
1441 break;
1442 }
1443 if (ulval != ~0UL)
1444 cmpxchg(&sk->sk_pacing_status,
1445 SK_PACING_NONE,
1446 SK_PACING_NEEDED);
1447 /* Pairs with READ_ONCE() from sk_getsockopt() */
1448 WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1449 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1450 break;
1451 }
1452 case SO_INCOMING_CPU:
1453 reuseport_update_incoming_cpu(sk, val);
1454 break;
1455
1456 case SO_CNX_ADVICE:
1457 if (val == 1)
1458 dst_negative_advice(sk);
1459 break;
1460
1461 case SO_ZEROCOPY:
1462 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1463 if (!(sk_is_tcp(sk) ||
1464 (sk->sk_type == SOCK_DGRAM &&
1465 sk->sk_protocol == IPPROTO_UDP)))
1466 ret = -EOPNOTSUPP;
1467 } else if (sk->sk_family != PF_RDS) {
1468 ret = -EOPNOTSUPP;
1469 }
1470 if (!ret) {
1471 if (val < 0 || val > 1)
1472 ret = -EINVAL;
1473 else
1474 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1475 }
1476 break;
1477
1478 case SO_TXTIME:
1479 if (optlen != sizeof(struct sock_txtime)) {
1480 ret = -EINVAL;
1481 break;
1482 } else if (copy_from_sockptr(&sk_txtime, optval,
1483 sizeof(struct sock_txtime))) {
1484 ret = -EFAULT;
1485 break;
1486 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1487 ret = -EINVAL;
1488 break;
1489 }
1490 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1491 * scheduler has enough safe guards.
1492 */
1493 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1494 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1495 ret = -EPERM;
1496 break;
1497 }
1498 sock_valbool_flag(sk, SOCK_TXTIME, true);
1499 sk->sk_clockid = sk_txtime.clockid;
1500 sk->sk_txtime_deadline_mode =
1501 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1502 sk->sk_txtime_report_errors =
1503 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1504 break;
1505
1506 case SO_BINDTOIFINDEX:
1507 ret = sock_bindtoindex_locked(sk, val);
1508 break;
1509
1510 case SO_BUF_LOCK:
1511 if (val & ~SOCK_BUF_LOCK_MASK) {
1512 ret = -EINVAL;
1513 break;
1514 }
1515 sk->sk_userlocks = val | (sk->sk_userlocks &
1516 ~SOCK_BUF_LOCK_MASK);
1517 break;
1518
1519 case SO_RESERVE_MEM:
1520 {
1521 int delta;
1522
1523 if (val < 0) {
1524 ret = -EINVAL;
1525 break;
1526 }
1527
1528 delta = val - sk->sk_reserved_mem;
1529 if (delta < 0)
1530 sock_release_reserved_memory(sk, -delta);
1531 else
1532 ret = sock_reserve_memory(sk, delta);
1533 break;
1534 }
1535
1536 case SO_TXREHASH:
1537 if (val < -1 || val > 1) {
1538 ret = -EINVAL;
1539 break;
1540 }
1541 if ((u8)val == SOCK_TXREHASH_DEFAULT)
1542 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1543 /* Paired with READ_ONCE() in tcp_rtx_synack()
1544 * and sk_getsockopt().
1545 */
1546 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1547 break;
1548
1549 default:
1550 ret = -ENOPROTOOPT;
1551 break;
1552 }
1553 sockopt_release_sock(sk);
1554 return ret;
1555 }
1556
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1557 int sock_setsockopt(struct socket *sock, int level, int optname,
1558 sockptr_t optval, unsigned int optlen)
1559 {
1560 return sk_setsockopt(sock->sk, level, optname,
1561 optval, optlen);
1562 }
1563 EXPORT_SYMBOL(sock_setsockopt);
1564
sk_get_peer_cred(struct sock * sk)1565 static const struct cred *sk_get_peer_cred(struct sock *sk)
1566 {
1567 const struct cred *cred;
1568
1569 spin_lock(&sk->sk_peer_lock);
1570 cred = get_cred(sk->sk_peer_cred);
1571 spin_unlock(&sk->sk_peer_lock);
1572
1573 return cred;
1574 }
1575
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1576 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1577 struct ucred *ucred)
1578 {
1579 ucred->pid = pid_vnr(pid);
1580 ucred->uid = ucred->gid = -1;
1581 if (cred) {
1582 struct user_namespace *current_ns = current_user_ns();
1583
1584 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1585 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1586 }
1587 }
1588
groups_to_user(sockptr_t dst,const struct group_info * src)1589 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1590 {
1591 struct user_namespace *user_ns = current_user_ns();
1592 int i;
1593
1594 for (i = 0; i < src->ngroups; i++) {
1595 gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1596
1597 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1598 return -EFAULT;
1599 }
1600
1601 return 0;
1602 }
1603
sk_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)1604 int sk_getsockopt(struct sock *sk, int level, int optname,
1605 sockptr_t optval, sockptr_t optlen)
1606 {
1607 struct socket *sock = sk->sk_socket;
1608
1609 union {
1610 int val;
1611 u64 val64;
1612 unsigned long ulval;
1613 struct linger ling;
1614 struct old_timeval32 tm32;
1615 struct __kernel_old_timeval tm;
1616 struct __kernel_sock_timeval stm;
1617 struct sock_txtime txtime;
1618 struct so_timestamping timestamping;
1619 } v;
1620
1621 int lv = sizeof(int);
1622 int len;
1623
1624 if (copy_from_sockptr(&len, optlen, sizeof(int)))
1625 return -EFAULT;
1626 if (len < 0)
1627 return -EINVAL;
1628
1629 memset(&v, 0, sizeof(v));
1630
1631 switch (optname) {
1632 case SO_DEBUG:
1633 v.val = sock_flag(sk, SOCK_DBG);
1634 break;
1635
1636 case SO_DONTROUTE:
1637 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1638 break;
1639
1640 case SO_BROADCAST:
1641 v.val = sock_flag(sk, SOCK_BROADCAST);
1642 break;
1643
1644 case SO_SNDBUF:
1645 v.val = READ_ONCE(sk->sk_sndbuf);
1646 break;
1647
1648 case SO_RCVBUF:
1649 v.val = READ_ONCE(sk->sk_rcvbuf);
1650 break;
1651
1652 case SO_REUSEADDR:
1653 v.val = sk->sk_reuse;
1654 break;
1655
1656 case SO_REUSEPORT:
1657 v.val = sk->sk_reuseport;
1658 break;
1659
1660 case SO_KEEPALIVE:
1661 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1662 break;
1663
1664 case SO_TYPE:
1665 v.val = sk->sk_type;
1666 break;
1667
1668 case SO_PROTOCOL:
1669 v.val = sk->sk_protocol;
1670 break;
1671
1672 case SO_DOMAIN:
1673 v.val = sk->sk_family;
1674 break;
1675
1676 case SO_ERROR:
1677 v.val = -sock_error(sk);
1678 if (v.val == 0)
1679 v.val = xchg(&sk->sk_err_soft, 0);
1680 break;
1681
1682 case SO_OOBINLINE:
1683 v.val = sock_flag(sk, SOCK_URGINLINE);
1684 break;
1685
1686 case SO_NO_CHECK:
1687 v.val = sk->sk_no_check_tx;
1688 break;
1689
1690 case SO_PRIORITY:
1691 v.val = READ_ONCE(sk->sk_priority);
1692 break;
1693
1694 case SO_LINGER:
1695 lv = sizeof(v.ling);
1696 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1697 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ;
1698 break;
1699
1700 case SO_BSDCOMPAT:
1701 break;
1702
1703 case SO_TIMESTAMP_OLD:
1704 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1705 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1706 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1707 break;
1708
1709 case SO_TIMESTAMPNS_OLD:
1710 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1711 break;
1712
1713 case SO_TIMESTAMP_NEW:
1714 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1715 break;
1716
1717 case SO_TIMESTAMPNS_NEW:
1718 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1719 break;
1720
1721 case SO_TIMESTAMPING_OLD:
1722 case SO_TIMESTAMPING_NEW:
1723 lv = sizeof(v.timestamping);
1724 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1725 * returning the flags when they were set through the same option.
1726 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1727 */
1728 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1729 v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1730 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1731 }
1732 break;
1733
1734 case SO_RCVTIMEO_OLD:
1735 case SO_RCVTIMEO_NEW:
1736 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1737 SO_RCVTIMEO_OLD == optname);
1738 break;
1739
1740 case SO_SNDTIMEO_OLD:
1741 case SO_SNDTIMEO_NEW:
1742 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1743 SO_SNDTIMEO_OLD == optname);
1744 break;
1745
1746 case SO_RCVLOWAT:
1747 v.val = READ_ONCE(sk->sk_rcvlowat);
1748 break;
1749
1750 case SO_SNDLOWAT:
1751 v.val = 1;
1752 break;
1753
1754 case SO_PASSCRED:
1755 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1756 break;
1757
1758 case SO_PASSPIDFD:
1759 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1760 break;
1761
1762 case SO_PEERCRED:
1763 {
1764 struct ucred peercred;
1765 if (len > sizeof(peercred))
1766 len = sizeof(peercred);
1767
1768 spin_lock(&sk->sk_peer_lock);
1769 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1770 spin_unlock(&sk->sk_peer_lock);
1771
1772 if (copy_to_sockptr(optval, &peercred, len))
1773 return -EFAULT;
1774 goto lenout;
1775 }
1776
1777 case SO_PEERPIDFD:
1778 {
1779 struct pid *peer_pid;
1780 struct file *pidfd_file = NULL;
1781 int pidfd;
1782
1783 if (len > sizeof(pidfd))
1784 len = sizeof(pidfd);
1785
1786 spin_lock(&sk->sk_peer_lock);
1787 peer_pid = get_pid(sk->sk_peer_pid);
1788 spin_unlock(&sk->sk_peer_lock);
1789
1790 if (!peer_pid)
1791 return -ENODATA;
1792
1793 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1794 put_pid(peer_pid);
1795 if (pidfd < 0)
1796 return pidfd;
1797
1798 if (copy_to_sockptr(optval, &pidfd, len) ||
1799 copy_to_sockptr(optlen, &len, sizeof(int))) {
1800 put_unused_fd(pidfd);
1801 fput(pidfd_file);
1802
1803 return -EFAULT;
1804 }
1805
1806 fd_install(pidfd, pidfd_file);
1807 return 0;
1808 }
1809
1810 case SO_PEERGROUPS:
1811 {
1812 const struct cred *cred;
1813 int ret, n;
1814
1815 cred = sk_get_peer_cred(sk);
1816 if (!cred)
1817 return -ENODATA;
1818
1819 n = cred->group_info->ngroups;
1820 if (len < n * sizeof(gid_t)) {
1821 len = n * sizeof(gid_t);
1822 put_cred(cred);
1823 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1824 }
1825 len = n * sizeof(gid_t);
1826
1827 ret = groups_to_user(optval, cred->group_info);
1828 put_cred(cred);
1829 if (ret)
1830 return ret;
1831 goto lenout;
1832 }
1833
1834 case SO_PEERNAME:
1835 {
1836 struct sockaddr_storage address;
1837
1838 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1839 if (lv < 0)
1840 return -ENOTCONN;
1841 if (lv < len)
1842 return -EINVAL;
1843 if (copy_to_sockptr(optval, &address, len))
1844 return -EFAULT;
1845 goto lenout;
1846 }
1847
1848 /* Dubious BSD thing... Probably nobody even uses it, but
1849 * the UNIX standard wants it for whatever reason... -DaveM
1850 */
1851 case SO_ACCEPTCONN:
1852 v.val = sk->sk_state == TCP_LISTEN;
1853 break;
1854
1855 case SO_PASSSEC:
1856 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1857 break;
1858
1859 case SO_PEERSEC:
1860 return security_socket_getpeersec_stream(sock,
1861 optval, optlen, len);
1862
1863 case SO_MARK:
1864 v.val = READ_ONCE(sk->sk_mark);
1865 break;
1866
1867 case SO_RCVMARK:
1868 v.val = sock_flag(sk, SOCK_RCVMARK);
1869 break;
1870
1871 case SO_RXQ_OVFL:
1872 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1873 break;
1874
1875 case SO_WIFI_STATUS:
1876 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1877 break;
1878
1879 case SO_PEEK_OFF:
1880 if (!READ_ONCE(sock->ops)->set_peek_off)
1881 return -EOPNOTSUPP;
1882
1883 v.val = READ_ONCE(sk->sk_peek_off);
1884 break;
1885 case SO_NOFCS:
1886 v.val = sock_flag(sk, SOCK_NOFCS);
1887 break;
1888
1889 case SO_BINDTODEVICE:
1890 return sock_getbindtodevice(sk, optval, optlen, len);
1891
1892 case SO_GET_FILTER:
1893 len = sk_get_filter(sk, optval, len);
1894 if (len < 0)
1895 return len;
1896
1897 goto lenout;
1898
1899 case SO_LOCK_FILTER:
1900 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1901 break;
1902
1903 case SO_BPF_EXTENSIONS:
1904 v.val = bpf_tell_extensions();
1905 break;
1906
1907 case SO_SELECT_ERR_QUEUE:
1908 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1909 break;
1910
1911 #ifdef CONFIG_NET_RX_BUSY_POLL
1912 case SO_BUSY_POLL:
1913 v.val = READ_ONCE(sk->sk_ll_usec);
1914 break;
1915 case SO_PREFER_BUSY_POLL:
1916 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1917 break;
1918 #endif
1919
1920 case SO_MAX_PACING_RATE:
1921 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1922 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1923 lv = sizeof(v.ulval);
1924 v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1925 } else {
1926 /* 32bit version */
1927 v.val = min_t(unsigned long, ~0U,
1928 READ_ONCE(sk->sk_max_pacing_rate));
1929 }
1930 break;
1931
1932 case SO_INCOMING_CPU:
1933 v.val = READ_ONCE(sk->sk_incoming_cpu);
1934 break;
1935
1936 case SO_MEMINFO:
1937 {
1938 u32 meminfo[SK_MEMINFO_VARS];
1939
1940 sk_get_meminfo(sk, meminfo);
1941
1942 len = min_t(unsigned int, len, sizeof(meminfo));
1943 if (copy_to_sockptr(optval, &meminfo, len))
1944 return -EFAULT;
1945
1946 goto lenout;
1947 }
1948
1949 #ifdef CONFIG_NET_RX_BUSY_POLL
1950 case SO_INCOMING_NAPI_ID:
1951 v.val = READ_ONCE(sk->sk_napi_id);
1952
1953 /* aggregate non-NAPI IDs down to 0 */
1954 if (v.val < MIN_NAPI_ID)
1955 v.val = 0;
1956
1957 break;
1958 #endif
1959
1960 case SO_COOKIE:
1961 lv = sizeof(u64);
1962 if (len < lv)
1963 return -EINVAL;
1964 v.val64 = sock_gen_cookie(sk);
1965 break;
1966
1967 case SO_ZEROCOPY:
1968 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1969 break;
1970
1971 case SO_TXTIME:
1972 lv = sizeof(v.txtime);
1973 v.txtime.clockid = sk->sk_clockid;
1974 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1975 SOF_TXTIME_DEADLINE_MODE : 0;
1976 v.txtime.flags |= sk->sk_txtime_report_errors ?
1977 SOF_TXTIME_REPORT_ERRORS : 0;
1978 break;
1979
1980 case SO_BINDTOIFINDEX:
1981 v.val = READ_ONCE(sk->sk_bound_dev_if);
1982 break;
1983
1984 case SO_NETNS_COOKIE:
1985 lv = sizeof(u64);
1986 if (len != lv)
1987 return -EINVAL;
1988 v.val64 = sock_net(sk)->net_cookie;
1989 break;
1990
1991 case SO_BUF_LOCK:
1992 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1993 break;
1994
1995 case SO_RESERVE_MEM:
1996 v.val = READ_ONCE(sk->sk_reserved_mem);
1997 break;
1998
1999 case SO_TXREHASH:
2000 /* Paired with WRITE_ONCE() in sk_setsockopt() */
2001 v.val = READ_ONCE(sk->sk_txrehash);
2002 break;
2003
2004 default:
2005 /* We implement the SO_SNDLOWAT etc to not be settable
2006 * (1003.1g 7).
2007 */
2008 return -ENOPROTOOPT;
2009 }
2010
2011 if (len > lv)
2012 len = lv;
2013 if (copy_to_sockptr(optval, &v, len))
2014 return -EFAULT;
2015 lenout:
2016 if (copy_to_sockptr(optlen, &len, sizeof(int)))
2017 return -EFAULT;
2018 return 0;
2019 }
2020
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2021 int sock_getsockopt(struct socket *sock, int level, int optname,
2022 char __user *optval, int __user *optlen)
2023 {
2024 return sk_getsockopt(sock->sk, level, optname,
2025 USER_SOCKPTR(optval),
2026 USER_SOCKPTR(optlen));
2027 }
2028
2029 /*
2030 * Initialize an sk_lock.
2031 *
2032 * (We also register the sk_lock with the lock validator.)
2033 */
sock_lock_init(struct sock * sk)2034 static inline void sock_lock_init(struct sock *sk)
2035 {
2036 if (sk->sk_kern_sock)
2037 sock_lock_init_class_and_name(
2038 sk,
2039 af_family_kern_slock_key_strings[sk->sk_family],
2040 af_family_kern_slock_keys + sk->sk_family,
2041 af_family_kern_key_strings[sk->sk_family],
2042 af_family_kern_keys + sk->sk_family);
2043 else
2044 sock_lock_init_class_and_name(
2045 sk,
2046 af_family_slock_key_strings[sk->sk_family],
2047 af_family_slock_keys + sk->sk_family,
2048 af_family_key_strings[sk->sk_family],
2049 af_family_keys + sk->sk_family);
2050 }
2051
2052 /*
2053 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2054 * even temporarly, because of RCU lookups. sk_node should also be left as is.
2055 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2056 */
sock_copy(struct sock * nsk,const struct sock * osk)2057 static void sock_copy(struct sock *nsk, const struct sock *osk)
2058 {
2059 const struct proto *prot = READ_ONCE(osk->sk_prot);
2060 #ifdef CONFIG_SECURITY_NETWORK
2061 void *sptr = nsk->sk_security;
2062 #endif
2063
2064 /* If we move sk_tx_queue_mapping out of the private section,
2065 * we must check if sk_tx_queue_clear() is called after
2066 * sock_copy() in sk_clone_lock().
2067 */
2068 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2069 offsetof(struct sock, sk_dontcopy_begin) ||
2070 offsetof(struct sock, sk_tx_queue_mapping) >=
2071 offsetof(struct sock, sk_dontcopy_end));
2072
2073 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2074
2075 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2076 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2077
2078 #ifdef CONFIG_SECURITY_NETWORK
2079 nsk->sk_security = sptr;
2080 security_sk_clone(osk, nsk);
2081 #endif
2082 }
2083
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)2084 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2085 int family)
2086 {
2087 struct sock *sk;
2088 struct kmem_cache *slab;
2089
2090 slab = prot->slab;
2091 if (slab != NULL) {
2092 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2093 if (!sk)
2094 return sk;
2095 if (want_init_on_alloc(priority))
2096 sk_prot_clear_nulls(sk, prot->obj_size);
2097 } else
2098 sk = kmalloc(prot->obj_size, priority);
2099
2100 if (sk != NULL) {
2101 if (security_sk_alloc(sk, family, priority))
2102 goto out_free;
2103
2104 if (!try_module_get(prot->owner))
2105 goto out_free_sec;
2106 }
2107
2108 return sk;
2109
2110 out_free_sec:
2111 security_sk_free(sk);
2112 out_free:
2113 if (slab != NULL)
2114 kmem_cache_free(slab, sk);
2115 else
2116 kfree(sk);
2117 return NULL;
2118 }
2119
sk_prot_free(struct proto * prot,struct sock * sk)2120 static void sk_prot_free(struct proto *prot, struct sock *sk)
2121 {
2122 struct kmem_cache *slab;
2123 struct module *owner;
2124
2125 owner = prot->owner;
2126 slab = prot->slab;
2127
2128 cgroup_sk_free(&sk->sk_cgrp_data);
2129 mem_cgroup_sk_free(sk);
2130 security_sk_free(sk);
2131 if (slab != NULL)
2132 kmem_cache_free(slab, sk);
2133 else
2134 kfree(sk);
2135 module_put(owner);
2136 }
2137
2138 /**
2139 * sk_alloc - All socket objects are allocated here
2140 * @net: the applicable net namespace
2141 * @family: protocol family
2142 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2143 * @prot: struct proto associated with this new sock instance
2144 * @kern: is this to be a kernel socket?
2145 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)2146 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2147 struct proto *prot, int kern)
2148 {
2149 struct sock *sk;
2150
2151 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2152 if (sk) {
2153 sk->sk_family = family;
2154 /*
2155 * See comment in struct sock definition to understand
2156 * why we need sk_prot_creator -acme
2157 */
2158 sk->sk_prot = sk->sk_prot_creator = prot;
2159 sk->sk_kern_sock = kern;
2160 sock_lock_init(sk);
2161 sk->sk_net_refcnt = kern ? 0 : 1;
2162 if (likely(sk->sk_net_refcnt)) {
2163 get_net_track(net, &sk->ns_tracker, priority);
2164 sock_inuse_add(net, 1);
2165 } else {
2166 __netns_tracker_alloc(net, &sk->ns_tracker,
2167 false, priority);
2168 }
2169
2170 sock_net_set(sk, net);
2171 refcount_set(&sk->sk_wmem_alloc, 1);
2172
2173 mem_cgroup_sk_alloc(sk);
2174 cgroup_sk_alloc(&sk->sk_cgrp_data);
2175 sock_update_classid(&sk->sk_cgrp_data);
2176 sock_update_netprioidx(&sk->sk_cgrp_data);
2177 sk_tx_queue_clear(sk);
2178 }
2179
2180 return sk;
2181 }
2182 EXPORT_SYMBOL(sk_alloc);
2183
2184 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2185 * grace period. This is the case for UDP sockets and TCP listeners.
2186 */
__sk_destruct(struct rcu_head * head)2187 static void __sk_destruct(struct rcu_head *head)
2188 {
2189 struct sock *sk = container_of(head, struct sock, sk_rcu);
2190 struct sk_filter *filter;
2191
2192 if (sk->sk_destruct)
2193 sk->sk_destruct(sk);
2194
2195 filter = rcu_dereference_check(sk->sk_filter,
2196 refcount_read(&sk->sk_wmem_alloc) == 0);
2197 if (filter) {
2198 sk_filter_uncharge(sk, filter);
2199 RCU_INIT_POINTER(sk->sk_filter, NULL);
2200 }
2201
2202 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2203
2204 #ifdef CONFIG_BPF_SYSCALL
2205 bpf_sk_storage_free(sk);
2206 #endif
2207
2208 if (atomic_read(&sk->sk_omem_alloc))
2209 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2210 __func__, atomic_read(&sk->sk_omem_alloc));
2211
2212 if (sk->sk_frag.page) {
2213 put_page(sk->sk_frag.page);
2214 sk->sk_frag.page = NULL;
2215 }
2216
2217 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2218 put_cred(sk->sk_peer_cred);
2219 put_pid(sk->sk_peer_pid);
2220
2221 if (likely(sk->sk_net_refcnt))
2222 put_net_track(sock_net(sk), &sk->ns_tracker);
2223 else
2224 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2225
2226 sk_prot_free(sk->sk_prot_creator, sk);
2227 }
2228
sk_destruct(struct sock * sk)2229 void sk_destruct(struct sock *sk)
2230 {
2231 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2232
2233 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2234 reuseport_detach_sock(sk);
2235 use_call_rcu = true;
2236 }
2237
2238 if (use_call_rcu)
2239 call_rcu(&sk->sk_rcu, __sk_destruct);
2240 else
2241 __sk_destruct(&sk->sk_rcu);
2242 }
2243
__sk_free(struct sock * sk)2244 static void __sk_free(struct sock *sk)
2245 {
2246 if (likely(sk->sk_net_refcnt))
2247 sock_inuse_add(sock_net(sk), -1);
2248
2249 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2250 sock_diag_broadcast_destroy(sk);
2251 else
2252 sk_destruct(sk);
2253 }
2254
sk_free(struct sock * sk)2255 void sk_free(struct sock *sk)
2256 {
2257 /*
2258 * We subtract one from sk_wmem_alloc and can know if
2259 * some packets are still in some tx queue.
2260 * If not null, sock_wfree() will call __sk_free(sk) later
2261 */
2262 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2263 __sk_free(sk);
2264 }
2265 EXPORT_SYMBOL(sk_free);
2266
sk_init_common(struct sock * sk)2267 static void sk_init_common(struct sock *sk)
2268 {
2269 skb_queue_head_init(&sk->sk_receive_queue);
2270 skb_queue_head_init(&sk->sk_write_queue);
2271 skb_queue_head_init(&sk->sk_error_queue);
2272
2273 rwlock_init(&sk->sk_callback_lock);
2274 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2275 af_rlock_keys + sk->sk_family,
2276 af_family_rlock_key_strings[sk->sk_family]);
2277 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2278 af_wlock_keys + sk->sk_family,
2279 af_family_wlock_key_strings[sk->sk_family]);
2280 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2281 af_elock_keys + sk->sk_family,
2282 af_family_elock_key_strings[sk->sk_family]);
2283 lockdep_set_class_and_name(&sk->sk_callback_lock,
2284 af_callback_keys + sk->sk_family,
2285 af_family_clock_key_strings[sk->sk_family]);
2286 }
2287
2288 /**
2289 * sk_clone_lock - clone a socket, and lock its clone
2290 * @sk: the socket to clone
2291 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2292 *
2293 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2294 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)2295 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2296 {
2297 struct proto *prot = READ_ONCE(sk->sk_prot);
2298 struct sk_filter *filter;
2299 bool is_charged = true;
2300 struct sock *newsk;
2301
2302 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2303 if (!newsk)
2304 goto out;
2305
2306 sock_copy(newsk, sk);
2307
2308 newsk->sk_prot_creator = prot;
2309
2310 /* SANITY */
2311 if (likely(newsk->sk_net_refcnt)) {
2312 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2313 sock_inuse_add(sock_net(newsk), 1);
2314 } else {
2315 /* Kernel sockets are not elevating the struct net refcount.
2316 * Instead, use a tracker to more easily detect if a layer
2317 * is not properly dismantling its kernel sockets at netns
2318 * destroy time.
2319 */
2320 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2321 false, priority);
2322 }
2323 sk_node_init(&newsk->sk_node);
2324 sock_lock_init(newsk);
2325 bh_lock_sock(newsk);
2326 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2327 newsk->sk_backlog.len = 0;
2328
2329 atomic_set(&newsk->sk_rmem_alloc, 0);
2330
2331 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2332 refcount_set(&newsk->sk_wmem_alloc, 1);
2333
2334 atomic_set(&newsk->sk_omem_alloc, 0);
2335 sk_init_common(newsk);
2336
2337 newsk->sk_dst_cache = NULL;
2338 newsk->sk_dst_pending_confirm = 0;
2339 newsk->sk_wmem_queued = 0;
2340 newsk->sk_forward_alloc = 0;
2341 newsk->sk_reserved_mem = 0;
2342 atomic_set(&newsk->sk_drops, 0);
2343 newsk->sk_send_head = NULL;
2344 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2345 atomic_set(&newsk->sk_zckey, 0);
2346
2347 sock_reset_flag(newsk, SOCK_DONE);
2348
2349 /* sk->sk_memcg will be populated at accept() time */
2350 newsk->sk_memcg = NULL;
2351
2352 cgroup_sk_clone(&newsk->sk_cgrp_data);
2353
2354 rcu_read_lock();
2355 filter = rcu_dereference(sk->sk_filter);
2356 if (filter != NULL)
2357 /* though it's an empty new sock, the charging may fail
2358 * if sysctl_optmem_max was changed between creation of
2359 * original socket and cloning
2360 */
2361 is_charged = sk_filter_charge(newsk, filter);
2362 RCU_INIT_POINTER(newsk->sk_filter, filter);
2363 rcu_read_unlock();
2364
2365 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2366 /* We need to make sure that we don't uncharge the new
2367 * socket if we couldn't charge it in the first place
2368 * as otherwise we uncharge the parent's filter.
2369 */
2370 if (!is_charged)
2371 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2372 sk_free_unlock_clone(newsk);
2373 newsk = NULL;
2374 goto out;
2375 }
2376 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2377
2378 if (bpf_sk_storage_clone(sk, newsk)) {
2379 sk_free_unlock_clone(newsk);
2380 newsk = NULL;
2381 goto out;
2382 }
2383
2384 /* Clear sk_user_data if parent had the pointer tagged
2385 * as not suitable for copying when cloning.
2386 */
2387 if (sk_user_data_is_nocopy(newsk))
2388 newsk->sk_user_data = NULL;
2389
2390 newsk->sk_err = 0;
2391 newsk->sk_err_soft = 0;
2392 newsk->sk_priority = 0;
2393 newsk->sk_incoming_cpu = raw_smp_processor_id();
2394
2395 /* Before updating sk_refcnt, we must commit prior changes to memory
2396 * (Documentation/RCU/rculist_nulls.rst for details)
2397 */
2398 smp_wmb();
2399 refcount_set(&newsk->sk_refcnt, 2);
2400
2401 sk_set_socket(newsk, NULL);
2402 sk_tx_queue_clear(newsk);
2403 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2404
2405 if (newsk->sk_prot->sockets_allocated)
2406 sk_sockets_allocated_inc(newsk);
2407
2408 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2409 net_enable_timestamp();
2410 out:
2411 return newsk;
2412 }
2413 EXPORT_SYMBOL_GPL(sk_clone_lock);
2414
sk_free_unlock_clone(struct sock * sk)2415 void sk_free_unlock_clone(struct sock *sk)
2416 {
2417 /* It is still raw copy of parent, so invalidate
2418 * destructor and make plain sk_free() */
2419 sk->sk_destruct = NULL;
2420 bh_unlock_sock(sk);
2421 sk_free(sk);
2422 }
2423 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2424
sk_dst_gso_max_size(struct sock * sk,struct dst_entry * dst)2425 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2426 {
2427 bool is_ipv6 = false;
2428 u32 max_size;
2429
2430 #if IS_ENABLED(CONFIG_IPV6)
2431 is_ipv6 = (sk->sk_family == AF_INET6 &&
2432 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2433 #endif
2434 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2435 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2436 READ_ONCE(dst->dev->gso_ipv4_max_size);
2437 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2438 max_size = GSO_LEGACY_MAX_SIZE;
2439
2440 return max_size - (MAX_TCP_HEADER + 1);
2441 }
2442
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2443 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2444 {
2445 u32 max_segs = 1;
2446
2447 sk->sk_route_caps = dst->dev->features;
2448 if (sk_is_tcp(sk))
2449 sk->sk_route_caps |= NETIF_F_GSO;
2450 if (sk->sk_route_caps & NETIF_F_GSO)
2451 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2452 if (unlikely(sk->sk_gso_disabled))
2453 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2454 if (sk_can_gso(sk)) {
2455 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2456 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2457 } else {
2458 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2459 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2460 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2461 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2462 }
2463 }
2464 sk->sk_gso_max_segs = max_segs;
2465 sk_dst_set(sk, dst);
2466 }
2467 EXPORT_SYMBOL_GPL(sk_setup_caps);
2468
2469 /*
2470 * Simple resource managers for sockets.
2471 */
2472
2473
2474 /*
2475 * Write buffer destructor automatically called from kfree_skb.
2476 */
sock_wfree(struct sk_buff * skb)2477 void sock_wfree(struct sk_buff *skb)
2478 {
2479 struct sock *sk = skb->sk;
2480 unsigned int len = skb->truesize;
2481 bool free;
2482
2483 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2484 if (sock_flag(sk, SOCK_RCU_FREE) &&
2485 sk->sk_write_space == sock_def_write_space) {
2486 rcu_read_lock();
2487 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2488 sock_def_write_space_wfree(sk);
2489 rcu_read_unlock();
2490 if (unlikely(free))
2491 __sk_free(sk);
2492 return;
2493 }
2494
2495 /*
2496 * Keep a reference on sk_wmem_alloc, this will be released
2497 * after sk_write_space() call
2498 */
2499 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2500 sk->sk_write_space(sk);
2501 len = 1;
2502 }
2503 /*
2504 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2505 * could not do because of in-flight packets
2506 */
2507 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2508 __sk_free(sk);
2509 }
2510 EXPORT_SYMBOL(sock_wfree);
2511
2512 /* This variant of sock_wfree() is used by TCP,
2513 * since it sets SOCK_USE_WRITE_QUEUE.
2514 */
__sock_wfree(struct sk_buff * skb)2515 void __sock_wfree(struct sk_buff *skb)
2516 {
2517 struct sock *sk = skb->sk;
2518
2519 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2520 __sk_free(sk);
2521 }
2522
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2523 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2524 {
2525 skb_orphan(skb);
2526 skb->sk = sk;
2527 #ifdef CONFIG_INET
2528 if (unlikely(!sk_fullsock(sk))) {
2529 skb->destructor = sock_edemux;
2530 sock_hold(sk);
2531 return;
2532 }
2533 #endif
2534 skb->destructor = sock_wfree;
2535 skb_set_hash_from_sk(skb, sk);
2536 /*
2537 * We used to take a refcount on sk, but following operation
2538 * is enough to guarantee sk_free() wont free this sock until
2539 * all in-flight packets are completed
2540 */
2541 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2542 }
2543 EXPORT_SYMBOL(skb_set_owner_w);
2544
can_skb_orphan_partial(const struct sk_buff * skb)2545 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2546 {
2547 #ifdef CONFIG_TLS_DEVICE
2548 /* Drivers depend on in-order delivery for crypto offload,
2549 * partial orphan breaks out-of-order-OK logic.
2550 */
2551 if (skb->decrypted)
2552 return false;
2553 #endif
2554 return (skb->destructor == sock_wfree ||
2555 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2556 }
2557
2558 /* This helper is used by netem, as it can hold packets in its
2559 * delay queue. We want to allow the owner socket to send more
2560 * packets, as if they were already TX completed by a typical driver.
2561 * But we also want to keep skb->sk set because some packet schedulers
2562 * rely on it (sch_fq for example).
2563 */
skb_orphan_partial(struct sk_buff * skb)2564 void skb_orphan_partial(struct sk_buff *skb)
2565 {
2566 if (skb_is_tcp_pure_ack(skb))
2567 return;
2568
2569 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2570 return;
2571
2572 skb_orphan(skb);
2573 }
2574 EXPORT_SYMBOL(skb_orphan_partial);
2575
2576 /*
2577 * Read buffer destructor automatically called from kfree_skb.
2578 */
sock_rfree(struct sk_buff * skb)2579 void sock_rfree(struct sk_buff *skb)
2580 {
2581 struct sock *sk = skb->sk;
2582 unsigned int len = skb->truesize;
2583
2584 atomic_sub(len, &sk->sk_rmem_alloc);
2585 sk_mem_uncharge(sk, len);
2586 }
2587 EXPORT_SYMBOL(sock_rfree);
2588
2589 /*
2590 * Buffer destructor for skbs that are not used directly in read or write
2591 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2592 */
sock_efree(struct sk_buff * skb)2593 void sock_efree(struct sk_buff *skb)
2594 {
2595 sock_put(skb->sk);
2596 }
2597 EXPORT_SYMBOL(sock_efree);
2598
2599 /* Buffer destructor for prefetch/receive path where reference count may
2600 * not be held, e.g. for listen sockets.
2601 */
2602 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2603 void sock_pfree(struct sk_buff *skb)
2604 {
2605 if (sk_is_refcounted(skb->sk))
2606 sock_gen_put(skb->sk);
2607 }
2608 EXPORT_SYMBOL(sock_pfree);
2609 #endif /* CONFIG_INET */
2610
sock_i_uid(struct sock * sk)2611 kuid_t sock_i_uid(struct sock *sk)
2612 {
2613 kuid_t uid;
2614
2615 read_lock_bh(&sk->sk_callback_lock);
2616 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2617 read_unlock_bh(&sk->sk_callback_lock);
2618 return uid;
2619 }
2620 EXPORT_SYMBOL(sock_i_uid);
2621
__sock_i_ino(struct sock * sk)2622 unsigned long __sock_i_ino(struct sock *sk)
2623 {
2624 unsigned long ino;
2625
2626 read_lock(&sk->sk_callback_lock);
2627 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2628 read_unlock(&sk->sk_callback_lock);
2629 return ino;
2630 }
2631 EXPORT_SYMBOL(__sock_i_ino);
2632
sock_i_ino(struct sock * sk)2633 unsigned long sock_i_ino(struct sock *sk)
2634 {
2635 unsigned long ino;
2636
2637 local_bh_disable();
2638 ino = __sock_i_ino(sk);
2639 local_bh_enable();
2640 return ino;
2641 }
2642 EXPORT_SYMBOL(sock_i_ino);
2643
2644 /*
2645 * Allocate a skb from the socket's send buffer.
2646 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2647 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2648 gfp_t priority)
2649 {
2650 if (force ||
2651 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2652 struct sk_buff *skb = alloc_skb(size, priority);
2653
2654 if (skb) {
2655 skb_set_owner_w(skb, sk);
2656 return skb;
2657 }
2658 }
2659 return NULL;
2660 }
2661 EXPORT_SYMBOL(sock_wmalloc);
2662
sock_ofree(struct sk_buff * skb)2663 static void sock_ofree(struct sk_buff *skb)
2664 {
2665 struct sock *sk = skb->sk;
2666
2667 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2668 }
2669
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2670 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2671 gfp_t priority)
2672 {
2673 struct sk_buff *skb;
2674
2675 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2676 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2677 READ_ONCE(sysctl_optmem_max))
2678 return NULL;
2679
2680 skb = alloc_skb(size, priority);
2681 if (!skb)
2682 return NULL;
2683
2684 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2685 skb->sk = sk;
2686 skb->destructor = sock_ofree;
2687 return skb;
2688 }
2689
2690 /*
2691 * Allocate a memory block from the socket's option memory buffer.
2692 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2693 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2694 {
2695 int optmem_max = READ_ONCE(sysctl_optmem_max);
2696
2697 if ((unsigned int)size <= optmem_max &&
2698 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2699 void *mem;
2700 /* First do the add, to avoid the race if kmalloc
2701 * might sleep.
2702 */
2703 atomic_add(size, &sk->sk_omem_alloc);
2704 mem = kmalloc(size, priority);
2705 if (mem)
2706 return mem;
2707 atomic_sub(size, &sk->sk_omem_alloc);
2708 }
2709 return NULL;
2710 }
2711 EXPORT_SYMBOL(sock_kmalloc);
2712
2713 /* Free an option memory block. Note, we actually want the inline
2714 * here as this allows gcc to detect the nullify and fold away the
2715 * condition entirely.
2716 */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2717 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2718 const bool nullify)
2719 {
2720 if (WARN_ON_ONCE(!mem))
2721 return;
2722 if (nullify)
2723 kfree_sensitive(mem);
2724 else
2725 kfree(mem);
2726 atomic_sub(size, &sk->sk_omem_alloc);
2727 }
2728
sock_kfree_s(struct sock * sk,void * mem,int size)2729 void sock_kfree_s(struct sock *sk, void *mem, int size)
2730 {
2731 __sock_kfree_s(sk, mem, size, false);
2732 }
2733 EXPORT_SYMBOL(sock_kfree_s);
2734
sock_kzfree_s(struct sock * sk,void * mem,int size)2735 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2736 {
2737 __sock_kfree_s(sk, mem, size, true);
2738 }
2739 EXPORT_SYMBOL(sock_kzfree_s);
2740
2741 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2742 I think, these locks should be removed for datagram sockets.
2743 */
sock_wait_for_wmem(struct sock * sk,long timeo)2744 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2745 {
2746 DEFINE_WAIT(wait);
2747
2748 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2749 for (;;) {
2750 if (!timeo)
2751 break;
2752 if (signal_pending(current))
2753 break;
2754 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2755 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2756 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2757 break;
2758 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2759 break;
2760 if (READ_ONCE(sk->sk_err))
2761 break;
2762 timeo = schedule_timeout(timeo);
2763 }
2764 finish_wait(sk_sleep(sk), &wait);
2765 return timeo;
2766 }
2767
2768
2769 /*
2770 * Generic send/receive buffer handlers
2771 */
2772
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2773 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2774 unsigned long data_len, int noblock,
2775 int *errcode, int max_page_order)
2776 {
2777 struct sk_buff *skb;
2778 long timeo;
2779 int err;
2780
2781 timeo = sock_sndtimeo(sk, noblock);
2782 for (;;) {
2783 err = sock_error(sk);
2784 if (err != 0)
2785 goto failure;
2786
2787 err = -EPIPE;
2788 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2789 goto failure;
2790
2791 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2792 break;
2793
2794 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2795 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2796 err = -EAGAIN;
2797 if (!timeo)
2798 goto failure;
2799 if (signal_pending(current))
2800 goto interrupted;
2801 timeo = sock_wait_for_wmem(sk, timeo);
2802 }
2803 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2804 errcode, sk->sk_allocation);
2805 if (skb)
2806 skb_set_owner_w(skb, sk);
2807 return skb;
2808
2809 interrupted:
2810 err = sock_intr_errno(timeo);
2811 failure:
2812 *errcode = err;
2813 return NULL;
2814 }
2815 EXPORT_SYMBOL(sock_alloc_send_pskb);
2816
__sock_cmsg_send(struct sock * sk,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2817 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2818 struct sockcm_cookie *sockc)
2819 {
2820 u32 tsflags;
2821
2822 switch (cmsg->cmsg_type) {
2823 case SO_MARK:
2824 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2825 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2826 return -EPERM;
2827 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2828 return -EINVAL;
2829 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2830 break;
2831 case SO_TIMESTAMPING_OLD:
2832 case SO_TIMESTAMPING_NEW:
2833 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2834 return -EINVAL;
2835
2836 tsflags = *(u32 *)CMSG_DATA(cmsg);
2837 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2838 return -EINVAL;
2839
2840 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2841 sockc->tsflags |= tsflags;
2842 break;
2843 case SCM_TXTIME:
2844 if (!sock_flag(sk, SOCK_TXTIME))
2845 return -EINVAL;
2846 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2847 return -EINVAL;
2848 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2849 break;
2850 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2851 case SCM_RIGHTS:
2852 case SCM_CREDENTIALS:
2853 break;
2854 default:
2855 return -EINVAL;
2856 }
2857 return 0;
2858 }
2859 EXPORT_SYMBOL(__sock_cmsg_send);
2860
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2861 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2862 struct sockcm_cookie *sockc)
2863 {
2864 struct cmsghdr *cmsg;
2865 int ret;
2866
2867 for_each_cmsghdr(cmsg, msg) {
2868 if (!CMSG_OK(msg, cmsg))
2869 return -EINVAL;
2870 if (cmsg->cmsg_level != SOL_SOCKET)
2871 continue;
2872 ret = __sock_cmsg_send(sk, cmsg, sockc);
2873 if (ret)
2874 return ret;
2875 }
2876 return 0;
2877 }
2878 EXPORT_SYMBOL(sock_cmsg_send);
2879
sk_enter_memory_pressure(struct sock * sk)2880 static void sk_enter_memory_pressure(struct sock *sk)
2881 {
2882 if (!sk->sk_prot->enter_memory_pressure)
2883 return;
2884
2885 sk->sk_prot->enter_memory_pressure(sk);
2886 }
2887
sk_leave_memory_pressure(struct sock * sk)2888 static void sk_leave_memory_pressure(struct sock *sk)
2889 {
2890 if (sk->sk_prot->leave_memory_pressure) {
2891 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2892 tcp_leave_memory_pressure, sk);
2893 } else {
2894 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2895
2896 if (memory_pressure && READ_ONCE(*memory_pressure))
2897 WRITE_ONCE(*memory_pressure, 0);
2898 }
2899 }
2900
2901 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2902
2903 /**
2904 * skb_page_frag_refill - check that a page_frag contains enough room
2905 * @sz: minimum size of the fragment we want to get
2906 * @pfrag: pointer to page_frag
2907 * @gfp: priority for memory allocation
2908 *
2909 * Note: While this allocator tries to use high order pages, there is
2910 * no guarantee that allocations succeed. Therefore, @sz MUST be
2911 * less or equal than PAGE_SIZE.
2912 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2913 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2914 {
2915 if (pfrag->page) {
2916 if (page_ref_count(pfrag->page) == 1) {
2917 pfrag->offset = 0;
2918 return true;
2919 }
2920 if (pfrag->offset + sz <= pfrag->size)
2921 return true;
2922 put_page(pfrag->page);
2923 }
2924
2925 pfrag->offset = 0;
2926 if (SKB_FRAG_PAGE_ORDER &&
2927 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2928 /* Avoid direct reclaim but allow kswapd to wake */
2929 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2930 __GFP_COMP | __GFP_NOWARN |
2931 __GFP_NORETRY,
2932 SKB_FRAG_PAGE_ORDER);
2933 if (likely(pfrag->page)) {
2934 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2935 return true;
2936 }
2937 }
2938 pfrag->page = alloc_page(gfp);
2939 if (likely(pfrag->page)) {
2940 pfrag->size = PAGE_SIZE;
2941 return true;
2942 }
2943 return false;
2944 }
2945 EXPORT_SYMBOL(skb_page_frag_refill);
2946
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2947 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2948 {
2949 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2950 return true;
2951
2952 sk_enter_memory_pressure(sk);
2953 sk_stream_moderate_sndbuf(sk);
2954 return false;
2955 }
2956 EXPORT_SYMBOL(sk_page_frag_refill);
2957
__lock_sock(struct sock * sk)2958 void __lock_sock(struct sock *sk)
2959 __releases(&sk->sk_lock.slock)
2960 __acquires(&sk->sk_lock.slock)
2961 {
2962 DEFINE_WAIT(wait);
2963
2964 for (;;) {
2965 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2966 TASK_UNINTERRUPTIBLE);
2967 spin_unlock_bh(&sk->sk_lock.slock);
2968 schedule();
2969 spin_lock_bh(&sk->sk_lock.slock);
2970 if (!sock_owned_by_user(sk))
2971 break;
2972 }
2973 finish_wait(&sk->sk_lock.wq, &wait);
2974 }
2975
__release_sock(struct sock * sk)2976 void __release_sock(struct sock *sk)
2977 __releases(&sk->sk_lock.slock)
2978 __acquires(&sk->sk_lock.slock)
2979 {
2980 struct sk_buff *skb, *next;
2981
2982 while ((skb = sk->sk_backlog.head) != NULL) {
2983 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2984
2985 spin_unlock_bh(&sk->sk_lock.slock);
2986
2987 do {
2988 next = skb->next;
2989 prefetch(next);
2990 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2991 skb_mark_not_on_list(skb);
2992 sk_backlog_rcv(sk, skb);
2993
2994 cond_resched();
2995
2996 skb = next;
2997 } while (skb != NULL);
2998
2999 spin_lock_bh(&sk->sk_lock.slock);
3000 }
3001
3002 /*
3003 * Doing the zeroing here guarantee we can not loop forever
3004 * while a wild producer attempts to flood us.
3005 */
3006 sk->sk_backlog.len = 0;
3007 }
3008
__sk_flush_backlog(struct sock * sk)3009 void __sk_flush_backlog(struct sock *sk)
3010 {
3011 spin_lock_bh(&sk->sk_lock.slock);
3012 __release_sock(sk);
3013 spin_unlock_bh(&sk->sk_lock.slock);
3014 }
3015 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3016
3017 /**
3018 * sk_wait_data - wait for data to arrive at sk_receive_queue
3019 * @sk: sock to wait on
3020 * @timeo: for how long
3021 * @skb: last skb seen on sk_receive_queue
3022 *
3023 * Now socket state including sk->sk_err is changed only under lock,
3024 * hence we may omit checks after joining wait queue.
3025 * We check receive queue before schedule() only as optimization;
3026 * it is very likely that release_sock() added new data.
3027 */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)3028 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3029 {
3030 DEFINE_WAIT_FUNC(wait, woken_wake_function);
3031 int rc;
3032
3033 add_wait_queue(sk_sleep(sk), &wait);
3034 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3035 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3036 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3037 remove_wait_queue(sk_sleep(sk), &wait);
3038 return rc;
3039 }
3040 EXPORT_SYMBOL(sk_wait_data);
3041
3042 /**
3043 * __sk_mem_raise_allocated - increase memory_allocated
3044 * @sk: socket
3045 * @size: memory size to allocate
3046 * @amt: pages to allocate
3047 * @kind: allocation type
3048 *
3049 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
3050 */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)3051 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3052 {
3053 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
3054 struct proto *prot = sk->sk_prot;
3055 bool charged = true;
3056 long allocated;
3057
3058 sk_memory_allocated_add(sk, amt);
3059 allocated = sk_memory_allocated(sk);
3060 if (memcg_charge &&
3061 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3062 gfp_memcg_charge())))
3063 goto suppress_allocation;
3064
3065 /* Under limit. */
3066 if (allocated <= sk_prot_mem_limits(sk, 0)) {
3067 sk_leave_memory_pressure(sk);
3068 return 1;
3069 }
3070
3071 /* Under pressure. */
3072 if (allocated > sk_prot_mem_limits(sk, 1))
3073 sk_enter_memory_pressure(sk);
3074
3075 /* Over hard limit. */
3076 if (allocated > sk_prot_mem_limits(sk, 2))
3077 goto suppress_allocation;
3078
3079 /* guarantee minimum buffer size under pressure */
3080 if (kind == SK_MEM_RECV) {
3081 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3082 return 1;
3083
3084 } else { /* SK_MEM_SEND */
3085 int wmem0 = sk_get_wmem0(sk, prot);
3086
3087 if (sk->sk_type == SOCK_STREAM) {
3088 if (sk->sk_wmem_queued < wmem0)
3089 return 1;
3090 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3091 return 1;
3092 }
3093 }
3094
3095 if (sk_has_memory_pressure(sk)) {
3096 u64 alloc;
3097
3098 if (!sk_under_memory_pressure(sk))
3099 return 1;
3100 alloc = sk_sockets_allocated_read_positive(sk);
3101 if (sk_prot_mem_limits(sk, 2) > alloc *
3102 sk_mem_pages(sk->sk_wmem_queued +
3103 atomic_read(&sk->sk_rmem_alloc) +
3104 sk->sk_forward_alloc))
3105 return 1;
3106 }
3107
3108 suppress_allocation:
3109
3110 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3111 sk_stream_moderate_sndbuf(sk);
3112
3113 /* Fail only if socket is _under_ its sndbuf.
3114 * In this case we cannot block, so that we have to fail.
3115 */
3116 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3117 /* Force charge with __GFP_NOFAIL */
3118 if (memcg_charge && !charged) {
3119 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3120 gfp_memcg_charge() | __GFP_NOFAIL);
3121 }
3122 return 1;
3123 }
3124 }
3125
3126 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3127 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3128
3129 sk_memory_allocated_sub(sk, amt);
3130
3131 if (memcg_charge && charged)
3132 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3133
3134 return 0;
3135 }
3136
3137 /**
3138 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3139 * @sk: socket
3140 * @size: memory size to allocate
3141 * @kind: allocation type
3142 *
3143 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3144 * rmem allocation. This function assumes that protocols which have
3145 * memory_pressure use sk_wmem_queued as write buffer accounting.
3146 */
__sk_mem_schedule(struct sock * sk,int size,int kind)3147 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3148 {
3149 int ret, amt = sk_mem_pages(size);
3150
3151 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3152 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3153 if (!ret)
3154 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3155 return ret;
3156 }
3157 EXPORT_SYMBOL(__sk_mem_schedule);
3158
3159 /**
3160 * __sk_mem_reduce_allocated - reclaim memory_allocated
3161 * @sk: socket
3162 * @amount: number of quanta
3163 *
3164 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3165 */
__sk_mem_reduce_allocated(struct sock * sk,int amount)3166 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3167 {
3168 sk_memory_allocated_sub(sk, amount);
3169
3170 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3171 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3172
3173 if (sk_under_global_memory_pressure(sk) &&
3174 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3175 sk_leave_memory_pressure(sk);
3176 }
3177
3178 /**
3179 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3180 * @sk: socket
3181 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3182 */
__sk_mem_reclaim(struct sock * sk,int amount)3183 void __sk_mem_reclaim(struct sock *sk, int amount)
3184 {
3185 amount >>= PAGE_SHIFT;
3186 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3187 __sk_mem_reduce_allocated(sk, amount);
3188 }
3189 EXPORT_SYMBOL(__sk_mem_reclaim);
3190
sk_set_peek_off(struct sock * sk,int val)3191 int sk_set_peek_off(struct sock *sk, int val)
3192 {
3193 WRITE_ONCE(sk->sk_peek_off, val);
3194 return 0;
3195 }
3196 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3197
3198 /*
3199 * Set of default routines for initialising struct proto_ops when
3200 * the protocol does not support a particular function. In certain
3201 * cases where it makes no sense for a protocol to have a "do nothing"
3202 * function, some default processing is provided.
3203 */
3204
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)3205 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3206 {
3207 return -EOPNOTSUPP;
3208 }
3209 EXPORT_SYMBOL(sock_no_bind);
3210
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)3211 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3212 int len, int flags)
3213 {
3214 return -EOPNOTSUPP;
3215 }
3216 EXPORT_SYMBOL(sock_no_connect);
3217
sock_no_socketpair(struct socket * sock1,struct socket * sock2)3218 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3219 {
3220 return -EOPNOTSUPP;
3221 }
3222 EXPORT_SYMBOL(sock_no_socketpair);
3223
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3224 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3225 bool kern)
3226 {
3227 return -EOPNOTSUPP;
3228 }
3229 EXPORT_SYMBOL(sock_no_accept);
3230
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)3231 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3232 int peer)
3233 {
3234 return -EOPNOTSUPP;
3235 }
3236 EXPORT_SYMBOL(sock_no_getname);
3237
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)3238 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3239 {
3240 return -EOPNOTSUPP;
3241 }
3242 EXPORT_SYMBOL(sock_no_ioctl);
3243
sock_no_listen(struct socket * sock,int backlog)3244 int sock_no_listen(struct socket *sock, int backlog)
3245 {
3246 return -EOPNOTSUPP;
3247 }
3248 EXPORT_SYMBOL(sock_no_listen);
3249
sock_no_shutdown(struct socket * sock,int how)3250 int sock_no_shutdown(struct socket *sock, int how)
3251 {
3252 return -EOPNOTSUPP;
3253 }
3254 EXPORT_SYMBOL(sock_no_shutdown);
3255
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)3256 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3257 {
3258 return -EOPNOTSUPP;
3259 }
3260 EXPORT_SYMBOL(sock_no_sendmsg);
3261
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)3262 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3263 {
3264 return -EOPNOTSUPP;
3265 }
3266 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3267
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)3268 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3269 int flags)
3270 {
3271 return -EOPNOTSUPP;
3272 }
3273 EXPORT_SYMBOL(sock_no_recvmsg);
3274
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)3275 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3276 {
3277 /* Mirror missing mmap method error code */
3278 return -ENODEV;
3279 }
3280 EXPORT_SYMBOL(sock_no_mmap);
3281
3282 /*
3283 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3284 * various sock-based usage counts.
3285 */
__receive_sock(struct file * file)3286 void __receive_sock(struct file *file)
3287 {
3288 struct socket *sock;
3289
3290 sock = sock_from_file(file);
3291 if (sock) {
3292 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3293 sock_update_classid(&sock->sk->sk_cgrp_data);
3294 }
3295 }
3296
3297 /*
3298 * Default Socket Callbacks
3299 */
3300
sock_def_wakeup(struct sock * sk)3301 static void sock_def_wakeup(struct sock *sk)
3302 {
3303 struct socket_wq *wq;
3304
3305 rcu_read_lock();
3306 wq = rcu_dereference(sk->sk_wq);
3307 if (skwq_has_sleeper(wq))
3308 wake_up_interruptible_all(&wq->wait);
3309 rcu_read_unlock();
3310 }
3311
sock_def_error_report(struct sock * sk)3312 static void sock_def_error_report(struct sock *sk)
3313 {
3314 struct socket_wq *wq;
3315
3316 rcu_read_lock();
3317 wq = rcu_dereference(sk->sk_wq);
3318 if (skwq_has_sleeper(wq))
3319 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3320 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3321 rcu_read_unlock();
3322 }
3323
sock_def_readable(struct sock * sk)3324 void sock_def_readable(struct sock *sk)
3325 {
3326 struct socket_wq *wq;
3327
3328 trace_sk_data_ready(sk);
3329
3330 rcu_read_lock();
3331 wq = rcu_dereference(sk->sk_wq);
3332 if (skwq_has_sleeper(wq))
3333 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3334 EPOLLRDNORM | EPOLLRDBAND);
3335 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3336 rcu_read_unlock();
3337 }
3338
sock_def_write_space(struct sock * sk)3339 static void sock_def_write_space(struct sock *sk)
3340 {
3341 struct socket_wq *wq;
3342
3343 rcu_read_lock();
3344
3345 /* Do not wake up a writer until he can make "significant"
3346 * progress. --DaveM
3347 */
3348 if (sock_writeable(sk)) {
3349 wq = rcu_dereference(sk->sk_wq);
3350 if (skwq_has_sleeper(wq))
3351 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3352 EPOLLWRNORM | EPOLLWRBAND);
3353
3354 /* Should agree with poll, otherwise some programs break */
3355 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3356 }
3357
3358 rcu_read_unlock();
3359 }
3360
3361 /* An optimised version of sock_def_write_space(), should only be called
3362 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3363 * ->sk_wmem_alloc.
3364 */
sock_def_write_space_wfree(struct sock * sk)3365 static void sock_def_write_space_wfree(struct sock *sk)
3366 {
3367 /* Do not wake up a writer until he can make "significant"
3368 * progress. --DaveM
3369 */
3370 if (sock_writeable(sk)) {
3371 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3372
3373 /* rely on refcount_sub from sock_wfree() */
3374 smp_mb__after_atomic();
3375 if (wq && waitqueue_active(&wq->wait))
3376 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3377 EPOLLWRNORM | EPOLLWRBAND);
3378
3379 /* Should agree with poll, otherwise some programs break */
3380 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3381 }
3382 }
3383
sock_def_destruct(struct sock * sk)3384 static void sock_def_destruct(struct sock *sk)
3385 {
3386 }
3387
sk_send_sigurg(struct sock * sk)3388 void sk_send_sigurg(struct sock *sk)
3389 {
3390 if (sk->sk_socket && sk->sk_socket->file)
3391 if (send_sigurg(&sk->sk_socket->file->f_owner))
3392 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3393 }
3394 EXPORT_SYMBOL(sk_send_sigurg);
3395
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)3396 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3397 unsigned long expires)
3398 {
3399 if (!mod_timer(timer, expires))
3400 sock_hold(sk);
3401 }
3402 EXPORT_SYMBOL(sk_reset_timer);
3403
sk_stop_timer(struct sock * sk,struct timer_list * timer)3404 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3405 {
3406 if (del_timer(timer))
3407 __sock_put(sk);
3408 }
3409 EXPORT_SYMBOL(sk_stop_timer);
3410
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)3411 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3412 {
3413 if (del_timer_sync(timer))
3414 __sock_put(sk);
3415 }
3416 EXPORT_SYMBOL(sk_stop_timer_sync);
3417
sock_init_data_uid(struct socket * sock,struct sock * sk,kuid_t uid)3418 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3419 {
3420 sk_init_common(sk);
3421 sk->sk_send_head = NULL;
3422
3423 timer_setup(&sk->sk_timer, NULL, 0);
3424
3425 sk->sk_allocation = GFP_KERNEL;
3426 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3427 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3428 sk->sk_state = TCP_CLOSE;
3429 sk->sk_use_task_frag = true;
3430 sk_set_socket(sk, sock);
3431
3432 sock_set_flag(sk, SOCK_ZAPPED);
3433
3434 if (sock) {
3435 sk->sk_type = sock->type;
3436 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3437 sock->sk = sk;
3438 } else {
3439 RCU_INIT_POINTER(sk->sk_wq, NULL);
3440 }
3441 sk->sk_uid = uid;
3442
3443 rwlock_init(&sk->sk_callback_lock);
3444 if (sk->sk_kern_sock)
3445 lockdep_set_class_and_name(
3446 &sk->sk_callback_lock,
3447 af_kern_callback_keys + sk->sk_family,
3448 af_family_kern_clock_key_strings[sk->sk_family]);
3449 else
3450 lockdep_set_class_and_name(
3451 &sk->sk_callback_lock,
3452 af_callback_keys + sk->sk_family,
3453 af_family_clock_key_strings[sk->sk_family]);
3454
3455 sk->sk_state_change = sock_def_wakeup;
3456 sk->sk_data_ready = sock_def_readable;
3457 sk->sk_write_space = sock_def_write_space;
3458 sk->sk_error_report = sock_def_error_report;
3459 sk->sk_destruct = sock_def_destruct;
3460
3461 sk->sk_frag.page = NULL;
3462 sk->sk_frag.offset = 0;
3463 sk->sk_peek_off = -1;
3464
3465 sk->sk_peer_pid = NULL;
3466 sk->sk_peer_cred = NULL;
3467 spin_lock_init(&sk->sk_peer_lock);
3468
3469 sk->sk_write_pending = 0;
3470 sk->sk_rcvlowat = 1;
3471 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3472 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3473
3474 sk->sk_stamp = SK_DEFAULT_STAMP;
3475 #if BITS_PER_LONG==32
3476 seqlock_init(&sk->sk_stamp_seq);
3477 #endif
3478 atomic_set(&sk->sk_zckey, 0);
3479
3480 #ifdef CONFIG_NET_RX_BUSY_POLL
3481 sk->sk_napi_id = 0;
3482 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3483 #endif
3484
3485 sk->sk_max_pacing_rate = ~0UL;
3486 sk->sk_pacing_rate = ~0UL;
3487 WRITE_ONCE(sk->sk_pacing_shift, 10);
3488 sk->sk_incoming_cpu = -1;
3489
3490 sk_rx_queue_clear(sk);
3491 /*
3492 * Before updating sk_refcnt, we must commit prior changes to memory
3493 * (Documentation/RCU/rculist_nulls.rst for details)
3494 */
3495 smp_wmb();
3496 refcount_set(&sk->sk_refcnt, 1);
3497 atomic_set(&sk->sk_drops, 0);
3498 }
3499 EXPORT_SYMBOL(sock_init_data_uid);
3500
sock_init_data(struct socket * sock,struct sock * sk)3501 void sock_init_data(struct socket *sock, struct sock *sk)
3502 {
3503 kuid_t uid = sock ?
3504 SOCK_INODE(sock)->i_uid :
3505 make_kuid(sock_net(sk)->user_ns, 0);
3506
3507 sock_init_data_uid(sock, sk, uid);
3508 }
3509 EXPORT_SYMBOL(sock_init_data);
3510
lock_sock_nested(struct sock * sk,int subclass)3511 void lock_sock_nested(struct sock *sk, int subclass)
3512 {
3513 /* The sk_lock has mutex_lock() semantics here. */
3514 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3515
3516 might_sleep();
3517 spin_lock_bh(&sk->sk_lock.slock);
3518 if (sock_owned_by_user_nocheck(sk))
3519 __lock_sock(sk);
3520 sk->sk_lock.owned = 1;
3521 spin_unlock_bh(&sk->sk_lock.slock);
3522 }
3523 EXPORT_SYMBOL(lock_sock_nested);
3524
release_sock(struct sock * sk)3525 void release_sock(struct sock *sk)
3526 {
3527 spin_lock_bh(&sk->sk_lock.slock);
3528 if (sk->sk_backlog.tail)
3529 __release_sock(sk);
3530
3531 /* Warning : release_cb() might need to release sk ownership,
3532 * ie call sock_release_ownership(sk) before us.
3533 */
3534 if (sk->sk_prot->release_cb)
3535 sk->sk_prot->release_cb(sk);
3536
3537 sock_release_ownership(sk);
3538 if (waitqueue_active(&sk->sk_lock.wq))
3539 wake_up(&sk->sk_lock.wq);
3540 spin_unlock_bh(&sk->sk_lock.slock);
3541 }
3542 EXPORT_SYMBOL(release_sock);
3543
__lock_sock_fast(struct sock * sk)3544 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3545 {
3546 might_sleep();
3547 spin_lock_bh(&sk->sk_lock.slock);
3548
3549 if (!sock_owned_by_user_nocheck(sk)) {
3550 /*
3551 * Fast path return with bottom halves disabled and
3552 * sock::sk_lock.slock held.
3553 *
3554 * The 'mutex' is not contended and holding
3555 * sock::sk_lock.slock prevents all other lockers to
3556 * proceed so the corresponding unlock_sock_fast() can
3557 * avoid the slow path of release_sock() completely and
3558 * just release slock.
3559 *
3560 * From a semantical POV this is equivalent to 'acquiring'
3561 * the 'mutex', hence the corresponding lockdep
3562 * mutex_release() has to happen in the fast path of
3563 * unlock_sock_fast().
3564 */
3565 return false;
3566 }
3567
3568 __lock_sock(sk);
3569 sk->sk_lock.owned = 1;
3570 __acquire(&sk->sk_lock.slock);
3571 spin_unlock_bh(&sk->sk_lock.slock);
3572 return true;
3573 }
3574 EXPORT_SYMBOL(__lock_sock_fast);
3575
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3576 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3577 bool timeval, bool time32)
3578 {
3579 struct sock *sk = sock->sk;
3580 struct timespec64 ts;
3581
3582 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3583 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3584 if (ts.tv_sec == -1)
3585 return -ENOENT;
3586 if (ts.tv_sec == 0) {
3587 ktime_t kt = ktime_get_real();
3588 sock_write_timestamp(sk, kt);
3589 ts = ktime_to_timespec64(kt);
3590 }
3591
3592 if (timeval)
3593 ts.tv_nsec /= 1000;
3594
3595 #ifdef CONFIG_COMPAT_32BIT_TIME
3596 if (time32)
3597 return put_old_timespec32(&ts, userstamp);
3598 #endif
3599 #ifdef CONFIG_SPARC64
3600 /* beware of padding in sparc64 timeval */
3601 if (timeval && !in_compat_syscall()) {
3602 struct __kernel_old_timeval __user tv = {
3603 .tv_sec = ts.tv_sec,
3604 .tv_usec = ts.tv_nsec,
3605 };
3606 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3607 return -EFAULT;
3608 return 0;
3609 }
3610 #endif
3611 return put_timespec64(&ts, userstamp);
3612 }
3613 EXPORT_SYMBOL(sock_gettstamp);
3614
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3615 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3616 {
3617 if (!sock_flag(sk, flag)) {
3618 unsigned long previous_flags = sk->sk_flags;
3619
3620 sock_set_flag(sk, flag);
3621 /*
3622 * we just set one of the two flags which require net
3623 * time stamping, but time stamping might have been on
3624 * already because of the other one
3625 */
3626 if (sock_needs_netstamp(sk) &&
3627 !(previous_flags & SK_FLAGS_TIMESTAMP))
3628 net_enable_timestamp();
3629 }
3630 }
3631
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3632 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3633 int level, int type)
3634 {
3635 struct sock_exterr_skb *serr;
3636 struct sk_buff *skb;
3637 int copied, err;
3638
3639 err = -EAGAIN;
3640 skb = sock_dequeue_err_skb(sk);
3641 if (skb == NULL)
3642 goto out;
3643
3644 copied = skb->len;
3645 if (copied > len) {
3646 msg->msg_flags |= MSG_TRUNC;
3647 copied = len;
3648 }
3649 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3650 if (err)
3651 goto out_free_skb;
3652
3653 sock_recv_timestamp(msg, sk, skb);
3654
3655 serr = SKB_EXT_ERR(skb);
3656 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3657
3658 msg->msg_flags |= MSG_ERRQUEUE;
3659 err = copied;
3660
3661 out_free_skb:
3662 kfree_skb(skb);
3663 out:
3664 return err;
3665 }
3666 EXPORT_SYMBOL(sock_recv_errqueue);
3667
3668 /*
3669 * Get a socket option on an socket.
3670 *
3671 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3672 * asynchronous errors should be reported by getsockopt. We assume
3673 * this means if you specify SO_ERROR (otherwise whats the point of it).
3674 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3675 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3676 char __user *optval, int __user *optlen)
3677 {
3678 struct sock *sk = sock->sk;
3679
3680 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3681 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3682 }
3683 EXPORT_SYMBOL(sock_common_getsockopt);
3684
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3685 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3686 int flags)
3687 {
3688 struct sock *sk = sock->sk;
3689 int addr_len = 0;
3690 int err;
3691
3692 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3693 if (err >= 0)
3694 msg->msg_namelen = addr_len;
3695 return err;
3696 }
3697 EXPORT_SYMBOL(sock_common_recvmsg);
3698
3699 /*
3700 * Set socket options on an inet socket.
3701 */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3702 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3703 sockptr_t optval, unsigned int optlen)
3704 {
3705 struct sock *sk = sock->sk;
3706
3707 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3708 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3709 }
3710 EXPORT_SYMBOL(sock_common_setsockopt);
3711
sk_common_release(struct sock * sk)3712 void sk_common_release(struct sock *sk)
3713 {
3714 if (sk->sk_prot->destroy)
3715 sk->sk_prot->destroy(sk);
3716
3717 /*
3718 * Observation: when sk_common_release is called, processes have
3719 * no access to socket. But net still has.
3720 * Step one, detach it from networking:
3721 *
3722 * A. Remove from hash tables.
3723 */
3724
3725 sk->sk_prot->unhash(sk);
3726
3727 /*
3728 * In this point socket cannot receive new packets, but it is possible
3729 * that some packets are in flight because some CPU runs receiver and
3730 * did hash table lookup before we unhashed socket. They will achieve
3731 * receive queue and will be purged by socket destructor.
3732 *
3733 * Also we still have packets pending on receive queue and probably,
3734 * our own packets waiting in device queues. sock_destroy will drain
3735 * receive queue, but transmitted packets will delay socket destruction
3736 * until the last reference will be released.
3737 */
3738
3739 sock_orphan(sk);
3740
3741 xfrm_sk_free_policy(sk);
3742
3743 sock_put(sk);
3744 }
3745 EXPORT_SYMBOL(sk_common_release);
3746
sk_get_meminfo(const struct sock * sk,u32 * mem)3747 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3748 {
3749 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3750
3751 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3752 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3753 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3754 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3755 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3756 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3757 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3758 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3759 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3760 }
3761
3762 #ifdef CONFIG_PROC_FS
3763 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3764
sock_prot_inuse_get(struct net * net,struct proto * prot)3765 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3766 {
3767 int cpu, idx = prot->inuse_idx;
3768 int res = 0;
3769
3770 for_each_possible_cpu(cpu)
3771 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3772
3773 return res >= 0 ? res : 0;
3774 }
3775 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3776
sock_inuse_get(struct net * net)3777 int sock_inuse_get(struct net *net)
3778 {
3779 int cpu, res = 0;
3780
3781 for_each_possible_cpu(cpu)
3782 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3783
3784 return res;
3785 }
3786
3787 EXPORT_SYMBOL_GPL(sock_inuse_get);
3788
sock_inuse_init_net(struct net * net)3789 static int __net_init sock_inuse_init_net(struct net *net)
3790 {
3791 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3792 if (net->core.prot_inuse == NULL)
3793 return -ENOMEM;
3794 return 0;
3795 }
3796
sock_inuse_exit_net(struct net * net)3797 static void __net_exit sock_inuse_exit_net(struct net *net)
3798 {
3799 free_percpu(net->core.prot_inuse);
3800 }
3801
3802 static struct pernet_operations net_inuse_ops = {
3803 .init = sock_inuse_init_net,
3804 .exit = sock_inuse_exit_net,
3805 };
3806
net_inuse_init(void)3807 static __init int net_inuse_init(void)
3808 {
3809 if (register_pernet_subsys(&net_inuse_ops))
3810 panic("Cannot initialize net inuse counters");
3811
3812 return 0;
3813 }
3814
3815 core_initcall(net_inuse_init);
3816
assign_proto_idx(struct proto * prot)3817 static int assign_proto_idx(struct proto *prot)
3818 {
3819 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3820
3821 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3822 pr_err("PROTO_INUSE_NR exhausted\n");
3823 return -ENOSPC;
3824 }
3825
3826 set_bit(prot->inuse_idx, proto_inuse_idx);
3827 return 0;
3828 }
3829
release_proto_idx(struct proto * prot)3830 static void release_proto_idx(struct proto *prot)
3831 {
3832 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3833 clear_bit(prot->inuse_idx, proto_inuse_idx);
3834 }
3835 #else
assign_proto_idx(struct proto * prot)3836 static inline int assign_proto_idx(struct proto *prot)
3837 {
3838 return 0;
3839 }
3840
release_proto_idx(struct proto * prot)3841 static inline void release_proto_idx(struct proto *prot)
3842 {
3843 }
3844
3845 #endif
3846
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3847 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3848 {
3849 if (!twsk_prot)
3850 return;
3851 kfree(twsk_prot->twsk_slab_name);
3852 twsk_prot->twsk_slab_name = NULL;
3853 kmem_cache_destroy(twsk_prot->twsk_slab);
3854 twsk_prot->twsk_slab = NULL;
3855 }
3856
tw_prot_init(const struct proto * prot)3857 static int tw_prot_init(const struct proto *prot)
3858 {
3859 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3860
3861 if (!twsk_prot)
3862 return 0;
3863
3864 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3865 prot->name);
3866 if (!twsk_prot->twsk_slab_name)
3867 return -ENOMEM;
3868
3869 twsk_prot->twsk_slab =
3870 kmem_cache_create(twsk_prot->twsk_slab_name,
3871 twsk_prot->twsk_obj_size, 0,
3872 SLAB_ACCOUNT | prot->slab_flags,
3873 NULL);
3874 if (!twsk_prot->twsk_slab) {
3875 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3876 prot->name);
3877 return -ENOMEM;
3878 }
3879
3880 return 0;
3881 }
3882
req_prot_cleanup(struct request_sock_ops * rsk_prot)3883 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3884 {
3885 if (!rsk_prot)
3886 return;
3887 kfree(rsk_prot->slab_name);
3888 rsk_prot->slab_name = NULL;
3889 kmem_cache_destroy(rsk_prot->slab);
3890 rsk_prot->slab = NULL;
3891 }
3892
req_prot_init(const struct proto * prot)3893 static int req_prot_init(const struct proto *prot)
3894 {
3895 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3896
3897 if (!rsk_prot)
3898 return 0;
3899
3900 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3901 prot->name);
3902 if (!rsk_prot->slab_name)
3903 return -ENOMEM;
3904
3905 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3906 rsk_prot->obj_size, 0,
3907 SLAB_ACCOUNT | prot->slab_flags,
3908 NULL);
3909
3910 if (!rsk_prot->slab) {
3911 pr_crit("%s: Can't create request sock SLAB cache!\n",
3912 prot->name);
3913 return -ENOMEM;
3914 }
3915 return 0;
3916 }
3917
proto_register(struct proto * prot,int alloc_slab)3918 int proto_register(struct proto *prot, int alloc_slab)
3919 {
3920 int ret = -ENOBUFS;
3921
3922 if (prot->memory_allocated && !prot->sysctl_mem) {
3923 pr_err("%s: missing sysctl_mem\n", prot->name);
3924 return -EINVAL;
3925 }
3926 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3927 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3928 return -EINVAL;
3929 }
3930 if (alloc_slab) {
3931 prot->slab = kmem_cache_create_usercopy(prot->name,
3932 prot->obj_size, 0,
3933 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3934 prot->slab_flags,
3935 prot->useroffset, prot->usersize,
3936 NULL);
3937
3938 if (prot->slab == NULL) {
3939 pr_crit("%s: Can't create sock SLAB cache!\n",
3940 prot->name);
3941 goto out;
3942 }
3943
3944 if (req_prot_init(prot))
3945 goto out_free_request_sock_slab;
3946
3947 if (tw_prot_init(prot))
3948 goto out_free_timewait_sock_slab;
3949 }
3950
3951 mutex_lock(&proto_list_mutex);
3952 ret = assign_proto_idx(prot);
3953 if (ret) {
3954 mutex_unlock(&proto_list_mutex);
3955 goto out_free_timewait_sock_slab;
3956 }
3957 list_add(&prot->node, &proto_list);
3958 mutex_unlock(&proto_list_mutex);
3959 return ret;
3960
3961 out_free_timewait_sock_slab:
3962 if (alloc_slab)
3963 tw_prot_cleanup(prot->twsk_prot);
3964 out_free_request_sock_slab:
3965 if (alloc_slab) {
3966 req_prot_cleanup(prot->rsk_prot);
3967
3968 kmem_cache_destroy(prot->slab);
3969 prot->slab = NULL;
3970 }
3971 out:
3972 return ret;
3973 }
3974 EXPORT_SYMBOL(proto_register);
3975
proto_unregister(struct proto * prot)3976 void proto_unregister(struct proto *prot)
3977 {
3978 mutex_lock(&proto_list_mutex);
3979 release_proto_idx(prot);
3980 list_del(&prot->node);
3981 mutex_unlock(&proto_list_mutex);
3982
3983 kmem_cache_destroy(prot->slab);
3984 prot->slab = NULL;
3985
3986 req_prot_cleanup(prot->rsk_prot);
3987 tw_prot_cleanup(prot->twsk_prot);
3988 }
3989 EXPORT_SYMBOL(proto_unregister);
3990
sock_load_diag_module(int family,int protocol)3991 int sock_load_diag_module(int family, int protocol)
3992 {
3993 if (!protocol) {
3994 if (!sock_is_registered(family))
3995 return -ENOENT;
3996
3997 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3998 NETLINK_SOCK_DIAG, family);
3999 }
4000
4001 #ifdef CONFIG_INET
4002 if (family == AF_INET &&
4003 protocol != IPPROTO_RAW &&
4004 protocol < MAX_INET_PROTOS &&
4005 !rcu_access_pointer(inet_protos[protocol]))
4006 return -ENOENT;
4007 #endif
4008
4009 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4010 NETLINK_SOCK_DIAG, family, protocol);
4011 }
4012 EXPORT_SYMBOL(sock_load_diag_module);
4013
4014 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)4015 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4016 __acquires(proto_list_mutex)
4017 {
4018 mutex_lock(&proto_list_mutex);
4019 return seq_list_start_head(&proto_list, *pos);
4020 }
4021
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)4022 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4023 {
4024 return seq_list_next(v, &proto_list, pos);
4025 }
4026
proto_seq_stop(struct seq_file * seq,void * v)4027 static void proto_seq_stop(struct seq_file *seq, void *v)
4028 __releases(proto_list_mutex)
4029 {
4030 mutex_unlock(&proto_list_mutex);
4031 }
4032
proto_method_implemented(const void * method)4033 static char proto_method_implemented(const void *method)
4034 {
4035 return method == NULL ? 'n' : 'y';
4036 }
sock_prot_memory_allocated(struct proto * proto)4037 static long sock_prot_memory_allocated(struct proto *proto)
4038 {
4039 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4040 }
4041
sock_prot_memory_pressure(struct proto * proto)4042 static const char *sock_prot_memory_pressure(struct proto *proto)
4043 {
4044 return proto->memory_pressure != NULL ?
4045 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4046 }
4047
proto_seq_printf(struct seq_file * seq,struct proto * proto)4048 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4049 {
4050
4051 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
4052 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4053 proto->name,
4054 proto->obj_size,
4055 sock_prot_inuse_get(seq_file_net(seq), proto),
4056 sock_prot_memory_allocated(proto),
4057 sock_prot_memory_pressure(proto),
4058 proto->max_header,
4059 proto->slab == NULL ? "no" : "yes",
4060 module_name(proto->owner),
4061 proto_method_implemented(proto->close),
4062 proto_method_implemented(proto->connect),
4063 proto_method_implemented(proto->disconnect),
4064 proto_method_implemented(proto->accept),
4065 proto_method_implemented(proto->ioctl),
4066 proto_method_implemented(proto->init),
4067 proto_method_implemented(proto->destroy),
4068 proto_method_implemented(proto->shutdown),
4069 proto_method_implemented(proto->setsockopt),
4070 proto_method_implemented(proto->getsockopt),
4071 proto_method_implemented(proto->sendmsg),
4072 proto_method_implemented(proto->recvmsg),
4073 proto_method_implemented(proto->bind),
4074 proto_method_implemented(proto->backlog_rcv),
4075 proto_method_implemented(proto->hash),
4076 proto_method_implemented(proto->unhash),
4077 proto_method_implemented(proto->get_port),
4078 proto_method_implemented(proto->enter_memory_pressure));
4079 }
4080
proto_seq_show(struct seq_file * seq,void * v)4081 static int proto_seq_show(struct seq_file *seq, void *v)
4082 {
4083 if (v == &proto_list)
4084 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4085 "protocol",
4086 "size",
4087 "sockets",
4088 "memory",
4089 "press",
4090 "maxhdr",
4091 "slab",
4092 "module",
4093 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4094 else
4095 proto_seq_printf(seq, list_entry(v, struct proto, node));
4096 return 0;
4097 }
4098
4099 static const struct seq_operations proto_seq_ops = {
4100 .start = proto_seq_start,
4101 .next = proto_seq_next,
4102 .stop = proto_seq_stop,
4103 .show = proto_seq_show,
4104 };
4105
proto_init_net(struct net * net)4106 static __net_init int proto_init_net(struct net *net)
4107 {
4108 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4109 sizeof(struct seq_net_private)))
4110 return -ENOMEM;
4111
4112 return 0;
4113 }
4114
proto_exit_net(struct net * net)4115 static __net_exit void proto_exit_net(struct net *net)
4116 {
4117 remove_proc_entry("protocols", net->proc_net);
4118 }
4119
4120
4121 static __net_initdata struct pernet_operations proto_net_ops = {
4122 .init = proto_init_net,
4123 .exit = proto_exit_net,
4124 };
4125
proto_init(void)4126 static int __init proto_init(void)
4127 {
4128 return register_pernet_subsys(&proto_net_ops);
4129 }
4130
4131 subsys_initcall(proto_init);
4132
4133 #endif /* PROC_FS */
4134
4135 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)4136 bool sk_busy_loop_end(void *p, unsigned long start_time)
4137 {
4138 struct sock *sk = p;
4139
4140 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4141 return true;
4142
4143 if (sk_is_udp(sk) &&
4144 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4145 return true;
4146
4147 return sk_busy_loop_timeout(sk, start_time);
4148 }
4149 EXPORT_SYMBOL(sk_busy_loop_end);
4150 #endif /* CONFIG_NET_RX_BUSY_POLL */
4151
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)4152 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4153 {
4154 if (!sk->sk_prot->bind_add)
4155 return -EOPNOTSUPP;
4156 return sk->sk_prot->bind_add(sk, addr, addr_len);
4157 }
4158 EXPORT_SYMBOL(sock_bind_add);
4159
4160 /* Copy 'size' bytes from userspace and return `size` back to userspace */
sock_ioctl_inout(struct sock * sk,unsigned int cmd,void __user * arg,void * karg,size_t size)4161 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4162 void __user *arg, void *karg, size_t size)
4163 {
4164 int ret;
4165
4166 if (copy_from_user(karg, arg, size))
4167 return -EFAULT;
4168
4169 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4170 if (ret)
4171 return ret;
4172
4173 if (copy_to_user(arg, karg, size))
4174 return -EFAULT;
4175
4176 return 0;
4177 }
4178 EXPORT_SYMBOL(sock_ioctl_inout);
4179
4180 /* This is the most common ioctl prep function, where the result (4 bytes) is
4181 * copied back to userspace if the ioctl() returns successfully. No input is
4182 * copied from userspace as input argument.
4183 */
sock_ioctl_out(struct sock * sk,unsigned int cmd,void __user * arg)4184 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4185 {
4186 int ret, karg = 0;
4187
4188 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4189 if (ret)
4190 return ret;
4191
4192 return put_user(karg, (int __user *)arg);
4193 }
4194
4195 /* A wrapper around sock ioctls, which copies the data from userspace
4196 * (depending on the protocol/ioctl), and copies back the result to userspace.
4197 * The main motivation for this function is to pass kernel memory to the
4198 * protocol ioctl callbacks, instead of userspace memory.
4199 */
sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)4200 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4201 {
4202 int rc = 1;
4203
4204 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4205 rc = ipmr_sk_ioctl(sk, cmd, arg);
4206 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4207 rc = ip6mr_sk_ioctl(sk, cmd, arg);
4208 else if (sk_is_phonet(sk))
4209 rc = phonet_sk_ioctl(sk, cmd, arg);
4210
4211 /* If ioctl was processed, returns its value */
4212 if (rc <= 0)
4213 return rc;
4214
4215 /* Otherwise call the default handler */
4216 return sock_ioctl_out(sk, cmd, arg);
4217 }
4218 EXPORT_SYMBOL(sk_ioctl);
4219