1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 #include "dm-io-tracker.h"
12 
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/init.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/rwsem.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 
23 #define DM_MSG_PREFIX "cache"
24 
25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26 	"A percentage of time allocated for copying to and/or from cache");
27 
28 /*----------------------------------------------------------------*/
29 
30 /*
31  * Glossary:
32  *
33  * oblock: index of an origin block
34  * cblock: index of a cache block
35  * promotion: movement of a block from origin to cache
36  * demotion: movement of a block from cache to origin
37  * migration: movement of a block between the origin and cache device,
38  *	      either direction
39  */
40 
41 /*----------------------------------------------------------------*/
42 
43 /*
44  * Represents a chunk of future work.  'input' allows continuations to pass
45  * values between themselves, typically error values.
46  */
47 struct continuation {
48 	struct work_struct ws;
49 	blk_status_t input;
50 };
51 
init_continuation(struct continuation * k,void (* fn)(struct work_struct *))52 static inline void init_continuation(struct continuation *k,
53 				     void (*fn)(struct work_struct *))
54 {
55 	INIT_WORK(&k->ws, fn);
56 	k->input = 0;
57 }
58 
queue_continuation(struct workqueue_struct * wq,struct continuation * k)59 static inline void queue_continuation(struct workqueue_struct *wq,
60 				      struct continuation *k)
61 {
62 	queue_work(wq, &k->ws);
63 }
64 
65 /*----------------------------------------------------------------*/
66 
67 /*
68  * The batcher collects together pieces of work that need a particular
69  * operation to occur before they can proceed (typically a commit).
70  */
71 struct batcher {
72 	/*
73 	 * The operation that everyone is waiting for.
74 	 */
75 	blk_status_t (*commit_op)(void *context);
76 	void *commit_context;
77 
78 	/*
79 	 * This is how bios should be issued once the commit op is complete
80 	 * (accounted_request).
81 	 */
82 	void (*issue_op)(struct bio *bio, void *context);
83 	void *issue_context;
84 
85 	/*
86 	 * Queued work gets put on here after commit.
87 	 */
88 	struct workqueue_struct *wq;
89 
90 	spinlock_t lock;
91 	struct list_head work_items;
92 	struct bio_list bios;
93 	struct work_struct commit_work;
94 
95 	bool commit_scheduled;
96 };
97 
__commit(struct work_struct * _ws)98 static void __commit(struct work_struct *_ws)
99 {
100 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
101 	blk_status_t r;
102 	struct list_head work_items;
103 	struct work_struct *ws, *tmp;
104 	struct continuation *k;
105 	struct bio *bio;
106 	struct bio_list bios;
107 
108 	INIT_LIST_HEAD(&work_items);
109 	bio_list_init(&bios);
110 
111 	/*
112 	 * We have to grab these before the commit_op to avoid a race
113 	 * condition.
114 	 */
115 	spin_lock_irq(&b->lock);
116 	list_splice_init(&b->work_items, &work_items);
117 	bio_list_merge(&bios, &b->bios);
118 	bio_list_init(&b->bios);
119 	b->commit_scheduled = false;
120 	spin_unlock_irq(&b->lock);
121 
122 	r = b->commit_op(b->commit_context);
123 
124 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 		k = container_of(ws, struct continuation, ws);
126 		k->input = r;
127 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 		queue_work(b->wq, ws);
129 	}
130 
131 	while ((bio = bio_list_pop(&bios))) {
132 		if (r) {
133 			bio->bi_status = r;
134 			bio_endio(bio);
135 		} else
136 			b->issue_op(bio, b->issue_context);
137 	}
138 }
139 
batcher_init(struct batcher * b,blk_status_t (* commit_op)(void *),void * commit_context,void (* issue_op)(struct bio * bio,void *),void * issue_context,struct workqueue_struct * wq)140 static void batcher_init(struct batcher *b,
141 			 blk_status_t (*commit_op)(void *),
142 			 void *commit_context,
143 			 void (*issue_op)(struct bio *bio, void *),
144 			 void *issue_context,
145 			 struct workqueue_struct *wq)
146 {
147 	b->commit_op = commit_op;
148 	b->commit_context = commit_context;
149 	b->issue_op = issue_op;
150 	b->issue_context = issue_context;
151 	b->wq = wq;
152 
153 	spin_lock_init(&b->lock);
154 	INIT_LIST_HEAD(&b->work_items);
155 	bio_list_init(&b->bios);
156 	INIT_WORK(&b->commit_work, __commit);
157 	b->commit_scheduled = false;
158 }
159 
async_commit(struct batcher * b)160 static void async_commit(struct batcher *b)
161 {
162 	queue_work(b->wq, &b->commit_work);
163 }
164 
continue_after_commit(struct batcher * b,struct continuation * k)165 static void continue_after_commit(struct batcher *b, struct continuation *k)
166 {
167 	bool commit_scheduled;
168 
169 	spin_lock_irq(&b->lock);
170 	commit_scheduled = b->commit_scheduled;
171 	list_add_tail(&k->ws.entry, &b->work_items);
172 	spin_unlock_irq(&b->lock);
173 
174 	if (commit_scheduled)
175 		async_commit(b);
176 }
177 
178 /*
179  * Bios are errored if commit failed.
180  */
issue_after_commit(struct batcher * b,struct bio * bio)181 static void issue_after_commit(struct batcher *b, struct bio *bio)
182 {
183        bool commit_scheduled;
184 
185        spin_lock_irq(&b->lock);
186        commit_scheduled = b->commit_scheduled;
187        bio_list_add(&b->bios, bio);
188        spin_unlock_irq(&b->lock);
189 
190        if (commit_scheduled)
191 	       async_commit(b);
192 }
193 
194 /*
195  * Call this if some urgent work is waiting for the commit to complete.
196  */
schedule_commit(struct batcher * b)197 static void schedule_commit(struct batcher *b)
198 {
199 	bool immediate;
200 
201 	spin_lock_irq(&b->lock);
202 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 	b->commit_scheduled = true;
204 	spin_unlock_irq(&b->lock);
205 
206 	if (immediate)
207 		async_commit(b);
208 }
209 
210 /*
211  * There are a couple of places where we let a bio run, but want to do some
212  * work before calling its endio function.  We do this by temporarily
213  * changing the endio fn.
214  */
215 struct dm_hook_info {
216 	bio_end_io_t *bi_end_io;
217 };
218 
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 			bio_end_io_t *bi_end_io, void *bi_private)
221 {
222 	h->bi_end_io = bio->bi_end_io;
223 
224 	bio->bi_end_io = bi_end_io;
225 	bio->bi_private = bi_private;
226 }
227 
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229 {
230 	bio->bi_end_io = h->bi_end_io;
231 }
232 
233 /*----------------------------------------------------------------*/
234 
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
238 
239 /*
240  * The block size of the device holding cache data must be
241  * between 32KB and 1GB.
242  */
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245 
246 enum cache_metadata_mode {
247 	CM_WRITE,		/* metadata may be changed */
248 	CM_READ_ONLY,		/* metadata may not be changed */
249 	CM_FAIL
250 };
251 
252 enum cache_io_mode {
253 	/*
254 	 * Data is written to cached blocks only.  These blocks are marked
255 	 * dirty.  If you lose the cache device you will lose data.
256 	 * Potential performance increase for both reads and writes.
257 	 */
258 	CM_IO_WRITEBACK,
259 
260 	/*
261 	 * Data is written to both cache and origin.  Blocks are never
262 	 * dirty.  Potential performance benfit for reads only.
263 	 */
264 	CM_IO_WRITETHROUGH,
265 
266 	/*
267 	 * A degraded mode useful for various cache coherency situations
268 	 * (eg, rolling back snapshots).  Reads and writes always go to the
269 	 * origin.  If a write goes to a cached oblock, then the cache
270 	 * block is invalidated.
271 	 */
272 	CM_IO_PASSTHROUGH
273 };
274 
275 struct cache_features {
276 	enum cache_metadata_mode mode;
277 	enum cache_io_mode io_mode;
278 	unsigned metadata_version;
279 	bool discard_passdown:1;
280 };
281 
282 struct cache_stats {
283 	atomic_t read_hit;
284 	atomic_t read_miss;
285 	atomic_t write_hit;
286 	atomic_t write_miss;
287 	atomic_t demotion;
288 	atomic_t promotion;
289 	atomic_t writeback;
290 	atomic_t copies_avoided;
291 	atomic_t cache_cell_clash;
292 	atomic_t commit_count;
293 	atomic_t discard_count;
294 };
295 
296 struct cache {
297 	struct dm_target *ti;
298 	spinlock_t lock;
299 
300 	/*
301 	 * Fields for converting from sectors to blocks.
302 	 */
303 	int sectors_per_block_shift;
304 	sector_t sectors_per_block;
305 
306 	struct dm_cache_metadata *cmd;
307 
308 	/*
309 	 * Metadata is written to this device.
310 	 */
311 	struct dm_dev *metadata_dev;
312 
313 	/*
314 	 * The slower of the two data devices.  Typically a spindle.
315 	 */
316 	struct dm_dev *origin_dev;
317 
318 	/*
319 	 * The faster of the two data devices.  Typically an SSD.
320 	 */
321 	struct dm_dev *cache_dev;
322 
323 	/*
324 	 * Size of the origin device in _complete_ blocks and native sectors.
325 	 */
326 	dm_oblock_t origin_blocks;
327 	sector_t origin_sectors;
328 
329 	/*
330 	 * Size of the cache device in blocks.
331 	 */
332 	dm_cblock_t cache_size;
333 
334 	/*
335 	 * Invalidation fields.
336 	 */
337 	spinlock_t invalidation_lock;
338 	struct list_head invalidation_requests;
339 
340 	sector_t migration_threshold;
341 	wait_queue_head_t migration_wait;
342 	atomic_t nr_allocated_migrations;
343 
344 	/*
345 	 * The number of in flight migrations that are performing
346 	 * background io. eg, promotion, writeback.
347 	 */
348 	atomic_t nr_io_migrations;
349 
350 	struct bio_list deferred_bios;
351 
352 	struct rw_semaphore quiesce_lock;
353 
354 	/*
355 	 * origin_blocks entries, discarded if set.
356 	 */
357 	dm_dblock_t discard_nr_blocks;
358 	unsigned long *discard_bitset;
359 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
360 
361 	/*
362 	 * Rather than reconstructing the table line for the status we just
363 	 * save it and regurgitate.
364 	 */
365 	unsigned nr_ctr_args;
366 	const char **ctr_args;
367 
368 	struct dm_kcopyd_client *copier;
369 	struct work_struct deferred_bio_worker;
370 	struct work_struct migration_worker;
371 	struct workqueue_struct *wq;
372 	struct delayed_work waker;
373 	struct dm_bio_prison_v2 *prison;
374 
375 	/*
376 	 * cache_size entries, dirty if set
377 	 */
378 	unsigned long *dirty_bitset;
379 	atomic_t nr_dirty;
380 
381 	unsigned policy_nr_args;
382 	struct dm_cache_policy *policy;
383 
384 	/*
385 	 * Cache features such as write-through.
386 	 */
387 	struct cache_features features;
388 
389 	struct cache_stats stats;
390 
391 	bool need_tick_bio:1;
392 	bool sized:1;
393 	bool invalidate:1;
394 	bool commit_requested:1;
395 	bool loaded_mappings:1;
396 	bool loaded_discards:1;
397 
398 	struct rw_semaphore background_work_lock;
399 
400 	struct batcher committer;
401 	struct work_struct commit_ws;
402 
403 	struct dm_io_tracker tracker;
404 
405 	mempool_t migration_pool;
406 
407 	struct bio_set bs;
408 };
409 
410 struct per_bio_data {
411 	bool tick:1;
412 	unsigned req_nr:2;
413 	struct dm_bio_prison_cell_v2 *cell;
414 	struct dm_hook_info hook_info;
415 	sector_t len;
416 };
417 
418 struct dm_cache_migration {
419 	struct continuation k;
420 	struct cache *cache;
421 
422 	struct policy_work *op;
423 	struct bio *overwrite_bio;
424 	struct dm_bio_prison_cell_v2 *cell;
425 
426 	dm_cblock_t invalidate_cblock;
427 	dm_oblock_t invalidate_oblock;
428 };
429 
430 /*----------------------------------------------------------------*/
431 
writethrough_mode(struct cache * cache)432 static bool writethrough_mode(struct cache *cache)
433 {
434 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
435 }
436 
writeback_mode(struct cache * cache)437 static bool writeback_mode(struct cache *cache)
438 {
439 	return cache->features.io_mode == CM_IO_WRITEBACK;
440 }
441 
passthrough_mode(struct cache * cache)442 static inline bool passthrough_mode(struct cache *cache)
443 {
444 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445 }
446 
447 /*----------------------------------------------------------------*/
448 
wake_deferred_bio_worker(struct cache * cache)449 static void wake_deferred_bio_worker(struct cache *cache)
450 {
451 	queue_work(cache->wq, &cache->deferred_bio_worker);
452 }
453 
wake_migration_worker(struct cache * cache)454 static void wake_migration_worker(struct cache *cache)
455 {
456 	if (passthrough_mode(cache))
457 		return;
458 
459 	queue_work(cache->wq, &cache->migration_worker);
460 }
461 
462 /*----------------------------------------------------------------*/
463 
alloc_prison_cell(struct cache * cache)464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465 {
466 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467 }
468 
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell_v2 * cell)469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470 {
471 	dm_bio_prison_free_cell_v2(cache->prison, cell);
472 }
473 
alloc_migration(struct cache * cache)474 static struct dm_cache_migration *alloc_migration(struct cache *cache)
475 {
476 	struct dm_cache_migration *mg;
477 
478 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479 
480 	memset(mg, 0, sizeof(*mg));
481 
482 	mg->cache = cache;
483 	atomic_inc(&cache->nr_allocated_migrations);
484 
485 	return mg;
486 }
487 
free_migration(struct dm_cache_migration * mg)488 static void free_migration(struct dm_cache_migration *mg)
489 {
490 	struct cache *cache = mg->cache;
491 
492 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 		wake_up(&cache->migration_wait);
494 
495 	mempool_free(mg, &cache->migration_pool);
496 }
497 
498 /*----------------------------------------------------------------*/
499 
oblock_succ(dm_oblock_t b)500 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501 {
502 	return to_oblock(from_oblock(b) + 1ull);
503 }
504 
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key_v2 * key)505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506 {
507 	key->virtual = 0;
508 	key->dev = 0;
509 	key->block_begin = from_oblock(begin);
510 	key->block_end = from_oblock(end);
511 }
512 
513 /*
514  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
515  * level 1 which prevents *both* READs and WRITEs.
516  */
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
519 
lock_level(struct bio * bio)520 static unsigned lock_level(struct bio *bio)
521 {
522 	return bio_data_dir(bio) == WRITE ?
523 		WRITE_LOCK_LEVEL :
524 		READ_WRITE_LOCK_LEVEL;
525 }
526 
527 /*----------------------------------------------------------------
528  * Per bio data
529  *--------------------------------------------------------------*/
530 
get_per_bio_data(struct bio * bio)531 static struct per_bio_data *get_per_bio_data(struct bio *bio)
532 {
533 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534 	BUG_ON(!pb);
535 	return pb;
536 }
537 
init_per_bio_data(struct bio * bio)538 static struct per_bio_data *init_per_bio_data(struct bio *bio)
539 {
540 	struct per_bio_data *pb = get_per_bio_data(bio);
541 
542 	pb->tick = false;
543 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
544 	pb->cell = NULL;
545 	pb->len = 0;
546 
547 	return pb;
548 }
549 
550 /*----------------------------------------------------------------*/
551 
defer_bio(struct cache * cache,struct bio * bio)552 static void defer_bio(struct cache *cache, struct bio *bio)
553 {
554 	spin_lock_irq(&cache->lock);
555 	bio_list_add(&cache->deferred_bios, bio);
556 	spin_unlock_irq(&cache->lock);
557 
558 	wake_deferred_bio_worker(cache);
559 }
560 
defer_bios(struct cache * cache,struct bio_list * bios)561 static void defer_bios(struct cache *cache, struct bio_list *bios)
562 {
563 	spin_lock_irq(&cache->lock);
564 	bio_list_merge(&cache->deferred_bios, bios);
565 	bio_list_init(bios);
566 	spin_unlock_irq(&cache->lock);
567 
568 	wake_deferred_bio_worker(cache);
569 }
570 
571 /*----------------------------------------------------------------*/
572 
bio_detain_shared(struct cache * cache,dm_oblock_t oblock,struct bio * bio)573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574 {
575 	bool r;
576 	struct per_bio_data *pb;
577 	struct dm_cell_key_v2 key;
578 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580 
581 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582 
583 	build_key(oblock, end, &key);
584 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585 	if (!r) {
586 		/*
587 		 * Failed to get the lock.
588 		 */
589 		free_prison_cell(cache, cell_prealloc);
590 		return r;
591 	}
592 
593 	if (cell != cell_prealloc)
594 		free_prison_cell(cache, cell_prealloc);
595 
596 	pb = get_per_bio_data(bio);
597 	pb->cell = cell;
598 
599 	return r;
600 }
601 
602 /*----------------------------------------------------------------*/
603 
is_dirty(struct cache * cache,dm_cblock_t b)604 static bool is_dirty(struct cache *cache, dm_cblock_t b)
605 {
606 	return test_bit(from_cblock(b), cache->dirty_bitset);
607 }
608 
set_dirty(struct cache * cache,dm_cblock_t cblock)609 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610 {
611 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612 		atomic_inc(&cache->nr_dirty);
613 		policy_set_dirty(cache->policy, cblock);
614 	}
615 }
616 
617 /*
618  * These two are called when setting after migrations to force the policy
619  * and dirty bitset to be in sync.
620  */
force_set_dirty(struct cache * cache,dm_cblock_t cblock)621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622 {
623 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624 		atomic_inc(&cache->nr_dirty);
625 	policy_set_dirty(cache->policy, cblock);
626 }
627 
force_clear_dirty(struct cache * cache,dm_cblock_t cblock)628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629 {
630 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631 		if (atomic_dec_return(&cache->nr_dirty) == 0)
632 			dm_table_event(cache->ti->table);
633 	}
634 
635 	policy_clear_dirty(cache->policy, cblock);
636 }
637 
638 /*----------------------------------------------------------------*/
639 
block_size_is_power_of_two(struct cache * cache)640 static bool block_size_is_power_of_two(struct cache *cache)
641 {
642 	return cache->sectors_per_block_shift >= 0;
643 }
644 
block_div(dm_block_t b,uint32_t n)645 static dm_block_t block_div(dm_block_t b, uint32_t n)
646 {
647 	do_div(b, n);
648 
649 	return b;
650 }
651 
oblocks_per_dblock(struct cache * cache)652 static dm_block_t oblocks_per_dblock(struct cache *cache)
653 {
654 	dm_block_t oblocks = cache->discard_block_size;
655 
656 	if (block_size_is_power_of_two(cache))
657 		oblocks >>= cache->sectors_per_block_shift;
658 	else
659 		oblocks = block_div(oblocks, cache->sectors_per_block);
660 
661 	return oblocks;
662 }
663 
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665 {
666 	return to_dblock(block_div(from_oblock(oblock),
667 				   oblocks_per_dblock(cache)));
668 }
669 
set_discard(struct cache * cache,dm_dblock_t b)670 static void set_discard(struct cache *cache, dm_dblock_t b)
671 {
672 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673 	atomic_inc(&cache->stats.discard_count);
674 
675 	spin_lock_irq(&cache->lock);
676 	set_bit(from_dblock(b), cache->discard_bitset);
677 	spin_unlock_irq(&cache->lock);
678 }
679 
clear_discard(struct cache * cache,dm_dblock_t b)680 static void clear_discard(struct cache *cache, dm_dblock_t b)
681 {
682 	spin_lock_irq(&cache->lock);
683 	clear_bit(from_dblock(b), cache->discard_bitset);
684 	spin_unlock_irq(&cache->lock);
685 }
686 
is_discarded(struct cache * cache,dm_dblock_t b)687 static bool is_discarded(struct cache *cache, dm_dblock_t b)
688 {
689 	int r;
690 	spin_lock_irq(&cache->lock);
691 	r = test_bit(from_dblock(b), cache->discard_bitset);
692 	spin_unlock_irq(&cache->lock);
693 
694 	return r;
695 }
696 
is_discarded_oblock(struct cache * cache,dm_oblock_t b)697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698 {
699 	int r;
700 	spin_lock_irq(&cache->lock);
701 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702 		     cache->discard_bitset);
703 	spin_unlock_irq(&cache->lock);
704 
705 	return r;
706 }
707 
708 /*----------------------------------------------------------------
709  * Remapping
710  *--------------------------------------------------------------*/
remap_to_origin(struct cache * cache,struct bio * bio)711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713 	bio_set_dev(bio, cache->origin_dev->bdev);
714 }
715 
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717 			   dm_cblock_t cblock)
718 {
719 	sector_t bi_sector = bio->bi_iter.bi_sector;
720 	sector_t block = from_cblock(cblock);
721 
722 	bio_set_dev(bio, cache->cache_dev->bdev);
723 	if (!block_size_is_power_of_two(cache))
724 		bio->bi_iter.bi_sector =
725 			(block * cache->sectors_per_block) +
726 			sector_div(bi_sector, cache->sectors_per_block);
727 	else
728 		bio->bi_iter.bi_sector =
729 			(block << cache->sectors_per_block_shift) |
730 			(bi_sector & (cache->sectors_per_block - 1));
731 }
732 
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735 	struct per_bio_data *pb;
736 
737 	spin_lock_irq(&cache->lock);
738 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739 	    bio_op(bio) != REQ_OP_DISCARD) {
740 		pb = get_per_bio_data(bio);
741 		pb->tick = true;
742 		cache->need_tick_bio = false;
743 	}
744 	spin_unlock_irq(&cache->lock);
745 }
746 
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)747 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748 					  dm_oblock_t oblock)
749 {
750 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
751 	check_if_tick_bio_needed(cache, bio);
752 	remap_to_origin(cache, bio);
753 	if (bio_data_dir(bio) == WRITE)
754 		clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756 
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758 				 dm_oblock_t oblock, dm_cblock_t cblock)
759 {
760 	check_if_tick_bio_needed(cache, bio);
761 	remap_to_cache(cache, bio, cblock);
762 	if (bio_data_dir(bio) == WRITE) {
763 		set_dirty(cache, cblock);
764 		clear_discard(cache, oblock_to_dblock(cache, oblock));
765 	}
766 }
767 
get_bio_block(struct cache * cache,struct bio * bio)768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769 {
770 	sector_t block_nr = bio->bi_iter.bi_sector;
771 
772 	if (!block_size_is_power_of_two(cache))
773 		(void) sector_div(block_nr, cache->sectors_per_block);
774 	else
775 		block_nr >>= cache->sectors_per_block_shift;
776 
777 	return to_oblock(block_nr);
778 }
779 
accountable_bio(struct cache * cache,struct bio * bio)780 static bool accountable_bio(struct cache *cache, struct bio *bio)
781 {
782 	return bio_op(bio) != REQ_OP_DISCARD;
783 }
784 
accounted_begin(struct cache * cache,struct bio * bio)785 static void accounted_begin(struct cache *cache, struct bio *bio)
786 {
787 	struct per_bio_data *pb;
788 
789 	if (accountable_bio(cache, bio)) {
790 		pb = get_per_bio_data(bio);
791 		pb->len = bio_sectors(bio);
792 		dm_iot_io_begin(&cache->tracker, pb->len);
793 	}
794 }
795 
accounted_complete(struct cache * cache,struct bio * bio)796 static void accounted_complete(struct cache *cache, struct bio *bio)
797 {
798 	struct per_bio_data *pb = get_per_bio_data(bio);
799 
800 	dm_iot_io_end(&cache->tracker, pb->len);
801 }
802 
accounted_request(struct cache * cache,struct bio * bio)803 static void accounted_request(struct cache *cache, struct bio *bio)
804 {
805 	accounted_begin(cache, bio);
806 	dm_submit_bio_remap(bio, NULL);
807 }
808 
issue_op(struct bio * bio,void * context)809 static void issue_op(struct bio *bio, void *context)
810 {
811 	struct cache *cache = context;
812 	accounted_request(cache, bio);
813 }
814 
815 /*
816  * When running in writethrough mode we need to send writes to clean blocks
817  * to both the cache and origin devices.  Clone the bio and send them in parallel.
818  */
remap_to_origin_and_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)819 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
820 				      dm_oblock_t oblock, dm_cblock_t cblock)
821 {
822 	struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
823 						 GFP_NOIO, &cache->bs);
824 
825 	BUG_ON(!origin_bio);
826 
827 	bio_chain(origin_bio, bio);
828 
829 	if (bio_data_dir(origin_bio) == WRITE)
830 		clear_discard(cache, oblock_to_dblock(cache, oblock));
831 	submit_bio(origin_bio);
832 
833 	remap_to_cache(cache, bio, cblock);
834 }
835 
836 /*----------------------------------------------------------------
837  * Failure modes
838  *--------------------------------------------------------------*/
get_cache_mode(struct cache * cache)839 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
840 {
841 	return cache->features.mode;
842 }
843 
cache_device_name(struct cache * cache)844 static const char *cache_device_name(struct cache *cache)
845 {
846 	return dm_table_device_name(cache->ti->table);
847 }
848 
notify_mode_switch(struct cache * cache,enum cache_metadata_mode mode)849 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
850 {
851 	const char *descs[] = {
852 		"write",
853 		"read-only",
854 		"fail"
855 	};
856 
857 	dm_table_event(cache->ti->table);
858 	DMINFO("%s: switching cache to %s mode",
859 	       cache_device_name(cache), descs[(int)mode]);
860 }
861 
set_cache_mode(struct cache * cache,enum cache_metadata_mode new_mode)862 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
863 {
864 	bool needs_check;
865 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
866 
867 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
868 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
869 		      cache_device_name(cache));
870 		new_mode = CM_FAIL;
871 	}
872 
873 	if (new_mode == CM_WRITE && needs_check) {
874 		DMERR("%s: unable to switch cache to write mode until repaired.",
875 		      cache_device_name(cache));
876 		if (old_mode != new_mode)
877 			new_mode = old_mode;
878 		else
879 			new_mode = CM_READ_ONLY;
880 	}
881 
882 	/* Never move out of fail mode */
883 	if (old_mode == CM_FAIL)
884 		new_mode = CM_FAIL;
885 
886 	switch (new_mode) {
887 	case CM_FAIL:
888 	case CM_READ_ONLY:
889 		dm_cache_metadata_set_read_only(cache->cmd);
890 		break;
891 
892 	case CM_WRITE:
893 		dm_cache_metadata_set_read_write(cache->cmd);
894 		break;
895 	}
896 
897 	cache->features.mode = new_mode;
898 
899 	if (new_mode != old_mode)
900 		notify_mode_switch(cache, new_mode);
901 }
902 
abort_transaction(struct cache * cache)903 static void abort_transaction(struct cache *cache)
904 {
905 	const char *dev_name = cache_device_name(cache);
906 
907 	if (get_cache_mode(cache) >= CM_READ_ONLY)
908 		return;
909 
910 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
911 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
912 		set_cache_mode(cache, CM_FAIL);
913 	}
914 
915 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
916 	if (dm_cache_metadata_abort(cache->cmd)) {
917 		DMERR("%s: failed to abort metadata transaction", dev_name);
918 		set_cache_mode(cache, CM_FAIL);
919 	}
920 }
921 
metadata_operation_failed(struct cache * cache,const char * op,int r)922 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
923 {
924 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
925 		    cache_device_name(cache), op, r);
926 	abort_transaction(cache);
927 	set_cache_mode(cache, CM_READ_ONLY);
928 }
929 
930 /*----------------------------------------------------------------*/
931 
load_stats(struct cache * cache)932 static void load_stats(struct cache *cache)
933 {
934 	struct dm_cache_statistics stats;
935 
936 	dm_cache_metadata_get_stats(cache->cmd, &stats);
937 	atomic_set(&cache->stats.read_hit, stats.read_hits);
938 	atomic_set(&cache->stats.read_miss, stats.read_misses);
939 	atomic_set(&cache->stats.write_hit, stats.write_hits);
940 	atomic_set(&cache->stats.write_miss, stats.write_misses);
941 }
942 
save_stats(struct cache * cache)943 static void save_stats(struct cache *cache)
944 {
945 	struct dm_cache_statistics stats;
946 
947 	if (get_cache_mode(cache) >= CM_READ_ONLY)
948 		return;
949 
950 	stats.read_hits = atomic_read(&cache->stats.read_hit);
951 	stats.read_misses = atomic_read(&cache->stats.read_miss);
952 	stats.write_hits = atomic_read(&cache->stats.write_hit);
953 	stats.write_misses = atomic_read(&cache->stats.write_miss);
954 
955 	dm_cache_metadata_set_stats(cache->cmd, &stats);
956 }
957 
update_stats(struct cache_stats * stats,enum policy_operation op)958 static void update_stats(struct cache_stats *stats, enum policy_operation op)
959 {
960 	switch (op) {
961 	case POLICY_PROMOTE:
962 		atomic_inc(&stats->promotion);
963 		break;
964 
965 	case POLICY_DEMOTE:
966 		atomic_inc(&stats->demotion);
967 		break;
968 
969 	case POLICY_WRITEBACK:
970 		atomic_inc(&stats->writeback);
971 		break;
972 	}
973 }
974 
975 /*----------------------------------------------------------------
976  * Migration processing
977  *
978  * Migration covers moving data from the origin device to the cache, or
979  * vice versa.
980  *--------------------------------------------------------------*/
981 
inc_io_migrations(struct cache * cache)982 static void inc_io_migrations(struct cache *cache)
983 {
984 	atomic_inc(&cache->nr_io_migrations);
985 }
986 
dec_io_migrations(struct cache * cache)987 static void dec_io_migrations(struct cache *cache)
988 {
989 	atomic_dec(&cache->nr_io_migrations);
990 }
991 
discard_or_flush(struct bio * bio)992 static bool discard_or_flush(struct bio *bio)
993 {
994 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
995 }
996 
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)997 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
998 				     dm_dblock_t *b, dm_dblock_t *e)
999 {
1000 	sector_t sb = bio->bi_iter.bi_sector;
1001 	sector_t se = bio_end_sector(bio);
1002 
1003 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1004 
1005 	if (se - sb < cache->discard_block_size)
1006 		*e = *b;
1007 	else
1008 		*e = to_dblock(block_div(se, cache->discard_block_size));
1009 }
1010 
1011 /*----------------------------------------------------------------*/
1012 
prevent_background_work(struct cache * cache)1013 static void prevent_background_work(struct cache *cache)
1014 {
1015 	lockdep_off();
1016 	down_write(&cache->background_work_lock);
1017 	lockdep_on();
1018 }
1019 
allow_background_work(struct cache * cache)1020 static void allow_background_work(struct cache *cache)
1021 {
1022 	lockdep_off();
1023 	up_write(&cache->background_work_lock);
1024 	lockdep_on();
1025 }
1026 
background_work_begin(struct cache * cache)1027 static bool background_work_begin(struct cache *cache)
1028 {
1029 	bool r;
1030 
1031 	lockdep_off();
1032 	r = down_read_trylock(&cache->background_work_lock);
1033 	lockdep_on();
1034 
1035 	return r;
1036 }
1037 
background_work_end(struct cache * cache)1038 static void background_work_end(struct cache *cache)
1039 {
1040 	lockdep_off();
1041 	up_read(&cache->background_work_lock);
1042 	lockdep_on();
1043 }
1044 
1045 /*----------------------------------------------------------------*/
1046 
bio_writes_complete_block(struct cache * cache,struct bio * bio)1047 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1048 {
1049 	return (bio_data_dir(bio) == WRITE) &&
1050 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1051 }
1052 
optimisable_bio(struct cache * cache,struct bio * bio,dm_oblock_t block)1053 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1054 {
1055 	return writeback_mode(cache) &&
1056 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1057 }
1058 
quiesce(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1059 static void quiesce(struct dm_cache_migration *mg,
1060 		    void (*continuation)(struct work_struct *))
1061 {
1062 	init_continuation(&mg->k, continuation);
1063 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1064 }
1065 
ws_to_mg(struct work_struct * ws)1066 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1067 {
1068 	struct continuation *k = container_of(ws, struct continuation, ws);
1069 	return container_of(k, struct dm_cache_migration, k);
1070 }
1071 
copy_complete(int read_err,unsigned long write_err,void * context)1072 static void copy_complete(int read_err, unsigned long write_err, void *context)
1073 {
1074 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1075 
1076 	if (read_err || write_err)
1077 		mg->k.input = BLK_STS_IOERR;
1078 
1079 	queue_continuation(mg->cache->wq, &mg->k);
1080 }
1081 
copy(struct dm_cache_migration * mg,bool promote)1082 static void copy(struct dm_cache_migration *mg, bool promote)
1083 {
1084 	struct dm_io_region o_region, c_region;
1085 	struct cache *cache = mg->cache;
1086 
1087 	o_region.bdev = cache->origin_dev->bdev;
1088 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1089 	o_region.count = cache->sectors_per_block;
1090 
1091 	c_region.bdev = cache->cache_dev->bdev;
1092 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1093 	c_region.count = cache->sectors_per_block;
1094 
1095 	if (promote)
1096 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1097 	else
1098 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1099 }
1100 
bio_drop_shared_lock(struct cache * cache,struct bio * bio)1101 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1102 {
1103 	struct per_bio_data *pb = get_per_bio_data(bio);
1104 
1105 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1106 		free_prison_cell(cache, pb->cell);
1107 	pb->cell = NULL;
1108 }
1109 
overwrite_endio(struct bio * bio)1110 static void overwrite_endio(struct bio *bio)
1111 {
1112 	struct dm_cache_migration *mg = bio->bi_private;
1113 	struct cache *cache = mg->cache;
1114 	struct per_bio_data *pb = get_per_bio_data(bio);
1115 
1116 	dm_unhook_bio(&pb->hook_info, bio);
1117 
1118 	if (bio->bi_status)
1119 		mg->k.input = bio->bi_status;
1120 
1121 	queue_continuation(cache->wq, &mg->k);
1122 }
1123 
overwrite(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1124 static void overwrite(struct dm_cache_migration *mg,
1125 		      void (*continuation)(struct work_struct *))
1126 {
1127 	struct bio *bio = mg->overwrite_bio;
1128 	struct per_bio_data *pb = get_per_bio_data(bio);
1129 
1130 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1131 
1132 	/*
1133 	 * The overwrite bio is part of the copy operation, as such it does
1134 	 * not set/clear discard or dirty flags.
1135 	 */
1136 	if (mg->op->op == POLICY_PROMOTE)
1137 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1138 	else
1139 		remap_to_origin(mg->cache, bio);
1140 
1141 	init_continuation(&mg->k, continuation);
1142 	accounted_request(mg->cache, bio);
1143 }
1144 
1145 /*
1146  * Migration steps:
1147  *
1148  * 1) exclusive lock preventing WRITEs
1149  * 2) quiesce
1150  * 3) copy or issue overwrite bio
1151  * 4) upgrade to exclusive lock preventing READs and WRITEs
1152  * 5) quiesce
1153  * 6) update metadata and commit
1154  * 7) unlock
1155  */
mg_complete(struct dm_cache_migration * mg,bool success)1156 static void mg_complete(struct dm_cache_migration *mg, bool success)
1157 {
1158 	struct bio_list bios;
1159 	struct cache *cache = mg->cache;
1160 	struct policy_work *op = mg->op;
1161 	dm_cblock_t cblock = op->cblock;
1162 
1163 	if (success)
1164 		update_stats(&cache->stats, op->op);
1165 
1166 	switch (op->op) {
1167 	case POLICY_PROMOTE:
1168 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1169 		policy_complete_background_work(cache->policy, op, success);
1170 
1171 		if (mg->overwrite_bio) {
1172 			if (success)
1173 				force_set_dirty(cache, cblock);
1174 			else if (mg->k.input)
1175 				mg->overwrite_bio->bi_status = mg->k.input;
1176 			else
1177 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1178 			bio_endio(mg->overwrite_bio);
1179 		} else {
1180 			if (success)
1181 				force_clear_dirty(cache, cblock);
1182 			dec_io_migrations(cache);
1183 		}
1184 		break;
1185 
1186 	case POLICY_DEMOTE:
1187 		/*
1188 		 * We clear dirty here to update the nr_dirty counter.
1189 		 */
1190 		if (success)
1191 			force_clear_dirty(cache, cblock);
1192 		policy_complete_background_work(cache->policy, op, success);
1193 		dec_io_migrations(cache);
1194 		break;
1195 
1196 	case POLICY_WRITEBACK:
1197 		if (success)
1198 			force_clear_dirty(cache, cblock);
1199 		policy_complete_background_work(cache->policy, op, success);
1200 		dec_io_migrations(cache);
1201 		break;
1202 	}
1203 
1204 	bio_list_init(&bios);
1205 	if (mg->cell) {
1206 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1207 			free_prison_cell(cache, mg->cell);
1208 	}
1209 
1210 	free_migration(mg);
1211 	defer_bios(cache, &bios);
1212 	wake_migration_worker(cache);
1213 
1214 	background_work_end(cache);
1215 }
1216 
mg_success(struct work_struct * ws)1217 static void mg_success(struct work_struct *ws)
1218 {
1219 	struct dm_cache_migration *mg = ws_to_mg(ws);
1220 	mg_complete(mg, mg->k.input == 0);
1221 }
1222 
mg_update_metadata(struct work_struct * ws)1223 static void mg_update_metadata(struct work_struct *ws)
1224 {
1225 	int r;
1226 	struct dm_cache_migration *mg = ws_to_mg(ws);
1227 	struct cache *cache = mg->cache;
1228 	struct policy_work *op = mg->op;
1229 
1230 	switch (op->op) {
1231 	case POLICY_PROMOTE:
1232 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1233 		if (r) {
1234 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1235 				    cache_device_name(cache));
1236 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1237 
1238 			mg_complete(mg, false);
1239 			return;
1240 		}
1241 		mg_complete(mg, true);
1242 		break;
1243 
1244 	case POLICY_DEMOTE:
1245 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1246 		if (r) {
1247 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1248 				    cache_device_name(cache));
1249 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1250 
1251 			mg_complete(mg, false);
1252 			return;
1253 		}
1254 
1255 		/*
1256 		 * It would be nice if we only had to commit when a REQ_FLUSH
1257 		 * comes through.  But there's one scenario that we have to
1258 		 * look out for:
1259 		 *
1260 		 * - vblock x in a cache block
1261 		 * - domotion occurs
1262 		 * - cache block gets reallocated and over written
1263 		 * - crash
1264 		 *
1265 		 * When we recover, because there was no commit the cache will
1266 		 * rollback to having the data for vblock x in the cache block.
1267 		 * But the cache block has since been overwritten, so it'll end
1268 		 * up pointing to data that was never in 'x' during the history
1269 		 * of the device.
1270 		 *
1271 		 * To avoid this issue we require a commit as part of the
1272 		 * demotion operation.
1273 		 */
1274 		init_continuation(&mg->k, mg_success);
1275 		continue_after_commit(&cache->committer, &mg->k);
1276 		schedule_commit(&cache->committer);
1277 		break;
1278 
1279 	case POLICY_WRITEBACK:
1280 		mg_complete(mg, true);
1281 		break;
1282 	}
1283 }
1284 
mg_update_metadata_after_copy(struct work_struct * ws)1285 static void mg_update_metadata_after_copy(struct work_struct *ws)
1286 {
1287 	struct dm_cache_migration *mg = ws_to_mg(ws);
1288 
1289 	/*
1290 	 * Did the copy succeed?
1291 	 */
1292 	if (mg->k.input)
1293 		mg_complete(mg, false);
1294 	else
1295 		mg_update_metadata(ws);
1296 }
1297 
mg_upgrade_lock(struct work_struct * ws)1298 static void mg_upgrade_lock(struct work_struct *ws)
1299 {
1300 	int r;
1301 	struct dm_cache_migration *mg = ws_to_mg(ws);
1302 
1303 	/*
1304 	 * Did the copy succeed?
1305 	 */
1306 	if (mg->k.input)
1307 		mg_complete(mg, false);
1308 
1309 	else {
1310 		/*
1311 		 * Now we want the lock to prevent both reads and writes.
1312 		 */
1313 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1314 					    READ_WRITE_LOCK_LEVEL);
1315 		if (r < 0)
1316 			mg_complete(mg, false);
1317 
1318 		else if (r)
1319 			quiesce(mg, mg_update_metadata);
1320 
1321 		else
1322 			mg_update_metadata(ws);
1323 	}
1324 }
1325 
mg_full_copy(struct work_struct * ws)1326 static void mg_full_copy(struct work_struct *ws)
1327 {
1328 	struct dm_cache_migration *mg = ws_to_mg(ws);
1329 	struct cache *cache = mg->cache;
1330 	struct policy_work *op = mg->op;
1331 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1332 
1333 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1334 	    is_discarded_oblock(cache, op->oblock)) {
1335 		mg_upgrade_lock(ws);
1336 		return;
1337 	}
1338 
1339 	init_continuation(&mg->k, mg_upgrade_lock);
1340 	copy(mg, is_policy_promote);
1341 }
1342 
mg_copy(struct work_struct * ws)1343 static void mg_copy(struct work_struct *ws)
1344 {
1345 	struct dm_cache_migration *mg = ws_to_mg(ws);
1346 
1347 	if (mg->overwrite_bio) {
1348 		/*
1349 		 * No exclusive lock was held when we last checked if the bio
1350 		 * was optimisable.  So we have to check again in case things
1351 		 * have changed (eg, the block may no longer be discarded).
1352 		 */
1353 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1354 			/*
1355 			 * Fallback to a real full copy after doing some tidying up.
1356 			 */
1357 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1358 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1359 			mg->overwrite_bio = NULL;
1360 			inc_io_migrations(mg->cache);
1361 			mg_full_copy(ws);
1362 			return;
1363 		}
1364 
1365 		/*
1366 		 * It's safe to do this here, even though it's new data
1367 		 * because all IO has been locked out of the block.
1368 		 *
1369 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1370 		 * so _not_ using mg_upgrade_lock() as continutation.
1371 		 */
1372 		overwrite(mg, mg_update_metadata_after_copy);
1373 
1374 	} else
1375 		mg_full_copy(ws);
1376 }
1377 
mg_lock_writes(struct dm_cache_migration * mg)1378 static int mg_lock_writes(struct dm_cache_migration *mg)
1379 {
1380 	int r;
1381 	struct dm_cell_key_v2 key;
1382 	struct cache *cache = mg->cache;
1383 	struct dm_bio_prison_cell_v2 *prealloc;
1384 
1385 	prealloc = alloc_prison_cell(cache);
1386 
1387 	/*
1388 	 * Prevent writes to the block, but allow reads to continue.
1389 	 * Unless we're using an overwrite bio, in which case we lock
1390 	 * everything.
1391 	 */
1392 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1393 	r = dm_cell_lock_v2(cache->prison, &key,
1394 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1395 			    prealloc, &mg->cell);
1396 	if (r < 0) {
1397 		free_prison_cell(cache, prealloc);
1398 		mg_complete(mg, false);
1399 		return r;
1400 	}
1401 
1402 	if (mg->cell != prealloc)
1403 		free_prison_cell(cache, prealloc);
1404 
1405 	if (r == 0)
1406 		mg_copy(&mg->k.ws);
1407 	else
1408 		quiesce(mg, mg_copy);
1409 
1410 	return 0;
1411 }
1412 
mg_start(struct cache * cache,struct policy_work * op,struct bio * bio)1413 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1414 {
1415 	struct dm_cache_migration *mg;
1416 
1417 	if (!background_work_begin(cache)) {
1418 		policy_complete_background_work(cache->policy, op, false);
1419 		return -EPERM;
1420 	}
1421 
1422 	mg = alloc_migration(cache);
1423 
1424 	mg->op = op;
1425 	mg->overwrite_bio = bio;
1426 
1427 	if (!bio)
1428 		inc_io_migrations(cache);
1429 
1430 	return mg_lock_writes(mg);
1431 }
1432 
1433 /*----------------------------------------------------------------
1434  * invalidation processing
1435  *--------------------------------------------------------------*/
1436 
invalidate_complete(struct dm_cache_migration * mg,bool success)1437 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1438 {
1439 	struct bio_list bios;
1440 	struct cache *cache = mg->cache;
1441 
1442 	bio_list_init(&bios);
1443 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1444 		free_prison_cell(cache, mg->cell);
1445 
1446 	if (!success && mg->overwrite_bio)
1447 		bio_io_error(mg->overwrite_bio);
1448 
1449 	free_migration(mg);
1450 	defer_bios(cache, &bios);
1451 
1452 	background_work_end(cache);
1453 }
1454 
invalidate_completed(struct work_struct * ws)1455 static void invalidate_completed(struct work_struct *ws)
1456 {
1457 	struct dm_cache_migration *mg = ws_to_mg(ws);
1458 	invalidate_complete(mg, !mg->k.input);
1459 }
1460 
invalidate_cblock(struct cache * cache,dm_cblock_t cblock)1461 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1462 {
1463 	int r = policy_invalidate_mapping(cache->policy, cblock);
1464 	if (!r) {
1465 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1466 		if (r) {
1467 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1468 				    cache_device_name(cache));
1469 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1470 		}
1471 
1472 	} else if (r == -ENODATA) {
1473 		/*
1474 		 * Harmless, already unmapped.
1475 		 */
1476 		r = 0;
1477 
1478 	} else
1479 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1480 
1481 	return r;
1482 }
1483 
invalidate_remove(struct work_struct * ws)1484 static void invalidate_remove(struct work_struct *ws)
1485 {
1486 	int r;
1487 	struct dm_cache_migration *mg = ws_to_mg(ws);
1488 	struct cache *cache = mg->cache;
1489 
1490 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1491 	if (r) {
1492 		invalidate_complete(mg, false);
1493 		return;
1494 	}
1495 
1496 	init_continuation(&mg->k, invalidate_completed);
1497 	continue_after_commit(&cache->committer, &mg->k);
1498 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1499 	mg->overwrite_bio = NULL;
1500 	schedule_commit(&cache->committer);
1501 }
1502 
invalidate_lock(struct dm_cache_migration * mg)1503 static int invalidate_lock(struct dm_cache_migration *mg)
1504 {
1505 	int r;
1506 	struct dm_cell_key_v2 key;
1507 	struct cache *cache = mg->cache;
1508 	struct dm_bio_prison_cell_v2 *prealloc;
1509 
1510 	prealloc = alloc_prison_cell(cache);
1511 
1512 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1513 	r = dm_cell_lock_v2(cache->prison, &key,
1514 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1515 	if (r < 0) {
1516 		free_prison_cell(cache, prealloc);
1517 		invalidate_complete(mg, false);
1518 		return r;
1519 	}
1520 
1521 	if (mg->cell != prealloc)
1522 		free_prison_cell(cache, prealloc);
1523 
1524 	if (r)
1525 		quiesce(mg, invalidate_remove);
1526 
1527 	else {
1528 		/*
1529 		 * We can't call invalidate_remove() directly here because we
1530 		 * might still be in request context.
1531 		 */
1532 		init_continuation(&mg->k, invalidate_remove);
1533 		queue_work(cache->wq, &mg->k.ws);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
invalidate_start(struct cache * cache,dm_cblock_t cblock,dm_oblock_t oblock,struct bio * bio)1539 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1540 			    dm_oblock_t oblock, struct bio *bio)
1541 {
1542 	struct dm_cache_migration *mg;
1543 
1544 	if (!background_work_begin(cache))
1545 		return -EPERM;
1546 
1547 	mg = alloc_migration(cache);
1548 
1549 	mg->overwrite_bio = bio;
1550 	mg->invalidate_cblock = cblock;
1551 	mg->invalidate_oblock = oblock;
1552 
1553 	return invalidate_lock(mg);
1554 }
1555 
1556 /*----------------------------------------------------------------
1557  * bio processing
1558  *--------------------------------------------------------------*/
1559 
1560 enum busy {
1561 	IDLE,
1562 	BUSY
1563 };
1564 
spare_migration_bandwidth(struct cache * cache)1565 static enum busy spare_migration_bandwidth(struct cache *cache)
1566 {
1567 	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1568 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1569 		cache->sectors_per_block;
1570 
1571 	if (idle && current_volume <= cache->migration_threshold)
1572 		return IDLE;
1573 	else
1574 		return BUSY;
1575 }
1576 
inc_hit_counter(struct cache * cache,struct bio * bio)1577 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1578 {
1579 	atomic_inc(bio_data_dir(bio) == READ ?
1580 		   &cache->stats.read_hit : &cache->stats.write_hit);
1581 }
1582 
inc_miss_counter(struct cache * cache,struct bio * bio)1583 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1584 {
1585 	atomic_inc(bio_data_dir(bio) == READ ?
1586 		   &cache->stats.read_miss : &cache->stats.write_miss);
1587 }
1588 
1589 /*----------------------------------------------------------------*/
1590 
map_bio(struct cache * cache,struct bio * bio,dm_oblock_t block,bool * commit_needed)1591 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1592 		   bool *commit_needed)
1593 {
1594 	int r, data_dir;
1595 	bool rb, background_queued;
1596 	dm_cblock_t cblock;
1597 
1598 	*commit_needed = false;
1599 
1600 	rb = bio_detain_shared(cache, block, bio);
1601 	if (!rb) {
1602 		/*
1603 		 * An exclusive lock is held for this block, so we have to
1604 		 * wait.  We set the commit_needed flag so the current
1605 		 * transaction will be committed asap, allowing this lock
1606 		 * to be dropped.
1607 		 */
1608 		*commit_needed = true;
1609 		return DM_MAPIO_SUBMITTED;
1610 	}
1611 
1612 	data_dir = bio_data_dir(bio);
1613 
1614 	if (optimisable_bio(cache, bio, block)) {
1615 		struct policy_work *op = NULL;
1616 
1617 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1618 		if (unlikely(r && r != -ENOENT)) {
1619 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1620 				    cache_device_name(cache), r);
1621 			bio_io_error(bio);
1622 			return DM_MAPIO_SUBMITTED;
1623 		}
1624 
1625 		if (r == -ENOENT && op) {
1626 			bio_drop_shared_lock(cache, bio);
1627 			BUG_ON(op->op != POLICY_PROMOTE);
1628 			mg_start(cache, op, bio);
1629 			return DM_MAPIO_SUBMITTED;
1630 		}
1631 	} else {
1632 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1633 		if (unlikely(r && r != -ENOENT)) {
1634 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1635 				    cache_device_name(cache), r);
1636 			bio_io_error(bio);
1637 			return DM_MAPIO_SUBMITTED;
1638 		}
1639 
1640 		if (background_queued)
1641 			wake_migration_worker(cache);
1642 	}
1643 
1644 	if (r == -ENOENT) {
1645 		struct per_bio_data *pb = get_per_bio_data(bio);
1646 
1647 		/*
1648 		 * Miss.
1649 		 */
1650 		inc_miss_counter(cache, bio);
1651 		if (pb->req_nr == 0) {
1652 			accounted_begin(cache, bio);
1653 			remap_to_origin_clear_discard(cache, bio, block);
1654 		} else {
1655 			/*
1656 			 * This is a duplicate writethrough io that is no
1657 			 * longer needed because the block has been demoted.
1658 			 */
1659 			bio_endio(bio);
1660 			return DM_MAPIO_SUBMITTED;
1661 		}
1662 	} else {
1663 		/*
1664 		 * Hit.
1665 		 */
1666 		inc_hit_counter(cache, bio);
1667 
1668 		/*
1669 		 * Passthrough always maps to the origin, invalidating any
1670 		 * cache blocks that are written to.
1671 		 */
1672 		if (passthrough_mode(cache)) {
1673 			if (bio_data_dir(bio) == WRITE) {
1674 				bio_drop_shared_lock(cache, bio);
1675 				atomic_inc(&cache->stats.demotion);
1676 				invalidate_start(cache, cblock, block, bio);
1677 			} else
1678 				remap_to_origin_clear_discard(cache, bio, block);
1679 		} else {
1680 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1681 			    !is_dirty(cache, cblock)) {
1682 				remap_to_origin_and_cache(cache, bio, block, cblock);
1683 				accounted_begin(cache, bio);
1684 			} else
1685 				remap_to_cache_dirty(cache, bio, block, cblock);
1686 		}
1687 	}
1688 
1689 	/*
1690 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1691 	 */
1692 	if (bio->bi_opf & REQ_FUA) {
1693 		/*
1694 		 * issue_after_commit will call accounted_begin a second time.  So
1695 		 * we call accounted_complete() to avoid double accounting.
1696 		 */
1697 		accounted_complete(cache, bio);
1698 		issue_after_commit(&cache->committer, bio);
1699 		*commit_needed = true;
1700 		return DM_MAPIO_SUBMITTED;
1701 	}
1702 
1703 	return DM_MAPIO_REMAPPED;
1704 }
1705 
process_bio(struct cache * cache,struct bio * bio)1706 static bool process_bio(struct cache *cache, struct bio *bio)
1707 {
1708 	bool commit_needed;
1709 
1710 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1711 		dm_submit_bio_remap(bio, NULL);
1712 
1713 	return commit_needed;
1714 }
1715 
1716 /*
1717  * A non-zero return indicates read_only or fail_io mode.
1718  */
commit(struct cache * cache,bool clean_shutdown)1719 static int commit(struct cache *cache, bool clean_shutdown)
1720 {
1721 	int r;
1722 
1723 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1724 		return -EINVAL;
1725 
1726 	atomic_inc(&cache->stats.commit_count);
1727 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1728 	if (r)
1729 		metadata_operation_failed(cache, "dm_cache_commit", r);
1730 
1731 	return r;
1732 }
1733 
1734 /*
1735  * Used by the batcher.
1736  */
commit_op(void * context)1737 static blk_status_t commit_op(void *context)
1738 {
1739 	struct cache *cache = context;
1740 
1741 	if (dm_cache_changed_this_transaction(cache->cmd))
1742 		return errno_to_blk_status(commit(cache, false));
1743 
1744 	return 0;
1745 }
1746 
1747 /*----------------------------------------------------------------*/
1748 
process_flush_bio(struct cache * cache,struct bio * bio)1749 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1750 {
1751 	struct per_bio_data *pb = get_per_bio_data(bio);
1752 
1753 	if (!pb->req_nr)
1754 		remap_to_origin(cache, bio);
1755 	else
1756 		remap_to_cache(cache, bio, 0);
1757 
1758 	issue_after_commit(&cache->committer, bio);
1759 	return true;
1760 }
1761 
process_discard_bio(struct cache * cache,struct bio * bio)1762 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1763 {
1764 	dm_dblock_t b, e;
1765 
1766 	// FIXME: do we need to lock the region?  Or can we just assume the
1767 	// user wont be so foolish as to issue discard concurrently with
1768 	// other IO?
1769 	calc_discard_block_range(cache, bio, &b, &e);
1770 	while (b != e) {
1771 		set_discard(cache, b);
1772 		b = to_dblock(from_dblock(b) + 1);
1773 	}
1774 
1775 	if (cache->features.discard_passdown) {
1776 		remap_to_origin(cache, bio);
1777 		dm_submit_bio_remap(bio, NULL);
1778 	} else
1779 		bio_endio(bio);
1780 
1781 	return false;
1782 }
1783 
process_deferred_bios(struct work_struct * ws)1784 static void process_deferred_bios(struct work_struct *ws)
1785 {
1786 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1787 
1788 	bool commit_needed = false;
1789 	struct bio_list bios;
1790 	struct bio *bio;
1791 
1792 	bio_list_init(&bios);
1793 
1794 	spin_lock_irq(&cache->lock);
1795 	bio_list_merge(&bios, &cache->deferred_bios);
1796 	bio_list_init(&cache->deferred_bios);
1797 	spin_unlock_irq(&cache->lock);
1798 
1799 	while ((bio = bio_list_pop(&bios))) {
1800 		if (bio->bi_opf & REQ_PREFLUSH)
1801 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1802 
1803 		else if (bio_op(bio) == REQ_OP_DISCARD)
1804 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1805 
1806 		else
1807 			commit_needed = process_bio(cache, bio) || commit_needed;
1808 	}
1809 
1810 	if (commit_needed)
1811 		schedule_commit(&cache->committer);
1812 }
1813 
1814 /*----------------------------------------------------------------
1815  * Main worker loop
1816  *--------------------------------------------------------------*/
1817 
requeue_deferred_bios(struct cache * cache)1818 static void requeue_deferred_bios(struct cache *cache)
1819 {
1820 	struct bio *bio;
1821 	struct bio_list bios;
1822 
1823 	bio_list_init(&bios);
1824 	bio_list_merge(&bios, &cache->deferred_bios);
1825 	bio_list_init(&cache->deferred_bios);
1826 
1827 	while ((bio = bio_list_pop(&bios))) {
1828 		bio->bi_status = BLK_STS_DM_REQUEUE;
1829 		bio_endio(bio);
1830 	}
1831 }
1832 
1833 /*
1834  * We want to commit periodically so that not too much
1835  * unwritten metadata builds up.
1836  */
do_waker(struct work_struct * ws)1837 static void do_waker(struct work_struct *ws)
1838 {
1839 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1840 
1841 	policy_tick(cache->policy, true);
1842 	wake_migration_worker(cache);
1843 	schedule_commit(&cache->committer);
1844 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1845 }
1846 
check_migrations(struct work_struct * ws)1847 static void check_migrations(struct work_struct *ws)
1848 {
1849 	int r;
1850 	struct policy_work *op;
1851 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1852 	enum busy b;
1853 
1854 	for (;;) {
1855 		b = spare_migration_bandwidth(cache);
1856 
1857 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1858 		if (r == -ENODATA)
1859 			break;
1860 
1861 		if (r) {
1862 			DMERR_LIMIT("%s: policy_background_work failed",
1863 				    cache_device_name(cache));
1864 			break;
1865 		}
1866 
1867 		r = mg_start(cache, op, NULL);
1868 		if (r)
1869 			break;
1870 	}
1871 }
1872 
1873 /*----------------------------------------------------------------
1874  * Target methods
1875  *--------------------------------------------------------------*/
1876 
1877 /*
1878  * This function gets called on the error paths of the constructor, so we
1879  * have to cope with a partially initialised struct.
1880  */
destroy(struct cache * cache)1881 static void destroy(struct cache *cache)
1882 {
1883 	unsigned i;
1884 
1885 	mempool_exit(&cache->migration_pool);
1886 
1887 	if (cache->prison)
1888 		dm_bio_prison_destroy_v2(cache->prison);
1889 
1890 	if (cache->wq)
1891 		destroy_workqueue(cache->wq);
1892 
1893 	if (cache->dirty_bitset)
1894 		free_bitset(cache->dirty_bitset);
1895 
1896 	if (cache->discard_bitset)
1897 		free_bitset(cache->discard_bitset);
1898 
1899 	if (cache->copier)
1900 		dm_kcopyd_client_destroy(cache->copier);
1901 
1902 	if (cache->cmd)
1903 		dm_cache_metadata_close(cache->cmd);
1904 
1905 	if (cache->metadata_dev)
1906 		dm_put_device(cache->ti, cache->metadata_dev);
1907 
1908 	if (cache->origin_dev)
1909 		dm_put_device(cache->ti, cache->origin_dev);
1910 
1911 	if (cache->cache_dev)
1912 		dm_put_device(cache->ti, cache->cache_dev);
1913 
1914 	if (cache->policy)
1915 		dm_cache_policy_destroy(cache->policy);
1916 
1917 	for (i = 0; i < cache->nr_ctr_args ; i++)
1918 		kfree(cache->ctr_args[i]);
1919 	kfree(cache->ctr_args);
1920 
1921 	bioset_exit(&cache->bs);
1922 
1923 	kfree(cache);
1924 }
1925 
cache_dtr(struct dm_target * ti)1926 static void cache_dtr(struct dm_target *ti)
1927 {
1928 	struct cache *cache = ti->private;
1929 
1930 	destroy(cache);
1931 }
1932 
get_dev_size(struct dm_dev * dev)1933 static sector_t get_dev_size(struct dm_dev *dev)
1934 {
1935 	return bdev_nr_sectors(dev->bdev);
1936 }
1937 
1938 /*----------------------------------------------------------------*/
1939 
1940 /*
1941  * Construct a cache device mapping.
1942  *
1943  * cache <metadata dev> <cache dev> <origin dev> <block size>
1944  *       <#feature args> [<feature arg>]*
1945  *       <policy> <#policy args> [<policy arg>]*
1946  *
1947  * metadata dev    : fast device holding the persistent metadata
1948  * cache dev	   : fast device holding cached data blocks
1949  * origin dev	   : slow device holding original data blocks
1950  * block size	   : cache unit size in sectors
1951  *
1952  * #feature args   : number of feature arguments passed
1953  * feature args    : writethrough.  (The default is writeback.)
1954  *
1955  * policy	   : the replacement policy to use
1956  * #policy args    : an even number of policy arguments corresponding
1957  *		     to key/value pairs passed to the policy
1958  * policy args	   : key/value pairs passed to the policy
1959  *		     E.g. 'sequential_threshold 1024'
1960  *		     See cache-policies.txt for details.
1961  *
1962  * Optional feature arguments are:
1963  *   writethrough  : write through caching that prohibits cache block
1964  *		     content from being different from origin block content.
1965  *		     Without this argument, the default behaviour is to write
1966  *		     back cache block contents later for performance reasons,
1967  *		     so they may differ from the corresponding origin blocks.
1968  */
1969 struct cache_args {
1970 	struct dm_target *ti;
1971 
1972 	struct dm_dev *metadata_dev;
1973 
1974 	struct dm_dev *cache_dev;
1975 	sector_t cache_sectors;
1976 
1977 	struct dm_dev *origin_dev;
1978 	sector_t origin_sectors;
1979 
1980 	uint32_t block_size;
1981 
1982 	const char *policy_name;
1983 	int policy_argc;
1984 	const char **policy_argv;
1985 
1986 	struct cache_features features;
1987 };
1988 
destroy_cache_args(struct cache_args * ca)1989 static void destroy_cache_args(struct cache_args *ca)
1990 {
1991 	if (ca->metadata_dev)
1992 		dm_put_device(ca->ti, ca->metadata_dev);
1993 
1994 	if (ca->cache_dev)
1995 		dm_put_device(ca->ti, ca->cache_dev);
1996 
1997 	if (ca->origin_dev)
1998 		dm_put_device(ca->ti, ca->origin_dev);
1999 
2000 	kfree(ca);
2001 }
2002 
at_least_one_arg(struct dm_arg_set * as,char ** error)2003 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2004 {
2005 	if (!as->argc) {
2006 		*error = "Insufficient args";
2007 		return false;
2008 	}
2009 
2010 	return true;
2011 }
2012 
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2013 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2014 			      char **error)
2015 {
2016 	int r;
2017 	sector_t metadata_dev_size;
2018 
2019 	if (!at_least_one_arg(as, error))
2020 		return -EINVAL;
2021 
2022 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2023 			  &ca->metadata_dev);
2024 	if (r) {
2025 		*error = "Error opening metadata device";
2026 		return r;
2027 	}
2028 
2029 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2030 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2031 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2032 		       ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2033 
2034 	return 0;
2035 }
2036 
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2037 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2038 			   char **error)
2039 {
2040 	int r;
2041 
2042 	if (!at_least_one_arg(as, error))
2043 		return -EINVAL;
2044 
2045 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2046 			  &ca->cache_dev);
2047 	if (r) {
2048 		*error = "Error opening cache device";
2049 		return r;
2050 	}
2051 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2052 
2053 	return 0;
2054 }
2055 
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2056 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2057 			    char **error)
2058 {
2059 	int r;
2060 
2061 	if (!at_least_one_arg(as, error))
2062 		return -EINVAL;
2063 
2064 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2065 			  &ca->origin_dev);
2066 	if (r) {
2067 		*error = "Error opening origin device";
2068 		return r;
2069 	}
2070 
2071 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2072 	if (ca->ti->len > ca->origin_sectors) {
2073 		*error = "Device size larger than cached device";
2074 		return -EINVAL;
2075 	}
2076 
2077 	return 0;
2078 }
2079 
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2080 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2081 			    char **error)
2082 {
2083 	unsigned long block_size;
2084 
2085 	if (!at_least_one_arg(as, error))
2086 		return -EINVAL;
2087 
2088 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2089 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2090 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2091 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2092 		*error = "Invalid data block size";
2093 		return -EINVAL;
2094 	}
2095 
2096 	if (block_size > ca->cache_sectors) {
2097 		*error = "Data block size is larger than the cache device";
2098 		return -EINVAL;
2099 	}
2100 
2101 	ca->block_size = block_size;
2102 
2103 	return 0;
2104 }
2105 
init_features(struct cache_features * cf)2106 static void init_features(struct cache_features *cf)
2107 {
2108 	cf->mode = CM_WRITE;
2109 	cf->io_mode = CM_IO_WRITEBACK;
2110 	cf->metadata_version = 1;
2111 	cf->discard_passdown = true;
2112 }
2113 
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2114 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2115 			  char **error)
2116 {
2117 	static const struct dm_arg _args[] = {
2118 		{0, 3, "Invalid number of cache feature arguments"},
2119 	};
2120 
2121 	int r, mode_ctr = 0;
2122 	unsigned argc;
2123 	const char *arg;
2124 	struct cache_features *cf = &ca->features;
2125 
2126 	init_features(cf);
2127 
2128 	r = dm_read_arg_group(_args, as, &argc, error);
2129 	if (r)
2130 		return -EINVAL;
2131 
2132 	while (argc--) {
2133 		arg = dm_shift_arg(as);
2134 
2135 		if (!strcasecmp(arg, "writeback")) {
2136 			cf->io_mode = CM_IO_WRITEBACK;
2137 			mode_ctr++;
2138 		}
2139 
2140 		else if (!strcasecmp(arg, "writethrough")) {
2141 			cf->io_mode = CM_IO_WRITETHROUGH;
2142 			mode_ctr++;
2143 		}
2144 
2145 		else if (!strcasecmp(arg, "passthrough")) {
2146 			cf->io_mode = CM_IO_PASSTHROUGH;
2147 			mode_ctr++;
2148 		}
2149 
2150 		else if (!strcasecmp(arg, "metadata2"))
2151 			cf->metadata_version = 2;
2152 
2153 		else if (!strcasecmp(arg, "no_discard_passdown"))
2154 			cf->discard_passdown = false;
2155 
2156 		else {
2157 			*error = "Unrecognised cache feature requested";
2158 			return -EINVAL;
2159 		}
2160 	}
2161 
2162 	if (mode_ctr > 1) {
2163 		*error = "Duplicate cache io_mode features requested";
2164 		return -EINVAL;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2170 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2171 			char **error)
2172 {
2173 	static const struct dm_arg _args[] = {
2174 		{0, 1024, "Invalid number of policy arguments"},
2175 	};
2176 
2177 	int r;
2178 
2179 	if (!at_least_one_arg(as, error))
2180 		return -EINVAL;
2181 
2182 	ca->policy_name = dm_shift_arg(as);
2183 
2184 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2185 	if (r)
2186 		return -EINVAL;
2187 
2188 	ca->policy_argv = (const char **)as->argv;
2189 	dm_consume_args(as, ca->policy_argc);
2190 
2191 	return 0;
2192 }
2193 
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2194 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2195 			    char **error)
2196 {
2197 	int r;
2198 	struct dm_arg_set as;
2199 
2200 	as.argc = argc;
2201 	as.argv = argv;
2202 
2203 	r = parse_metadata_dev(ca, &as, error);
2204 	if (r)
2205 		return r;
2206 
2207 	r = parse_cache_dev(ca, &as, error);
2208 	if (r)
2209 		return r;
2210 
2211 	r = parse_origin_dev(ca, &as, error);
2212 	if (r)
2213 		return r;
2214 
2215 	r = parse_block_size(ca, &as, error);
2216 	if (r)
2217 		return r;
2218 
2219 	r = parse_features(ca, &as, error);
2220 	if (r)
2221 		return r;
2222 
2223 	r = parse_policy(ca, &as, error);
2224 	if (r)
2225 		return r;
2226 
2227 	return 0;
2228 }
2229 
2230 /*----------------------------------------------------------------*/
2231 
2232 static struct kmem_cache *migration_cache;
2233 
2234 #define NOT_CORE_OPTION 1
2235 
process_config_option(struct cache * cache,const char * key,const char * value)2236 static int process_config_option(struct cache *cache, const char *key, const char *value)
2237 {
2238 	unsigned long tmp;
2239 
2240 	if (!strcasecmp(key, "migration_threshold")) {
2241 		if (kstrtoul(value, 10, &tmp))
2242 			return -EINVAL;
2243 
2244 		cache->migration_threshold = tmp;
2245 		return 0;
2246 	}
2247 
2248 	return NOT_CORE_OPTION;
2249 }
2250 
set_config_value(struct cache * cache,const char * key,const char * value)2251 static int set_config_value(struct cache *cache, const char *key, const char *value)
2252 {
2253 	int r = process_config_option(cache, key, value);
2254 
2255 	if (r == NOT_CORE_OPTION)
2256 		r = policy_set_config_value(cache->policy, key, value);
2257 
2258 	if (r)
2259 		DMWARN("bad config value for %s: %s", key, value);
2260 
2261 	return r;
2262 }
2263 
set_config_values(struct cache * cache,int argc,const char ** argv)2264 static int set_config_values(struct cache *cache, int argc, const char **argv)
2265 {
2266 	int r = 0;
2267 
2268 	if (argc & 1) {
2269 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2270 		return -EINVAL;
2271 	}
2272 
2273 	while (argc) {
2274 		r = set_config_value(cache, argv[0], argv[1]);
2275 		if (r)
2276 			break;
2277 
2278 		argc -= 2;
2279 		argv += 2;
2280 	}
2281 
2282 	return r;
2283 }
2284 
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2285 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2286 			       char **error)
2287 {
2288 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2289 							   cache->cache_size,
2290 							   cache->origin_sectors,
2291 							   cache->sectors_per_block);
2292 	if (IS_ERR(p)) {
2293 		*error = "Error creating cache's policy";
2294 		return PTR_ERR(p);
2295 	}
2296 	cache->policy = p;
2297 	BUG_ON(!cache->policy);
2298 
2299 	return 0;
2300 }
2301 
2302 /*
2303  * We want the discard block size to be at least the size of the cache
2304  * block size and have no more than 2^14 discard blocks across the origin.
2305  */
2306 #define MAX_DISCARD_BLOCKS (1 << 14)
2307 
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2308 static bool too_many_discard_blocks(sector_t discard_block_size,
2309 				    sector_t origin_size)
2310 {
2311 	(void) sector_div(origin_size, discard_block_size);
2312 
2313 	return origin_size > MAX_DISCARD_BLOCKS;
2314 }
2315 
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2316 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2317 					     sector_t origin_size)
2318 {
2319 	sector_t discard_block_size = cache_block_size;
2320 
2321 	if (origin_size)
2322 		while (too_many_discard_blocks(discard_block_size, origin_size))
2323 			discard_block_size *= 2;
2324 
2325 	return discard_block_size;
2326 }
2327 
set_cache_size(struct cache * cache,dm_cblock_t size)2328 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2329 {
2330 	dm_block_t nr_blocks = from_cblock(size);
2331 
2332 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2333 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2334 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2335 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2336 			     (unsigned long long) nr_blocks);
2337 
2338 	cache->cache_size = size;
2339 }
2340 
2341 #define DEFAULT_MIGRATION_THRESHOLD 2048
2342 
cache_create(struct cache_args * ca,struct cache ** result)2343 static int cache_create(struct cache_args *ca, struct cache **result)
2344 {
2345 	int r = 0;
2346 	char **error = &ca->ti->error;
2347 	struct cache *cache;
2348 	struct dm_target *ti = ca->ti;
2349 	dm_block_t origin_blocks;
2350 	struct dm_cache_metadata *cmd;
2351 	bool may_format = ca->features.mode == CM_WRITE;
2352 
2353 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2354 	if (!cache)
2355 		return -ENOMEM;
2356 
2357 	cache->ti = ca->ti;
2358 	ti->private = cache;
2359 	ti->accounts_remapped_io = true;
2360 	ti->num_flush_bios = 2;
2361 	ti->flush_supported = true;
2362 
2363 	ti->num_discard_bios = 1;
2364 	ti->discards_supported = true;
2365 
2366 	ti->per_io_data_size = sizeof(struct per_bio_data);
2367 
2368 	cache->features = ca->features;
2369 	if (writethrough_mode(cache)) {
2370 		/* Create bioset for writethrough bios issued to origin */
2371 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2372 		if (r)
2373 			goto bad;
2374 	}
2375 
2376 	cache->metadata_dev = ca->metadata_dev;
2377 	cache->origin_dev = ca->origin_dev;
2378 	cache->cache_dev = ca->cache_dev;
2379 
2380 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2381 
2382 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2383 	origin_blocks = block_div(origin_blocks, ca->block_size);
2384 	cache->origin_blocks = to_oblock(origin_blocks);
2385 
2386 	cache->sectors_per_block = ca->block_size;
2387 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2388 		r = -EINVAL;
2389 		goto bad;
2390 	}
2391 
2392 	if (ca->block_size & (ca->block_size - 1)) {
2393 		dm_block_t cache_size = ca->cache_sectors;
2394 
2395 		cache->sectors_per_block_shift = -1;
2396 		cache_size = block_div(cache_size, ca->block_size);
2397 		set_cache_size(cache, to_cblock(cache_size));
2398 	} else {
2399 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2400 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2401 	}
2402 
2403 	r = create_cache_policy(cache, ca, error);
2404 	if (r)
2405 		goto bad;
2406 
2407 	cache->policy_nr_args = ca->policy_argc;
2408 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2409 
2410 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2411 	if (r) {
2412 		*error = "Error setting cache policy's config values";
2413 		goto bad;
2414 	}
2415 
2416 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2417 				     ca->block_size, may_format,
2418 				     dm_cache_policy_get_hint_size(cache->policy),
2419 				     ca->features.metadata_version);
2420 	if (IS_ERR(cmd)) {
2421 		*error = "Error creating metadata object";
2422 		r = PTR_ERR(cmd);
2423 		goto bad;
2424 	}
2425 	cache->cmd = cmd;
2426 	set_cache_mode(cache, CM_WRITE);
2427 	if (get_cache_mode(cache) != CM_WRITE) {
2428 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2429 		r = -EINVAL;
2430 		goto bad;
2431 	}
2432 
2433 	if (passthrough_mode(cache)) {
2434 		bool all_clean;
2435 
2436 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2437 		if (r) {
2438 			*error = "dm_cache_metadata_all_clean() failed";
2439 			goto bad;
2440 		}
2441 
2442 		if (!all_clean) {
2443 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2444 			r = -EINVAL;
2445 			goto bad;
2446 		}
2447 
2448 		policy_allow_migrations(cache->policy, false);
2449 	}
2450 
2451 	spin_lock_init(&cache->lock);
2452 	bio_list_init(&cache->deferred_bios);
2453 	atomic_set(&cache->nr_allocated_migrations, 0);
2454 	atomic_set(&cache->nr_io_migrations, 0);
2455 	init_waitqueue_head(&cache->migration_wait);
2456 
2457 	r = -ENOMEM;
2458 	atomic_set(&cache->nr_dirty, 0);
2459 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2460 	if (!cache->dirty_bitset) {
2461 		*error = "could not allocate dirty bitset";
2462 		goto bad;
2463 	}
2464 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2465 
2466 	cache->discard_block_size =
2467 		calculate_discard_block_size(cache->sectors_per_block,
2468 					     cache->origin_sectors);
2469 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2470 							      cache->discard_block_size));
2471 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2472 	if (!cache->discard_bitset) {
2473 		*error = "could not allocate discard bitset";
2474 		goto bad;
2475 	}
2476 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2477 
2478 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2479 	if (IS_ERR(cache->copier)) {
2480 		*error = "could not create kcopyd client";
2481 		r = PTR_ERR(cache->copier);
2482 		goto bad;
2483 	}
2484 
2485 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2486 	if (!cache->wq) {
2487 		*error = "could not create workqueue for metadata object";
2488 		goto bad;
2489 	}
2490 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2491 	INIT_WORK(&cache->migration_worker, check_migrations);
2492 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2493 
2494 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2495 	if (!cache->prison) {
2496 		*error = "could not create bio prison";
2497 		goto bad;
2498 	}
2499 
2500 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2501 				   migration_cache);
2502 	if (r) {
2503 		*error = "Error creating cache's migration mempool";
2504 		goto bad;
2505 	}
2506 
2507 	cache->need_tick_bio = true;
2508 	cache->sized = false;
2509 	cache->invalidate = false;
2510 	cache->commit_requested = false;
2511 	cache->loaded_mappings = false;
2512 	cache->loaded_discards = false;
2513 
2514 	load_stats(cache);
2515 
2516 	atomic_set(&cache->stats.demotion, 0);
2517 	atomic_set(&cache->stats.promotion, 0);
2518 	atomic_set(&cache->stats.copies_avoided, 0);
2519 	atomic_set(&cache->stats.cache_cell_clash, 0);
2520 	atomic_set(&cache->stats.commit_count, 0);
2521 	atomic_set(&cache->stats.discard_count, 0);
2522 
2523 	spin_lock_init(&cache->invalidation_lock);
2524 	INIT_LIST_HEAD(&cache->invalidation_requests);
2525 
2526 	batcher_init(&cache->committer, commit_op, cache,
2527 		     issue_op, cache, cache->wq);
2528 	dm_iot_init(&cache->tracker);
2529 
2530 	init_rwsem(&cache->background_work_lock);
2531 	prevent_background_work(cache);
2532 
2533 	*result = cache;
2534 	return 0;
2535 bad:
2536 	destroy(cache);
2537 	return r;
2538 }
2539 
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2540 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2541 {
2542 	unsigned i;
2543 	const char **copy;
2544 
2545 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2546 	if (!copy)
2547 		return -ENOMEM;
2548 	for (i = 0; i < argc; i++) {
2549 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2550 		if (!copy[i]) {
2551 			while (i--)
2552 				kfree(copy[i]);
2553 			kfree(copy);
2554 			return -ENOMEM;
2555 		}
2556 	}
2557 
2558 	cache->nr_ctr_args = argc;
2559 	cache->ctr_args = copy;
2560 
2561 	return 0;
2562 }
2563 
cache_ctr(struct dm_target * ti,unsigned argc,char ** argv)2564 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2565 {
2566 	int r = -EINVAL;
2567 	struct cache_args *ca;
2568 	struct cache *cache = NULL;
2569 
2570 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2571 	if (!ca) {
2572 		ti->error = "Error allocating memory for cache";
2573 		return -ENOMEM;
2574 	}
2575 	ca->ti = ti;
2576 
2577 	r = parse_cache_args(ca, argc, argv, &ti->error);
2578 	if (r)
2579 		goto out;
2580 
2581 	r = cache_create(ca, &cache);
2582 	if (r)
2583 		goto out;
2584 
2585 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2586 	if (r) {
2587 		destroy(cache);
2588 		goto out;
2589 	}
2590 
2591 	ti->private = cache;
2592 out:
2593 	destroy_cache_args(ca);
2594 	return r;
2595 }
2596 
2597 /*----------------------------------------------------------------*/
2598 
cache_map(struct dm_target * ti,struct bio * bio)2599 static int cache_map(struct dm_target *ti, struct bio *bio)
2600 {
2601 	struct cache *cache = ti->private;
2602 
2603 	int r;
2604 	bool commit_needed;
2605 	dm_oblock_t block = get_bio_block(cache, bio);
2606 
2607 	init_per_bio_data(bio);
2608 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2609 		/*
2610 		 * This can only occur if the io goes to a partial block at
2611 		 * the end of the origin device.  We don't cache these.
2612 		 * Just remap to the origin and carry on.
2613 		 */
2614 		remap_to_origin(cache, bio);
2615 		accounted_begin(cache, bio);
2616 		return DM_MAPIO_REMAPPED;
2617 	}
2618 
2619 	if (discard_or_flush(bio)) {
2620 		defer_bio(cache, bio);
2621 		return DM_MAPIO_SUBMITTED;
2622 	}
2623 
2624 	r = map_bio(cache, bio, block, &commit_needed);
2625 	if (commit_needed)
2626 		schedule_commit(&cache->committer);
2627 
2628 	return r;
2629 }
2630 
cache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)2631 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2632 {
2633 	struct cache *cache = ti->private;
2634 	unsigned long flags;
2635 	struct per_bio_data *pb = get_per_bio_data(bio);
2636 
2637 	if (pb->tick) {
2638 		policy_tick(cache->policy, false);
2639 
2640 		spin_lock_irqsave(&cache->lock, flags);
2641 		cache->need_tick_bio = true;
2642 		spin_unlock_irqrestore(&cache->lock, flags);
2643 	}
2644 
2645 	bio_drop_shared_lock(cache, bio);
2646 	accounted_complete(cache, bio);
2647 
2648 	return DM_ENDIO_DONE;
2649 }
2650 
write_dirty_bitset(struct cache * cache)2651 static int write_dirty_bitset(struct cache *cache)
2652 {
2653 	int r;
2654 
2655 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2656 		return -EINVAL;
2657 
2658 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2659 	if (r)
2660 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2661 
2662 	return r;
2663 }
2664 
write_discard_bitset(struct cache * cache)2665 static int write_discard_bitset(struct cache *cache)
2666 {
2667 	unsigned i, r;
2668 
2669 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2670 		return -EINVAL;
2671 
2672 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2673 					   cache->discard_nr_blocks);
2674 	if (r) {
2675 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2676 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2677 		return r;
2678 	}
2679 
2680 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2681 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2682 					 is_discarded(cache, to_dblock(i)));
2683 		if (r) {
2684 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2685 			return r;
2686 		}
2687 	}
2688 
2689 	return 0;
2690 }
2691 
write_hints(struct cache * cache)2692 static int write_hints(struct cache *cache)
2693 {
2694 	int r;
2695 
2696 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2697 		return -EINVAL;
2698 
2699 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2700 	if (r) {
2701 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2702 		return r;
2703 	}
2704 
2705 	return 0;
2706 }
2707 
2708 /*
2709  * returns true on success
2710  */
sync_metadata(struct cache * cache)2711 static bool sync_metadata(struct cache *cache)
2712 {
2713 	int r1, r2, r3, r4;
2714 
2715 	r1 = write_dirty_bitset(cache);
2716 	if (r1)
2717 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2718 
2719 	r2 = write_discard_bitset(cache);
2720 	if (r2)
2721 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2722 
2723 	save_stats(cache);
2724 
2725 	r3 = write_hints(cache);
2726 	if (r3)
2727 		DMERR("%s: could not write hints", cache_device_name(cache));
2728 
2729 	/*
2730 	 * If writing the above metadata failed, we still commit, but don't
2731 	 * set the clean shutdown flag.  This will effectively force every
2732 	 * dirty bit to be set on reload.
2733 	 */
2734 	r4 = commit(cache, !r1 && !r2 && !r3);
2735 	if (r4)
2736 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2737 
2738 	return !r1 && !r2 && !r3 && !r4;
2739 }
2740 
cache_postsuspend(struct dm_target * ti)2741 static void cache_postsuspend(struct dm_target *ti)
2742 {
2743 	struct cache *cache = ti->private;
2744 
2745 	prevent_background_work(cache);
2746 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2747 
2748 	cancel_delayed_work_sync(&cache->waker);
2749 	drain_workqueue(cache->wq);
2750 	WARN_ON(cache->tracker.in_flight);
2751 
2752 	/*
2753 	 * If it's a flush suspend there won't be any deferred bios, so this
2754 	 * call is harmless.
2755 	 */
2756 	requeue_deferred_bios(cache);
2757 
2758 	if (get_cache_mode(cache) == CM_WRITE)
2759 		(void) sync_metadata(cache);
2760 }
2761 
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2762 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2763 			bool dirty, uint32_t hint, bool hint_valid)
2764 {
2765 	struct cache *cache = context;
2766 
2767 	if (dirty) {
2768 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2769 		atomic_inc(&cache->nr_dirty);
2770 	} else
2771 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2772 
2773 	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2774 }
2775 
2776 /*
2777  * The discard block size in the on disk metadata is not
2778  * neccessarily the same as we're currently using.  So we have to
2779  * be careful to only set the discarded attribute if we know it
2780  * covers a complete block of the new size.
2781  */
2782 struct discard_load_info {
2783 	struct cache *cache;
2784 
2785 	/*
2786 	 * These blocks are sized using the on disk dblock size, rather
2787 	 * than the current one.
2788 	 */
2789 	dm_block_t block_size;
2790 	dm_block_t discard_begin, discard_end;
2791 };
2792 
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2793 static void discard_load_info_init(struct cache *cache,
2794 				   struct discard_load_info *li)
2795 {
2796 	li->cache = cache;
2797 	li->discard_begin = li->discard_end = 0;
2798 }
2799 
set_discard_range(struct discard_load_info * li)2800 static void set_discard_range(struct discard_load_info *li)
2801 {
2802 	sector_t b, e;
2803 
2804 	if (li->discard_begin == li->discard_end)
2805 		return;
2806 
2807 	/*
2808 	 * Convert to sectors.
2809 	 */
2810 	b = li->discard_begin * li->block_size;
2811 	e = li->discard_end * li->block_size;
2812 
2813 	/*
2814 	 * Then convert back to the current dblock size.
2815 	 */
2816 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2817 	sector_div(e, li->cache->discard_block_size);
2818 
2819 	/*
2820 	 * The origin may have shrunk, so we need to check we're still in
2821 	 * bounds.
2822 	 */
2823 	if (e > from_dblock(li->cache->discard_nr_blocks))
2824 		e = from_dblock(li->cache->discard_nr_blocks);
2825 
2826 	for (; b < e; b++)
2827 		set_discard(li->cache, to_dblock(b));
2828 }
2829 
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2830 static int load_discard(void *context, sector_t discard_block_size,
2831 			dm_dblock_t dblock, bool discard)
2832 {
2833 	struct discard_load_info *li = context;
2834 
2835 	li->block_size = discard_block_size;
2836 
2837 	if (discard) {
2838 		if (from_dblock(dblock) == li->discard_end)
2839 			/*
2840 			 * We're already in a discard range, just extend it.
2841 			 */
2842 			li->discard_end = li->discard_end + 1ULL;
2843 
2844 		else {
2845 			/*
2846 			 * Emit the old range and start a new one.
2847 			 */
2848 			set_discard_range(li);
2849 			li->discard_begin = from_dblock(dblock);
2850 			li->discard_end = li->discard_begin + 1ULL;
2851 		}
2852 	} else {
2853 		set_discard_range(li);
2854 		li->discard_begin = li->discard_end = 0;
2855 	}
2856 
2857 	return 0;
2858 }
2859 
get_cache_dev_size(struct cache * cache)2860 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2861 {
2862 	sector_t size = get_dev_size(cache->cache_dev);
2863 	(void) sector_div(size, cache->sectors_per_block);
2864 	return to_cblock(size);
2865 }
2866 
can_resize(struct cache * cache,dm_cblock_t new_size)2867 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2868 {
2869 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2870 		if (cache->sized) {
2871 			DMERR("%s: unable to extend cache due to missing cache table reload",
2872 			      cache_device_name(cache));
2873 			return false;
2874 		}
2875 	}
2876 
2877 	/*
2878 	 * We can't drop a dirty block when shrinking the cache.
2879 	 */
2880 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2881 		new_size = to_cblock(from_cblock(new_size) + 1);
2882 		if (is_dirty(cache, new_size)) {
2883 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2884 			      cache_device_name(cache),
2885 			      (unsigned long long) from_cblock(new_size));
2886 			return false;
2887 		}
2888 	}
2889 
2890 	return true;
2891 }
2892 
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)2893 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2894 {
2895 	int r;
2896 
2897 	r = dm_cache_resize(cache->cmd, new_size);
2898 	if (r) {
2899 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2900 		metadata_operation_failed(cache, "dm_cache_resize", r);
2901 		return r;
2902 	}
2903 
2904 	set_cache_size(cache, new_size);
2905 
2906 	return 0;
2907 }
2908 
cache_preresume(struct dm_target * ti)2909 static int cache_preresume(struct dm_target *ti)
2910 {
2911 	int r = 0;
2912 	struct cache *cache = ti->private;
2913 	dm_cblock_t csize = get_cache_dev_size(cache);
2914 
2915 	/*
2916 	 * Check to see if the cache has resized.
2917 	 */
2918 	if (!cache->sized) {
2919 		r = resize_cache_dev(cache, csize);
2920 		if (r)
2921 			return r;
2922 
2923 		cache->sized = true;
2924 
2925 	} else if (csize != cache->cache_size) {
2926 		if (!can_resize(cache, csize))
2927 			return -EINVAL;
2928 
2929 		r = resize_cache_dev(cache, csize);
2930 		if (r)
2931 			return r;
2932 	}
2933 
2934 	if (!cache->loaded_mappings) {
2935 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2936 					   load_mapping, cache);
2937 		if (r) {
2938 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2939 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2940 			return r;
2941 		}
2942 
2943 		cache->loaded_mappings = true;
2944 	}
2945 
2946 	if (!cache->loaded_discards) {
2947 		struct discard_load_info li;
2948 
2949 		/*
2950 		 * The discard bitset could have been resized, or the
2951 		 * discard block size changed.  To be safe we start by
2952 		 * setting every dblock to not discarded.
2953 		 */
2954 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2955 
2956 		discard_load_info_init(cache, &li);
2957 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2958 		if (r) {
2959 			DMERR("%s: could not load origin discards", cache_device_name(cache));
2960 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2961 			return r;
2962 		}
2963 		set_discard_range(&li);
2964 
2965 		cache->loaded_discards = true;
2966 	}
2967 
2968 	return r;
2969 }
2970 
cache_resume(struct dm_target * ti)2971 static void cache_resume(struct dm_target *ti)
2972 {
2973 	struct cache *cache = ti->private;
2974 
2975 	cache->need_tick_bio = true;
2976 	allow_background_work(cache);
2977 	do_waker(&cache->waker.work);
2978 }
2979 
emit_flags(struct cache * cache,char * result,unsigned maxlen,ssize_t * sz_ptr)2980 static void emit_flags(struct cache *cache, char *result,
2981 		       unsigned maxlen, ssize_t *sz_ptr)
2982 {
2983 	ssize_t sz = *sz_ptr;
2984 	struct cache_features *cf = &cache->features;
2985 	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2986 
2987 	DMEMIT("%u ", count);
2988 
2989 	if (cf->metadata_version == 2)
2990 		DMEMIT("metadata2 ");
2991 
2992 	if (writethrough_mode(cache))
2993 		DMEMIT("writethrough ");
2994 
2995 	else if (passthrough_mode(cache))
2996 		DMEMIT("passthrough ");
2997 
2998 	else if (writeback_mode(cache))
2999 		DMEMIT("writeback ");
3000 
3001 	else {
3002 		DMEMIT("unknown ");
3003 		DMERR("%s: internal error: unknown io mode: %d",
3004 		      cache_device_name(cache), (int) cf->io_mode);
3005 	}
3006 
3007 	if (!cf->discard_passdown)
3008 		DMEMIT("no_discard_passdown ");
3009 
3010 	*sz_ptr = sz;
3011 }
3012 
3013 /*
3014  * Status format:
3015  *
3016  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3017  * <cache block size> <#used cache blocks>/<#total cache blocks>
3018  * <#read hits> <#read misses> <#write hits> <#write misses>
3019  * <#demotions> <#promotions> <#dirty>
3020  * <#features> <features>*
3021  * <#core args> <core args>
3022  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3023  */
cache_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3024 static void cache_status(struct dm_target *ti, status_type_t type,
3025 			 unsigned status_flags, char *result, unsigned maxlen)
3026 {
3027 	int r = 0;
3028 	unsigned i;
3029 	ssize_t sz = 0;
3030 	dm_block_t nr_free_blocks_metadata = 0;
3031 	dm_block_t nr_blocks_metadata = 0;
3032 	char buf[BDEVNAME_SIZE];
3033 	struct cache *cache = ti->private;
3034 	dm_cblock_t residency;
3035 	bool needs_check;
3036 
3037 	switch (type) {
3038 	case STATUSTYPE_INFO:
3039 		if (get_cache_mode(cache) == CM_FAIL) {
3040 			DMEMIT("Fail");
3041 			break;
3042 		}
3043 
3044 		/* Commit to ensure statistics aren't out-of-date */
3045 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3046 			(void) commit(cache, false);
3047 
3048 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3049 		if (r) {
3050 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3051 			      cache_device_name(cache), r);
3052 			goto err;
3053 		}
3054 
3055 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3056 		if (r) {
3057 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3058 			      cache_device_name(cache), r);
3059 			goto err;
3060 		}
3061 
3062 		residency = policy_residency(cache->policy);
3063 
3064 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3065 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3066 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3067 		       (unsigned long long)nr_blocks_metadata,
3068 		       (unsigned long long)cache->sectors_per_block,
3069 		       (unsigned long long) from_cblock(residency),
3070 		       (unsigned long long) from_cblock(cache->cache_size),
3071 		       (unsigned) atomic_read(&cache->stats.read_hit),
3072 		       (unsigned) atomic_read(&cache->stats.read_miss),
3073 		       (unsigned) atomic_read(&cache->stats.write_hit),
3074 		       (unsigned) atomic_read(&cache->stats.write_miss),
3075 		       (unsigned) atomic_read(&cache->stats.demotion),
3076 		       (unsigned) atomic_read(&cache->stats.promotion),
3077 		       (unsigned long) atomic_read(&cache->nr_dirty));
3078 
3079 		emit_flags(cache, result, maxlen, &sz);
3080 
3081 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3082 
3083 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3084 		if (sz < maxlen) {
3085 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3086 			if (r)
3087 				DMERR("%s: policy_emit_config_values returned %d",
3088 				      cache_device_name(cache), r);
3089 		}
3090 
3091 		if (get_cache_mode(cache) == CM_READ_ONLY)
3092 			DMEMIT("ro ");
3093 		else
3094 			DMEMIT("rw ");
3095 
3096 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3097 
3098 		if (r || needs_check)
3099 			DMEMIT("needs_check ");
3100 		else
3101 			DMEMIT("- ");
3102 
3103 		break;
3104 
3105 	case STATUSTYPE_TABLE:
3106 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3107 		DMEMIT("%s ", buf);
3108 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3109 		DMEMIT("%s ", buf);
3110 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3111 		DMEMIT("%s", buf);
3112 
3113 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3114 			DMEMIT(" %s", cache->ctr_args[i]);
3115 		if (cache->nr_ctr_args)
3116 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3117 		break;
3118 
3119 	case STATUSTYPE_IMA:
3120 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3121 		if (get_cache_mode(cache) == CM_FAIL)
3122 			DMEMIT(",metadata_mode=fail");
3123 		else if (get_cache_mode(cache) == CM_READ_ONLY)
3124 			DMEMIT(",metadata_mode=ro");
3125 		else
3126 			DMEMIT(",metadata_mode=rw");
3127 
3128 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3129 		DMEMIT(",cache_metadata_device=%s", buf);
3130 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3131 		DMEMIT(",cache_device=%s", buf);
3132 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3133 		DMEMIT(",cache_origin_device=%s", buf);
3134 		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3135 		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3136 		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3137 		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3138 		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3139 		DMEMIT(";");
3140 		break;
3141 	}
3142 
3143 	return;
3144 
3145 err:
3146 	DMEMIT("Error");
3147 }
3148 
3149 /*
3150  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3151  * the one-past-the-end value.
3152  */
3153 struct cblock_range {
3154 	dm_cblock_t begin;
3155 	dm_cblock_t end;
3156 };
3157 
3158 /*
3159  * A cache block range can take two forms:
3160  *
3161  * i) A single cblock, eg. '3456'
3162  * ii) A begin and end cblock with a dash between, eg. 123-234
3163  */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3164 static int parse_cblock_range(struct cache *cache, const char *str,
3165 			      struct cblock_range *result)
3166 {
3167 	char dummy;
3168 	uint64_t b, e;
3169 	int r;
3170 
3171 	/*
3172 	 * Try and parse form (ii) first.
3173 	 */
3174 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3175 	if (r < 0)
3176 		return r;
3177 
3178 	if (r == 2) {
3179 		result->begin = to_cblock(b);
3180 		result->end = to_cblock(e);
3181 		return 0;
3182 	}
3183 
3184 	/*
3185 	 * That didn't work, try form (i).
3186 	 */
3187 	r = sscanf(str, "%llu%c", &b, &dummy);
3188 	if (r < 0)
3189 		return r;
3190 
3191 	if (r == 1) {
3192 		result->begin = to_cblock(b);
3193 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3194 		return 0;
3195 	}
3196 
3197 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3198 	return -EINVAL;
3199 }
3200 
validate_cblock_range(struct cache * cache,struct cblock_range * range)3201 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3202 {
3203 	uint64_t b = from_cblock(range->begin);
3204 	uint64_t e = from_cblock(range->end);
3205 	uint64_t n = from_cblock(cache->cache_size);
3206 
3207 	if (b >= n) {
3208 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3209 		      cache_device_name(cache), b, n);
3210 		return -EINVAL;
3211 	}
3212 
3213 	if (e > n) {
3214 		DMERR("%s: end cblock out of range: %llu > %llu",
3215 		      cache_device_name(cache), e, n);
3216 		return -EINVAL;
3217 	}
3218 
3219 	if (b >= e) {
3220 		DMERR("%s: invalid cblock range: %llu >= %llu",
3221 		      cache_device_name(cache), b, e);
3222 		return -EINVAL;
3223 	}
3224 
3225 	return 0;
3226 }
3227 
cblock_succ(dm_cblock_t b)3228 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3229 {
3230 	return to_cblock(from_cblock(b) + 1);
3231 }
3232 
request_invalidation(struct cache * cache,struct cblock_range * range)3233 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3234 {
3235 	int r = 0;
3236 
3237 	/*
3238 	 * We don't need to do any locking here because we know we're in
3239 	 * passthrough mode.  There's is potential for a race between an
3240 	 * invalidation triggered by an io and an invalidation message.  This
3241 	 * is harmless, we must not worry if the policy call fails.
3242 	 */
3243 	while (range->begin != range->end) {
3244 		r = invalidate_cblock(cache, range->begin);
3245 		if (r)
3246 			return r;
3247 
3248 		range->begin = cblock_succ(range->begin);
3249 	}
3250 
3251 	cache->commit_requested = true;
3252 	return r;
3253 }
3254 
process_invalidate_cblocks_message(struct cache * cache,unsigned count,const char ** cblock_ranges)3255 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3256 					      const char **cblock_ranges)
3257 {
3258 	int r = 0;
3259 	unsigned i;
3260 	struct cblock_range range;
3261 
3262 	if (!passthrough_mode(cache)) {
3263 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3264 		      cache_device_name(cache));
3265 		return -EPERM;
3266 	}
3267 
3268 	for (i = 0; i < count; i++) {
3269 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3270 		if (r)
3271 			break;
3272 
3273 		r = validate_cblock_range(cache, &range);
3274 		if (r)
3275 			break;
3276 
3277 		/*
3278 		 * Pass begin and end origin blocks to the worker and wake it.
3279 		 */
3280 		r = request_invalidation(cache, &range);
3281 		if (r)
3282 			break;
3283 	}
3284 
3285 	return r;
3286 }
3287 
3288 /*
3289  * Supports
3290  *	"<key> <value>"
3291  * and
3292  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3293  *
3294  * The key migration_threshold is supported by the cache target core.
3295  */
cache_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3296 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3297 			 char *result, unsigned maxlen)
3298 {
3299 	struct cache *cache = ti->private;
3300 
3301 	if (!argc)
3302 		return -EINVAL;
3303 
3304 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3305 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3306 		      cache_device_name(cache));
3307 		return -EOPNOTSUPP;
3308 	}
3309 
3310 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3311 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3312 
3313 	if (argc != 2)
3314 		return -EINVAL;
3315 
3316 	return set_config_value(cache, argv[0], argv[1]);
3317 }
3318 
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3319 static int cache_iterate_devices(struct dm_target *ti,
3320 				 iterate_devices_callout_fn fn, void *data)
3321 {
3322 	int r = 0;
3323 	struct cache *cache = ti->private;
3324 
3325 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3326 	if (!r)
3327 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3328 
3329 	return r;
3330 }
3331 
3332 /*
3333  * If discard_passdown was enabled verify that the origin device
3334  * supports discards.  Disable discard_passdown if not.
3335  */
disable_passdown_if_not_supported(struct cache * cache)3336 static void disable_passdown_if_not_supported(struct cache *cache)
3337 {
3338 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3339 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3340 	const char *reason = NULL;
3341 
3342 	if (!cache->features.discard_passdown)
3343 		return;
3344 
3345 	if (!bdev_max_discard_sectors(origin_bdev))
3346 		reason = "discard unsupported";
3347 
3348 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3349 		reason = "max discard sectors smaller than a block";
3350 
3351 	if (reason) {
3352 		DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3353 		       origin_bdev, reason);
3354 		cache->features.discard_passdown = false;
3355 	}
3356 }
3357 
set_discard_limits(struct cache * cache,struct queue_limits * limits)3358 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3359 {
3360 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3361 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3362 
3363 	if (!cache->features.discard_passdown) {
3364 		/* No passdown is done so setting own virtual limits */
3365 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3366 						    cache->origin_sectors);
3367 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3368 		return;
3369 	}
3370 
3371 	/*
3372 	 * cache_iterate_devices() is stacking both origin and fast device limits
3373 	 * but discards aren't passed to fast device, so inherit origin's limits.
3374 	 */
3375 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3376 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3377 	limits->discard_granularity = origin_limits->discard_granularity;
3378 	limits->discard_alignment = origin_limits->discard_alignment;
3379 	limits->discard_misaligned = origin_limits->discard_misaligned;
3380 }
3381 
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3382 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3383 {
3384 	struct cache *cache = ti->private;
3385 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3386 
3387 	/*
3388 	 * If the system-determined stacked limits are compatible with the
3389 	 * cache's blocksize (io_opt is a factor) do not override them.
3390 	 */
3391 	if (io_opt_sectors < cache->sectors_per_block ||
3392 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3393 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3394 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3395 	}
3396 
3397 	disable_passdown_if_not_supported(cache);
3398 	set_discard_limits(cache, limits);
3399 }
3400 
3401 /*----------------------------------------------------------------*/
3402 
3403 static struct target_type cache_target = {
3404 	.name = "cache",
3405 	.version = {2, 2, 0},
3406 	.module = THIS_MODULE,
3407 	.ctr = cache_ctr,
3408 	.dtr = cache_dtr,
3409 	.map = cache_map,
3410 	.end_io = cache_end_io,
3411 	.postsuspend = cache_postsuspend,
3412 	.preresume = cache_preresume,
3413 	.resume = cache_resume,
3414 	.status = cache_status,
3415 	.message = cache_message,
3416 	.iterate_devices = cache_iterate_devices,
3417 	.io_hints = cache_io_hints,
3418 };
3419 
dm_cache_init(void)3420 static int __init dm_cache_init(void)
3421 {
3422 	int r;
3423 
3424 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3425 	if (!migration_cache)
3426 		return -ENOMEM;
3427 
3428 	r = dm_register_target(&cache_target);
3429 	if (r) {
3430 		DMERR("cache target registration failed: %d", r);
3431 		kmem_cache_destroy(migration_cache);
3432 		return r;
3433 	}
3434 
3435 	return 0;
3436 }
3437 
dm_cache_exit(void)3438 static void __exit dm_cache_exit(void)
3439 {
3440 	dm_unregister_target(&cache_target);
3441 	kmem_cache_destroy(migration_cache);
3442 }
3443 
3444 module_init(dm_cache_init);
3445 module_exit(dm_cache_exit);
3446 
3447 MODULE_DESCRIPTION(DM_NAME " cache target");
3448 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3449 MODULE_LICENSE("GPL");
3450