1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 #include "dm-io-tracker.h"
12
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/init.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/rwsem.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22
23 #define DM_MSG_PREFIX "cache"
24
25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26 "A percentage of time allocated for copying to and/or from cache");
27
28 /*----------------------------------------------------------------*/
29
30 /*
31 * Glossary:
32 *
33 * oblock: index of an origin block
34 * cblock: index of a cache block
35 * promotion: movement of a block from origin to cache
36 * demotion: movement of a block from cache to origin
37 * migration: movement of a block between the origin and cache device,
38 * either direction
39 */
40
41 /*----------------------------------------------------------------*/
42
43 /*
44 * Represents a chunk of future work. 'input' allows continuations to pass
45 * values between themselves, typically error values.
46 */
47 struct continuation {
48 struct work_struct ws;
49 blk_status_t input;
50 };
51
init_continuation(struct continuation * k,void (* fn)(struct work_struct *))52 static inline void init_continuation(struct continuation *k,
53 void (*fn)(struct work_struct *))
54 {
55 INIT_WORK(&k->ws, fn);
56 k->input = 0;
57 }
58
queue_continuation(struct workqueue_struct * wq,struct continuation * k)59 static inline void queue_continuation(struct workqueue_struct *wq,
60 struct continuation *k)
61 {
62 queue_work(wq, &k->ws);
63 }
64
65 /*----------------------------------------------------------------*/
66
67 /*
68 * The batcher collects together pieces of work that need a particular
69 * operation to occur before they can proceed (typically a commit).
70 */
71 struct batcher {
72 /*
73 * The operation that everyone is waiting for.
74 */
75 blk_status_t (*commit_op)(void *context);
76 void *commit_context;
77
78 /*
79 * This is how bios should be issued once the commit op is complete
80 * (accounted_request).
81 */
82 void (*issue_op)(struct bio *bio, void *context);
83 void *issue_context;
84
85 /*
86 * Queued work gets put on here after commit.
87 */
88 struct workqueue_struct *wq;
89
90 spinlock_t lock;
91 struct list_head work_items;
92 struct bio_list bios;
93 struct work_struct commit_work;
94
95 bool commit_scheduled;
96 };
97
__commit(struct work_struct * _ws)98 static void __commit(struct work_struct *_ws)
99 {
100 struct batcher *b = container_of(_ws, struct batcher, commit_work);
101 blk_status_t r;
102 struct list_head work_items;
103 struct work_struct *ws, *tmp;
104 struct continuation *k;
105 struct bio *bio;
106 struct bio_list bios;
107
108 INIT_LIST_HEAD(&work_items);
109 bio_list_init(&bios);
110
111 /*
112 * We have to grab these before the commit_op to avoid a race
113 * condition.
114 */
115 spin_lock_irq(&b->lock);
116 list_splice_init(&b->work_items, &work_items);
117 bio_list_merge(&bios, &b->bios);
118 bio_list_init(&b->bios);
119 b->commit_scheduled = false;
120 spin_unlock_irq(&b->lock);
121
122 r = b->commit_op(b->commit_context);
123
124 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 k = container_of(ws, struct continuation, ws);
126 k->input = r;
127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 queue_work(b->wq, ws);
129 }
130
131 while ((bio = bio_list_pop(&bios))) {
132 if (r) {
133 bio->bi_status = r;
134 bio_endio(bio);
135 } else
136 b->issue_op(bio, b->issue_context);
137 }
138 }
139
batcher_init(struct batcher * b,blk_status_t (* commit_op)(void *),void * commit_context,void (* issue_op)(struct bio * bio,void *),void * issue_context,struct workqueue_struct * wq)140 static void batcher_init(struct batcher *b,
141 blk_status_t (*commit_op)(void *),
142 void *commit_context,
143 void (*issue_op)(struct bio *bio, void *),
144 void *issue_context,
145 struct workqueue_struct *wq)
146 {
147 b->commit_op = commit_op;
148 b->commit_context = commit_context;
149 b->issue_op = issue_op;
150 b->issue_context = issue_context;
151 b->wq = wq;
152
153 spin_lock_init(&b->lock);
154 INIT_LIST_HEAD(&b->work_items);
155 bio_list_init(&b->bios);
156 INIT_WORK(&b->commit_work, __commit);
157 b->commit_scheduled = false;
158 }
159
async_commit(struct batcher * b)160 static void async_commit(struct batcher *b)
161 {
162 queue_work(b->wq, &b->commit_work);
163 }
164
continue_after_commit(struct batcher * b,struct continuation * k)165 static void continue_after_commit(struct batcher *b, struct continuation *k)
166 {
167 bool commit_scheduled;
168
169 spin_lock_irq(&b->lock);
170 commit_scheduled = b->commit_scheduled;
171 list_add_tail(&k->ws.entry, &b->work_items);
172 spin_unlock_irq(&b->lock);
173
174 if (commit_scheduled)
175 async_commit(b);
176 }
177
178 /*
179 * Bios are errored if commit failed.
180 */
issue_after_commit(struct batcher * b,struct bio * bio)181 static void issue_after_commit(struct batcher *b, struct bio *bio)
182 {
183 bool commit_scheduled;
184
185 spin_lock_irq(&b->lock);
186 commit_scheduled = b->commit_scheduled;
187 bio_list_add(&b->bios, bio);
188 spin_unlock_irq(&b->lock);
189
190 if (commit_scheduled)
191 async_commit(b);
192 }
193
194 /*
195 * Call this if some urgent work is waiting for the commit to complete.
196 */
schedule_commit(struct batcher * b)197 static void schedule_commit(struct batcher *b)
198 {
199 bool immediate;
200
201 spin_lock_irq(&b->lock);
202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 b->commit_scheduled = true;
204 spin_unlock_irq(&b->lock);
205
206 if (immediate)
207 async_commit(b);
208 }
209
210 /*
211 * There are a couple of places where we let a bio run, but want to do some
212 * work before calling its endio function. We do this by temporarily
213 * changing the endio fn.
214 */
215 struct dm_hook_info {
216 bio_end_io_t *bi_end_io;
217 };
218
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 bio_end_io_t *bi_end_io, void *bi_private)
221 {
222 h->bi_end_io = bio->bi_end_io;
223
224 bio->bi_end_io = bi_end_io;
225 bio->bi_private = bi_private;
226 }
227
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229 {
230 bio->bi_end_io = h->bi_end_io;
231 }
232
233 /*----------------------------------------------------------------*/
234
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
238
239 /*
240 * The block size of the device holding cache data must be
241 * between 32KB and 1GB.
242 */
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245
246 enum cache_metadata_mode {
247 CM_WRITE, /* metadata may be changed */
248 CM_READ_ONLY, /* metadata may not be changed */
249 CM_FAIL
250 };
251
252 enum cache_io_mode {
253 /*
254 * Data is written to cached blocks only. These blocks are marked
255 * dirty. If you lose the cache device you will lose data.
256 * Potential performance increase for both reads and writes.
257 */
258 CM_IO_WRITEBACK,
259
260 /*
261 * Data is written to both cache and origin. Blocks are never
262 * dirty. Potential performance benfit for reads only.
263 */
264 CM_IO_WRITETHROUGH,
265
266 /*
267 * A degraded mode useful for various cache coherency situations
268 * (eg, rolling back snapshots). Reads and writes always go to the
269 * origin. If a write goes to a cached oblock, then the cache
270 * block is invalidated.
271 */
272 CM_IO_PASSTHROUGH
273 };
274
275 struct cache_features {
276 enum cache_metadata_mode mode;
277 enum cache_io_mode io_mode;
278 unsigned metadata_version;
279 bool discard_passdown:1;
280 };
281
282 struct cache_stats {
283 atomic_t read_hit;
284 atomic_t read_miss;
285 atomic_t write_hit;
286 atomic_t write_miss;
287 atomic_t demotion;
288 atomic_t promotion;
289 atomic_t writeback;
290 atomic_t copies_avoided;
291 atomic_t cache_cell_clash;
292 atomic_t commit_count;
293 atomic_t discard_count;
294 };
295
296 struct cache {
297 struct dm_target *ti;
298 spinlock_t lock;
299
300 /*
301 * Fields for converting from sectors to blocks.
302 */
303 int sectors_per_block_shift;
304 sector_t sectors_per_block;
305
306 struct dm_cache_metadata *cmd;
307
308 /*
309 * Metadata is written to this device.
310 */
311 struct dm_dev *metadata_dev;
312
313 /*
314 * The slower of the two data devices. Typically a spindle.
315 */
316 struct dm_dev *origin_dev;
317
318 /*
319 * The faster of the two data devices. Typically an SSD.
320 */
321 struct dm_dev *cache_dev;
322
323 /*
324 * Size of the origin device in _complete_ blocks and native sectors.
325 */
326 dm_oblock_t origin_blocks;
327 sector_t origin_sectors;
328
329 /*
330 * Size of the cache device in blocks.
331 */
332 dm_cblock_t cache_size;
333
334 /*
335 * Invalidation fields.
336 */
337 spinlock_t invalidation_lock;
338 struct list_head invalidation_requests;
339
340 sector_t migration_threshold;
341 wait_queue_head_t migration_wait;
342 atomic_t nr_allocated_migrations;
343
344 /*
345 * The number of in flight migrations that are performing
346 * background io. eg, promotion, writeback.
347 */
348 atomic_t nr_io_migrations;
349
350 struct bio_list deferred_bios;
351
352 struct rw_semaphore quiesce_lock;
353
354 /*
355 * origin_blocks entries, discarded if set.
356 */
357 dm_dblock_t discard_nr_blocks;
358 unsigned long *discard_bitset;
359 uint32_t discard_block_size; /* a power of 2 times sectors per block */
360
361 /*
362 * Rather than reconstructing the table line for the status we just
363 * save it and regurgitate.
364 */
365 unsigned nr_ctr_args;
366 const char **ctr_args;
367
368 struct dm_kcopyd_client *copier;
369 struct work_struct deferred_bio_worker;
370 struct work_struct migration_worker;
371 struct workqueue_struct *wq;
372 struct delayed_work waker;
373 struct dm_bio_prison_v2 *prison;
374
375 /*
376 * cache_size entries, dirty if set
377 */
378 unsigned long *dirty_bitset;
379 atomic_t nr_dirty;
380
381 unsigned policy_nr_args;
382 struct dm_cache_policy *policy;
383
384 /*
385 * Cache features such as write-through.
386 */
387 struct cache_features features;
388
389 struct cache_stats stats;
390
391 bool need_tick_bio:1;
392 bool sized:1;
393 bool invalidate:1;
394 bool commit_requested:1;
395 bool loaded_mappings:1;
396 bool loaded_discards:1;
397
398 struct rw_semaphore background_work_lock;
399
400 struct batcher committer;
401 struct work_struct commit_ws;
402
403 struct dm_io_tracker tracker;
404
405 mempool_t migration_pool;
406
407 struct bio_set bs;
408 };
409
410 struct per_bio_data {
411 bool tick:1;
412 unsigned req_nr:2;
413 struct dm_bio_prison_cell_v2 *cell;
414 struct dm_hook_info hook_info;
415 sector_t len;
416 };
417
418 struct dm_cache_migration {
419 struct continuation k;
420 struct cache *cache;
421
422 struct policy_work *op;
423 struct bio *overwrite_bio;
424 struct dm_bio_prison_cell_v2 *cell;
425
426 dm_cblock_t invalidate_cblock;
427 dm_oblock_t invalidate_oblock;
428 };
429
430 /*----------------------------------------------------------------*/
431
writethrough_mode(struct cache * cache)432 static bool writethrough_mode(struct cache *cache)
433 {
434 return cache->features.io_mode == CM_IO_WRITETHROUGH;
435 }
436
writeback_mode(struct cache * cache)437 static bool writeback_mode(struct cache *cache)
438 {
439 return cache->features.io_mode == CM_IO_WRITEBACK;
440 }
441
passthrough_mode(struct cache * cache)442 static inline bool passthrough_mode(struct cache *cache)
443 {
444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445 }
446
447 /*----------------------------------------------------------------*/
448
wake_deferred_bio_worker(struct cache * cache)449 static void wake_deferred_bio_worker(struct cache *cache)
450 {
451 queue_work(cache->wq, &cache->deferred_bio_worker);
452 }
453
wake_migration_worker(struct cache * cache)454 static void wake_migration_worker(struct cache *cache)
455 {
456 if (passthrough_mode(cache))
457 return;
458
459 queue_work(cache->wq, &cache->migration_worker);
460 }
461
462 /*----------------------------------------------------------------*/
463
alloc_prison_cell(struct cache * cache)464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465 {
466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467 }
468
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell_v2 * cell)469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470 {
471 dm_bio_prison_free_cell_v2(cache->prison, cell);
472 }
473
alloc_migration(struct cache * cache)474 static struct dm_cache_migration *alloc_migration(struct cache *cache)
475 {
476 struct dm_cache_migration *mg;
477
478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479
480 memset(mg, 0, sizeof(*mg));
481
482 mg->cache = cache;
483 atomic_inc(&cache->nr_allocated_migrations);
484
485 return mg;
486 }
487
free_migration(struct dm_cache_migration * mg)488 static void free_migration(struct dm_cache_migration *mg)
489 {
490 struct cache *cache = mg->cache;
491
492 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 wake_up(&cache->migration_wait);
494
495 mempool_free(mg, &cache->migration_pool);
496 }
497
498 /*----------------------------------------------------------------*/
499
oblock_succ(dm_oblock_t b)500 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501 {
502 return to_oblock(from_oblock(b) + 1ull);
503 }
504
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key_v2 * key)505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506 {
507 key->virtual = 0;
508 key->dev = 0;
509 key->block_begin = from_oblock(begin);
510 key->block_end = from_oblock(end);
511 }
512
513 /*
514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
515 * level 1 which prevents *both* READs and WRITEs.
516 */
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
519
lock_level(struct bio * bio)520 static unsigned lock_level(struct bio *bio)
521 {
522 return bio_data_dir(bio) == WRITE ?
523 WRITE_LOCK_LEVEL :
524 READ_WRITE_LOCK_LEVEL;
525 }
526
527 /*----------------------------------------------------------------
528 * Per bio data
529 *--------------------------------------------------------------*/
530
get_per_bio_data(struct bio * bio)531 static struct per_bio_data *get_per_bio_data(struct bio *bio)
532 {
533 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534 BUG_ON(!pb);
535 return pb;
536 }
537
init_per_bio_data(struct bio * bio)538 static struct per_bio_data *init_per_bio_data(struct bio *bio)
539 {
540 struct per_bio_data *pb = get_per_bio_data(bio);
541
542 pb->tick = false;
543 pb->req_nr = dm_bio_get_target_bio_nr(bio);
544 pb->cell = NULL;
545 pb->len = 0;
546
547 return pb;
548 }
549
550 /*----------------------------------------------------------------*/
551
defer_bio(struct cache * cache,struct bio * bio)552 static void defer_bio(struct cache *cache, struct bio *bio)
553 {
554 spin_lock_irq(&cache->lock);
555 bio_list_add(&cache->deferred_bios, bio);
556 spin_unlock_irq(&cache->lock);
557
558 wake_deferred_bio_worker(cache);
559 }
560
defer_bios(struct cache * cache,struct bio_list * bios)561 static void defer_bios(struct cache *cache, struct bio_list *bios)
562 {
563 spin_lock_irq(&cache->lock);
564 bio_list_merge(&cache->deferred_bios, bios);
565 bio_list_init(bios);
566 spin_unlock_irq(&cache->lock);
567
568 wake_deferred_bio_worker(cache);
569 }
570
571 /*----------------------------------------------------------------*/
572
bio_detain_shared(struct cache * cache,dm_oblock_t oblock,struct bio * bio)573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574 {
575 bool r;
576 struct per_bio_data *pb;
577 struct dm_cell_key_v2 key;
578 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580
581 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582
583 build_key(oblock, end, &key);
584 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585 if (!r) {
586 /*
587 * Failed to get the lock.
588 */
589 free_prison_cell(cache, cell_prealloc);
590 return r;
591 }
592
593 if (cell != cell_prealloc)
594 free_prison_cell(cache, cell_prealloc);
595
596 pb = get_per_bio_data(bio);
597 pb->cell = cell;
598
599 return r;
600 }
601
602 /*----------------------------------------------------------------*/
603
is_dirty(struct cache * cache,dm_cblock_t b)604 static bool is_dirty(struct cache *cache, dm_cblock_t b)
605 {
606 return test_bit(from_cblock(b), cache->dirty_bitset);
607 }
608
set_dirty(struct cache * cache,dm_cblock_t cblock)609 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610 {
611 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612 atomic_inc(&cache->nr_dirty);
613 policy_set_dirty(cache->policy, cblock);
614 }
615 }
616
617 /*
618 * These two are called when setting after migrations to force the policy
619 * and dirty bitset to be in sync.
620 */
force_set_dirty(struct cache * cache,dm_cblock_t cblock)621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622 {
623 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624 atomic_inc(&cache->nr_dirty);
625 policy_set_dirty(cache->policy, cblock);
626 }
627
force_clear_dirty(struct cache * cache,dm_cblock_t cblock)628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629 {
630 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631 if (atomic_dec_return(&cache->nr_dirty) == 0)
632 dm_table_event(cache->ti->table);
633 }
634
635 policy_clear_dirty(cache->policy, cblock);
636 }
637
638 /*----------------------------------------------------------------*/
639
block_size_is_power_of_two(struct cache * cache)640 static bool block_size_is_power_of_two(struct cache *cache)
641 {
642 return cache->sectors_per_block_shift >= 0;
643 }
644
block_div(dm_block_t b,uint32_t n)645 static dm_block_t block_div(dm_block_t b, uint32_t n)
646 {
647 do_div(b, n);
648
649 return b;
650 }
651
oblocks_per_dblock(struct cache * cache)652 static dm_block_t oblocks_per_dblock(struct cache *cache)
653 {
654 dm_block_t oblocks = cache->discard_block_size;
655
656 if (block_size_is_power_of_two(cache))
657 oblocks >>= cache->sectors_per_block_shift;
658 else
659 oblocks = block_div(oblocks, cache->sectors_per_block);
660
661 return oblocks;
662 }
663
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665 {
666 return to_dblock(block_div(from_oblock(oblock),
667 oblocks_per_dblock(cache)));
668 }
669
set_discard(struct cache * cache,dm_dblock_t b)670 static void set_discard(struct cache *cache, dm_dblock_t b)
671 {
672 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673 atomic_inc(&cache->stats.discard_count);
674
675 spin_lock_irq(&cache->lock);
676 set_bit(from_dblock(b), cache->discard_bitset);
677 spin_unlock_irq(&cache->lock);
678 }
679
clear_discard(struct cache * cache,dm_dblock_t b)680 static void clear_discard(struct cache *cache, dm_dblock_t b)
681 {
682 spin_lock_irq(&cache->lock);
683 clear_bit(from_dblock(b), cache->discard_bitset);
684 spin_unlock_irq(&cache->lock);
685 }
686
is_discarded(struct cache * cache,dm_dblock_t b)687 static bool is_discarded(struct cache *cache, dm_dblock_t b)
688 {
689 int r;
690 spin_lock_irq(&cache->lock);
691 r = test_bit(from_dblock(b), cache->discard_bitset);
692 spin_unlock_irq(&cache->lock);
693
694 return r;
695 }
696
is_discarded_oblock(struct cache * cache,dm_oblock_t b)697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698 {
699 int r;
700 spin_lock_irq(&cache->lock);
701 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702 cache->discard_bitset);
703 spin_unlock_irq(&cache->lock);
704
705 return r;
706 }
707
708 /*----------------------------------------------------------------
709 * Remapping
710 *--------------------------------------------------------------*/
remap_to_origin(struct cache * cache,struct bio * bio)711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713 bio_set_dev(bio, cache->origin_dev->bdev);
714 }
715
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717 dm_cblock_t cblock)
718 {
719 sector_t bi_sector = bio->bi_iter.bi_sector;
720 sector_t block = from_cblock(cblock);
721
722 bio_set_dev(bio, cache->cache_dev->bdev);
723 if (!block_size_is_power_of_two(cache))
724 bio->bi_iter.bi_sector =
725 (block * cache->sectors_per_block) +
726 sector_div(bi_sector, cache->sectors_per_block);
727 else
728 bio->bi_iter.bi_sector =
729 (block << cache->sectors_per_block_shift) |
730 (bi_sector & (cache->sectors_per_block - 1));
731 }
732
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735 struct per_bio_data *pb;
736
737 spin_lock_irq(&cache->lock);
738 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739 bio_op(bio) != REQ_OP_DISCARD) {
740 pb = get_per_bio_data(bio);
741 pb->tick = true;
742 cache->need_tick_bio = false;
743 }
744 spin_unlock_irq(&cache->lock);
745 }
746
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)747 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748 dm_oblock_t oblock)
749 {
750 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
751 check_if_tick_bio_needed(cache, bio);
752 remap_to_origin(cache, bio);
753 if (bio_data_dir(bio) == WRITE)
754 clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758 dm_oblock_t oblock, dm_cblock_t cblock)
759 {
760 check_if_tick_bio_needed(cache, bio);
761 remap_to_cache(cache, bio, cblock);
762 if (bio_data_dir(bio) == WRITE) {
763 set_dirty(cache, cblock);
764 clear_discard(cache, oblock_to_dblock(cache, oblock));
765 }
766 }
767
get_bio_block(struct cache * cache,struct bio * bio)768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769 {
770 sector_t block_nr = bio->bi_iter.bi_sector;
771
772 if (!block_size_is_power_of_two(cache))
773 (void) sector_div(block_nr, cache->sectors_per_block);
774 else
775 block_nr >>= cache->sectors_per_block_shift;
776
777 return to_oblock(block_nr);
778 }
779
accountable_bio(struct cache * cache,struct bio * bio)780 static bool accountable_bio(struct cache *cache, struct bio *bio)
781 {
782 return bio_op(bio) != REQ_OP_DISCARD;
783 }
784
accounted_begin(struct cache * cache,struct bio * bio)785 static void accounted_begin(struct cache *cache, struct bio *bio)
786 {
787 struct per_bio_data *pb;
788
789 if (accountable_bio(cache, bio)) {
790 pb = get_per_bio_data(bio);
791 pb->len = bio_sectors(bio);
792 dm_iot_io_begin(&cache->tracker, pb->len);
793 }
794 }
795
accounted_complete(struct cache * cache,struct bio * bio)796 static void accounted_complete(struct cache *cache, struct bio *bio)
797 {
798 struct per_bio_data *pb = get_per_bio_data(bio);
799
800 dm_iot_io_end(&cache->tracker, pb->len);
801 }
802
accounted_request(struct cache * cache,struct bio * bio)803 static void accounted_request(struct cache *cache, struct bio *bio)
804 {
805 accounted_begin(cache, bio);
806 dm_submit_bio_remap(bio, NULL);
807 }
808
issue_op(struct bio * bio,void * context)809 static void issue_op(struct bio *bio, void *context)
810 {
811 struct cache *cache = context;
812 accounted_request(cache, bio);
813 }
814
815 /*
816 * When running in writethrough mode we need to send writes to clean blocks
817 * to both the cache and origin devices. Clone the bio and send them in parallel.
818 */
remap_to_origin_and_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)819 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
820 dm_oblock_t oblock, dm_cblock_t cblock)
821 {
822 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
823 GFP_NOIO, &cache->bs);
824
825 BUG_ON(!origin_bio);
826
827 bio_chain(origin_bio, bio);
828
829 if (bio_data_dir(origin_bio) == WRITE)
830 clear_discard(cache, oblock_to_dblock(cache, oblock));
831 submit_bio(origin_bio);
832
833 remap_to_cache(cache, bio, cblock);
834 }
835
836 /*----------------------------------------------------------------
837 * Failure modes
838 *--------------------------------------------------------------*/
get_cache_mode(struct cache * cache)839 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
840 {
841 return cache->features.mode;
842 }
843
cache_device_name(struct cache * cache)844 static const char *cache_device_name(struct cache *cache)
845 {
846 return dm_table_device_name(cache->ti->table);
847 }
848
notify_mode_switch(struct cache * cache,enum cache_metadata_mode mode)849 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
850 {
851 const char *descs[] = {
852 "write",
853 "read-only",
854 "fail"
855 };
856
857 dm_table_event(cache->ti->table);
858 DMINFO("%s: switching cache to %s mode",
859 cache_device_name(cache), descs[(int)mode]);
860 }
861
set_cache_mode(struct cache * cache,enum cache_metadata_mode new_mode)862 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
863 {
864 bool needs_check;
865 enum cache_metadata_mode old_mode = get_cache_mode(cache);
866
867 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
868 DMERR("%s: unable to read needs_check flag, setting failure mode.",
869 cache_device_name(cache));
870 new_mode = CM_FAIL;
871 }
872
873 if (new_mode == CM_WRITE && needs_check) {
874 DMERR("%s: unable to switch cache to write mode until repaired.",
875 cache_device_name(cache));
876 if (old_mode != new_mode)
877 new_mode = old_mode;
878 else
879 new_mode = CM_READ_ONLY;
880 }
881
882 /* Never move out of fail mode */
883 if (old_mode == CM_FAIL)
884 new_mode = CM_FAIL;
885
886 switch (new_mode) {
887 case CM_FAIL:
888 case CM_READ_ONLY:
889 dm_cache_metadata_set_read_only(cache->cmd);
890 break;
891
892 case CM_WRITE:
893 dm_cache_metadata_set_read_write(cache->cmd);
894 break;
895 }
896
897 cache->features.mode = new_mode;
898
899 if (new_mode != old_mode)
900 notify_mode_switch(cache, new_mode);
901 }
902
abort_transaction(struct cache * cache)903 static void abort_transaction(struct cache *cache)
904 {
905 const char *dev_name = cache_device_name(cache);
906
907 if (get_cache_mode(cache) >= CM_READ_ONLY)
908 return;
909
910 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
911 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
912 set_cache_mode(cache, CM_FAIL);
913 }
914
915 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
916 if (dm_cache_metadata_abort(cache->cmd)) {
917 DMERR("%s: failed to abort metadata transaction", dev_name);
918 set_cache_mode(cache, CM_FAIL);
919 }
920 }
921
metadata_operation_failed(struct cache * cache,const char * op,int r)922 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
923 {
924 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
925 cache_device_name(cache), op, r);
926 abort_transaction(cache);
927 set_cache_mode(cache, CM_READ_ONLY);
928 }
929
930 /*----------------------------------------------------------------*/
931
load_stats(struct cache * cache)932 static void load_stats(struct cache *cache)
933 {
934 struct dm_cache_statistics stats;
935
936 dm_cache_metadata_get_stats(cache->cmd, &stats);
937 atomic_set(&cache->stats.read_hit, stats.read_hits);
938 atomic_set(&cache->stats.read_miss, stats.read_misses);
939 atomic_set(&cache->stats.write_hit, stats.write_hits);
940 atomic_set(&cache->stats.write_miss, stats.write_misses);
941 }
942
save_stats(struct cache * cache)943 static void save_stats(struct cache *cache)
944 {
945 struct dm_cache_statistics stats;
946
947 if (get_cache_mode(cache) >= CM_READ_ONLY)
948 return;
949
950 stats.read_hits = atomic_read(&cache->stats.read_hit);
951 stats.read_misses = atomic_read(&cache->stats.read_miss);
952 stats.write_hits = atomic_read(&cache->stats.write_hit);
953 stats.write_misses = atomic_read(&cache->stats.write_miss);
954
955 dm_cache_metadata_set_stats(cache->cmd, &stats);
956 }
957
update_stats(struct cache_stats * stats,enum policy_operation op)958 static void update_stats(struct cache_stats *stats, enum policy_operation op)
959 {
960 switch (op) {
961 case POLICY_PROMOTE:
962 atomic_inc(&stats->promotion);
963 break;
964
965 case POLICY_DEMOTE:
966 atomic_inc(&stats->demotion);
967 break;
968
969 case POLICY_WRITEBACK:
970 atomic_inc(&stats->writeback);
971 break;
972 }
973 }
974
975 /*----------------------------------------------------------------
976 * Migration processing
977 *
978 * Migration covers moving data from the origin device to the cache, or
979 * vice versa.
980 *--------------------------------------------------------------*/
981
inc_io_migrations(struct cache * cache)982 static void inc_io_migrations(struct cache *cache)
983 {
984 atomic_inc(&cache->nr_io_migrations);
985 }
986
dec_io_migrations(struct cache * cache)987 static void dec_io_migrations(struct cache *cache)
988 {
989 atomic_dec(&cache->nr_io_migrations);
990 }
991
discard_or_flush(struct bio * bio)992 static bool discard_or_flush(struct bio *bio)
993 {
994 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
995 }
996
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)997 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
998 dm_dblock_t *b, dm_dblock_t *e)
999 {
1000 sector_t sb = bio->bi_iter.bi_sector;
1001 sector_t se = bio_end_sector(bio);
1002
1003 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1004
1005 if (se - sb < cache->discard_block_size)
1006 *e = *b;
1007 else
1008 *e = to_dblock(block_div(se, cache->discard_block_size));
1009 }
1010
1011 /*----------------------------------------------------------------*/
1012
prevent_background_work(struct cache * cache)1013 static void prevent_background_work(struct cache *cache)
1014 {
1015 lockdep_off();
1016 down_write(&cache->background_work_lock);
1017 lockdep_on();
1018 }
1019
allow_background_work(struct cache * cache)1020 static void allow_background_work(struct cache *cache)
1021 {
1022 lockdep_off();
1023 up_write(&cache->background_work_lock);
1024 lockdep_on();
1025 }
1026
background_work_begin(struct cache * cache)1027 static bool background_work_begin(struct cache *cache)
1028 {
1029 bool r;
1030
1031 lockdep_off();
1032 r = down_read_trylock(&cache->background_work_lock);
1033 lockdep_on();
1034
1035 return r;
1036 }
1037
background_work_end(struct cache * cache)1038 static void background_work_end(struct cache *cache)
1039 {
1040 lockdep_off();
1041 up_read(&cache->background_work_lock);
1042 lockdep_on();
1043 }
1044
1045 /*----------------------------------------------------------------*/
1046
bio_writes_complete_block(struct cache * cache,struct bio * bio)1047 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1048 {
1049 return (bio_data_dir(bio) == WRITE) &&
1050 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1051 }
1052
optimisable_bio(struct cache * cache,struct bio * bio,dm_oblock_t block)1053 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1054 {
1055 return writeback_mode(cache) &&
1056 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1057 }
1058
quiesce(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1059 static void quiesce(struct dm_cache_migration *mg,
1060 void (*continuation)(struct work_struct *))
1061 {
1062 init_continuation(&mg->k, continuation);
1063 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1064 }
1065
ws_to_mg(struct work_struct * ws)1066 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1067 {
1068 struct continuation *k = container_of(ws, struct continuation, ws);
1069 return container_of(k, struct dm_cache_migration, k);
1070 }
1071
copy_complete(int read_err,unsigned long write_err,void * context)1072 static void copy_complete(int read_err, unsigned long write_err, void *context)
1073 {
1074 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1075
1076 if (read_err || write_err)
1077 mg->k.input = BLK_STS_IOERR;
1078
1079 queue_continuation(mg->cache->wq, &mg->k);
1080 }
1081
copy(struct dm_cache_migration * mg,bool promote)1082 static void copy(struct dm_cache_migration *mg, bool promote)
1083 {
1084 struct dm_io_region o_region, c_region;
1085 struct cache *cache = mg->cache;
1086
1087 o_region.bdev = cache->origin_dev->bdev;
1088 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1089 o_region.count = cache->sectors_per_block;
1090
1091 c_region.bdev = cache->cache_dev->bdev;
1092 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1093 c_region.count = cache->sectors_per_block;
1094
1095 if (promote)
1096 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1097 else
1098 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1099 }
1100
bio_drop_shared_lock(struct cache * cache,struct bio * bio)1101 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1102 {
1103 struct per_bio_data *pb = get_per_bio_data(bio);
1104
1105 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1106 free_prison_cell(cache, pb->cell);
1107 pb->cell = NULL;
1108 }
1109
overwrite_endio(struct bio * bio)1110 static void overwrite_endio(struct bio *bio)
1111 {
1112 struct dm_cache_migration *mg = bio->bi_private;
1113 struct cache *cache = mg->cache;
1114 struct per_bio_data *pb = get_per_bio_data(bio);
1115
1116 dm_unhook_bio(&pb->hook_info, bio);
1117
1118 if (bio->bi_status)
1119 mg->k.input = bio->bi_status;
1120
1121 queue_continuation(cache->wq, &mg->k);
1122 }
1123
overwrite(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1124 static void overwrite(struct dm_cache_migration *mg,
1125 void (*continuation)(struct work_struct *))
1126 {
1127 struct bio *bio = mg->overwrite_bio;
1128 struct per_bio_data *pb = get_per_bio_data(bio);
1129
1130 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1131
1132 /*
1133 * The overwrite bio is part of the copy operation, as such it does
1134 * not set/clear discard or dirty flags.
1135 */
1136 if (mg->op->op == POLICY_PROMOTE)
1137 remap_to_cache(mg->cache, bio, mg->op->cblock);
1138 else
1139 remap_to_origin(mg->cache, bio);
1140
1141 init_continuation(&mg->k, continuation);
1142 accounted_request(mg->cache, bio);
1143 }
1144
1145 /*
1146 * Migration steps:
1147 *
1148 * 1) exclusive lock preventing WRITEs
1149 * 2) quiesce
1150 * 3) copy or issue overwrite bio
1151 * 4) upgrade to exclusive lock preventing READs and WRITEs
1152 * 5) quiesce
1153 * 6) update metadata and commit
1154 * 7) unlock
1155 */
mg_complete(struct dm_cache_migration * mg,bool success)1156 static void mg_complete(struct dm_cache_migration *mg, bool success)
1157 {
1158 struct bio_list bios;
1159 struct cache *cache = mg->cache;
1160 struct policy_work *op = mg->op;
1161 dm_cblock_t cblock = op->cblock;
1162
1163 if (success)
1164 update_stats(&cache->stats, op->op);
1165
1166 switch (op->op) {
1167 case POLICY_PROMOTE:
1168 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1169 policy_complete_background_work(cache->policy, op, success);
1170
1171 if (mg->overwrite_bio) {
1172 if (success)
1173 force_set_dirty(cache, cblock);
1174 else if (mg->k.input)
1175 mg->overwrite_bio->bi_status = mg->k.input;
1176 else
1177 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1178 bio_endio(mg->overwrite_bio);
1179 } else {
1180 if (success)
1181 force_clear_dirty(cache, cblock);
1182 dec_io_migrations(cache);
1183 }
1184 break;
1185
1186 case POLICY_DEMOTE:
1187 /*
1188 * We clear dirty here to update the nr_dirty counter.
1189 */
1190 if (success)
1191 force_clear_dirty(cache, cblock);
1192 policy_complete_background_work(cache->policy, op, success);
1193 dec_io_migrations(cache);
1194 break;
1195
1196 case POLICY_WRITEBACK:
1197 if (success)
1198 force_clear_dirty(cache, cblock);
1199 policy_complete_background_work(cache->policy, op, success);
1200 dec_io_migrations(cache);
1201 break;
1202 }
1203
1204 bio_list_init(&bios);
1205 if (mg->cell) {
1206 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1207 free_prison_cell(cache, mg->cell);
1208 }
1209
1210 free_migration(mg);
1211 defer_bios(cache, &bios);
1212 wake_migration_worker(cache);
1213
1214 background_work_end(cache);
1215 }
1216
mg_success(struct work_struct * ws)1217 static void mg_success(struct work_struct *ws)
1218 {
1219 struct dm_cache_migration *mg = ws_to_mg(ws);
1220 mg_complete(mg, mg->k.input == 0);
1221 }
1222
mg_update_metadata(struct work_struct * ws)1223 static void mg_update_metadata(struct work_struct *ws)
1224 {
1225 int r;
1226 struct dm_cache_migration *mg = ws_to_mg(ws);
1227 struct cache *cache = mg->cache;
1228 struct policy_work *op = mg->op;
1229
1230 switch (op->op) {
1231 case POLICY_PROMOTE:
1232 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1233 if (r) {
1234 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1235 cache_device_name(cache));
1236 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1237
1238 mg_complete(mg, false);
1239 return;
1240 }
1241 mg_complete(mg, true);
1242 break;
1243
1244 case POLICY_DEMOTE:
1245 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1246 if (r) {
1247 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1248 cache_device_name(cache));
1249 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1250
1251 mg_complete(mg, false);
1252 return;
1253 }
1254
1255 /*
1256 * It would be nice if we only had to commit when a REQ_FLUSH
1257 * comes through. But there's one scenario that we have to
1258 * look out for:
1259 *
1260 * - vblock x in a cache block
1261 * - domotion occurs
1262 * - cache block gets reallocated and over written
1263 * - crash
1264 *
1265 * When we recover, because there was no commit the cache will
1266 * rollback to having the data for vblock x in the cache block.
1267 * But the cache block has since been overwritten, so it'll end
1268 * up pointing to data that was never in 'x' during the history
1269 * of the device.
1270 *
1271 * To avoid this issue we require a commit as part of the
1272 * demotion operation.
1273 */
1274 init_continuation(&mg->k, mg_success);
1275 continue_after_commit(&cache->committer, &mg->k);
1276 schedule_commit(&cache->committer);
1277 break;
1278
1279 case POLICY_WRITEBACK:
1280 mg_complete(mg, true);
1281 break;
1282 }
1283 }
1284
mg_update_metadata_after_copy(struct work_struct * ws)1285 static void mg_update_metadata_after_copy(struct work_struct *ws)
1286 {
1287 struct dm_cache_migration *mg = ws_to_mg(ws);
1288
1289 /*
1290 * Did the copy succeed?
1291 */
1292 if (mg->k.input)
1293 mg_complete(mg, false);
1294 else
1295 mg_update_metadata(ws);
1296 }
1297
mg_upgrade_lock(struct work_struct * ws)1298 static void mg_upgrade_lock(struct work_struct *ws)
1299 {
1300 int r;
1301 struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303 /*
1304 * Did the copy succeed?
1305 */
1306 if (mg->k.input)
1307 mg_complete(mg, false);
1308
1309 else {
1310 /*
1311 * Now we want the lock to prevent both reads and writes.
1312 */
1313 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1314 READ_WRITE_LOCK_LEVEL);
1315 if (r < 0)
1316 mg_complete(mg, false);
1317
1318 else if (r)
1319 quiesce(mg, mg_update_metadata);
1320
1321 else
1322 mg_update_metadata(ws);
1323 }
1324 }
1325
mg_full_copy(struct work_struct * ws)1326 static void mg_full_copy(struct work_struct *ws)
1327 {
1328 struct dm_cache_migration *mg = ws_to_mg(ws);
1329 struct cache *cache = mg->cache;
1330 struct policy_work *op = mg->op;
1331 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1332
1333 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1334 is_discarded_oblock(cache, op->oblock)) {
1335 mg_upgrade_lock(ws);
1336 return;
1337 }
1338
1339 init_continuation(&mg->k, mg_upgrade_lock);
1340 copy(mg, is_policy_promote);
1341 }
1342
mg_copy(struct work_struct * ws)1343 static void mg_copy(struct work_struct *ws)
1344 {
1345 struct dm_cache_migration *mg = ws_to_mg(ws);
1346
1347 if (mg->overwrite_bio) {
1348 /*
1349 * No exclusive lock was held when we last checked if the bio
1350 * was optimisable. So we have to check again in case things
1351 * have changed (eg, the block may no longer be discarded).
1352 */
1353 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1354 /*
1355 * Fallback to a real full copy after doing some tidying up.
1356 */
1357 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1358 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1359 mg->overwrite_bio = NULL;
1360 inc_io_migrations(mg->cache);
1361 mg_full_copy(ws);
1362 return;
1363 }
1364
1365 /*
1366 * It's safe to do this here, even though it's new data
1367 * because all IO has been locked out of the block.
1368 *
1369 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1370 * so _not_ using mg_upgrade_lock() as continutation.
1371 */
1372 overwrite(mg, mg_update_metadata_after_copy);
1373
1374 } else
1375 mg_full_copy(ws);
1376 }
1377
mg_lock_writes(struct dm_cache_migration * mg)1378 static int mg_lock_writes(struct dm_cache_migration *mg)
1379 {
1380 int r;
1381 struct dm_cell_key_v2 key;
1382 struct cache *cache = mg->cache;
1383 struct dm_bio_prison_cell_v2 *prealloc;
1384
1385 prealloc = alloc_prison_cell(cache);
1386
1387 /*
1388 * Prevent writes to the block, but allow reads to continue.
1389 * Unless we're using an overwrite bio, in which case we lock
1390 * everything.
1391 */
1392 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1393 r = dm_cell_lock_v2(cache->prison, &key,
1394 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1395 prealloc, &mg->cell);
1396 if (r < 0) {
1397 free_prison_cell(cache, prealloc);
1398 mg_complete(mg, false);
1399 return r;
1400 }
1401
1402 if (mg->cell != prealloc)
1403 free_prison_cell(cache, prealloc);
1404
1405 if (r == 0)
1406 mg_copy(&mg->k.ws);
1407 else
1408 quiesce(mg, mg_copy);
1409
1410 return 0;
1411 }
1412
mg_start(struct cache * cache,struct policy_work * op,struct bio * bio)1413 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1414 {
1415 struct dm_cache_migration *mg;
1416
1417 if (!background_work_begin(cache)) {
1418 policy_complete_background_work(cache->policy, op, false);
1419 return -EPERM;
1420 }
1421
1422 mg = alloc_migration(cache);
1423
1424 mg->op = op;
1425 mg->overwrite_bio = bio;
1426
1427 if (!bio)
1428 inc_io_migrations(cache);
1429
1430 return mg_lock_writes(mg);
1431 }
1432
1433 /*----------------------------------------------------------------
1434 * invalidation processing
1435 *--------------------------------------------------------------*/
1436
invalidate_complete(struct dm_cache_migration * mg,bool success)1437 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1438 {
1439 struct bio_list bios;
1440 struct cache *cache = mg->cache;
1441
1442 bio_list_init(&bios);
1443 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1444 free_prison_cell(cache, mg->cell);
1445
1446 if (!success && mg->overwrite_bio)
1447 bio_io_error(mg->overwrite_bio);
1448
1449 free_migration(mg);
1450 defer_bios(cache, &bios);
1451
1452 background_work_end(cache);
1453 }
1454
invalidate_completed(struct work_struct * ws)1455 static void invalidate_completed(struct work_struct *ws)
1456 {
1457 struct dm_cache_migration *mg = ws_to_mg(ws);
1458 invalidate_complete(mg, !mg->k.input);
1459 }
1460
invalidate_cblock(struct cache * cache,dm_cblock_t cblock)1461 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1462 {
1463 int r = policy_invalidate_mapping(cache->policy, cblock);
1464 if (!r) {
1465 r = dm_cache_remove_mapping(cache->cmd, cblock);
1466 if (r) {
1467 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1468 cache_device_name(cache));
1469 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1470 }
1471
1472 } else if (r == -ENODATA) {
1473 /*
1474 * Harmless, already unmapped.
1475 */
1476 r = 0;
1477
1478 } else
1479 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1480
1481 return r;
1482 }
1483
invalidate_remove(struct work_struct * ws)1484 static void invalidate_remove(struct work_struct *ws)
1485 {
1486 int r;
1487 struct dm_cache_migration *mg = ws_to_mg(ws);
1488 struct cache *cache = mg->cache;
1489
1490 r = invalidate_cblock(cache, mg->invalidate_cblock);
1491 if (r) {
1492 invalidate_complete(mg, false);
1493 return;
1494 }
1495
1496 init_continuation(&mg->k, invalidate_completed);
1497 continue_after_commit(&cache->committer, &mg->k);
1498 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1499 mg->overwrite_bio = NULL;
1500 schedule_commit(&cache->committer);
1501 }
1502
invalidate_lock(struct dm_cache_migration * mg)1503 static int invalidate_lock(struct dm_cache_migration *mg)
1504 {
1505 int r;
1506 struct dm_cell_key_v2 key;
1507 struct cache *cache = mg->cache;
1508 struct dm_bio_prison_cell_v2 *prealloc;
1509
1510 prealloc = alloc_prison_cell(cache);
1511
1512 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1513 r = dm_cell_lock_v2(cache->prison, &key,
1514 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1515 if (r < 0) {
1516 free_prison_cell(cache, prealloc);
1517 invalidate_complete(mg, false);
1518 return r;
1519 }
1520
1521 if (mg->cell != prealloc)
1522 free_prison_cell(cache, prealloc);
1523
1524 if (r)
1525 quiesce(mg, invalidate_remove);
1526
1527 else {
1528 /*
1529 * We can't call invalidate_remove() directly here because we
1530 * might still be in request context.
1531 */
1532 init_continuation(&mg->k, invalidate_remove);
1533 queue_work(cache->wq, &mg->k.ws);
1534 }
1535
1536 return 0;
1537 }
1538
invalidate_start(struct cache * cache,dm_cblock_t cblock,dm_oblock_t oblock,struct bio * bio)1539 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1540 dm_oblock_t oblock, struct bio *bio)
1541 {
1542 struct dm_cache_migration *mg;
1543
1544 if (!background_work_begin(cache))
1545 return -EPERM;
1546
1547 mg = alloc_migration(cache);
1548
1549 mg->overwrite_bio = bio;
1550 mg->invalidate_cblock = cblock;
1551 mg->invalidate_oblock = oblock;
1552
1553 return invalidate_lock(mg);
1554 }
1555
1556 /*----------------------------------------------------------------
1557 * bio processing
1558 *--------------------------------------------------------------*/
1559
1560 enum busy {
1561 IDLE,
1562 BUSY
1563 };
1564
spare_migration_bandwidth(struct cache * cache)1565 static enum busy spare_migration_bandwidth(struct cache *cache)
1566 {
1567 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1568 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1569 cache->sectors_per_block;
1570
1571 if (idle && current_volume <= cache->migration_threshold)
1572 return IDLE;
1573 else
1574 return BUSY;
1575 }
1576
inc_hit_counter(struct cache * cache,struct bio * bio)1577 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1578 {
1579 atomic_inc(bio_data_dir(bio) == READ ?
1580 &cache->stats.read_hit : &cache->stats.write_hit);
1581 }
1582
inc_miss_counter(struct cache * cache,struct bio * bio)1583 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1584 {
1585 atomic_inc(bio_data_dir(bio) == READ ?
1586 &cache->stats.read_miss : &cache->stats.write_miss);
1587 }
1588
1589 /*----------------------------------------------------------------*/
1590
map_bio(struct cache * cache,struct bio * bio,dm_oblock_t block,bool * commit_needed)1591 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1592 bool *commit_needed)
1593 {
1594 int r, data_dir;
1595 bool rb, background_queued;
1596 dm_cblock_t cblock;
1597
1598 *commit_needed = false;
1599
1600 rb = bio_detain_shared(cache, block, bio);
1601 if (!rb) {
1602 /*
1603 * An exclusive lock is held for this block, so we have to
1604 * wait. We set the commit_needed flag so the current
1605 * transaction will be committed asap, allowing this lock
1606 * to be dropped.
1607 */
1608 *commit_needed = true;
1609 return DM_MAPIO_SUBMITTED;
1610 }
1611
1612 data_dir = bio_data_dir(bio);
1613
1614 if (optimisable_bio(cache, bio, block)) {
1615 struct policy_work *op = NULL;
1616
1617 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1618 if (unlikely(r && r != -ENOENT)) {
1619 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1620 cache_device_name(cache), r);
1621 bio_io_error(bio);
1622 return DM_MAPIO_SUBMITTED;
1623 }
1624
1625 if (r == -ENOENT && op) {
1626 bio_drop_shared_lock(cache, bio);
1627 BUG_ON(op->op != POLICY_PROMOTE);
1628 mg_start(cache, op, bio);
1629 return DM_MAPIO_SUBMITTED;
1630 }
1631 } else {
1632 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1633 if (unlikely(r && r != -ENOENT)) {
1634 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1635 cache_device_name(cache), r);
1636 bio_io_error(bio);
1637 return DM_MAPIO_SUBMITTED;
1638 }
1639
1640 if (background_queued)
1641 wake_migration_worker(cache);
1642 }
1643
1644 if (r == -ENOENT) {
1645 struct per_bio_data *pb = get_per_bio_data(bio);
1646
1647 /*
1648 * Miss.
1649 */
1650 inc_miss_counter(cache, bio);
1651 if (pb->req_nr == 0) {
1652 accounted_begin(cache, bio);
1653 remap_to_origin_clear_discard(cache, bio, block);
1654 } else {
1655 /*
1656 * This is a duplicate writethrough io that is no
1657 * longer needed because the block has been demoted.
1658 */
1659 bio_endio(bio);
1660 return DM_MAPIO_SUBMITTED;
1661 }
1662 } else {
1663 /*
1664 * Hit.
1665 */
1666 inc_hit_counter(cache, bio);
1667
1668 /*
1669 * Passthrough always maps to the origin, invalidating any
1670 * cache blocks that are written to.
1671 */
1672 if (passthrough_mode(cache)) {
1673 if (bio_data_dir(bio) == WRITE) {
1674 bio_drop_shared_lock(cache, bio);
1675 atomic_inc(&cache->stats.demotion);
1676 invalidate_start(cache, cblock, block, bio);
1677 } else
1678 remap_to_origin_clear_discard(cache, bio, block);
1679 } else {
1680 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1681 !is_dirty(cache, cblock)) {
1682 remap_to_origin_and_cache(cache, bio, block, cblock);
1683 accounted_begin(cache, bio);
1684 } else
1685 remap_to_cache_dirty(cache, bio, block, cblock);
1686 }
1687 }
1688
1689 /*
1690 * dm core turns FUA requests into a separate payload and FLUSH req.
1691 */
1692 if (bio->bi_opf & REQ_FUA) {
1693 /*
1694 * issue_after_commit will call accounted_begin a second time. So
1695 * we call accounted_complete() to avoid double accounting.
1696 */
1697 accounted_complete(cache, bio);
1698 issue_after_commit(&cache->committer, bio);
1699 *commit_needed = true;
1700 return DM_MAPIO_SUBMITTED;
1701 }
1702
1703 return DM_MAPIO_REMAPPED;
1704 }
1705
process_bio(struct cache * cache,struct bio * bio)1706 static bool process_bio(struct cache *cache, struct bio *bio)
1707 {
1708 bool commit_needed;
1709
1710 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1711 dm_submit_bio_remap(bio, NULL);
1712
1713 return commit_needed;
1714 }
1715
1716 /*
1717 * A non-zero return indicates read_only or fail_io mode.
1718 */
commit(struct cache * cache,bool clean_shutdown)1719 static int commit(struct cache *cache, bool clean_shutdown)
1720 {
1721 int r;
1722
1723 if (get_cache_mode(cache) >= CM_READ_ONLY)
1724 return -EINVAL;
1725
1726 atomic_inc(&cache->stats.commit_count);
1727 r = dm_cache_commit(cache->cmd, clean_shutdown);
1728 if (r)
1729 metadata_operation_failed(cache, "dm_cache_commit", r);
1730
1731 return r;
1732 }
1733
1734 /*
1735 * Used by the batcher.
1736 */
commit_op(void * context)1737 static blk_status_t commit_op(void *context)
1738 {
1739 struct cache *cache = context;
1740
1741 if (dm_cache_changed_this_transaction(cache->cmd))
1742 return errno_to_blk_status(commit(cache, false));
1743
1744 return 0;
1745 }
1746
1747 /*----------------------------------------------------------------*/
1748
process_flush_bio(struct cache * cache,struct bio * bio)1749 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1750 {
1751 struct per_bio_data *pb = get_per_bio_data(bio);
1752
1753 if (!pb->req_nr)
1754 remap_to_origin(cache, bio);
1755 else
1756 remap_to_cache(cache, bio, 0);
1757
1758 issue_after_commit(&cache->committer, bio);
1759 return true;
1760 }
1761
process_discard_bio(struct cache * cache,struct bio * bio)1762 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1763 {
1764 dm_dblock_t b, e;
1765
1766 // FIXME: do we need to lock the region? Or can we just assume the
1767 // user wont be so foolish as to issue discard concurrently with
1768 // other IO?
1769 calc_discard_block_range(cache, bio, &b, &e);
1770 while (b != e) {
1771 set_discard(cache, b);
1772 b = to_dblock(from_dblock(b) + 1);
1773 }
1774
1775 if (cache->features.discard_passdown) {
1776 remap_to_origin(cache, bio);
1777 dm_submit_bio_remap(bio, NULL);
1778 } else
1779 bio_endio(bio);
1780
1781 return false;
1782 }
1783
process_deferred_bios(struct work_struct * ws)1784 static void process_deferred_bios(struct work_struct *ws)
1785 {
1786 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1787
1788 bool commit_needed = false;
1789 struct bio_list bios;
1790 struct bio *bio;
1791
1792 bio_list_init(&bios);
1793
1794 spin_lock_irq(&cache->lock);
1795 bio_list_merge(&bios, &cache->deferred_bios);
1796 bio_list_init(&cache->deferred_bios);
1797 spin_unlock_irq(&cache->lock);
1798
1799 while ((bio = bio_list_pop(&bios))) {
1800 if (bio->bi_opf & REQ_PREFLUSH)
1801 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1802
1803 else if (bio_op(bio) == REQ_OP_DISCARD)
1804 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1805
1806 else
1807 commit_needed = process_bio(cache, bio) || commit_needed;
1808 }
1809
1810 if (commit_needed)
1811 schedule_commit(&cache->committer);
1812 }
1813
1814 /*----------------------------------------------------------------
1815 * Main worker loop
1816 *--------------------------------------------------------------*/
1817
requeue_deferred_bios(struct cache * cache)1818 static void requeue_deferred_bios(struct cache *cache)
1819 {
1820 struct bio *bio;
1821 struct bio_list bios;
1822
1823 bio_list_init(&bios);
1824 bio_list_merge(&bios, &cache->deferred_bios);
1825 bio_list_init(&cache->deferred_bios);
1826
1827 while ((bio = bio_list_pop(&bios))) {
1828 bio->bi_status = BLK_STS_DM_REQUEUE;
1829 bio_endio(bio);
1830 }
1831 }
1832
1833 /*
1834 * We want to commit periodically so that not too much
1835 * unwritten metadata builds up.
1836 */
do_waker(struct work_struct * ws)1837 static void do_waker(struct work_struct *ws)
1838 {
1839 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1840
1841 policy_tick(cache->policy, true);
1842 wake_migration_worker(cache);
1843 schedule_commit(&cache->committer);
1844 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1845 }
1846
check_migrations(struct work_struct * ws)1847 static void check_migrations(struct work_struct *ws)
1848 {
1849 int r;
1850 struct policy_work *op;
1851 struct cache *cache = container_of(ws, struct cache, migration_worker);
1852 enum busy b;
1853
1854 for (;;) {
1855 b = spare_migration_bandwidth(cache);
1856
1857 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1858 if (r == -ENODATA)
1859 break;
1860
1861 if (r) {
1862 DMERR_LIMIT("%s: policy_background_work failed",
1863 cache_device_name(cache));
1864 break;
1865 }
1866
1867 r = mg_start(cache, op, NULL);
1868 if (r)
1869 break;
1870 }
1871 }
1872
1873 /*----------------------------------------------------------------
1874 * Target methods
1875 *--------------------------------------------------------------*/
1876
1877 /*
1878 * This function gets called on the error paths of the constructor, so we
1879 * have to cope with a partially initialised struct.
1880 */
destroy(struct cache * cache)1881 static void destroy(struct cache *cache)
1882 {
1883 unsigned i;
1884
1885 mempool_exit(&cache->migration_pool);
1886
1887 if (cache->prison)
1888 dm_bio_prison_destroy_v2(cache->prison);
1889
1890 if (cache->wq)
1891 destroy_workqueue(cache->wq);
1892
1893 if (cache->dirty_bitset)
1894 free_bitset(cache->dirty_bitset);
1895
1896 if (cache->discard_bitset)
1897 free_bitset(cache->discard_bitset);
1898
1899 if (cache->copier)
1900 dm_kcopyd_client_destroy(cache->copier);
1901
1902 if (cache->cmd)
1903 dm_cache_metadata_close(cache->cmd);
1904
1905 if (cache->metadata_dev)
1906 dm_put_device(cache->ti, cache->metadata_dev);
1907
1908 if (cache->origin_dev)
1909 dm_put_device(cache->ti, cache->origin_dev);
1910
1911 if (cache->cache_dev)
1912 dm_put_device(cache->ti, cache->cache_dev);
1913
1914 if (cache->policy)
1915 dm_cache_policy_destroy(cache->policy);
1916
1917 for (i = 0; i < cache->nr_ctr_args ; i++)
1918 kfree(cache->ctr_args[i]);
1919 kfree(cache->ctr_args);
1920
1921 bioset_exit(&cache->bs);
1922
1923 kfree(cache);
1924 }
1925
cache_dtr(struct dm_target * ti)1926 static void cache_dtr(struct dm_target *ti)
1927 {
1928 struct cache *cache = ti->private;
1929
1930 destroy(cache);
1931 }
1932
get_dev_size(struct dm_dev * dev)1933 static sector_t get_dev_size(struct dm_dev *dev)
1934 {
1935 return bdev_nr_sectors(dev->bdev);
1936 }
1937
1938 /*----------------------------------------------------------------*/
1939
1940 /*
1941 * Construct a cache device mapping.
1942 *
1943 * cache <metadata dev> <cache dev> <origin dev> <block size>
1944 * <#feature args> [<feature arg>]*
1945 * <policy> <#policy args> [<policy arg>]*
1946 *
1947 * metadata dev : fast device holding the persistent metadata
1948 * cache dev : fast device holding cached data blocks
1949 * origin dev : slow device holding original data blocks
1950 * block size : cache unit size in sectors
1951 *
1952 * #feature args : number of feature arguments passed
1953 * feature args : writethrough. (The default is writeback.)
1954 *
1955 * policy : the replacement policy to use
1956 * #policy args : an even number of policy arguments corresponding
1957 * to key/value pairs passed to the policy
1958 * policy args : key/value pairs passed to the policy
1959 * E.g. 'sequential_threshold 1024'
1960 * See cache-policies.txt for details.
1961 *
1962 * Optional feature arguments are:
1963 * writethrough : write through caching that prohibits cache block
1964 * content from being different from origin block content.
1965 * Without this argument, the default behaviour is to write
1966 * back cache block contents later for performance reasons,
1967 * so they may differ from the corresponding origin blocks.
1968 */
1969 struct cache_args {
1970 struct dm_target *ti;
1971
1972 struct dm_dev *metadata_dev;
1973
1974 struct dm_dev *cache_dev;
1975 sector_t cache_sectors;
1976
1977 struct dm_dev *origin_dev;
1978 sector_t origin_sectors;
1979
1980 uint32_t block_size;
1981
1982 const char *policy_name;
1983 int policy_argc;
1984 const char **policy_argv;
1985
1986 struct cache_features features;
1987 };
1988
destroy_cache_args(struct cache_args * ca)1989 static void destroy_cache_args(struct cache_args *ca)
1990 {
1991 if (ca->metadata_dev)
1992 dm_put_device(ca->ti, ca->metadata_dev);
1993
1994 if (ca->cache_dev)
1995 dm_put_device(ca->ti, ca->cache_dev);
1996
1997 if (ca->origin_dev)
1998 dm_put_device(ca->ti, ca->origin_dev);
1999
2000 kfree(ca);
2001 }
2002
at_least_one_arg(struct dm_arg_set * as,char ** error)2003 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2004 {
2005 if (!as->argc) {
2006 *error = "Insufficient args";
2007 return false;
2008 }
2009
2010 return true;
2011 }
2012
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2013 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2014 char **error)
2015 {
2016 int r;
2017 sector_t metadata_dev_size;
2018
2019 if (!at_least_one_arg(as, error))
2020 return -EINVAL;
2021
2022 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2023 &ca->metadata_dev);
2024 if (r) {
2025 *error = "Error opening metadata device";
2026 return r;
2027 }
2028
2029 metadata_dev_size = get_dev_size(ca->metadata_dev);
2030 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2031 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2032 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2033
2034 return 0;
2035 }
2036
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2037 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2038 char **error)
2039 {
2040 int r;
2041
2042 if (!at_least_one_arg(as, error))
2043 return -EINVAL;
2044
2045 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2046 &ca->cache_dev);
2047 if (r) {
2048 *error = "Error opening cache device";
2049 return r;
2050 }
2051 ca->cache_sectors = get_dev_size(ca->cache_dev);
2052
2053 return 0;
2054 }
2055
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2056 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2057 char **error)
2058 {
2059 int r;
2060
2061 if (!at_least_one_arg(as, error))
2062 return -EINVAL;
2063
2064 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2065 &ca->origin_dev);
2066 if (r) {
2067 *error = "Error opening origin device";
2068 return r;
2069 }
2070
2071 ca->origin_sectors = get_dev_size(ca->origin_dev);
2072 if (ca->ti->len > ca->origin_sectors) {
2073 *error = "Device size larger than cached device";
2074 return -EINVAL;
2075 }
2076
2077 return 0;
2078 }
2079
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2080 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2081 char **error)
2082 {
2083 unsigned long block_size;
2084
2085 if (!at_least_one_arg(as, error))
2086 return -EINVAL;
2087
2088 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2089 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2090 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2091 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2092 *error = "Invalid data block size";
2093 return -EINVAL;
2094 }
2095
2096 if (block_size > ca->cache_sectors) {
2097 *error = "Data block size is larger than the cache device";
2098 return -EINVAL;
2099 }
2100
2101 ca->block_size = block_size;
2102
2103 return 0;
2104 }
2105
init_features(struct cache_features * cf)2106 static void init_features(struct cache_features *cf)
2107 {
2108 cf->mode = CM_WRITE;
2109 cf->io_mode = CM_IO_WRITEBACK;
2110 cf->metadata_version = 1;
2111 cf->discard_passdown = true;
2112 }
2113
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2114 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2115 char **error)
2116 {
2117 static const struct dm_arg _args[] = {
2118 {0, 3, "Invalid number of cache feature arguments"},
2119 };
2120
2121 int r, mode_ctr = 0;
2122 unsigned argc;
2123 const char *arg;
2124 struct cache_features *cf = &ca->features;
2125
2126 init_features(cf);
2127
2128 r = dm_read_arg_group(_args, as, &argc, error);
2129 if (r)
2130 return -EINVAL;
2131
2132 while (argc--) {
2133 arg = dm_shift_arg(as);
2134
2135 if (!strcasecmp(arg, "writeback")) {
2136 cf->io_mode = CM_IO_WRITEBACK;
2137 mode_ctr++;
2138 }
2139
2140 else if (!strcasecmp(arg, "writethrough")) {
2141 cf->io_mode = CM_IO_WRITETHROUGH;
2142 mode_ctr++;
2143 }
2144
2145 else if (!strcasecmp(arg, "passthrough")) {
2146 cf->io_mode = CM_IO_PASSTHROUGH;
2147 mode_ctr++;
2148 }
2149
2150 else if (!strcasecmp(arg, "metadata2"))
2151 cf->metadata_version = 2;
2152
2153 else if (!strcasecmp(arg, "no_discard_passdown"))
2154 cf->discard_passdown = false;
2155
2156 else {
2157 *error = "Unrecognised cache feature requested";
2158 return -EINVAL;
2159 }
2160 }
2161
2162 if (mode_ctr > 1) {
2163 *error = "Duplicate cache io_mode features requested";
2164 return -EINVAL;
2165 }
2166
2167 return 0;
2168 }
2169
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2170 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2171 char **error)
2172 {
2173 static const struct dm_arg _args[] = {
2174 {0, 1024, "Invalid number of policy arguments"},
2175 };
2176
2177 int r;
2178
2179 if (!at_least_one_arg(as, error))
2180 return -EINVAL;
2181
2182 ca->policy_name = dm_shift_arg(as);
2183
2184 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2185 if (r)
2186 return -EINVAL;
2187
2188 ca->policy_argv = (const char **)as->argv;
2189 dm_consume_args(as, ca->policy_argc);
2190
2191 return 0;
2192 }
2193
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2194 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2195 char **error)
2196 {
2197 int r;
2198 struct dm_arg_set as;
2199
2200 as.argc = argc;
2201 as.argv = argv;
2202
2203 r = parse_metadata_dev(ca, &as, error);
2204 if (r)
2205 return r;
2206
2207 r = parse_cache_dev(ca, &as, error);
2208 if (r)
2209 return r;
2210
2211 r = parse_origin_dev(ca, &as, error);
2212 if (r)
2213 return r;
2214
2215 r = parse_block_size(ca, &as, error);
2216 if (r)
2217 return r;
2218
2219 r = parse_features(ca, &as, error);
2220 if (r)
2221 return r;
2222
2223 r = parse_policy(ca, &as, error);
2224 if (r)
2225 return r;
2226
2227 return 0;
2228 }
2229
2230 /*----------------------------------------------------------------*/
2231
2232 static struct kmem_cache *migration_cache;
2233
2234 #define NOT_CORE_OPTION 1
2235
process_config_option(struct cache * cache,const char * key,const char * value)2236 static int process_config_option(struct cache *cache, const char *key, const char *value)
2237 {
2238 unsigned long tmp;
2239
2240 if (!strcasecmp(key, "migration_threshold")) {
2241 if (kstrtoul(value, 10, &tmp))
2242 return -EINVAL;
2243
2244 cache->migration_threshold = tmp;
2245 return 0;
2246 }
2247
2248 return NOT_CORE_OPTION;
2249 }
2250
set_config_value(struct cache * cache,const char * key,const char * value)2251 static int set_config_value(struct cache *cache, const char *key, const char *value)
2252 {
2253 int r = process_config_option(cache, key, value);
2254
2255 if (r == NOT_CORE_OPTION)
2256 r = policy_set_config_value(cache->policy, key, value);
2257
2258 if (r)
2259 DMWARN("bad config value for %s: %s", key, value);
2260
2261 return r;
2262 }
2263
set_config_values(struct cache * cache,int argc,const char ** argv)2264 static int set_config_values(struct cache *cache, int argc, const char **argv)
2265 {
2266 int r = 0;
2267
2268 if (argc & 1) {
2269 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2270 return -EINVAL;
2271 }
2272
2273 while (argc) {
2274 r = set_config_value(cache, argv[0], argv[1]);
2275 if (r)
2276 break;
2277
2278 argc -= 2;
2279 argv += 2;
2280 }
2281
2282 return r;
2283 }
2284
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2285 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2286 char **error)
2287 {
2288 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2289 cache->cache_size,
2290 cache->origin_sectors,
2291 cache->sectors_per_block);
2292 if (IS_ERR(p)) {
2293 *error = "Error creating cache's policy";
2294 return PTR_ERR(p);
2295 }
2296 cache->policy = p;
2297 BUG_ON(!cache->policy);
2298
2299 return 0;
2300 }
2301
2302 /*
2303 * We want the discard block size to be at least the size of the cache
2304 * block size and have no more than 2^14 discard blocks across the origin.
2305 */
2306 #define MAX_DISCARD_BLOCKS (1 << 14)
2307
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2308 static bool too_many_discard_blocks(sector_t discard_block_size,
2309 sector_t origin_size)
2310 {
2311 (void) sector_div(origin_size, discard_block_size);
2312
2313 return origin_size > MAX_DISCARD_BLOCKS;
2314 }
2315
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2316 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2317 sector_t origin_size)
2318 {
2319 sector_t discard_block_size = cache_block_size;
2320
2321 if (origin_size)
2322 while (too_many_discard_blocks(discard_block_size, origin_size))
2323 discard_block_size *= 2;
2324
2325 return discard_block_size;
2326 }
2327
set_cache_size(struct cache * cache,dm_cblock_t size)2328 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2329 {
2330 dm_block_t nr_blocks = from_cblock(size);
2331
2332 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2333 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2334 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2335 "Please consider increasing the cache block size to reduce the overall cache block count.",
2336 (unsigned long long) nr_blocks);
2337
2338 cache->cache_size = size;
2339 }
2340
2341 #define DEFAULT_MIGRATION_THRESHOLD 2048
2342
cache_create(struct cache_args * ca,struct cache ** result)2343 static int cache_create(struct cache_args *ca, struct cache **result)
2344 {
2345 int r = 0;
2346 char **error = &ca->ti->error;
2347 struct cache *cache;
2348 struct dm_target *ti = ca->ti;
2349 dm_block_t origin_blocks;
2350 struct dm_cache_metadata *cmd;
2351 bool may_format = ca->features.mode == CM_WRITE;
2352
2353 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2354 if (!cache)
2355 return -ENOMEM;
2356
2357 cache->ti = ca->ti;
2358 ti->private = cache;
2359 ti->accounts_remapped_io = true;
2360 ti->num_flush_bios = 2;
2361 ti->flush_supported = true;
2362
2363 ti->num_discard_bios = 1;
2364 ti->discards_supported = true;
2365
2366 ti->per_io_data_size = sizeof(struct per_bio_data);
2367
2368 cache->features = ca->features;
2369 if (writethrough_mode(cache)) {
2370 /* Create bioset for writethrough bios issued to origin */
2371 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2372 if (r)
2373 goto bad;
2374 }
2375
2376 cache->metadata_dev = ca->metadata_dev;
2377 cache->origin_dev = ca->origin_dev;
2378 cache->cache_dev = ca->cache_dev;
2379
2380 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2381
2382 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2383 origin_blocks = block_div(origin_blocks, ca->block_size);
2384 cache->origin_blocks = to_oblock(origin_blocks);
2385
2386 cache->sectors_per_block = ca->block_size;
2387 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2388 r = -EINVAL;
2389 goto bad;
2390 }
2391
2392 if (ca->block_size & (ca->block_size - 1)) {
2393 dm_block_t cache_size = ca->cache_sectors;
2394
2395 cache->sectors_per_block_shift = -1;
2396 cache_size = block_div(cache_size, ca->block_size);
2397 set_cache_size(cache, to_cblock(cache_size));
2398 } else {
2399 cache->sectors_per_block_shift = __ffs(ca->block_size);
2400 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2401 }
2402
2403 r = create_cache_policy(cache, ca, error);
2404 if (r)
2405 goto bad;
2406
2407 cache->policy_nr_args = ca->policy_argc;
2408 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2409
2410 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2411 if (r) {
2412 *error = "Error setting cache policy's config values";
2413 goto bad;
2414 }
2415
2416 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2417 ca->block_size, may_format,
2418 dm_cache_policy_get_hint_size(cache->policy),
2419 ca->features.metadata_version);
2420 if (IS_ERR(cmd)) {
2421 *error = "Error creating metadata object";
2422 r = PTR_ERR(cmd);
2423 goto bad;
2424 }
2425 cache->cmd = cmd;
2426 set_cache_mode(cache, CM_WRITE);
2427 if (get_cache_mode(cache) != CM_WRITE) {
2428 *error = "Unable to get write access to metadata, please check/repair metadata.";
2429 r = -EINVAL;
2430 goto bad;
2431 }
2432
2433 if (passthrough_mode(cache)) {
2434 bool all_clean;
2435
2436 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2437 if (r) {
2438 *error = "dm_cache_metadata_all_clean() failed";
2439 goto bad;
2440 }
2441
2442 if (!all_clean) {
2443 *error = "Cannot enter passthrough mode unless all blocks are clean";
2444 r = -EINVAL;
2445 goto bad;
2446 }
2447
2448 policy_allow_migrations(cache->policy, false);
2449 }
2450
2451 spin_lock_init(&cache->lock);
2452 bio_list_init(&cache->deferred_bios);
2453 atomic_set(&cache->nr_allocated_migrations, 0);
2454 atomic_set(&cache->nr_io_migrations, 0);
2455 init_waitqueue_head(&cache->migration_wait);
2456
2457 r = -ENOMEM;
2458 atomic_set(&cache->nr_dirty, 0);
2459 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2460 if (!cache->dirty_bitset) {
2461 *error = "could not allocate dirty bitset";
2462 goto bad;
2463 }
2464 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2465
2466 cache->discard_block_size =
2467 calculate_discard_block_size(cache->sectors_per_block,
2468 cache->origin_sectors);
2469 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2470 cache->discard_block_size));
2471 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2472 if (!cache->discard_bitset) {
2473 *error = "could not allocate discard bitset";
2474 goto bad;
2475 }
2476 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2477
2478 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2479 if (IS_ERR(cache->copier)) {
2480 *error = "could not create kcopyd client";
2481 r = PTR_ERR(cache->copier);
2482 goto bad;
2483 }
2484
2485 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2486 if (!cache->wq) {
2487 *error = "could not create workqueue for metadata object";
2488 goto bad;
2489 }
2490 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2491 INIT_WORK(&cache->migration_worker, check_migrations);
2492 INIT_DELAYED_WORK(&cache->waker, do_waker);
2493
2494 cache->prison = dm_bio_prison_create_v2(cache->wq);
2495 if (!cache->prison) {
2496 *error = "could not create bio prison";
2497 goto bad;
2498 }
2499
2500 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2501 migration_cache);
2502 if (r) {
2503 *error = "Error creating cache's migration mempool";
2504 goto bad;
2505 }
2506
2507 cache->need_tick_bio = true;
2508 cache->sized = false;
2509 cache->invalidate = false;
2510 cache->commit_requested = false;
2511 cache->loaded_mappings = false;
2512 cache->loaded_discards = false;
2513
2514 load_stats(cache);
2515
2516 atomic_set(&cache->stats.demotion, 0);
2517 atomic_set(&cache->stats.promotion, 0);
2518 atomic_set(&cache->stats.copies_avoided, 0);
2519 atomic_set(&cache->stats.cache_cell_clash, 0);
2520 atomic_set(&cache->stats.commit_count, 0);
2521 atomic_set(&cache->stats.discard_count, 0);
2522
2523 spin_lock_init(&cache->invalidation_lock);
2524 INIT_LIST_HEAD(&cache->invalidation_requests);
2525
2526 batcher_init(&cache->committer, commit_op, cache,
2527 issue_op, cache, cache->wq);
2528 dm_iot_init(&cache->tracker);
2529
2530 init_rwsem(&cache->background_work_lock);
2531 prevent_background_work(cache);
2532
2533 *result = cache;
2534 return 0;
2535 bad:
2536 destroy(cache);
2537 return r;
2538 }
2539
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2540 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2541 {
2542 unsigned i;
2543 const char **copy;
2544
2545 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2546 if (!copy)
2547 return -ENOMEM;
2548 for (i = 0; i < argc; i++) {
2549 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2550 if (!copy[i]) {
2551 while (i--)
2552 kfree(copy[i]);
2553 kfree(copy);
2554 return -ENOMEM;
2555 }
2556 }
2557
2558 cache->nr_ctr_args = argc;
2559 cache->ctr_args = copy;
2560
2561 return 0;
2562 }
2563
cache_ctr(struct dm_target * ti,unsigned argc,char ** argv)2564 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2565 {
2566 int r = -EINVAL;
2567 struct cache_args *ca;
2568 struct cache *cache = NULL;
2569
2570 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2571 if (!ca) {
2572 ti->error = "Error allocating memory for cache";
2573 return -ENOMEM;
2574 }
2575 ca->ti = ti;
2576
2577 r = parse_cache_args(ca, argc, argv, &ti->error);
2578 if (r)
2579 goto out;
2580
2581 r = cache_create(ca, &cache);
2582 if (r)
2583 goto out;
2584
2585 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2586 if (r) {
2587 destroy(cache);
2588 goto out;
2589 }
2590
2591 ti->private = cache;
2592 out:
2593 destroy_cache_args(ca);
2594 return r;
2595 }
2596
2597 /*----------------------------------------------------------------*/
2598
cache_map(struct dm_target * ti,struct bio * bio)2599 static int cache_map(struct dm_target *ti, struct bio *bio)
2600 {
2601 struct cache *cache = ti->private;
2602
2603 int r;
2604 bool commit_needed;
2605 dm_oblock_t block = get_bio_block(cache, bio);
2606
2607 init_per_bio_data(bio);
2608 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2609 /*
2610 * This can only occur if the io goes to a partial block at
2611 * the end of the origin device. We don't cache these.
2612 * Just remap to the origin and carry on.
2613 */
2614 remap_to_origin(cache, bio);
2615 accounted_begin(cache, bio);
2616 return DM_MAPIO_REMAPPED;
2617 }
2618
2619 if (discard_or_flush(bio)) {
2620 defer_bio(cache, bio);
2621 return DM_MAPIO_SUBMITTED;
2622 }
2623
2624 r = map_bio(cache, bio, block, &commit_needed);
2625 if (commit_needed)
2626 schedule_commit(&cache->committer);
2627
2628 return r;
2629 }
2630
cache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)2631 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2632 {
2633 struct cache *cache = ti->private;
2634 unsigned long flags;
2635 struct per_bio_data *pb = get_per_bio_data(bio);
2636
2637 if (pb->tick) {
2638 policy_tick(cache->policy, false);
2639
2640 spin_lock_irqsave(&cache->lock, flags);
2641 cache->need_tick_bio = true;
2642 spin_unlock_irqrestore(&cache->lock, flags);
2643 }
2644
2645 bio_drop_shared_lock(cache, bio);
2646 accounted_complete(cache, bio);
2647
2648 return DM_ENDIO_DONE;
2649 }
2650
write_dirty_bitset(struct cache * cache)2651 static int write_dirty_bitset(struct cache *cache)
2652 {
2653 int r;
2654
2655 if (get_cache_mode(cache) >= CM_READ_ONLY)
2656 return -EINVAL;
2657
2658 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2659 if (r)
2660 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2661
2662 return r;
2663 }
2664
write_discard_bitset(struct cache * cache)2665 static int write_discard_bitset(struct cache *cache)
2666 {
2667 unsigned i, r;
2668
2669 if (get_cache_mode(cache) >= CM_READ_ONLY)
2670 return -EINVAL;
2671
2672 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2673 cache->discard_nr_blocks);
2674 if (r) {
2675 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2676 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2677 return r;
2678 }
2679
2680 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2681 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2682 is_discarded(cache, to_dblock(i)));
2683 if (r) {
2684 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2685 return r;
2686 }
2687 }
2688
2689 return 0;
2690 }
2691
write_hints(struct cache * cache)2692 static int write_hints(struct cache *cache)
2693 {
2694 int r;
2695
2696 if (get_cache_mode(cache) >= CM_READ_ONLY)
2697 return -EINVAL;
2698
2699 r = dm_cache_write_hints(cache->cmd, cache->policy);
2700 if (r) {
2701 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2702 return r;
2703 }
2704
2705 return 0;
2706 }
2707
2708 /*
2709 * returns true on success
2710 */
sync_metadata(struct cache * cache)2711 static bool sync_metadata(struct cache *cache)
2712 {
2713 int r1, r2, r3, r4;
2714
2715 r1 = write_dirty_bitset(cache);
2716 if (r1)
2717 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2718
2719 r2 = write_discard_bitset(cache);
2720 if (r2)
2721 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2722
2723 save_stats(cache);
2724
2725 r3 = write_hints(cache);
2726 if (r3)
2727 DMERR("%s: could not write hints", cache_device_name(cache));
2728
2729 /*
2730 * If writing the above metadata failed, we still commit, but don't
2731 * set the clean shutdown flag. This will effectively force every
2732 * dirty bit to be set on reload.
2733 */
2734 r4 = commit(cache, !r1 && !r2 && !r3);
2735 if (r4)
2736 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2737
2738 return !r1 && !r2 && !r3 && !r4;
2739 }
2740
cache_postsuspend(struct dm_target * ti)2741 static void cache_postsuspend(struct dm_target *ti)
2742 {
2743 struct cache *cache = ti->private;
2744
2745 prevent_background_work(cache);
2746 BUG_ON(atomic_read(&cache->nr_io_migrations));
2747
2748 cancel_delayed_work_sync(&cache->waker);
2749 drain_workqueue(cache->wq);
2750 WARN_ON(cache->tracker.in_flight);
2751
2752 /*
2753 * If it's a flush suspend there won't be any deferred bios, so this
2754 * call is harmless.
2755 */
2756 requeue_deferred_bios(cache);
2757
2758 if (get_cache_mode(cache) == CM_WRITE)
2759 (void) sync_metadata(cache);
2760 }
2761
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2762 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2763 bool dirty, uint32_t hint, bool hint_valid)
2764 {
2765 struct cache *cache = context;
2766
2767 if (dirty) {
2768 set_bit(from_cblock(cblock), cache->dirty_bitset);
2769 atomic_inc(&cache->nr_dirty);
2770 } else
2771 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2772
2773 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2774 }
2775
2776 /*
2777 * The discard block size in the on disk metadata is not
2778 * neccessarily the same as we're currently using. So we have to
2779 * be careful to only set the discarded attribute if we know it
2780 * covers a complete block of the new size.
2781 */
2782 struct discard_load_info {
2783 struct cache *cache;
2784
2785 /*
2786 * These blocks are sized using the on disk dblock size, rather
2787 * than the current one.
2788 */
2789 dm_block_t block_size;
2790 dm_block_t discard_begin, discard_end;
2791 };
2792
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2793 static void discard_load_info_init(struct cache *cache,
2794 struct discard_load_info *li)
2795 {
2796 li->cache = cache;
2797 li->discard_begin = li->discard_end = 0;
2798 }
2799
set_discard_range(struct discard_load_info * li)2800 static void set_discard_range(struct discard_load_info *li)
2801 {
2802 sector_t b, e;
2803
2804 if (li->discard_begin == li->discard_end)
2805 return;
2806
2807 /*
2808 * Convert to sectors.
2809 */
2810 b = li->discard_begin * li->block_size;
2811 e = li->discard_end * li->block_size;
2812
2813 /*
2814 * Then convert back to the current dblock size.
2815 */
2816 b = dm_sector_div_up(b, li->cache->discard_block_size);
2817 sector_div(e, li->cache->discard_block_size);
2818
2819 /*
2820 * The origin may have shrunk, so we need to check we're still in
2821 * bounds.
2822 */
2823 if (e > from_dblock(li->cache->discard_nr_blocks))
2824 e = from_dblock(li->cache->discard_nr_blocks);
2825
2826 for (; b < e; b++)
2827 set_discard(li->cache, to_dblock(b));
2828 }
2829
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2830 static int load_discard(void *context, sector_t discard_block_size,
2831 dm_dblock_t dblock, bool discard)
2832 {
2833 struct discard_load_info *li = context;
2834
2835 li->block_size = discard_block_size;
2836
2837 if (discard) {
2838 if (from_dblock(dblock) == li->discard_end)
2839 /*
2840 * We're already in a discard range, just extend it.
2841 */
2842 li->discard_end = li->discard_end + 1ULL;
2843
2844 else {
2845 /*
2846 * Emit the old range and start a new one.
2847 */
2848 set_discard_range(li);
2849 li->discard_begin = from_dblock(dblock);
2850 li->discard_end = li->discard_begin + 1ULL;
2851 }
2852 } else {
2853 set_discard_range(li);
2854 li->discard_begin = li->discard_end = 0;
2855 }
2856
2857 return 0;
2858 }
2859
get_cache_dev_size(struct cache * cache)2860 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2861 {
2862 sector_t size = get_dev_size(cache->cache_dev);
2863 (void) sector_div(size, cache->sectors_per_block);
2864 return to_cblock(size);
2865 }
2866
can_resize(struct cache * cache,dm_cblock_t new_size)2867 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2868 {
2869 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2870 if (cache->sized) {
2871 DMERR("%s: unable to extend cache due to missing cache table reload",
2872 cache_device_name(cache));
2873 return false;
2874 }
2875 }
2876
2877 /*
2878 * We can't drop a dirty block when shrinking the cache.
2879 */
2880 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2881 new_size = to_cblock(from_cblock(new_size) + 1);
2882 if (is_dirty(cache, new_size)) {
2883 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2884 cache_device_name(cache),
2885 (unsigned long long) from_cblock(new_size));
2886 return false;
2887 }
2888 }
2889
2890 return true;
2891 }
2892
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)2893 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2894 {
2895 int r;
2896
2897 r = dm_cache_resize(cache->cmd, new_size);
2898 if (r) {
2899 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2900 metadata_operation_failed(cache, "dm_cache_resize", r);
2901 return r;
2902 }
2903
2904 set_cache_size(cache, new_size);
2905
2906 return 0;
2907 }
2908
cache_preresume(struct dm_target * ti)2909 static int cache_preresume(struct dm_target *ti)
2910 {
2911 int r = 0;
2912 struct cache *cache = ti->private;
2913 dm_cblock_t csize = get_cache_dev_size(cache);
2914
2915 /*
2916 * Check to see if the cache has resized.
2917 */
2918 if (!cache->sized) {
2919 r = resize_cache_dev(cache, csize);
2920 if (r)
2921 return r;
2922
2923 cache->sized = true;
2924
2925 } else if (csize != cache->cache_size) {
2926 if (!can_resize(cache, csize))
2927 return -EINVAL;
2928
2929 r = resize_cache_dev(cache, csize);
2930 if (r)
2931 return r;
2932 }
2933
2934 if (!cache->loaded_mappings) {
2935 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2936 load_mapping, cache);
2937 if (r) {
2938 DMERR("%s: could not load cache mappings", cache_device_name(cache));
2939 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2940 return r;
2941 }
2942
2943 cache->loaded_mappings = true;
2944 }
2945
2946 if (!cache->loaded_discards) {
2947 struct discard_load_info li;
2948
2949 /*
2950 * The discard bitset could have been resized, or the
2951 * discard block size changed. To be safe we start by
2952 * setting every dblock to not discarded.
2953 */
2954 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2955
2956 discard_load_info_init(cache, &li);
2957 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2958 if (r) {
2959 DMERR("%s: could not load origin discards", cache_device_name(cache));
2960 metadata_operation_failed(cache, "dm_cache_load_discards", r);
2961 return r;
2962 }
2963 set_discard_range(&li);
2964
2965 cache->loaded_discards = true;
2966 }
2967
2968 return r;
2969 }
2970
cache_resume(struct dm_target * ti)2971 static void cache_resume(struct dm_target *ti)
2972 {
2973 struct cache *cache = ti->private;
2974
2975 cache->need_tick_bio = true;
2976 allow_background_work(cache);
2977 do_waker(&cache->waker.work);
2978 }
2979
emit_flags(struct cache * cache,char * result,unsigned maxlen,ssize_t * sz_ptr)2980 static void emit_flags(struct cache *cache, char *result,
2981 unsigned maxlen, ssize_t *sz_ptr)
2982 {
2983 ssize_t sz = *sz_ptr;
2984 struct cache_features *cf = &cache->features;
2985 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2986
2987 DMEMIT("%u ", count);
2988
2989 if (cf->metadata_version == 2)
2990 DMEMIT("metadata2 ");
2991
2992 if (writethrough_mode(cache))
2993 DMEMIT("writethrough ");
2994
2995 else if (passthrough_mode(cache))
2996 DMEMIT("passthrough ");
2997
2998 else if (writeback_mode(cache))
2999 DMEMIT("writeback ");
3000
3001 else {
3002 DMEMIT("unknown ");
3003 DMERR("%s: internal error: unknown io mode: %d",
3004 cache_device_name(cache), (int) cf->io_mode);
3005 }
3006
3007 if (!cf->discard_passdown)
3008 DMEMIT("no_discard_passdown ");
3009
3010 *sz_ptr = sz;
3011 }
3012
3013 /*
3014 * Status format:
3015 *
3016 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3017 * <cache block size> <#used cache blocks>/<#total cache blocks>
3018 * <#read hits> <#read misses> <#write hits> <#write misses>
3019 * <#demotions> <#promotions> <#dirty>
3020 * <#features> <features>*
3021 * <#core args> <core args>
3022 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3023 */
cache_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3024 static void cache_status(struct dm_target *ti, status_type_t type,
3025 unsigned status_flags, char *result, unsigned maxlen)
3026 {
3027 int r = 0;
3028 unsigned i;
3029 ssize_t sz = 0;
3030 dm_block_t nr_free_blocks_metadata = 0;
3031 dm_block_t nr_blocks_metadata = 0;
3032 char buf[BDEVNAME_SIZE];
3033 struct cache *cache = ti->private;
3034 dm_cblock_t residency;
3035 bool needs_check;
3036
3037 switch (type) {
3038 case STATUSTYPE_INFO:
3039 if (get_cache_mode(cache) == CM_FAIL) {
3040 DMEMIT("Fail");
3041 break;
3042 }
3043
3044 /* Commit to ensure statistics aren't out-of-date */
3045 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3046 (void) commit(cache, false);
3047
3048 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3049 if (r) {
3050 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3051 cache_device_name(cache), r);
3052 goto err;
3053 }
3054
3055 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3056 if (r) {
3057 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3058 cache_device_name(cache), r);
3059 goto err;
3060 }
3061
3062 residency = policy_residency(cache->policy);
3063
3064 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3065 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3066 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3067 (unsigned long long)nr_blocks_metadata,
3068 (unsigned long long)cache->sectors_per_block,
3069 (unsigned long long) from_cblock(residency),
3070 (unsigned long long) from_cblock(cache->cache_size),
3071 (unsigned) atomic_read(&cache->stats.read_hit),
3072 (unsigned) atomic_read(&cache->stats.read_miss),
3073 (unsigned) atomic_read(&cache->stats.write_hit),
3074 (unsigned) atomic_read(&cache->stats.write_miss),
3075 (unsigned) atomic_read(&cache->stats.demotion),
3076 (unsigned) atomic_read(&cache->stats.promotion),
3077 (unsigned long) atomic_read(&cache->nr_dirty));
3078
3079 emit_flags(cache, result, maxlen, &sz);
3080
3081 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3082
3083 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3084 if (sz < maxlen) {
3085 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3086 if (r)
3087 DMERR("%s: policy_emit_config_values returned %d",
3088 cache_device_name(cache), r);
3089 }
3090
3091 if (get_cache_mode(cache) == CM_READ_ONLY)
3092 DMEMIT("ro ");
3093 else
3094 DMEMIT("rw ");
3095
3096 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3097
3098 if (r || needs_check)
3099 DMEMIT("needs_check ");
3100 else
3101 DMEMIT("- ");
3102
3103 break;
3104
3105 case STATUSTYPE_TABLE:
3106 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3107 DMEMIT("%s ", buf);
3108 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3109 DMEMIT("%s ", buf);
3110 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3111 DMEMIT("%s", buf);
3112
3113 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3114 DMEMIT(" %s", cache->ctr_args[i]);
3115 if (cache->nr_ctr_args)
3116 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3117 break;
3118
3119 case STATUSTYPE_IMA:
3120 DMEMIT_TARGET_NAME_VERSION(ti->type);
3121 if (get_cache_mode(cache) == CM_FAIL)
3122 DMEMIT(",metadata_mode=fail");
3123 else if (get_cache_mode(cache) == CM_READ_ONLY)
3124 DMEMIT(",metadata_mode=ro");
3125 else
3126 DMEMIT(",metadata_mode=rw");
3127
3128 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3129 DMEMIT(",cache_metadata_device=%s", buf);
3130 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3131 DMEMIT(",cache_device=%s", buf);
3132 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3133 DMEMIT(",cache_origin_device=%s", buf);
3134 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3135 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3136 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3137 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3138 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3139 DMEMIT(";");
3140 break;
3141 }
3142
3143 return;
3144
3145 err:
3146 DMEMIT("Error");
3147 }
3148
3149 /*
3150 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3151 * the one-past-the-end value.
3152 */
3153 struct cblock_range {
3154 dm_cblock_t begin;
3155 dm_cblock_t end;
3156 };
3157
3158 /*
3159 * A cache block range can take two forms:
3160 *
3161 * i) A single cblock, eg. '3456'
3162 * ii) A begin and end cblock with a dash between, eg. 123-234
3163 */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3164 static int parse_cblock_range(struct cache *cache, const char *str,
3165 struct cblock_range *result)
3166 {
3167 char dummy;
3168 uint64_t b, e;
3169 int r;
3170
3171 /*
3172 * Try and parse form (ii) first.
3173 */
3174 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3175 if (r < 0)
3176 return r;
3177
3178 if (r == 2) {
3179 result->begin = to_cblock(b);
3180 result->end = to_cblock(e);
3181 return 0;
3182 }
3183
3184 /*
3185 * That didn't work, try form (i).
3186 */
3187 r = sscanf(str, "%llu%c", &b, &dummy);
3188 if (r < 0)
3189 return r;
3190
3191 if (r == 1) {
3192 result->begin = to_cblock(b);
3193 result->end = to_cblock(from_cblock(result->begin) + 1u);
3194 return 0;
3195 }
3196
3197 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3198 return -EINVAL;
3199 }
3200
validate_cblock_range(struct cache * cache,struct cblock_range * range)3201 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3202 {
3203 uint64_t b = from_cblock(range->begin);
3204 uint64_t e = from_cblock(range->end);
3205 uint64_t n = from_cblock(cache->cache_size);
3206
3207 if (b >= n) {
3208 DMERR("%s: begin cblock out of range: %llu >= %llu",
3209 cache_device_name(cache), b, n);
3210 return -EINVAL;
3211 }
3212
3213 if (e > n) {
3214 DMERR("%s: end cblock out of range: %llu > %llu",
3215 cache_device_name(cache), e, n);
3216 return -EINVAL;
3217 }
3218
3219 if (b >= e) {
3220 DMERR("%s: invalid cblock range: %llu >= %llu",
3221 cache_device_name(cache), b, e);
3222 return -EINVAL;
3223 }
3224
3225 return 0;
3226 }
3227
cblock_succ(dm_cblock_t b)3228 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3229 {
3230 return to_cblock(from_cblock(b) + 1);
3231 }
3232
request_invalidation(struct cache * cache,struct cblock_range * range)3233 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3234 {
3235 int r = 0;
3236
3237 /*
3238 * We don't need to do any locking here because we know we're in
3239 * passthrough mode. There's is potential for a race between an
3240 * invalidation triggered by an io and an invalidation message. This
3241 * is harmless, we must not worry if the policy call fails.
3242 */
3243 while (range->begin != range->end) {
3244 r = invalidate_cblock(cache, range->begin);
3245 if (r)
3246 return r;
3247
3248 range->begin = cblock_succ(range->begin);
3249 }
3250
3251 cache->commit_requested = true;
3252 return r;
3253 }
3254
process_invalidate_cblocks_message(struct cache * cache,unsigned count,const char ** cblock_ranges)3255 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3256 const char **cblock_ranges)
3257 {
3258 int r = 0;
3259 unsigned i;
3260 struct cblock_range range;
3261
3262 if (!passthrough_mode(cache)) {
3263 DMERR("%s: cache has to be in passthrough mode for invalidation",
3264 cache_device_name(cache));
3265 return -EPERM;
3266 }
3267
3268 for (i = 0; i < count; i++) {
3269 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3270 if (r)
3271 break;
3272
3273 r = validate_cblock_range(cache, &range);
3274 if (r)
3275 break;
3276
3277 /*
3278 * Pass begin and end origin blocks to the worker and wake it.
3279 */
3280 r = request_invalidation(cache, &range);
3281 if (r)
3282 break;
3283 }
3284
3285 return r;
3286 }
3287
3288 /*
3289 * Supports
3290 * "<key> <value>"
3291 * and
3292 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3293 *
3294 * The key migration_threshold is supported by the cache target core.
3295 */
cache_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3296 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3297 char *result, unsigned maxlen)
3298 {
3299 struct cache *cache = ti->private;
3300
3301 if (!argc)
3302 return -EINVAL;
3303
3304 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3305 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3306 cache_device_name(cache));
3307 return -EOPNOTSUPP;
3308 }
3309
3310 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3311 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3312
3313 if (argc != 2)
3314 return -EINVAL;
3315
3316 return set_config_value(cache, argv[0], argv[1]);
3317 }
3318
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3319 static int cache_iterate_devices(struct dm_target *ti,
3320 iterate_devices_callout_fn fn, void *data)
3321 {
3322 int r = 0;
3323 struct cache *cache = ti->private;
3324
3325 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3326 if (!r)
3327 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3328
3329 return r;
3330 }
3331
3332 /*
3333 * If discard_passdown was enabled verify that the origin device
3334 * supports discards. Disable discard_passdown if not.
3335 */
disable_passdown_if_not_supported(struct cache * cache)3336 static void disable_passdown_if_not_supported(struct cache *cache)
3337 {
3338 struct block_device *origin_bdev = cache->origin_dev->bdev;
3339 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3340 const char *reason = NULL;
3341
3342 if (!cache->features.discard_passdown)
3343 return;
3344
3345 if (!bdev_max_discard_sectors(origin_bdev))
3346 reason = "discard unsupported";
3347
3348 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3349 reason = "max discard sectors smaller than a block";
3350
3351 if (reason) {
3352 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3353 origin_bdev, reason);
3354 cache->features.discard_passdown = false;
3355 }
3356 }
3357
set_discard_limits(struct cache * cache,struct queue_limits * limits)3358 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3359 {
3360 struct block_device *origin_bdev = cache->origin_dev->bdev;
3361 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3362
3363 if (!cache->features.discard_passdown) {
3364 /* No passdown is done so setting own virtual limits */
3365 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3366 cache->origin_sectors);
3367 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3368 return;
3369 }
3370
3371 /*
3372 * cache_iterate_devices() is stacking both origin and fast device limits
3373 * but discards aren't passed to fast device, so inherit origin's limits.
3374 */
3375 limits->max_discard_sectors = origin_limits->max_discard_sectors;
3376 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3377 limits->discard_granularity = origin_limits->discard_granularity;
3378 limits->discard_alignment = origin_limits->discard_alignment;
3379 limits->discard_misaligned = origin_limits->discard_misaligned;
3380 }
3381
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3382 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3383 {
3384 struct cache *cache = ti->private;
3385 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3386
3387 /*
3388 * If the system-determined stacked limits are compatible with the
3389 * cache's blocksize (io_opt is a factor) do not override them.
3390 */
3391 if (io_opt_sectors < cache->sectors_per_block ||
3392 do_div(io_opt_sectors, cache->sectors_per_block)) {
3393 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3394 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3395 }
3396
3397 disable_passdown_if_not_supported(cache);
3398 set_discard_limits(cache, limits);
3399 }
3400
3401 /*----------------------------------------------------------------*/
3402
3403 static struct target_type cache_target = {
3404 .name = "cache",
3405 .version = {2, 2, 0},
3406 .module = THIS_MODULE,
3407 .ctr = cache_ctr,
3408 .dtr = cache_dtr,
3409 .map = cache_map,
3410 .end_io = cache_end_io,
3411 .postsuspend = cache_postsuspend,
3412 .preresume = cache_preresume,
3413 .resume = cache_resume,
3414 .status = cache_status,
3415 .message = cache_message,
3416 .iterate_devices = cache_iterate_devices,
3417 .io_hints = cache_io_hints,
3418 };
3419
dm_cache_init(void)3420 static int __init dm_cache_init(void)
3421 {
3422 int r;
3423
3424 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3425 if (!migration_cache)
3426 return -ENOMEM;
3427
3428 r = dm_register_target(&cache_target);
3429 if (r) {
3430 DMERR("cache target registration failed: %d", r);
3431 kmem_cache_destroy(migration_cache);
3432 return r;
3433 }
3434
3435 return 0;
3436 }
3437
dm_cache_exit(void)3438 static void __exit dm_cache_exit(void)
3439 {
3440 dm_unregister_target(&cache_target);
3441 kmem_cache_destroy(migration_cache);
3442 }
3443
3444 module_init(dm_cache_init);
3445 module_exit(dm_cache_exit);
3446
3447 MODULE_DESCRIPTION(DM_NAME " cache target");
3448 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3449 MODULE_LICENSE("GPL");
3450