1 /*  Generic MTRR (Memory Type Range Register) driver.
2 
3     Copyright (C) 1997-2000  Richard Gooch
4     Copyright (c) 2002	     Patrick Mochel
5 
6     This library is free software; you can redistribute it and/or
7     modify it under the terms of the GNU Library General Public
8     License as published by the Free Software Foundation; either
9     version 2 of the License, or (at your option) any later version.
10 
11     This library is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14     Library General Public License for more details.
15 
16     You should have received a copy of the GNU Library General Public
17     License along with this library; if not, write to the Free
18     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 
20     Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
21     The postal address is:
22       Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23 
24     Source: "Pentium Pro Family Developer's Manual, Volume 3:
25     Operating System Writer's Guide" (Intel document number 242692),
26     section 11.11.7
27 
28     This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29     on 6-7 March 2002.
30     Source: Intel Architecture Software Developers Manual, Volume 3:
31     System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33 
34 #define DEBUG
35 
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
37 
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/module.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48 #include <linux/syscore_ops.h>
49 
50 #include <asm/processor.h>
51 #include <asm/e820.h>
52 #include <asm/mtrr.h>
53 #include <asm/msr.h>
54 
55 #include "mtrr.h"
56 
57 u32 num_var_ranges;
58 
59 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
60 static DEFINE_MUTEX(mtrr_mutex);
61 
62 u64 size_or_mask, size_and_mask;
63 static bool mtrr_aps_delayed_init;
64 
65 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
66 
67 const struct mtrr_ops *mtrr_if;
68 
69 static void set_mtrr(unsigned int reg, unsigned long base,
70 		     unsigned long size, mtrr_type type);
71 
set_mtrr_ops(const struct mtrr_ops * ops)72 void set_mtrr_ops(const struct mtrr_ops *ops)
73 {
74 	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
75 		mtrr_ops[ops->vendor] = ops;
76 }
77 
78 /*  Returns non-zero if we have the write-combining memory type  */
have_wrcomb(void)79 static int have_wrcomb(void)
80 {
81 	struct pci_dev *dev;
82 
83 	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
84 	if (dev != NULL) {
85 		/*
86 		 * ServerWorks LE chipsets < rev 6 have problems with
87 		 * write-combining. Don't allow it and leave room for other
88 		 * chipsets to be tagged
89 		 */
90 		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
91 		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
92 		    dev->revision <= 5) {
93 			pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
94 			pci_dev_put(dev);
95 			return 0;
96 		}
97 		/*
98 		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
99 		 * write combining memory may resulting in data corruption
100 		 */
101 		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
102 		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
103 			pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
104 			pci_dev_put(dev);
105 			return 0;
106 		}
107 		pci_dev_put(dev);
108 	}
109 	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
110 }
111 
112 /*  This function returns the number of variable MTRRs  */
set_num_var_ranges(void)113 static void __init set_num_var_ranges(void)
114 {
115 	unsigned long config = 0, dummy;
116 
117 	if (use_intel())
118 		rdmsr(MSR_MTRRcap, config, dummy);
119 	else if (is_cpu(AMD))
120 		config = 2;
121 	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
122 		config = 8;
123 
124 	num_var_ranges = config & 0xff;
125 }
126 
init_table(void)127 static void __init init_table(void)
128 {
129 	int i, max;
130 
131 	max = num_var_ranges;
132 	for (i = 0; i < max; i++)
133 		mtrr_usage_table[i] = 1;
134 }
135 
136 struct set_mtrr_data {
137 	unsigned long	smp_base;
138 	unsigned long	smp_size;
139 	unsigned int	smp_reg;
140 	mtrr_type	smp_type;
141 };
142 
143 /**
144  * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
145  * by all the CPUs.
146  * @info: pointer to mtrr configuration data
147  *
148  * Returns nothing.
149  */
mtrr_rendezvous_handler(void * info)150 static int mtrr_rendezvous_handler(void *info)
151 {
152 	struct set_mtrr_data *data = info;
153 
154 	/*
155 	 * We use this same function to initialize the mtrrs during boot,
156 	 * resume, runtime cpu online and on an explicit request to set a
157 	 * specific MTRR.
158 	 *
159 	 * During boot or suspend, the state of the boot cpu's mtrrs has been
160 	 * saved, and we want to replicate that across all the cpus that come
161 	 * online (either at the end of boot or resume or during a runtime cpu
162 	 * online). If we're doing that, @reg is set to something special and on
163 	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
164 	 * started the boot/resume sequence, this might be a duplicate
165 	 * set_all()).
166 	 */
167 	if (data->smp_reg != ~0U) {
168 		mtrr_if->set(data->smp_reg, data->smp_base,
169 			     data->smp_size, data->smp_type);
170 	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
171 		mtrr_if->set_all();
172 	}
173 	return 0;
174 }
175 
types_compatible(mtrr_type type1,mtrr_type type2)176 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
177 {
178 	return type1 == MTRR_TYPE_UNCACHABLE ||
179 	       type2 == MTRR_TYPE_UNCACHABLE ||
180 	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
181 	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
182 }
183 
184 /**
185  * set_mtrr - update mtrrs on all processors
186  * @reg:	mtrr in question
187  * @base:	mtrr base
188  * @size:	mtrr size
189  * @type:	mtrr type
190  *
191  * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
192  *
193  * 1. Queue work to do the following on all processors:
194  * 2. Disable Interrupts
195  * 3. Wait for all procs to do so
196  * 4. Enter no-fill cache mode
197  * 5. Flush caches
198  * 6. Clear PGE bit
199  * 7. Flush all TLBs
200  * 8. Disable all range registers
201  * 9. Update the MTRRs
202  * 10. Enable all range registers
203  * 11. Flush all TLBs and caches again
204  * 12. Enter normal cache mode and reenable caching
205  * 13. Set PGE
206  * 14. Wait for buddies to catch up
207  * 15. Enable interrupts.
208  *
209  * What does that mean for us? Well, stop_machine() will ensure that
210  * the rendezvous handler is started on each CPU. And in lockstep they
211  * do the state transition of disabling interrupts, updating MTRR's
212  * (the CPU vendors may each do it differently, so we call mtrr_if->set()
213  * callback and let them take care of it.) and enabling interrupts.
214  *
215  * Note that the mechanism is the same for UP systems, too; all the SMP stuff
216  * becomes nops.
217  */
218 static void
set_mtrr(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)219 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
220 {
221 	struct set_mtrr_data data = { .smp_reg = reg,
222 				      .smp_base = base,
223 				      .smp_size = size,
224 				      .smp_type = type
225 				    };
226 
227 	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
228 }
229 
set_mtrr_from_inactive_cpu(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)230 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
231 				      unsigned long size, mtrr_type type)
232 {
233 	struct set_mtrr_data data = { .smp_reg = reg,
234 				      .smp_base = base,
235 				      .smp_size = size,
236 				      .smp_type = type
237 				    };
238 
239 	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
240 				       cpu_callout_mask);
241 }
242 
243 /**
244  * mtrr_add_page - Add a memory type region
245  * @base: Physical base address of region in pages (in units of 4 kB!)
246  * @size: Physical size of region in pages (4 kB)
247  * @type: Type of MTRR desired
248  * @increment: If this is true do usage counting on the region
249  *
250  * Memory type region registers control the caching on newer Intel and
251  * non Intel processors. This function allows drivers to request an
252  * MTRR is added. The details and hardware specifics of each processor's
253  * implementation are hidden from the caller, but nevertheless the
254  * caller should expect to need to provide a power of two size on an
255  * equivalent power of two boundary.
256  *
257  * If the region cannot be added either because all regions are in use
258  * or the CPU cannot support it a negative value is returned. On success
259  * the register number for this entry is returned, but should be treated
260  * as a cookie only.
261  *
262  * On a multiprocessor machine the changes are made to all processors.
263  * This is required on x86 by the Intel processors.
264  *
265  * The available types are
266  *
267  * %MTRR_TYPE_UNCACHABLE - No caching
268  *
269  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
270  *
271  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
272  *
273  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
274  *
275  * BUGS: Needs a quiet flag for the cases where drivers do not mind
276  * failures and do not wish system log messages to be sent.
277  */
mtrr_add_page(unsigned long base,unsigned long size,unsigned int type,bool increment)278 int mtrr_add_page(unsigned long base, unsigned long size,
279 		  unsigned int type, bool increment)
280 {
281 	unsigned long lbase, lsize;
282 	int i, replace, error;
283 	mtrr_type ltype;
284 
285 	if (!mtrr_if)
286 		return -ENXIO;
287 
288 	error = mtrr_if->validate_add_page(base, size, type);
289 	if (error)
290 		return error;
291 
292 	if (type >= MTRR_NUM_TYPES) {
293 		pr_warning("mtrr: type: %u invalid\n", type);
294 		return -EINVAL;
295 	}
296 
297 	/* If the type is WC, check that this processor supports it */
298 	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
299 		pr_warning("mtrr: your processor doesn't support write-combining\n");
300 		return -ENOSYS;
301 	}
302 
303 	if (!size) {
304 		pr_warning("mtrr: zero sized request\n");
305 		return -EINVAL;
306 	}
307 
308 	if (base & size_or_mask || size & size_or_mask) {
309 		pr_warning("mtrr: base or size exceeds the MTRR width\n");
310 		return -EINVAL;
311 	}
312 
313 	error = -EINVAL;
314 	replace = -1;
315 
316 	/* No CPU hotplug when we change MTRR entries */
317 	get_online_cpus();
318 
319 	/* Search for existing MTRR  */
320 	mutex_lock(&mtrr_mutex);
321 	for (i = 0; i < num_var_ranges; ++i) {
322 		mtrr_if->get(i, &lbase, &lsize, &ltype);
323 		if (!lsize || base > lbase + lsize - 1 ||
324 		    base + size - 1 < lbase)
325 			continue;
326 		/*
327 		 * At this point we know there is some kind of
328 		 * overlap/enclosure
329 		 */
330 		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
331 			if (base <= lbase &&
332 			    base + size - 1 >= lbase + lsize - 1) {
333 				/*  New region encloses an existing region  */
334 				if (type == ltype) {
335 					replace = replace == -1 ? i : -2;
336 					continue;
337 				} else if (types_compatible(type, ltype))
338 					continue;
339 			}
340 			pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
341 				" 0x%lx000,0x%lx000\n", base, size, lbase,
342 				lsize);
343 			goto out;
344 		}
345 		/* New region is enclosed by an existing region */
346 		if (ltype != type) {
347 			if (types_compatible(type, ltype))
348 				continue;
349 			pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
350 				base, size, mtrr_attrib_to_str(ltype),
351 				mtrr_attrib_to_str(type));
352 			goto out;
353 		}
354 		if (increment)
355 			++mtrr_usage_table[i];
356 		error = i;
357 		goto out;
358 	}
359 	/* Search for an empty MTRR */
360 	i = mtrr_if->get_free_region(base, size, replace);
361 	if (i >= 0) {
362 		set_mtrr(i, base, size, type);
363 		if (likely(replace < 0)) {
364 			mtrr_usage_table[i] = 1;
365 		} else {
366 			mtrr_usage_table[i] = mtrr_usage_table[replace];
367 			if (increment)
368 				mtrr_usage_table[i]++;
369 			if (unlikely(replace != i)) {
370 				set_mtrr(replace, 0, 0, 0);
371 				mtrr_usage_table[replace] = 0;
372 			}
373 		}
374 	} else {
375 		pr_info("mtrr: no more MTRRs available\n");
376 	}
377 	error = i;
378  out:
379 	mutex_unlock(&mtrr_mutex);
380 	put_online_cpus();
381 	return error;
382 }
383 
mtrr_check(unsigned long base,unsigned long size)384 static int mtrr_check(unsigned long base, unsigned long size)
385 {
386 	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
387 		pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
388 		pr_debug("mtrr: size: 0x%lx  base: 0x%lx\n", size, base);
389 		dump_stack();
390 		return -1;
391 	}
392 	return 0;
393 }
394 
395 /**
396  * mtrr_add - Add a memory type region
397  * @base: Physical base address of region
398  * @size: Physical size of region
399  * @type: Type of MTRR desired
400  * @increment: If this is true do usage counting on the region
401  *
402  * Memory type region registers control the caching on newer Intel and
403  * non Intel processors. This function allows drivers to request an
404  * MTRR is added. The details and hardware specifics of each processor's
405  * implementation are hidden from the caller, but nevertheless the
406  * caller should expect to need to provide a power of two size on an
407  * equivalent power of two boundary.
408  *
409  * If the region cannot be added either because all regions are in use
410  * or the CPU cannot support it a negative value is returned. On success
411  * the register number for this entry is returned, but should be treated
412  * as a cookie only.
413  *
414  * On a multiprocessor machine the changes are made to all processors.
415  * This is required on x86 by the Intel processors.
416  *
417  * The available types are
418  *
419  * %MTRR_TYPE_UNCACHABLE - No caching
420  *
421  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
422  *
423  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
424  *
425  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
426  *
427  * BUGS: Needs a quiet flag for the cases where drivers do not mind
428  * failures and do not wish system log messages to be sent.
429  */
mtrr_add(unsigned long base,unsigned long size,unsigned int type,bool increment)430 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
431 	     bool increment)
432 {
433 	if (mtrr_check(base, size))
434 		return -EINVAL;
435 	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
436 			     increment);
437 }
438 EXPORT_SYMBOL(mtrr_add);
439 
440 /**
441  * mtrr_del_page - delete a memory type region
442  * @reg: Register returned by mtrr_add
443  * @base: Physical base address
444  * @size: Size of region
445  *
446  * If register is supplied then base and size are ignored. This is
447  * how drivers should call it.
448  *
449  * Releases an MTRR region. If the usage count drops to zero the
450  * register is freed and the region returns to default state.
451  * On success the register is returned, on failure a negative error
452  * code.
453  */
mtrr_del_page(int reg,unsigned long base,unsigned long size)454 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
455 {
456 	int i, max;
457 	mtrr_type ltype;
458 	unsigned long lbase, lsize;
459 	int error = -EINVAL;
460 
461 	if (!mtrr_if)
462 		return -ENXIO;
463 
464 	max = num_var_ranges;
465 	/* No CPU hotplug when we change MTRR entries */
466 	get_online_cpus();
467 	mutex_lock(&mtrr_mutex);
468 	if (reg < 0) {
469 		/*  Search for existing MTRR  */
470 		for (i = 0; i < max; ++i) {
471 			mtrr_if->get(i, &lbase, &lsize, &ltype);
472 			if (lbase == base && lsize == size) {
473 				reg = i;
474 				break;
475 			}
476 		}
477 		if (reg < 0) {
478 			pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
479 				 base, size);
480 			goto out;
481 		}
482 	}
483 	if (reg >= max) {
484 		pr_warning("mtrr: register: %d too big\n", reg);
485 		goto out;
486 	}
487 	mtrr_if->get(reg, &lbase, &lsize, &ltype);
488 	if (lsize < 1) {
489 		pr_warning("mtrr: MTRR %d not used\n", reg);
490 		goto out;
491 	}
492 	if (mtrr_usage_table[reg] < 1) {
493 		pr_warning("mtrr: reg: %d has count=0\n", reg);
494 		goto out;
495 	}
496 	if (--mtrr_usage_table[reg] < 1)
497 		set_mtrr(reg, 0, 0, 0);
498 	error = reg;
499  out:
500 	mutex_unlock(&mtrr_mutex);
501 	put_online_cpus();
502 	return error;
503 }
504 
505 /**
506  * mtrr_del - delete a memory type region
507  * @reg: Register returned by mtrr_add
508  * @base: Physical base address
509  * @size: Size of region
510  *
511  * If register is supplied then base and size are ignored. This is
512  * how drivers should call it.
513  *
514  * Releases an MTRR region. If the usage count drops to zero the
515  * register is freed and the region returns to default state.
516  * On success the register is returned, on failure a negative error
517  * code.
518  */
mtrr_del(int reg,unsigned long base,unsigned long size)519 int mtrr_del(int reg, unsigned long base, unsigned long size)
520 {
521 	if (mtrr_check(base, size))
522 		return -EINVAL;
523 	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
524 }
525 EXPORT_SYMBOL(mtrr_del);
526 
527 /*
528  * HACK ALERT!
529  * These should be called implicitly, but we can't yet until all the initcall
530  * stuff is done...
531  */
init_ifs(void)532 static void __init init_ifs(void)
533 {
534 #ifndef CONFIG_X86_64
535 	amd_init_mtrr();
536 	cyrix_init_mtrr();
537 	centaur_init_mtrr();
538 #endif
539 }
540 
541 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
542  * MTRR driver doesn't require this
543  */
544 struct mtrr_value {
545 	mtrr_type	ltype;
546 	unsigned long	lbase;
547 	unsigned long	lsize;
548 };
549 
550 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
551 
mtrr_save(void)552 static int mtrr_save(void)
553 {
554 	int i;
555 
556 	for (i = 0; i < num_var_ranges; i++) {
557 		mtrr_if->get(i, &mtrr_value[i].lbase,
558 				&mtrr_value[i].lsize,
559 				&mtrr_value[i].ltype);
560 	}
561 	return 0;
562 }
563 
mtrr_restore(void)564 static void mtrr_restore(void)
565 {
566 	int i;
567 
568 	for (i = 0; i < num_var_ranges; i++) {
569 		if (mtrr_value[i].lsize) {
570 			set_mtrr(i, mtrr_value[i].lbase,
571 				    mtrr_value[i].lsize,
572 				    mtrr_value[i].ltype);
573 		}
574 	}
575 }
576 
577 
578 
579 static struct syscore_ops mtrr_syscore_ops = {
580 	.suspend	= mtrr_save,
581 	.resume		= mtrr_restore,
582 };
583 
584 int __initdata changed_by_mtrr_cleanup;
585 
586 /**
587  * mtrr_bp_init - initialize mtrrs on the boot CPU
588  *
589  * This needs to be called early; before any of the other CPUs are
590  * initialized (i.e. before smp_init()).
591  *
592  */
mtrr_bp_init(void)593 void __init mtrr_bp_init(void)
594 {
595 	u32 phys_addr;
596 
597 	init_ifs();
598 
599 	phys_addr = 32;
600 
601 	if (cpu_has_mtrr) {
602 		mtrr_if = &generic_mtrr_ops;
603 		size_or_mask = 0xff000000;			/* 36 bits */
604 		size_and_mask = 0x00f00000;
605 		phys_addr = 36;
606 
607 		/*
608 		 * This is an AMD specific MSR, but we assume(hope?) that
609 		 * Intel will implement it to when they extend the address
610 		 * bus of the Xeon.
611 		 */
612 		if (cpuid_eax(0x80000000) >= 0x80000008) {
613 			phys_addr = cpuid_eax(0x80000008) & 0xff;
614 			/* CPUID workaround for Intel 0F33/0F34 CPU */
615 			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
616 			    boot_cpu_data.x86 == 0xF &&
617 			    boot_cpu_data.x86_model == 0x3 &&
618 			    (boot_cpu_data.x86_mask == 0x3 ||
619 			     boot_cpu_data.x86_mask == 0x4))
620 				phys_addr = 36;
621 
622 			size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
623 			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
624 		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
625 			   boot_cpu_data.x86 == 6) {
626 			/*
627 			 * VIA C* family have Intel style MTRRs,
628 			 * but don't support PAE
629 			 */
630 			size_or_mask = 0xfff00000;		/* 32 bits */
631 			size_and_mask = 0;
632 			phys_addr = 32;
633 		}
634 	} else {
635 		switch (boot_cpu_data.x86_vendor) {
636 		case X86_VENDOR_AMD:
637 			if (cpu_has_k6_mtrr) {
638 				/* Pre-Athlon (K6) AMD CPU MTRRs */
639 				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
640 				size_or_mask = 0xfff00000;	/* 32 bits */
641 				size_and_mask = 0;
642 			}
643 			break;
644 		case X86_VENDOR_CENTAUR:
645 			if (cpu_has_centaur_mcr) {
646 				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
647 				size_or_mask = 0xfff00000;	/* 32 bits */
648 				size_and_mask = 0;
649 			}
650 			break;
651 		case X86_VENDOR_CYRIX:
652 			if (cpu_has_cyrix_arr) {
653 				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
654 				size_or_mask = 0xfff00000;	/* 32 bits */
655 				size_and_mask = 0;
656 			}
657 			break;
658 		default:
659 			break;
660 		}
661 	}
662 
663 	if (mtrr_if) {
664 		set_num_var_ranges();
665 		init_table();
666 		if (use_intel()) {
667 			get_mtrr_state();
668 
669 			if (mtrr_cleanup(phys_addr)) {
670 				changed_by_mtrr_cleanup = 1;
671 				mtrr_if->set_all();
672 			}
673 		}
674 	}
675 }
676 
mtrr_ap_init(void)677 void mtrr_ap_init(void)
678 {
679 	if (!use_intel() || mtrr_aps_delayed_init)
680 		return;
681 	/*
682 	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
683 	 * changed, but this routine will be called in cpu boot time,
684 	 * holding the lock breaks it.
685 	 *
686 	 * This routine is called in two cases:
687 	 *
688 	 *   1. very earily time of software resume, when there absolutely
689 	 *      isn't mtrr entry changes;
690 	 *
691 	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
692 	 *      lock to prevent mtrr entry changes
693 	 */
694 	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
695 }
696 
697 /**
698  * Save current fixed-range MTRR state of the BSP
699  */
mtrr_save_state(void)700 void mtrr_save_state(void)
701 {
702 	smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
703 }
704 
set_mtrr_aps_delayed_init(void)705 void set_mtrr_aps_delayed_init(void)
706 {
707 	if (!use_intel())
708 		return;
709 
710 	mtrr_aps_delayed_init = true;
711 }
712 
713 /*
714  * Delayed MTRR initialization for all AP's
715  */
mtrr_aps_init(void)716 void mtrr_aps_init(void)
717 {
718 	if (!use_intel())
719 		return;
720 
721 	/*
722 	 * Check if someone has requested the delay of AP MTRR initialization,
723 	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
724 	 * then we are done.
725 	 */
726 	if (!mtrr_aps_delayed_init)
727 		return;
728 
729 	set_mtrr(~0U, 0, 0, 0);
730 	mtrr_aps_delayed_init = false;
731 }
732 
mtrr_bp_restore(void)733 void mtrr_bp_restore(void)
734 {
735 	if (!use_intel())
736 		return;
737 
738 	mtrr_if->set_all();
739 }
740 
mtrr_init_finialize(void)741 static int __init mtrr_init_finialize(void)
742 {
743 	if (!mtrr_if)
744 		return 0;
745 
746 	if (use_intel()) {
747 		if (!changed_by_mtrr_cleanup)
748 			mtrr_state_warn();
749 		return 0;
750 	}
751 
752 	/*
753 	 * The CPU has no MTRR and seems to not support SMP. They have
754 	 * specific drivers, we use a tricky method to support
755 	 * suspend/resume for them.
756 	 *
757 	 * TBD: is there any system with such CPU which supports
758 	 * suspend/resume? If no, we should remove the code.
759 	 */
760 	register_syscore_ops(&mtrr_syscore_ops);
761 
762 	return 0;
763 }
764 subsys_initcall(mtrr_init_finialize);
765