1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2
3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
4 /* Copyright (c) 2008-2019, IBM Corporation */
5
6 #include <linux/errno.h>
7 #include <linux/types.h>
8 #include <linux/uaccess.h>
9 #include <linux/vmalloc.h>
10 #include <linux/xarray.h>
11 #include <net/addrconf.h>
12
13 #include <rdma/iw_cm.h>
14 #include <rdma/ib_verbs.h>
15 #include <rdma/ib_user_verbs.h>
16 #include <rdma/uverbs_ioctl.h>
17
18 #include "siw.h"
19 #include "siw_verbs.h"
20 #include "siw_mem.h"
21
22 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = {
23 [IB_QPS_RESET] = SIW_QP_STATE_IDLE,
24 [IB_QPS_INIT] = SIW_QP_STATE_IDLE,
25 [IB_QPS_RTR] = SIW_QP_STATE_RTR,
26 [IB_QPS_RTS] = SIW_QP_STATE_RTS,
27 [IB_QPS_SQD] = SIW_QP_STATE_CLOSING,
28 [IB_QPS_SQE] = SIW_QP_STATE_TERMINATE,
29 [IB_QPS_ERR] = SIW_QP_STATE_ERROR
30 };
31
32 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = {
33 [IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR",
34 [IB_QPS_RTS] = "RTS", [IB_QPS_SQD] = "SQD", [IB_QPS_SQE] = "SQE",
35 [IB_QPS_ERR] = "ERR"
36 };
37
siw_mmap_free(struct rdma_user_mmap_entry * rdma_entry)38 void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry)
39 {
40 struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry);
41
42 kfree(entry);
43 }
44
siw_mmap(struct ib_ucontext * ctx,struct vm_area_struct * vma)45 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma)
46 {
47 struct siw_ucontext *uctx = to_siw_ctx(ctx);
48 size_t size = vma->vm_end - vma->vm_start;
49 struct rdma_user_mmap_entry *rdma_entry;
50 struct siw_user_mmap_entry *entry;
51 int rv = -EINVAL;
52
53 /*
54 * Must be page aligned
55 */
56 if (vma->vm_start & (PAGE_SIZE - 1)) {
57 pr_warn("siw: mmap not page aligned\n");
58 return -EINVAL;
59 }
60 rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma);
61 if (!rdma_entry) {
62 siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n",
63 vma->vm_pgoff, size);
64 return -EINVAL;
65 }
66 entry = to_siw_mmap_entry(rdma_entry);
67
68 rv = remap_vmalloc_range(vma, entry->address, 0);
69 if (rv) {
70 pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff,
71 size);
72 goto out;
73 }
74 out:
75 rdma_user_mmap_entry_put(rdma_entry);
76
77 return rv;
78 }
79
siw_alloc_ucontext(struct ib_ucontext * base_ctx,struct ib_udata * udata)80 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata)
81 {
82 struct siw_device *sdev = to_siw_dev(base_ctx->device);
83 struct siw_ucontext *ctx = to_siw_ctx(base_ctx);
84 struct siw_uresp_alloc_ctx uresp = {};
85 int rv;
86
87 if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) {
88 rv = -ENOMEM;
89 goto err_out;
90 }
91 ctx->sdev = sdev;
92
93 uresp.dev_id = sdev->vendor_part_id;
94
95 if (udata->outlen < sizeof(uresp)) {
96 rv = -EINVAL;
97 goto err_out;
98 }
99 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
100 if (rv)
101 goto err_out;
102
103 siw_dbg(base_ctx->device, "success. now %d context(s)\n",
104 atomic_read(&sdev->num_ctx));
105
106 return 0;
107
108 err_out:
109 atomic_dec(&sdev->num_ctx);
110 siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv,
111 atomic_read(&sdev->num_ctx));
112
113 return rv;
114 }
115
siw_dealloc_ucontext(struct ib_ucontext * base_ctx)116 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx)
117 {
118 struct siw_ucontext *uctx = to_siw_ctx(base_ctx);
119
120 atomic_dec(&uctx->sdev->num_ctx);
121 }
122
siw_query_device(struct ib_device * base_dev,struct ib_device_attr * attr,struct ib_udata * udata)123 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr,
124 struct ib_udata *udata)
125 {
126 struct siw_device *sdev = to_siw_dev(base_dev);
127
128 if (udata->inlen || udata->outlen)
129 return -EINVAL;
130
131 memset(attr, 0, sizeof(*attr));
132
133 /* Revisit atomic caps if RFC 7306 gets supported */
134 attr->atomic_cap = 0;
135 attr->device_cap_flags = IB_DEVICE_MEM_MGT_EXTENSIONS;
136 attr->kernel_cap_flags = IBK_ALLOW_USER_UNREG;
137 attr->max_cq = sdev->attrs.max_cq;
138 attr->max_cqe = sdev->attrs.max_cqe;
139 attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL;
140 attr->max_mr = sdev->attrs.max_mr;
141 attr->max_mw = sdev->attrs.max_mw;
142 attr->max_mr_size = ~0ull;
143 attr->max_pd = sdev->attrs.max_pd;
144 attr->max_qp = sdev->attrs.max_qp;
145 attr->max_qp_init_rd_atom = sdev->attrs.max_ird;
146 attr->max_qp_rd_atom = sdev->attrs.max_ord;
147 attr->max_qp_wr = sdev->attrs.max_qp_wr;
148 attr->max_recv_sge = sdev->attrs.max_sge;
149 attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird;
150 attr->max_send_sge = sdev->attrs.max_sge;
151 attr->max_sge_rd = sdev->attrs.max_sge_rd;
152 attr->max_srq = sdev->attrs.max_srq;
153 attr->max_srq_sge = sdev->attrs.max_srq_sge;
154 attr->max_srq_wr = sdev->attrs.max_srq_wr;
155 attr->page_size_cap = PAGE_SIZE;
156 attr->vendor_id = SIW_VENDOR_ID;
157 attr->vendor_part_id = sdev->vendor_part_id;
158
159 addrconf_addr_eui48((u8 *)&attr->sys_image_guid,
160 sdev->netdev->dev_addr);
161
162 return 0;
163 }
164
siw_query_port(struct ib_device * base_dev,u32 port,struct ib_port_attr * attr)165 int siw_query_port(struct ib_device *base_dev, u32 port,
166 struct ib_port_attr *attr)
167 {
168 struct siw_device *sdev = to_siw_dev(base_dev);
169 int rv;
170
171 memset(attr, 0, sizeof(*attr));
172
173 rv = ib_get_eth_speed(base_dev, port, &attr->active_speed,
174 &attr->active_width);
175 attr->gid_tbl_len = 1;
176 attr->max_msg_sz = -1;
177 attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
178 attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
179 attr->phys_state = sdev->state == IB_PORT_ACTIVE ?
180 IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED;
181 attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP;
182 attr->state = sdev->state;
183 /*
184 * All zero
185 *
186 * attr->lid = 0;
187 * attr->bad_pkey_cntr = 0;
188 * attr->qkey_viol_cntr = 0;
189 * attr->sm_lid = 0;
190 * attr->lmc = 0;
191 * attr->max_vl_num = 0;
192 * attr->sm_sl = 0;
193 * attr->subnet_timeout = 0;
194 * attr->init_type_repy = 0;
195 */
196 return rv;
197 }
198
siw_get_port_immutable(struct ib_device * base_dev,u32 port,struct ib_port_immutable * port_immutable)199 int siw_get_port_immutable(struct ib_device *base_dev, u32 port,
200 struct ib_port_immutable *port_immutable)
201 {
202 struct ib_port_attr attr;
203 int rv = siw_query_port(base_dev, port, &attr);
204
205 if (rv)
206 return rv;
207
208 port_immutable->gid_tbl_len = attr.gid_tbl_len;
209 port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
210
211 return 0;
212 }
213
siw_query_gid(struct ib_device * base_dev,u32 port,int idx,union ib_gid * gid)214 int siw_query_gid(struct ib_device *base_dev, u32 port, int idx,
215 union ib_gid *gid)
216 {
217 struct siw_device *sdev = to_siw_dev(base_dev);
218
219 /* subnet_prefix == interface_id == 0; */
220 memset(gid, 0, sizeof(*gid));
221 memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6);
222
223 return 0;
224 }
225
siw_alloc_pd(struct ib_pd * pd,struct ib_udata * udata)226 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata)
227 {
228 struct siw_device *sdev = to_siw_dev(pd->device);
229
230 if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) {
231 atomic_dec(&sdev->num_pd);
232 return -ENOMEM;
233 }
234 siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd));
235
236 return 0;
237 }
238
siw_dealloc_pd(struct ib_pd * pd,struct ib_udata * udata)239 int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata)
240 {
241 struct siw_device *sdev = to_siw_dev(pd->device);
242
243 siw_dbg_pd(pd, "free PD\n");
244 atomic_dec(&sdev->num_pd);
245 return 0;
246 }
247
siw_qp_get_ref(struct ib_qp * base_qp)248 void siw_qp_get_ref(struct ib_qp *base_qp)
249 {
250 siw_qp_get(to_siw_qp(base_qp));
251 }
252
siw_qp_put_ref(struct ib_qp * base_qp)253 void siw_qp_put_ref(struct ib_qp *base_qp)
254 {
255 siw_qp_put(to_siw_qp(base_qp));
256 }
257
258 static struct rdma_user_mmap_entry *
siw_mmap_entry_insert(struct siw_ucontext * uctx,void * address,size_t length,u64 * offset)259 siw_mmap_entry_insert(struct siw_ucontext *uctx,
260 void *address, size_t length,
261 u64 *offset)
262 {
263 struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
264 int rv;
265
266 *offset = SIW_INVAL_UOBJ_KEY;
267 if (!entry)
268 return NULL;
269
270 entry->address = address;
271
272 rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext,
273 &entry->rdma_entry,
274 length);
275 if (rv) {
276 kfree(entry);
277 return NULL;
278 }
279
280 *offset = rdma_user_mmap_get_offset(&entry->rdma_entry);
281
282 return &entry->rdma_entry;
283 }
284
285 /*
286 * siw_create_qp()
287 *
288 * Create QP of requested size on given device.
289 *
290 * @qp: Queue pait
291 * @attrs: Initial QP attributes.
292 * @udata: used to provide QP ID, SQ and RQ size back to user.
293 */
294
siw_create_qp(struct ib_qp * ibqp,struct ib_qp_init_attr * attrs,struct ib_udata * udata)295 int siw_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *attrs,
296 struct ib_udata *udata)
297 {
298 struct ib_pd *pd = ibqp->pd;
299 struct siw_qp *qp = to_siw_qp(ibqp);
300 struct ib_device *base_dev = pd->device;
301 struct siw_device *sdev = to_siw_dev(base_dev);
302 struct siw_ucontext *uctx =
303 rdma_udata_to_drv_context(udata, struct siw_ucontext,
304 base_ucontext);
305 unsigned long flags;
306 int num_sqe, num_rqe, rv = 0;
307 size_t length;
308
309 siw_dbg(base_dev, "create new QP\n");
310
311 if (attrs->create_flags)
312 return -EOPNOTSUPP;
313
314 if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) {
315 siw_dbg(base_dev, "too many QP's\n");
316 rv = -ENOMEM;
317 goto err_atomic;
318 }
319 if (attrs->qp_type != IB_QPT_RC) {
320 siw_dbg(base_dev, "only RC QP's supported\n");
321 rv = -EOPNOTSUPP;
322 goto err_atomic;
323 }
324 if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) ||
325 (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) ||
326 (attrs->cap.max_send_sge > SIW_MAX_SGE) ||
327 (attrs->cap.max_recv_sge > SIW_MAX_SGE)) {
328 siw_dbg(base_dev, "QP size error\n");
329 rv = -EINVAL;
330 goto err_atomic;
331 }
332 if (attrs->cap.max_inline_data > SIW_MAX_INLINE) {
333 siw_dbg(base_dev, "max inline send: %d > %d\n",
334 attrs->cap.max_inline_data, (int)SIW_MAX_INLINE);
335 rv = -EINVAL;
336 goto err_atomic;
337 }
338 /*
339 * NOTE: we allow for zero element SQ and RQ WQE's SGL's
340 * but not for a QP unable to hold any WQE (SQ + RQ)
341 */
342 if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) {
343 siw_dbg(base_dev, "QP must have send or receive queue\n");
344 rv = -EINVAL;
345 goto err_atomic;
346 }
347
348 if (!attrs->send_cq || (!attrs->recv_cq && !attrs->srq)) {
349 siw_dbg(base_dev, "send CQ or receive CQ invalid\n");
350 rv = -EINVAL;
351 goto err_atomic;
352 }
353
354 init_rwsem(&qp->state_lock);
355 spin_lock_init(&qp->sq_lock);
356 spin_lock_init(&qp->rq_lock);
357 spin_lock_init(&qp->orq_lock);
358
359 rv = siw_qp_add(sdev, qp);
360 if (rv)
361 goto err_atomic;
362
363 num_sqe = attrs->cap.max_send_wr;
364 num_rqe = attrs->cap.max_recv_wr;
365
366 /* All queue indices are derived from modulo operations
367 * on a free running 'get' (consumer) and 'put' (producer)
368 * unsigned counter. Having queue sizes at power of two
369 * avoids handling counter wrap around.
370 */
371 if (num_sqe)
372 num_sqe = roundup_pow_of_two(num_sqe);
373 else {
374 /* Zero sized SQ is not supported */
375 rv = -EINVAL;
376 goto err_out_xa;
377 }
378 if (num_rqe)
379 num_rqe = roundup_pow_of_two(num_rqe);
380
381 if (udata)
382 qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe));
383 else
384 qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe));
385
386 if (qp->sendq == NULL) {
387 rv = -ENOMEM;
388 goto err_out_xa;
389 }
390 if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) {
391 if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR)
392 qp->attrs.flags |= SIW_SIGNAL_ALL_WR;
393 else {
394 rv = -EINVAL;
395 goto err_out_xa;
396 }
397 }
398 qp->pd = pd;
399 qp->scq = to_siw_cq(attrs->send_cq);
400 qp->rcq = to_siw_cq(attrs->recv_cq);
401
402 if (attrs->srq) {
403 /*
404 * SRQ support.
405 * Verbs 6.3.7: ignore RQ size, if SRQ present
406 * Verbs 6.3.5: do not check PD of SRQ against PD of QP
407 */
408 qp->srq = to_siw_srq(attrs->srq);
409 qp->attrs.rq_size = 0;
410 siw_dbg(base_dev, "QP [%u]: SRQ attached\n",
411 qp->base_qp.qp_num);
412 } else if (num_rqe) {
413 if (udata)
414 qp->recvq =
415 vmalloc_user(num_rqe * sizeof(struct siw_rqe));
416 else
417 qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe));
418
419 if (qp->recvq == NULL) {
420 rv = -ENOMEM;
421 goto err_out_xa;
422 }
423 qp->attrs.rq_size = num_rqe;
424 }
425 qp->attrs.sq_size = num_sqe;
426 qp->attrs.sq_max_sges = attrs->cap.max_send_sge;
427 qp->attrs.rq_max_sges = attrs->cap.max_recv_sge;
428
429 /* Make those two tunables fixed for now. */
430 qp->tx_ctx.gso_seg_limit = 1;
431 qp->tx_ctx.zcopy_tx = zcopy_tx;
432
433 qp->attrs.state = SIW_QP_STATE_IDLE;
434
435 if (udata) {
436 struct siw_uresp_create_qp uresp = {};
437
438 uresp.num_sqe = num_sqe;
439 uresp.num_rqe = num_rqe;
440 uresp.qp_id = qp_id(qp);
441
442 if (qp->sendq) {
443 length = num_sqe * sizeof(struct siw_sqe);
444 qp->sq_entry =
445 siw_mmap_entry_insert(uctx, qp->sendq,
446 length, &uresp.sq_key);
447 if (!qp->sq_entry) {
448 rv = -ENOMEM;
449 goto err_out_xa;
450 }
451 }
452
453 if (qp->recvq) {
454 length = num_rqe * sizeof(struct siw_rqe);
455 qp->rq_entry =
456 siw_mmap_entry_insert(uctx, qp->recvq,
457 length, &uresp.rq_key);
458 if (!qp->rq_entry) {
459 uresp.sq_key = SIW_INVAL_UOBJ_KEY;
460 rv = -ENOMEM;
461 goto err_out_xa;
462 }
463 }
464
465 if (udata->outlen < sizeof(uresp)) {
466 rv = -EINVAL;
467 goto err_out_xa;
468 }
469 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
470 if (rv)
471 goto err_out_xa;
472 }
473 qp->tx_cpu = siw_get_tx_cpu(sdev);
474 if (qp->tx_cpu < 0) {
475 rv = -EINVAL;
476 goto err_out_xa;
477 }
478 INIT_LIST_HEAD(&qp->devq);
479 spin_lock_irqsave(&sdev->lock, flags);
480 list_add_tail(&qp->devq, &sdev->qp_list);
481 spin_unlock_irqrestore(&sdev->lock, flags);
482
483 init_completion(&qp->qp_free);
484
485 return 0;
486
487 err_out_xa:
488 xa_erase(&sdev->qp_xa, qp_id(qp));
489 if (uctx) {
490 rdma_user_mmap_entry_remove(qp->sq_entry);
491 rdma_user_mmap_entry_remove(qp->rq_entry);
492 }
493 vfree(qp->sendq);
494 vfree(qp->recvq);
495
496 err_atomic:
497 atomic_dec(&sdev->num_qp);
498 return rv;
499 }
500
501 /*
502 * Minimum siw_query_qp() verb interface.
503 *
504 * @qp_attr_mask is not used but all available information is provided
505 */
siw_query_qp(struct ib_qp * base_qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)506 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr,
507 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
508 {
509 struct siw_qp *qp;
510 struct siw_device *sdev;
511
512 if (base_qp && qp_attr && qp_init_attr) {
513 qp = to_siw_qp(base_qp);
514 sdev = to_siw_dev(base_qp->device);
515 } else {
516 return -EINVAL;
517 }
518 qp_attr->cap.max_inline_data = SIW_MAX_INLINE;
519 qp_attr->cap.max_send_wr = qp->attrs.sq_size;
520 qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges;
521 qp_attr->cap.max_recv_wr = qp->attrs.rq_size;
522 qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges;
523 qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
524 qp_attr->max_rd_atomic = qp->attrs.irq_size;
525 qp_attr->max_dest_rd_atomic = qp->attrs.orq_size;
526
527 qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE |
528 IB_ACCESS_REMOTE_WRITE |
529 IB_ACCESS_REMOTE_READ;
530
531 qp_init_attr->qp_type = base_qp->qp_type;
532 qp_init_attr->send_cq = base_qp->send_cq;
533 qp_init_attr->recv_cq = base_qp->recv_cq;
534 qp_init_attr->srq = base_qp->srq;
535
536 qp_init_attr->cap = qp_attr->cap;
537
538 return 0;
539 }
540
siw_verbs_modify_qp(struct ib_qp * base_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)541 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr,
542 int attr_mask, struct ib_udata *udata)
543 {
544 struct siw_qp_attrs new_attrs;
545 enum siw_qp_attr_mask siw_attr_mask = 0;
546 struct siw_qp *qp = to_siw_qp(base_qp);
547 int rv = 0;
548
549 if (!attr_mask)
550 return 0;
551
552 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
553 return -EOPNOTSUPP;
554
555 memset(&new_attrs, 0, sizeof(new_attrs));
556
557 if (attr_mask & IB_QP_ACCESS_FLAGS) {
558 siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS;
559
560 if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ)
561 new_attrs.flags |= SIW_RDMA_READ_ENABLED;
562 if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE)
563 new_attrs.flags |= SIW_RDMA_WRITE_ENABLED;
564 if (attr->qp_access_flags & IB_ACCESS_MW_BIND)
565 new_attrs.flags |= SIW_RDMA_BIND_ENABLED;
566 }
567 if (attr_mask & IB_QP_STATE) {
568 siw_dbg_qp(qp, "desired IB QP state: %s\n",
569 ib_qp_state_to_string[attr->qp_state]);
570
571 new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state];
572
573 if (new_attrs.state > SIW_QP_STATE_RTS)
574 qp->tx_ctx.tx_suspend = 1;
575
576 siw_attr_mask |= SIW_QP_ATTR_STATE;
577 }
578 if (!siw_attr_mask)
579 goto out;
580
581 down_write(&qp->state_lock);
582
583 rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask);
584
585 up_write(&qp->state_lock);
586 out:
587 return rv;
588 }
589
siw_destroy_qp(struct ib_qp * base_qp,struct ib_udata * udata)590 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata)
591 {
592 struct siw_qp *qp = to_siw_qp(base_qp);
593 struct siw_ucontext *uctx =
594 rdma_udata_to_drv_context(udata, struct siw_ucontext,
595 base_ucontext);
596 struct siw_qp_attrs qp_attrs;
597
598 siw_dbg_qp(qp, "state %d\n", qp->attrs.state);
599
600 /*
601 * Mark QP as in process of destruction to prevent from
602 * any async callbacks to RDMA core
603 */
604 qp->attrs.flags |= SIW_QP_IN_DESTROY;
605 qp->rx_stream.rx_suspend = 1;
606
607 if (uctx) {
608 rdma_user_mmap_entry_remove(qp->sq_entry);
609 rdma_user_mmap_entry_remove(qp->rq_entry);
610 }
611
612 down_write(&qp->state_lock);
613
614 qp_attrs.state = SIW_QP_STATE_ERROR;
615 siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE);
616
617 if (qp->cep) {
618 siw_cep_put(qp->cep);
619 qp->cep = NULL;
620 }
621 up_write(&qp->state_lock);
622
623 kfree(qp->tx_ctx.mpa_crc_hd);
624 kfree(qp->rx_stream.mpa_crc_hd);
625
626 qp->scq = qp->rcq = NULL;
627
628 siw_qp_put(qp);
629 wait_for_completion(&qp->qp_free);
630
631 return 0;
632 }
633
634 /*
635 * siw_copy_inline_sgl()
636 *
637 * Prepare sgl of inlined data for sending. For userland callers
638 * function checks if given buffer addresses and len's are within
639 * process context bounds.
640 * Data from all provided sge's are copied together into the wqe,
641 * referenced by a single sge.
642 */
siw_copy_inline_sgl(const struct ib_send_wr * core_wr,struct siw_sqe * sqe)643 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr,
644 struct siw_sqe *sqe)
645 {
646 struct ib_sge *core_sge = core_wr->sg_list;
647 void *kbuf = &sqe->sge[1];
648 int num_sge = core_wr->num_sge, bytes = 0;
649
650 sqe->sge[0].laddr = (uintptr_t)kbuf;
651 sqe->sge[0].lkey = 0;
652
653 while (num_sge--) {
654 if (!core_sge->length) {
655 core_sge++;
656 continue;
657 }
658 bytes += core_sge->length;
659 if (bytes > SIW_MAX_INLINE) {
660 bytes = -EINVAL;
661 break;
662 }
663 memcpy(kbuf, (void *)(uintptr_t)core_sge->addr,
664 core_sge->length);
665
666 kbuf += core_sge->length;
667 core_sge++;
668 }
669 sqe->sge[0].length = max(bytes, 0);
670 sqe->num_sge = bytes > 0 ? 1 : 0;
671
672 return bytes;
673 }
674
675 /* Complete SQ WR's without processing */
siw_sq_flush_wr(struct siw_qp * qp,const struct ib_send_wr * wr,const struct ib_send_wr ** bad_wr)676 static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr,
677 const struct ib_send_wr **bad_wr)
678 {
679 int rv = 0;
680
681 while (wr) {
682 struct siw_sqe sqe = {};
683
684 switch (wr->opcode) {
685 case IB_WR_RDMA_WRITE:
686 sqe.opcode = SIW_OP_WRITE;
687 break;
688 case IB_WR_RDMA_READ:
689 sqe.opcode = SIW_OP_READ;
690 break;
691 case IB_WR_RDMA_READ_WITH_INV:
692 sqe.opcode = SIW_OP_READ_LOCAL_INV;
693 break;
694 case IB_WR_SEND:
695 sqe.opcode = SIW_OP_SEND;
696 break;
697 case IB_WR_SEND_WITH_IMM:
698 sqe.opcode = SIW_OP_SEND_WITH_IMM;
699 break;
700 case IB_WR_SEND_WITH_INV:
701 sqe.opcode = SIW_OP_SEND_REMOTE_INV;
702 break;
703 case IB_WR_LOCAL_INV:
704 sqe.opcode = SIW_OP_INVAL_STAG;
705 break;
706 case IB_WR_REG_MR:
707 sqe.opcode = SIW_OP_REG_MR;
708 break;
709 default:
710 rv = -EINVAL;
711 break;
712 }
713 if (!rv) {
714 sqe.id = wr->wr_id;
715 rv = siw_sqe_complete(qp, &sqe, 0,
716 SIW_WC_WR_FLUSH_ERR);
717 }
718 if (rv) {
719 if (bad_wr)
720 *bad_wr = wr;
721 break;
722 }
723 wr = wr->next;
724 }
725 return rv;
726 }
727
728 /* Complete RQ WR's without processing */
siw_rq_flush_wr(struct siw_qp * qp,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)729 static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr,
730 const struct ib_recv_wr **bad_wr)
731 {
732 struct siw_rqe rqe = {};
733 int rv = 0;
734
735 while (wr) {
736 rqe.id = wr->wr_id;
737 rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR);
738 if (rv) {
739 if (bad_wr)
740 *bad_wr = wr;
741 break;
742 }
743 wr = wr->next;
744 }
745 return rv;
746 }
747
748 /*
749 * siw_post_send()
750 *
751 * Post a list of S-WR's to a SQ.
752 *
753 * @base_qp: Base QP contained in siw QP
754 * @wr: Null terminated list of user WR's
755 * @bad_wr: Points to failing WR in case of synchronous failure.
756 */
siw_post_send(struct ib_qp * base_qp,const struct ib_send_wr * wr,const struct ib_send_wr ** bad_wr)757 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr,
758 const struct ib_send_wr **bad_wr)
759 {
760 struct siw_qp *qp = to_siw_qp(base_qp);
761 struct siw_wqe *wqe = tx_wqe(qp);
762
763 unsigned long flags;
764 int rv = 0;
765
766 if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) {
767 siw_dbg_qp(qp, "wr must be empty for user mapped sq\n");
768 *bad_wr = wr;
769 return -EINVAL;
770 }
771
772 /*
773 * Try to acquire QP state lock. Must be non-blocking
774 * to accommodate kernel clients needs.
775 */
776 if (!down_read_trylock(&qp->state_lock)) {
777 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
778 /*
779 * ERROR state is final, so we can be sure
780 * this state will not change as long as the QP
781 * exists.
782 *
783 * This handles an ib_drain_sq() call with
784 * a concurrent request to set the QP state
785 * to ERROR.
786 */
787 rv = siw_sq_flush_wr(qp, wr, bad_wr);
788 } else {
789 siw_dbg_qp(qp, "QP locked, state %d\n",
790 qp->attrs.state);
791 *bad_wr = wr;
792 rv = -ENOTCONN;
793 }
794 return rv;
795 }
796 if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) {
797 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
798 /*
799 * Immediately flush this WR to CQ, if QP
800 * is in ERROR state. SQ is guaranteed to
801 * be empty, so WR complets in-order.
802 *
803 * Typically triggered by ib_drain_sq().
804 */
805 rv = siw_sq_flush_wr(qp, wr, bad_wr);
806 } else {
807 siw_dbg_qp(qp, "QP out of state %d\n",
808 qp->attrs.state);
809 *bad_wr = wr;
810 rv = -ENOTCONN;
811 }
812 up_read(&qp->state_lock);
813 return rv;
814 }
815 spin_lock_irqsave(&qp->sq_lock, flags);
816
817 while (wr) {
818 u32 idx = qp->sq_put % qp->attrs.sq_size;
819 struct siw_sqe *sqe = &qp->sendq[idx];
820
821 if (sqe->flags) {
822 siw_dbg_qp(qp, "sq full\n");
823 rv = -ENOMEM;
824 break;
825 }
826 if (wr->num_sge > qp->attrs.sq_max_sges) {
827 siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
828 rv = -EINVAL;
829 break;
830 }
831 sqe->id = wr->wr_id;
832
833 if ((wr->send_flags & IB_SEND_SIGNALED) ||
834 (qp->attrs.flags & SIW_SIGNAL_ALL_WR))
835 sqe->flags |= SIW_WQE_SIGNALLED;
836
837 if (wr->send_flags & IB_SEND_FENCE)
838 sqe->flags |= SIW_WQE_READ_FENCE;
839
840 switch (wr->opcode) {
841 case IB_WR_SEND:
842 case IB_WR_SEND_WITH_INV:
843 if (wr->send_flags & IB_SEND_SOLICITED)
844 sqe->flags |= SIW_WQE_SOLICITED;
845
846 if (!(wr->send_flags & IB_SEND_INLINE)) {
847 siw_copy_sgl(wr->sg_list, sqe->sge,
848 wr->num_sge);
849 sqe->num_sge = wr->num_sge;
850 } else {
851 rv = siw_copy_inline_sgl(wr, sqe);
852 if (rv <= 0) {
853 rv = -EINVAL;
854 break;
855 }
856 sqe->flags |= SIW_WQE_INLINE;
857 sqe->num_sge = 1;
858 }
859 if (wr->opcode == IB_WR_SEND)
860 sqe->opcode = SIW_OP_SEND;
861 else {
862 sqe->opcode = SIW_OP_SEND_REMOTE_INV;
863 sqe->rkey = wr->ex.invalidate_rkey;
864 }
865 break;
866
867 case IB_WR_RDMA_READ_WITH_INV:
868 case IB_WR_RDMA_READ:
869 /*
870 * iWarp restricts RREAD sink to SGL containing
871 * 1 SGE only. we could relax to SGL with multiple
872 * elements referring the SAME ltag or even sending
873 * a private per-rreq tag referring to a checked
874 * local sgl with MULTIPLE ltag's.
875 */
876 if (unlikely(wr->num_sge != 1)) {
877 rv = -EINVAL;
878 break;
879 }
880 siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1);
881 /*
882 * NOTE: zero length RREAD is allowed!
883 */
884 sqe->raddr = rdma_wr(wr)->remote_addr;
885 sqe->rkey = rdma_wr(wr)->rkey;
886 sqe->num_sge = 1;
887
888 if (wr->opcode == IB_WR_RDMA_READ)
889 sqe->opcode = SIW_OP_READ;
890 else
891 sqe->opcode = SIW_OP_READ_LOCAL_INV;
892 break;
893
894 case IB_WR_RDMA_WRITE:
895 if (!(wr->send_flags & IB_SEND_INLINE)) {
896 siw_copy_sgl(wr->sg_list, &sqe->sge[0],
897 wr->num_sge);
898 sqe->num_sge = wr->num_sge;
899 } else {
900 rv = siw_copy_inline_sgl(wr, sqe);
901 if (unlikely(rv < 0)) {
902 rv = -EINVAL;
903 break;
904 }
905 sqe->flags |= SIW_WQE_INLINE;
906 sqe->num_sge = 1;
907 }
908 sqe->raddr = rdma_wr(wr)->remote_addr;
909 sqe->rkey = rdma_wr(wr)->rkey;
910 sqe->opcode = SIW_OP_WRITE;
911 break;
912
913 case IB_WR_REG_MR:
914 sqe->base_mr = (uintptr_t)reg_wr(wr)->mr;
915 sqe->rkey = reg_wr(wr)->key;
916 sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK;
917 sqe->opcode = SIW_OP_REG_MR;
918 break;
919
920 case IB_WR_LOCAL_INV:
921 sqe->rkey = wr->ex.invalidate_rkey;
922 sqe->opcode = SIW_OP_INVAL_STAG;
923 break;
924
925 default:
926 siw_dbg_qp(qp, "ib wr type %d unsupported\n",
927 wr->opcode);
928 rv = -EINVAL;
929 break;
930 }
931 siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n",
932 sqe->opcode, sqe->flags,
933 (void *)(uintptr_t)sqe->id);
934
935 if (unlikely(rv < 0))
936 break;
937
938 /* make SQE only valid after completely written */
939 smp_wmb();
940 sqe->flags |= SIW_WQE_VALID;
941
942 qp->sq_put++;
943 wr = wr->next;
944 }
945
946 /*
947 * Send directly if SQ processing is not in progress.
948 * Eventual immediate errors (rv < 0) do not affect the involved
949 * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ
950 * processing, if new work is already pending. But rv must be passed
951 * to caller.
952 */
953 if (wqe->wr_status != SIW_WR_IDLE) {
954 spin_unlock_irqrestore(&qp->sq_lock, flags);
955 goto skip_direct_sending;
956 }
957 rv = siw_activate_tx(qp);
958 spin_unlock_irqrestore(&qp->sq_lock, flags);
959
960 if (rv <= 0)
961 goto skip_direct_sending;
962
963 if (rdma_is_kernel_res(&qp->base_qp.res)) {
964 rv = siw_sq_start(qp);
965 } else {
966 qp->tx_ctx.in_syscall = 1;
967
968 if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend))
969 siw_qp_cm_drop(qp, 0);
970
971 qp->tx_ctx.in_syscall = 0;
972 }
973 skip_direct_sending:
974
975 up_read(&qp->state_lock);
976
977 if (rv >= 0)
978 return 0;
979 /*
980 * Immediate error
981 */
982 siw_dbg_qp(qp, "error %d\n", rv);
983
984 *bad_wr = wr;
985 return rv;
986 }
987
988 /*
989 * siw_post_receive()
990 *
991 * Post a list of R-WR's to a RQ.
992 *
993 * @base_qp: Base QP contained in siw QP
994 * @wr: Null terminated list of user WR's
995 * @bad_wr: Points to failing WR in case of synchronous failure.
996 */
siw_post_receive(struct ib_qp * base_qp,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)997 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr,
998 const struct ib_recv_wr **bad_wr)
999 {
1000 struct siw_qp *qp = to_siw_qp(base_qp);
1001 unsigned long flags;
1002 int rv = 0;
1003
1004 if (qp->srq || qp->attrs.rq_size == 0) {
1005 *bad_wr = wr;
1006 return -EINVAL;
1007 }
1008 if (!rdma_is_kernel_res(&qp->base_qp.res)) {
1009 siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n");
1010 *bad_wr = wr;
1011 return -EINVAL;
1012 }
1013
1014 /*
1015 * Try to acquire QP state lock. Must be non-blocking
1016 * to accommodate kernel clients needs.
1017 */
1018 if (!down_read_trylock(&qp->state_lock)) {
1019 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1020 /*
1021 * ERROR state is final, so we can be sure
1022 * this state will not change as long as the QP
1023 * exists.
1024 *
1025 * This handles an ib_drain_rq() call with
1026 * a concurrent request to set the QP state
1027 * to ERROR.
1028 */
1029 rv = siw_rq_flush_wr(qp, wr, bad_wr);
1030 } else {
1031 siw_dbg_qp(qp, "QP locked, state %d\n",
1032 qp->attrs.state);
1033 *bad_wr = wr;
1034 rv = -ENOTCONN;
1035 }
1036 return rv;
1037 }
1038 if (qp->attrs.state > SIW_QP_STATE_RTS) {
1039 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1040 /*
1041 * Immediately flush this WR to CQ, if QP
1042 * is in ERROR state. RQ is guaranteed to
1043 * be empty, so WR complets in-order.
1044 *
1045 * Typically triggered by ib_drain_rq().
1046 */
1047 rv = siw_rq_flush_wr(qp, wr, bad_wr);
1048 } else {
1049 siw_dbg_qp(qp, "QP out of state %d\n",
1050 qp->attrs.state);
1051 *bad_wr = wr;
1052 rv = -ENOTCONN;
1053 }
1054 up_read(&qp->state_lock);
1055 return rv;
1056 }
1057 /*
1058 * Serialize potentially multiple producers.
1059 * Not needed for single threaded consumer side.
1060 */
1061 spin_lock_irqsave(&qp->rq_lock, flags);
1062
1063 while (wr) {
1064 u32 idx = qp->rq_put % qp->attrs.rq_size;
1065 struct siw_rqe *rqe = &qp->recvq[idx];
1066
1067 if (rqe->flags) {
1068 siw_dbg_qp(qp, "RQ full\n");
1069 rv = -ENOMEM;
1070 break;
1071 }
1072 if (wr->num_sge > qp->attrs.rq_max_sges) {
1073 siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
1074 rv = -EINVAL;
1075 break;
1076 }
1077 rqe->id = wr->wr_id;
1078 rqe->num_sge = wr->num_sge;
1079 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1080
1081 /* make sure RQE is completely written before valid */
1082 smp_wmb();
1083
1084 rqe->flags = SIW_WQE_VALID;
1085
1086 qp->rq_put++;
1087 wr = wr->next;
1088 }
1089 spin_unlock_irqrestore(&qp->rq_lock, flags);
1090
1091 up_read(&qp->state_lock);
1092
1093 if (rv < 0) {
1094 siw_dbg_qp(qp, "error %d\n", rv);
1095 *bad_wr = wr;
1096 }
1097 return rv > 0 ? 0 : rv;
1098 }
1099
siw_destroy_cq(struct ib_cq * base_cq,struct ib_udata * udata)1100 int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata)
1101 {
1102 struct siw_cq *cq = to_siw_cq(base_cq);
1103 struct siw_device *sdev = to_siw_dev(base_cq->device);
1104 struct siw_ucontext *ctx =
1105 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1106 base_ucontext);
1107
1108 siw_dbg_cq(cq, "free CQ resources\n");
1109
1110 siw_cq_flush(cq);
1111
1112 if (ctx)
1113 rdma_user_mmap_entry_remove(cq->cq_entry);
1114
1115 atomic_dec(&sdev->num_cq);
1116
1117 vfree(cq->queue);
1118 return 0;
1119 }
1120
1121 /*
1122 * siw_create_cq()
1123 *
1124 * Populate CQ of requested size
1125 *
1126 * @base_cq: CQ as allocated by RDMA midlayer
1127 * @attr: Initial CQ attributes
1128 * @udata: relates to user context
1129 */
1130
siw_create_cq(struct ib_cq * base_cq,const struct ib_cq_init_attr * attr,struct ib_udata * udata)1131 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr,
1132 struct ib_udata *udata)
1133 {
1134 struct siw_device *sdev = to_siw_dev(base_cq->device);
1135 struct siw_cq *cq = to_siw_cq(base_cq);
1136 int rv, size = attr->cqe;
1137
1138 if (attr->flags)
1139 return -EOPNOTSUPP;
1140
1141 if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) {
1142 siw_dbg(base_cq->device, "too many CQ's\n");
1143 rv = -ENOMEM;
1144 goto err_out;
1145 }
1146 if (size < 1 || size > sdev->attrs.max_cqe) {
1147 siw_dbg(base_cq->device, "CQ size error: %d\n", size);
1148 rv = -EINVAL;
1149 goto err_out;
1150 }
1151 size = roundup_pow_of_two(size);
1152 cq->base_cq.cqe = size;
1153 cq->num_cqe = size;
1154
1155 if (udata)
1156 cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) +
1157 sizeof(struct siw_cq_ctrl));
1158 else
1159 cq->queue = vzalloc(size * sizeof(struct siw_cqe) +
1160 sizeof(struct siw_cq_ctrl));
1161
1162 if (cq->queue == NULL) {
1163 rv = -ENOMEM;
1164 goto err_out;
1165 }
1166 get_random_bytes(&cq->id, 4);
1167 siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id);
1168
1169 spin_lock_init(&cq->lock);
1170
1171 cq->notify = (struct siw_cq_ctrl *)&cq->queue[size];
1172
1173 if (udata) {
1174 struct siw_uresp_create_cq uresp = {};
1175 struct siw_ucontext *ctx =
1176 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1177 base_ucontext);
1178 size_t length = size * sizeof(struct siw_cqe) +
1179 sizeof(struct siw_cq_ctrl);
1180
1181 cq->cq_entry =
1182 siw_mmap_entry_insert(ctx, cq->queue,
1183 length, &uresp.cq_key);
1184 if (!cq->cq_entry) {
1185 rv = -ENOMEM;
1186 goto err_out;
1187 }
1188
1189 uresp.cq_id = cq->id;
1190 uresp.num_cqe = size;
1191
1192 if (udata->outlen < sizeof(uresp)) {
1193 rv = -EINVAL;
1194 goto err_out;
1195 }
1196 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1197 if (rv)
1198 goto err_out;
1199 }
1200 return 0;
1201
1202 err_out:
1203 siw_dbg(base_cq->device, "CQ creation failed: %d", rv);
1204
1205 if (cq->queue) {
1206 struct siw_ucontext *ctx =
1207 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1208 base_ucontext);
1209 if (ctx)
1210 rdma_user_mmap_entry_remove(cq->cq_entry);
1211 vfree(cq->queue);
1212 }
1213 atomic_dec(&sdev->num_cq);
1214
1215 return rv;
1216 }
1217
1218 /*
1219 * siw_poll_cq()
1220 *
1221 * Reap CQ entries if available and copy work completion status into
1222 * array of WC's provided by caller. Returns number of reaped CQE's.
1223 *
1224 * @base_cq: Base CQ contained in siw CQ.
1225 * @num_cqe: Maximum number of CQE's to reap.
1226 * @wc: Array of work completions to be filled by siw.
1227 */
siw_poll_cq(struct ib_cq * base_cq,int num_cqe,struct ib_wc * wc)1228 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc)
1229 {
1230 struct siw_cq *cq = to_siw_cq(base_cq);
1231 int i;
1232
1233 for (i = 0; i < num_cqe; i++) {
1234 if (!siw_reap_cqe(cq, wc))
1235 break;
1236 wc++;
1237 }
1238 return i;
1239 }
1240
1241 /*
1242 * siw_req_notify_cq()
1243 *
1244 * Request notification for new CQE's added to that CQ.
1245 * Defined flags:
1246 * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification
1247 * event if a WQE with notification flag set enters the CQ
1248 * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification
1249 * event if a WQE enters the CQ.
1250 * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the
1251 * number of not reaped CQE's regardless of its notification
1252 * type and current or new CQ notification settings.
1253 *
1254 * @base_cq: Base CQ contained in siw CQ.
1255 * @flags: Requested notification flags.
1256 */
siw_req_notify_cq(struct ib_cq * base_cq,enum ib_cq_notify_flags flags)1257 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags)
1258 {
1259 struct siw_cq *cq = to_siw_cq(base_cq);
1260
1261 siw_dbg_cq(cq, "flags: 0x%02x\n", flags);
1262
1263 if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
1264 /*
1265 * Enable CQ event for next solicited completion.
1266 * and make it visible to all associated producers.
1267 */
1268 smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED);
1269 else
1270 /*
1271 * Enable CQ event for any signalled completion.
1272 * and make it visible to all associated producers.
1273 */
1274 smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL);
1275
1276 if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1277 return cq->cq_put - cq->cq_get;
1278
1279 return 0;
1280 }
1281
1282 /*
1283 * siw_dereg_mr()
1284 *
1285 * Release Memory Region.
1286 *
1287 * @base_mr: Base MR contained in siw MR.
1288 * @udata: points to user context, unused.
1289 */
siw_dereg_mr(struct ib_mr * base_mr,struct ib_udata * udata)1290 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata)
1291 {
1292 struct siw_mr *mr = to_siw_mr(base_mr);
1293 struct siw_device *sdev = to_siw_dev(base_mr->device);
1294
1295 siw_dbg_mem(mr->mem, "deregister MR\n");
1296
1297 atomic_dec(&sdev->num_mr);
1298
1299 siw_mr_drop_mem(mr);
1300 kfree_rcu(mr, rcu);
1301
1302 return 0;
1303 }
1304
1305 /*
1306 * siw_reg_user_mr()
1307 *
1308 * Register Memory Region.
1309 *
1310 * @pd: Protection Domain
1311 * @start: starting address of MR (virtual address)
1312 * @len: len of MR
1313 * @rnic_va: not used by siw
1314 * @rights: MR access rights
1315 * @udata: user buffer to communicate STag and Key.
1316 */
siw_reg_user_mr(struct ib_pd * pd,u64 start,u64 len,u64 rnic_va,int rights,struct ib_udata * udata)1317 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len,
1318 u64 rnic_va, int rights, struct ib_udata *udata)
1319 {
1320 struct siw_mr *mr = NULL;
1321 struct siw_umem *umem = NULL;
1322 struct siw_ureq_reg_mr ureq;
1323 struct siw_device *sdev = to_siw_dev(pd->device);
1324
1325 unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK);
1326 int rv;
1327
1328 siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n",
1329 (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va,
1330 (unsigned long long)len);
1331
1332 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1333 siw_dbg_pd(pd, "too many mr's\n");
1334 rv = -ENOMEM;
1335 goto err_out;
1336 }
1337 if (!len) {
1338 rv = -EINVAL;
1339 goto err_out;
1340 }
1341 if (mem_limit != RLIM_INFINITY) {
1342 unsigned long num_pages =
1343 (PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT;
1344 mem_limit >>= PAGE_SHIFT;
1345
1346 if (num_pages > mem_limit - current->mm->locked_vm) {
1347 siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n",
1348 num_pages, mem_limit,
1349 current->mm->locked_vm);
1350 rv = -ENOMEM;
1351 goto err_out;
1352 }
1353 }
1354 umem = siw_umem_get(start, len, ib_access_writable(rights));
1355 if (IS_ERR(umem)) {
1356 rv = PTR_ERR(umem);
1357 siw_dbg_pd(pd, "getting user memory failed: %d\n", rv);
1358 umem = NULL;
1359 goto err_out;
1360 }
1361 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1362 if (!mr) {
1363 rv = -ENOMEM;
1364 goto err_out;
1365 }
1366 rv = siw_mr_add_mem(mr, pd, umem, start, len, rights);
1367 if (rv)
1368 goto err_out;
1369
1370 if (udata) {
1371 struct siw_uresp_reg_mr uresp = {};
1372 struct siw_mem *mem = mr->mem;
1373
1374 if (udata->inlen < sizeof(ureq)) {
1375 rv = -EINVAL;
1376 goto err_out;
1377 }
1378 rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq));
1379 if (rv)
1380 goto err_out;
1381
1382 mr->base_mr.lkey |= ureq.stag_key;
1383 mr->base_mr.rkey |= ureq.stag_key;
1384 mem->stag |= ureq.stag_key;
1385 uresp.stag = mem->stag;
1386
1387 if (udata->outlen < sizeof(uresp)) {
1388 rv = -EINVAL;
1389 goto err_out;
1390 }
1391 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1392 if (rv)
1393 goto err_out;
1394 }
1395 mr->mem->stag_valid = 1;
1396
1397 return &mr->base_mr;
1398
1399 err_out:
1400 atomic_dec(&sdev->num_mr);
1401 if (mr) {
1402 if (mr->mem)
1403 siw_mr_drop_mem(mr);
1404 kfree_rcu(mr, rcu);
1405 } else {
1406 if (umem)
1407 siw_umem_release(umem, false);
1408 }
1409 return ERR_PTR(rv);
1410 }
1411
siw_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_sge)1412 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1413 u32 max_sge)
1414 {
1415 struct siw_device *sdev = to_siw_dev(pd->device);
1416 struct siw_mr *mr = NULL;
1417 struct siw_pbl *pbl = NULL;
1418 int rv;
1419
1420 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1421 siw_dbg_pd(pd, "too many mr's\n");
1422 rv = -ENOMEM;
1423 goto err_out;
1424 }
1425 if (mr_type != IB_MR_TYPE_MEM_REG) {
1426 siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type);
1427 rv = -EOPNOTSUPP;
1428 goto err_out;
1429 }
1430 if (max_sge > SIW_MAX_SGE_PBL) {
1431 siw_dbg_pd(pd, "too many sge's: %d\n", max_sge);
1432 rv = -ENOMEM;
1433 goto err_out;
1434 }
1435 pbl = siw_pbl_alloc(max_sge);
1436 if (IS_ERR(pbl)) {
1437 rv = PTR_ERR(pbl);
1438 siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv);
1439 pbl = NULL;
1440 goto err_out;
1441 }
1442 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1443 if (!mr) {
1444 rv = -ENOMEM;
1445 goto err_out;
1446 }
1447 rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0);
1448 if (rv)
1449 goto err_out;
1450
1451 mr->mem->is_pbl = 1;
1452
1453 siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1454
1455 return &mr->base_mr;
1456
1457 err_out:
1458 atomic_dec(&sdev->num_mr);
1459
1460 if (!mr) {
1461 kfree(pbl);
1462 } else {
1463 if (mr->mem)
1464 siw_mr_drop_mem(mr);
1465 kfree_rcu(mr, rcu);
1466 }
1467 siw_dbg_pd(pd, "failed: %d\n", rv);
1468
1469 return ERR_PTR(rv);
1470 }
1471
1472 /* Just used to count number of pages being mapped */
siw_set_pbl_page(struct ib_mr * base_mr,u64 buf_addr)1473 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr)
1474 {
1475 return 0;
1476 }
1477
siw_map_mr_sg(struct ib_mr * base_mr,struct scatterlist * sl,int num_sle,unsigned int * sg_off)1478 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle,
1479 unsigned int *sg_off)
1480 {
1481 struct scatterlist *slp;
1482 struct siw_mr *mr = to_siw_mr(base_mr);
1483 struct siw_mem *mem = mr->mem;
1484 struct siw_pbl *pbl = mem->pbl;
1485 struct siw_pble *pble;
1486 unsigned long pbl_size;
1487 int i, rv;
1488
1489 if (!pbl) {
1490 siw_dbg_mem(mem, "no PBL allocated\n");
1491 return -EINVAL;
1492 }
1493 pble = pbl->pbe;
1494
1495 if (pbl->max_buf < num_sle) {
1496 siw_dbg_mem(mem, "too many SGE's: %d > %d\n",
1497 mem->pbl->max_buf, num_sle);
1498 return -ENOMEM;
1499 }
1500 for_each_sg(sl, slp, num_sle, i) {
1501 if (sg_dma_len(slp) == 0) {
1502 siw_dbg_mem(mem, "empty SGE\n");
1503 return -EINVAL;
1504 }
1505 if (i == 0) {
1506 pble->addr = sg_dma_address(slp);
1507 pble->size = sg_dma_len(slp);
1508 pble->pbl_off = 0;
1509 pbl_size = pble->size;
1510 pbl->num_buf = 1;
1511 } else {
1512 /* Merge PBL entries if adjacent */
1513 if (pble->addr + pble->size == sg_dma_address(slp)) {
1514 pble->size += sg_dma_len(slp);
1515 } else {
1516 pble++;
1517 pbl->num_buf++;
1518 pble->addr = sg_dma_address(slp);
1519 pble->size = sg_dma_len(slp);
1520 pble->pbl_off = pbl_size;
1521 }
1522 pbl_size += sg_dma_len(slp);
1523 }
1524 siw_dbg_mem(mem,
1525 "sge[%d], size %u, addr 0x%p, total %lu\n",
1526 i, pble->size, (void *)(uintptr_t)pble->addr,
1527 pbl_size);
1528 }
1529 rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page);
1530 if (rv > 0) {
1531 mem->len = base_mr->length;
1532 mem->va = base_mr->iova;
1533 siw_dbg_mem(mem,
1534 "%llu bytes, start 0x%pK, %u SLE to %u entries\n",
1535 mem->len, (void *)(uintptr_t)mem->va, num_sle,
1536 pbl->num_buf);
1537 }
1538 return rv;
1539 }
1540
1541 /*
1542 * siw_get_dma_mr()
1543 *
1544 * Create a (empty) DMA memory region, where no umem is attached.
1545 */
siw_get_dma_mr(struct ib_pd * pd,int rights)1546 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights)
1547 {
1548 struct siw_device *sdev = to_siw_dev(pd->device);
1549 struct siw_mr *mr = NULL;
1550 int rv;
1551
1552 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1553 siw_dbg_pd(pd, "too many mr's\n");
1554 rv = -ENOMEM;
1555 goto err_out;
1556 }
1557 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1558 if (!mr) {
1559 rv = -ENOMEM;
1560 goto err_out;
1561 }
1562 rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights);
1563 if (rv)
1564 goto err_out;
1565
1566 mr->mem->stag_valid = 1;
1567
1568 siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1569
1570 return &mr->base_mr;
1571
1572 err_out:
1573 if (rv)
1574 kfree(mr);
1575
1576 atomic_dec(&sdev->num_mr);
1577
1578 return ERR_PTR(rv);
1579 }
1580
1581 /*
1582 * siw_create_srq()
1583 *
1584 * Create Shared Receive Queue of attributes @init_attrs
1585 * within protection domain given by @pd.
1586 *
1587 * @base_srq: Base SRQ contained in siw SRQ.
1588 * @init_attrs: SRQ init attributes.
1589 * @udata: points to user context
1590 */
siw_create_srq(struct ib_srq * base_srq,struct ib_srq_init_attr * init_attrs,struct ib_udata * udata)1591 int siw_create_srq(struct ib_srq *base_srq,
1592 struct ib_srq_init_attr *init_attrs, struct ib_udata *udata)
1593 {
1594 struct siw_srq *srq = to_siw_srq(base_srq);
1595 struct ib_srq_attr *attrs = &init_attrs->attr;
1596 struct siw_device *sdev = to_siw_dev(base_srq->device);
1597 struct siw_ucontext *ctx =
1598 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1599 base_ucontext);
1600 int rv;
1601
1602 if (init_attrs->srq_type != IB_SRQT_BASIC)
1603 return -EOPNOTSUPP;
1604
1605 if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) {
1606 siw_dbg_pd(base_srq->pd, "too many SRQ's\n");
1607 rv = -ENOMEM;
1608 goto err_out;
1609 }
1610 if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR ||
1611 attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) {
1612 rv = -EINVAL;
1613 goto err_out;
1614 }
1615 srq->max_sge = attrs->max_sge;
1616 srq->num_rqe = roundup_pow_of_two(attrs->max_wr);
1617 srq->limit = attrs->srq_limit;
1618 if (srq->limit)
1619 srq->armed = true;
1620
1621 srq->is_kernel_res = !udata;
1622
1623 if (udata)
1624 srq->recvq =
1625 vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe));
1626 else
1627 srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe));
1628
1629 if (srq->recvq == NULL) {
1630 rv = -ENOMEM;
1631 goto err_out;
1632 }
1633 if (udata) {
1634 struct siw_uresp_create_srq uresp = {};
1635 size_t length = srq->num_rqe * sizeof(struct siw_rqe);
1636
1637 srq->srq_entry =
1638 siw_mmap_entry_insert(ctx, srq->recvq,
1639 length, &uresp.srq_key);
1640 if (!srq->srq_entry) {
1641 rv = -ENOMEM;
1642 goto err_out;
1643 }
1644
1645 uresp.num_rqe = srq->num_rqe;
1646
1647 if (udata->outlen < sizeof(uresp)) {
1648 rv = -EINVAL;
1649 goto err_out;
1650 }
1651 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1652 if (rv)
1653 goto err_out;
1654 }
1655 spin_lock_init(&srq->lock);
1656
1657 siw_dbg_pd(base_srq->pd, "[SRQ]: success\n");
1658
1659 return 0;
1660
1661 err_out:
1662 if (srq->recvq) {
1663 if (ctx)
1664 rdma_user_mmap_entry_remove(srq->srq_entry);
1665 vfree(srq->recvq);
1666 }
1667 atomic_dec(&sdev->num_srq);
1668
1669 return rv;
1670 }
1671
1672 /*
1673 * siw_modify_srq()
1674 *
1675 * Modify SRQ. The caller may resize SRQ and/or set/reset notification
1676 * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification.
1677 *
1678 * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE
1679 * parameter. siw_modify_srq() does not check the attrs->max_sge param.
1680 */
siw_modify_srq(struct ib_srq * base_srq,struct ib_srq_attr * attrs,enum ib_srq_attr_mask attr_mask,struct ib_udata * udata)1681 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs,
1682 enum ib_srq_attr_mask attr_mask, struct ib_udata *udata)
1683 {
1684 struct siw_srq *srq = to_siw_srq(base_srq);
1685 unsigned long flags;
1686 int rv = 0;
1687
1688 spin_lock_irqsave(&srq->lock, flags);
1689
1690 if (attr_mask & IB_SRQ_MAX_WR) {
1691 /* resize request not yet supported */
1692 rv = -EOPNOTSUPP;
1693 goto out;
1694 }
1695 if (attr_mask & IB_SRQ_LIMIT) {
1696 if (attrs->srq_limit) {
1697 if (unlikely(attrs->srq_limit > srq->num_rqe)) {
1698 rv = -EINVAL;
1699 goto out;
1700 }
1701 srq->armed = true;
1702 } else {
1703 srq->armed = false;
1704 }
1705 srq->limit = attrs->srq_limit;
1706 }
1707 out:
1708 spin_unlock_irqrestore(&srq->lock, flags);
1709
1710 return rv;
1711 }
1712
1713 /*
1714 * siw_query_srq()
1715 *
1716 * Query SRQ attributes.
1717 */
siw_query_srq(struct ib_srq * base_srq,struct ib_srq_attr * attrs)1718 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs)
1719 {
1720 struct siw_srq *srq = to_siw_srq(base_srq);
1721 unsigned long flags;
1722
1723 spin_lock_irqsave(&srq->lock, flags);
1724
1725 attrs->max_wr = srq->num_rqe;
1726 attrs->max_sge = srq->max_sge;
1727 attrs->srq_limit = srq->limit;
1728
1729 spin_unlock_irqrestore(&srq->lock, flags);
1730
1731 return 0;
1732 }
1733
1734 /*
1735 * siw_destroy_srq()
1736 *
1737 * Destroy SRQ.
1738 * It is assumed that the SRQ is not referenced by any
1739 * QP anymore - the code trusts the RDMA core environment to keep track
1740 * of QP references.
1741 */
siw_destroy_srq(struct ib_srq * base_srq,struct ib_udata * udata)1742 int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata)
1743 {
1744 struct siw_srq *srq = to_siw_srq(base_srq);
1745 struct siw_device *sdev = to_siw_dev(base_srq->device);
1746 struct siw_ucontext *ctx =
1747 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1748 base_ucontext);
1749
1750 if (ctx)
1751 rdma_user_mmap_entry_remove(srq->srq_entry);
1752 vfree(srq->recvq);
1753 atomic_dec(&sdev->num_srq);
1754 return 0;
1755 }
1756
1757 /*
1758 * siw_post_srq_recv()
1759 *
1760 * Post a list of receive queue elements to SRQ.
1761 * NOTE: The function does not check or lock a certain SRQ state
1762 * during the post operation. The code simply trusts the
1763 * RDMA core environment.
1764 *
1765 * @base_srq: Base SRQ contained in siw SRQ
1766 * @wr: List of R-WR's
1767 * @bad_wr: Updated to failing WR if posting fails.
1768 */
siw_post_srq_recv(struct ib_srq * base_srq,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)1769 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr,
1770 const struct ib_recv_wr **bad_wr)
1771 {
1772 struct siw_srq *srq = to_siw_srq(base_srq);
1773 unsigned long flags;
1774 int rv = 0;
1775
1776 if (unlikely(!srq->is_kernel_res)) {
1777 siw_dbg_pd(base_srq->pd,
1778 "[SRQ]: no kernel post_recv for mapped srq\n");
1779 rv = -EINVAL;
1780 goto out;
1781 }
1782 /*
1783 * Serialize potentially multiple producers.
1784 * Also needed to serialize potentially multiple
1785 * consumers.
1786 */
1787 spin_lock_irqsave(&srq->lock, flags);
1788
1789 while (wr) {
1790 u32 idx = srq->rq_put % srq->num_rqe;
1791 struct siw_rqe *rqe = &srq->recvq[idx];
1792
1793 if (rqe->flags) {
1794 siw_dbg_pd(base_srq->pd, "SRQ full\n");
1795 rv = -ENOMEM;
1796 break;
1797 }
1798 if (unlikely(wr->num_sge > srq->max_sge)) {
1799 siw_dbg_pd(base_srq->pd,
1800 "[SRQ]: too many sge's: %d\n", wr->num_sge);
1801 rv = -EINVAL;
1802 break;
1803 }
1804 rqe->id = wr->wr_id;
1805 rqe->num_sge = wr->num_sge;
1806 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1807
1808 /* Make sure S-RQE is completely written before valid */
1809 smp_wmb();
1810
1811 rqe->flags = SIW_WQE_VALID;
1812
1813 srq->rq_put++;
1814 wr = wr->next;
1815 }
1816 spin_unlock_irqrestore(&srq->lock, flags);
1817 out:
1818 if (unlikely(rv < 0)) {
1819 siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv);
1820 *bad_wr = wr;
1821 }
1822 return rv;
1823 }
1824
siw_qp_event(struct siw_qp * qp,enum ib_event_type etype)1825 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype)
1826 {
1827 struct ib_event event;
1828 struct ib_qp *base_qp = &qp->base_qp;
1829
1830 /*
1831 * Do not report asynchronous errors on QP which gets
1832 * destroyed via verbs interface (siw_destroy_qp())
1833 */
1834 if (qp->attrs.flags & SIW_QP_IN_DESTROY)
1835 return;
1836
1837 event.event = etype;
1838 event.device = base_qp->device;
1839 event.element.qp = base_qp;
1840
1841 if (base_qp->event_handler) {
1842 siw_dbg_qp(qp, "reporting event %d\n", etype);
1843 base_qp->event_handler(&event, base_qp->qp_context);
1844 }
1845 }
1846
siw_cq_event(struct siw_cq * cq,enum ib_event_type etype)1847 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype)
1848 {
1849 struct ib_event event;
1850 struct ib_cq *base_cq = &cq->base_cq;
1851
1852 event.event = etype;
1853 event.device = base_cq->device;
1854 event.element.cq = base_cq;
1855
1856 if (base_cq->event_handler) {
1857 siw_dbg_cq(cq, "reporting CQ event %d\n", etype);
1858 base_cq->event_handler(&event, base_cq->cq_context);
1859 }
1860 }
1861
siw_srq_event(struct siw_srq * srq,enum ib_event_type etype)1862 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype)
1863 {
1864 struct ib_event event;
1865 struct ib_srq *base_srq = &srq->base_srq;
1866
1867 event.event = etype;
1868 event.device = base_srq->device;
1869 event.element.srq = base_srq;
1870
1871 if (base_srq->event_handler) {
1872 siw_dbg_pd(srq->base_srq.pd,
1873 "reporting SRQ event %d\n", etype);
1874 base_srq->event_handler(&event, base_srq->srq_context);
1875 }
1876 }
1877
siw_port_event(struct siw_device * sdev,u32 port,enum ib_event_type etype)1878 void siw_port_event(struct siw_device *sdev, u32 port, enum ib_event_type etype)
1879 {
1880 struct ib_event event;
1881
1882 event.event = etype;
1883 event.device = &sdev->base_dev;
1884 event.element.port_num = port;
1885
1886 siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype);
1887
1888 ib_dispatch_event(&event);
1889 }
1890