1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 /*
57  * reclaim_mode determines how the inactive list is shrunk
58  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59  * RECLAIM_MODE_ASYNC:  Do not block
60  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62  *			page from the LRU and reclaim all pages within a
63  *			naturally aligned range
64  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65  *			order-0 pages and then compact the zone
66  */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
73 
74 struct scan_control {
75 	/* Incremented by the number of inactive pages that were scanned */
76 	unsigned long nr_scanned;
77 
78 	/* Number of pages freed so far during a call to shrink_zones() */
79 	unsigned long nr_reclaimed;
80 
81 	/* How many pages shrink_list() should reclaim */
82 	unsigned long nr_to_reclaim;
83 
84 	unsigned long hibernation_mode;
85 
86 	/* This context's GFP mask */
87 	gfp_t gfp_mask;
88 
89 	int may_writepage;
90 
91 	/* Can mapped pages be reclaimed? */
92 	int may_unmap;
93 
94 	/* Can pages be swapped as part of reclaim? */
95 	int may_swap;
96 
97 	int swappiness;
98 
99 	int order;
100 
101 	/*
102 	 * Intend to reclaim enough continuous memory rather than reclaim
103 	 * enough amount of memory. i.e, mode for high order allocation.
104 	 */
105 	reclaim_mode_t reclaim_mode;
106 
107 	/* Which cgroup do we reclaim from */
108 	struct mem_cgroup *mem_cgroup;
109 
110 	/*
111 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112 	 * are scanned.
113 	 */
114 	nodemask_t	*nodemask;
115 };
116 
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118 
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)			\
121 	do {								\
122 		if ((_page)->lru.prev != _base) {			\
123 			struct page *prev;				\
124 									\
125 			prev = lru_to_page(&(_page->lru));		\
126 			prefetch(&prev->_field);			\
127 		}							\
128 	} while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132 
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)			\
135 	do {								\
136 		if ((_page)->lru.prev != _base) {			\
137 			struct page *prev;				\
138 									\
139 			prev = lru_to_page(&(_page->lru));		\
140 			prefetchw(&prev->_field);			\
141 		}							\
142 	} while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146 
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;	/* The total number of pages which the VM controls */
152 
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155 
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc)	(1)
160 #endif
161 
get_reclaim_stat(struct zone * zone,struct scan_control * sc)162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163 						  struct scan_control *sc)
164 {
165 	if (!scanning_global_lru(sc))
166 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167 
168 	return &zone->reclaim_stat;
169 }
170 
zone_nr_lru_pages(struct zone * zone,struct scan_control * sc,enum lru_list lru)171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172 				struct scan_control *sc, enum lru_list lru)
173 {
174 	if (!scanning_global_lru(sc))
175 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
176 
177 	return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179 
180 
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
register_shrinker(struct shrinker * shrinker)184 void register_shrinker(struct shrinker *shrinker)
185 {
186 	shrinker->nr = 0;
187 	down_write(&shrinker_rwsem);
188 	list_add_tail(&shrinker->list, &shrinker_list);
189 	up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192 
193 /*
194  * Remove one
195  */
unregister_shrinker(struct shrinker * shrinker)196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198 	down_write(&shrinker_rwsem);
199 	list_del(&shrinker->list);
200 	up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203 
204 #define SHRINK_BATCH 128
205 /*
206  * Call the shrink functions to age shrinkable caches
207  *
208  * Here we assume it costs one seek to replace a lru page and that it also
209  * takes a seek to recreate a cache object.  With this in mind we age equal
210  * percentages of the lru and ageable caches.  This should balance the seeks
211  * generated by these structures.
212  *
213  * If the vm encountered mapped pages on the LRU it increase the pressure on
214  * slab to avoid swapping.
215  *
216  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
217  *
218  * `lru_pages' represents the number of on-LRU pages in all the zones which
219  * are eligible for the caller's allocation attempt.  It is used for balancing
220  * slab reclaim versus page reclaim.
221  *
222  * Returns the number of slab objects which we shrunk.
223  */
shrink_slab(unsigned long scanned,gfp_t gfp_mask,unsigned long lru_pages)224 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
225 			unsigned long lru_pages)
226 {
227 	struct shrinker *shrinker;
228 	unsigned long ret = 0;
229 
230 	if (scanned == 0)
231 		scanned = SWAP_CLUSTER_MAX;
232 
233 	if (!down_read_trylock(&shrinker_rwsem))
234 		return 1;	/* Assume we'll be able to shrink next time */
235 
236 	list_for_each_entry(shrinker, &shrinker_list, list) {
237 		unsigned long long delta;
238 		unsigned long total_scan;
239 		unsigned long max_pass;
240 
241 		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
242 		delta = (4 * scanned) / shrinker->seeks;
243 		delta *= max_pass;
244 		do_div(delta, lru_pages + 1);
245 		shrinker->nr += delta;
246 		if (shrinker->nr < 0) {
247 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
248 			       "delete nr=%ld\n",
249 			       shrinker->shrink, shrinker->nr);
250 			shrinker->nr = max_pass;
251 		}
252 
253 		/*
254 		 * Avoid risking looping forever due to too large nr value:
255 		 * never try to free more than twice the estimate number of
256 		 * freeable entries.
257 		 */
258 		if (shrinker->nr > max_pass * 2)
259 			shrinker->nr = max_pass * 2;
260 
261 		total_scan = shrinker->nr;
262 		shrinker->nr = 0;
263 
264 		while (total_scan >= SHRINK_BATCH) {
265 			long this_scan = SHRINK_BATCH;
266 			int shrink_ret;
267 			int nr_before;
268 
269 			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
270 			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
271 								gfp_mask);
272 			if (shrink_ret == -1)
273 				break;
274 			if (shrink_ret < nr_before)
275 				ret += nr_before - shrink_ret;
276 			count_vm_events(SLABS_SCANNED, this_scan);
277 			total_scan -= this_scan;
278 
279 			cond_resched();
280 		}
281 
282 		shrinker->nr += total_scan;
283 	}
284 	up_read(&shrinker_rwsem);
285 	return ret;
286 }
287 
set_reclaim_mode(int priority,struct scan_control * sc,bool sync)288 static void set_reclaim_mode(int priority, struct scan_control *sc,
289 				   bool sync)
290 {
291 	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
292 
293 	/*
294 	 * Initially assume we are entering either lumpy reclaim or
295 	 * reclaim/compaction.Depending on the order, we will either set the
296 	 * sync mode or just reclaim order-0 pages later.
297 	 */
298 	if (COMPACTION_BUILD)
299 		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
300 	else
301 		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
302 
303 	/*
304 	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
305 	 * restricting when its set to either costly allocations or when
306 	 * under memory pressure
307 	 */
308 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
309 		sc->reclaim_mode |= syncmode;
310 	else if (sc->order && priority < DEF_PRIORITY - 2)
311 		sc->reclaim_mode |= syncmode;
312 	else
313 		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
314 }
315 
reset_reclaim_mode(struct scan_control * sc)316 static void reset_reclaim_mode(struct scan_control *sc)
317 {
318 	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
319 }
320 
is_page_cache_freeable(struct page * page)321 static inline int is_page_cache_freeable(struct page *page)
322 {
323 	/*
324 	 * A freeable page cache page is referenced only by the caller
325 	 * that isolated the page, the page cache radix tree and
326 	 * optional buffer heads at page->private.
327 	 */
328 	return page_count(page) - page_has_private(page) == 2;
329 }
330 
may_write_to_queue(struct backing_dev_info * bdi,struct scan_control * sc)331 static int may_write_to_queue(struct backing_dev_info *bdi,
332 			      struct scan_control *sc)
333 {
334 	if (current->flags & PF_SWAPWRITE)
335 		return 1;
336 	if (!bdi_write_congested(bdi))
337 		return 1;
338 	if (bdi == current->backing_dev_info)
339 		return 1;
340 
341 	/* lumpy reclaim for hugepage often need a lot of write */
342 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
343 		return 1;
344 	return 0;
345 }
346 
347 /*
348  * We detected a synchronous write error writing a page out.  Probably
349  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
350  * fsync(), msync() or close().
351  *
352  * The tricky part is that after writepage we cannot touch the mapping: nothing
353  * prevents it from being freed up.  But we have a ref on the page and once
354  * that page is locked, the mapping is pinned.
355  *
356  * We're allowed to run sleeping lock_page() here because we know the caller has
357  * __GFP_FS.
358  */
handle_write_error(struct address_space * mapping,struct page * page,int error)359 static void handle_write_error(struct address_space *mapping,
360 				struct page *page, int error)
361 {
362 	lock_page(page);
363 	if (page_mapping(page) == mapping)
364 		mapping_set_error(mapping, error);
365 	unlock_page(page);
366 }
367 
368 /* possible outcome of pageout() */
369 typedef enum {
370 	/* failed to write page out, page is locked */
371 	PAGE_KEEP,
372 	/* move page to the active list, page is locked */
373 	PAGE_ACTIVATE,
374 	/* page has been sent to the disk successfully, page is unlocked */
375 	PAGE_SUCCESS,
376 	/* page is clean and locked */
377 	PAGE_CLEAN,
378 } pageout_t;
379 
380 /*
381  * pageout is called by shrink_page_list() for each dirty page.
382  * Calls ->writepage().
383  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)384 static pageout_t pageout(struct page *page, struct address_space *mapping,
385 			 struct scan_control *sc)
386 {
387 	/*
388 	 * If the page is dirty, only perform writeback if that write
389 	 * will be non-blocking.  To prevent this allocation from being
390 	 * stalled by pagecache activity.  But note that there may be
391 	 * stalls if we need to run get_block().  We could test
392 	 * PagePrivate for that.
393 	 *
394 	 * If this process is currently in __generic_file_aio_write() against
395 	 * this page's queue, we can perform writeback even if that
396 	 * will block.
397 	 *
398 	 * If the page is swapcache, write it back even if that would
399 	 * block, for some throttling. This happens by accident, because
400 	 * swap_backing_dev_info is bust: it doesn't reflect the
401 	 * congestion state of the swapdevs.  Easy to fix, if needed.
402 	 */
403 	if (!is_page_cache_freeable(page))
404 		return PAGE_KEEP;
405 	if (!mapping) {
406 		/*
407 		 * Some data journaling orphaned pages can have
408 		 * page->mapping == NULL while being dirty with clean buffers.
409 		 */
410 		if (page_has_private(page)) {
411 			if (try_to_free_buffers(page)) {
412 				ClearPageDirty(page);
413 				printk("%s: orphaned page\n", __func__);
414 				return PAGE_CLEAN;
415 			}
416 		}
417 		return PAGE_KEEP;
418 	}
419 	if (mapping->a_ops->writepage == NULL)
420 		return PAGE_ACTIVATE;
421 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
422 		return PAGE_KEEP;
423 
424 	if (clear_page_dirty_for_io(page)) {
425 		int res;
426 		struct writeback_control wbc = {
427 			.sync_mode = WB_SYNC_NONE,
428 			.nr_to_write = SWAP_CLUSTER_MAX,
429 			.range_start = 0,
430 			.range_end = LLONG_MAX,
431 			.for_reclaim = 1,
432 		};
433 
434 		SetPageReclaim(page);
435 		res = mapping->a_ops->writepage(page, &wbc);
436 		if (res < 0)
437 			handle_write_error(mapping, page, res);
438 		if (res == AOP_WRITEPAGE_ACTIVATE) {
439 			ClearPageReclaim(page);
440 			return PAGE_ACTIVATE;
441 		}
442 
443 		/*
444 		 * Wait on writeback if requested to. This happens when
445 		 * direct reclaiming a large contiguous area and the
446 		 * first attempt to free a range of pages fails.
447 		 */
448 		if (PageWriteback(page) &&
449 		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
450 			wait_on_page_writeback(page);
451 
452 		if (!PageWriteback(page)) {
453 			/* synchronous write or broken a_ops? */
454 			ClearPageReclaim(page);
455 		}
456 		trace_mm_vmscan_writepage(page,
457 			trace_reclaim_flags(page, sc->reclaim_mode));
458 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
459 		return PAGE_SUCCESS;
460 	}
461 
462 	return PAGE_CLEAN;
463 }
464 
465 /*
466  * Same as remove_mapping, but if the page is removed from the mapping, it
467  * gets returned with a refcount of 0.
468  */
__remove_mapping(struct address_space * mapping,struct page * page)469 static int __remove_mapping(struct address_space *mapping, struct page *page)
470 {
471 	BUG_ON(!PageLocked(page));
472 	BUG_ON(mapping != page_mapping(page));
473 
474 	spin_lock_irq(&mapping->tree_lock);
475 	/*
476 	 * The non racy check for a busy page.
477 	 *
478 	 * Must be careful with the order of the tests. When someone has
479 	 * a ref to the page, it may be possible that they dirty it then
480 	 * drop the reference. So if PageDirty is tested before page_count
481 	 * here, then the following race may occur:
482 	 *
483 	 * get_user_pages(&page);
484 	 * [user mapping goes away]
485 	 * write_to(page);
486 	 *				!PageDirty(page)    [good]
487 	 * SetPageDirty(page);
488 	 * put_page(page);
489 	 *				!page_count(page)   [good, discard it]
490 	 *
491 	 * [oops, our write_to data is lost]
492 	 *
493 	 * Reversing the order of the tests ensures such a situation cannot
494 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
495 	 * load is not satisfied before that of page->_count.
496 	 *
497 	 * Note that if SetPageDirty is always performed via set_page_dirty,
498 	 * and thus under tree_lock, then this ordering is not required.
499 	 */
500 	if (!page_freeze_refs(page, 2))
501 		goto cannot_free;
502 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
503 	if (unlikely(PageDirty(page))) {
504 		page_unfreeze_refs(page, 2);
505 		goto cannot_free;
506 	}
507 
508 	if (PageSwapCache(page)) {
509 		swp_entry_t swap = { .val = page_private(page) };
510 		__delete_from_swap_cache(page);
511 		spin_unlock_irq(&mapping->tree_lock);
512 		swapcache_free(swap, page);
513 	} else {
514 		void (*freepage)(struct page *);
515 
516 		freepage = mapping->a_ops->freepage;
517 
518 		__delete_from_page_cache(page);
519 		spin_unlock_irq(&mapping->tree_lock);
520 		mem_cgroup_uncharge_cache_page(page);
521 
522 		if (freepage != NULL)
523 			freepage(page);
524 	}
525 
526 	return 1;
527 
528 cannot_free:
529 	spin_unlock_irq(&mapping->tree_lock);
530 	return 0;
531 }
532 
533 /*
534  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
535  * someone else has a ref on the page, abort and return 0.  If it was
536  * successfully detached, return 1.  Assumes the caller has a single ref on
537  * this page.
538  */
remove_mapping(struct address_space * mapping,struct page * page)539 int remove_mapping(struct address_space *mapping, struct page *page)
540 {
541 	if (__remove_mapping(mapping, page)) {
542 		/*
543 		 * Unfreezing the refcount with 1 rather than 2 effectively
544 		 * drops the pagecache ref for us without requiring another
545 		 * atomic operation.
546 		 */
547 		page_unfreeze_refs(page, 1);
548 		return 1;
549 	}
550 	return 0;
551 }
552 
553 /**
554  * putback_lru_page - put previously isolated page onto appropriate LRU list
555  * @page: page to be put back to appropriate lru list
556  *
557  * Add previously isolated @page to appropriate LRU list.
558  * Page may still be unevictable for other reasons.
559  *
560  * lru_lock must not be held, interrupts must be enabled.
561  */
putback_lru_page(struct page * page)562 void putback_lru_page(struct page *page)
563 {
564 	int lru;
565 	int active = !!TestClearPageActive(page);
566 	int was_unevictable = PageUnevictable(page);
567 
568 	VM_BUG_ON(PageLRU(page));
569 
570 redo:
571 	ClearPageUnevictable(page);
572 
573 	if (page_evictable(page, NULL)) {
574 		/*
575 		 * For evictable pages, we can use the cache.
576 		 * In event of a race, worst case is we end up with an
577 		 * unevictable page on [in]active list.
578 		 * We know how to handle that.
579 		 */
580 		lru = active + page_lru_base_type(page);
581 		lru_cache_add_lru(page, lru);
582 	} else {
583 		/*
584 		 * Put unevictable pages directly on zone's unevictable
585 		 * list.
586 		 */
587 		lru = LRU_UNEVICTABLE;
588 		add_page_to_unevictable_list(page);
589 		/*
590 		 * When racing with an mlock clearing (page is
591 		 * unlocked), make sure that if the other thread does
592 		 * not observe our setting of PG_lru and fails
593 		 * isolation, we see PG_mlocked cleared below and move
594 		 * the page back to the evictable list.
595 		 *
596 		 * The other side is TestClearPageMlocked().
597 		 */
598 		smp_mb();
599 	}
600 
601 	/*
602 	 * page's status can change while we move it among lru. If an evictable
603 	 * page is on unevictable list, it never be freed. To avoid that,
604 	 * check after we added it to the list, again.
605 	 */
606 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
607 		if (!isolate_lru_page(page)) {
608 			put_page(page);
609 			goto redo;
610 		}
611 		/* This means someone else dropped this page from LRU
612 		 * So, it will be freed or putback to LRU again. There is
613 		 * nothing to do here.
614 		 */
615 	}
616 
617 	if (was_unevictable && lru != LRU_UNEVICTABLE)
618 		count_vm_event(UNEVICTABLE_PGRESCUED);
619 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
620 		count_vm_event(UNEVICTABLE_PGCULLED);
621 
622 	put_page(page);		/* drop ref from isolate */
623 }
624 
625 enum page_references {
626 	PAGEREF_RECLAIM,
627 	PAGEREF_RECLAIM_CLEAN,
628 	PAGEREF_KEEP,
629 	PAGEREF_ACTIVATE,
630 };
631 
page_check_references(struct page * page,struct scan_control * sc)632 static enum page_references page_check_references(struct page *page,
633 						  struct scan_control *sc)
634 {
635 	int referenced_ptes, referenced_page;
636 	unsigned long vm_flags;
637 
638 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
639 	referenced_page = TestClearPageReferenced(page);
640 
641 	/* Lumpy reclaim - ignore references */
642 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
643 		return PAGEREF_RECLAIM;
644 
645 	/*
646 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
647 	 * move the page to the unevictable list.
648 	 */
649 	if (vm_flags & VM_LOCKED)
650 		return PAGEREF_RECLAIM;
651 
652 	if (referenced_ptes) {
653 		if (PageAnon(page))
654 			return PAGEREF_ACTIVATE;
655 		/*
656 		 * All mapped pages start out with page table
657 		 * references from the instantiating fault, so we need
658 		 * to look twice if a mapped file page is used more
659 		 * than once.
660 		 *
661 		 * Mark it and spare it for another trip around the
662 		 * inactive list.  Another page table reference will
663 		 * lead to its activation.
664 		 *
665 		 * Note: the mark is set for activated pages as well
666 		 * so that recently deactivated but used pages are
667 		 * quickly recovered.
668 		 */
669 		SetPageReferenced(page);
670 
671 		if (referenced_page)
672 			return PAGEREF_ACTIVATE;
673 
674 		return PAGEREF_KEEP;
675 	}
676 
677 	/* Reclaim if clean, defer dirty pages to writeback */
678 	if (referenced_page && !PageSwapBacked(page))
679 		return PAGEREF_RECLAIM_CLEAN;
680 
681 	return PAGEREF_RECLAIM;
682 }
683 
free_page_list(struct list_head * free_pages)684 static noinline_for_stack void free_page_list(struct list_head *free_pages)
685 {
686 	struct pagevec freed_pvec;
687 	struct page *page, *tmp;
688 
689 	pagevec_init(&freed_pvec, 1);
690 
691 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
692 		list_del(&page->lru);
693 		if (!pagevec_add(&freed_pvec, page)) {
694 			__pagevec_free(&freed_pvec);
695 			pagevec_reinit(&freed_pvec);
696 		}
697 	}
698 
699 	pagevec_free(&freed_pvec);
700 }
701 
702 /*
703  * shrink_page_list() returns the number of reclaimed pages
704  */
shrink_page_list(struct list_head * page_list,struct zone * zone,struct scan_control * sc)705 static unsigned long shrink_page_list(struct list_head *page_list,
706 				      struct zone *zone,
707 				      struct scan_control *sc)
708 {
709 	LIST_HEAD(ret_pages);
710 	LIST_HEAD(free_pages);
711 	int pgactivate = 0;
712 	unsigned long nr_dirty = 0;
713 	unsigned long nr_congested = 0;
714 	unsigned long nr_reclaimed = 0;
715 
716 	cond_resched();
717 
718 	while (!list_empty(page_list)) {
719 		enum page_references references;
720 		struct address_space *mapping;
721 		struct page *page;
722 		int may_enter_fs;
723 
724 		cond_resched();
725 
726 		page = lru_to_page(page_list);
727 		list_del(&page->lru);
728 
729 		if (!trylock_page(page))
730 			goto keep;
731 
732 		VM_BUG_ON(PageActive(page));
733 		VM_BUG_ON(page_zone(page) != zone);
734 
735 		sc->nr_scanned++;
736 
737 		if (unlikely(!page_evictable(page, NULL)))
738 			goto cull_mlocked;
739 
740 		if (!sc->may_unmap && page_mapped(page))
741 			goto keep_locked;
742 
743 		/* Double the slab pressure for mapped and swapcache pages */
744 		if (page_mapped(page) || PageSwapCache(page))
745 			sc->nr_scanned++;
746 
747 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
748 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
749 
750 		if (PageWriteback(page)) {
751 			/*
752 			 * Synchronous reclaim is performed in two passes,
753 			 * first an asynchronous pass over the list to
754 			 * start parallel writeback, and a second synchronous
755 			 * pass to wait for the IO to complete.  Wait here
756 			 * for any page for which writeback has already
757 			 * started.
758 			 */
759 			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
760 			    may_enter_fs)
761 				wait_on_page_writeback(page);
762 			else {
763 				unlock_page(page);
764 				goto keep_lumpy;
765 			}
766 		}
767 
768 		references = page_check_references(page, sc);
769 		switch (references) {
770 		case PAGEREF_ACTIVATE:
771 			goto activate_locked;
772 		case PAGEREF_KEEP:
773 			goto keep_locked;
774 		case PAGEREF_RECLAIM:
775 		case PAGEREF_RECLAIM_CLEAN:
776 			; /* try to reclaim the page below */
777 		}
778 
779 		/*
780 		 * Anonymous process memory has backing store?
781 		 * Try to allocate it some swap space here.
782 		 */
783 		if (PageAnon(page) && !PageSwapCache(page)) {
784 			if (!(sc->gfp_mask & __GFP_IO))
785 				goto keep_locked;
786 			if (!add_to_swap(page))
787 				goto activate_locked;
788 			may_enter_fs = 1;
789 		}
790 
791 		mapping = page_mapping(page);
792 
793 		/*
794 		 * The page is mapped into the page tables of one or more
795 		 * processes. Try to unmap it here.
796 		 */
797 		if (page_mapped(page) && mapping) {
798 			switch (try_to_unmap(page, TTU_UNMAP)) {
799 			case SWAP_FAIL:
800 				goto activate_locked;
801 			case SWAP_AGAIN:
802 				goto keep_locked;
803 			case SWAP_MLOCK:
804 				goto cull_mlocked;
805 			case SWAP_SUCCESS:
806 				; /* try to free the page below */
807 			}
808 		}
809 
810 		if (PageDirty(page)) {
811 			nr_dirty++;
812 
813 			if (references == PAGEREF_RECLAIM_CLEAN)
814 				goto keep_locked;
815 			if (!may_enter_fs)
816 				goto keep_locked;
817 			if (!sc->may_writepage)
818 				goto keep_locked;
819 
820 			/* Page is dirty, try to write it out here */
821 			switch (pageout(page, mapping, sc)) {
822 			case PAGE_KEEP:
823 				nr_congested++;
824 				goto keep_locked;
825 			case PAGE_ACTIVATE:
826 				goto activate_locked;
827 			case PAGE_SUCCESS:
828 				if (PageWriteback(page))
829 					goto keep_lumpy;
830 				if (PageDirty(page))
831 					goto keep;
832 
833 				/*
834 				 * A synchronous write - probably a ramdisk.  Go
835 				 * ahead and try to reclaim the page.
836 				 */
837 				if (!trylock_page(page))
838 					goto keep;
839 				if (PageDirty(page) || PageWriteback(page))
840 					goto keep_locked;
841 				mapping = page_mapping(page);
842 			case PAGE_CLEAN:
843 				; /* try to free the page below */
844 			}
845 		}
846 
847 		/*
848 		 * If the page has buffers, try to free the buffer mappings
849 		 * associated with this page. If we succeed we try to free
850 		 * the page as well.
851 		 *
852 		 * We do this even if the page is PageDirty().
853 		 * try_to_release_page() does not perform I/O, but it is
854 		 * possible for a page to have PageDirty set, but it is actually
855 		 * clean (all its buffers are clean).  This happens if the
856 		 * buffers were written out directly, with submit_bh(). ext3
857 		 * will do this, as well as the blockdev mapping.
858 		 * try_to_release_page() will discover that cleanness and will
859 		 * drop the buffers and mark the page clean - it can be freed.
860 		 *
861 		 * Rarely, pages can have buffers and no ->mapping.  These are
862 		 * the pages which were not successfully invalidated in
863 		 * truncate_complete_page().  We try to drop those buffers here
864 		 * and if that worked, and the page is no longer mapped into
865 		 * process address space (page_count == 1) it can be freed.
866 		 * Otherwise, leave the page on the LRU so it is swappable.
867 		 */
868 		if (page_has_private(page)) {
869 			if (!try_to_release_page(page, sc->gfp_mask))
870 				goto activate_locked;
871 			if (!mapping && page_count(page) == 1) {
872 				unlock_page(page);
873 				if (put_page_testzero(page))
874 					goto free_it;
875 				else {
876 					/*
877 					 * rare race with speculative reference.
878 					 * the speculative reference will free
879 					 * this page shortly, so we may
880 					 * increment nr_reclaimed here (and
881 					 * leave it off the LRU).
882 					 */
883 					nr_reclaimed++;
884 					continue;
885 				}
886 			}
887 		}
888 
889 		if (!mapping || !__remove_mapping(mapping, page))
890 			goto keep_locked;
891 
892 		/*
893 		 * At this point, we have no other references and there is
894 		 * no way to pick any more up (removed from LRU, removed
895 		 * from pagecache). Can use non-atomic bitops now (and
896 		 * we obviously don't have to worry about waking up a process
897 		 * waiting on the page lock, because there are no references.
898 		 */
899 		__clear_page_locked(page);
900 free_it:
901 		nr_reclaimed++;
902 
903 		/*
904 		 * Is there need to periodically free_page_list? It would
905 		 * appear not as the counts should be low
906 		 */
907 		list_add(&page->lru, &free_pages);
908 		continue;
909 
910 cull_mlocked:
911 		if (PageSwapCache(page))
912 			try_to_free_swap(page);
913 		unlock_page(page);
914 		putback_lru_page(page);
915 		reset_reclaim_mode(sc);
916 		continue;
917 
918 activate_locked:
919 		/* Not a candidate for swapping, so reclaim swap space. */
920 		if (PageSwapCache(page) && vm_swap_full())
921 			try_to_free_swap(page);
922 		VM_BUG_ON(PageActive(page));
923 		SetPageActive(page);
924 		pgactivate++;
925 keep_locked:
926 		unlock_page(page);
927 keep:
928 		reset_reclaim_mode(sc);
929 keep_lumpy:
930 		list_add(&page->lru, &ret_pages);
931 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
932 	}
933 
934 	/*
935 	 * Tag a zone as congested if all the dirty pages encountered were
936 	 * backed by a congested BDI. In this case, reclaimers should just
937 	 * back off and wait for congestion to clear because further reclaim
938 	 * will encounter the same problem
939 	 */
940 	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
941 		zone_set_flag(zone, ZONE_CONGESTED);
942 
943 	free_page_list(&free_pages);
944 
945 	list_splice(&ret_pages, page_list);
946 	count_vm_events(PGACTIVATE, pgactivate);
947 	return nr_reclaimed;
948 }
949 
950 /*
951  * Attempt to remove the specified page from its LRU.  Only take this page
952  * if it is of the appropriate PageActive status.  Pages which are being
953  * freed elsewhere are also ignored.
954  *
955  * page:	page to consider
956  * mode:	one of the LRU isolation modes defined above
957  *
958  * returns 0 on success, -ve errno on failure.
959  */
__isolate_lru_page(struct page * page,int mode,int file)960 int __isolate_lru_page(struct page *page, int mode, int file)
961 {
962 	int ret = -EINVAL;
963 
964 	/* Only take pages on the LRU. */
965 	if (!PageLRU(page))
966 		return ret;
967 
968 	/*
969 	 * When checking the active state, we need to be sure we are
970 	 * dealing with comparible boolean values.  Take the logical not
971 	 * of each.
972 	 */
973 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
974 		return ret;
975 
976 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
977 		return ret;
978 
979 	/*
980 	 * When this function is being called for lumpy reclaim, we
981 	 * initially look into all LRU pages, active, inactive and
982 	 * unevictable; only give shrink_page_list evictable pages.
983 	 */
984 	if (PageUnevictable(page))
985 		return ret;
986 
987 	ret = -EBUSY;
988 
989 	if (likely(get_page_unless_zero(page))) {
990 		/*
991 		 * Be careful not to clear PageLRU until after we're
992 		 * sure the page is not being freed elsewhere -- the
993 		 * page release code relies on it.
994 		 */
995 		ClearPageLRU(page);
996 		ret = 0;
997 	}
998 
999 	return ret;
1000 }
1001 
1002 /*
1003  * zone->lru_lock is heavily contended.  Some of the functions that
1004  * shrink the lists perform better by taking out a batch of pages
1005  * and working on them outside the LRU lock.
1006  *
1007  * For pagecache intensive workloads, this function is the hottest
1008  * spot in the kernel (apart from copy_*_user functions).
1009  *
1010  * Appropriate locks must be held before calling this function.
1011  *
1012  * @nr_to_scan:	The number of pages to look through on the list.
1013  * @src:	The LRU list to pull pages off.
1014  * @dst:	The temp list to put pages on to.
1015  * @scanned:	The number of pages that were scanned.
1016  * @order:	The caller's attempted allocation order
1017  * @mode:	One of the LRU isolation modes
1018  * @file:	True [1] if isolating file [!anon] pages
1019  *
1020  * returns how many pages were moved onto *@dst.
1021  */
isolate_lru_pages(unsigned long nr_to_scan,struct list_head * src,struct list_head * dst,unsigned long * scanned,int order,int mode,int file)1022 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1023 		struct list_head *src, struct list_head *dst,
1024 		unsigned long *scanned, int order, int mode, int file)
1025 {
1026 	unsigned long nr_taken = 0;
1027 	unsigned long nr_lumpy_taken = 0;
1028 	unsigned long nr_lumpy_dirty = 0;
1029 	unsigned long nr_lumpy_failed = 0;
1030 	unsigned long scan;
1031 
1032 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1033 		struct page *page;
1034 		unsigned long pfn;
1035 		unsigned long end_pfn;
1036 		unsigned long page_pfn;
1037 		int zone_id;
1038 
1039 		page = lru_to_page(src);
1040 		prefetchw_prev_lru_page(page, src, flags);
1041 
1042 		VM_BUG_ON(!PageLRU(page));
1043 
1044 		switch (__isolate_lru_page(page, mode, file)) {
1045 		case 0:
1046 			list_move(&page->lru, dst);
1047 			mem_cgroup_del_lru(page);
1048 			nr_taken += hpage_nr_pages(page);
1049 			break;
1050 
1051 		case -EBUSY:
1052 			/* else it is being freed elsewhere */
1053 			list_move(&page->lru, src);
1054 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1055 			continue;
1056 
1057 		default:
1058 			BUG();
1059 		}
1060 
1061 		if (!order)
1062 			continue;
1063 
1064 		/*
1065 		 * Attempt to take all pages in the order aligned region
1066 		 * surrounding the tag page.  Only take those pages of
1067 		 * the same active state as that tag page.  We may safely
1068 		 * round the target page pfn down to the requested order
1069 		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1070 		 * where that page is in a different zone we will detect
1071 		 * it from its zone id and abort this block scan.
1072 		 */
1073 		zone_id = page_zone_id(page);
1074 		page_pfn = page_to_pfn(page);
1075 		pfn = page_pfn & ~((1 << order) - 1);
1076 		end_pfn = pfn + (1 << order);
1077 		for (; pfn < end_pfn; pfn++) {
1078 			struct page *cursor_page;
1079 
1080 			/* The target page is in the block, ignore it. */
1081 			if (unlikely(pfn == page_pfn))
1082 				continue;
1083 
1084 			/* Avoid holes within the zone. */
1085 			if (unlikely(!pfn_valid_within(pfn)))
1086 				break;
1087 
1088 			cursor_page = pfn_to_page(pfn);
1089 
1090 			/* Check that we have not crossed a zone boundary. */
1091 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1092 				break;
1093 
1094 			/*
1095 			 * If we don't have enough swap space, reclaiming of
1096 			 * anon page which don't already have a swap slot is
1097 			 * pointless.
1098 			 */
1099 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1100 			    !PageSwapCache(cursor_page))
1101 				break;
1102 
1103 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1104 				list_move(&cursor_page->lru, dst);
1105 				mem_cgroup_del_lru(cursor_page);
1106 				nr_taken += hpage_nr_pages(page);
1107 				nr_lumpy_taken++;
1108 				if (PageDirty(cursor_page))
1109 					nr_lumpy_dirty++;
1110 				scan++;
1111 			} else {
1112 				/* the page is freed already. */
1113 				if (!page_count(cursor_page))
1114 					continue;
1115 				break;
1116 			}
1117 		}
1118 
1119 		/* If we break out of the loop above, lumpy reclaim failed */
1120 		if (pfn < end_pfn)
1121 			nr_lumpy_failed++;
1122 	}
1123 
1124 	*scanned = scan;
1125 
1126 	trace_mm_vmscan_lru_isolate(order,
1127 			nr_to_scan, scan,
1128 			nr_taken,
1129 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1130 			mode);
1131 	return nr_taken;
1132 }
1133 
isolate_pages_global(unsigned long nr,struct list_head * dst,unsigned long * scanned,int order,int mode,struct zone * z,int active,int file)1134 static unsigned long isolate_pages_global(unsigned long nr,
1135 					struct list_head *dst,
1136 					unsigned long *scanned, int order,
1137 					int mode, struct zone *z,
1138 					int active, int file)
1139 {
1140 	int lru = LRU_BASE;
1141 	if (active)
1142 		lru += LRU_ACTIVE;
1143 	if (file)
1144 		lru += LRU_FILE;
1145 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1146 								mode, file);
1147 }
1148 
1149 /*
1150  * clear_active_flags() is a helper for shrink_active_list(), clearing
1151  * any active bits from the pages in the list.
1152  */
clear_active_flags(struct list_head * page_list,unsigned int * count)1153 static unsigned long clear_active_flags(struct list_head *page_list,
1154 					unsigned int *count)
1155 {
1156 	int nr_active = 0;
1157 	int lru;
1158 	struct page *page;
1159 
1160 	list_for_each_entry(page, page_list, lru) {
1161 		int numpages = hpage_nr_pages(page);
1162 		lru = page_lru_base_type(page);
1163 		if (PageActive(page)) {
1164 			lru += LRU_ACTIVE;
1165 			ClearPageActive(page);
1166 			nr_active += numpages;
1167 		}
1168 		if (count)
1169 			count[lru] += numpages;
1170 	}
1171 
1172 	return nr_active;
1173 }
1174 
1175 /**
1176  * isolate_lru_page - tries to isolate a page from its LRU list
1177  * @page: page to isolate from its LRU list
1178  *
1179  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1180  * vmstat statistic corresponding to whatever LRU list the page was on.
1181  *
1182  * Returns 0 if the page was removed from an LRU list.
1183  * Returns -EBUSY if the page was not on an LRU list.
1184  *
1185  * The returned page will have PageLRU() cleared.  If it was found on
1186  * the active list, it will have PageActive set.  If it was found on
1187  * the unevictable list, it will have the PageUnevictable bit set. That flag
1188  * may need to be cleared by the caller before letting the page go.
1189  *
1190  * The vmstat statistic corresponding to the list on which the page was
1191  * found will be decremented.
1192  *
1193  * Restrictions:
1194  * (1) Must be called with an elevated refcount on the page. This is a
1195  *     fundamentnal difference from isolate_lru_pages (which is called
1196  *     without a stable reference).
1197  * (2) the lru_lock must not be held.
1198  * (3) interrupts must be enabled.
1199  */
isolate_lru_page(struct page * page)1200 int isolate_lru_page(struct page *page)
1201 {
1202 	int ret = -EBUSY;
1203 
1204 	if (PageLRU(page)) {
1205 		struct zone *zone = page_zone(page);
1206 
1207 		spin_lock_irq(&zone->lru_lock);
1208 		if (PageLRU(page) && get_page_unless_zero(page)) {
1209 			int lru = page_lru(page);
1210 			ret = 0;
1211 			ClearPageLRU(page);
1212 
1213 			del_page_from_lru_list(zone, page, lru);
1214 		}
1215 		spin_unlock_irq(&zone->lru_lock);
1216 	}
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Are there way too many processes in the direct reclaim path already?
1222  */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1223 static int too_many_isolated(struct zone *zone, int file,
1224 		struct scan_control *sc)
1225 {
1226 	unsigned long inactive, isolated;
1227 
1228 	if (current_is_kswapd())
1229 		return 0;
1230 
1231 	if (!scanning_global_lru(sc))
1232 		return 0;
1233 
1234 	if (file) {
1235 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1236 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1237 	} else {
1238 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1239 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1240 	}
1241 
1242 	return isolated > inactive;
1243 }
1244 
1245 /*
1246  * TODO: Try merging with migrations version of putback_lru_pages
1247  */
1248 static noinline_for_stack void
putback_lru_pages(struct zone * zone,struct scan_control * sc,unsigned long nr_anon,unsigned long nr_file,struct list_head * page_list)1249 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1250 				unsigned long nr_anon, unsigned long nr_file,
1251 				struct list_head *page_list)
1252 {
1253 	struct page *page;
1254 	struct pagevec pvec;
1255 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1256 
1257 	pagevec_init(&pvec, 1);
1258 
1259 	/*
1260 	 * Put back any unfreeable pages.
1261 	 */
1262 	spin_lock(&zone->lru_lock);
1263 	while (!list_empty(page_list)) {
1264 		int lru;
1265 		page = lru_to_page(page_list);
1266 		VM_BUG_ON(PageLRU(page));
1267 		list_del(&page->lru);
1268 		if (unlikely(!page_evictable(page, NULL))) {
1269 			spin_unlock_irq(&zone->lru_lock);
1270 			putback_lru_page(page);
1271 			spin_lock_irq(&zone->lru_lock);
1272 			continue;
1273 		}
1274 		SetPageLRU(page);
1275 		lru = page_lru(page);
1276 		add_page_to_lru_list(zone, page, lru);
1277 		if (is_active_lru(lru)) {
1278 			int file = is_file_lru(lru);
1279 			int numpages = hpage_nr_pages(page);
1280 			reclaim_stat->recent_rotated[file] += numpages;
1281 		}
1282 		if (!pagevec_add(&pvec, page)) {
1283 			spin_unlock_irq(&zone->lru_lock);
1284 			__pagevec_release(&pvec);
1285 			spin_lock_irq(&zone->lru_lock);
1286 		}
1287 	}
1288 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1289 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1290 
1291 	spin_unlock_irq(&zone->lru_lock);
1292 	pagevec_release(&pvec);
1293 }
1294 
update_isolated_counts(struct zone * zone,struct scan_control * sc,unsigned long * nr_anon,unsigned long * nr_file,struct list_head * isolated_list)1295 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1296 					struct scan_control *sc,
1297 					unsigned long *nr_anon,
1298 					unsigned long *nr_file,
1299 					struct list_head *isolated_list)
1300 {
1301 	unsigned long nr_active;
1302 	unsigned int count[NR_LRU_LISTS] = { 0, };
1303 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1304 
1305 	nr_active = clear_active_flags(isolated_list, count);
1306 	__count_vm_events(PGDEACTIVATE, nr_active);
1307 
1308 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1309 			      -count[LRU_ACTIVE_FILE]);
1310 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1311 			      -count[LRU_INACTIVE_FILE]);
1312 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1313 			      -count[LRU_ACTIVE_ANON]);
1314 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1315 			      -count[LRU_INACTIVE_ANON]);
1316 
1317 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1318 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1319 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1320 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1321 
1322 	reclaim_stat->recent_scanned[0] += *nr_anon;
1323 	reclaim_stat->recent_scanned[1] += *nr_file;
1324 }
1325 
1326 /*
1327  * Returns true if the caller should wait to clean dirty/writeback pages.
1328  *
1329  * If we are direct reclaiming for contiguous pages and we do not reclaim
1330  * everything in the list, try again and wait for writeback IO to complete.
1331  * This will stall high-order allocations noticeably. Only do that when really
1332  * need to free the pages under high memory pressure.
1333  */
should_reclaim_stall(unsigned long nr_taken,unsigned long nr_freed,int priority,struct scan_control * sc)1334 static inline bool should_reclaim_stall(unsigned long nr_taken,
1335 					unsigned long nr_freed,
1336 					int priority,
1337 					struct scan_control *sc)
1338 {
1339 	int lumpy_stall_priority;
1340 
1341 	/* kswapd should not stall on sync IO */
1342 	if (current_is_kswapd())
1343 		return false;
1344 
1345 	/* Only stall on lumpy reclaim */
1346 	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1347 		return false;
1348 
1349 	/* If we have relaimed everything on the isolated list, no stall */
1350 	if (nr_freed == nr_taken)
1351 		return false;
1352 
1353 	/*
1354 	 * For high-order allocations, there are two stall thresholds.
1355 	 * High-cost allocations stall immediately where as lower
1356 	 * order allocations such as stacks require the scanning
1357 	 * priority to be much higher before stalling.
1358 	 */
1359 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1360 		lumpy_stall_priority = DEF_PRIORITY;
1361 	else
1362 		lumpy_stall_priority = DEF_PRIORITY / 3;
1363 
1364 	return priority <= lumpy_stall_priority;
1365 }
1366 
1367 /*
1368  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1369  * of reclaimed pages
1370  */
1371 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct zone * zone,struct scan_control * sc,int priority,int file)1372 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1373 			struct scan_control *sc, int priority, int file)
1374 {
1375 	LIST_HEAD(page_list);
1376 	unsigned long nr_scanned;
1377 	unsigned long nr_reclaimed = 0;
1378 	unsigned long nr_taken;
1379 	unsigned long nr_anon;
1380 	unsigned long nr_file;
1381 
1382 	while (unlikely(too_many_isolated(zone, file, sc))) {
1383 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1384 
1385 		/* We are about to die and free our memory. Return now. */
1386 		if (fatal_signal_pending(current))
1387 			return SWAP_CLUSTER_MAX;
1388 	}
1389 
1390 	set_reclaim_mode(priority, sc, false);
1391 	lru_add_drain();
1392 	spin_lock_irq(&zone->lru_lock);
1393 
1394 	if (scanning_global_lru(sc)) {
1395 		nr_taken = isolate_pages_global(nr_to_scan,
1396 			&page_list, &nr_scanned, sc->order,
1397 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1398 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1399 			zone, 0, file);
1400 		zone->pages_scanned += nr_scanned;
1401 		if (current_is_kswapd())
1402 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1403 					       nr_scanned);
1404 		else
1405 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1406 					       nr_scanned);
1407 	} else {
1408 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1409 			&page_list, &nr_scanned, sc->order,
1410 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1411 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1412 			zone, sc->mem_cgroup,
1413 			0, file);
1414 		/*
1415 		 * mem_cgroup_isolate_pages() keeps track of
1416 		 * scanned pages on its own.
1417 		 */
1418 	}
1419 
1420 	if (nr_taken == 0) {
1421 		spin_unlock_irq(&zone->lru_lock);
1422 		return 0;
1423 	}
1424 
1425 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1426 
1427 	spin_unlock_irq(&zone->lru_lock);
1428 
1429 	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1430 
1431 	/* Check if we should syncronously wait for writeback */
1432 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1433 		set_reclaim_mode(priority, sc, true);
1434 		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1435 	}
1436 
1437 	local_irq_disable();
1438 	if (current_is_kswapd())
1439 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1440 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1441 
1442 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1443 
1444 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1445 		zone_idx(zone),
1446 		nr_scanned, nr_reclaimed,
1447 		priority,
1448 		trace_shrink_flags(file, sc->reclaim_mode));
1449 	return nr_reclaimed;
1450 }
1451 
1452 /*
1453  * This moves pages from the active list to the inactive list.
1454  *
1455  * We move them the other way if the page is referenced by one or more
1456  * processes, from rmap.
1457  *
1458  * If the pages are mostly unmapped, the processing is fast and it is
1459  * appropriate to hold zone->lru_lock across the whole operation.  But if
1460  * the pages are mapped, the processing is slow (page_referenced()) so we
1461  * should drop zone->lru_lock around each page.  It's impossible to balance
1462  * this, so instead we remove the pages from the LRU while processing them.
1463  * It is safe to rely on PG_active against the non-LRU pages in here because
1464  * nobody will play with that bit on a non-LRU page.
1465  *
1466  * The downside is that we have to touch page->_count against each page.
1467  * But we had to alter page->flags anyway.
1468  */
1469 
move_active_pages_to_lru(struct zone * zone,struct list_head * list,enum lru_list lru)1470 static void move_active_pages_to_lru(struct zone *zone,
1471 				     struct list_head *list,
1472 				     enum lru_list lru)
1473 {
1474 	unsigned long pgmoved = 0;
1475 	struct pagevec pvec;
1476 	struct page *page;
1477 
1478 	pagevec_init(&pvec, 1);
1479 
1480 	while (!list_empty(list)) {
1481 		page = lru_to_page(list);
1482 
1483 		VM_BUG_ON(PageLRU(page));
1484 		SetPageLRU(page);
1485 
1486 		list_move(&page->lru, &zone->lru[lru].list);
1487 		mem_cgroup_add_lru_list(page, lru);
1488 		pgmoved += hpage_nr_pages(page);
1489 
1490 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1491 			spin_unlock_irq(&zone->lru_lock);
1492 			if (buffer_heads_over_limit)
1493 				pagevec_strip(&pvec);
1494 			__pagevec_release(&pvec);
1495 			spin_lock_irq(&zone->lru_lock);
1496 		}
1497 	}
1498 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1499 	if (!is_active_lru(lru))
1500 		__count_vm_events(PGDEACTIVATE, pgmoved);
1501 }
1502 
shrink_active_list(unsigned long nr_pages,struct zone * zone,struct scan_control * sc,int priority,int file)1503 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1504 			struct scan_control *sc, int priority, int file)
1505 {
1506 	unsigned long nr_taken;
1507 	unsigned long pgscanned;
1508 	unsigned long vm_flags;
1509 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1510 	LIST_HEAD(l_active);
1511 	LIST_HEAD(l_inactive);
1512 	struct page *page;
1513 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1514 	unsigned long nr_rotated = 0;
1515 
1516 	lru_add_drain();
1517 	spin_lock_irq(&zone->lru_lock);
1518 	if (scanning_global_lru(sc)) {
1519 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1520 						&pgscanned, sc->order,
1521 						ISOLATE_ACTIVE, zone,
1522 						1, file);
1523 		zone->pages_scanned += pgscanned;
1524 	} else {
1525 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1526 						&pgscanned, sc->order,
1527 						ISOLATE_ACTIVE, zone,
1528 						sc->mem_cgroup, 1, file);
1529 		/*
1530 		 * mem_cgroup_isolate_pages() keeps track of
1531 		 * scanned pages on its own.
1532 		 */
1533 	}
1534 
1535 	reclaim_stat->recent_scanned[file] += nr_taken;
1536 
1537 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1538 	if (file)
1539 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1540 	else
1541 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1542 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1543 	spin_unlock_irq(&zone->lru_lock);
1544 
1545 	while (!list_empty(&l_hold)) {
1546 		cond_resched();
1547 		page = lru_to_page(&l_hold);
1548 		list_del(&page->lru);
1549 
1550 		if (unlikely(!page_evictable(page, NULL))) {
1551 			putback_lru_page(page);
1552 			continue;
1553 		}
1554 
1555 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1556 			nr_rotated += hpage_nr_pages(page);
1557 			/*
1558 			 * Identify referenced, file-backed active pages and
1559 			 * give them one more trip around the active list. So
1560 			 * that executable code get better chances to stay in
1561 			 * memory under moderate memory pressure.  Anon pages
1562 			 * are not likely to be evicted by use-once streaming
1563 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1564 			 * so we ignore them here.
1565 			 */
1566 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1567 				list_add(&page->lru, &l_active);
1568 				continue;
1569 			}
1570 		}
1571 
1572 		ClearPageActive(page);	/* we are de-activating */
1573 		list_add(&page->lru, &l_inactive);
1574 	}
1575 
1576 	/*
1577 	 * Move pages back to the lru list.
1578 	 */
1579 	spin_lock_irq(&zone->lru_lock);
1580 	/*
1581 	 * Count referenced pages from currently used mappings as rotated,
1582 	 * even though only some of them are actually re-activated.  This
1583 	 * helps balance scan pressure between file and anonymous pages in
1584 	 * get_scan_ratio.
1585 	 */
1586 	reclaim_stat->recent_rotated[file] += nr_rotated;
1587 
1588 	move_active_pages_to_lru(zone, &l_active,
1589 						LRU_ACTIVE + file * LRU_FILE);
1590 	move_active_pages_to_lru(zone, &l_inactive,
1591 						LRU_BASE   + file * LRU_FILE);
1592 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1593 	spin_unlock_irq(&zone->lru_lock);
1594 }
1595 
1596 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1597 static int inactive_anon_is_low_global(struct zone *zone)
1598 {
1599 	unsigned long active, inactive;
1600 
1601 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1602 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1603 
1604 	if (inactive * zone->inactive_ratio < active)
1605 		return 1;
1606 
1607 	return 0;
1608 }
1609 
1610 /**
1611  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1612  * @zone: zone to check
1613  * @sc:   scan control of this context
1614  *
1615  * Returns true if the zone does not have enough inactive anon pages,
1616  * meaning some active anon pages need to be deactivated.
1617  */
inactive_anon_is_low(struct zone * zone,struct scan_control * sc)1618 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1619 {
1620 	int low;
1621 
1622 	/*
1623 	 * If we don't have swap space, anonymous page deactivation
1624 	 * is pointless.
1625 	 */
1626 	if (!total_swap_pages)
1627 		return 0;
1628 
1629 	if (scanning_global_lru(sc))
1630 		low = inactive_anon_is_low_global(zone);
1631 	else
1632 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1633 	return low;
1634 }
1635 #else
inactive_anon_is_low(struct zone * zone,struct scan_control * sc)1636 static inline int inactive_anon_is_low(struct zone *zone,
1637 					struct scan_control *sc)
1638 {
1639 	return 0;
1640 }
1641 #endif
1642 
inactive_file_is_low_global(struct zone * zone)1643 static int inactive_file_is_low_global(struct zone *zone)
1644 {
1645 	unsigned long active, inactive;
1646 
1647 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1648 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1649 
1650 	return (active > inactive);
1651 }
1652 
1653 /**
1654  * inactive_file_is_low - check if file pages need to be deactivated
1655  * @zone: zone to check
1656  * @sc:   scan control of this context
1657  *
1658  * When the system is doing streaming IO, memory pressure here
1659  * ensures that active file pages get deactivated, until more
1660  * than half of the file pages are on the inactive list.
1661  *
1662  * Once we get to that situation, protect the system's working
1663  * set from being evicted by disabling active file page aging.
1664  *
1665  * This uses a different ratio than the anonymous pages, because
1666  * the page cache uses a use-once replacement algorithm.
1667  */
inactive_file_is_low(struct zone * zone,struct scan_control * sc)1668 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1669 {
1670 	int low;
1671 
1672 	if (scanning_global_lru(sc))
1673 		low = inactive_file_is_low_global(zone);
1674 	else
1675 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1676 	return low;
1677 }
1678 
inactive_list_is_low(struct zone * zone,struct scan_control * sc,int file)1679 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1680 				int file)
1681 {
1682 	if (file)
1683 		return inactive_file_is_low(zone, sc);
1684 	else
1685 		return inactive_anon_is_low(zone, sc);
1686 }
1687 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct zone * zone,struct scan_control * sc,int priority)1688 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1689 	struct zone *zone, struct scan_control *sc, int priority)
1690 {
1691 	int file = is_file_lru(lru);
1692 
1693 	if (is_active_lru(lru)) {
1694 		if (inactive_list_is_low(zone, sc, file))
1695 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1696 		return 0;
1697 	}
1698 
1699 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1700 }
1701 
1702 /*
1703  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1704  * until we collected @swap_cluster_max pages to scan.
1705  */
nr_scan_try_batch(unsigned long nr_to_scan,unsigned long * nr_saved_scan)1706 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1707 				       unsigned long *nr_saved_scan)
1708 {
1709 	unsigned long nr;
1710 
1711 	*nr_saved_scan += nr_to_scan;
1712 	nr = *nr_saved_scan;
1713 
1714 	if (nr >= SWAP_CLUSTER_MAX)
1715 		*nr_saved_scan = 0;
1716 	else
1717 		nr = 0;
1718 
1719 	return nr;
1720 }
1721 
1722 /*
1723  * Determine how aggressively the anon and file LRU lists should be
1724  * scanned.  The relative value of each set of LRU lists is determined
1725  * by looking at the fraction of the pages scanned we did rotate back
1726  * onto the active list instead of evict.
1727  *
1728  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1729  */
get_scan_count(struct zone * zone,struct scan_control * sc,unsigned long * nr,int priority)1730 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1731 					unsigned long *nr, int priority)
1732 {
1733 	unsigned long anon, file, free;
1734 	unsigned long anon_prio, file_prio;
1735 	unsigned long ap, fp;
1736 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1737 	u64 fraction[2], denominator;
1738 	enum lru_list l;
1739 	int noswap = 0;
1740 
1741 	/* If we have no swap space, do not bother scanning anon pages. */
1742 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1743 		noswap = 1;
1744 		fraction[0] = 0;
1745 		fraction[1] = 1;
1746 		denominator = 1;
1747 		goto out;
1748 	}
1749 
1750 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1751 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1752 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1753 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1754 
1755 	if (scanning_global_lru(sc)) {
1756 		free  = zone_page_state(zone, NR_FREE_PAGES);
1757 		/* If we have very few page cache pages,
1758 		   force-scan anon pages. */
1759 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1760 			fraction[0] = 1;
1761 			fraction[1] = 0;
1762 			denominator = 1;
1763 			goto out;
1764 		}
1765 	}
1766 
1767 	/*
1768 	 * With swappiness at 100, anonymous and file have the same priority.
1769 	 * This scanning priority is essentially the inverse of IO cost.
1770 	 */
1771 	anon_prio = sc->swappiness;
1772 	file_prio = 200 - sc->swappiness;
1773 
1774 	/*
1775 	 * OK, so we have swap space and a fair amount of page cache
1776 	 * pages.  We use the recently rotated / recently scanned
1777 	 * ratios to determine how valuable each cache is.
1778 	 *
1779 	 * Because workloads change over time (and to avoid overflow)
1780 	 * we keep these statistics as a floating average, which ends
1781 	 * up weighing recent references more than old ones.
1782 	 *
1783 	 * anon in [0], file in [1]
1784 	 */
1785 	spin_lock_irq(&zone->lru_lock);
1786 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1787 		reclaim_stat->recent_scanned[0] /= 2;
1788 		reclaim_stat->recent_rotated[0] /= 2;
1789 	}
1790 
1791 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1792 		reclaim_stat->recent_scanned[1] /= 2;
1793 		reclaim_stat->recent_rotated[1] /= 2;
1794 	}
1795 
1796 	/*
1797 	 * The amount of pressure on anon vs file pages is inversely
1798 	 * proportional to the fraction of recently scanned pages on
1799 	 * each list that were recently referenced and in active use.
1800 	 */
1801 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1802 	ap /= reclaim_stat->recent_rotated[0] + 1;
1803 
1804 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1805 	fp /= reclaim_stat->recent_rotated[1] + 1;
1806 	spin_unlock_irq(&zone->lru_lock);
1807 
1808 	fraction[0] = ap;
1809 	fraction[1] = fp;
1810 	denominator = ap + fp + 1;
1811 out:
1812 	for_each_evictable_lru(l) {
1813 		int file = is_file_lru(l);
1814 		unsigned long scan;
1815 
1816 		scan = zone_nr_lru_pages(zone, sc, l);
1817 		if (priority || noswap) {
1818 			scan >>= priority;
1819 			scan = div64_u64(scan * fraction[file], denominator);
1820 		}
1821 		nr[l] = nr_scan_try_batch(scan,
1822 					  &reclaim_stat->nr_saved_scan[l]);
1823 	}
1824 }
1825 
1826 /*
1827  * Reclaim/compaction depends on a number of pages being freed. To avoid
1828  * disruption to the system, a small number of order-0 pages continue to be
1829  * rotated and reclaimed in the normal fashion. However, by the time we get
1830  * back to the allocator and call try_to_compact_zone(), we ensure that
1831  * there are enough free pages for it to be likely successful
1832  */
should_continue_reclaim(struct zone * zone,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)1833 static inline bool should_continue_reclaim(struct zone *zone,
1834 					unsigned long nr_reclaimed,
1835 					unsigned long nr_scanned,
1836 					struct scan_control *sc)
1837 {
1838 	unsigned long pages_for_compaction;
1839 	unsigned long inactive_lru_pages;
1840 
1841 	/* If not in reclaim/compaction mode, stop */
1842 	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1843 		return false;
1844 
1845 	/* Consider stopping depending on scan and reclaim activity */
1846 	if (sc->gfp_mask & __GFP_REPEAT) {
1847 		/*
1848 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1849 		 * full LRU list has been scanned and we are still failing
1850 		 * to reclaim pages. This full LRU scan is potentially
1851 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1852 		 */
1853 		if (!nr_reclaimed && !nr_scanned)
1854 			return false;
1855 	} else {
1856 		/*
1857 		 * For non-__GFP_REPEAT allocations which can presumably
1858 		 * fail without consequence, stop if we failed to reclaim
1859 		 * any pages from the last SWAP_CLUSTER_MAX number of
1860 		 * pages that were scanned. This will return to the
1861 		 * caller faster at the risk reclaim/compaction and
1862 		 * the resulting allocation attempt fails
1863 		 */
1864 		if (!nr_reclaimed)
1865 			return false;
1866 	}
1867 
1868 	/*
1869 	 * If we have not reclaimed enough pages for compaction and the
1870 	 * inactive lists are large enough, continue reclaiming
1871 	 */
1872 	pages_for_compaction = (2UL << sc->order);
1873 	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1874 				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1875 	if (sc->nr_reclaimed < pages_for_compaction &&
1876 			inactive_lru_pages > pages_for_compaction)
1877 		return true;
1878 
1879 	/* If compaction would go ahead or the allocation would succeed, stop */
1880 	switch (compaction_suitable(zone, sc->order)) {
1881 	case COMPACT_PARTIAL:
1882 	case COMPACT_CONTINUE:
1883 		return false;
1884 	default:
1885 		return true;
1886 	}
1887 }
1888 
1889 /*
1890  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1891  */
shrink_zone(int priority,struct zone * zone,struct scan_control * sc)1892 static void shrink_zone(int priority, struct zone *zone,
1893 				struct scan_control *sc)
1894 {
1895 	unsigned long nr[NR_LRU_LISTS];
1896 	unsigned long nr_to_scan;
1897 	enum lru_list l;
1898 	unsigned long nr_reclaimed, nr_scanned;
1899 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1900 
1901 restart:
1902 	nr_reclaimed = 0;
1903 	nr_scanned = sc->nr_scanned;
1904 	get_scan_count(zone, sc, nr, priority);
1905 
1906 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1907 					nr[LRU_INACTIVE_FILE]) {
1908 		for_each_evictable_lru(l) {
1909 			if (nr[l]) {
1910 				nr_to_scan = min_t(unsigned long,
1911 						   nr[l], SWAP_CLUSTER_MAX);
1912 				nr[l] -= nr_to_scan;
1913 
1914 				nr_reclaimed += shrink_list(l, nr_to_scan,
1915 							    zone, sc, priority);
1916 			}
1917 		}
1918 		/*
1919 		 * On large memory systems, scan >> priority can become
1920 		 * really large. This is fine for the starting priority;
1921 		 * we want to put equal scanning pressure on each zone.
1922 		 * However, if the VM has a harder time of freeing pages,
1923 		 * with multiple processes reclaiming pages, the total
1924 		 * freeing target can get unreasonably large.
1925 		 */
1926 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1927 			break;
1928 	}
1929 	sc->nr_reclaimed += nr_reclaimed;
1930 
1931 	/*
1932 	 * Even if we did not try to evict anon pages at all, we want to
1933 	 * rebalance the anon lru active/inactive ratio.
1934 	 */
1935 	if (inactive_anon_is_low(zone, sc))
1936 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1937 
1938 	/* reclaim/compaction might need reclaim to continue */
1939 	if (should_continue_reclaim(zone, nr_reclaimed,
1940 					sc->nr_scanned - nr_scanned, sc))
1941 		goto restart;
1942 
1943 	throttle_vm_writeout(sc->gfp_mask);
1944 }
1945 
1946 /*
1947  * This is the direct reclaim path, for page-allocating processes.  We only
1948  * try to reclaim pages from zones which will satisfy the caller's allocation
1949  * request.
1950  *
1951  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1952  * Because:
1953  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1954  *    allocation or
1955  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1956  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1957  *    zone defense algorithm.
1958  *
1959  * If a zone is deemed to be full of pinned pages then just give it a light
1960  * scan then give up on it.
1961  */
shrink_zones(int priority,struct zonelist * zonelist,struct scan_control * sc)1962 static void shrink_zones(int priority, struct zonelist *zonelist,
1963 					struct scan_control *sc)
1964 {
1965 	struct zoneref *z;
1966 	struct zone *zone;
1967 
1968 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1969 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1970 		if (!populated_zone(zone))
1971 			continue;
1972 		/*
1973 		 * Take care memory controller reclaiming has small influence
1974 		 * to global LRU.
1975 		 */
1976 		if (scanning_global_lru(sc)) {
1977 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1978 				continue;
1979 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1980 				continue;	/* Let kswapd poll it */
1981 		}
1982 
1983 		shrink_zone(priority, zone, sc);
1984 	}
1985 }
1986 
zone_reclaimable(struct zone * zone)1987 static bool zone_reclaimable(struct zone *zone)
1988 {
1989 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1990 }
1991 
1992 /* All zones in zonelist are unreclaimable? */
all_unreclaimable(struct zonelist * zonelist,struct scan_control * sc)1993 static bool all_unreclaimable(struct zonelist *zonelist,
1994 		struct scan_control *sc)
1995 {
1996 	struct zoneref *z;
1997 	struct zone *zone;
1998 
1999 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2000 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2001 		if (!populated_zone(zone))
2002 			continue;
2003 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2004 			continue;
2005 		if (!zone->all_unreclaimable)
2006 			return false;
2007 	}
2008 
2009 	return true;
2010 }
2011 
2012 /*
2013  * This is the main entry point to direct page reclaim.
2014  *
2015  * If a full scan of the inactive list fails to free enough memory then we
2016  * are "out of memory" and something needs to be killed.
2017  *
2018  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2019  * high - the zone may be full of dirty or under-writeback pages, which this
2020  * caller can't do much about.  We kick the writeback threads and take explicit
2021  * naps in the hope that some of these pages can be written.  But if the
2022  * allocating task holds filesystem locks which prevent writeout this might not
2023  * work, and the allocation attempt will fail.
2024  *
2025  * returns:	0, if no pages reclaimed
2026  * 		else, the number of pages reclaimed
2027  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2028 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2029 					struct scan_control *sc)
2030 {
2031 	int priority;
2032 	unsigned long total_scanned = 0;
2033 	struct reclaim_state *reclaim_state = current->reclaim_state;
2034 	struct zoneref *z;
2035 	struct zone *zone;
2036 	unsigned long writeback_threshold;
2037 
2038 	get_mems_allowed();
2039 	delayacct_freepages_start();
2040 
2041 	if (scanning_global_lru(sc))
2042 		count_vm_event(ALLOCSTALL);
2043 
2044 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2045 		sc->nr_scanned = 0;
2046 		if (!priority)
2047 			disable_swap_token();
2048 		shrink_zones(priority, zonelist, sc);
2049 		/*
2050 		 * Don't shrink slabs when reclaiming memory from
2051 		 * over limit cgroups
2052 		 */
2053 		if (scanning_global_lru(sc)) {
2054 			unsigned long lru_pages = 0;
2055 			for_each_zone_zonelist(zone, z, zonelist,
2056 					gfp_zone(sc->gfp_mask)) {
2057 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2058 					continue;
2059 
2060 				lru_pages += zone_reclaimable_pages(zone);
2061 			}
2062 
2063 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2064 			if (reclaim_state) {
2065 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2066 				reclaim_state->reclaimed_slab = 0;
2067 			}
2068 		}
2069 		total_scanned += sc->nr_scanned;
2070 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2071 			goto out;
2072 
2073 		/*
2074 		 * Try to write back as many pages as we just scanned.  This
2075 		 * tends to cause slow streaming writers to write data to the
2076 		 * disk smoothly, at the dirtying rate, which is nice.   But
2077 		 * that's undesirable in laptop mode, where we *want* lumpy
2078 		 * writeout.  So in laptop mode, write out the whole world.
2079 		 */
2080 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2081 		if (total_scanned > writeback_threshold) {
2082 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2083 			sc->may_writepage = 1;
2084 		}
2085 
2086 		/* Take a nap, wait for some writeback to complete */
2087 		if (!sc->hibernation_mode && sc->nr_scanned &&
2088 		    priority < DEF_PRIORITY - 2) {
2089 			struct zone *preferred_zone;
2090 
2091 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2092 						&cpuset_current_mems_allowed,
2093 						&preferred_zone);
2094 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2095 		}
2096 	}
2097 
2098 out:
2099 	delayacct_freepages_end();
2100 	put_mems_allowed();
2101 
2102 	if (sc->nr_reclaimed)
2103 		return sc->nr_reclaimed;
2104 
2105 	/*
2106 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2107 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2108 	 * check.
2109 	 */
2110 	if (oom_killer_disabled)
2111 		return 0;
2112 
2113 	/* top priority shrink_zones still had more to do? don't OOM, then */
2114 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2115 		return 1;
2116 
2117 	return 0;
2118 }
2119 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2120 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2121 				gfp_t gfp_mask, nodemask_t *nodemask)
2122 {
2123 	unsigned long nr_reclaimed;
2124 	struct scan_control sc = {
2125 		.gfp_mask = gfp_mask,
2126 		.may_writepage = !laptop_mode,
2127 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2128 		.may_unmap = 1,
2129 		.may_swap = 1,
2130 		.swappiness = vm_swappiness,
2131 		.order = order,
2132 		.mem_cgroup = NULL,
2133 		.nodemask = nodemask,
2134 	};
2135 
2136 	trace_mm_vmscan_direct_reclaim_begin(order,
2137 				sc.may_writepage,
2138 				gfp_mask);
2139 
2140 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2141 
2142 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2143 
2144 	return nr_reclaimed;
2145 }
2146 
2147 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2148 
mem_cgroup_shrink_node_zone(struct mem_cgroup * mem,gfp_t gfp_mask,bool noswap,unsigned int swappiness,struct zone * zone)2149 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2150 						gfp_t gfp_mask, bool noswap,
2151 						unsigned int swappiness,
2152 						struct zone *zone)
2153 {
2154 	struct scan_control sc = {
2155 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2156 		.may_writepage = !laptop_mode,
2157 		.may_unmap = 1,
2158 		.may_swap = !noswap,
2159 		.swappiness = swappiness,
2160 		.order = 0,
2161 		.mem_cgroup = mem,
2162 	};
2163 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2164 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2165 
2166 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2167 						      sc.may_writepage,
2168 						      sc.gfp_mask);
2169 
2170 	/*
2171 	 * NOTE: Although we can get the priority field, using it
2172 	 * here is not a good idea, since it limits the pages we can scan.
2173 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2174 	 * will pick up pages from other mem cgroup's as well. We hack
2175 	 * the priority and make it zero.
2176 	 */
2177 	shrink_zone(0, zone, &sc);
2178 
2179 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2180 
2181 	return sc.nr_reclaimed;
2182 }
2183 
try_to_free_mem_cgroup_pages(struct mem_cgroup * mem_cont,gfp_t gfp_mask,bool noswap,unsigned int swappiness)2184 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2185 					   gfp_t gfp_mask,
2186 					   bool noswap,
2187 					   unsigned int swappiness)
2188 {
2189 	struct zonelist *zonelist;
2190 	unsigned long nr_reclaimed;
2191 	struct scan_control sc = {
2192 		.may_writepage = !laptop_mode,
2193 		.may_unmap = 1,
2194 		.may_swap = !noswap,
2195 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2196 		.swappiness = swappiness,
2197 		.order = 0,
2198 		.mem_cgroup = mem_cont,
2199 		.nodemask = NULL, /* we don't care the placement */
2200 	};
2201 
2202 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2203 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2204 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2205 
2206 	trace_mm_vmscan_memcg_reclaim_begin(0,
2207 					    sc.may_writepage,
2208 					    sc.gfp_mask);
2209 
2210 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2211 
2212 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2213 
2214 	return nr_reclaimed;
2215 }
2216 #endif
2217 
2218 /*
2219  * pgdat_balanced is used when checking if a node is balanced for high-order
2220  * allocations. Only zones that meet watermarks and are in a zone allowed
2221  * by the callers classzone_idx are added to balanced_pages. The total of
2222  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2223  * for the node to be considered balanced. Forcing all zones to be balanced
2224  * for high orders can cause excessive reclaim when there are imbalanced zones.
2225  * The choice of 25% is due to
2226  *   o a 16M DMA zone that is balanced will not balance a zone on any
2227  *     reasonable sized machine
2228  *   o On all other machines, the top zone must be at least a reasonable
2229  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2230  *     would need to be at least 256M for it to be balance a whole node.
2231  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2232  *     to balance a node on its own. These seemed like reasonable ratios.
2233  */
pgdat_balanced(pg_data_t * pgdat,unsigned long balanced_pages,int classzone_idx)2234 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2235 						int classzone_idx)
2236 {
2237 	unsigned long present_pages = 0;
2238 	int i;
2239 
2240 	for (i = 0; i <= classzone_idx; i++)
2241 		present_pages += pgdat->node_zones[i].present_pages;
2242 
2243 	return balanced_pages > (present_pages >> 2);
2244 }
2245 
2246 /* is kswapd sleeping prematurely? */
sleeping_prematurely(pg_data_t * pgdat,int order,long remaining,int classzone_idx)2247 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2248 					int classzone_idx)
2249 {
2250 	int i;
2251 	unsigned long balanced = 0;
2252 	bool all_zones_ok = true;
2253 
2254 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2255 	if (remaining)
2256 		return true;
2257 
2258 	/* Check the watermark levels */
2259 	for (i = 0; i < pgdat->nr_zones; i++) {
2260 		struct zone *zone = pgdat->node_zones + i;
2261 
2262 		if (!populated_zone(zone))
2263 			continue;
2264 
2265 		/*
2266 		 * balance_pgdat() skips over all_unreclaimable after
2267 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2268 		 * they must be considered balanced here as well if kswapd
2269 		 * is to sleep
2270 		 */
2271 		if (zone->all_unreclaimable) {
2272 			balanced += zone->present_pages;
2273 			continue;
2274 		}
2275 
2276 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2277 							classzone_idx, 0))
2278 			all_zones_ok = false;
2279 		else
2280 			balanced += zone->present_pages;
2281 	}
2282 
2283 	/*
2284 	 * For high-order requests, the balanced zones must contain at least
2285 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2286 	 * must be balanced
2287 	 */
2288 	if (order)
2289 		return pgdat_balanced(pgdat, balanced, classzone_idx);
2290 	else
2291 		return !all_zones_ok;
2292 }
2293 
2294 /*
2295  * For kswapd, balance_pgdat() will work across all this node's zones until
2296  * they are all at high_wmark_pages(zone).
2297  *
2298  * Returns the final order kswapd was reclaiming at
2299  *
2300  * There is special handling here for zones which are full of pinned pages.
2301  * This can happen if the pages are all mlocked, or if they are all used by
2302  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2303  * What we do is to detect the case where all pages in the zone have been
2304  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2305  * dead and from now on, only perform a short scan.  Basically we're polling
2306  * the zone for when the problem goes away.
2307  *
2308  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2309  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2310  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2311  * lower zones regardless of the number of free pages in the lower zones. This
2312  * interoperates with the page allocator fallback scheme to ensure that aging
2313  * of pages is balanced across the zones.
2314  */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)2315 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2316 							int *classzone_idx)
2317 {
2318 	int all_zones_ok;
2319 	unsigned long balanced;
2320 	int priority;
2321 	int i;
2322 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2323 	unsigned long total_scanned;
2324 	struct reclaim_state *reclaim_state = current->reclaim_state;
2325 	struct scan_control sc = {
2326 		.gfp_mask = GFP_KERNEL,
2327 		.may_unmap = 1,
2328 		.may_swap = 1,
2329 		/*
2330 		 * kswapd doesn't want to be bailed out while reclaim. because
2331 		 * we want to put equal scanning pressure on each zone.
2332 		 */
2333 		.nr_to_reclaim = ULONG_MAX,
2334 		.swappiness = vm_swappiness,
2335 		.order = order,
2336 		.mem_cgroup = NULL,
2337 	};
2338 loop_again:
2339 	total_scanned = 0;
2340 	sc.nr_reclaimed = 0;
2341 	sc.may_writepage = !laptop_mode;
2342 	count_vm_event(PAGEOUTRUN);
2343 
2344 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2345 		unsigned long lru_pages = 0;
2346 		int has_under_min_watermark_zone = 0;
2347 
2348 		/* The swap token gets in the way of swapout... */
2349 		if (!priority)
2350 			disable_swap_token();
2351 
2352 		all_zones_ok = 1;
2353 		balanced = 0;
2354 
2355 		/*
2356 		 * Scan in the highmem->dma direction for the highest
2357 		 * zone which needs scanning
2358 		 */
2359 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2360 			struct zone *zone = pgdat->node_zones + i;
2361 
2362 			if (!populated_zone(zone))
2363 				continue;
2364 
2365 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2366 				continue;
2367 
2368 			/*
2369 			 * Do some background aging of the anon list, to give
2370 			 * pages a chance to be referenced before reclaiming.
2371 			 */
2372 			if (inactive_anon_is_low(zone, &sc))
2373 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2374 							&sc, priority, 0);
2375 
2376 			if (!zone_watermark_ok_safe(zone, order,
2377 					high_wmark_pages(zone), 0, 0)) {
2378 				end_zone = i;
2379 				*classzone_idx = i;
2380 				break;
2381 			}
2382 		}
2383 		if (i < 0)
2384 			goto out;
2385 
2386 		for (i = 0; i <= end_zone; i++) {
2387 			struct zone *zone = pgdat->node_zones + i;
2388 
2389 			lru_pages += zone_reclaimable_pages(zone);
2390 		}
2391 
2392 		/*
2393 		 * Now scan the zone in the dma->highmem direction, stopping
2394 		 * at the last zone which needs scanning.
2395 		 *
2396 		 * We do this because the page allocator works in the opposite
2397 		 * direction.  This prevents the page allocator from allocating
2398 		 * pages behind kswapd's direction of progress, which would
2399 		 * cause too much scanning of the lower zones.
2400 		 */
2401 		for (i = 0; i <= end_zone; i++) {
2402 			struct zone *zone = pgdat->node_zones + i;
2403 			int nr_slab;
2404 			unsigned long balance_gap;
2405 
2406 			if (!populated_zone(zone))
2407 				continue;
2408 
2409 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2410 				continue;
2411 
2412 			sc.nr_scanned = 0;
2413 
2414 			/*
2415 			 * Call soft limit reclaim before calling shrink_zone.
2416 			 * For now we ignore the return value
2417 			 */
2418 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2419 
2420 			/*
2421 			 * We put equal pressure on every zone, unless
2422 			 * one zone has way too many pages free
2423 			 * already. The "too many pages" is defined
2424 			 * as the high wmark plus a "gap" where the
2425 			 * gap is either the low watermark or 1%
2426 			 * of the zone, whichever is smaller.
2427 			 */
2428 			balance_gap = min(low_wmark_pages(zone),
2429 				(zone->present_pages +
2430 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2431 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2432 			if (!zone_watermark_ok_safe(zone, order,
2433 					high_wmark_pages(zone) + balance_gap,
2434 					end_zone, 0))
2435 				shrink_zone(priority, zone, &sc);
2436 			reclaim_state->reclaimed_slab = 0;
2437 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2438 						lru_pages);
2439 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2440 			total_scanned += sc.nr_scanned;
2441 
2442 			if (zone->all_unreclaimable)
2443 				continue;
2444 			if (nr_slab == 0 &&
2445 			    !zone_reclaimable(zone))
2446 				zone->all_unreclaimable = 1;
2447 			/*
2448 			 * If we've done a decent amount of scanning and
2449 			 * the reclaim ratio is low, start doing writepage
2450 			 * even in laptop mode
2451 			 */
2452 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2453 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2454 				sc.may_writepage = 1;
2455 
2456 			if (!zone_watermark_ok_safe(zone, order,
2457 					high_wmark_pages(zone), end_zone, 0)) {
2458 				all_zones_ok = 0;
2459 				/*
2460 				 * We are still under min water mark.  This
2461 				 * means that we have a GFP_ATOMIC allocation
2462 				 * failure risk. Hurry up!
2463 				 */
2464 				if (!zone_watermark_ok_safe(zone, order,
2465 					    min_wmark_pages(zone), end_zone, 0))
2466 					has_under_min_watermark_zone = 1;
2467 			} else {
2468 				/*
2469 				 * If a zone reaches its high watermark,
2470 				 * consider it to be no longer congested. It's
2471 				 * possible there are dirty pages backed by
2472 				 * congested BDIs but as pressure is relieved,
2473 				 * spectulatively avoid congestion waits
2474 				 */
2475 				zone_clear_flag(zone, ZONE_CONGESTED);
2476 				if (i <= *classzone_idx)
2477 					balanced += zone->present_pages;
2478 			}
2479 
2480 		}
2481 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2482 			break;		/* kswapd: all done */
2483 		/*
2484 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2485 		 * another pass across the zones.
2486 		 */
2487 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2488 			if (has_under_min_watermark_zone)
2489 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2490 			else
2491 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2492 		}
2493 
2494 		/*
2495 		 * We do this so kswapd doesn't build up large priorities for
2496 		 * example when it is freeing in parallel with allocators. It
2497 		 * matches the direct reclaim path behaviour in terms of impact
2498 		 * on zone->*_priority.
2499 		 */
2500 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2501 			break;
2502 	}
2503 out:
2504 
2505 	/*
2506 	 * order-0: All zones must meet high watermark for a balanced node
2507 	 * high-order: Balanced zones must make up at least 25% of the node
2508 	 *             for the node to be balanced
2509 	 */
2510 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2511 		cond_resched();
2512 
2513 		try_to_freeze();
2514 
2515 		/*
2516 		 * Fragmentation may mean that the system cannot be
2517 		 * rebalanced for high-order allocations in all zones.
2518 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2519 		 * it means the zones have been fully scanned and are still
2520 		 * not balanced. For high-order allocations, there is
2521 		 * little point trying all over again as kswapd may
2522 		 * infinite loop.
2523 		 *
2524 		 * Instead, recheck all watermarks at order-0 as they
2525 		 * are the most important. If watermarks are ok, kswapd will go
2526 		 * back to sleep. High-order users can still perform direct
2527 		 * reclaim if they wish.
2528 		 */
2529 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2530 			order = sc.order = 0;
2531 
2532 		goto loop_again;
2533 	}
2534 
2535 	/*
2536 	 * If kswapd was reclaiming at a higher order, it has the option of
2537 	 * sleeping without all zones being balanced. Before it does, it must
2538 	 * ensure that the watermarks for order-0 on *all* zones are met and
2539 	 * that the congestion flags are cleared. The congestion flag must
2540 	 * be cleared as kswapd is the only mechanism that clears the flag
2541 	 * and it is potentially going to sleep here.
2542 	 */
2543 	if (order) {
2544 		for (i = 0; i <= end_zone; i++) {
2545 			struct zone *zone = pgdat->node_zones + i;
2546 
2547 			if (!populated_zone(zone))
2548 				continue;
2549 
2550 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2551 				continue;
2552 
2553 			/* Confirm the zone is balanced for order-0 */
2554 			if (!zone_watermark_ok(zone, 0,
2555 					high_wmark_pages(zone), 0, 0)) {
2556 				order = sc.order = 0;
2557 				goto loop_again;
2558 			}
2559 
2560 			/* If balanced, clear the congested flag */
2561 			zone_clear_flag(zone, ZONE_CONGESTED);
2562 		}
2563 	}
2564 
2565 	/*
2566 	 * Return the order we were reclaiming at so sleeping_prematurely()
2567 	 * makes a decision on the order we were last reclaiming at. However,
2568 	 * if another caller entered the allocator slow path while kswapd
2569 	 * was awake, order will remain at the higher level
2570 	 */
2571 	*classzone_idx = end_zone;
2572 	return order;
2573 }
2574 
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)2575 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2576 {
2577 	long remaining = 0;
2578 	DEFINE_WAIT(wait);
2579 
2580 	if (freezing(current) || kthread_should_stop())
2581 		return;
2582 
2583 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2584 
2585 	/* Try to sleep for a short interval */
2586 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2587 		remaining = schedule_timeout(HZ/10);
2588 		finish_wait(&pgdat->kswapd_wait, &wait);
2589 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2590 	}
2591 
2592 	/*
2593 	 * After a short sleep, check if it was a premature sleep. If not, then
2594 	 * go fully to sleep until explicitly woken up.
2595 	 */
2596 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2597 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2598 
2599 		/*
2600 		 * vmstat counters are not perfectly accurate and the estimated
2601 		 * value for counters such as NR_FREE_PAGES can deviate from the
2602 		 * true value by nr_online_cpus * threshold. To avoid the zone
2603 		 * watermarks being breached while under pressure, we reduce the
2604 		 * per-cpu vmstat threshold while kswapd is awake and restore
2605 		 * them before going back to sleep.
2606 		 */
2607 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2608 		schedule();
2609 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2610 	} else {
2611 		if (remaining)
2612 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2613 		else
2614 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2615 	}
2616 	finish_wait(&pgdat->kswapd_wait, &wait);
2617 }
2618 
2619 /*
2620  * The background pageout daemon, started as a kernel thread
2621  * from the init process.
2622  *
2623  * This basically trickles out pages so that we have _some_
2624  * free memory available even if there is no other activity
2625  * that frees anything up. This is needed for things like routing
2626  * etc, where we otherwise might have all activity going on in
2627  * asynchronous contexts that cannot page things out.
2628  *
2629  * If there are applications that are active memory-allocators
2630  * (most normal use), this basically shouldn't matter.
2631  */
kswapd(void * p)2632 static int kswapd(void *p)
2633 {
2634 	unsigned long order;
2635 	int classzone_idx;
2636 	pg_data_t *pgdat = (pg_data_t*)p;
2637 	struct task_struct *tsk = current;
2638 
2639 	struct reclaim_state reclaim_state = {
2640 		.reclaimed_slab = 0,
2641 	};
2642 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2643 
2644 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2645 
2646 	if (!cpumask_empty(cpumask))
2647 		set_cpus_allowed_ptr(tsk, cpumask);
2648 	current->reclaim_state = &reclaim_state;
2649 
2650 	/*
2651 	 * Tell the memory management that we're a "memory allocator",
2652 	 * and that if we need more memory we should get access to it
2653 	 * regardless (see "__alloc_pages()"). "kswapd" should
2654 	 * never get caught in the normal page freeing logic.
2655 	 *
2656 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2657 	 * you need a small amount of memory in order to be able to
2658 	 * page out something else, and this flag essentially protects
2659 	 * us from recursively trying to free more memory as we're
2660 	 * trying to free the first piece of memory in the first place).
2661 	 */
2662 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2663 	set_freezable();
2664 
2665 	order = 0;
2666 	classzone_idx = MAX_NR_ZONES - 1;
2667 	for ( ; ; ) {
2668 		unsigned long new_order;
2669 		int new_classzone_idx;
2670 		int ret;
2671 
2672 		new_order = pgdat->kswapd_max_order;
2673 		new_classzone_idx = pgdat->classzone_idx;
2674 		pgdat->kswapd_max_order = 0;
2675 		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2676 		if (order < new_order || classzone_idx > new_classzone_idx) {
2677 			/*
2678 			 * Don't sleep if someone wants a larger 'order'
2679 			 * allocation or has tigher zone constraints
2680 			 */
2681 			order = new_order;
2682 			classzone_idx = new_classzone_idx;
2683 		} else {
2684 			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2685 			order = pgdat->kswapd_max_order;
2686 			classzone_idx = pgdat->classzone_idx;
2687 			pgdat->kswapd_max_order = 0;
2688 			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2689 		}
2690 
2691 		ret = try_to_freeze();
2692 		if (kthread_should_stop())
2693 			break;
2694 
2695 		/*
2696 		 * We can speed up thawing tasks if we don't call balance_pgdat
2697 		 * after returning from the refrigerator
2698 		 */
2699 		if (!ret) {
2700 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2701 			order = balance_pgdat(pgdat, order, &classzone_idx);
2702 		}
2703 	}
2704 	return 0;
2705 }
2706 
2707 /*
2708  * A zone is low on free memory, so wake its kswapd task to service it.
2709  */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)2710 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2711 {
2712 	pg_data_t *pgdat;
2713 
2714 	if (!populated_zone(zone))
2715 		return;
2716 
2717 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2718 		return;
2719 	pgdat = zone->zone_pgdat;
2720 	if (pgdat->kswapd_max_order < order) {
2721 		pgdat->kswapd_max_order = order;
2722 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2723 	}
2724 	if (!waitqueue_active(&pgdat->kswapd_wait))
2725 		return;
2726 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2727 		return;
2728 
2729 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2730 	wake_up_interruptible(&pgdat->kswapd_wait);
2731 }
2732 
2733 /*
2734  * The reclaimable count would be mostly accurate.
2735  * The less reclaimable pages may be
2736  * - mlocked pages, which will be moved to unevictable list when encountered
2737  * - mapped pages, which may require several travels to be reclaimed
2738  * - dirty pages, which is not "instantly" reclaimable
2739  */
global_reclaimable_pages(void)2740 unsigned long global_reclaimable_pages(void)
2741 {
2742 	int nr;
2743 
2744 	nr = global_page_state(NR_ACTIVE_FILE) +
2745 	     global_page_state(NR_INACTIVE_FILE);
2746 
2747 	if (nr_swap_pages > 0)
2748 		nr += global_page_state(NR_ACTIVE_ANON) +
2749 		      global_page_state(NR_INACTIVE_ANON);
2750 
2751 	return nr;
2752 }
2753 
zone_reclaimable_pages(struct zone * zone)2754 unsigned long zone_reclaimable_pages(struct zone *zone)
2755 {
2756 	int nr;
2757 
2758 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2759 	     zone_page_state(zone, NR_INACTIVE_FILE);
2760 
2761 	if (nr_swap_pages > 0)
2762 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2763 		      zone_page_state(zone, NR_INACTIVE_ANON);
2764 
2765 	return nr;
2766 }
2767 
2768 #ifdef CONFIG_HIBERNATION
2769 /*
2770  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2771  * freed pages.
2772  *
2773  * Rather than trying to age LRUs the aim is to preserve the overall
2774  * LRU order by reclaiming preferentially
2775  * inactive > active > active referenced > active mapped
2776  */
shrink_all_memory(unsigned long nr_to_reclaim)2777 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2778 {
2779 	struct reclaim_state reclaim_state;
2780 	struct scan_control sc = {
2781 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2782 		.may_swap = 1,
2783 		.may_unmap = 1,
2784 		.may_writepage = 1,
2785 		.nr_to_reclaim = nr_to_reclaim,
2786 		.hibernation_mode = 1,
2787 		.swappiness = vm_swappiness,
2788 		.order = 0,
2789 	};
2790 	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2791 	struct task_struct *p = current;
2792 	unsigned long nr_reclaimed;
2793 
2794 	p->flags |= PF_MEMALLOC;
2795 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2796 	reclaim_state.reclaimed_slab = 0;
2797 	p->reclaim_state = &reclaim_state;
2798 
2799 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2800 
2801 	p->reclaim_state = NULL;
2802 	lockdep_clear_current_reclaim_state();
2803 	p->flags &= ~PF_MEMALLOC;
2804 
2805 	return nr_reclaimed;
2806 }
2807 #endif /* CONFIG_HIBERNATION */
2808 
2809 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2810    not required for correctness.  So if the last cpu in a node goes
2811    away, we get changed to run anywhere: as the first one comes back,
2812    restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2813 static int __devinit cpu_callback(struct notifier_block *nfb,
2814 				  unsigned long action, void *hcpu)
2815 {
2816 	int nid;
2817 
2818 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2819 		for_each_node_state(nid, N_HIGH_MEMORY) {
2820 			pg_data_t *pgdat = NODE_DATA(nid);
2821 			const struct cpumask *mask;
2822 
2823 			mask = cpumask_of_node(pgdat->node_id);
2824 
2825 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2826 				/* One of our CPUs online: restore mask */
2827 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2828 		}
2829 	}
2830 	return NOTIFY_OK;
2831 }
2832 
2833 /*
2834  * This kswapd start function will be called by init and node-hot-add.
2835  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2836  */
kswapd_run(int nid)2837 int kswapd_run(int nid)
2838 {
2839 	pg_data_t *pgdat = NODE_DATA(nid);
2840 	int ret = 0;
2841 
2842 	if (pgdat->kswapd)
2843 		return 0;
2844 
2845 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2846 	if (IS_ERR(pgdat->kswapd)) {
2847 		/* failure at boot is fatal */
2848 		BUG_ON(system_state == SYSTEM_BOOTING);
2849 		printk("Failed to start kswapd on node %d\n",nid);
2850 		ret = -1;
2851 	}
2852 	return ret;
2853 }
2854 
2855 /*
2856  * Called by memory hotplug when all memory in a node is offlined.
2857  */
kswapd_stop(int nid)2858 void kswapd_stop(int nid)
2859 {
2860 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2861 
2862 	if (kswapd)
2863 		kthread_stop(kswapd);
2864 }
2865 
kswapd_init(void)2866 static int __init kswapd_init(void)
2867 {
2868 	int nid;
2869 
2870 	swap_setup();
2871 	for_each_node_state(nid, N_HIGH_MEMORY)
2872  		kswapd_run(nid);
2873 	hotcpu_notifier(cpu_callback, 0);
2874 	return 0;
2875 }
2876 
2877 module_init(kswapd_init)
2878 
2879 #ifdef CONFIG_NUMA
2880 /*
2881  * Zone reclaim mode
2882  *
2883  * If non-zero call zone_reclaim when the number of free pages falls below
2884  * the watermarks.
2885  */
2886 int zone_reclaim_mode __read_mostly;
2887 
2888 #define RECLAIM_OFF 0
2889 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2890 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2891 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2892 
2893 /*
2894  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2895  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2896  * a zone.
2897  */
2898 #define ZONE_RECLAIM_PRIORITY 4
2899 
2900 /*
2901  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2902  * occur.
2903  */
2904 int sysctl_min_unmapped_ratio = 1;
2905 
2906 /*
2907  * If the number of slab pages in a zone grows beyond this percentage then
2908  * slab reclaim needs to occur.
2909  */
2910 int sysctl_min_slab_ratio = 5;
2911 
zone_unmapped_file_pages(struct zone * zone)2912 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2913 {
2914 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2915 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2916 		zone_page_state(zone, NR_ACTIVE_FILE);
2917 
2918 	/*
2919 	 * It's possible for there to be more file mapped pages than
2920 	 * accounted for by the pages on the file LRU lists because
2921 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2922 	 */
2923 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2924 }
2925 
2926 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)2927 static long zone_pagecache_reclaimable(struct zone *zone)
2928 {
2929 	long nr_pagecache_reclaimable;
2930 	long delta = 0;
2931 
2932 	/*
2933 	 * If RECLAIM_SWAP is set, then all file pages are considered
2934 	 * potentially reclaimable. Otherwise, we have to worry about
2935 	 * pages like swapcache and zone_unmapped_file_pages() provides
2936 	 * a better estimate
2937 	 */
2938 	if (zone_reclaim_mode & RECLAIM_SWAP)
2939 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2940 	else
2941 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2942 
2943 	/* If we can't clean pages, remove dirty pages from consideration */
2944 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2945 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2946 
2947 	/* Watch for any possible underflows due to delta */
2948 	if (unlikely(delta > nr_pagecache_reclaimable))
2949 		delta = nr_pagecache_reclaimable;
2950 
2951 	return nr_pagecache_reclaimable - delta;
2952 }
2953 
2954 /*
2955  * Try to free up some pages from this zone through reclaim.
2956  */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)2957 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2958 {
2959 	/* Minimum pages needed in order to stay on node */
2960 	const unsigned long nr_pages = 1 << order;
2961 	struct task_struct *p = current;
2962 	struct reclaim_state reclaim_state;
2963 	int priority;
2964 	struct scan_control sc = {
2965 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2966 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2967 		.may_swap = 1,
2968 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2969 				       SWAP_CLUSTER_MAX),
2970 		.gfp_mask = gfp_mask,
2971 		.swappiness = vm_swappiness,
2972 		.order = order,
2973 	};
2974 	unsigned long nr_slab_pages0, nr_slab_pages1;
2975 
2976 	cond_resched();
2977 	/*
2978 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2979 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2980 	 * and RECLAIM_SWAP.
2981 	 */
2982 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2983 	lockdep_set_current_reclaim_state(gfp_mask);
2984 	reclaim_state.reclaimed_slab = 0;
2985 	p->reclaim_state = &reclaim_state;
2986 
2987 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2988 		/*
2989 		 * Free memory by calling shrink zone with increasing
2990 		 * priorities until we have enough memory freed.
2991 		 */
2992 		priority = ZONE_RECLAIM_PRIORITY;
2993 		do {
2994 			shrink_zone(priority, zone, &sc);
2995 			priority--;
2996 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2997 	}
2998 
2999 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3000 	if (nr_slab_pages0 > zone->min_slab_pages) {
3001 		/*
3002 		 * shrink_slab() does not currently allow us to determine how
3003 		 * many pages were freed in this zone. So we take the current
3004 		 * number of slab pages and shake the slab until it is reduced
3005 		 * by the same nr_pages that we used for reclaiming unmapped
3006 		 * pages.
3007 		 *
3008 		 * Note that shrink_slab will free memory on all zones and may
3009 		 * take a long time.
3010 		 */
3011 		for (;;) {
3012 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3013 
3014 			/* No reclaimable slab or very low memory pressure */
3015 			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3016 				break;
3017 
3018 			/* Freed enough memory */
3019 			nr_slab_pages1 = zone_page_state(zone,
3020 							NR_SLAB_RECLAIMABLE);
3021 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3022 				break;
3023 		}
3024 
3025 		/*
3026 		 * Update nr_reclaimed by the number of slab pages we
3027 		 * reclaimed from this zone.
3028 		 */
3029 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3030 		if (nr_slab_pages1 < nr_slab_pages0)
3031 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3032 	}
3033 
3034 	p->reclaim_state = NULL;
3035 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3036 	lockdep_clear_current_reclaim_state();
3037 	return sc.nr_reclaimed >= nr_pages;
3038 }
3039 
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3040 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3041 {
3042 	int node_id;
3043 	int ret;
3044 
3045 	/*
3046 	 * Zone reclaim reclaims unmapped file backed pages and
3047 	 * slab pages if we are over the defined limits.
3048 	 *
3049 	 * A small portion of unmapped file backed pages is needed for
3050 	 * file I/O otherwise pages read by file I/O will be immediately
3051 	 * thrown out if the zone is overallocated. So we do not reclaim
3052 	 * if less than a specified percentage of the zone is used by
3053 	 * unmapped file backed pages.
3054 	 */
3055 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3056 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3057 		return ZONE_RECLAIM_FULL;
3058 
3059 	if (zone->all_unreclaimable)
3060 		return ZONE_RECLAIM_FULL;
3061 
3062 	/*
3063 	 * Do not scan if the allocation should not be delayed.
3064 	 */
3065 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3066 		return ZONE_RECLAIM_NOSCAN;
3067 
3068 	/*
3069 	 * Only run zone reclaim on the local zone or on zones that do not
3070 	 * have associated processors. This will favor the local processor
3071 	 * over remote processors and spread off node memory allocations
3072 	 * as wide as possible.
3073 	 */
3074 	node_id = zone_to_nid(zone);
3075 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3076 		return ZONE_RECLAIM_NOSCAN;
3077 
3078 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3079 		return ZONE_RECLAIM_NOSCAN;
3080 
3081 	ret = __zone_reclaim(zone, gfp_mask, order);
3082 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3083 
3084 	if (!ret)
3085 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3086 
3087 	return ret;
3088 }
3089 #endif
3090 
3091 /*
3092  * page_evictable - test whether a page is evictable
3093  * @page: the page to test
3094  * @vma: the VMA in which the page is or will be mapped, may be NULL
3095  *
3096  * Test whether page is evictable--i.e., should be placed on active/inactive
3097  * lists vs unevictable list.  The vma argument is !NULL when called from the
3098  * fault path to determine how to instantate a new page.
3099  *
3100  * Reasons page might not be evictable:
3101  * (1) page's mapping marked unevictable
3102  * (2) page is part of an mlocked VMA
3103  *
3104  */
page_evictable(struct page * page,struct vm_area_struct * vma)3105 int page_evictable(struct page *page, struct vm_area_struct *vma)
3106 {
3107 
3108 	if (mapping_unevictable(page_mapping(page)))
3109 		return 0;
3110 
3111 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3112 		return 0;
3113 
3114 	return 1;
3115 }
3116 
3117 /**
3118  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3119  * @page: page to check evictability and move to appropriate lru list
3120  * @zone: zone page is in
3121  *
3122  * Checks a page for evictability and moves the page to the appropriate
3123  * zone lru list.
3124  *
3125  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3126  * have PageUnevictable set.
3127  */
check_move_unevictable_page(struct page * page,struct zone * zone)3128 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3129 {
3130 	VM_BUG_ON(PageActive(page));
3131 
3132 retry:
3133 	ClearPageUnevictable(page);
3134 	if (page_evictable(page, NULL)) {
3135 		enum lru_list l = page_lru_base_type(page);
3136 
3137 		__dec_zone_state(zone, NR_UNEVICTABLE);
3138 		list_move(&page->lru, &zone->lru[l].list);
3139 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3140 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3141 		__count_vm_event(UNEVICTABLE_PGRESCUED);
3142 	} else {
3143 		/*
3144 		 * rotate unevictable list
3145 		 */
3146 		SetPageUnevictable(page);
3147 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3148 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3149 		if (page_evictable(page, NULL))
3150 			goto retry;
3151 	}
3152 }
3153 
3154 /**
3155  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3156  * @mapping: struct address_space to scan for evictable pages
3157  *
3158  * Scan all pages in mapping.  Check unevictable pages for
3159  * evictability and move them to the appropriate zone lru list.
3160  */
scan_mapping_unevictable_pages(struct address_space * mapping)3161 void scan_mapping_unevictable_pages(struct address_space *mapping)
3162 {
3163 	pgoff_t next = 0;
3164 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3165 			 PAGE_CACHE_SHIFT;
3166 	struct zone *zone;
3167 	struct pagevec pvec;
3168 
3169 	if (mapping->nrpages == 0)
3170 		return;
3171 
3172 	pagevec_init(&pvec, 0);
3173 	while (next < end &&
3174 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3175 		int i;
3176 		int pg_scanned = 0;
3177 
3178 		zone = NULL;
3179 
3180 		for (i = 0; i < pagevec_count(&pvec); i++) {
3181 			struct page *page = pvec.pages[i];
3182 			pgoff_t page_index = page->index;
3183 			struct zone *pagezone = page_zone(page);
3184 
3185 			pg_scanned++;
3186 			if (page_index > next)
3187 				next = page_index;
3188 			next++;
3189 
3190 			if (pagezone != zone) {
3191 				if (zone)
3192 					spin_unlock_irq(&zone->lru_lock);
3193 				zone = pagezone;
3194 				spin_lock_irq(&zone->lru_lock);
3195 			}
3196 
3197 			if (PageLRU(page) && PageUnevictable(page))
3198 				check_move_unevictable_page(page, zone);
3199 		}
3200 		if (zone)
3201 			spin_unlock_irq(&zone->lru_lock);
3202 		pagevec_release(&pvec);
3203 
3204 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3205 	}
3206 
3207 }
3208 
3209 /**
3210  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3211  * @zone - zone of which to scan the unevictable list
3212  *
3213  * Scan @zone's unevictable LRU lists to check for pages that have become
3214  * evictable.  Move those that have to @zone's inactive list where they
3215  * become candidates for reclaim, unless shrink_inactive_zone() decides
3216  * to reactivate them.  Pages that are still unevictable are rotated
3217  * back onto @zone's unevictable list.
3218  */
3219 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
scan_zone_unevictable_pages(struct zone * zone)3220 static void scan_zone_unevictable_pages(struct zone *zone)
3221 {
3222 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3223 	unsigned long scan;
3224 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3225 
3226 	while (nr_to_scan > 0) {
3227 		unsigned long batch_size = min(nr_to_scan,
3228 						SCAN_UNEVICTABLE_BATCH_SIZE);
3229 
3230 		spin_lock_irq(&zone->lru_lock);
3231 		for (scan = 0;  scan < batch_size; scan++) {
3232 			struct page *page = lru_to_page(l_unevictable);
3233 
3234 			if (!trylock_page(page))
3235 				continue;
3236 
3237 			prefetchw_prev_lru_page(page, l_unevictable, flags);
3238 
3239 			if (likely(PageLRU(page) && PageUnevictable(page)))
3240 				check_move_unevictable_page(page, zone);
3241 
3242 			unlock_page(page);
3243 		}
3244 		spin_unlock_irq(&zone->lru_lock);
3245 
3246 		nr_to_scan -= batch_size;
3247 	}
3248 }
3249 
3250 
3251 /**
3252  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3253  *
3254  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3255  * pages that have become evictable.  Move those back to the zones'
3256  * inactive list where they become candidates for reclaim.
3257  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3258  * and we add swap to the system.  As such, it runs in the context of a task
3259  * that has possibly/probably made some previously unevictable pages
3260  * evictable.
3261  */
scan_all_zones_unevictable_pages(void)3262 static void scan_all_zones_unevictable_pages(void)
3263 {
3264 	struct zone *zone;
3265 
3266 	for_each_zone(zone) {
3267 		scan_zone_unevictable_pages(zone);
3268 	}
3269 }
3270 
3271 /*
3272  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3273  * all nodes' unevictable lists for evictable pages
3274  */
3275 unsigned long scan_unevictable_pages;
3276 
scan_unevictable_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3277 int scan_unevictable_handler(struct ctl_table *table, int write,
3278 			   void __user *buffer,
3279 			   size_t *length, loff_t *ppos)
3280 {
3281 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3282 
3283 	if (write && *(unsigned long *)table->data)
3284 		scan_all_zones_unevictable_pages();
3285 
3286 	scan_unevictable_pages = 0;
3287 	return 0;
3288 }
3289 
3290 #ifdef CONFIG_NUMA
3291 /*
3292  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3293  * a specified node's per zone unevictable lists for evictable pages.
3294  */
3295 
read_scan_unevictable_node(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)3296 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3297 					  struct sysdev_attribute *attr,
3298 					  char *buf)
3299 {
3300 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3301 }
3302 
write_scan_unevictable_node(struct sys_device * dev,struct sysdev_attribute * attr,const char * buf,size_t count)3303 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3304 					   struct sysdev_attribute *attr,
3305 					const char *buf, size_t count)
3306 {
3307 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3308 	struct zone *zone;
3309 	unsigned long res;
3310 	unsigned long req = strict_strtoul(buf, 10, &res);
3311 
3312 	if (!req)
3313 		return 1;	/* zero is no-op */
3314 
3315 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3316 		if (!populated_zone(zone))
3317 			continue;
3318 		scan_zone_unevictable_pages(zone);
3319 	}
3320 	return 1;
3321 }
3322 
3323 
3324 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3325 			read_scan_unevictable_node,
3326 			write_scan_unevictable_node);
3327 
scan_unevictable_register_node(struct node * node)3328 int scan_unevictable_register_node(struct node *node)
3329 {
3330 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3331 }
3332 
scan_unevictable_unregister_node(struct node * node)3333 void scan_unevictable_unregister_node(struct node *node)
3334 {
3335 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3336 }
3337 #endif
3338