1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/mempolicy.h>
44 #include <linux/mutex_api.h>
45 #include <linux/profile.h>
46 #include <linux/psi.h>
47 #include <linux/ratelimit.h>
48 #include <linux/task_work.h>
49
50 #include <asm/switch_to.h>
51
52 #include <linux/sched/cond_resched.h>
53
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57
58 /*
59 * Targeted preemption latency for CPU-bound tasks:
60 *
61 * NOTE: this latency value is not the same as the concept of
62 * 'timeslice length' - timeslices in CFS are of variable length
63 * and have no persistent notion like in traditional, time-slice
64 * based scheduling concepts.
65 *
66 * (to see the precise effective timeslice length of your workload,
67 * run vmstat and monitor the context-switches (cs) field)
68 *
69 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
70 */
71 unsigned int sysctl_sched_latency = 6000000ULL;
72 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
73
74 /*
75 * The initial- and re-scaling of tunables is configurable
76 *
77 * Options are:
78 *
79 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
80 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
81 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
82 *
83 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
84 */
85 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
86
87 /*
88 * Minimal preemption granularity for CPU-bound tasks:
89 *
90 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
91 */
92 unsigned int sysctl_sched_min_granularity = 750000ULL;
93 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
94
95 /*
96 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
97 * Applies only when SCHED_IDLE tasks compete with normal tasks.
98 *
99 * (default: 0.75 msec)
100 */
101 unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
102
103 /*
104 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
105 */
106 static unsigned int sched_nr_latency = 8;
107
108 /*
109 * After fork, child runs first. If set to 0 (default) then
110 * parent will (try to) run first.
111 */
112 unsigned int sysctl_sched_child_runs_first __read_mostly;
113
114 /*
115 * SCHED_OTHER wake-up granularity.
116 *
117 * This option delays the preemption effects of decoupled workloads
118 * and reduces their over-scheduling. Synchronous workloads will still
119 * have immediate wakeup/sleep latencies.
120 *
121 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
122 */
123 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
124 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
125
126 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
127
128 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)129 static int __init setup_sched_thermal_decay_shift(char *str)
130 {
131 int _shift = 0;
132
133 if (kstrtoint(str, 0, &_shift))
134 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
135
136 sched_thermal_decay_shift = clamp(_shift, 0, 10);
137 return 1;
138 }
139 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
140
141 #ifdef CONFIG_SMP
142 /*
143 * For asym packing, by default the lower numbered CPU has higher priority.
144 */
arch_asym_cpu_priority(int cpu)145 int __weak arch_asym_cpu_priority(int cpu)
146 {
147 return -cpu;
148 }
149
150 /*
151 * The margin used when comparing utilization with CPU capacity.
152 *
153 * (default: ~20%)
154 */
155 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
156
157 /*
158 * The margin used when comparing CPU capacities.
159 * is 'cap1' noticeably greater than 'cap2'
160 *
161 * (default: ~5%)
162 */
163 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
164 #endif
165
166 #ifdef CONFIG_CFS_BANDWIDTH
167 /*
168 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
169 * each time a cfs_rq requests quota.
170 *
171 * Note: in the case that the slice exceeds the runtime remaining (either due
172 * to consumption or the quota being specified to be smaller than the slice)
173 * we will always only issue the remaining available time.
174 *
175 * (default: 5 msec, units: microseconds)
176 */
177 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
178 #endif
179
180 #ifdef CONFIG_SYSCTL
181 static struct ctl_table sched_fair_sysctls[] = {
182 {
183 .procname = "sched_child_runs_first",
184 .data = &sysctl_sched_child_runs_first,
185 .maxlen = sizeof(unsigned int),
186 .mode = 0644,
187 .proc_handler = proc_dointvec,
188 },
189 #ifdef CONFIG_CFS_BANDWIDTH
190 {
191 .procname = "sched_cfs_bandwidth_slice_us",
192 .data = &sysctl_sched_cfs_bandwidth_slice,
193 .maxlen = sizeof(unsigned int),
194 .mode = 0644,
195 .proc_handler = proc_dointvec_minmax,
196 .extra1 = SYSCTL_ONE,
197 },
198 #endif
199 {}
200 };
201
sched_fair_sysctl_init(void)202 static int __init sched_fair_sysctl_init(void)
203 {
204 register_sysctl_init("kernel", sched_fair_sysctls);
205 return 0;
206 }
207 late_initcall(sched_fair_sysctl_init);
208 #endif
209
update_load_add(struct load_weight * lw,unsigned long inc)210 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
211 {
212 lw->weight += inc;
213 lw->inv_weight = 0;
214 }
215
update_load_sub(struct load_weight * lw,unsigned long dec)216 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
217 {
218 lw->weight -= dec;
219 lw->inv_weight = 0;
220 }
221
update_load_set(struct load_weight * lw,unsigned long w)222 static inline void update_load_set(struct load_weight *lw, unsigned long w)
223 {
224 lw->weight = w;
225 lw->inv_weight = 0;
226 }
227
228 /*
229 * Increase the granularity value when there are more CPUs,
230 * because with more CPUs the 'effective latency' as visible
231 * to users decreases. But the relationship is not linear,
232 * so pick a second-best guess by going with the log2 of the
233 * number of CPUs.
234 *
235 * This idea comes from the SD scheduler of Con Kolivas:
236 */
get_update_sysctl_factor(void)237 static unsigned int get_update_sysctl_factor(void)
238 {
239 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
240 unsigned int factor;
241
242 switch (sysctl_sched_tunable_scaling) {
243 case SCHED_TUNABLESCALING_NONE:
244 factor = 1;
245 break;
246 case SCHED_TUNABLESCALING_LINEAR:
247 factor = cpus;
248 break;
249 case SCHED_TUNABLESCALING_LOG:
250 default:
251 factor = 1 + ilog2(cpus);
252 break;
253 }
254
255 return factor;
256 }
257
update_sysctl(void)258 static void update_sysctl(void)
259 {
260 unsigned int factor = get_update_sysctl_factor();
261
262 #define SET_SYSCTL(name) \
263 (sysctl_##name = (factor) * normalized_sysctl_##name)
264 SET_SYSCTL(sched_min_granularity);
265 SET_SYSCTL(sched_latency);
266 SET_SYSCTL(sched_wakeup_granularity);
267 #undef SET_SYSCTL
268 }
269
sched_init_granularity(void)270 void __init sched_init_granularity(void)
271 {
272 update_sysctl();
273 }
274
275 #define WMULT_CONST (~0U)
276 #define WMULT_SHIFT 32
277
__update_inv_weight(struct load_weight * lw)278 static void __update_inv_weight(struct load_weight *lw)
279 {
280 unsigned long w;
281
282 if (likely(lw->inv_weight))
283 return;
284
285 w = scale_load_down(lw->weight);
286
287 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
288 lw->inv_weight = 1;
289 else if (unlikely(!w))
290 lw->inv_weight = WMULT_CONST;
291 else
292 lw->inv_weight = WMULT_CONST / w;
293 }
294
295 /*
296 * delta_exec * weight / lw.weight
297 * OR
298 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
299 *
300 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
301 * we're guaranteed shift stays positive because inv_weight is guaranteed to
302 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
303 *
304 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
305 * weight/lw.weight <= 1, and therefore our shift will also be positive.
306 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)307 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
308 {
309 u64 fact = scale_load_down(weight);
310 u32 fact_hi = (u32)(fact >> 32);
311 int shift = WMULT_SHIFT;
312 int fs;
313
314 __update_inv_weight(lw);
315
316 if (unlikely(fact_hi)) {
317 fs = fls(fact_hi);
318 shift -= fs;
319 fact >>= fs;
320 }
321
322 fact = mul_u32_u32(fact, lw->inv_weight);
323
324 fact_hi = (u32)(fact >> 32);
325 if (fact_hi) {
326 fs = fls(fact_hi);
327 shift -= fs;
328 fact >>= fs;
329 }
330
331 return mul_u64_u32_shr(delta_exec, fact, shift);
332 }
333
334
335 const struct sched_class fair_sched_class;
336
337 /**************************************************************
338 * CFS operations on generic schedulable entities:
339 */
340
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342
343 /* Walk up scheduling entities hierarchy */
344 #define for_each_sched_entity(se) \
345 for (; se; se = se->parent)
346
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)347 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 struct rq *rq = rq_of(cfs_rq);
350 int cpu = cpu_of(rq);
351
352 if (cfs_rq->on_list)
353 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
354
355 cfs_rq->on_list = 1;
356
357 /*
358 * Ensure we either appear before our parent (if already
359 * enqueued) or force our parent to appear after us when it is
360 * enqueued. The fact that we always enqueue bottom-up
361 * reduces this to two cases and a special case for the root
362 * cfs_rq. Furthermore, it also means that we will always reset
363 * tmp_alone_branch either when the branch is connected
364 * to a tree or when we reach the top of the tree
365 */
366 if (cfs_rq->tg->parent &&
367 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
368 /*
369 * If parent is already on the list, we add the child
370 * just before. Thanks to circular linked property of
371 * the list, this means to put the child at the tail
372 * of the list that starts by parent.
373 */
374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
376 /*
377 * The branch is now connected to its tree so we can
378 * reset tmp_alone_branch to the beginning of the
379 * list.
380 */
381 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
382 return true;
383 }
384
385 if (!cfs_rq->tg->parent) {
386 /*
387 * cfs rq without parent should be put
388 * at the tail of the list.
389 */
390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
391 &rq->leaf_cfs_rq_list);
392 /*
393 * We have reach the top of a tree so we can reset
394 * tmp_alone_branch to the beginning of the list.
395 */
396 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
397 return true;
398 }
399
400 /*
401 * The parent has not already been added so we want to
402 * make sure that it will be put after us.
403 * tmp_alone_branch points to the begin of the branch
404 * where we will add parent.
405 */
406 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
407 /*
408 * update tmp_alone_branch to points to the new begin
409 * of the branch
410 */
411 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
412 return false;
413 }
414
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)415 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
416 {
417 if (cfs_rq->on_list) {
418 struct rq *rq = rq_of(cfs_rq);
419
420 /*
421 * With cfs_rq being unthrottled/throttled during an enqueue,
422 * it can happen the tmp_alone_branch points the a leaf that
423 * we finally want to del. In this case, tmp_alone_branch moves
424 * to the prev element but it will point to rq->leaf_cfs_rq_list
425 * at the end of the enqueue.
426 */
427 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
428 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
429
430 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
431 cfs_rq->on_list = 0;
432 }
433 }
434
assert_list_leaf_cfs_rq(struct rq * rq)435 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
436 {
437 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
438 }
439
440 /* Iterate thr' all leaf cfs_rq's on a runqueue */
441 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
442 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
443 leaf_cfs_rq_list)
444
445 /* Do the two (enqueued) entities belong to the same group ? */
446 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)447 is_same_group(struct sched_entity *se, struct sched_entity *pse)
448 {
449 if (se->cfs_rq == pse->cfs_rq)
450 return se->cfs_rq;
451
452 return NULL;
453 }
454
parent_entity(struct sched_entity * se)455 static inline struct sched_entity *parent_entity(struct sched_entity *se)
456 {
457 return se->parent;
458 }
459
460 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)461 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
462 {
463 int se_depth, pse_depth;
464
465 /*
466 * preemption test can be made between sibling entities who are in the
467 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
468 * both tasks until we find their ancestors who are siblings of common
469 * parent.
470 */
471
472 /* First walk up until both entities are at same depth */
473 se_depth = (*se)->depth;
474 pse_depth = (*pse)->depth;
475
476 while (se_depth > pse_depth) {
477 se_depth--;
478 *se = parent_entity(*se);
479 }
480
481 while (pse_depth > se_depth) {
482 pse_depth--;
483 *pse = parent_entity(*pse);
484 }
485
486 while (!is_same_group(*se, *pse)) {
487 *se = parent_entity(*se);
488 *pse = parent_entity(*pse);
489 }
490 }
491
tg_is_idle(struct task_group * tg)492 static int tg_is_idle(struct task_group *tg)
493 {
494 return tg->idle > 0;
495 }
496
cfs_rq_is_idle(struct cfs_rq * cfs_rq)497 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
498 {
499 return cfs_rq->idle > 0;
500 }
501
se_is_idle(struct sched_entity * se)502 static int se_is_idle(struct sched_entity *se)
503 {
504 if (entity_is_task(se))
505 return task_has_idle_policy(task_of(se));
506 return cfs_rq_is_idle(group_cfs_rq(se));
507 }
508
509 #else /* !CONFIG_FAIR_GROUP_SCHED */
510
511 #define for_each_sched_entity(se) \
512 for (; se; se = NULL)
513
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)514 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
515 {
516 return true;
517 }
518
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)519 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
520 {
521 }
522
assert_list_leaf_cfs_rq(struct rq * rq)523 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
524 {
525 }
526
527 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
528 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
529
parent_entity(struct sched_entity * se)530 static inline struct sched_entity *parent_entity(struct sched_entity *se)
531 {
532 return NULL;
533 }
534
535 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)536 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
537 {
538 }
539
tg_is_idle(struct task_group * tg)540 static inline int tg_is_idle(struct task_group *tg)
541 {
542 return 0;
543 }
544
cfs_rq_is_idle(struct cfs_rq * cfs_rq)545 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
546 {
547 return 0;
548 }
549
se_is_idle(struct sched_entity * se)550 static int se_is_idle(struct sched_entity *se)
551 {
552 return 0;
553 }
554
555 #endif /* CONFIG_FAIR_GROUP_SCHED */
556
557 static __always_inline
558 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
559
560 /**************************************************************
561 * Scheduling class tree data structure manipulation methods:
562 */
563
max_vruntime(u64 max_vruntime,u64 vruntime)564 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
565 {
566 s64 delta = (s64)(vruntime - max_vruntime);
567 if (delta > 0)
568 max_vruntime = vruntime;
569
570 return max_vruntime;
571 }
572
min_vruntime(u64 min_vruntime,u64 vruntime)573 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
574 {
575 s64 delta = (s64)(vruntime - min_vruntime);
576 if (delta < 0)
577 min_vruntime = vruntime;
578
579 return min_vruntime;
580 }
581
entity_before(struct sched_entity * a,struct sched_entity * b)582 static inline bool entity_before(struct sched_entity *a,
583 struct sched_entity *b)
584 {
585 return (s64)(a->vruntime - b->vruntime) < 0;
586 }
587
588 #define __node_2_se(node) \
589 rb_entry((node), struct sched_entity, run_node)
590
update_min_vruntime(struct cfs_rq * cfs_rq)591 static void update_min_vruntime(struct cfs_rq *cfs_rq)
592 {
593 struct sched_entity *curr = cfs_rq->curr;
594 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
595
596 u64 vruntime = cfs_rq->min_vruntime;
597
598 if (curr) {
599 if (curr->on_rq)
600 vruntime = curr->vruntime;
601 else
602 curr = NULL;
603 }
604
605 if (leftmost) { /* non-empty tree */
606 struct sched_entity *se = __node_2_se(leftmost);
607
608 if (!curr)
609 vruntime = se->vruntime;
610 else
611 vruntime = min_vruntime(vruntime, se->vruntime);
612 }
613
614 /* ensure we never gain time by being placed backwards. */
615 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
616 #ifndef CONFIG_64BIT
617 smp_wmb();
618 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
619 #endif
620 }
621
__entity_less(struct rb_node * a,const struct rb_node * b)622 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
623 {
624 return entity_before(__node_2_se(a), __node_2_se(b));
625 }
626
627 /*
628 * Enqueue an entity into the rb-tree:
629 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)630 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
631 {
632 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
633 }
634
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)635 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
638 }
639
__pick_first_entity(struct cfs_rq * cfs_rq)640 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
641 {
642 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
643
644 if (!left)
645 return NULL;
646
647 return __node_2_se(left);
648 }
649
__pick_next_entity(struct sched_entity * se)650 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
651 {
652 struct rb_node *next = rb_next(&se->run_node);
653
654 if (!next)
655 return NULL;
656
657 return __node_2_se(next);
658 }
659
660 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)661 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
662 {
663 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
664
665 if (!last)
666 return NULL;
667
668 return __node_2_se(last);
669 }
670
671 /**************************************************************
672 * Scheduling class statistics methods:
673 */
674
sched_update_scaling(void)675 int sched_update_scaling(void)
676 {
677 unsigned int factor = get_update_sysctl_factor();
678
679 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
680 sysctl_sched_min_granularity);
681
682 #define WRT_SYSCTL(name) \
683 (normalized_sysctl_##name = sysctl_##name / (factor))
684 WRT_SYSCTL(sched_min_granularity);
685 WRT_SYSCTL(sched_latency);
686 WRT_SYSCTL(sched_wakeup_granularity);
687 #undef WRT_SYSCTL
688
689 return 0;
690 }
691 #endif
692
693 /*
694 * delta /= w
695 */
calc_delta_fair(u64 delta,struct sched_entity * se)696 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
697 {
698 if (unlikely(se->load.weight != NICE_0_LOAD))
699 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
700
701 return delta;
702 }
703
704 /*
705 * The idea is to set a period in which each task runs once.
706 *
707 * When there are too many tasks (sched_nr_latency) we have to stretch
708 * this period because otherwise the slices get too small.
709 *
710 * p = (nr <= nl) ? l : l*nr/nl
711 */
__sched_period(unsigned long nr_running)712 static u64 __sched_period(unsigned long nr_running)
713 {
714 if (unlikely(nr_running > sched_nr_latency))
715 return nr_running * sysctl_sched_min_granularity;
716 else
717 return sysctl_sched_latency;
718 }
719
720 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
721
722 /*
723 * We calculate the wall-time slice from the period by taking a part
724 * proportional to the weight.
725 *
726 * s = p*P[w/rw]
727 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)728 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 unsigned int nr_running = cfs_rq->nr_running;
731 struct sched_entity *init_se = se;
732 unsigned int min_gran;
733 u64 slice;
734
735 if (sched_feat(ALT_PERIOD))
736 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
737
738 slice = __sched_period(nr_running + !se->on_rq);
739
740 for_each_sched_entity(se) {
741 struct load_weight *load;
742 struct load_weight lw;
743 struct cfs_rq *qcfs_rq;
744
745 qcfs_rq = cfs_rq_of(se);
746 load = &qcfs_rq->load;
747
748 if (unlikely(!se->on_rq)) {
749 lw = qcfs_rq->load;
750
751 update_load_add(&lw, se->load.weight);
752 load = &lw;
753 }
754 slice = __calc_delta(slice, se->load.weight, load);
755 }
756
757 if (sched_feat(BASE_SLICE)) {
758 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
759 min_gran = sysctl_sched_idle_min_granularity;
760 else
761 min_gran = sysctl_sched_min_granularity;
762
763 slice = max_t(u64, slice, min_gran);
764 }
765
766 return slice;
767 }
768
769 /*
770 * We calculate the vruntime slice of a to-be-inserted task.
771 *
772 * vs = s/w
773 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)774 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
775 {
776 return calc_delta_fair(sched_slice(cfs_rq, se), se);
777 }
778
779 #include "pelt.h"
780 #ifdef CONFIG_SMP
781
782 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
783 static unsigned long task_h_load(struct task_struct *p);
784 static unsigned long capacity_of(int cpu);
785
786 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)787 void init_entity_runnable_average(struct sched_entity *se)
788 {
789 struct sched_avg *sa = &se->avg;
790
791 memset(sa, 0, sizeof(*sa));
792
793 /*
794 * Tasks are initialized with full load to be seen as heavy tasks until
795 * they get a chance to stabilize to their real load level.
796 * Group entities are initialized with zero load to reflect the fact that
797 * nothing has been attached to the task group yet.
798 */
799 if (entity_is_task(se))
800 sa->load_avg = scale_load_down(se->load.weight);
801
802 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
803 }
804
805 static void attach_entity_cfs_rq(struct sched_entity *se);
806
807 /*
808 * With new tasks being created, their initial util_avgs are extrapolated
809 * based on the cfs_rq's current util_avg:
810 *
811 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
812 *
813 * However, in many cases, the above util_avg does not give a desired
814 * value. Moreover, the sum of the util_avgs may be divergent, such
815 * as when the series is a harmonic series.
816 *
817 * To solve this problem, we also cap the util_avg of successive tasks to
818 * only 1/2 of the left utilization budget:
819 *
820 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
821 *
822 * where n denotes the nth task and cpu_scale the CPU capacity.
823 *
824 * For example, for a CPU with 1024 of capacity, a simplest series from
825 * the beginning would be like:
826 *
827 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
828 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
829 *
830 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
831 * if util_avg > util_avg_cap.
832 */
post_init_entity_util_avg(struct task_struct * p)833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 struct sched_entity *se = &p->se;
836 struct cfs_rq *cfs_rq = cfs_rq_of(se);
837 struct sched_avg *sa = &se->avg;
838 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
839 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
840
841 if (cap > 0) {
842 if (cfs_rq->avg.util_avg != 0) {
843 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
844 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
845
846 if (sa->util_avg > cap)
847 sa->util_avg = cap;
848 } else {
849 sa->util_avg = cap;
850 }
851 }
852
853 sa->runnable_avg = sa->util_avg;
854
855 if (p->sched_class != &fair_sched_class) {
856 /*
857 * For !fair tasks do:
858 *
859 update_cfs_rq_load_avg(now, cfs_rq);
860 attach_entity_load_avg(cfs_rq, se);
861 switched_from_fair(rq, p);
862 *
863 * such that the next switched_to_fair() has the
864 * expected state.
865 */
866 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
867 return;
868 }
869
870 attach_entity_cfs_rq(se);
871 }
872
873 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)874 void init_entity_runnable_average(struct sched_entity *se)
875 {
876 }
post_init_entity_util_avg(struct task_struct * p)877 void post_init_entity_util_avg(struct task_struct *p)
878 {
879 }
update_tg_load_avg(struct cfs_rq * cfs_rq)880 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
881 {
882 }
883 #endif /* CONFIG_SMP */
884
885 /*
886 * Update the current task's runtime statistics.
887 */
update_curr(struct cfs_rq * cfs_rq)888 static void update_curr(struct cfs_rq *cfs_rq)
889 {
890 struct sched_entity *curr = cfs_rq->curr;
891 u64 now = rq_clock_task(rq_of(cfs_rq));
892 u64 delta_exec;
893
894 if (unlikely(!curr))
895 return;
896
897 delta_exec = now - curr->exec_start;
898 if (unlikely((s64)delta_exec <= 0))
899 return;
900
901 curr->exec_start = now;
902
903 if (schedstat_enabled()) {
904 struct sched_statistics *stats;
905
906 stats = __schedstats_from_se(curr);
907 __schedstat_set(stats->exec_max,
908 max(delta_exec, stats->exec_max));
909 }
910
911 curr->sum_exec_runtime += delta_exec;
912 schedstat_add(cfs_rq->exec_clock, delta_exec);
913
914 curr->vruntime += calc_delta_fair(delta_exec, curr);
915 update_min_vruntime(cfs_rq);
916
917 if (entity_is_task(curr)) {
918 struct task_struct *curtask = task_of(curr);
919
920 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
921 cgroup_account_cputime(curtask, delta_exec);
922 account_group_exec_runtime(curtask, delta_exec);
923 }
924
925 account_cfs_rq_runtime(cfs_rq, delta_exec);
926 }
927
update_curr_fair(struct rq * rq)928 static void update_curr_fair(struct rq *rq)
929 {
930 update_curr(cfs_rq_of(&rq->curr->se));
931 }
932
933 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)934 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
935 {
936 struct sched_statistics *stats;
937 struct task_struct *p = NULL;
938
939 if (!schedstat_enabled())
940 return;
941
942 stats = __schedstats_from_se(se);
943
944 if (entity_is_task(se))
945 p = task_of(se);
946
947 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
948 }
949
950 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)951 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
952 {
953 struct sched_statistics *stats;
954 struct task_struct *p = NULL;
955
956 if (!schedstat_enabled())
957 return;
958
959 stats = __schedstats_from_se(se);
960
961 /*
962 * When the sched_schedstat changes from 0 to 1, some sched se
963 * maybe already in the runqueue, the se->statistics.wait_start
964 * will be 0.So it will let the delta wrong. We need to avoid this
965 * scenario.
966 */
967 if (unlikely(!schedstat_val(stats->wait_start)))
968 return;
969
970 if (entity_is_task(se))
971 p = task_of(se);
972
973 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
974 }
975
976 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)977 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
978 {
979 struct sched_statistics *stats;
980 struct task_struct *tsk = NULL;
981
982 if (!schedstat_enabled())
983 return;
984
985 stats = __schedstats_from_se(se);
986
987 if (entity_is_task(se))
988 tsk = task_of(se);
989
990 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
991 }
992
993 /*
994 * Task is being enqueued - update stats:
995 */
996 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)997 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
998 {
999 if (!schedstat_enabled())
1000 return;
1001
1002 /*
1003 * Are we enqueueing a waiting task? (for current tasks
1004 * a dequeue/enqueue event is a NOP)
1005 */
1006 if (se != cfs_rq->curr)
1007 update_stats_wait_start_fair(cfs_rq, se);
1008
1009 if (flags & ENQUEUE_WAKEUP)
1010 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1011 }
1012
1013 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1014 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1015 {
1016
1017 if (!schedstat_enabled())
1018 return;
1019
1020 /*
1021 * Mark the end of the wait period if dequeueing a
1022 * waiting task:
1023 */
1024 if (se != cfs_rq->curr)
1025 update_stats_wait_end_fair(cfs_rq, se);
1026
1027 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1028 struct task_struct *tsk = task_of(se);
1029 unsigned int state;
1030
1031 /* XXX racy against TTWU */
1032 state = READ_ONCE(tsk->__state);
1033 if (state & TASK_INTERRUPTIBLE)
1034 __schedstat_set(tsk->stats.sleep_start,
1035 rq_clock(rq_of(cfs_rq)));
1036 if (state & TASK_UNINTERRUPTIBLE)
1037 __schedstat_set(tsk->stats.block_start,
1038 rq_clock(rq_of(cfs_rq)));
1039 }
1040 }
1041
1042 /*
1043 * We are picking a new current task - update its stats:
1044 */
1045 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1046 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1047 {
1048 /*
1049 * We are starting a new run period:
1050 */
1051 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1052 }
1053
1054 /**************************************************
1055 * Scheduling class queueing methods:
1056 */
1057
1058 #ifdef CONFIG_NUMA_BALANCING
1059 /*
1060 * Approximate time to scan a full NUMA task in ms. The task scan period is
1061 * calculated based on the tasks virtual memory size and
1062 * numa_balancing_scan_size.
1063 */
1064 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1065 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1066
1067 /* Portion of address space to scan in MB */
1068 unsigned int sysctl_numa_balancing_scan_size = 256;
1069
1070 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1071 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1072
1073 struct numa_group {
1074 refcount_t refcount;
1075
1076 spinlock_t lock; /* nr_tasks, tasks */
1077 int nr_tasks;
1078 pid_t gid;
1079 int active_nodes;
1080
1081 struct rcu_head rcu;
1082 unsigned long total_faults;
1083 unsigned long max_faults_cpu;
1084 /*
1085 * faults[] array is split into two regions: faults_mem and faults_cpu.
1086 *
1087 * Faults_cpu is used to decide whether memory should move
1088 * towards the CPU. As a consequence, these stats are weighted
1089 * more by CPU use than by memory faults.
1090 */
1091 unsigned long faults[];
1092 };
1093
1094 /*
1095 * For functions that can be called in multiple contexts that permit reading
1096 * ->numa_group (see struct task_struct for locking rules).
1097 */
deref_task_numa_group(struct task_struct * p)1098 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1099 {
1100 return rcu_dereference_check(p->numa_group, p == current ||
1101 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1102 }
1103
deref_curr_numa_group(struct task_struct * p)1104 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1105 {
1106 return rcu_dereference_protected(p->numa_group, p == current);
1107 }
1108
1109 static inline unsigned long group_faults_priv(struct numa_group *ng);
1110 static inline unsigned long group_faults_shared(struct numa_group *ng);
1111
task_nr_scan_windows(struct task_struct * p)1112 static unsigned int task_nr_scan_windows(struct task_struct *p)
1113 {
1114 unsigned long rss = 0;
1115 unsigned long nr_scan_pages;
1116
1117 /*
1118 * Calculations based on RSS as non-present and empty pages are skipped
1119 * by the PTE scanner and NUMA hinting faults should be trapped based
1120 * on resident pages
1121 */
1122 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1123 rss = get_mm_rss(p->mm);
1124 if (!rss)
1125 rss = nr_scan_pages;
1126
1127 rss = round_up(rss, nr_scan_pages);
1128 return rss / nr_scan_pages;
1129 }
1130
1131 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1132 #define MAX_SCAN_WINDOW 2560
1133
task_scan_min(struct task_struct * p)1134 static unsigned int task_scan_min(struct task_struct *p)
1135 {
1136 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1137 unsigned int scan, floor;
1138 unsigned int windows = 1;
1139
1140 if (scan_size < MAX_SCAN_WINDOW)
1141 windows = MAX_SCAN_WINDOW / scan_size;
1142 floor = 1000 / windows;
1143
1144 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1145 return max_t(unsigned int, floor, scan);
1146 }
1147
task_scan_start(struct task_struct * p)1148 static unsigned int task_scan_start(struct task_struct *p)
1149 {
1150 unsigned long smin = task_scan_min(p);
1151 unsigned long period = smin;
1152 struct numa_group *ng;
1153
1154 /* Scale the maximum scan period with the amount of shared memory. */
1155 rcu_read_lock();
1156 ng = rcu_dereference(p->numa_group);
1157 if (ng) {
1158 unsigned long shared = group_faults_shared(ng);
1159 unsigned long private = group_faults_priv(ng);
1160
1161 period *= refcount_read(&ng->refcount);
1162 period *= shared + 1;
1163 period /= private + shared + 1;
1164 }
1165 rcu_read_unlock();
1166
1167 return max(smin, period);
1168 }
1169
task_scan_max(struct task_struct * p)1170 static unsigned int task_scan_max(struct task_struct *p)
1171 {
1172 unsigned long smin = task_scan_min(p);
1173 unsigned long smax;
1174 struct numa_group *ng;
1175
1176 /* Watch for min being lower than max due to floor calculations */
1177 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1178
1179 /* Scale the maximum scan period with the amount of shared memory. */
1180 ng = deref_curr_numa_group(p);
1181 if (ng) {
1182 unsigned long shared = group_faults_shared(ng);
1183 unsigned long private = group_faults_priv(ng);
1184 unsigned long period = smax;
1185
1186 period *= refcount_read(&ng->refcount);
1187 period *= shared + 1;
1188 period /= private + shared + 1;
1189
1190 smax = max(smax, period);
1191 }
1192
1193 return max(smin, smax);
1194 }
1195
account_numa_enqueue(struct rq * rq,struct task_struct * p)1196 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1197 {
1198 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1199 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1200 }
1201
account_numa_dequeue(struct rq * rq,struct task_struct * p)1202 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1203 {
1204 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1205 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1206 }
1207
1208 /* Shared or private faults. */
1209 #define NR_NUMA_HINT_FAULT_TYPES 2
1210
1211 /* Memory and CPU locality */
1212 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1213
1214 /* Averaged statistics, and temporary buffers. */
1215 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1216
task_numa_group_id(struct task_struct * p)1217 pid_t task_numa_group_id(struct task_struct *p)
1218 {
1219 struct numa_group *ng;
1220 pid_t gid = 0;
1221
1222 rcu_read_lock();
1223 ng = rcu_dereference(p->numa_group);
1224 if (ng)
1225 gid = ng->gid;
1226 rcu_read_unlock();
1227
1228 return gid;
1229 }
1230
1231 /*
1232 * The averaged statistics, shared & private, memory & CPU,
1233 * occupy the first half of the array. The second half of the
1234 * array is for current counters, which are averaged into the
1235 * first set by task_numa_placement.
1236 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1237 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1238 {
1239 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1240 }
1241
task_faults(struct task_struct * p,int nid)1242 static inline unsigned long task_faults(struct task_struct *p, int nid)
1243 {
1244 if (!p->numa_faults)
1245 return 0;
1246
1247 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1248 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1249 }
1250
group_faults(struct task_struct * p,int nid)1251 static inline unsigned long group_faults(struct task_struct *p, int nid)
1252 {
1253 struct numa_group *ng = deref_task_numa_group(p);
1254
1255 if (!ng)
1256 return 0;
1257
1258 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1259 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1260 }
1261
group_faults_cpu(struct numa_group * group,int nid)1262 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1263 {
1264 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1265 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1266 }
1267
group_faults_priv(struct numa_group * ng)1268 static inline unsigned long group_faults_priv(struct numa_group *ng)
1269 {
1270 unsigned long faults = 0;
1271 int node;
1272
1273 for_each_online_node(node) {
1274 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1275 }
1276
1277 return faults;
1278 }
1279
group_faults_shared(struct numa_group * ng)1280 static inline unsigned long group_faults_shared(struct numa_group *ng)
1281 {
1282 unsigned long faults = 0;
1283 int node;
1284
1285 for_each_online_node(node) {
1286 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1287 }
1288
1289 return faults;
1290 }
1291
1292 /*
1293 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1294 * considered part of a numa group's pseudo-interleaving set. Migrations
1295 * between these nodes are slowed down, to allow things to settle down.
1296 */
1297 #define ACTIVE_NODE_FRACTION 3
1298
numa_is_active_node(int nid,struct numa_group * ng)1299 static bool numa_is_active_node(int nid, struct numa_group *ng)
1300 {
1301 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1302 }
1303
1304 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1305 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1306 int lim_dist, bool task)
1307 {
1308 unsigned long score = 0;
1309 int node, max_dist;
1310
1311 /*
1312 * All nodes are directly connected, and the same distance
1313 * from each other. No need for fancy placement algorithms.
1314 */
1315 if (sched_numa_topology_type == NUMA_DIRECT)
1316 return 0;
1317
1318 /* sched_max_numa_distance may be changed in parallel. */
1319 max_dist = READ_ONCE(sched_max_numa_distance);
1320 /*
1321 * This code is called for each node, introducing N^2 complexity,
1322 * which should be ok given the number of nodes rarely exceeds 8.
1323 */
1324 for_each_online_node(node) {
1325 unsigned long faults;
1326 int dist = node_distance(nid, node);
1327
1328 /*
1329 * The furthest away nodes in the system are not interesting
1330 * for placement; nid was already counted.
1331 */
1332 if (dist >= max_dist || node == nid)
1333 continue;
1334
1335 /*
1336 * On systems with a backplane NUMA topology, compare groups
1337 * of nodes, and move tasks towards the group with the most
1338 * memory accesses. When comparing two nodes at distance
1339 * "hoplimit", only nodes closer by than "hoplimit" are part
1340 * of each group. Skip other nodes.
1341 */
1342 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1343 continue;
1344
1345 /* Add up the faults from nearby nodes. */
1346 if (task)
1347 faults = task_faults(p, node);
1348 else
1349 faults = group_faults(p, node);
1350
1351 /*
1352 * On systems with a glueless mesh NUMA topology, there are
1353 * no fixed "groups of nodes". Instead, nodes that are not
1354 * directly connected bounce traffic through intermediate
1355 * nodes; a numa_group can occupy any set of nodes.
1356 * The further away a node is, the less the faults count.
1357 * This seems to result in good task placement.
1358 */
1359 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1360 faults *= (max_dist - dist);
1361 faults /= (max_dist - LOCAL_DISTANCE);
1362 }
1363
1364 score += faults;
1365 }
1366
1367 return score;
1368 }
1369
1370 /*
1371 * These return the fraction of accesses done by a particular task, or
1372 * task group, on a particular numa node. The group weight is given a
1373 * larger multiplier, in order to group tasks together that are almost
1374 * evenly spread out between numa nodes.
1375 */
task_weight(struct task_struct * p,int nid,int dist)1376 static inline unsigned long task_weight(struct task_struct *p, int nid,
1377 int dist)
1378 {
1379 unsigned long faults, total_faults;
1380
1381 if (!p->numa_faults)
1382 return 0;
1383
1384 total_faults = p->total_numa_faults;
1385
1386 if (!total_faults)
1387 return 0;
1388
1389 faults = task_faults(p, nid);
1390 faults += score_nearby_nodes(p, nid, dist, true);
1391
1392 return 1000 * faults / total_faults;
1393 }
1394
group_weight(struct task_struct * p,int nid,int dist)1395 static inline unsigned long group_weight(struct task_struct *p, int nid,
1396 int dist)
1397 {
1398 struct numa_group *ng = deref_task_numa_group(p);
1399 unsigned long faults, total_faults;
1400
1401 if (!ng)
1402 return 0;
1403
1404 total_faults = ng->total_faults;
1405
1406 if (!total_faults)
1407 return 0;
1408
1409 faults = group_faults(p, nid);
1410 faults += score_nearby_nodes(p, nid, dist, false);
1411
1412 return 1000 * faults / total_faults;
1413 }
1414
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1415 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1416 int src_nid, int dst_cpu)
1417 {
1418 struct numa_group *ng = deref_curr_numa_group(p);
1419 int dst_nid = cpu_to_node(dst_cpu);
1420 int last_cpupid, this_cpupid;
1421
1422 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1423 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1424
1425 /*
1426 * Allow first faults or private faults to migrate immediately early in
1427 * the lifetime of a task. The magic number 4 is based on waiting for
1428 * two full passes of the "multi-stage node selection" test that is
1429 * executed below.
1430 */
1431 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1432 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1433 return true;
1434
1435 /*
1436 * Multi-stage node selection is used in conjunction with a periodic
1437 * migration fault to build a temporal task<->page relation. By using
1438 * a two-stage filter we remove short/unlikely relations.
1439 *
1440 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1441 * a task's usage of a particular page (n_p) per total usage of this
1442 * page (n_t) (in a given time-span) to a probability.
1443 *
1444 * Our periodic faults will sample this probability and getting the
1445 * same result twice in a row, given these samples are fully
1446 * independent, is then given by P(n)^2, provided our sample period
1447 * is sufficiently short compared to the usage pattern.
1448 *
1449 * This quadric squishes small probabilities, making it less likely we
1450 * act on an unlikely task<->page relation.
1451 */
1452 if (!cpupid_pid_unset(last_cpupid) &&
1453 cpupid_to_nid(last_cpupid) != dst_nid)
1454 return false;
1455
1456 /* Always allow migrate on private faults */
1457 if (cpupid_match_pid(p, last_cpupid))
1458 return true;
1459
1460 /* A shared fault, but p->numa_group has not been set up yet. */
1461 if (!ng)
1462 return true;
1463
1464 /*
1465 * Destination node is much more heavily used than the source
1466 * node? Allow migration.
1467 */
1468 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1469 ACTIVE_NODE_FRACTION)
1470 return true;
1471
1472 /*
1473 * Distribute memory according to CPU & memory use on each node,
1474 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1475 *
1476 * faults_cpu(dst) 3 faults_cpu(src)
1477 * --------------- * - > ---------------
1478 * faults_mem(dst) 4 faults_mem(src)
1479 */
1480 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1481 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1482 }
1483
1484 /*
1485 * 'numa_type' describes the node at the moment of load balancing.
1486 */
1487 enum numa_type {
1488 /* The node has spare capacity that can be used to run more tasks. */
1489 node_has_spare = 0,
1490 /*
1491 * The node is fully used and the tasks don't compete for more CPU
1492 * cycles. Nevertheless, some tasks might wait before running.
1493 */
1494 node_fully_busy,
1495 /*
1496 * The node is overloaded and can't provide expected CPU cycles to all
1497 * tasks.
1498 */
1499 node_overloaded
1500 };
1501
1502 /* Cached statistics for all CPUs within a node */
1503 struct numa_stats {
1504 unsigned long load;
1505 unsigned long runnable;
1506 unsigned long util;
1507 /* Total compute capacity of CPUs on a node */
1508 unsigned long compute_capacity;
1509 unsigned int nr_running;
1510 unsigned int weight;
1511 enum numa_type node_type;
1512 int idle_cpu;
1513 };
1514
is_core_idle(int cpu)1515 static inline bool is_core_idle(int cpu)
1516 {
1517 #ifdef CONFIG_SCHED_SMT
1518 int sibling;
1519
1520 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1521 if (cpu == sibling)
1522 continue;
1523
1524 if (!idle_cpu(sibling))
1525 return false;
1526 }
1527 #endif
1528
1529 return true;
1530 }
1531
1532 struct task_numa_env {
1533 struct task_struct *p;
1534
1535 int src_cpu, src_nid;
1536 int dst_cpu, dst_nid;
1537 int imb_numa_nr;
1538
1539 struct numa_stats src_stats, dst_stats;
1540
1541 int imbalance_pct;
1542 int dist;
1543
1544 struct task_struct *best_task;
1545 long best_imp;
1546 int best_cpu;
1547 };
1548
1549 static unsigned long cpu_load(struct rq *rq);
1550 static unsigned long cpu_runnable(struct rq *rq);
1551 static inline long adjust_numa_imbalance(int imbalance,
1552 int dst_running, int imb_numa_nr);
1553
1554 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1555 numa_type numa_classify(unsigned int imbalance_pct,
1556 struct numa_stats *ns)
1557 {
1558 if ((ns->nr_running > ns->weight) &&
1559 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1560 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1561 return node_overloaded;
1562
1563 if ((ns->nr_running < ns->weight) ||
1564 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1565 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1566 return node_has_spare;
1567
1568 return node_fully_busy;
1569 }
1570
1571 #ifdef CONFIG_SCHED_SMT
1572 /* Forward declarations of select_idle_sibling helpers */
1573 static inline bool test_idle_cores(int cpu, bool def);
numa_idle_core(int idle_core,int cpu)1574 static inline int numa_idle_core(int idle_core, int cpu)
1575 {
1576 if (!static_branch_likely(&sched_smt_present) ||
1577 idle_core >= 0 || !test_idle_cores(cpu, false))
1578 return idle_core;
1579
1580 /*
1581 * Prefer cores instead of packing HT siblings
1582 * and triggering future load balancing.
1583 */
1584 if (is_core_idle(cpu))
1585 idle_core = cpu;
1586
1587 return idle_core;
1588 }
1589 #else
numa_idle_core(int idle_core,int cpu)1590 static inline int numa_idle_core(int idle_core, int cpu)
1591 {
1592 return idle_core;
1593 }
1594 #endif
1595
1596 /*
1597 * Gather all necessary information to make NUMA balancing placement
1598 * decisions that are compatible with standard load balancer. This
1599 * borrows code and logic from update_sg_lb_stats but sharing a
1600 * common implementation is impractical.
1601 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1602 static void update_numa_stats(struct task_numa_env *env,
1603 struct numa_stats *ns, int nid,
1604 bool find_idle)
1605 {
1606 int cpu, idle_core = -1;
1607
1608 memset(ns, 0, sizeof(*ns));
1609 ns->idle_cpu = -1;
1610
1611 rcu_read_lock();
1612 for_each_cpu(cpu, cpumask_of_node(nid)) {
1613 struct rq *rq = cpu_rq(cpu);
1614
1615 ns->load += cpu_load(rq);
1616 ns->runnable += cpu_runnable(rq);
1617 ns->util += cpu_util_cfs(cpu);
1618 ns->nr_running += rq->cfs.h_nr_running;
1619 ns->compute_capacity += capacity_of(cpu);
1620
1621 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1622 if (READ_ONCE(rq->numa_migrate_on) ||
1623 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1624 continue;
1625
1626 if (ns->idle_cpu == -1)
1627 ns->idle_cpu = cpu;
1628
1629 idle_core = numa_idle_core(idle_core, cpu);
1630 }
1631 }
1632 rcu_read_unlock();
1633
1634 ns->weight = cpumask_weight(cpumask_of_node(nid));
1635
1636 ns->node_type = numa_classify(env->imbalance_pct, ns);
1637
1638 if (idle_core >= 0)
1639 ns->idle_cpu = idle_core;
1640 }
1641
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1642 static void task_numa_assign(struct task_numa_env *env,
1643 struct task_struct *p, long imp)
1644 {
1645 struct rq *rq = cpu_rq(env->dst_cpu);
1646
1647 /* Check if run-queue part of active NUMA balance. */
1648 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1649 int cpu;
1650 int start = env->dst_cpu;
1651
1652 /* Find alternative idle CPU. */
1653 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1654 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1655 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1656 continue;
1657 }
1658
1659 env->dst_cpu = cpu;
1660 rq = cpu_rq(env->dst_cpu);
1661 if (!xchg(&rq->numa_migrate_on, 1))
1662 goto assign;
1663 }
1664
1665 /* Failed to find an alternative idle CPU */
1666 return;
1667 }
1668
1669 assign:
1670 /*
1671 * Clear previous best_cpu/rq numa-migrate flag, since task now
1672 * found a better CPU to move/swap.
1673 */
1674 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1675 rq = cpu_rq(env->best_cpu);
1676 WRITE_ONCE(rq->numa_migrate_on, 0);
1677 }
1678
1679 if (env->best_task)
1680 put_task_struct(env->best_task);
1681 if (p)
1682 get_task_struct(p);
1683
1684 env->best_task = p;
1685 env->best_imp = imp;
1686 env->best_cpu = env->dst_cpu;
1687 }
1688
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1689 static bool load_too_imbalanced(long src_load, long dst_load,
1690 struct task_numa_env *env)
1691 {
1692 long imb, old_imb;
1693 long orig_src_load, orig_dst_load;
1694 long src_capacity, dst_capacity;
1695
1696 /*
1697 * The load is corrected for the CPU capacity available on each node.
1698 *
1699 * src_load dst_load
1700 * ------------ vs ---------
1701 * src_capacity dst_capacity
1702 */
1703 src_capacity = env->src_stats.compute_capacity;
1704 dst_capacity = env->dst_stats.compute_capacity;
1705
1706 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1707
1708 orig_src_load = env->src_stats.load;
1709 orig_dst_load = env->dst_stats.load;
1710
1711 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1712
1713 /* Would this change make things worse? */
1714 return (imb > old_imb);
1715 }
1716
1717 /*
1718 * Maximum NUMA importance can be 1998 (2*999);
1719 * SMALLIMP @ 30 would be close to 1998/64.
1720 * Used to deter task migration.
1721 */
1722 #define SMALLIMP 30
1723
1724 /*
1725 * This checks if the overall compute and NUMA accesses of the system would
1726 * be improved if the source tasks was migrated to the target dst_cpu taking
1727 * into account that it might be best if task running on the dst_cpu should
1728 * be exchanged with the source task
1729 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1730 static bool task_numa_compare(struct task_numa_env *env,
1731 long taskimp, long groupimp, bool maymove)
1732 {
1733 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1734 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1735 long imp = p_ng ? groupimp : taskimp;
1736 struct task_struct *cur;
1737 long src_load, dst_load;
1738 int dist = env->dist;
1739 long moveimp = imp;
1740 long load;
1741 bool stopsearch = false;
1742
1743 if (READ_ONCE(dst_rq->numa_migrate_on))
1744 return false;
1745
1746 rcu_read_lock();
1747 cur = rcu_dereference(dst_rq->curr);
1748 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1749 cur = NULL;
1750
1751 /*
1752 * Because we have preemption enabled we can get migrated around and
1753 * end try selecting ourselves (current == env->p) as a swap candidate.
1754 */
1755 if (cur == env->p) {
1756 stopsearch = true;
1757 goto unlock;
1758 }
1759
1760 if (!cur) {
1761 if (maymove && moveimp >= env->best_imp)
1762 goto assign;
1763 else
1764 goto unlock;
1765 }
1766
1767 /* Skip this swap candidate if cannot move to the source cpu. */
1768 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1769 goto unlock;
1770
1771 /*
1772 * Skip this swap candidate if it is not moving to its preferred
1773 * node and the best task is.
1774 */
1775 if (env->best_task &&
1776 env->best_task->numa_preferred_nid == env->src_nid &&
1777 cur->numa_preferred_nid != env->src_nid) {
1778 goto unlock;
1779 }
1780
1781 /*
1782 * "imp" is the fault differential for the source task between the
1783 * source and destination node. Calculate the total differential for
1784 * the source task and potential destination task. The more negative
1785 * the value is, the more remote accesses that would be expected to
1786 * be incurred if the tasks were swapped.
1787 *
1788 * If dst and source tasks are in the same NUMA group, or not
1789 * in any group then look only at task weights.
1790 */
1791 cur_ng = rcu_dereference(cur->numa_group);
1792 if (cur_ng == p_ng) {
1793 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1794 task_weight(cur, env->dst_nid, dist);
1795 /*
1796 * Add some hysteresis to prevent swapping the
1797 * tasks within a group over tiny differences.
1798 */
1799 if (cur_ng)
1800 imp -= imp / 16;
1801 } else {
1802 /*
1803 * Compare the group weights. If a task is all by itself
1804 * (not part of a group), use the task weight instead.
1805 */
1806 if (cur_ng && p_ng)
1807 imp += group_weight(cur, env->src_nid, dist) -
1808 group_weight(cur, env->dst_nid, dist);
1809 else
1810 imp += task_weight(cur, env->src_nid, dist) -
1811 task_weight(cur, env->dst_nid, dist);
1812 }
1813
1814 /* Discourage picking a task already on its preferred node */
1815 if (cur->numa_preferred_nid == env->dst_nid)
1816 imp -= imp / 16;
1817
1818 /*
1819 * Encourage picking a task that moves to its preferred node.
1820 * This potentially makes imp larger than it's maximum of
1821 * 1998 (see SMALLIMP and task_weight for why) but in this
1822 * case, it does not matter.
1823 */
1824 if (cur->numa_preferred_nid == env->src_nid)
1825 imp += imp / 8;
1826
1827 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1828 imp = moveimp;
1829 cur = NULL;
1830 goto assign;
1831 }
1832
1833 /*
1834 * Prefer swapping with a task moving to its preferred node over a
1835 * task that is not.
1836 */
1837 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1838 env->best_task->numa_preferred_nid != env->src_nid) {
1839 goto assign;
1840 }
1841
1842 /*
1843 * If the NUMA importance is less than SMALLIMP,
1844 * task migration might only result in ping pong
1845 * of tasks and also hurt performance due to cache
1846 * misses.
1847 */
1848 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1849 goto unlock;
1850
1851 /*
1852 * In the overloaded case, try and keep the load balanced.
1853 */
1854 load = task_h_load(env->p) - task_h_load(cur);
1855 if (!load)
1856 goto assign;
1857
1858 dst_load = env->dst_stats.load + load;
1859 src_load = env->src_stats.load - load;
1860
1861 if (load_too_imbalanced(src_load, dst_load, env))
1862 goto unlock;
1863
1864 assign:
1865 /* Evaluate an idle CPU for a task numa move. */
1866 if (!cur) {
1867 int cpu = env->dst_stats.idle_cpu;
1868
1869 /* Nothing cached so current CPU went idle since the search. */
1870 if (cpu < 0)
1871 cpu = env->dst_cpu;
1872
1873 /*
1874 * If the CPU is no longer truly idle and the previous best CPU
1875 * is, keep using it.
1876 */
1877 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1878 idle_cpu(env->best_cpu)) {
1879 cpu = env->best_cpu;
1880 }
1881
1882 env->dst_cpu = cpu;
1883 }
1884
1885 task_numa_assign(env, cur, imp);
1886
1887 /*
1888 * If a move to idle is allowed because there is capacity or load
1889 * balance improves then stop the search. While a better swap
1890 * candidate may exist, a search is not free.
1891 */
1892 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1893 stopsearch = true;
1894
1895 /*
1896 * If a swap candidate must be identified and the current best task
1897 * moves its preferred node then stop the search.
1898 */
1899 if (!maymove && env->best_task &&
1900 env->best_task->numa_preferred_nid == env->src_nid) {
1901 stopsearch = true;
1902 }
1903 unlock:
1904 rcu_read_unlock();
1905
1906 return stopsearch;
1907 }
1908
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1909 static void task_numa_find_cpu(struct task_numa_env *env,
1910 long taskimp, long groupimp)
1911 {
1912 bool maymove = false;
1913 int cpu;
1914
1915 /*
1916 * If dst node has spare capacity, then check if there is an
1917 * imbalance that would be overruled by the load balancer.
1918 */
1919 if (env->dst_stats.node_type == node_has_spare) {
1920 unsigned int imbalance;
1921 int src_running, dst_running;
1922
1923 /*
1924 * Would movement cause an imbalance? Note that if src has
1925 * more running tasks that the imbalance is ignored as the
1926 * move improves the imbalance from the perspective of the
1927 * CPU load balancer.
1928 * */
1929 src_running = env->src_stats.nr_running - 1;
1930 dst_running = env->dst_stats.nr_running + 1;
1931 imbalance = max(0, dst_running - src_running);
1932 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1933 env->imb_numa_nr);
1934
1935 /* Use idle CPU if there is no imbalance */
1936 if (!imbalance) {
1937 maymove = true;
1938 if (env->dst_stats.idle_cpu >= 0) {
1939 env->dst_cpu = env->dst_stats.idle_cpu;
1940 task_numa_assign(env, NULL, 0);
1941 return;
1942 }
1943 }
1944 } else {
1945 long src_load, dst_load, load;
1946 /*
1947 * If the improvement from just moving env->p direction is better
1948 * than swapping tasks around, check if a move is possible.
1949 */
1950 load = task_h_load(env->p);
1951 dst_load = env->dst_stats.load + load;
1952 src_load = env->src_stats.load - load;
1953 maymove = !load_too_imbalanced(src_load, dst_load, env);
1954 }
1955
1956 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1957 /* Skip this CPU if the source task cannot migrate */
1958 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1959 continue;
1960
1961 env->dst_cpu = cpu;
1962 if (task_numa_compare(env, taskimp, groupimp, maymove))
1963 break;
1964 }
1965 }
1966
task_numa_migrate(struct task_struct * p)1967 static int task_numa_migrate(struct task_struct *p)
1968 {
1969 struct task_numa_env env = {
1970 .p = p,
1971
1972 .src_cpu = task_cpu(p),
1973 .src_nid = task_node(p),
1974
1975 .imbalance_pct = 112,
1976
1977 .best_task = NULL,
1978 .best_imp = 0,
1979 .best_cpu = -1,
1980 };
1981 unsigned long taskweight, groupweight;
1982 struct sched_domain *sd;
1983 long taskimp, groupimp;
1984 struct numa_group *ng;
1985 struct rq *best_rq;
1986 int nid, ret, dist;
1987
1988 /*
1989 * Pick the lowest SD_NUMA domain, as that would have the smallest
1990 * imbalance and would be the first to start moving tasks about.
1991 *
1992 * And we want to avoid any moving of tasks about, as that would create
1993 * random movement of tasks -- counter the numa conditions we're trying
1994 * to satisfy here.
1995 */
1996 rcu_read_lock();
1997 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1998 if (sd) {
1999 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2000 env.imb_numa_nr = sd->imb_numa_nr;
2001 }
2002 rcu_read_unlock();
2003
2004 /*
2005 * Cpusets can break the scheduler domain tree into smaller
2006 * balance domains, some of which do not cross NUMA boundaries.
2007 * Tasks that are "trapped" in such domains cannot be migrated
2008 * elsewhere, so there is no point in (re)trying.
2009 */
2010 if (unlikely(!sd)) {
2011 sched_setnuma(p, task_node(p));
2012 return -EINVAL;
2013 }
2014
2015 env.dst_nid = p->numa_preferred_nid;
2016 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2017 taskweight = task_weight(p, env.src_nid, dist);
2018 groupweight = group_weight(p, env.src_nid, dist);
2019 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2020 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2021 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2022 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2023
2024 /* Try to find a spot on the preferred nid. */
2025 task_numa_find_cpu(&env, taskimp, groupimp);
2026
2027 /*
2028 * Look at other nodes in these cases:
2029 * - there is no space available on the preferred_nid
2030 * - the task is part of a numa_group that is interleaved across
2031 * multiple NUMA nodes; in order to better consolidate the group,
2032 * we need to check other locations.
2033 */
2034 ng = deref_curr_numa_group(p);
2035 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2036 for_each_node_state(nid, N_CPU) {
2037 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2038 continue;
2039
2040 dist = node_distance(env.src_nid, env.dst_nid);
2041 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2042 dist != env.dist) {
2043 taskweight = task_weight(p, env.src_nid, dist);
2044 groupweight = group_weight(p, env.src_nid, dist);
2045 }
2046
2047 /* Only consider nodes where both task and groups benefit */
2048 taskimp = task_weight(p, nid, dist) - taskweight;
2049 groupimp = group_weight(p, nid, dist) - groupweight;
2050 if (taskimp < 0 && groupimp < 0)
2051 continue;
2052
2053 env.dist = dist;
2054 env.dst_nid = nid;
2055 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2056 task_numa_find_cpu(&env, taskimp, groupimp);
2057 }
2058 }
2059
2060 /*
2061 * If the task is part of a workload that spans multiple NUMA nodes,
2062 * and is migrating into one of the workload's active nodes, remember
2063 * this node as the task's preferred numa node, so the workload can
2064 * settle down.
2065 * A task that migrated to a second choice node will be better off
2066 * trying for a better one later. Do not set the preferred node here.
2067 */
2068 if (ng) {
2069 if (env.best_cpu == -1)
2070 nid = env.src_nid;
2071 else
2072 nid = cpu_to_node(env.best_cpu);
2073
2074 if (nid != p->numa_preferred_nid)
2075 sched_setnuma(p, nid);
2076 }
2077
2078 /* No better CPU than the current one was found. */
2079 if (env.best_cpu == -1) {
2080 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2081 return -EAGAIN;
2082 }
2083
2084 best_rq = cpu_rq(env.best_cpu);
2085 if (env.best_task == NULL) {
2086 ret = migrate_task_to(p, env.best_cpu);
2087 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2088 if (ret != 0)
2089 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2090 return ret;
2091 }
2092
2093 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2094 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2095
2096 if (ret != 0)
2097 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2098 put_task_struct(env.best_task);
2099 return ret;
2100 }
2101
2102 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2103 static void numa_migrate_preferred(struct task_struct *p)
2104 {
2105 unsigned long interval = HZ;
2106
2107 /* This task has no NUMA fault statistics yet */
2108 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2109 return;
2110
2111 /* Periodically retry migrating the task to the preferred node */
2112 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2113 p->numa_migrate_retry = jiffies + interval;
2114
2115 /* Success if task is already running on preferred CPU */
2116 if (task_node(p) == p->numa_preferred_nid)
2117 return;
2118
2119 /* Otherwise, try migrate to a CPU on the preferred node */
2120 task_numa_migrate(p);
2121 }
2122
2123 /*
2124 * Find out how many nodes the workload is actively running on. Do this by
2125 * tracking the nodes from which NUMA hinting faults are triggered. This can
2126 * be different from the set of nodes where the workload's memory is currently
2127 * located.
2128 */
numa_group_count_active_nodes(struct numa_group * numa_group)2129 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2130 {
2131 unsigned long faults, max_faults = 0;
2132 int nid, active_nodes = 0;
2133
2134 for_each_node_state(nid, N_CPU) {
2135 faults = group_faults_cpu(numa_group, nid);
2136 if (faults > max_faults)
2137 max_faults = faults;
2138 }
2139
2140 for_each_node_state(nid, N_CPU) {
2141 faults = group_faults_cpu(numa_group, nid);
2142 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2143 active_nodes++;
2144 }
2145
2146 numa_group->max_faults_cpu = max_faults;
2147 numa_group->active_nodes = active_nodes;
2148 }
2149
2150 /*
2151 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2152 * increments. The more local the fault statistics are, the higher the scan
2153 * period will be for the next scan window. If local/(local+remote) ratio is
2154 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2155 * the scan period will decrease. Aim for 70% local accesses.
2156 */
2157 #define NUMA_PERIOD_SLOTS 10
2158 #define NUMA_PERIOD_THRESHOLD 7
2159
2160 /*
2161 * Increase the scan period (slow down scanning) if the majority of
2162 * our memory is already on our local node, or if the majority of
2163 * the page accesses are shared with other processes.
2164 * Otherwise, decrease the scan period.
2165 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2166 static void update_task_scan_period(struct task_struct *p,
2167 unsigned long shared, unsigned long private)
2168 {
2169 unsigned int period_slot;
2170 int lr_ratio, ps_ratio;
2171 int diff;
2172
2173 unsigned long remote = p->numa_faults_locality[0];
2174 unsigned long local = p->numa_faults_locality[1];
2175
2176 /*
2177 * If there were no record hinting faults then either the task is
2178 * completely idle or all activity is in areas that are not of interest
2179 * to automatic numa balancing. Related to that, if there were failed
2180 * migration then it implies we are migrating too quickly or the local
2181 * node is overloaded. In either case, scan slower
2182 */
2183 if (local + shared == 0 || p->numa_faults_locality[2]) {
2184 p->numa_scan_period = min(p->numa_scan_period_max,
2185 p->numa_scan_period << 1);
2186
2187 p->mm->numa_next_scan = jiffies +
2188 msecs_to_jiffies(p->numa_scan_period);
2189
2190 return;
2191 }
2192
2193 /*
2194 * Prepare to scale scan period relative to the current period.
2195 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2196 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2197 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2198 */
2199 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2200 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2201 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2202
2203 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2204 /*
2205 * Most memory accesses are local. There is no need to
2206 * do fast NUMA scanning, since memory is already local.
2207 */
2208 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2209 if (!slot)
2210 slot = 1;
2211 diff = slot * period_slot;
2212 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2213 /*
2214 * Most memory accesses are shared with other tasks.
2215 * There is no point in continuing fast NUMA scanning,
2216 * since other tasks may just move the memory elsewhere.
2217 */
2218 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2219 if (!slot)
2220 slot = 1;
2221 diff = slot * period_slot;
2222 } else {
2223 /*
2224 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2225 * yet they are not on the local NUMA node. Speed up
2226 * NUMA scanning to get the memory moved over.
2227 */
2228 int ratio = max(lr_ratio, ps_ratio);
2229 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2230 }
2231
2232 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2233 task_scan_min(p), task_scan_max(p));
2234 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2235 }
2236
2237 /*
2238 * Get the fraction of time the task has been running since the last
2239 * NUMA placement cycle. The scheduler keeps similar statistics, but
2240 * decays those on a 32ms period, which is orders of magnitude off
2241 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2242 * stats only if the task is so new there are no NUMA statistics yet.
2243 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2244 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2245 {
2246 u64 runtime, delta, now;
2247 /* Use the start of this time slice to avoid calculations. */
2248 now = p->se.exec_start;
2249 runtime = p->se.sum_exec_runtime;
2250
2251 if (p->last_task_numa_placement) {
2252 delta = runtime - p->last_sum_exec_runtime;
2253 *period = now - p->last_task_numa_placement;
2254
2255 /* Avoid time going backwards, prevent potential divide error: */
2256 if (unlikely((s64)*period < 0))
2257 *period = 0;
2258 } else {
2259 delta = p->se.avg.load_sum;
2260 *period = LOAD_AVG_MAX;
2261 }
2262
2263 p->last_sum_exec_runtime = runtime;
2264 p->last_task_numa_placement = now;
2265
2266 return delta;
2267 }
2268
2269 /*
2270 * Determine the preferred nid for a task in a numa_group. This needs to
2271 * be done in a way that produces consistent results with group_weight,
2272 * otherwise workloads might not converge.
2273 */
preferred_group_nid(struct task_struct * p,int nid)2274 static int preferred_group_nid(struct task_struct *p, int nid)
2275 {
2276 nodemask_t nodes;
2277 int dist;
2278
2279 /* Direct connections between all NUMA nodes. */
2280 if (sched_numa_topology_type == NUMA_DIRECT)
2281 return nid;
2282
2283 /*
2284 * On a system with glueless mesh NUMA topology, group_weight
2285 * scores nodes according to the number of NUMA hinting faults on
2286 * both the node itself, and on nearby nodes.
2287 */
2288 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2289 unsigned long score, max_score = 0;
2290 int node, max_node = nid;
2291
2292 dist = sched_max_numa_distance;
2293
2294 for_each_node_state(node, N_CPU) {
2295 score = group_weight(p, node, dist);
2296 if (score > max_score) {
2297 max_score = score;
2298 max_node = node;
2299 }
2300 }
2301 return max_node;
2302 }
2303
2304 /*
2305 * Finding the preferred nid in a system with NUMA backplane
2306 * interconnect topology is more involved. The goal is to locate
2307 * tasks from numa_groups near each other in the system, and
2308 * untangle workloads from different sides of the system. This requires
2309 * searching down the hierarchy of node groups, recursively searching
2310 * inside the highest scoring group of nodes. The nodemask tricks
2311 * keep the complexity of the search down.
2312 */
2313 nodes = node_states[N_CPU];
2314 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2315 unsigned long max_faults = 0;
2316 nodemask_t max_group = NODE_MASK_NONE;
2317 int a, b;
2318
2319 /* Are there nodes at this distance from each other? */
2320 if (!find_numa_distance(dist))
2321 continue;
2322
2323 for_each_node_mask(a, nodes) {
2324 unsigned long faults = 0;
2325 nodemask_t this_group;
2326 nodes_clear(this_group);
2327
2328 /* Sum group's NUMA faults; includes a==b case. */
2329 for_each_node_mask(b, nodes) {
2330 if (node_distance(a, b) < dist) {
2331 faults += group_faults(p, b);
2332 node_set(b, this_group);
2333 node_clear(b, nodes);
2334 }
2335 }
2336
2337 /* Remember the top group. */
2338 if (faults > max_faults) {
2339 max_faults = faults;
2340 max_group = this_group;
2341 /*
2342 * subtle: at the smallest distance there is
2343 * just one node left in each "group", the
2344 * winner is the preferred nid.
2345 */
2346 nid = a;
2347 }
2348 }
2349 /* Next round, evaluate the nodes within max_group. */
2350 if (!max_faults)
2351 break;
2352 nodes = max_group;
2353 }
2354 return nid;
2355 }
2356
task_numa_placement(struct task_struct * p)2357 static void task_numa_placement(struct task_struct *p)
2358 {
2359 int seq, nid, max_nid = NUMA_NO_NODE;
2360 unsigned long max_faults = 0;
2361 unsigned long fault_types[2] = { 0, 0 };
2362 unsigned long total_faults;
2363 u64 runtime, period;
2364 spinlock_t *group_lock = NULL;
2365 struct numa_group *ng;
2366
2367 /*
2368 * The p->mm->numa_scan_seq field gets updated without
2369 * exclusive access. Use READ_ONCE() here to ensure
2370 * that the field is read in a single access:
2371 */
2372 seq = READ_ONCE(p->mm->numa_scan_seq);
2373 if (p->numa_scan_seq == seq)
2374 return;
2375 p->numa_scan_seq = seq;
2376 p->numa_scan_period_max = task_scan_max(p);
2377
2378 total_faults = p->numa_faults_locality[0] +
2379 p->numa_faults_locality[1];
2380 runtime = numa_get_avg_runtime(p, &period);
2381
2382 /* If the task is part of a group prevent parallel updates to group stats */
2383 ng = deref_curr_numa_group(p);
2384 if (ng) {
2385 group_lock = &ng->lock;
2386 spin_lock_irq(group_lock);
2387 }
2388
2389 /* Find the node with the highest number of faults */
2390 for_each_online_node(nid) {
2391 /* Keep track of the offsets in numa_faults array */
2392 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2393 unsigned long faults = 0, group_faults = 0;
2394 int priv;
2395
2396 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2397 long diff, f_diff, f_weight;
2398
2399 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2400 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2401 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2402 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2403
2404 /* Decay existing window, copy faults since last scan */
2405 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2406 fault_types[priv] += p->numa_faults[membuf_idx];
2407 p->numa_faults[membuf_idx] = 0;
2408
2409 /*
2410 * Normalize the faults_from, so all tasks in a group
2411 * count according to CPU use, instead of by the raw
2412 * number of faults. Tasks with little runtime have
2413 * little over-all impact on throughput, and thus their
2414 * faults are less important.
2415 */
2416 f_weight = div64_u64(runtime << 16, period + 1);
2417 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2418 (total_faults + 1);
2419 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2420 p->numa_faults[cpubuf_idx] = 0;
2421
2422 p->numa_faults[mem_idx] += diff;
2423 p->numa_faults[cpu_idx] += f_diff;
2424 faults += p->numa_faults[mem_idx];
2425 p->total_numa_faults += diff;
2426 if (ng) {
2427 /*
2428 * safe because we can only change our own group
2429 *
2430 * mem_idx represents the offset for a given
2431 * nid and priv in a specific region because it
2432 * is at the beginning of the numa_faults array.
2433 */
2434 ng->faults[mem_idx] += diff;
2435 ng->faults[cpu_idx] += f_diff;
2436 ng->total_faults += diff;
2437 group_faults += ng->faults[mem_idx];
2438 }
2439 }
2440
2441 if (!ng) {
2442 if (faults > max_faults) {
2443 max_faults = faults;
2444 max_nid = nid;
2445 }
2446 } else if (group_faults > max_faults) {
2447 max_faults = group_faults;
2448 max_nid = nid;
2449 }
2450 }
2451
2452 /* Cannot migrate task to CPU-less node */
2453 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2454 int near_nid = max_nid;
2455 int distance, near_distance = INT_MAX;
2456
2457 for_each_node_state(nid, N_CPU) {
2458 distance = node_distance(max_nid, nid);
2459 if (distance < near_distance) {
2460 near_nid = nid;
2461 near_distance = distance;
2462 }
2463 }
2464 max_nid = near_nid;
2465 }
2466
2467 if (ng) {
2468 numa_group_count_active_nodes(ng);
2469 spin_unlock_irq(group_lock);
2470 max_nid = preferred_group_nid(p, max_nid);
2471 }
2472
2473 if (max_faults) {
2474 /* Set the new preferred node */
2475 if (max_nid != p->numa_preferred_nid)
2476 sched_setnuma(p, max_nid);
2477 }
2478
2479 update_task_scan_period(p, fault_types[0], fault_types[1]);
2480 }
2481
get_numa_group(struct numa_group * grp)2482 static inline int get_numa_group(struct numa_group *grp)
2483 {
2484 return refcount_inc_not_zero(&grp->refcount);
2485 }
2486
put_numa_group(struct numa_group * grp)2487 static inline void put_numa_group(struct numa_group *grp)
2488 {
2489 if (refcount_dec_and_test(&grp->refcount))
2490 kfree_rcu(grp, rcu);
2491 }
2492
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2493 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2494 int *priv)
2495 {
2496 struct numa_group *grp, *my_grp;
2497 struct task_struct *tsk;
2498 bool join = false;
2499 int cpu = cpupid_to_cpu(cpupid);
2500 int i;
2501
2502 if (unlikely(!deref_curr_numa_group(p))) {
2503 unsigned int size = sizeof(struct numa_group) +
2504 NR_NUMA_HINT_FAULT_STATS *
2505 nr_node_ids * sizeof(unsigned long);
2506
2507 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2508 if (!grp)
2509 return;
2510
2511 refcount_set(&grp->refcount, 1);
2512 grp->active_nodes = 1;
2513 grp->max_faults_cpu = 0;
2514 spin_lock_init(&grp->lock);
2515 grp->gid = p->pid;
2516
2517 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2518 grp->faults[i] = p->numa_faults[i];
2519
2520 grp->total_faults = p->total_numa_faults;
2521
2522 grp->nr_tasks++;
2523 rcu_assign_pointer(p->numa_group, grp);
2524 }
2525
2526 rcu_read_lock();
2527 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2528
2529 if (!cpupid_match_pid(tsk, cpupid))
2530 goto no_join;
2531
2532 grp = rcu_dereference(tsk->numa_group);
2533 if (!grp)
2534 goto no_join;
2535
2536 my_grp = deref_curr_numa_group(p);
2537 if (grp == my_grp)
2538 goto no_join;
2539
2540 /*
2541 * Only join the other group if its bigger; if we're the bigger group,
2542 * the other task will join us.
2543 */
2544 if (my_grp->nr_tasks > grp->nr_tasks)
2545 goto no_join;
2546
2547 /*
2548 * Tie-break on the grp address.
2549 */
2550 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2551 goto no_join;
2552
2553 /* Always join threads in the same process. */
2554 if (tsk->mm == current->mm)
2555 join = true;
2556
2557 /* Simple filter to avoid false positives due to PID collisions */
2558 if (flags & TNF_SHARED)
2559 join = true;
2560
2561 /* Update priv based on whether false sharing was detected */
2562 *priv = !join;
2563
2564 if (join && !get_numa_group(grp))
2565 goto no_join;
2566
2567 rcu_read_unlock();
2568
2569 if (!join)
2570 return;
2571
2572 BUG_ON(irqs_disabled());
2573 double_lock_irq(&my_grp->lock, &grp->lock);
2574
2575 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2576 my_grp->faults[i] -= p->numa_faults[i];
2577 grp->faults[i] += p->numa_faults[i];
2578 }
2579 my_grp->total_faults -= p->total_numa_faults;
2580 grp->total_faults += p->total_numa_faults;
2581
2582 my_grp->nr_tasks--;
2583 grp->nr_tasks++;
2584
2585 spin_unlock(&my_grp->lock);
2586 spin_unlock_irq(&grp->lock);
2587
2588 rcu_assign_pointer(p->numa_group, grp);
2589
2590 put_numa_group(my_grp);
2591 return;
2592
2593 no_join:
2594 rcu_read_unlock();
2595 return;
2596 }
2597
2598 /*
2599 * Get rid of NUMA statistics associated with a task (either current or dead).
2600 * If @final is set, the task is dead and has reached refcount zero, so we can
2601 * safely free all relevant data structures. Otherwise, there might be
2602 * concurrent reads from places like load balancing and procfs, and we should
2603 * reset the data back to default state without freeing ->numa_faults.
2604 */
task_numa_free(struct task_struct * p,bool final)2605 void task_numa_free(struct task_struct *p, bool final)
2606 {
2607 /* safe: p either is current or is being freed by current */
2608 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2609 unsigned long *numa_faults = p->numa_faults;
2610 unsigned long flags;
2611 int i;
2612
2613 if (!numa_faults)
2614 return;
2615
2616 if (grp) {
2617 spin_lock_irqsave(&grp->lock, flags);
2618 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2619 grp->faults[i] -= p->numa_faults[i];
2620 grp->total_faults -= p->total_numa_faults;
2621
2622 grp->nr_tasks--;
2623 spin_unlock_irqrestore(&grp->lock, flags);
2624 RCU_INIT_POINTER(p->numa_group, NULL);
2625 put_numa_group(grp);
2626 }
2627
2628 if (final) {
2629 p->numa_faults = NULL;
2630 kfree(numa_faults);
2631 } else {
2632 p->total_numa_faults = 0;
2633 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2634 numa_faults[i] = 0;
2635 }
2636 }
2637
2638 /*
2639 * Got a PROT_NONE fault for a page on @node.
2640 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2641 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2642 {
2643 struct task_struct *p = current;
2644 bool migrated = flags & TNF_MIGRATED;
2645 int cpu_node = task_node(current);
2646 int local = !!(flags & TNF_FAULT_LOCAL);
2647 struct numa_group *ng;
2648 int priv;
2649
2650 if (!static_branch_likely(&sched_numa_balancing))
2651 return;
2652
2653 /* for example, ksmd faulting in a user's mm */
2654 if (!p->mm)
2655 return;
2656
2657 /* Allocate buffer to track faults on a per-node basis */
2658 if (unlikely(!p->numa_faults)) {
2659 int size = sizeof(*p->numa_faults) *
2660 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2661
2662 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2663 if (!p->numa_faults)
2664 return;
2665
2666 p->total_numa_faults = 0;
2667 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2668 }
2669
2670 /*
2671 * First accesses are treated as private, otherwise consider accesses
2672 * to be private if the accessing pid has not changed
2673 */
2674 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2675 priv = 1;
2676 } else {
2677 priv = cpupid_match_pid(p, last_cpupid);
2678 if (!priv && !(flags & TNF_NO_GROUP))
2679 task_numa_group(p, last_cpupid, flags, &priv);
2680 }
2681
2682 /*
2683 * If a workload spans multiple NUMA nodes, a shared fault that
2684 * occurs wholly within the set of nodes that the workload is
2685 * actively using should be counted as local. This allows the
2686 * scan rate to slow down when a workload has settled down.
2687 */
2688 ng = deref_curr_numa_group(p);
2689 if (!priv && !local && ng && ng->active_nodes > 1 &&
2690 numa_is_active_node(cpu_node, ng) &&
2691 numa_is_active_node(mem_node, ng))
2692 local = 1;
2693
2694 /*
2695 * Retry to migrate task to preferred node periodically, in case it
2696 * previously failed, or the scheduler moved us.
2697 */
2698 if (time_after(jiffies, p->numa_migrate_retry)) {
2699 task_numa_placement(p);
2700 numa_migrate_preferred(p);
2701 }
2702
2703 if (migrated)
2704 p->numa_pages_migrated += pages;
2705 if (flags & TNF_MIGRATE_FAIL)
2706 p->numa_faults_locality[2] += pages;
2707
2708 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2709 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2710 p->numa_faults_locality[local] += pages;
2711 }
2712
reset_ptenuma_scan(struct task_struct * p)2713 static void reset_ptenuma_scan(struct task_struct *p)
2714 {
2715 /*
2716 * We only did a read acquisition of the mmap sem, so
2717 * p->mm->numa_scan_seq is written to without exclusive access
2718 * and the update is not guaranteed to be atomic. That's not
2719 * much of an issue though, since this is just used for
2720 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2721 * expensive, to avoid any form of compiler optimizations:
2722 */
2723 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2724 p->mm->numa_scan_offset = 0;
2725 }
2726
2727 /*
2728 * The expensive part of numa migration is done from task_work context.
2729 * Triggered from task_tick_numa().
2730 */
task_numa_work(struct callback_head * work)2731 static void task_numa_work(struct callback_head *work)
2732 {
2733 unsigned long migrate, next_scan, now = jiffies;
2734 struct task_struct *p = current;
2735 struct mm_struct *mm = p->mm;
2736 u64 runtime = p->se.sum_exec_runtime;
2737 struct vm_area_struct *vma;
2738 unsigned long start, end;
2739 unsigned long nr_pte_updates = 0;
2740 long pages, virtpages;
2741
2742 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2743
2744 work->next = work;
2745 /*
2746 * Who cares about NUMA placement when they're dying.
2747 *
2748 * NOTE: make sure not to dereference p->mm before this check,
2749 * exit_task_work() happens _after_ exit_mm() so we could be called
2750 * without p->mm even though we still had it when we enqueued this
2751 * work.
2752 */
2753 if (p->flags & PF_EXITING)
2754 return;
2755
2756 if (!mm->numa_next_scan) {
2757 mm->numa_next_scan = now +
2758 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2759 }
2760
2761 /*
2762 * Enforce maximal scan/migration frequency..
2763 */
2764 migrate = mm->numa_next_scan;
2765 if (time_before(now, migrate))
2766 return;
2767
2768 if (p->numa_scan_period == 0) {
2769 p->numa_scan_period_max = task_scan_max(p);
2770 p->numa_scan_period = task_scan_start(p);
2771 }
2772
2773 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2774 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2775 return;
2776
2777 /*
2778 * Delay this task enough that another task of this mm will likely win
2779 * the next time around.
2780 */
2781 p->node_stamp += 2 * TICK_NSEC;
2782
2783 start = mm->numa_scan_offset;
2784 pages = sysctl_numa_balancing_scan_size;
2785 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2786 virtpages = pages * 8; /* Scan up to this much virtual space */
2787 if (!pages)
2788 return;
2789
2790
2791 if (!mmap_read_trylock(mm))
2792 return;
2793 vma = find_vma(mm, start);
2794 if (!vma) {
2795 reset_ptenuma_scan(p);
2796 start = 0;
2797 vma = mm->mmap;
2798 }
2799 for (; vma; vma = vma->vm_next) {
2800 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2801 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2802 continue;
2803 }
2804
2805 /*
2806 * Shared library pages mapped by multiple processes are not
2807 * migrated as it is expected they are cache replicated. Avoid
2808 * hinting faults in read-only file-backed mappings or the vdso
2809 * as migrating the pages will be of marginal benefit.
2810 */
2811 if (!vma->vm_mm ||
2812 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2813 continue;
2814
2815 /*
2816 * Skip inaccessible VMAs to avoid any confusion between
2817 * PROT_NONE and NUMA hinting ptes
2818 */
2819 if (!vma_is_accessible(vma))
2820 continue;
2821
2822 do {
2823 start = max(start, vma->vm_start);
2824 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2825 end = min(end, vma->vm_end);
2826 nr_pte_updates = change_prot_numa(vma, start, end);
2827
2828 /*
2829 * Try to scan sysctl_numa_balancing_size worth of
2830 * hpages that have at least one present PTE that
2831 * is not already pte-numa. If the VMA contains
2832 * areas that are unused or already full of prot_numa
2833 * PTEs, scan up to virtpages, to skip through those
2834 * areas faster.
2835 */
2836 if (nr_pte_updates)
2837 pages -= (end - start) >> PAGE_SHIFT;
2838 virtpages -= (end - start) >> PAGE_SHIFT;
2839
2840 start = end;
2841 if (pages <= 0 || virtpages <= 0)
2842 goto out;
2843
2844 cond_resched();
2845 } while (end != vma->vm_end);
2846 }
2847
2848 out:
2849 /*
2850 * It is possible to reach the end of the VMA list but the last few
2851 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2852 * would find the !migratable VMA on the next scan but not reset the
2853 * scanner to the start so check it now.
2854 */
2855 if (vma)
2856 mm->numa_scan_offset = start;
2857 else
2858 reset_ptenuma_scan(p);
2859 mmap_read_unlock(mm);
2860
2861 /*
2862 * Make sure tasks use at least 32x as much time to run other code
2863 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2864 * Usually update_task_scan_period slows down scanning enough; on an
2865 * overloaded system we need to limit overhead on a per task basis.
2866 */
2867 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2868 u64 diff = p->se.sum_exec_runtime - runtime;
2869 p->node_stamp += 32 * diff;
2870 }
2871 }
2872
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2873 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2874 {
2875 int mm_users = 0;
2876 struct mm_struct *mm = p->mm;
2877
2878 if (mm) {
2879 mm_users = atomic_read(&mm->mm_users);
2880 if (mm_users == 1) {
2881 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2882 mm->numa_scan_seq = 0;
2883 }
2884 }
2885 p->node_stamp = 0;
2886 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2887 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2888 p->numa_migrate_retry = 0;
2889 /* Protect against double add, see task_tick_numa and task_numa_work */
2890 p->numa_work.next = &p->numa_work;
2891 p->numa_faults = NULL;
2892 p->numa_pages_migrated = 0;
2893 p->total_numa_faults = 0;
2894 RCU_INIT_POINTER(p->numa_group, NULL);
2895 p->last_task_numa_placement = 0;
2896 p->last_sum_exec_runtime = 0;
2897
2898 init_task_work(&p->numa_work, task_numa_work);
2899
2900 /* New address space, reset the preferred nid */
2901 if (!(clone_flags & CLONE_VM)) {
2902 p->numa_preferred_nid = NUMA_NO_NODE;
2903 return;
2904 }
2905
2906 /*
2907 * New thread, keep existing numa_preferred_nid which should be copied
2908 * already by arch_dup_task_struct but stagger when scans start.
2909 */
2910 if (mm) {
2911 unsigned int delay;
2912
2913 delay = min_t(unsigned int, task_scan_max(current),
2914 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2915 delay += 2 * TICK_NSEC;
2916 p->node_stamp = delay;
2917 }
2918 }
2919
2920 /*
2921 * Drive the periodic memory faults..
2922 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2923 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2924 {
2925 struct callback_head *work = &curr->numa_work;
2926 u64 period, now;
2927
2928 /*
2929 * We don't care about NUMA placement if we don't have memory.
2930 */
2931 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2932 return;
2933
2934 /*
2935 * Using runtime rather than walltime has the dual advantage that
2936 * we (mostly) drive the selection from busy threads and that the
2937 * task needs to have done some actual work before we bother with
2938 * NUMA placement.
2939 */
2940 now = curr->se.sum_exec_runtime;
2941 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2942
2943 if (now > curr->node_stamp + period) {
2944 if (!curr->node_stamp)
2945 curr->numa_scan_period = task_scan_start(curr);
2946 curr->node_stamp += period;
2947
2948 if (!time_before(jiffies, curr->mm->numa_next_scan))
2949 task_work_add(curr, work, TWA_RESUME);
2950 }
2951 }
2952
update_scan_period(struct task_struct * p,int new_cpu)2953 static void update_scan_period(struct task_struct *p, int new_cpu)
2954 {
2955 int src_nid = cpu_to_node(task_cpu(p));
2956 int dst_nid = cpu_to_node(new_cpu);
2957
2958 if (!static_branch_likely(&sched_numa_balancing))
2959 return;
2960
2961 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2962 return;
2963
2964 if (src_nid == dst_nid)
2965 return;
2966
2967 /*
2968 * Allow resets if faults have been trapped before one scan
2969 * has completed. This is most likely due to a new task that
2970 * is pulled cross-node due to wakeups or load balancing.
2971 */
2972 if (p->numa_scan_seq) {
2973 /*
2974 * Avoid scan adjustments if moving to the preferred
2975 * node or if the task was not previously running on
2976 * the preferred node.
2977 */
2978 if (dst_nid == p->numa_preferred_nid ||
2979 (p->numa_preferred_nid != NUMA_NO_NODE &&
2980 src_nid != p->numa_preferred_nid))
2981 return;
2982 }
2983
2984 p->numa_scan_period = task_scan_start(p);
2985 }
2986
2987 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2988 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2989 {
2990 }
2991
account_numa_enqueue(struct rq * rq,struct task_struct * p)2992 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2993 {
2994 }
2995
account_numa_dequeue(struct rq * rq,struct task_struct * p)2996 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2997 {
2998 }
2999
update_scan_period(struct task_struct * p,int new_cpu)3000 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3001 {
3002 }
3003
3004 #endif /* CONFIG_NUMA_BALANCING */
3005
3006 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3007 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3008 {
3009 update_load_add(&cfs_rq->load, se->load.weight);
3010 #ifdef CONFIG_SMP
3011 if (entity_is_task(se)) {
3012 struct rq *rq = rq_of(cfs_rq);
3013
3014 account_numa_enqueue(rq, task_of(se));
3015 list_add(&se->group_node, &rq->cfs_tasks);
3016 }
3017 #endif
3018 cfs_rq->nr_running++;
3019 if (se_is_idle(se))
3020 cfs_rq->idle_nr_running++;
3021 }
3022
3023 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3024 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3025 {
3026 update_load_sub(&cfs_rq->load, se->load.weight);
3027 #ifdef CONFIG_SMP
3028 if (entity_is_task(se)) {
3029 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3030 list_del_init(&se->group_node);
3031 }
3032 #endif
3033 cfs_rq->nr_running--;
3034 if (se_is_idle(se))
3035 cfs_rq->idle_nr_running--;
3036 }
3037
3038 /*
3039 * Signed add and clamp on underflow.
3040 *
3041 * Explicitly do a load-store to ensure the intermediate value never hits
3042 * memory. This allows lockless observations without ever seeing the negative
3043 * values.
3044 */
3045 #define add_positive(_ptr, _val) do { \
3046 typeof(_ptr) ptr = (_ptr); \
3047 typeof(_val) val = (_val); \
3048 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3049 \
3050 res = var + val; \
3051 \
3052 if (val < 0 && res > var) \
3053 res = 0; \
3054 \
3055 WRITE_ONCE(*ptr, res); \
3056 } while (0)
3057
3058 /*
3059 * Unsigned subtract and clamp on underflow.
3060 *
3061 * Explicitly do a load-store to ensure the intermediate value never hits
3062 * memory. This allows lockless observations without ever seeing the negative
3063 * values.
3064 */
3065 #define sub_positive(_ptr, _val) do { \
3066 typeof(_ptr) ptr = (_ptr); \
3067 typeof(*ptr) val = (_val); \
3068 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3069 res = var - val; \
3070 if (res > var) \
3071 res = 0; \
3072 WRITE_ONCE(*ptr, res); \
3073 } while (0)
3074
3075 /*
3076 * Remove and clamp on negative, from a local variable.
3077 *
3078 * A variant of sub_positive(), which does not use explicit load-store
3079 * and is thus optimized for local variable updates.
3080 */
3081 #define lsub_positive(_ptr, _val) do { \
3082 typeof(_ptr) ptr = (_ptr); \
3083 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3084 } while (0)
3085
3086 #ifdef CONFIG_SMP
3087 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3088 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3089 {
3090 cfs_rq->avg.load_avg += se->avg.load_avg;
3091 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3092 }
3093
3094 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3095 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3096 {
3097 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3098 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3099 /* See update_cfs_rq_load_avg() */
3100 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3101 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3102 }
3103 #else
3104 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3105 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3106 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3107 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3108 #endif
3109
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3110 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3111 unsigned long weight)
3112 {
3113 if (se->on_rq) {
3114 /* commit outstanding execution time */
3115 if (cfs_rq->curr == se)
3116 update_curr(cfs_rq);
3117 update_load_sub(&cfs_rq->load, se->load.weight);
3118 }
3119 dequeue_load_avg(cfs_rq, se);
3120
3121 update_load_set(&se->load, weight);
3122
3123 #ifdef CONFIG_SMP
3124 do {
3125 u32 divider = get_pelt_divider(&se->avg);
3126
3127 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3128 } while (0);
3129 #endif
3130
3131 enqueue_load_avg(cfs_rq, se);
3132 if (se->on_rq)
3133 update_load_add(&cfs_rq->load, se->load.weight);
3134
3135 }
3136
reweight_task(struct task_struct * p,int prio)3137 void reweight_task(struct task_struct *p, int prio)
3138 {
3139 struct sched_entity *se = &p->se;
3140 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3141 struct load_weight *load = &se->load;
3142 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3143
3144 reweight_entity(cfs_rq, se, weight);
3145 load->inv_weight = sched_prio_to_wmult[prio];
3146 }
3147
3148 #ifdef CONFIG_FAIR_GROUP_SCHED
3149 #ifdef CONFIG_SMP
3150 /*
3151 * All this does is approximate the hierarchical proportion which includes that
3152 * global sum we all love to hate.
3153 *
3154 * That is, the weight of a group entity, is the proportional share of the
3155 * group weight based on the group runqueue weights. That is:
3156 *
3157 * tg->weight * grq->load.weight
3158 * ge->load.weight = ----------------------------- (1)
3159 * \Sum grq->load.weight
3160 *
3161 * Now, because computing that sum is prohibitively expensive to compute (been
3162 * there, done that) we approximate it with this average stuff. The average
3163 * moves slower and therefore the approximation is cheaper and more stable.
3164 *
3165 * So instead of the above, we substitute:
3166 *
3167 * grq->load.weight -> grq->avg.load_avg (2)
3168 *
3169 * which yields the following:
3170 *
3171 * tg->weight * grq->avg.load_avg
3172 * ge->load.weight = ------------------------------ (3)
3173 * tg->load_avg
3174 *
3175 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3176 *
3177 * That is shares_avg, and it is right (given the approximation (2)).
3178 *
3179 * The problem with it is that because the average is slow -- it was designed
3180 * to be exactly that of course -- this leads to transients in boundary
3181 * conditions. In specific, the case where the group was idle and we start the
3182 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3183 * yielding bad latency etc..
3184 *
3185 * Now, in that special case (1) reduces to:
3186 *
3187 * tg->weight * grq->load.weight
3188 * ge->load.weight = ----------------------------- = tg->weight (4)
3189 * grp->load.weight
3190 *
3191 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3192 *
3193 * So what we do is modify our approximation (3) to approach (4) in the (near)
3194 * UP case, like:
3195 *
3196 * ge->load.weight =
3197 *
3198 * tg->weight * grq->load.weight
3199 * --------------------------------------------------- (5)
3200 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3201 *
3202 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3203 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3204 *
3205 *
3206 * tg->weight * grq->load.weight
3207 * ge->load.weight = ----------------------------- (6)
3208 * tg_load_avg'
3209 *
3210 * Where:
3211 *
3212 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3213 * max(grq->load.weight, grq->avg.load_avg)
3214 *
3215 * And that is shares_weight and is icky. In the (near) UP case it approaches
3216 * (4) while in the normal case it approaches (3). It consistently
3217 * overestimates the ge->load.weight and therefore:
3218 *
3219 * \Sum ge->load.weight >= tg->weight
3220 *
3221 * hence icky!
3222 */
calc_group_shares(struct cfs_rq * cfs_rq)3223 static long calc_group_shares(struct cfs_rq *cfs_rq)
3224 {
3225 long tg_weight, tg_shares, load, shares;
3226 struct task_group *tg = cfs_rq->tg;
3227
3228 tg_shares = READ_ONCE(tg->shares);
3229
3230 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3231
3232 tg_weight = atomic_long_read(&tg->load_avg);
3233
3234 /* Ensure tg_weight >= load */
3235 tg_weight -= cfs_rq->tg_load_avg_contrib;
3236 tg_weight += load;
3237
3238 shares = (tg_shares * load);
3239 if (tg_weight)
3240 shares /= tg_weight;
3241
3242 /*
3243 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3244 * of a group with small tg->shares value. It is a floor value which is
3245 * assigned as a minimum load.weight to the sched_entity representing
3246 * the group on a CPU.
3247 *
3248 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3249 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3250 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3251 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3252 * instead of 0.
3253 */
3254 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3255 }
3256 #endif /* CONFIG_SMP */
3257
3258 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3259
3260 /*
3261 * Recomputes the group entity based on the current state of its group
3262 * runqueue.
3263 */
update_cfs_group(struct sched_entity * se)3264 static void update_cfs_group(struct sched_entity *se)
3265 {
3266 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3267 long shares;
3268
3269 if (!gcfs_rq)
3270 return;
3271
3272 if (throttled_hierarchy(gcfs_rq))
3273 return;
3274
3275 #ifndef CONFIG_SMP
3276 shares = READ_ONCE(gcfs_rq->tg->shares);
3277
3278 if (likely(se->load.weight == shares))
3279 return;
3280 #else
3281 shares = calc_group_shares(gcfs_rq);
3282 #endif
3283
3284 reweight_entity(cfs_rq_of(se), se, shares);
3285 }
3286
3287 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3288 static inline void update_cfs_group(struct sched_entity *se)
3289 {
3290 }
3291 #endif /* CONFIG_FAIR_GROUP_SCHED */
3292
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3293 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3294 {
3295 struct rq *rq = rq_of(cfs_rq);
3296
3297 if (&rq->cfs == cfs_rq) {
3298 /*
3299 * There are a few boundary cases this might miss but it should
3300 * get called often enough that that should (hopefully) not be
3301 * a real problem.
3302 *
3303 * It will not get called when we go idle, because the idle
3304 * thread is a different class (!fair), nor will the utilization
3305 * number include things like RT tasks.
3306 *
3307 * As is, the util number is not freq-invariant (we'd have to
3308 * implement arch_scale_freq_capacity() for that).
3309 *
3310 * See cpu_util_cfs().
3311 */
3312 cpufreq_update_util(rq, flags);
3313 }
3314 }
3315
3316 #ifdef CONFIG_SMP
3317 #ifdef CONFIG_FAIR_GROUP_SCHED
3318 /*
3319 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3320 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3321 * bottom-up, we only have to test whether the cfs_rq before us on the list
3322 * is our child.
3323 * If cfs_rq is not on the list, test whether a child needs its to be added to
3324 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3325 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)3326 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3327 {
3328 struct cfs_rq *prev_cfs_rq;
3329 struct list_head *prev;
3330
3331 if (cfs_rq->on_list) {
3332 prev = cfs_rq->leaf_cfs_rq_list.prev;
3333 } else {
3334 struct rq *rq = rq_of(cfs_rq);
3335
3336 prev = rq->tmp_alone_branch;
3337 }
3338
3339 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3340
3341 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3342 }
3343
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)3344 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3345 {
3346 if (cfs_rq->load.weight)
3347 return false;
3348
3349 if (cfs_rq->avg.load_sum)
3350 return false;
3351
3352 if (cfs_rq->avg.util_sum)
3353 return false;
3354
3355 if (cfs_rq->avg.runnable_sum)
3356 return false;
3357
3358 if (child_cfs_rq_on_list(cfs_rq))
3359 return false;
3360
3361 /*
3362 * _avg must be null when _sum are null because _avg = _sum / divider
3363 * Make sure that rounding and/or propagation of PELT values never
3364 * break this.
3365 */
3366 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3367 cfs_rq->avg.util_avg ||
3368 cfs_rq->avg.runnable_avg);
3369
3370 return true;
3371 }
3372
3373 /**
3374 * update_tg_load_avg - update the tg's load avg
3375 * @cfs_rq: the cfs_rq whose avg changed
3376 *
3377 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3378 * However, because tg->load_avg is a global value there are performance
3379 * considerations.
3380 *
3381 * In order to avoid having to look at the other cfs_rq's, we use a
3382 * differential update where we store the last value we propagated. This in
3383 * turn allows skipping updates if the differential is 'small'.
3384 *
3385 * Updating tg's load_avg is necessary before update_cfs_share().
3386 */
update_tg_load_avg(struct cfs_rq * cfs_rq)3387 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3388 {
3389 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3390
3391 /*
3392 * No need to update load_avg for root_task_group as it is not used.
3393 */
3394 if (cfs_rq->tg == &root_task_group)
3395 return;
3396
3397 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3398 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3399 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3400 }
3401 }
3402
3403 /*
3404 * Called within set_task_rq() right before setting a task's CPU. The
3405 * caller only guarantees p->pi_lock is held; no other assumptions,
3406 * including the state of rq->lock, should be made.
3407 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3408 void set_task_rq_fair(struct sched_entity *se,
3409 struct cfs_rq *prev, struct cfs_rq *next)
3410 {
3411 u64 p_last_update_time;
3412 u64 n_last_update_time;
3413
3414 if (!sched_feat(ATTACH_AGE_LOAD))
3415 return;
3416
3417 /*
3418 * We are supposed to update the task to "current" time, then its up to
3419 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3420 * getting what current time is, so simply throw away the out-of-date
3421 * time. This will result in the wakee task is less decayed, but giving
3422 * the wakee more load sounds not bad.
3423 */
3424 if (!(se->avg.last_update_time && prev))
3425 return;
3426
3427 #ifndef CONFIG_64BIT
3428 {
3429 u64 p_last_update_time_copy;
3430 u64 n_last_update_time_copy;
3431
3432 do {
3433 p_last_update_time_copy = prev->load_last_update_time_copy;
3434 n_last_update_time_copy = next->load_last_update_time_copy;
3435
3436 smp_rmb();
3437
3438 p_last_update_time = prev->avg.last_update_time;
3439 n_last_update_time = next->avg.last_update_time;
3440
3441 } while (p_last_update_time != p_last_update_time_copy ||
3442 n_last_update_time != n_last_update_time_copy);
3443 }
3444 #else
3445 p_last_update_time = prev->avg.last_update_time;
3446 n_last_update_time = next->avg.last_update_time;
3447 #endif
3448 __update_load_avg_blocked_se(p_last_update_time, se);
3449 se->avg.last_update_time = n_last_update_time;
3450 }
3451
3452 /*
3453 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3454 * propagate its contribution. The key to this propagation is the invariant
3455 * that for each group:
3456 *
3457 * ge->avg == grq->avg (1)
3458 *
3459 * _IFF_ we look at the pure running and runnable sums. Because they
3460 * represent the very same entity, just at different points in the hierarchy.
3461 *
3462 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3463 * and simply copies the running/runnable sum over (but still wrong, because
3464 * the group entity and group rq do not have their PELT windows aligned).
3465 *
3466 * However, update_tg_cfs_load() is more complex. So we have:
3467 *
3468 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3469 *
3470 * And since, like util, the runnable part should be directly transferable,
3471 * the following would _appear_ to be the straight forward approach:
3472 *
3473 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3474 *
3475 * And per (1) we have:
3476 *
3477 * ge->avg.runnable_avg == grq->avg.runnable_avg
3478 *
3479 * Which gives:
3480 *
3481 * ge->load.weight * grq->avg.load_avg
3482 * ge->avg.load_avg = ----------------------------------- (4)
3483 * grq->load.weight
3484 *
3485 * Except that is wrong!
3486 *
3487 * Because while for entities historical weight is not important and we
3488 * really only care about our future and therefore can consider a pure
3489 * runnable sum, runqueues can NOT do this.
3490 *
3491 * We specifically want runqueues to have a load_avg that includes
3492 * historical weights. Those represent the blocked load, the load we expect
3493 * to (shortly) return to us. This only works by keeping the weights as
3494 * integral part of the sum. We therefore cannot decompose as per (3).
3495 *
3496 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3497 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3498 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3499 * runnable section of these tasks overlap (or not). If they were to perfectly
3500 * align the rq as a whole would be runnable 2/3 of the time. If however we
3501 * always have at least 1 runnable task, the rq as a whole is always runnable.
3502 *
3503 * So we'll have to approximate.. :/
3504 *
3505 * Given the constraint:
3506 *
3507 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3508 *
3509 * We can construct a rule that adds runnable to a rq by assuming minimal
3510 * overlap.
3511 *
3512 * On removal, we'll assume each task is equally runnable; which yields:
3513 *
3514 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3515 *
3516 * XXX: only do this for the part of runnable > running ?
3517 *
3518 */
3519 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3520 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3521 {
3522 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3523 u32 new_sum, divider;
3524
3525 /* Nothing to update */
3526 if (!delta_avg)
3527 return;
3528
3529 /*
3530 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3531 * See ___update_load_avg() for details.
3532 */
3533 divider = get_pelt_divider(&cfs_rq->avg);
3534
3535
3536 /* Set new sched_entity's utilization */
3537 se->avg.util_avg = gcfs_rq->avg.util_avg;
3538 new_sum = se->avg.util_avg * divider;
3539 delta_sum = (long)new_sum - (long)se->avg.util_sum;
3540 se->avg.util_sum = new_sum;
3541
3542 /* Update parent cfs_rq utilization */
3543 add_positive(&cfs_rq->avg.util_avg, delta_avg);
3544 add_positive(&cfs_rq->avg.util_sum, delta_sum);
3545
3546 /* See update_cfs_rq_load_avg() */
3547 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3548 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3549 }
3550
3551 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3552 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3553 {
3554 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3555 u32 new_sum, divider;
3556
3557 /* Nothing to update */
3558 if (!delta_avg)
3559 return;
3560
3561 /*
3562 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3563 * See ___update_load_avg() for details.
3564 */
3565 divider = get_pelt_divider(&cfs_rq->avg);
3566
3567 /* Set new sched_entity's runnable */
3568 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3569 new_sum = se->avg.runnable_avg * divider;
3570 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3571 se->avg.runnable_sum = new_sum;
3572
3573 /* Update parent cfs_rq runnable */
3574 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3575 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3576 /* See update_cfs_rq_load_avg() */
3577 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3578 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3579 }
3580
3581 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3582 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3583 {
3584 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3585 unsigned long load_avg;
3586 u64 load_sum = 0;
3587 s64 delta_sum;
3588 u32 divider;
3589
3590 if (!runnable_sum)
3591 return;
3592
3593 gcfs_rq->prop_runnable_sum = 0;
3594
3595 /*
3596 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3597 * See ___update_load_avg() for details.
3598 */
3599 divider = get_pelt_divider(&cfs_rq->avg);
3600
3601 if (runnable_sum >= 0) {
3602 /*
3603 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3604 * the CPU is saturated running == runnable.
3605 */
3606 runnable_sum += se->avg.load_sum;
3607 runnable_sum = min_t(long, runnable_sum, divider);
3608 } else {
3609 /*
3610 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3611 * assuming all tasks are equally runnable.
3612 */
3613 if (scale_load_down(gcfs_rq->load.weight)) {
3614 load_sum = div_u64(gcfs_rq->avg.load_sum,
3615 scale_load_down(gcfs_rq->load.weight));
3616 }
3617
3618 /* But make sure to not inflate se's runnable */
3619 runnable_sum = min(se->avg.load_sum, load_sum);
3620 }
3621
3622 /*
3623 * runnable_sum can't be lower than running_sum
3624 * Rescale running sum to be in the same range as runnable sum
3625 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3626 * runnable_sum is in [0 : LOAD_AVG_MAX]
3627 */
3628 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3629 runnable_sum = max(runnable_sum, running_sum);
3630
3631 load_sum = se_weight(se) * runnable_sum;
3632 load_avg = div_u64(load_sum, divider);
3633
3634 delta_avg = load_avg - se->avg.load_avg;
3635 if (!delta_avg)
3636 return;
3637
3638 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3639
3640 se->avg.load_sum = runnable_sum;
3641 se->avg.load_avg = load_avg;
3642 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3643 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3644 /* See update_cfs_rq_load_avg() */
3645 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3646 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3647 }
3648
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3649 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3650 {
3651 cfs_rq->propagate = 1;
3652 cfs_rq->prop_runnable_sum += runnable_sum;
3653 }
3654
3655 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3656 static inline int propagate_entity_load_avg(struct sched_entity *se)
3657 {
3658 struct cfs_rq *cfs_rq, *gcfs_rq;
3659
3660 if (entity_is_task(se))
3661 return 0;
3662
3663 gcfs_rq = group_cfs_rq(se);
3664 if (!gcfs_rq->propagate)
3665 return 0;
3666
3667 gcfs_rq->propagate = 0;
3668
3669 cfs_rq = cfs_rq_of(se);
3670
3671 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3672
3673 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3674 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3675 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3676
3677 trace_pelt_cfs_tp(cfs_rq);
3678 trace_pelt_se_tp(se);
3679
3680 return 1;
3681 }
3682
3683 /*
3684 * Check if we need to update the load and the utilization of a blocked
3685 * group_entity:
3686 */
skip_blocked_update(struct sched_entity * se)3687 static inline bool skip_blocked_update(struct sched_entity *se)
3688 {
3689 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3690
3691 /*
3692 * If sched_entity still have not zero load or utilization, we have to
3693 * decay it:
3694 */
3695 if (se->avg.load_avg || se->avg.util_avg)
3696 return false;
3697
3698 /*
3699 * If there is a pending propagation, we have to update the load and
3700 * the utilization of the sched_entity:
3701 */
3702 if (gcfs_rq->propagate)
3703 return false;
3704
3705 /*
3706 * Otherwise, the load and the utilization of the sched_entity is
3707 * already zero and there is no pending propagation, so it will be a
3708 * waste of time to try to decay it:
3709 */
3710 return true;
3711 }
3712
3713 #else /* CONFIG_FAIR_GROUP_SCHED */
3714
update_tg_load_avg(struct cfs_rq * cfs_rq)3715 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3716
propagate_entity_load_avg(struct sched_entity * se)3717 static inline int propagate_entity_load_avg(struct sched_entity *se)
3718 {
3719 return 0;
3720 }
3721
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3722 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3723
3724 #endif /* CONFIG_FAIR_GROUP_SCHED */
3725
3726 /**
3727 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3728 * @now: current time, as per cfs_rq_clock_pelt()
3729 * @cfs_rq: cfs_rq to update
3730 *
3731 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3732 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3733 * post_init_entity_util_avg().
3734 *
3735 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3736 *
3737 * Return: true if the load decayed or we removed load.
3738 *
3739 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3740 * call update_tg_load_avg() when this function returns true.
3741 */
3742 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3743 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3744 {
3745 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3746 struct sched_avg *sa = &cfs_rq->avg;
3747 int decayed = 0;
3748
3749 if (cfs_rq->removed.nr) {
3750 unsigned long r;
3751 u32 divider = get_pelt_divider(&cfs_rq->avg);
3752
3753 raw_spin_lock(&cfs_rq->removed.lock);
3754 swap(cfs_rq->removed.util_avg, removed_util);
3755 swap(cfs_rq->removed.load_avg, removed_load);
3756 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3757 cfs_rq->removed.nr = 0;
3758 raw_spin_unlock(&cfs_rq->removed.lock);
3759
3760 r = removed_load;
3761 sub_positive(&sa->load_avg, r);
3762 sub_positive(&sa->load_sum, r * divider);
3763 /* See sa->util_sum below */
3764 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
3765
3766 r = removed_util;
3767 sub_positive(&sa->util_avg, r);
3768 sub_positive(&sa->util_sum, r * divider);
3769 /*
3770 * Because of rounding, se->util_sum might ends up being +1 more than
3771 * cfs->util_sum. Although this is not a problem by itself, detaching
3772 * a lot of tasks with the rounding problem between 2 updates of
3773 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3774 * cfs_util_avg is not.
3775 * Check that util_sum is still above its lower bound for the new
3776 * util_avg. Given that period_contrib might have moved since the last
3777 * sync, we are only sure that util_sum must be above or equal to
3778 * util_avg * minimum possible divider
3779 */
3780 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3781
3782 r = removed_runnable;
3783 sub_positive(&sa->runnable_avg, r);
3784 sub_positive(&sa->runnable_sum, r * divider);
3785 /* See sa->util_sum above */
3786 sa->runnable_sum = max_t(u32, sa->runnable_sum,
3787 sa->runnable_avg * PELT_MIN_DIVIDER);
3788
3789 /*
3790 * removed_runnable is the unweighted version of removed_load so we
3791 * can use it to estimate removed_load_sum.
3792 */
3793 add_tg_cfs_propagate(cfs_rq,
3794 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3795
3796 decayed = 1;
3797 }
3798
3799 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3800
3801 #ifndef CONFIG_64BIT
3802 smp_wmb();
3803 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3804 #endif
3805
3806 return decayed;
3807 }
3808
3809 /**
3810 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3811 * @cfs_rq: cfs_rq to attach to
3812 * @se: sched_entity to attach
3813 *
3814 * Must call update_cfs_rq_load_avg() before this, since we rely on
3815 * cfs_rq->avg.last_update_time being current.
3816 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3817 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3818 {
3819 /*
3820 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3821 * See ___update_load_avg() for details.
3822 */
3823 u32 divider = get_pelt_divider(&cfs_rq->avg);
3824
3825 /*
3826 * When we attach the @se to the @cfs_rq, we must align the decay
3827 * window because without that, really weird and wonderful things can
3828 * happen.
3829 *
3830 * XXX illustrate
3831 */
3832 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3833 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3834
3835 /*
3836 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3837 * period_contrib. This isn't strictly correct, but since we're
3838 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3839 * _sum a little.
3840 */
3841 se->avg.util_sum = se->avg.util_avg * divider;
3842
3843 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3844
3845 se->avg.load_sum = se->avg.load_avg * divider;
3846 if (se_weight(se) < se->avg.load_sum)
3847 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3848 else
3849 se->avg.load_sum = 1;
3850
3851 enqueue_load_avg(cfs_rq, se);
3852 cfs_rq->avg.util_avg += se->avg.util_avg;
3853 cfs_rq->avg.util_sum += se->avg.util_sum;
3854 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3855 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3856
3857 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3858
3859 cfs_rq_util_change(cfs_rq, 0);
3860
3861 trace_pelt_cfs_tp(cfs_rq);
3862 }
3863
3864 /**
3865 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3866 * @cfs_rq: cfs_rq to detach from
3867 * @se: sched_entity to detach
3868 *
3869 * Must call update_cfs_rq_load_avg() before this, since we rely on
3870 * cfs_rq->avg.last_update_time being current.
3871 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3872 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3873 {
3874 dequeue_load_avg(cfs_rq, se);
3875 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3876 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3877 /* See update_cfs_rq_load_avg() */
3878 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3879 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3880
3881 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3882 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3883 /* See update_cfs_rq_load_avg() */
3884 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3885 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3886
3887 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3888
3889 cfs_rq_util_change(cfs_rq, 0);
3890
3891 trace_pelt_cfs_tp(cfs_rq);
3892 }
3893
3894 /*
3895 * Optional action to be done while updating the load average
3896 */
3897 #define UPDATE_TG 0x1
3898 #define SKIP_AGE_LOAD 0x2
3899 #define DO_ATTACH 0x4
3900
3901 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3902 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3903 {
3904 u64 now = cfs_rq_clock_pelt(cfs_rq);
3905 int decayed;
3906
3907 /*
3908 * Track task load average for carrying it to new CPU after migrated, and
3909 * track group sched_entity load average for task_h_load calc in migration
3910 */
3911 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3912 __update_load_avg_se(now, cfs_rq, se);
3913
3914 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3915 decayed |= propagate_entity_load_avg(se);
3916
3917 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3918
3919 /*
3920 * DO_ATTACH means we're here from enqueue_entity().
3921 * !last_update_time means we've passed through
3922 * migrate_task_rq_fair() indicating we migrated.
3923 *
3924 * IOW we're enqueueing a task on a new CPU.
3925 */
3926 attach_entity_load_avg(cfs_rq, se);
3927 update_tg_load_avg(cfs_rq);
3928
3929 } else if (decayed) {
3930 cfs_rq_util_change(cfs_rq, 0);
3931
3932 if (flags & UPDATE_TG)
3933 update_tg_load_avg(cfs_rq);
3934 }
3935 }
3936
3937 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3938 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3939 {
3940 u64 last_update_time_copy;
3941 u64 last_update_time;
3942
3943 do {
3944 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3945 smp_rmb();
3946 last_update_time = cfs_rq->avg.last_update_time;
3947 } while (last_update_time != last_update_time_copy);
3948
3949 return last_update_time;
3950 }
3951 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3952 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3953 {
3954 return cfs_rq->avg.last_update_time;
3955 }
3956 #endif
3957
3958 /*
3959 * Synchronize entity load avg of dequeued entity without locking
3960 * the previous rq.
3961 */
sync_entity_load_avg(struct sched_entity * se)3962 static void sync_entity_load_avg(struct sched_entity *se)
3963 {
3964 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3965 u64 last_update_time;
3966
3967 last_update_time = cfs_rq_last_update_time(cfs_rq);
3968 __update_load_avg_blocked_se(last_update_time, se);
3969 }
3970
3971 /*
3972 * Task first catches up with cfs_rq, and then subtract
3973 * itself from the cfs_rq (task must be off the queue now).
3974 */
remove_entity_load_avg(struct sched_entity * se)3975 static void remove_entity_load_avg(struct sched_entity *se)
3976 {
3977 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3978 unsigned long flags;
3979
3980 /*
3981 * tasks cannot exit without having gone through wake_up_new_task() ->
3982 * post_init_entity_util_avg() which will have added things to the
3983 * cfs_rq, so we can remove unconditionally.
3984 */
3985
3986 sync_entity_load_avg(se);
3987
3988 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3989 ++cfs_rq->removed.nr;
3990 cfs_rq->removed.util_avg += se->avg.util_avg;
3991 cfs_rq->removed.load_avg += se->avg.load_avg;
3992 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3993 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3994 }
3995
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)3996 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3997 {
3998 return cfs_rq->avg.runnable_avg;
3999 }
4000
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4001 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4002 {
4003 return cfs_rq->avg.load_avg;
4004 }
4005
4006 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4007
task_util(struct task_struct * p)4008 static inline unsigned long task_util(struct task_struct *p)
4009 {
4010 return READ_ONCE(p->se.avg.util_avg);
4011 }
4012
_task_util_est(struct task_struct * p)4013 static inline unsigned long _task_util_est(struct task_struct *p)
4014 {
4015 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4016
4017 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4018 }
4019
task_util_est(struct task_struct * p)4020 static inline unsigned long task_util_est(struct task_struct *p)
4021 {
4022 return max(task_util(p), _task_util_est(p));
4023 }
4024
4025 #ifdef CONFIG_UCLAMP_TASK
uclamp_task_util(struct task_struct * p)4026 static inline unsigned long uclamp_task_util(struct task_struct *p)
4027 {
4028 return clamp(task_util_est(p),
4029 uclamp_eff_value(p, UCLAMP_MIN),
4030 uclamp_eff_value(p, UCLAMP_MAX));
4031 }
4032 #else
uclamp_task_util(struct task_struct * p)4033 static inline unsigned long uclamp_task_util(struct task_struct *p)
4034 {
4035 return task_util_est(p);
4036 }
4037 #endif
4038
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4039 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4040 struct task_struct *p)
4041 {
4042 unsigned int enqueued;
4043
4044 if (!sched_feat(UTIL_EST))
4045 return;
4046
4047 /* Update root cfs_rq's estimated utilization */
4048 enqueued = cfs_rq->avg.util_est.enqueued;
4049 enqueued += _task_util_est(p);
4050 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4051
4052 trace_sched_util_est_cfs_tp(cfs_rq);
4053 }
4054
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4055 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4056 struct task_struct *p)
4057 {
4058 unsigned int enqueued;
4059
4060 if (!sched_feat(UTIL_EST))
4061 return;
4062
4063 /* Update root cfs_rq's estimated utilization */
4064 enqueued = cfs_rq->avg.util_est.enqueued;
4065 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4066 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4067
4068 trace_sched_util_est_cfs_tp(cfs_rq);
4069 }
4070
4071 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4072
4073 /*
4074 * Check if a (signed) value is within a specified (unsigned) margin,
4075 * based on the observation that:
4076 *
4077 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4078 *
4079 * NOTE: this only works when value + margin < INT_MAX.
4080 */
within_margin(int value,int margin)4081 static inline bool within_margin(int value, int margin)
4082 {
4083 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4084 }
4085
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4086 static inline void util_est_update(struct cfs_rq *cfs_rq,
4087 struct task_struct *p,
4088 bool task_sleep)
4089 {
4090 long last_ewma_diff, last_enqueued_diff;
4091 struct util_est ue;
4092
4093 if (!sched_feat(UTIL_EST))
4094 return;
4095
4096 /*
4097 * Skip update of task's estimated utilization when the task has not
4098 * yet completed an activation, e.g. being migrated.
4099 */
4100 if (!task_sleep)
4101 return;
4102
4103 /*
4104 * If the PELT values haven't changed since enqueue time,
4105 * skip the util_est update.
4106 */
4107 ue = p->se.avg.util_est;
4108 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4109 return;
4110
4111 last_enqueued_diff = ue.enqueued;
4112
4113 /*
4114 * Reset EWMA on utilization increases, the moving average is used only
4115 * to smooth utilization decreases.
4116 */
4117 ue.enqueued = task_util(p);
4118 if (sched_feat(UTIL_EST_FASTUP)) {
4119 if (ue.ewma < ue.enqueued) {
4120 ue.ewma = ue.enqueued;
4121 goto done;
4122 }
4123 }
4124
4125 /*
4126 * Skip update of task's estimated utilization when its members are
4127 * already ~1% close to its last activation value.
4128 */
4129 last_ewma_diff = ue.enqueued - ue.ewma;
4130 last_enqueued_diff -= ue.enqueued;
4131 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4132 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4133 goto done;
4134
4135 return;
4136 }
4137
4138 /*
4139 * To avoid overestimation of actual task utilization, skip updates if
4140 * we cannot grant there is idle time in this CPU.
4141 */
4142 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4143 return;
4144
4145 /*
4146 * Update Task's estimated utilization
4147 *
4148 * When *p completes an activation we can consolidate another sample
4149 * of the task size. This is done by storing the current PELT value
4150 * as ue.enqueued and by using this value to update the Exponential
4151 * Weighted Moving Average (EWMA):
4152 *
4153 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4154 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4155 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4156 * = w * ( last_ewma_diff ) + ewma(t-1)
4157 * = w * (last_ewma_diff + ewma(t-1) / w)
4158 *
4159 * Where 'w' is the weight of new samples, which is configured to be
4160 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4161 */
4162 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4163 ue.ewma += last_ewma_diff;
4164 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4165 done:
4166 ue.enqueued |= UTIL_AVG_UNCHANGED;
4167 WRITE_ONCE(p->se.avg.util_est, ue);
4168
4169 trace_sched_util_est_se_tp(&p->se);
4170 }
4171
task_fits_capacity(struct task_struct * p,unsigned long capacity)4172 static inline int task_fits_capacity(struct task_struct *p,
4173 unsigned long capacity)
4174 {
4175 return fits_capacity(uclamp_task_util(p), capacity);
4176 }
4177
update_misfit_status(struct task_struct * p,struct rq * rq)4178 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4179 {
4180 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4181 return;
4182
4183 if (!p || p->nr_cpus_allowed == 1) {
4184 rq->misfit_task_load = 0;
4185 return;
4186 }
4187
4188 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4189 rq->misfit_task_load = 0;
4190 return;
4191 }
4192
4193 /*
4194 * Make sure that misfit_task_load will not be null even if
4195 * task_h_load() returns 0.
4196 */
4197 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4198 }
4199
4200 #else /* CONFIG_SMP */
4201
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4202 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4203 {
4204 return true;
4205 }
4206
4207 #define UPDATE_TG 0x0
4208 #define SKIP_AGE_LOAD 0x0
4209 #define DO_ATTACH 0x0
4210
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4211 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4212 {
4213 cfs_rq_util_change(cfs_rq, 0);
4214 }
4215
remove_entity_load_avg(struct sched_entity * se)4216 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4217
4218 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4219 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4220 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4221 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4222
newidle_balance(struct rq * rq,struct rq_flags * rf)4223 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4224 {
4225 return 0;
4226 }
4227
4228 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4229 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4230
4231 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4232 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4233
4234 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4235 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4236 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4237 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4238
4239 #endif /* CONFIG_SMP */
4240
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4241 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4242 {
4243 #ifdef CONFIG_SCHED_DEBUG
4244 s64 d = se->vruntime - cfs_rq->min_vruntime;
4245
4246 if (d < 0)
4247 d = -d;
4248
4249 if (d > 3*sysctl_sched_latency)
4250 schedstat_inc(cfs_rq->nr_spread_over);
4251 #endif
4252 }
4253
4254 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4255 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4256 {
4257 u64 vruntime = cfs_rq->min_vruntime;
4258
4259 /*
4260 * The 'current' period is already promised to the current tasks,
4261 * however the extra weight of the new task will slow them down a
4262 * little, place the new task so that it fits in the slot that
4263 * stays open at the end.
4264 */
4265 if (initial && sched_feat(START_DEBIT))
4266 vruntime += sched_vslice(cfs_rq, se);
4267
4268 /* sleeps up to a single latency don't count. */
4269 if (!initial) {
4270 unsigned long thresh;
4271
4272 if (se_is_idle(se))
4273 thresh = sysctl_sched_min_granularity;
4274 else
4275 thresh = sysctl_sched_latency;
4276
4277 /*
4278 * Halve their sleep time's effect, to allow
4279 * for a gentler effect of sleepers:
4280 */
4281 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4282 thresh >>= 1;
4283
4284 vruntime -= thresh;
4285 }
4286
4287 /* ensure we never gain time by being placed backwards. */
4288 se->vruntime = max_vruntime(se->vruntime, vruntime);
4289 }
4290
4291 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4292
4293 static inline bool cfs_bandwidth_used(void);
4294
4295 /*
4296 * MIGRATION
4297 *
4298 * dequeue
4299 * update_curr()
4300 * update_min_vruntime()
4301 * vruntime -= min_vruntime
4302 *
4303 * enqueue
4304 * update_curr()
4305 * update_min_vruntime()
4306 * vruntime += min_vruntime
4307 *
4308 * this way the vruntime transition between RQs is done when both
4309 * min_vruntime are up-to-date.
4310 *
4311 * WAKEUP (remote)
4312 *
4313 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4314 * vruntime -= min_vruntime
4315 *
4316 * enqueue
4317 * update_curr()
4318 * update_min_vruntime()
4319 * vruntime += min_vruntime
4320 *
4321 * this way we don't have the most up-to-date min_vruntime on the originating
4322 * CPU and an up-to-date min_vruntime on the destination CPU.
4323 */
4324
4325 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4326 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4327 {
4328 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4329 bool curr = cfs_rq->curr == se;
4330
4331 /*
4332 * If we're the current task, we must renormalise before calling
4333 * update_curr().
4334 */
4335 if (renorm && curr)
4336 se->vruntime += cfs_rq->min_vruntime;
4337
4338 update_curr(cfs_rq);
4339
4340 /*
4341 * Otherwise, renormalise after, such that we're placed at the current
4342 * moment in time, instead of some random moment in the past. Being
4343 * placed in the past could significantly boost this task to the
4344 * fairness detriment of existing tasks.
4345 */
4346 if (renorm && !curr)
4347 se->vruntime += cfs_rq->min_vruntime;
4348
4349 /*
4350 * When enqueuing a sched_entity, we must:
4351 * - Update loads to have both entity and cfs_rq synced with now.
4352 * - Add its load to cfs_rq->runnable_avg
4353 * - For group_entity, update its weight to reflect the new share of
4354 * its group cfs_rq
4355 * - Add its new weight to cfs_rq->load.weight
4356 */
4357 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4358 se_update_runnable(se);
4359 update_cfs_group(se);
4360 account_entity_enqueue(cfs_rq, se);
4361
4362 if (flags & ENQUEUE_WAKEUP)
4363 place_entity(cfs_rq, se, 0);
4364
4365 check_schedstat_required();
4366 update_stats_enqueue_fair(cfs_rq, se, flags);
4367 check_spread(cfs_rq, se);
4368 if (!curr)
4369 __enqueue_entity(cfs_rq, se);
4370 se->on_rq = 1;
4371
4372 /*
4373 * When bandwidth control is enabled, cfs might have been removed
4374 * because of a parent been throttled but cfs->nr_running > 1. Try to
4375 * add it unconditionally.
4376 */
4377 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4378 list_add_leaf_cfs_rq(cfs_rq);
4379
4380 if (cfs_rq->nr_running == 1)
4381 check_enqueue_throttle(cfs_rq);
4382 }
4383
__clear_buddies_last(struct sched_entity * se)4384 static void __clear_buddies_last(struct sched_entity *se)
4385 {
4386 for_each_sched_entity(se) {
4387 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4388 if (cfs_rq->last != se)
4389 break;
4390
4391 cfs_rq->last = NULL;
4392 }
4393 }
4394
__clear_buddies_next(struct sched_entity * se)4395 static void __clear_buddies_next(struct sched_entity *se)
4396 {
4397 for_each_sched_entity(se) {
4398 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4399 if (cfs_rq->next != se)
4400 break;
4401
4402 cfs_rq->next = NULL;
4403 }
4404 }
4405
__clear_buddies_skip(struct sched_entity * se)4406 static void __clear_buddies_skip(struct sched_entity *se)
4407 {
4408 for_each_sched_entity(se) {
4409 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4410 if (cfs_rq->skip != se)
4411 break;
4412
4413 cfs_rq->skip = NULL;
4414 }
4415 }
4416
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4417 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4418 {
4419 if (cfs_rq->last == se)
4420 __clear_buddies_last(se);
4421
4422 if (cfs_rq->next == se)
4423 __clear_buddies_next(se);
4424
4425 if (cfs_rq->skip == se)
4426 __clear_buddies_skip(se);
4427 }
4428
4429 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4430
4431 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4432 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4433 {
4434 /*
4435 * Update run-time statistics of the 'current'.
4436 */
4437 update_curr(cfs_rq);
4438
4439 /*
4440 * When dequeuing a sched_entity, we must:
4441 * - Update loads to have both entity and cfs_rq synced with now.
4442 * - Subtract its load from the cfs_rq->runnable_avg.
4443 * - Subtract its previous weight from cfs_rq->load.weight.
4444 * - For group entity, update its weight to reflect the new share
4445 * of its group cfs_rq.
4446 */
4447 update_load_avg(cfs_rq, se, UPDATE_TG);
4448 se_update_runnable(se);
4449
4450 update_stats_dequeue_fair(cfs_rq, se, flags);
4451
4452 clear_buddies(cfs_rq, se);
4453
4454 if (se != cfs_rq->curr)
4455 __dequeue_entity(cfs_rq, se);
4456 se->on_rq = 0;
4457 account_entity_dequeue(cfs_rq, se);
4458
4459 /*
4460 * Normalize after update_curr(); which will also have moved
4461 * min_vruntime if @se is the one holding it back. But before doing
4462 * update_min_vruntime() again, which will discount @se's position and
4463 * can move min_vruntime forward still more.
4464 */
4465 if (!(flags & DEQUEUE_SLEEP))
4466 se->vruntime -= cfs_rq->min_vruntime;
4467
4468 /* return excess runtime on last dequeue */
4469 return_cfs_rq_runtime(cfs_rq);
4470
4471 update_cfs_group(se);
4472
4473 /*
4474 * Now advance min_vruntime if @se was the entity holding it back,
4475 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4476 * put back on, and if we advance min_vruntime, we'll be placed back
4477 * further than we started -- ie. we'll be penalized.
4478 */
4479 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4480 update_min_vruntime(cfs_rq);
4481 }
4482
4483 /*
4484 * Preempt the current task with a newly woken task if needed:
4485 */
4486 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4487 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4488 {
4489 unsigned long ideal_runtime, delta_exec;
4490 struct sched_entity *se;
4491 s64 delta;
4492
4493 ideal_runtime = sched_slice(cfs_rq, curr);
4494 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4495 if (delta_exec > ideal_runtime) {
4496 resched_curr(rq_of(cfs_rq));
4497 /*
4498 * The current task ran long enough, ensure it doesn't get
4499 * re-elected due to buddy favours.
4500 */
4501 clear_buddies(cfs_rq, curr);
4502 return;
4503 }
4504
4505 /*
4506 * Ensure that a task that missed wakeup preemption by a
4507 * narrow margin doesn't have to wait for a full slice.
4508 * This also mitigates buddy induced latencies under load.
4509 */
4510 if (delta_exec < sysctl_sched_min_granularity)
4511 return;
4512
4513 se = __pick_first_entity(cfs_rq);
4514 delta = curr->vruntime - se->vruntime;
4515
4516 if (delta < 0)
4517 return;
4518
4519 if (delta > ideal_runtime)
4520 resched_curr(rq_of(cfs_rq));
4521 }
4522
4523 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4524 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4525 {
4526 clear_buddies(cfs_rq, se);
4527
4528 /* 'current' is not kept within the tree. */
4529 if (se->on_rq) {
4530 /*
4531 * Any task has to be enqueued before it get to execute on
4532 * a CPU. So account for the time it spent waiting on the
4533 * runqueue.
4534 */
4535 update_stats_wait_end_fair(cfs_rq, se);
4536 __dequeue_entity(cfs_rq, se);
4537 update_load_avg(cfs_rq, se, UPDATE_TG);
4538 }
4539
4540 update_stats_curr_start(cfs_rq, se);
4541 cfs_rq->curr = se;
4542
4543 /*
4544 * Track our maximum slice length, if the CPU's load is at
4545 * least twice that of our own weight (i.e. dont track it
4546 * when there are only lesser-weight tasks around):
4547 */
4548 if (schedstat_enabled() &&
4549 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4550 struct sched_statistics *stats;
4551
4552 stats = __schedstats_from_se(se);
4553 __schedstat_set(stats->slice_max,
4554 max((u64)stats->slice_max,
4555 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4556 }
4557
4558 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4559 }
4560
4561 static int
4562 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4563
4564 /*
4565 * Pick the next process, keeping these things in mind, in this order:
4566 * 1) keep things fair between processes/task groups
4567 * 2) pick the "next" process, since someone really wants that to run
4568 * 3) pick the "last" process, for cache locality
4569 * 4) do not run the "skip" process, if something else is available
4570 */
4571 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4572 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4573 {
4574 struct sched_entity *left = __pick_first_entity(cfs_rq);
4575 struct sched_entity *se;
4576
4577 /*
4578 * If curr is set we have to see if its left of the leftmost entity
4579 * still in the tree, provided there was anything in the tree at all.
4580 */
4581 if (!left || (curr && entity_before(curr, left)))
4582 left = curr;
4583
4584 se = left; /* ideally we run the leftmost entity */
4585
4586 /*
4587 * Avoid running the skip buddy, if running something else can
4588 * be done without getting too unfair.
4589 */
4590 if (cfs_rq->skip && cfs_rq->skip == se) {
4591 struct sched_entity *second;
4592
4593 if (se == curr) {
4594 second = __pick_first_entity(cfs_rq);
4595 } else {
4596 second = __pick_next_entity(se);
4597 if (!second || (curr && entity_before(curr, second)))
4598 second = curr;
4599 }
4600
4601 if (second && wakeup_preempt_entity(second, left) < 1)
4602 se = second;
4603 }
4604
4605 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4606 /*
4607 * Someone really wants this to run. If it's not unfair, run it.
4608 */
4609 se = cfs_rq->next;
4610 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4611 /*
4612 * Prefer last buddy, try to return the CPU to a preempted task.
4613 */
4614 se = cfs_rq->last;
4615 }
4616
4617 return se;
4618 }
4619
4620 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4621
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4622 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4623 {
4624 /*
4625 * If still on the runqueue then deactivate_task()
4626 * was not called and update_curr() has to be done:
4627 */
4628 if (prev->on_rq)
4629 update_curr(cfs_rq);
4630
4631 /* throttle cfs_rqs exceeding runtime */
4632 check_cfs_rq_runtime(cfs_rq);
4633
4634 check_spread(cfs_rq, prev);
4635
4636 if (prev->on_rq) {
4637 update_stats_wait_start_fair(cfs_rq, prev);
4638 /* Put 'current' back into the tree. */
4639 __enqueue_entity(cfs_rq, prev);
4640 /* in !on_rq case, update occurred at dequeue */
4641 update_load_avg(cfs_rq, prev, 0);
4642 }
4643 cfs_rq->curr = NULL;
4644 }
4645
4646 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4647 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4648 {
4649 /*
4650 * Update run-time statistics of the 'current'.
4651 */
4652 update_curr(cfs_rq);
4653
4654 /*
4655 * Ensure that runnable average is periodically updated.
4656 */
4657 update_load_avg(cfs_rq, curr, UPDATE_TG);
4658 update_cfs_group(curr);
4659
4660 #ifdef CONFIG_SCHED_HRTICK
4661 /*
4662 * queued ticks are scheduled to match the slice, so don't bother
4663 * validating it and just reschedule.
4664 */
4665 if (queued) {
4666 resched_curr(rq_of(cfs_rq));
4667 return;
4668 }
4669 /*
4670 * don't let the period tick interfere with the hrtick preemption
4671 */
4672 if (!sched_feat(DOUBLE_TICK) &&
4673 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4674 return;
4675 #endif
4676
4677 if (cfs_rq->nr_running > 1)
4678 check_preempt_tick(cfs_rq, curr);
4679 }
4680
4681
4682 /**************************************************
4683 * CFS bandwidth control machinery
4684 */
4685
4686 #ifdef CONFIG_CFS_BANDWIDTH
4687
4688 #ifdef CONFIG_JUMP_LABEL
4689 static struct static_key __cfs_bandwidth_used;
4690
cfs_bandwidth_used(void)4691 static inline bool cfs_bandwidth_used(void)
4692 {
4693 return static_key_false(&__cfs_bandwidth_used);
4694 }
4695
cfs_bandwidth_usage_inc(void)4696 void cfs_bandwidth_usage_inc(void)
4697 {
4698 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4699 }
4700
cfs_bandwidth_usage_dec(void)4701 void cfs_bandwidth_usage_dec(void)
4702 {
4703 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4704 }
4705 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4706 static bool cfs_bandwidth_used(void)
4707 {
4708 return true;
4709 }
4710
cfs_bandwidth_usage_inc(void)4711 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4712 void cfs_bandwidth_usage_dec(void) {}
4713 #endif /* CONFIG_JUMP_LABEL */
4714
4715 /*
4716 * default period for cfs group bandwidth.
4717 * default: 0.1s, units: nanoseconds
4718 */
default_cfs_period(void)4719 static inline u64 default_cfs_period(void)
4720 {
4721 return 100000000ULL;
4722 }
4723
sched_cfs_bandwidth_slice(void)4724 static inline u64 sched_cfs_bandwidth_slice(void)
4725 {
4726 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4727 }
4728
4729 /*
4730 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4731 * directly instead of rq->clock to avoid adding additional synchronization
4732 * around rq->lock.
4733 *
4734 * requires cfs_b->lock
4735 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4736 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4737 {
4738 s64 runtime;
4739
4740 if (unlikely(cfs_b->quota == RUNTIME_INF))
4741 return;
4742
4743 cfs_b->runtime += cfs_b->quota;
4744 runtime = cfs_b->runtime_snap - cfs_b->runtime;
4745 if (runtime > 0) {
4746 cfs_b->burst_time += runtime;
4747 cfs_b->nr_burst++;
4748 }
4749
4750 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4751 cfs_b->runtime_snap = cfs_b->runtime;
4752 }
4753
tg_cfs_bandwidth(struct task_group * tg)4754 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4755 {
4756 return &tg->cfs_bandwidth;
4757 }
4758
4759 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)4760 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4761 struct cfs_rq *cfs_rq, u64 target_runtime)
4762 {
4763 u64 min_amount, amount = 0;
4764
4765 lockdep_assert_held(&cfs_b->lock);
4766
4767 /* note: this is a positive sum as runtime_remaining <= 0 */
4768 min_amount = target_runtime - cfs_rq->runtime_remaining;
4769
4770 if (cfs_b->quota == RUNTIME_INF)
4771 amount = min_amount;
4772 else {
4773 start_cfs_bandwidth(cfs_b);
4774
4775 if (cfs_b->runtime > 0) {
4776 amount = min(cfs_b->runtime, min_amount);
4777 cfs_b->runtime -= amount;
4778 cfs_b->idle = 0;
4779 }
4780 }
4781
4782 cfs_rq->runtime_remaining += amount;
4783
4784 return cfs_rq->runtime_remaining > 0;
4785 }
4786
4787 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4788 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4789 {
4790 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4791 int ret;
4792
4793 raw_spin_lock(&cfs_b->lock);
4794 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4795 raw_spin_unlock(&cfs_b->lock);
4796
4797 return ret;
4798 }
4799
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4800 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4801 {
4802 /* dock delta_exec before expiring quota (as it could span periods) */
4803 cfs_rq->runtime_remaining -= delta_exec;
4804
4805 if (likely(cfs_rq->runtime_remaining > 0))
4806 return;
4807
4808 if (cfs_rq->throttled)
4809 return;
4810 /*
4811 * if we're unable to extend our runtime we resched so that the active
4812 * hierarchy can be throttled
4813 */
4814 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4815 resched_curr(rq_of(cfs_rq));
4816 }
4817
4818 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4819 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4820 {
4821 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4822 return;
4823
4824 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4825 }
4826
cfs_rq_throttled(struct cfs_rq * cfs_rq)4827 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4828 {
4829 return cfs_bandwidth_used() && cfs_rq->throttled;
4830 }
4831
4832 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4833 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4834 {
4835 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4836 }
4837
4838 /*
4839 * Ensure that neither of the group entities corresponding to src_cpu or
4840 * dest_cpu are members of a throttled hierarchy when performing group
4841 * load-balance operations.
4842 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4843 static inline int throttled_lb_pair(struct task_group *tg,
4844 int src_cpu, int dest_cpu)
4845 {
4846 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4847
4848 src_cfs_rq = tg->cfs_rq[src_cpu];
4849 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4850
4851 return throttled_hierarchy(src_cfs_rq) ||
4852 throttled_hierarchy(dest_cfs_rq);
4853 }
4854
tg_unthrottle_up(struct task_group * tg,void * data)4855 static int tg_unthrottle_up(struct task_group *tg, void *data)
4856 {
4857 struct rq *rq = data;
4858 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4859
4860 cfs_rq->throttle_count--;
4861 if (!cfs_rq->throttle_count) {
4862 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
4863 cfs_rq->throttled_clock_pelt;
4864
4865 /* Add cfs_rq with load or one or more already running entities to the list */
4866 if (!cfs_rq_is_decayed(cfs_rq))
4867 list_add_leaf_cfs_rq(cfs_rq);
4868 }
4869
4870 return 0;
4871 }
4872
tg_throttle_down(struct task_group * tg,void * data)4873 static int tg_throttle_down(struct task_group *tg, void *data)
4874 {
4875 struct rq *rq = data;
4876 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4877
4878 /* group is entering throttled state, stop time */
4879 if (!cfs_rq->throttle_count) {
4880 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
4881 list_del_leaf_cfs_rq(cfs_rq);
4882 }
4883 cfs_rq->throttle_count++;
4884
4885 return 0;
4886 }
4887
throttle_cfs_rq(struct cfs_rq * cfs_rq)4888 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4889 {
4890 struct rq *rq = rq_of(cfs_rq);
4891 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4892 struct sched_entity *se;
4893 long task_delta, idle_task_delta, dequeue = 1;
4894
4895 raw_spin_lock(&cfs_b->lock);
4896 /* This will start the period timer if necessary */
4897 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4898 /*
4899 * We have raced with bandwidth becoming available, and if we
4900 * actually throttled the timer might not unthrottle us for an
4901 * entire period. We additionally needed to make sure that any
4902 * subsequent check_cfs_rq_runtime calls agree not to throttle
4903 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4904 * for 1ns of runtime rather than just check cfs_b.
4905 */
4906 dequeue = 0;
4907 } else {
4908 list_add_tail_rcu(&cfs_rq->throttled_list,
4909 &cfs_b->throttled_cfs_rq);
4910 }
4911 raw_spin_unlock(&cfs_b->lock);
4912
4913 if (!dequeue)
4914 return false; /* Throttle no longer required. */
4915
4916 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4917
4918 /* freeze hierarchy runnable averages while throttled */
4919 rcu_read_lock();
4920 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4921 rcu_read_unlock();
4922
4923 task_delta = cfs_rq->h_nr_running;
4924 idle_task_delta = cfs_rq->idle_h_nr_running;
4925 for_each_sched_entity(se) {
4926 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4927 /* throttled entity or throttle-on-deactivate */
4928 if (!se->on_rq)
4929 goto done;
4930
4931 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4932
4933 if (cfs_rq_is_idle(group_cfs_rq(se)))
4934 idle_task_delta = cfs_rq->h_nr_running;
4935
4936 qcfs_rq->h_nr_running -= task_delta;
4937 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4938
4939 if (qcfs_rq->load.weight) {
4940 /* Avoid re-evaluating load for this entity: */
4941 se = parent_entity(se);
4942 break;
4943 }
4944 }
4945
4946 for_each_sched_entity(se) {
4947 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4948 /* throttled entity or throttle-on-deactivate */
4949 if (!se->on_rq)
4950 goto done;
4951
4952 update_load_avg(qcfs_rq, se, 0);
4953 se_update_runnable(se);
4954
4955 if (cfs_rq_is_idle(group_cfs_rq(se)))
4956 idle_task_delta = cfs_rq->h_nr_running;
4957
4958 qcfs_rq->h_nr_running -= task_delta;
4959 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4960 }
4961
4962 /* At this point se is NULL and we are at root level*/
4963 sub_nr_running(rq, task_delta);
4964
4965 done:
4966 /*
4967 * Note: distribution will already see us throttled via the
4968 * throttled-list. rq->lock protects completion.
4969 */
4970 cfs_rq->throttled = 1;
4971 cfs_rq->throttled_clock = rq_clock(rq);
4972 return true;
4973 }
4974
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)4975 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4976 {
4977 struct rq *rq = rq_of(cfs_rq);
4978 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4979 struct sched_entity *se;
4980 long task_delta, idle_task_delta;
4981
4982 se = cfs_rq->tg->se[cpu_of(rq)];
4983
4984 cfs_rq->throttled = 0;
4985
4986 update_rq_clock(rq);
4987
4988 raw_spin_lock(&cfs_b->lock);
4989 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4990 list_del_rcu(&cfs_rq->throttled_list);
4991 raw_spin_unlock(&cfs_b->lock);
4992
4993 /* update hierarchical throttle state */
4994 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4995
4996 /* Nothing to run but something to decay (on_list)? Complete the branch */
4997 if (!cfs_rq->load.weight) {
4998 if (cfs_rq->on_list)
4999 goto unthrottle_throttle;
5000 return;
5001 }
5002
5003 task_delta = cfs_rq->h_nr_running;
5004 idle_task_delta = cfs_rq->idle_h_nr_running;
5005 for_each_sched_entity(se) {
5006 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5007
5008 if (se->on_rq)
5009 break;
5010 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5011
5012 if (cfs_rq_is_idle(group_cfs_rq(se)))
5013 idle_task_delta = cfs_rq->h_nr_running;
5014
5015 qcfs_rq->h_nr_running += task_delta;
5016 qcfs_rq->idle_h_nr_running += idle_task_delta;
5017
5018 /* end evaluation on encountering a throttled cfs_rq */
5019 if (cfs_rq_throttled(qcfs_rq))
5020 goto unthrottle_throttle;
5021 }
5022
5023 for_each_sched_entity(se) {
5024 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5025
5026 update_load_avg(qcfs_rq, se, UPDATE_TG);
5027 se_update_runnable(se);
5028
5029 if (cfs_rq_is_idle(group_cfs_rq(se)))
5030 idle_task_delta = cfs_rq->h_nr_running;
5031
5032 qcfs_rq->h_nr_running += task_delta;
5033 qcfs_rq->idle_h_nr_running += idle_task_delta;
5034
5035 /* end evaluation on encountering a throttled cfs_rq */
5036 if (cfs_rq_throttled(qcfs_rq))
5037 goto unthrottle_throttle;
5038
5039 /*
5040 * One parent has been throttled and cfs_rq removed from the
5041 * list. Add it back to not break the leaf list.
5042 */
5043 if (throttled_hierarchy(qcfs_rq))
5044 list_add_leaf_cfs_rq(qcfs_rq);
5045 }
5046
5047 /* At this point se is NULL and we are at root level*/
5048 add_nr_running(rq, task_delta);
5049
5050 unthrottle_throttle:
5051 /*
5052 * The cfs_rq_throttled() breaks in the above iteration can result in
5053 * incomplete leaf list maintenance, resulting in triggering the
5054 * assertion below.
5055 */
5056 for_each_sched_entity(se) {
5057 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5058
5059 if (list_add_leaf_cfs_rq(qcfs_rq))
5060 break;
5061 }
5062
5063 assert_list_leaf_cfs_rq(rq);
5064
5065 /* Determine whether we need to wake up potentially idle CPU: */
5066 if (rq->curr == rq->idle && rq->cfs.nr_running)
5067 resched_curr(rq);
5068 }
5069
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5070 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5071 {
5072 struct cfs_rq *cfs_rq;
5073 u64 runtime, remaining = 1;
5074
5075 rcu_read_lock();
5076 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5077 throttled_list) {
5078 struct rq *rq = rq_of(cfs_rq);
5079 struct rq_flags rf;
5080
5081 rq_lock_irqsave(rq, &rf);
5082 if (!cfs_rq_throttled(cfs_rq))
5083 goto next;
5084
5085 /* By the above check, this should never be true */
5086 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5087
5088 raw_spin_lock(&cfs_b->lock);
5089 runtime = -cfs_rq->runtime_remaining + 1;
5090 if (runtime > cfs_b->runtime)
5091 runtime = cfs_b->runtime;
5092 cfs_b->runtime -= runtime;
5093 remaining = cfs_b->runtime;
5094 raw_spin_unlock(&cfs_b->lock);
5095
5096 cfs_rq->runtime_remaining += runtime;
5097
5098 /* we check whether we're throttled above */
5099 if (cfs_rq->runtime_remaining > 0)
5100 unthrottle_cfs_rq(cfs_rq);
5101
5102 next:
5103 rq_unlock_irqrestore(rq, &rf);
5104
5105 if (!remaining)
5106 break;
5107 }
5108 rcu_read_unlock();
5109 }
5110
5111 /*
5112 * Responsible for refilling a task_group's bandwidth and unthrottling its
5113 * cfs_rqs as appropriate. If there has been no activity within the last
5114 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5115 * used to track this state.
5116 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5117 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5118 {
5119 int throttled;
5120
5121 /* no need to continue the timer with no bandwidth constraint */
5122 if (cfs_b->quota == RUNTIME_INF)
5123 goto out_deactivate;
5124
5125 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5126 cfs_b->nr_periods += overrun;
5127
5128 /* Refill extra burst quota even if cfs_b->idle */
5129 __refill_cfs_bandwidth_runtime(cfs_b);
5130
5131 /*
5132 * idle depends on !throttled (for the case of a large deficit), and if
5133 * we're going inactive then everything else can be deferred
5134 */
5135 if (cfs_b->idle && !throttled)
5136 goto out_deactivate;
5137
5138 if (!throttled) {
5139 /* mark as potentially idle for the upcoming period */
5140 cfs_b->idle = 1;
5141 return 0;
5142 }
5143
5144 /* account preceding periods in which throttling occurred */
5145 cfs_b->nr_throttled += overrun;
5146
5147 /*
5148 * This check is repeated as we release cfs_b->lock while we unthrottle.
5149 */
5150 while (throttled && cfs_b->runtime > 0) {
5151 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5152 /* we can't nest cfs_b->lock while distributing bandwidth */
5153 distribute_cfs_runtime(cfs_b);
5154 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5155
5156 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5157 }
5158
5159 /*
5160 * While we are ensured activity in the period following an
5161 * unthrottle, this also covers the case in which the new bandwidth is
5162 * insufficient to cover the existing bandwidth deficit. (Forcing the
5163 * timer to remain active while there are any throttled entities.)
5164 */
5165 cfs_b->idle = 0;
5166
5167 return 0;
5168
5169 out_deactivate:
5170 return 1;
5171 }
5172
5173 /* a cfs_rq won't donate quota below this amount */
5174 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5175 /* minimum remaining period time to redistribute slack quota */
5176 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5177 /* how long we wait to gather additional slack before distributing */
5178 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5179
5180 /*
5181 * Are we near the end of the current quota period?
5182 *
5183 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5184 * hrtimer base being cleared by hrtimer_start. In the case of
5185 * migrate_hrtimers, base is never cleared, so we are fine.
5186 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5187 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5188 {
5189 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5190 s64 remaining;
5191
5192 /* if the call-back is running a quota refresh is already occurring */
5193 if (hrtimer_callback_running(refresh_timer))
5194 return 1;
5195
5196 /* is a quota refresh about to occur? */
5197 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5198 if (remaining < (s64)min_expire)
5199 return 1;
5200
5201 return 0;
5202 }
5203
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5204 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5205 {
5206 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5207
5208 /* if there's a quota refresh soon don't bother with slack */
5209 if (runtime_refresh_within(cfs_b, min_left))
5210 return;
5211
5212 /* don't push forwards an existing deferred unthrottle */
5213 if (cfs_b->slack_started)
5214 return;
5215 cfs_b->slack_started = true;
5216
5217 hrtimer_start(&cfs_b->slack_timer,
5218 ns_to_ktime(cfs_bandwidth_slack_period),
5219 HRTIMER_MODE_REL);
5220 }
5221
5222 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5223 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5224 {
5225 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5226 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5227
5228 if (slack_runtime <= 0)
5229 return;
5230
5231 raw_spin_lock(&cfs_b->lock);
5232 if (cfs_b->quota != RUNTIME_INF) {
5233 cfs_b->runtime += slack_runtime;
5234
5235 /* we are under rq->lock, defer unthrottling using a timer */
5236 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5237 !list_empty(&cfs_b->throttled_cfs_rq))
5238 start_cfs_slack_bandwidth(cfs_b);
5239 }
5240 raw_spin_unlock(&cfs_b->lock);
5241
5242 /* even if it's not valid for return we don't want to try again */
5243 cfs_rq->runtime_remaining -= slack_runtime;
5244 }
5245
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5246 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5247 {
5248 if (!cfs_bandwidth_used())
5249 return;
5250
5251 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5252 return;
5253
5254 __return_cfs_rq_runtime(cfs_rq);
5255 }
5256
5257 /*
5258 * This is done with a timer (instead of inline with bandwidth return) since
5259 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5260 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5261 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5262 {
5263 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5264 unsigned long flags;
5265
5266 /* confirm we're still not at a refresh boundary */
5267 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5268 cfs_b->slack_started = false;
5269
5270 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5271 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5272 return;
5273 }
5274
5275 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5276 runtime = cfs_b->runtime;
5277
5278 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5279
5280 if (!runtime)
5281 return;
5282
5283 distribute_cfs_runtime(cfs_b);
5284 }
5285
5286 /*
5287 * When a group wakes up we want to make sure that its quota is not already
5288 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5289 * runtime as update_curr() throttling can not trigger until it's on-rq.
5290 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5291 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5292 {
5293 if (!cfs_bandwidth_used())
5294 return;
5295
5296 /* an active group must be handled by the update_curr()->put() path */
5297 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5298 return;
5299
5300 /* ensure the group is not already throttled */
5301 if (cfs_rq_throttled(cfs_rq))
5302 return;
5303
5304 /* update runtime allocation */
5305 account_cfs_rq_runtime(cfs_rq, 0);
5306 if (cfs_rq->runtime_remaining <= 0)
5307 throttle_cfs_rq(cfs_rq);
5308 }
5309
sync_throttle(struct task_group * tg,int cpu)5310 static void sync_throttle(struct task_group *tg, int cpu)
5311 {
5312 struct cfs_rq *pcfs_rq, *cfs_rq;
5313
5314 if (!cfs_bandwidth_used())
5315 return;
5316
5317 if (!tg->parent)
5318 return;
5319
5320 cfs_rq = tg->cfs_rq[cpu];
5321 pcfs_rq = tg->parent->cfs_rq[cpu];
5322
5323 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5324 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5325 }
5326
5327 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5328 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5329 {
5330 if (!cfs_bandwidth_used())
5331 return false;
5332
5333 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5334 return false;
5335
5336 /*
5337 * it's possible for a throttled entity to be forced into a running
5338 * state (e.g. set_curr_task), in this case we're finished.
5339 */
5340 if (cfs_rq_throttled(cfs_rq))
5341 return true;
5342
5343 return throttle_cfs_rq(cfs_rq);
5344 }
5345
sched_cfs_slack_timer(struct hrtimer * timer)5346 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5347 {
5348 struct cfs_bandwidth *cfs_b =
5349 container_of(timer, struct cfs_bandwidth, slack_timer);
5350
5351 do_sched_cfs_slack_timer(cfs_b);
5352
5353 return HRTIMER_NORESTART;
5354 }
5355
5356 extern const u64 max_cfs_quota_period;
5357
sched_cfs_period_timer(struct hrtimer * timer)5358 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5359 {
5360 struct cfs_bandwidth *cfs_b =
5361 container_of(timer, struct cfs_bandwidth, period_timer);
5362 unsigned long flags;
5363 int overrun;
5364 int idle = 0;
5365 int count = 0;
5366
5367 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5368 for (;;) {
5369 overrun = hrtimer_forward_now(timer, cfs_b->period);
5370 if (!overrun)
5371 break;
5372
5373 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5374
5375 if (++count > 3) {
5376 u64 new, old = ktime_to_ns(cfs_b->period);
5377
5378 /*
5379 * Grow period by a factor of 2 to avoid losing precision.
5380 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5381 * to fail.
5382 */
5383 new = old * 2;
5384 if (new < max_cfs_quota_period) {
5385 cfs_b->period = ns_to_ktime(new);
5386 cfs_b->quota *= 2;
5387 cfs_b->burst *= 2;
5388
5389 pr_warn_ratelimited(
5390 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5391 smp_processor_id(),
5392 div_u64(new, NSEC_PER_USEC),
5393 div_u64(cfs_b->quota, NSEC_PER_USEC));
5394 } else {
5395 pr_warn_ratelimited(
5396 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5397 smp_processor_id(),
5398 div_u64(old, NSEC_PER_USEC),
5399 div_u64(cfs_b->quota, NSEC_PER_USEC));
5400 }
5401
5402 /* reset count so we don't come right back in here */
5403 count = 0;
5404 }
5405 }
5406 if (idle)
5407 cfs_b->period_active = 0;
5408 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5409
5410 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5411 }
5412
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5413 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5414 {
5415 raw_spin_lock_init(&cfs_b->lock);
5416 cfs_b->runtime = 0;
5417 cfs_b->quota = RUNTIME_INF;
5418 cfs_b->period = ns_to_ktime(default_cfs_period());
5419 cfs_b->burst = 0;
5420
5421 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5422 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5423 cfs_b->period_timer.function = sched_cfs_period_timer;
5424 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5425 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5426 cfs_b->slack_started = false;
5427 }
5428
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5429 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5430 {
5431 cfs_rq->runtime_enabled = 0;
5432 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5433 }
5434
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5435 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5436 {
5437 lockdep_assert_held(&cfs_b->lock);
5438
5439 if (cfs_b->period_active)
5440 return;
5441
5442 cfs_b->period_active = 1;
5443 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5444 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5445 }
5446
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5447 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5448 {
5449 /* init_cfs_bandwidth() was not called */
5450 if (!cfs_b->throttled_cfs_rq.next)
5451 return;
5452
5453 hrtimer_cancel(&cfs_b->period_timer);
5454 hrtimer_cancel(&cfs_b->slack_timer);
5455 }
5456
5457 /*
5458 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5459 *
5460 * The race is harmless, since modifying bandwidth settings of unhooked group
5461 * bits doesn't do much.
5462 */
5463
5464 /* cpu online callback */
update_runtime_enabled(struct rq * rq)5465 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5466 {
5467 struct task_group *tg;
5468
5469 lockdep_assert_rq_held(rq);
5470
5471 rcu_read_lock();
5472 list_for_each_entry_rcu(tg, &task_groups, list) {
5473 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5474 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5475
5476 raw_spin_lock(&cfs_b->lock);
5477 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5478 raw_spin_unlock(&cfs_b->lock);
5479 }
5480 rcu_read_unlock();
5481 }
5482
5483 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5484 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5485 {
5486 struct task_group *tg;
5487
5488 lockdep_assert_rq_held(rq);
5489
5490 rcu_read_lock();
5491 list_for_each_entry_rcu(tg, &task_groups, list) {
5492 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5493
5494 if (!cfs_rq->runtime_enabled)
5495 continue;
5496
5497 /*
5498 * clock_task is not advancing so we just need to make sure
5499 * there's some valid quota amount
5500 */
5501 cfs_rq->runtime_remaining = 1;
5502 /*
5503 * Offline rq is schedulable till CPU is completely disabled
5504 * in take_cpu_down(), so we prevent new cfs throttling here.
5505 */
5506 cfs_rq->runtime_enabled = 0;
5507
5508 if (cfs_rq_throttled(cfs_rq))
5509 unthrottle_cfs_rq(cfs_rq);
5510 }
5511 rcu_read_unlock();
5512 }
5513
5514 #else /* CONFIG_CFS_BANDWIDTH */
5515
cfs_bandwidth_used(void)5516 static inline bool cfs_bandwidth_used(void)
5517 {
5518 return false;
5519 }
5520
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5521 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5522 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5523 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5524 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5525 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5526
cfs_rq_throttled(struct cfs_rq * cfs_rq)5527 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5528 {
5529 return 0;
5530 }
5531
throttled_hierarchy(struct cfs_rq * cfs_rq)5532 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5533 {
5534 return 0;
5535 }
5536
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5537 static inline int throttled_lb_pair(struct task_group *tg,
5538 int src_cpu, int dest_cpu)
5539 {
5540 return 0;
5541 }
5542
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5543 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5544
5545 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5546 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5547 #endif
5548
tg_cfs_bandwidth(struct task_group * tg)5549 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5550 {
5551 return NULL;
5552 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5553 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5554 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5555 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5556
5557 #endif /* CONFIG_CFS_BANDWIDTH */
5558
5559 /**************************************************
5560 * CFS operations on tasks:
5561 */
5562
5563 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5564 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5565 {
5566 struct sched_entity *se = &p->se;
5567 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5568
5569 SCHED_WARN_ON(task_rq(p) != rq);
5570
5571 if (rq->cfs.h_nr_running > 1) {
5572 u64 slice = sched_slice(cfs_rq, se);
5573 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5574 s64 delta = slice - ran;
5575
5576 if (delta < 0) {
5577 if (task_current(rq, p))
5578 resched_curr(rq);
5579 return;
5580 }
5581 hrtick_start(rq, delta);
5582 }
5583 }
5584
5585 /*
5586 * called from enqueue/dequeue and updates the hrtick when the
5587 * current task is from our class and nr_running is low enough
5588 * to matter.
5589 */
hrtick_update(struct rq * rq)5590 static void hrtick_update(struct rq *rq)
5591 {
5592 struct task_struct *curr = rq->curr;
5593
5594 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5595 return;
5596
5597 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5598 hrtick_start_fair(rq, curr);
5599 }
5600 #else /* !CONFIG_SCHED_HRTICK */
5601 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5602 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5603 {
5604 }
5605
hrtick_update(struct rq * rq)5606 static inline void hrtick_update(struct rq *rq)
5607 {
5608 }
5609 #endif
5610
5611 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)5612 static inline bool cpu_overutilized(int cpu)
5613 {
5614 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5615 }
5616
update_overutilized_status(struct rq * rq)5617 static inline void update_overutilized_status(struct rq *rq)
5618 {
5619 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5620 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5621 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5622 }
5623 }
5624 #else
update_overutilized_status(struct rq * rq)5625 static inline void update_overutilized_status(struct rq *rq) { }
5626 #endif
5627
5628 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)5629 static int sched_idle_rq(struct rq *rq)
5630 {
5631 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5632 rq->nr_running);
5633 }
5634
5635 /*
5636 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5637 * of idle_nr_running, which does not consider idle descendants of normal
5638 * entities.
5639 */
sched_idle_cfs_rq(struct cfs_rq * cfs_rq)5640 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5641 {
5642 return cfs_rq->nr_running &&
5643 cfs_rq->nr_running == cfs_rq->idle_nr_running;
5644 }
5645
5646 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)5647 static int sched_idle_cpu(int cpu)
5648 {
5649 return sched_idle_rq(cpu_rq(cpu));
5650 }
5651 #endif
5652
5653 /*
5654 * The enqueue_task method is called before nr_running is
5655 * increased. Here we update the fair scheduling stats and
5656 * then put the task into the rbtree:
5657 */
5658 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5659 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5660 {
5661 struct cfs_rq *cfs_rq;
5662 struct sched_entity *se = &p->se;
5663 int idle_h_nr_running = task_has_idle_policy(p);
5664 int task_new = !(flags & ENQUEUE_WAKEUP);
5665
5666 /*
5667 * The code below (indirectly) updates schedutil which looks at
5668 * the cfs_rq utilization to select a frequency.
5669 * Let's add the task's estimated utilization to the cfs_rq's
5670 * estimated utilization, before we update schedutil.
5671 */
5672 util_est_enqueue(&rq->cfs, p);
5673
5674 /*
5675 * If in_iowait is set, the code below may not trigger any cpufreq
5676 * utilization updates, so do it here explicitly with the IOWAIT flag
5677 * passed.
5678 */
5679 if (p->in_iowait)
5680 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5681
5682 for_each_sched_entity(se) {
5683 if (se->on_rq)
5684 break;
5685 cfs_rq = cfs_rq_of(se);
5686 enqueue_entity(cfs_rq, se, flags);
5687
5688 cfs_rq->h_nr_running++;
5689 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5690
5691 if (cfs_rq_is_idle(cfs_rq))
5692 idle_h_nr_running = 1;
5693
5694 /* end evaluation on encountering a throttled cfs_rq */
5695 if (cfs_rq_throttled(cfs_rq))
5696 goto enqueue_throttle;
5697
5698 flags = ENQUEUE_WAKEUP;
5699 }
5700
5701 for_each_sched_entity(se) {
5702 cfs_rq = cfs_rq_of(se);
5703
5704 update_load_avg(cfs_rq, se, UPDATE_TG);
5705 se_update_runnable(se);
5706 update_cfs_group(se);
5707
5708 cfs_rq->h_nr_running++;
5709 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5710
5711 if (cfs_rq_is_idle(cfs_rq))
5712 idle_h_nr_running = 1;
5713
5714 /* end evaluation on encountering a throttled cfs_rq */
5715 if (cfs_rq_throttled(cfs_rq))
5716 goto enqueue_throttle;
5717
5718 /*
5719 * One parent has been throttled and cfs_rq removed from the
5720 * list. Add it back to not break the leaf list.
5721 */
5722 if (throttled_hierarchy(cfs_rq))
5723 list_add_leaf_cfs_rq(cfs_rq);
5724 }
5725
5726 /* At this point se is NULL and we are at root level*/
5727 add_nr_running(rq, 1);
5728
5729 /*
5730 * Since new tasks are assigned an initial util_avg equal to
5731 * half of the spare capacity of their CPU, tiny tasks have the
5732 * ability to cross the overutilized threshold, which will
5733 * result in the load balancer ruining all the task placement
5734 * done by EAS. As a way to mitigate that effect, do not account
5735 * for the first enqueue operation of new tasks during the
5736 * overutilized flag detection.
5737 *
5738 * A better way of solving this problem would be to wait for
5739 * the PELT signals of tasks to converge before taking them
5740 * into account, but that is not straightforward to implement,
5741 * and the following generally works well enough in practice.
5742 */
5743 if (!task_new)
5744 update_overutilized_status(rq);
5745
5746 enqueue_throttle:
5747 if (cfs_bandwidth_used()) {
5748 /*
5749 * When bandwidth control is enabled; the cfs_rq_throttled()
5750 * breaks in the above iteration can result in incomplete
5751 * leaf list maintenance, resulting in triggering the assertion
5752 * below.
5753 */
5754 for_each_sched_entity(se) {
5755 cfs_rq = cfs_rq_of(se);
5756
5757 if (list_add_leaf_cfs_rq(cfs_rq))
5758 break;
5759 }
5760 }
5761
5762 assert_list_leaf_cfs_rq(rq);
5763
5764 hrtick_update(rq);
5765 }
5766
5767 static void set_next_buddy(struct sched_entity *se);
5768
5769 /*
5770 * The dequeue_task method is called before nr_running is
5771 * decreased. We remove the task from the rbtree and
5772 * update the fair scheduling stats:
5773 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5774 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5775 {
5776 struct cfs_rq *cfs_rq;
5777 struct sched_entity *se = &p->se;
5778 int task_sleep = flags & DEQUEUE_SLEEP;
5779 int idle_h_nr_running = task_has_idle_policy(p);
5780 bool was_sched_idle = sched_idle_rq(rq);
5781
5782 util_est_dequeue(&rq->cfs, p);
5783
5784 for_each_sched_entity(se) {
5785 cfs_rq = cfs_rq_of(se);
5786 dequeue_entity(cfs_rq, se, flags);
5787
5788 cfs_rq->h_nr_running--;
5789 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5790
5791 if (cfs_rq_is_idle(cfs_rq))
5792 idle_h_nr_running = 1;
5793
5794 /* end evaluation on encountering a throttled cfs_rq */
5795 if (cfs_rq_throttled(cfs_rq))
5796 goto dequeue_throttle;
5797
5798 /* Don't dequeue parent if it has other entities besides us */
5799 if (cfs_rq->load.weight) {
5800 /* Avoid re-evaluating load for this entity: */
5801 se = parent_entity(se);
5802 /*
5803 * Bias pick_next to pick a task from this cfs_rq, as
5804 * p is sleeping when it is within its sched_slice.
5805 */
5806 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5807 set_next_buddy(se);
5808 break;
5809 }
5810 flags |= DEQUEUE_SLEEP;
5811 }
5812
5813 for_each_sched_entity(se) {
5814 cfs_rq = cfs_rq_of(se);
5815
5816 update_load_avg(cfs_rq, se, UPDATE_TG);
5817 se_update_runnable(se);
5818 update_cfs_group(se);
5819
5820 cfs_rq->h_nr_running--;
5821 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5822
5823 if (cfs_rq_is_idle(cfs_rq))
5824 idle_h_nr_running = 1;
5825
5826 /* end evaluation on encountering a throttled cfs_rq */
5827 if (cfs_rq_throttled(cfs_rq))
5828 goto dequeue_throttle;
5829
5830 }
5831
5832 /* At this point se is NULL and we are at root level*/
5833 sub_nr_running(rq, 1);
5834
5835 /* balance early to pull high priority tasks */
5836 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5837 rq->next_balance = jiffies;
5838
5839 dequeue_throttle:
5840 util_est_update(&rq->cfs, p, task_sleep);
5841 hrtick_update(rq);
5842 }
5843
5844 #ifdef CONFIG_SMP
5845
5846 /* Working cpumask for: load_balance, load_balance_newidle. */
5847 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5848 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5849
5850 #ifdef CONFIG_NO_HZ_COMMON
5851
5852 static struct {
5853 cpumask_var_t idle_cpus_mask;
5854 atomic_t nr_cpus;
5855 int has_blocked; /* Idle CPUS has blocked load */
5856 int needs_update; /* Newly idle CPUs need their next_balance collated */
5857 unsigned long next_balance; /* in jiffy units */
5858 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5859 } nohz ____cacheline_aligned;
5860
5861 #endif /* CONFIG_NO_HZ_COMMON */
5862
cpu_load(struct rq * rq)5863 static unsigned long cpu_load(struct rq *rq)
5864 {
5865 return cfs_rq_load_avg(&rq->cfs);
5866 }
5867
5868 /*
5869 * cpu_load_without - compute CPU load without any contributions from *p
5870 * @cpu: the CPU which load is requested
5871 * @p: the task which load should be discounted
5872 *
5873 * The load of a CPU is defined by the load of tasks currently enqueued on that
5874 * CPU as well as tasks which are currently sleeping after an execution on that
5875 * CPU.
5876 *
5877 * This method returns the load of the specified CPU by discounting the load of
5878 * the specified task, whenever the task is currently contributing to the CPU
5879 * load.
5880 */
cpu_load_without(struct rq * rq,struct task_struct * p)5881 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5882 {
5883 struct cfs_rq *cfs_rq;
5884 unsigned int load;
5885
5886 /* Task has no contribution or is new */
5887 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5888 return cpu_load(rq);
5889
5890 cfs_rq = &rq->cfs;
5891 load = READ_ONCE(cfs_rq->avg.load_avg);
5892
5893 /* Discount task's util from CPU's util */
5894 lsub_positive(&load, task_h_load(p));
5895
5896 return load;
5897 }
5898
cpu_runnable(struct rq * rq)5899 static unsigned long cpu_runnable(struct rq *rq)
5900 {
5901 return cfs_rq_runnable_avg(&rq->cfs);
5902 }
5903
cpu_runnable_without(struct rq * rq,struct task_struct * p)5904 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5905 {
5906 struct cfs_rq *cfs_rq;
5907 unsigned int runnable;
5908
5909 /* Task has no contribution or is new */
5910 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5911 return cpu_runnable(rq);
5912
5913 cfs_rq = &rq->cfs;
5914 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5915
5916 /* Discount task's runnable from CPU's runnable */
5917 lsub_positive(&runnable, p->se.avg.runnable_avg);
5918
5919 return runnable;
5920 }
5921
capacity_of(int cpu)5922 static unsigned long capacity_of(int cpu)
5923 {
5924 return cpu_rq(cpu)->cpu_capacity;
5925 }
5926
record_wakee(struct task_struct * p)5927 static void record_wakee(struct task_struct *p)
5928 {
5929 /*
5930 * Only decay a single time; tasks that have less then 1 wakeup per
5931 * jiffy will not have built up many flips.
5932 */
5933 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5934 current->wakee_flips >>= 1;
5935 current->wakee_flip_decay_ts = jiffies;
5936 }
5937
5938 if (current->last_wakee != p) {
5939 current->last_wakee = p;
5940 current->wakee_flips++;
5941 }
5942 }
5943
5944 /*
5945 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5946 *
5947 * A waker of many should wake a different task than the one last awakened
5948 * at a frequency roughly N times higher than one of its wakees.
5949 *
5950 * In order to determine whether we should let the load spread vs consolidating
5951 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5952 * partner, and a factor of lls_size higher frequency in the other.
5953 *
5954 * With both conditions met, we can be relatively sure that the relationship is
5955 * non-monogamous, with partner count exceeding socket size.
5956 *
5957 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5958 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5959 * socket size.
5960 */
wake_wide(struct task_struct * p)5961 static int wake_wide(struct task_struct *p)
5962 {
5963 unsigned int master = current->wakee_flips;
5964 unsigned int slave = p->wakee_flips;
5965 int factor = __this_cpu_read(sd_llc_size);
5966
5967 if (master < slave)
5968 swap(master, slave);
5969 if (slave < factor || master < slave * factor)
5970 return 0;
5971 return 1;
5972 }
5973
5974 /*
5975 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5976 * soonest. For the purpose of speed we only consider the waking and previous
5977 * CPU.
5978 *
5979 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5980 * cache-affine and is (or will be) idle.
5981 *
5982 * wake_affine_weight() - considers the weight to reflect the average
5983 * scheduling latency of the CPUs. This seems to work
5984 * for the overloaded case.
5985 */
5986 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)5987 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5988 {
5989 /*
5990 * If this_cpu is idle, it implies the wakeup is from interrupt
5991 * context. Only allow the move if cache is shared. Otherwise an
5992 * interrupt intensive workload could force all tasks onto one
5993 * node depending on the IO topology or IRQ affinity settings.
5994 *
5995 * If the prev_cpu is idle and cache affine then avoid a migration.
5996 * There is no guarantee that the cache hot data from an interrupt
5997 * is more important than cache hot data on the prev_cpu and from
5998 * a cpufreq perspective, it's better to have higher utilisation
5999 * on one CPU.
6000 */
6001 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6002 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6003
6004 if (sync && cpu_rq(this_cpu)->nr_running == 1)
6005 return this_cpu;
6006
6007 if (available_idle_cpu(prev_cpu))
6008 return prev_cpu;
6009
6010 return nr_cpumask_bits;
6011 }
6012
6013 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6014 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6015 int this_cpu, int prev_cpu, int sync)
6016 {
6017 s64 this_eff_load, prev_eff_load;
6018 unsigned long task_load;
6019
6020 this_eff_load = cpu_load(cpu_rq(this_cpu));
6021
6022 if (sync) {
6023 unsigned long current_load = task_h_load(current);
6024
6025 if (current_load > this_eff_load)
6026 return this_cpu;
6027
6028 this_eff_load -= current_load;
6029 }
6030
6031 task_load = task_h_load(p);
6032
6033 this_eff_load += task_load;
6034 if (sched_feat(WA_BIAS))
6035 this_eff_load *= 100;
6036 this_eff_load *= capacity_of(prev_cpu);
6037
6038 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6039 prev_eff_load -= task_load;
6040 if (sched_feat(WA_BIAS))
6041 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6042 prev_eff_load *= capacity_of(this_cpu);
6043
6044 /*
6045 * If sync, adjust the weight of prev_eff_load such that if
6046 * prev_eff == this_eff that select_idle_sibling() will consider
6047 * stacking the wakee on top of the waker if no other CPU is
6048 * idle.
6049 */
6050 if (sync)
6051 prev_eff_load += 1;
6052
6053 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6054 }
6055
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6056 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6057 int this_cpu, int prev_cpu, int sync)
6058 {
6059 int target = nr_cpumask_bits;
6060
6061 if (sched_feat(WA_IDLE))
6062 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6063
6064 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6065 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6066
6067 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6068 if (target == nr_cpumask_bits)
6069 return prev_cpu;
6070
6071 schedstat_inc(sd->ttwu_move_affine);
6072 schedstat_inc(p->stats.nr_wakeups_affine);
6073 return target;
6074 }
6075
6076 static struct sched_group *
6077 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6078
6079 /*
6080 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6081 */
6082 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6083 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6084 {
6085 unsigned long load, min_load = ULONG_MAX;
6086 unsigned int min_exit_latency = UINT_MAX;
6087 u64 latest_idle_timestamp = 0;
6088 int least_loaded_cpu = this_cpu;
6089 int shallowest_idle_cpu = -1;
6090 int i;
6091
6092 /* Check if we have any choice: */
6093 if (group->group_weight == 1)
6094 return cpumask_first(sched_group_span(group));
6095
6096 /* Traverse only the allowed CPUs */
6097 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6098 struct rq *rq = cpu_rq(i);
6099
6100 if (!sched_core_cookie_match(rq, p))
6101 continue;
6102
6103 if (sched_idle_cpu(i))
6104 return i;
6105
6106 if (available_idle_cpu(i)) {
6107 struct cpuidle_state *idle = idle_get_state(rq);
6108 if (idle && idle->exit_latency < min_exit_latency) {
6109 /*
6110 * We give priority to a CPU whose idle state
6111 * has the smallest exit latency irrespective
6112 * of any idle timestamp.
6113 */
6114 min_exit_latency = idle->exit_latency;
6115 latest_idle_timestamp = rq->idle_stamp;
6116 shallowest_idle_cpu = i;
6117 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6118 rq->idle_stamp > latest_idle_timestamp) {
6119 /*
6120 * If equal or no active idle state, then
6121 * the most recently idled CPU might have
6122 * a warmer cache.
6123 */
6124 latest_idle_timestamp = rq->idle_stamp;
6125 shallowest_idle_cpu = i;
6126 }
6127 } else if (shallowest_idle_cpu == -1) {
6128 load = cpu_load(cpu_rq(i));
6129 if (load < min_load) {
6130 min_load = load;
6131 least_loaded_cpu = i;
6132 }
6133 }
6134 }
6135
6136 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6137 }
6138
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6139 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6140 int cpu, int prev_cpu, int sd_flag)
6141 {
6142 int new_cpu = cpu;
6143
6144 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6145 return prev_cpu;
6146
6147 /*
6148 * We need task's util for cpu_util_without, sync it up to
6149 * prev_cpu's last_update_time.
6150 */
6151 if (!(sd_flag & SD_BALANCE_FORK))
6152 sync_entity_load_avg(&p->se);
6153
6154 while (sd) {
6155 struct sched_group *group;
6156 struct sched_domain *tmp;
6157 int weight;
6158
6159 if (!(sd->flags & sd_flag)) {
6160 sd = sd->child;
6161 continue;
6162 }
6163
6164 group = find_idlest_group(sd, p, cpu);
6165 if (!group) {
6166 sd = sd->child;
6167 continue;
6168 }
6169
6170 new_cpu = find_idlest_group_cpu(group, p, cpu);
6171 if (new_cpu == cpu) {
6172 /* Now try balancing at a lower domain level of 'cpu': */
6173 sd = sd->child;
6174 continue;
6175 }
6176
6177 /* Now try balancing at a lower domain level of 'new_cpu': */
6178 cpu = new_cpu;
6179 weight = sd->span_weight;
6180 sd = NULL;
6181 for_each_domain(cpu, tmp) {
6182 if (weight <= tmp->span_weight)
6183 break;
6184 if (tmp->flags & sd_flag)
6185 sd = tmp;
6186 }
6187 }
6188
6189 return new_cpu;
6190 }
6191
__select_idle_cpu(int cpu,struct task_struct * p)6192 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6193 {
6194 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6195 sched_cpu_cookie_match(cpu_rq(cpu), p))
6196 return cpu;
6197
6198 return -1;
6199 }
6200
6201 #ifdef CONFIG_SCHED_SMT
6202 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6203 EXPORT_SYMBOL_GPL(sched_smt_present);
6204
set_idle_cores(int cpu,int val)6205 static inline void set_idle_cores(int cpu, int val)
6206 {
6207 struct sched_domain_shared *sds;
6208
6209 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6210 if (sds)
6211 WRITE_ONCE(sds->has_idle_cores, val);
6212 }
6213
test_idle_cores(int cpu,bool def)6214 static inline bool test_idle_cores(int cpu, bool def)
6215 {
6216 struct sched_domain_shared *sds;
6217
6218 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6219 if (sds)
6220 return READ_ONCE(sds->has_idle_cores);
6221
6222 return def;
6223 }
6224
6225 /*
6226 * Scans the local SMT mask to see if the entire core is idle, and records this
6227 * information in sd_llc_shared->has_idle_cores.
6228 *
6229 * Since SMT siblings share all cache levels, inspecting this limited remote
6230 * state should be fairly cheap.
6231 */
__update_idle_core(struct rq * rq)6232 void __update_idle_core(struct rq *rq)
6233 {
6234 int core = cpu_of(rq);
6235 int cpu;
6236
6237 rcu_read_lock();
6238 if (test_idle_cores(core, true))
6239 goto unlock;
6240
6241 for_each_cpu(cpu, cpu_smt_mask(core)) {
6242 if (cpu == core)
6243 continue;
6244
6245 if (!available_idle_cpu(cpu))
6246 goto unlock;
6247 }
6248
6249 set_idle_cores(core, 1);
6250 unlock:
6251 rcu_read_unlock();
6252 }
6253
6254 /*
6255 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6256 * there are no idle cores left in the system; tracked through
6257 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6258 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6259 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6260 {
6261 bool idle = true;
6262 int cpu;
6263
6264 if (!static_branch_likely(&sched_smt_present))
6265 return __select_idle_cpu(core, p);
6266
6267 for_each_cpu(cpu, cpu_smt_mask(core)) {
6268 if (!available_idle_cpu(cpu)) {
6269 idle = false;
6270 if (*idle_cpu == -1) {
6271 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6272 *idle_cpu = cpu;
6273 break;
6274 }
6275 continue;
6276 }
6277 break;
6278 }
6279 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6280 *idle_cpu = cpu;
6281 }
6282
6283 if (idle)
6284 return core;
6285
6286 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6287 return -1;
6288 }
6289
6290 /*
6291 * Scan the local SMT mask for idle CPUs.
6292 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6293 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6294 {
6295 int cpu;
6296
6297 for_each_cpu(cpu, cpu_smt_mask(target)) {
6298 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6299 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6300 continue;
6301 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6302 return cpu;
6303 }
6304
6305 return -1;
6306 }
6307
6308 #else /* CONFIG_SCHED_SMT */
6309
set_idle_cores(int cpu,int val)6310 static inline void set_idle_cores(int cpu, int val)
6311 {
6312 }
6313
test_idle_cores(int cpu,bool def)6314 static inline bool test_idle_cores(int cpu, bool def)
6315 {
6316 return def;
6317 }
6318
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6319 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6320 {
6321 return __select_idle_cpu(core, p);
6322 }
6323
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6324 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6325 {
6326 return -1;
6327 }
6328
6329 #endif /* CONFIG_SCHED_SMT */
6330
6331 /*
6332 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6333 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6334 * average idle time for this rq (as found in rq->avg_idle).
6335 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)6336 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6337 {
6338 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6339 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6340 struct sched_domain_shared *sd_share;
6341 struct rq *this_rq = this_rq();
6342 int this = smp_processor_id();
6343 struct sched_domain *this_sd;
6344 u64 time = 0;
6345
6346 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6347 if (!this_sd)
6348 return -1;
6349
6350 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6351
6352 if (sched_feat(SIS_PROP) && !has_idle_core) {
6353 u64 avg_cost, avg_idle, span_avg;
6354 unsigned long now = jiffies;
6355
6356 /*
6357 * If we're busy, the assumption that the last idle period
6358 * predicts the future is flawed; age away the remaining
6359 * predicted idle time.
6360 */
6361 if (unlikely(this_rq->wake_stamp < now)) {
6362 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6363 this_rq->wake_stamp++;
6364 this_rq->wake_avg_idle >>= 1;
6365 }
6366 }
6367
6368 avg_idle = this_rq->wake_avg_idle;
6369 avg_cost = this_sd->avg_scan_cost + 1;
6370
6371 span_avg = sd->span_weight * avg_idle;
6372 if (span_avg > 4*avg_cost)
6373 nr = div_u64(span_avg, avg_cost);
6374 else
6375 nr = 4;
6376
6377 time = cpu_clock(this);
6378 }
6379
6380 if (sched_feat(SIS_UTIL)) {
6381 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6382 if (sd_share) {
6383 /* because !--nr is the condition to stop scan */
6384 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6385 /* overloaded LLC is unlikely to have idle cpu/core */
6386 if (nr == 1)
6387 return -1;
6388 }
6389 }
6390
6391 for_each_cpu_wrap(cpu, cpus, target + 1) {
6392 if (has_idle_core) {
6393 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6394 if ((unsigned int)i < nr_cpumask_bits)
6395 return i;
6396
6397 } else {
6398 if (!--nr)
6399 return -1;
6400 idle_cpu = __select_idle_cpu(cpu, p);
6401 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6402 break;
6403 }
6404 }
6405
6406 if (has_idle_core)
6407 set_idle_cores(target, false);
6408
6409 if (sched_feat(SIS_PROP) && !has_idle_core) {
6410 time = cpu_clock(this) - time;
6411
6412 /*
6413 * Account for the scan cost of wakeups against the average
6414 * idle time.
6415 */
6416 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6417
6418 update_avg(&this_sd->avg_scan_cost, time);
6419 }
6420
6421 return idle_cpu;
6422 }
6423
6424 /*
6425 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6426 * the task fits. If no CPU is big enough, but there are idle ones, try to
6427 * maximize capacity.
6428 */
6429 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6430 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6431 {
6432 unsigned long task_util, best_cap = 0;
6433 int cpu, best_cpu = -1;
6434 struct cpumask *cpus;
6435
6436 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6437 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6438
6439 task_util = uclamp_task_util(p);
6440
6441 for_each_cpu_wrap(cpu, cpus, target) {
6442 unsigned long cpu_cap = capacity_of(cpu);
6443
6444 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6445 continue;
6446 if (fits_capacity(task_util, cpu_cap))
6447 return cpu;
6448
6449 if (cpu_cap > best_cap) {
6450 best_cap = cpu_cap;
6451 best_cpu = cpu;
6452 }
6453 }
6454
6455 return best_cpu;
6456 }
6457
asym_fits_capacity(unsigned long task_util,int cpu)6458 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6459 {
6460 if (static_branch_unlikely(&sched_asym_cpucapacity))
6461 return fits_capacity(task_util, capacity_of(cpu));
6462
6463 return true;
6464 }
6465
6466 /*
6467 * Try and locate an idle core/thread in the LLC cache domain.
6468 */
select_idle_sibling(struct task_struct * p,int prev,int target)6469 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6470 {
6471 bool has_idle_core = false;
6472 struct sched_domain *sd;
6473 unsigned long task_util;
6474 int i, recent_used_cpu;
6475
6476 /*
6477 * On asymmetric system, update task utilization because we will check
6478 * that the task fits with cpu's capacity.
6479 */
6480 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6481 sync_entity_load_avg(&p->se);
6482 task_util = uclamp_task_util(p);
6483 }
6484
6485 /*
6486 * per-cpu select_idle_mask usage
6487 */
6488 lockdep_assert_irqs_disabled();
6489
6490 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6491 asym_fits_capacity(task_util, target))
6492 return target;
6493
6494 /*
6495 * If the previous CPU is cache affine and idle, don't be stupid:
6496 */
6497 if (prev != target && cpus_share_cache(prev, target) &&
6498 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6499 asym_fits_capacity(task_util, prev))
6500 return prev;
6501
6502 /*
6503 * Allow a per-cpu kthread to stack with the wakee if the
6504 * kworker thread and the tasks previous CPUs are the same.
6505 * The assumption is that the wakee queued work for the
6506 * per-cpu kthread that is now complete and the wakeup is
6507 * essentially a sync wakeup. An obvious example of this
6508 * pattern is IO completions.
6509 */
6510 if (is_per_cpu_kthread(current) &&
6511 in_task() &&
6512 prev == smp_processor_id() &&
6513 this_rq()->nr_running <= 1 &&
6514 asym_fits_capacity(task_util, prev)) {
6515 return prev;
6516 }
6517
6518 /* Check a recently used CPU as a potential idle candidate: */
6519 recent_used_cpu = p->recent_used_cpu;
6520 p->recent_used_cpu = prev;
6521 if (recent_used_cpu != prev &&
6522 recent_used_cpu != target &&
6523 cpus_share_cache(recent_used_cpu, target) &&
6524 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6525 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6526 asym_fits_capacity(task_util, recent_used_cpu)) {
6527 return recent_used_cpu;
6528 }
6529
6530 /*
6531 * For asymmetric CPU capacity systems, our domain of interest is
6532 * sd_asym_cpucapacity rather than sd_llc.
6533 */
6534 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6535 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6536 /*
6537 * On an asymmetric CPU capacity system where an exclusive
6538 * cpuset defines a symmetric island (i.e. one unique
6539 * capacity_orig value through the cpuset), the key will be set
6540 * but the CPUs within that cpuset will not have a domain with
6541 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6542 * capacity path.
6543 */
6544 if (sd) {
6545 i = select_idle_capacity(p, sd, target);
6546 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6547 }
6548 }
6549
6550 sd = rcu_dereference(per_cpu(sd_llc, target));
6551 if (!sd)
6552 return target;
6553
6554 if (sched_smt_active()) {
6555 has_idle_core = test_idle_cores(target, false);
6556
6557 if (!has_idle_core && cpus_share_cache(prev, target)) {
6558 i = select_idle_smt(p, sd, prev);
6559 if ((unsigned int)i < nr_cpumask_bits)
6560 return i;
6561 }
6562 }
6563
6564 i = select_idle_cpu(p, sd, has_idle_core, target);
6565 if ((unsigned)i < nr_cpumask_bits)
6566 return i;
6567
6568 return target;
6569 }
6570
6571 /*
6572 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6573 * (@dst_cpu = -1) or migrated to @dst_cpu.
6574 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6575 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6576 {
6577 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6578 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
6579
6580 /*
6581 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6582 * contribution. If @p migrates from another CPU to @cpu add its
6583 * contribution. In all the other cases @cpu is not impacted by the
6584 * migration so its util_avg is already correct.
6585 */
6586 if (task_cpu(p) == cpu && dst_cpu != cpu)
6587 lsub_positive(&util, task_util(p));
6588 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6589 util += task_util(p);
6590
6591 if (sched_feat(UTIL_EST)) {
6592 unsigned long util_est;
6593
6594 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6595
6596 /*
6597 * During wake-up @p isn't enqueued yet and doesn't contribute
6598 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6599 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6600 * has been enqueued.
6601 *
6602 * During exec (@dst_cpu = -1) @p is enqueued and does
6603 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6604 * Remove it to "simulate" cpu_util without @p's contribution.
6605 *
6606 * Despite the task_on_rq_queued(@p) check there is still a
6607 * small window for a possible race when an exec
6608 * select_task_rq_fair() races with LB's detach_task().
6609 *
6610 * detach_task()
6611 * deactivate_task()
6612 * p->on_rq = TASK_ON_RQ_MIGRATING;
6613 * -------------------------------- A
6614 * dequeue_task() \
6615 * dequeue_task_fair() + Race Time
6616 * util_est_dequeue() /
6617 * -------------------------------- B
6618 *
6619 * The additional check "current == p" is required to further
6620 * reduce the race window.
6621 */
6622 if (dst_cpu == cpu)
6623 util_est += _task_util_est(p);
6624 else if (unlikely(task_on_rq_queued(p) || current == p))
6625 lsub_positive(&util_est, _task_util_est(p));
6626
6627 util = max(util, util_est);
6628 }
6629
6630 return min(util, capacity_orig_of(cpu));
6631 }
6632
6633 /*
6634 * cpu_util_without: compute cpu utilization without any contributions from *p
6635 * @cpu: the CPU which utilization is requested
6636 * @p: the task which utilization should be discounted
6637 *
6638 * The utilization of a CPU is defined by the utilization of tasks currently
6639 * enqueued on that CPU as well as tasks which are currently sleeping after an
6640 * execution on that CPU.
6641 *
6642 * This method returns the utilization of the specified CPU by discounting the
6643 * utilization of the specified task, whenever the task is currently
6644 * contributing to the CPU utilization.
6645 */
cpu_util_without(int cpu,struct task_struct * p)6646 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6647 {
6648 /* Task has no contribution or is new */
6649 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6650 return cpu_util_cfs(cpu);
6651
6652 return cpu_util_next(cpu, p, -1);
6653 }
6654
6655 /*
6656 * compute_energy(): Estimates the energy that @pd would consume if @p was
6657 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6658 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6659 * to compute what would be the energy if we decided to actually migrate that
6660 * task.
6661 */
6662 static long
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6663 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6664 {
6665 struct cpumask *pd_mask = perf_domain_span(pd);
6666 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6667 unsigned long max_util = 0, sum_util = 0;
6668 unsigned long _cpu_cap = cpu_cap;
6669 int cpu;
6670
6671 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6672
6673 /*
6674 * The capacity state of CPUs of the current rd can be driven by CPUs
6675 * of another rd if they belong to the same pd. So, account for the
6676 * utilization of these CPUs too by masking pd with cpu_online_mask
6677 * instead of the rd span.
6678 *
6679 * If an entire pd is outside of the current rd, it will not appear in
6680 * its pd list and will not be accounted by compute_energy().
6681 */
6682 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6683 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6684 unsigned long cpu_util, util_running = util_freq;
6685 struct task_struct *tsk = NULL;
6686
6687 /*
6688 * When @p is placed on @cpu:
6689 *
6690 * util_running = max(cpu_util, cpu_util_est) +
6691 * max(task_util, _task_util_est)
6692 *
6693 * while cpu_util_next is: max(cpu_util + task_util,
6694 * cpu_util_est + _task_util_est)
6695 */
6696 if (cpu == dst_cpu) {
6697 tsk = p;
6698 util_running =
6699 cpu_util_next(cpu, p, -1) + task_util_est(p);
6700 }
6701
6702 /*
6703 * Busy time computation: utilization clamping is not
6704 * required since the ratio (sum_util / cpu_capacity)
6705 * is already enough to scale the EM reported power
6706 * consumption at the (eventually clamped) cpu_capacity.
6707 */
6708 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6709 ENERGY_UTIL, NULL);
6710
6711 sum_util += min(cpu_util, _cpu_cap);
6712
6713 /*
6714 * Performance domain frequency: utilization clamping
6715 * must be considered since it affects the selection
6716 * of the performance domain frequency.
6717 * NOTE: in case RT tasks are running, by default the
6718 * FREQUENCY_UTIL's utilization can be max OPP.
6719 */
6720 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6721 FREQUENCY_UTIL, tsk);
6722 max_util = max(max_util, min(cpu_util, _cpu_cap));
6723 }
6724
6725 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6726 }
6727
6728 /*
6729 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6730 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6731 * spare capacity in each performance domain and uses it as a potential
6732 * candidate to execute the task. Then, it uses the Energy Model to figure
6733 * out which of the CPU candidates is the most energy-efficient.
6734 *
6735 * The rationale for this heuristic is as follows. In a performance domain,
6736 * all the most energy efficient CPU candidates (according to the Energy
6737 * Model) are those for which we'll request a low frequency. When there are
6738 * several CPUs for which the frequency request will be the same, we don't
6739 * have enough data to break the tie between them, because the Energy Model
6740 * only includes active power costs. With this model, if we assume that
6741 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6742 * the maximum spare capacity in a performance domain is guaranteed to be among
6743 * the best candidates of the performance domain.
6744 *
6745 * In practice, it could be preferable from an energy standpoint to pack
6746 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6747 * but that could also hurt our chances to go cluster idle, and we have no
6748 * ways to tell with the current Energy Model if this is actually a good
6749 * idea or not. So, find_energy_efficient_cpu() basically favors
6750 * cluster-packing, and spreading inside a cluster. That should at least be
6751 * a good thing for latency, and this is consistent with the idea that most
6752 * of the energy savings of EAS come from the asymmetry of the system, and
6753 * not so much from breaking the tie between identical CPUs. That's also the
6754 * reason why EAS is enabled in the topology code only for systems where
6755 * SD_ASYM_CPUCAPACITY is set.
6756 *
6757 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6758 * they don't have any useful utilization data yet and it's not possible to
6759 * forecast their impact on energy consumption. Consequently, they will be
6760 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6761 * to be energy-inefficient in some use-cases. The alternative would be to
6762 * bias new tasks towards specific types of CPUs first, or to try to infer
6763 * their util_avg from the parent task, but those heuristics could hurt
6764 * other use-cases too. So, until someone finds a better way to solve this,
6765 * let's keep things simple by re-using the existing slow path.
6766 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)6767 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6768 {
6769 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6770 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6771 int cpu, best_energy_cpu = prev_cpu, target = -1;
6772 unsigned long cpu_cap, util, base_energy = 0;
6773 struct sched_domain *sd;
6774 struct perf_domain *pd;
6775
6776 rcu_read_lock();
6777 pd = rcu_dereference(rd->pd);
6778 if (!pd || READ_ONCE(rd->overutilized))
6779 goto unlock;
6780
6781 /*
6782 * Energy-aware wake-up happens on the lowest sched_domain starting
6783 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6784 */
6785 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6786 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6787 sd = sd->parent;
6788 if (!sd)
6789 goto unlock;
6790
6791 target = prev_cpu;
6792
6793 sync_entity_load_avg(&p->se);
6794 if (!task_util_est(p))
6795 goto unlock;
6796
6797 for (; pd; pd = pd->next) {
6798 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6799 bool compute_prev_delta = false;
6800 unsigned long base_energy_pd;
6801 int max_spare_cap_cpu = -1;
6802
6803 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6804 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6805 continue;
6806
6807 util = cpu_util_next(cpu, p, cpu);
6808 cpu_cap = capacity_of(cpu);
6809 spare_cap = cpu_cap;
6810 lsub_positive(&spare_cap, util);
6811
6812 /*
6813 * Skip CPUs that cannot satisfy the capacity request.
6814 * IOW, placing the task there would make the CPU
6815 * overutilized. Take uclamp into account to see how
6816 * much capacity we can get out of the CPU; this is
6817 * aligned with sched_cpu_util().
6818 */
6819 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6820 if (!fits_capacity(util, cpu_cap))
6821 continue;
6822
6823 if (cpu == prev_cpu) {
6824 /* Always use prev_cpu as a candidate. */
6825 compute_prev_delta = true;
6826 } else if (spare_cap > max_spare_cap) {
6827 /*
6828 * Find the CPU with the maximum spare capacity
6829 * in the performance domain.
6830 */
6831 max_spare_cap = spare_cap;
6832 max_spare_cap_cpu = cpu;
6833 }
6834 }
6835
6836 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6837 continue;
6838
6839 /* Compute the 'base' energy of the pd, without @p */
6840 base_energy_pd = compute_energy(p, -1, pd);
6841 base_energy += base_energy_pd;
6842
6843 /* Evaluate the energy impact of using prev_cpu. */
6844 if (compute_prev_delta) {
6845 prev_delta = compute_energy(p, prev_cpu, pd);
6846 if (prev_delta < base_energy_pd)
6847 goto unlock;
6848 prev_delta -= base_energy_pd;
6849 best_delta = min(best_delta, prev_delta);
6850 }
6851
6852 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6853 if (max_spare_cap_cpu >= 0) {
6854 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6855 if (cur_delta < base_energy_pd)
6856 goto unlock;
6857 cur_delta -= base_energy_pd;
6858 if (cur_delta < best_delta) {
6859 best_delta = cur_delta;
6860 best_energy_cpu = max_spare_cap_cpu;
6861 }
6862 }
6863 }
6864 rcu_read_unlock();
6865
6866 /*
6867 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6868 * least 6% of the energy used by prev_cpu.
6869 */
6870 if ((prev_delta == ULONG_MAX) ||
6871 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6872 target = best_energy_cpu;
6873
6874 return target;
6875
6876 unlock:
6877 rcu_read_unlock();
6878
6879 return target;
6880 }
6881
6882 /*
6883 * select_task_rq_fair: Select target runqueue for the waking task in domains
6884 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6885 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6886 *
6887 * Balances load by selecting the idlest CPU in the idlest group, or under
6888 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6889 *
6890 * Returns the target CPU number.
6891 */
6892 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)6893 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6894 {
6895 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6896 struct sched_domain *tmp, *sd = NULL;
6897 int cpu = smp_processor_id();
6898 int new_cpu = prev_cpu;
6899 int want_affine = 0;
6900 /* SD_flags and WF_flags share the first nibble */
6901 int sd_flag = wake_flags & 0xF;
6902
6903 /*
6904 * required for stable ->cpus_allowed
6905 */
6906 lockdep_assert_held(&p->pi_lock);
6907 if (wake_flags & WF_TTWU) {
6908 record_wakee(p);
6909
6910 if (sched_energy_enabled()) {
6911 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6912 if (new_cpu >= 0)
6913 return new_cpu;
6914 new_cpu = prev_cpu;
6915 }
6916
6917 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6918 }
6919
6920 rcu_read_lock();
6921 for_each_domain(cpu, tmp) {
6922 /*
6923 * If both 'cpu' and 'prev_cpu' are part of this domain,
6924 * cpu is a valid SD_WAKE_AFFINE target.
6925 */
6926 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6927 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6928 if (cpu != prev_cpu)
6929 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6930
6931 sd = NULL; /* Prefer wake_affine over balance flags */
6932 break;
6933 }
6934
6935 /*
6936 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
6937 * usually do not have SD_BALANCE_WAKE set. That means wakeup
6938 * will usually go to the fast path.
6939 */
6940 if (tmp->flags & sd_flag)
6941 sd = tmp;
6942 else if (!want_affine)
6943 break;
6944 }
6945
6946 if (unlikely(sd)) {
6947 /* Slow path */
6948 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6949 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6950 /* Fast path */
6951 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6952 }
6953 rcu_read_unlock();
6954
6955 return new_cpu;
6956 }
6957
6958 static void detach_entity_cfs_rq(struct sched_entity *se);
6959
6960 /*
6961 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6962 * cfs_rq_of(p) references at time of call are still valid and identify the
6963 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6964 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)6965 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6966 {
6967 /*
6968 * As blocked tasks retain absolute vruntime the migration needs to
6969 * deal with this by subtracting the old and adding the new
6970 * min_vruntime -- the latter is done by enqueue_entity() when placing
6971 * the task on the new runqueue.
6972 */
6973 if (READ_ONCE(p->__state) == TASK_WAKING) {
6974 struct sched_entity *se = &p->se;
6975 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6976 u64 min_vruntime;
6977
6978 #ifndef CONFIG_64BIT
6979 u64 min_vruntime_copy;
6980
6981 do {
6982 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6983 smp_rmb();
6984 min_vruntime = cfs_rq->min_vruntime;
6985 } while (min_vruntime != min_vruntime_copy);
6986 #else
6987 min_vruntime = cfs_rq->min_vruntime;
6988 #endif
6989
6990 se->vruntime -= min_vruntime;
6991 }
6992
6993 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6994 /*
6995 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6996 * rq->lock and can modify state directly.
6997 */
6998 lockdep_assert_rq_held(task_rq(p));
6999 detach_entity_cfs_rq(&p->se);
7000
7001 } else {
7002 /*
7003 * We are supposed to update the task to "current" time, then
7004 * its up to date and ready to go to new CPU/cfs_rq. But we
7005 * have difficulty in getting what current time is, so simply
7006 * throw away the out-of-date time. This will result in the
7007 * wakee task is less decayed, but giving the wakee more load
7008 * sounds not bad.
7009 */
7010 remove_entity_load_avg(&p->se);
7011 }
7012
7013 /* Tell new CPU we are migrated */
7014 p->se.avg.last_update_time = 0;
7015
7016 /* We have migrated, no longer consider this task hot */
7017 p->se.exec_start = 0;
7018
7019 update_scan_period(p, new_cpu);
7020 }
7021
task_dead_fair(struct task_struct * p)7022 static void task_dead_fair(struct task_struct *p)
7023 {
7024 remove_entity_load_avg(&p->se);
7025 }
7026
7027 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7028 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7029 {
7030 if (rq->nr_running)
7031 return 1;
7032
7033 return newidle_balance(rq, rf) != 0;
7034 }
7035 #endif /* CONFIG_SMP */
7036
wakeup_gran(struct sched_entity * se)7037 static unsigned long wakeup_gran(struct sched_entity *se)
7038 {
7039 unsigned long gran = sysctl_sched_wakeup_granularity;
7040
7041 /*
7042 * Since its curr running now, convert the gran from real-time
7043 * to virtual-time in his units.
7044 *
7045 * By using 'se' instead of 'curr' we penalize light tasks, so
7046 * they get preempted easier. That is, if 'se' < 'curr' then
7047 * the resulting gran will be larger, therefore penalizing the
7048 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7049 * be smaller, again penalizing the lighter task.
7050 *
7051 * This is especially important for buddies when the leftmost
7052 * task is higher priority than the buddy.
7053 */
7054 return calc_delta_fair(gran, se);
7055 }
7056
7057 /*
7058 * Should 'se' preempt 'curr'.
7059 *
7060 * |s1
7061 * |s2
7062 * |s3
7063 * g
7064 * |<--->|c
7065 *
7066 * w(c, s1) = -1
7067 * w(c, s2) = 0
7068 * w(c, s3) = 1
7069 *
7070 */
7071 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7072 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7073 {
7074 s64 gran, vdiff = curr->vruntime - se->vruntime;
7075
7076 if (vdiff <= 0)
7077 return -1;
7078
7079 gran = wakeup_gran(se);
7080 if (vdiff > gran)
7081 return 1;
7082
7083 return 0;
7084 }
7085
set_last_buddy(struct sched_entity * se)7086 static void set_last_buddy(struct sched_entity *se)
7087 {
7088 for_each_sched_entity(se) {
7089 if (SCHED_WARN_ON(!se->on_rq))
7090 return;
7091 if (se_is_idle(se))
7092 return;
7093 cfs_rq_of(se)->last = se;
7094 }
7095 }
7096
set_next_buddy(struct sched_entity * se)7097 static void set_next_buddy(struct sched_entity *se)
7098 {
7099 for_each_sched_entity(se) {
7100 if (SCHED_WARN_ON(!se->on_rq))
7101 return;
7102 if (se_is_idle(se))
7103 return;
7104 cfs_rq_of(se)->next = se;
7105 }
7106 }
7107
set_skip_buddy(struct sched_entity * se)7108 static void set_skip_buddy(struct sched_entity *se)
7109 {
7110 for_each_sched_entity(se)
7111 cfs_rq_of(se)->skip = se;
7112 }
7113
7114 /*
7115 * Preempt the current task with a newly woken task if needed:
7116 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7117 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7118 {
7119 struct task_struct *curr = rq->curr;
7120 struct sched_entity *se = &curr->se, *pse = &p->se;
7121 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7122 int scale = cfs_rq->nr_running >= sched_nr_latency;
7123 int next_buddy_marked = 0;
7124 int cse_is_idle, pse_is_idle;
7125
7126 if (unlikely(se == pse))
7127 return;
7128
7129 /*
7130 * This is possible from callers such as attach_tasks(), in which we
7131 * unconditionally check_preempt_curr() after an enqueue (which may have
7132 * lead to a throttle). This both saves work and prevents false
7133 * next-buddy nomination below.
7134 */
7135 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7136 return;
7137
7138 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7139 set_next_buddy(pse);
7140 next_buddy_marked = 1;
7141 }
7142
7143 /*
7144 * We can come here with TIF_NEED_RESCHED already set from new task
7145 * wake up path.
7146 *
7147 * Note: this also catches the edge-case of curr being in a throttled
7148 * group (e.g. via set_curr_task), since update_curr() (in the
7149 * enqueue of curr) will have resulted in resched being set. This
7150 * prevents us from potentially nominating it as a false LAST_BUDDY
7151 * below.
7152 */
7153 if (test_tsk_need_resched(curr))
7154 return;
7155
7156 /* Idle tasks are by definition preempted by non-idle tasks. */
7157 if (unlikely(task_has_idle_policy(curr)) &&
7158 likely(!task_has_idle_policy(p)))
7159 goto preempt;
7160
7161 /*
7162 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7163 * is driven by the tick):
7164 */
7165 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7166 return;
7167
7168 find_matching_se(&se, &pse);
7169 BUG_ON(!pse);
7170
7171 cse_is_idle = se_is_idle(se);
7172 pse_is_idle = se_is_idle(pse);
7173
7174 /*
7175 * Preempt an idle group in favor of a non-idle group (and don't preempt
7176 * in the inverse case).
7177 */
7178 if (cse_is_idle && !pse_is_idle)
7179 goto preempt;
7180 if (cse_is_idle != pse_is_idle)
7181 return;
7182
7183 update_curr(cfs_rq_of(se));
7184 if (wakeup_preempt_entity(se, pse) == 1) {
7185 /*
7186 * Bias pick_next to pick the sched entity that is
7187 * triggering this preemption.
7188 */
7189 if (!next_buddy_marked)
7190 set_next_buddy(pse);
7191 goto preempt;
7192 }
7193
7194 return;
7195
7196 preempt:
7197 resched_curr(rq);
7198 /*
7199 * Only set the backward buddy when the current task is still
7200 * on the rq. This can happen when a wakeup gets interleaved
7201 * with schedule on the ->pre_schedule() or idle_balance()
7202 * point, either of which can * drop the rq lock.
7203 *
7204 * Also, during early boot the idle thread is in the fair class,
7205 * for obvious reasons its a bad idea to schedule back to it.
7206 */
7207 if (unlikely(!se->on_rq || curr == rq->idle))
7208 return;
7209
7210 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7211 set_last_buddy(se);
7212 }
7213
7214 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)7215 static struct task_struct *pick_task_fair(struct rq *rq)
7216 {
7217 struct sched_entity *se;
7218 struct cfs_rq *cfs_rq;
7219
7220 again:
7221 cfs_rq = &rq->cfs;
7222 if (!cfs_rq->nr_running)
7223 return NULL;
7224
7225 do {
7226 struct sched_entity *curr = cfs_rq->curr;
7227
7228 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7229 if (curr) {
7230 if (curr->on_rq)
7231 update_curr(cfs_rq);
7232 else
7233 curr = NULL;
7234
7235 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7236 goto again;
7237 }
7238
7239 se = pick_next_entity(cfs_rq, curr);
7240 cfs_rq = group_cfs_rq(se);
7241 } while (cfs_rq);
7242
7243 return task_of(se);
7244 }
7245 #endif
7246
7247 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7248 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7249 {
7250 struct cfs_rq *cfs_rq = &rq->cfs;
7251 struct sched_entity *se;
7252 struct task_struct *p;
7253 int new_tasks;
7254
7255 again:
7256 if (!sched_fair_runnable(rq))
7257 goto idle;
7258
7259 #ifdef CONFIG_FAIR_GROUP_SCHED
7260 if (!prev || prev->sched_class != &fair_sched_class)
7261 goto simple;
7262
7263 /*
7264 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7265 * likely that a next task is from the same cgroup as the current.
7266 *
7267 * Therefore attempt to avoid putting and setting the entire cgroup
7268 * hierarchy, only change the part that actually changes.
7269 */
7270
7271 do {
7272 struct sched_entity *curr = cfs_rq->curr;
7273
7274 /*
7275 * Since we got here without doing put_prev_entity() we also
7276 * have to consider cfs_rq->curr. If it is still a runnable
7277 * entity, update_curr() will update its vruntime, otherwise
7278 * forget we've ever seen it.
7279 */
7280 if (curr) {
7281 if (curr->on_rq)
7282 update_curr(cfs_rq);
7283 else
7284 curr = NULL;
7285
7286 /*
7287 * This call to check_cfs_rq_runtime() will do the
7288 * throttle and dequeue its entity in the parent(s).
7289 * Therefore the nr_running test will indeed
7290 * be correct.
7291 */
7292 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7293 cfs_rq = &rq->cfs;
7294
7295 if (!cfs_rq->nr_running)
7296 goto idle;
7297
7298 goto simple;
7299 }
7300 }
7301
7302 se = pick_next_entity(cfs_rq, curr);
7303 cfs_rq = group_cfs_rq(se);
7304 } while (cfs_rq);
7305
7306 p = task_of(se);
7307
7308 /*
7309 * Since we haven't yet done put_prev_entity and if the selected task
7310 * is a different task than we started out with, try and touch the
7311 * least amount of cfs_rqs.
7312 */
7313 if (prev != p) {
7314 struct sched_entity *pse = &prev->se;
7315
7316 while (!(cfs_rq = is_same_group(se, pse))) {
7317 int se_depth = se->depth;
7318 int pse_depth = pse->depth;
7319
7320 if (se_depth <= pse_depth) {
7321 put_prev_entity(cfs_rq_of(pse), pse);
7322 pse = parent_entity(pse);
7323 }
7324 if (se_depth >= pse_depth) {
7325 set_next_entity(cfs_rq_of(se), se);
7326 se = parent_entity(se);
7327 }
7328 }
7329
7330 put_prev_entity(cfs_rq, pse);
7331 set_next_entity(cfs_rq, se);
7332 }
7333
7334 goto done;
7335 simple:
7336 #endif
7337 if (prev)
7338 put_prev_task(rq, prev);
7339
7340 do {
7341 se = pick_next_entity(cfs_rq, NULL);
7342 set_next_entity(cfs_rq, se);
7343 cfs_rq = group_cfs_rq(se);
7344 } while (cfs_rq);
7345
7346 p = task_of(se);
7347
7348 done: __maybe_unused;
7349 #ifdef CONFIG_SMP
7350 /*
7351 * Move the next running task to the front of
7352 * the list, so our cfs_tasks list becomes MRU
7353 * one.
7354 */
7355 list_move(&p->se.group_node, &rq->cfs_tasks);
7356 #endif
7357
7358 if (hrtick_enabled_fair(rq))
7359 hrtick_start_fair(rq, p);
7360
7361 update_misfit_status(p, rq);
7362
7363 return p;
7364
7365 idle:
7366 if (!rf)
7367 return NULL;
7368
7369 new_tasks = newidle_balance(rq, rf);
7370
7371 /*
7372 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7373 * possible for any higher priority task to appear. In that case we
7374 * must re-start the pick_next_entity() loop.
7375 */
7376 if (new_tasks < 0)
7377 return RETRY_TASK;
7378
7379 if (new_tasks > 0)
7380 goto again;
7381
7382 /*
7383 * rq is about to be idle, check if we need to update the
7384 * lost_idle_time of clock_pelt
7385 */
7386 update_idle_rq_clock_pelt(rq);
7387
7388 return NULL;
7389 }
7390
__pick_next_task_fair(struct rq * rq)7391 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7392 {
7393 return pick_next_task_fair(rq, NULL, NULL);
7394 }
7395
7396 /*
7397 * Account for a descheduled task:
7398 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7399 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7400 {
7401 struct sched_entity *se = &prev->se;
7402 struct cfs_rq *cfs_rq;
7403
7404 for_each_sched_entity(se) {
7405 cfs_rq = cfs_rq_of(se);
7406 put_prev_entity(cfs_rq, se);
7407 }
7408 }
7409
7410 /*
7411 * sched_yield() is very simple
7412 *
7413 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7414 */
yield_task_fair(struct rq * rq)7415 static void yield_task_fair(struct rq *rq)
7416 {
7417 struct task_struct *curr = rq->curr;
7418 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7419 struct sched_entity *se = &curr->se;
7420
7421 /*
7422 * Are we the only task in the tree?
7423 */
7424 if (unlikely(rq->nr_running == 1))
7425 return;
7426
7427 clear_buddies(cfs_rq, se);
7428
7429 if (curr->policy != SCHED_BATCH) {
7430 update_rq_clock(rq);
7431 /*
7432 * Update run-time statistics of the 'current'.
7433 */
7434 update_curr(cfs_rq);
7435 /*
7436 * Tell update_rq_clock() that we've just updated,
7437 * so we don't do microscopic update in schedule()
7438 * and double the fastpath cost.
7439 */
7440 rq_clock_skip_update(rq);
7441 }
7442
7443 set_skip_buddy(se);
7444 }
7445
yield_to_task_fair(struct rq * rq,struct task_struct * p)7446 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7447 {
7448 struct sched_entity *se = &p->se;
7449
7450 /* throttled hierarchies are not runnable */
7451 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7452 return false;
7453
7454 /* Tell the scheduler that we'd really like pse to run next. */
7455 set_next_buddy(se);
7456
7457 yield_task_fair(rq);
7458
7459 return true;
7460 }
7461
7462 #ifdef CONFIG_SMP
7463 /**************************************************
7464 * Fair scheduling class load-balancing methods.
7465 *
7466 * BASICS
7467 *
7468 * The purpose of load-balancing is to achieve the same basic fairness the
7469 * per-CPU scheduler provides, namely provide a proportional amount of compute
7470 * time to each task. This is expressed in the following equation:
7471 *
7472 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7473 *
7474 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7475 * W_i,0 is defined as:
7476 *
7477 * W_i,0 = \Sum_j w_i,j (2)
7478 *
7479 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7480 * is derived from the nice value as per sched_prio_to_weight[].
7481 *
7482 * The weight average is an exponential decay average of the instantaneous
7483 * weight:
7484 *
7485 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7486 *
7487 * C_i is the compute capacity of CPU i, typically it is the
7488 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7489 * can also include other factors [XXX].
7490 *
7491 * To achieve this balance we define a measure of imbalance which follows
7492 * directly from (1):
7493 *
7494 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7495 *
7496 * We them move tasks around to minimize the imbalance. In the continuous
7497 * function space it is obvious this converges, in the discrete case we get
7498 * a few fun cases generally called infeasible weight scenarios.
7499 *
7500 * [XXX expand on:
7501 * - infeasible weights;
7502 * - local vs global optima in the discrete case. ]
7503 *
7504 *
7505 * SCHED DOMAINS
7506 *
7507 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7508 * for all i,j solution, we create a tree of CPUs that follows the hardware
7509 * topology where each level pairs two lower groups (or better). This results
7510 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7511 * tree to only the first of the previous level and we decrease the frequency
7512 * of load-balance at each level inv. proportional to the number of CPUs in
7513 * the groups.
7514 *
7515 * This yields:
7516 *
7517 * log_2 n 1 n
7518 * \Sum { --- * --- * 2^i } = O(n) (5)
7519 * i = 0 2^i 2^i
7520 * `- size of each group
7521 * | | `- number of CPUs doing load-balance
7522 * | `- freq
7523 * `- sum over all levels
7524 *
7525 * Coupled with a limit on how many tasks we can migrate every balance pass,
7526 * this makes (5) the runtime complexity of the balancer.
7527 *
7528 * An important property here is that each CPU is still (indirectly) connected
7529 * to every other CPU in at most O(log n) steps:
7530 *
7531 * The adjacency matrix of the resulting graph is given by:
7532 *
7533 * log_2 n
7534 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7535 * k = 0
7536 *
7537 * And you'll find that:
7538 *
7539 * A^(log_2 n)_i,j != 0 for all i,j (7)
7540 *
7541 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7542 * The task movement gives a factor of O(m), giving a convergence complexity
7543 * of:
7544 *
7545 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7546 *
7547 *
7548 * WORK CONSERVING
7549 *
7550 * In order to avoid CPUs going idle while there's still work to do, new idle
7551 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7552 * tree itself instead of relying on other CPUs to bring it work.
7553 *
7554 * This adds some complexity to both (5) and (8) but it reduces the total idle
7555 * time.
7556 *
7557 * [XXX more?]
7558 *
7559 *
7560 * CGROUPS
7561 *
7562 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7563 *
7564 * s_k,i
7565 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7566 * S_k
7567 *
7568 * Where
7569 *
7570 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7571 *
7572 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7573 *
7574 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7575 * property.
7576 *
7577 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7578 * rewrite all of this once again.]
7579 */
7580
7581 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7582
7583 enum fbq_type { regular, remote, all };
7584
7585 /*
7586 * 'group_type' describes the group of CPUs at the moment of load balancing.
7587 *
7588 * The enum is ordered by pulling priority, with the group with lowest priority
7589 * first so the group_type can simply be compared when selecting the busiest
7590 * group. See update_sd_pick_busiest().
7591 */
7592 enum group_type {
7593 /* The group has spare capacity that can be used to run more tasks. */
7594 group_has_spare = 0,
7595 /*
7596 * The group is fully used and the tasks don't compete for more CPU
7597 * cycles. Nevertheless, some tasks might wait before running.
7598 */
7599 group_fully_busy,
7600 /*
7601 * One task doesn't fit with CPU's capacity and must be migrated to a
7602 * more powerful CPU.
7603 */
7604 group_misfit_task,
7605 /*
7606 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7607 * and the task should be migrated to it instead of running on the
7608 * current CPU.
7609 */
7610 group_asym_packing,
7611 /*
7612 * The tasks' affinity constraints previously prevented the scheduler
7613 * from balancing the load across the system.
7614 */
7615 group_imbalanced,
7616 /*
7617 * The CPU is overloaded and can't provide expected CPU cycles to all
7618 * tasks.
7619 */
7620 group_overloaded
7621 };
7622
7623 enum migration_type {
7624 migrate_load = 0,
7625 migrate_util,
7626 migrate_task,
7627 migrate_misfit
7628 };
7629
7630 #define LBF_ALL_PINNED 0x01
7631 #define LBF_NEED_BREAK 0x02
7632 #define LBF_DST_PINNED 0x04
7633 #define LBF_SOME_PINNED 0x08
7634 #define LBF_ACTIVE_LB 0x10
7635
7636 struct lb_env {
7637 struct sched_domain *sd;
7638
7639 struct rq *src_rq;
7640 int src_cpu;
7641
7642 int dst_cpu;
7643 struct rq *dst_rq;
7644
7645 struct cpumask *dst_grpmask;
7646 int new_dst_cpu;
7647 enum cpu_idle_type idle;
7648 long imbalance;
7649 /* The set of CPUs under consideration for load-balancing */
7650 struct cpumask *cpus;
7651
7652 unsigned int flags;
7653
7654 unsigned int loop;
7655 unsigned int loop_break;
7656 unsigned int loop_max;
7657
7658 enum fbq_type fbq_type;
7659 enum migration_type migration_type;
7660 struct list_head tasks;
7661 };
7662
7663 /*
7664 * Is this task likely cache-hot:
7665 */
task_hot(struct task_struct * p,struct lb_env * env)7666 static int task_hot(struct task_struct *p, struct lb_env *env)
7667 {
7668 s64 delta;
7669
7670 lockdep_assert_rq_held(env->src_rq);
7671
7672 if (p->sched_class != &fair_sched_class)
7673 return 0;
7674
7675 if (unlikely(task_has_idle_policy(p)))
7676 return 0;
7677
7678 /* SMT siblings share cache */
7679 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7680 return 0;
7681
7682 /*
7683 * Buddy candidates are cache hot:
7684 */
7685 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7686 (&p->se == cfs_rq_of(&p->se)->next ||
7687 &p->se == cfs_rq_of(&p->se)->last))
7688 return 1;
7689
7690 if (sysctl_sched_migration_cost == -1)
7691 return 1;
7692
7693 /*
7694 * Don't migrate task if the task's cookie does not match
7695 * with the destination CPU's core cookie.
7696 */
7697 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7698 return 1;
7699
7700 if (sysctl_sched_migration_cost == 0)
7701 return 0;
7702
7703 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7704
7705 return delta < (s64)sysctl_sched_migration_cost;
7706 }
7707
7708 #ifdef CONFIG_NUMA_BALANCING
7709 /*
7710 * Returns 1, if task migration degrades locality
7711 * Returns 0, if task migration improves locality i.e migration preferred.
7712 * Returns -1, if task migration is not affected by locality.
7713 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7714 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7715 {
7716 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7717 unsigned long src_weight, dst_weight;
7718 int src_nid, dst_nid, dist;
7719
7720 if (!static_branch_likely(&sched_numa_balancing))
7721 return -1;
7722
7723 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7724 return -1;
7725
7726 src_nid = cpu_to_node(env->src_cpu);
7727 dst_nid = cpu_to_node(env->dst_cpu);
7728
7729 if (src_nid == dst_nid)
7730 return -1;
7731
7732 /* Migrating away from the preferred node is always bad. */
7733 if (src_nid == p->numa_preferred_nid) {
7734 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7735 return 1;
7736 else
7737 return -1;
7738 }
7739
7740 /* Encourage migration to the preferred node. */
7741 if (dst_nid == p->numa_preferred_nid)
7742 return 0;
7743
7744 /* Leaving a core idle is often worse than degrading locality. */
7745 if (env->idle == CPU_IDLE)
7746 return -1;
7747
7748 dist = node_distance(src_nid, dst_nid);
7749 if (numa_group) {
7750 src_weight = group_weight(p, src_nid, dist);
7751 dst_weight = group_weight(p, dst_nid, dist);
7752 } else {
7753 src_weight = task_weight(p, src_nid, dist);
7754 dst_weight = task_weight(p, dst_nid, dist);
7755 }
7756
7757 return dst_weight < src_weight;
7758 }
7759
7760 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7761 static inline int migrate_degrades_locality(struct task_struct *p,
7762 struct lb_env *env)
7763 {
7764 return -1;
7765 }
7766 #endif
7767
7768 /*
7769 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7770 */
7771 static
can_migrate_task(struct task_struct * p,struct lb_env * env)7772 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7773 {
7774 int tsk_cache_hot;
7775
7776 lockdep_assert_rq_held(env->src_rq);
7777
7778 /*
7779 * We do not migrate tasks that are:
7780 * 1) throttled_lb_pair, or
7781 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7782 * 3) running (obviously), or
7783 * 4) are cache-hot on their current CPU.
7784 */
7785 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7786 return 0;
7787
7788 /* Disregard pcpu kthreads; they are where they need to be. */
7789 if (kthread_is_per_cpu(p))
7790 return 0;
7791
7792 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7793 int cpu;
7794
7795 schedstat_inc(p->stats.nr_failed_migrations_affine);
7796
7797 env->flags |= LBF_SOME_PINNED;
7798
7799 /*
7800 * Remember if this task can be migrated to any other CPU in
7801 * our sched_group. We may want to revisit it if we couldn't
7802 * meet load balance goals by pulling other tasks on src_cpu.
7803 *
7804 * Avoid computing new_dst_cpu
7805 * - for NEWLY_IDLE
7806 * - if we have already computed one in current iteration
7807 * - if it's an active balance
7808 */
7809 if (env->idle == CPU_NEWLY_IDLE ||
7810 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7811 return 0;
7812
7813 /* Prevent to re-select dst_cpu via env's CPUs: */
7814 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7815 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7816 env->flags |= LBF_DST_PINNED;
7817 env->new_dst_cpu = cpu;
7818 break;
7819 }
7820 }
7821
7822 return 0;
7823 }
7824
7825 /* Record that we found at least one task that could run on dst_cpu */
7826 env->flags &= ~LBF_ALL_PINNED;
7827
7828 if (task_running(env->src_rq, p)) {
7829 schedstat_inc(p->stats.nr_failed_migrations_running);
7830 return 0;
7831 }
7832
7833 /*
7834 * Aggressive migration if:
7835 * 1) active balance
7836 * 2) destination numa is preferred
7837 * 3) task is cache cold, or
7838 * 4) too many balance attempts have failed.
7839 */
7840 if (env->flags & LBF_ACTIVE_LB)
7841 return 1;
7842
7843 tsk_cache_hot = migrate_degrades_locality(p, env);
7844 if (tsk_cache_hot == -1)
7845 tsk_cache_hot = task_hot(p, env);
7846
7847 if (tsk_cache_hot <= 0 ||
7848 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7849 if (tsk_cache_hot == 1) {
7850 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7851 schedstat_inc(p->stats.nr_forced_migrations);
7852 }
7853 return 1;
7854 }
7855
7856 schedstat_inc(p->stats.nr_failed_migrations_hot);
7857 return 0;
7858 }
7859
7860 /*
7861 * detach_task() -- detach the task for the migration specified in env
7862 */
detach_task(struct task_struct * p,struct lb_env * env)7863 static void detach_task(struct task_struct *p, struct lb_env *env)
7864 {
7865 lockdep_assert_rq_held(env->src_rq);
7866
7867 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7868 set_task_cpu(p, env->dst_cpu);
7869 }
7870
7871 /*
7872 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7873 * part of active balancing operations within "domain".
7874 *
7875 * Returns a task if successful and NULL otherwise.
7876 */
detach_one_task(struct lb_env * env)7877 static struct task_struct *detach_one_task(struct lb_env *env)
7878 {
7879 struct task_struct *p;
7880
7881 lockdep_assert_rq_held(env->src_rq);
7882
7883 list_for_each_entry_reverse(p,
7884 &env->src_rq->cfs_tasks, se.group_node) {
7885 if (!can_migrate_task(p, env))
7886 continue;
7887
7888 detach_task(p, env);
7889
7890 /*
7891 * Right now, this is only the second place where
7892 * lb_gained[env->idle] is updated (other is detach_tasks)
7893 * so we can safely collect stats here rather than
7894 * inside detach_tasks().
7895 */
7896 schedstat_inc(env->sd->lb_gained[env->idle]);
7897 return p;
7898 }
7899 return NULL;
7900 }
7901
7902 static const unsigned int sched_nr_migrate_break = 32;
7903
7904 /*
7905 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7906 * busiest_rq, as part of a balancing operation within domain "sd".
7907 *
7908 * Returns number of detached tasks if successful and 0 otherwise.
7909 */
detach_tasks(struct lb_env * env)7910 static int detach_tasks(struct lb_env *env)
7911 {
7912 struct list_head *tasks = &env->src_rq->cfs_tasks;
7913 unsigned long util, load;
7914 struct task_struct *p;
7915 int detached = 0;
7916
7917 lockdep_assert_rq_held(env->src_rq);
7918
7919 /*
7920 * Source run queue has been emptied by another CPU, clear
7921 * LBF_ALL_PINNED flag as we will not test any task.
7922 */
7923 if (env->src_rq->nr_running <= 1) {
7924 env->flags &= ~LBF_ALL_PINNED;
7925 return 0;
7926 }
7927
7928 if (env->imbalance <= 0)
7929 return 0;
7930
7931 while (!list_empty(tasks)) {
7932 /*
7933 * We don't want to steal all, otherwise we may be treated likewise,
7934 * which could at worst lead to a livelock crash.
7935 */
7936 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7937 break;
7938
7939 p = list_last_entry(tasks, struct task_struct, se.group_node);
7940
7941 env->loop++;
7942 /* We've more or less seen every task there is, call it quits */
7943 if (env->loop > env->loop_max)
7944 break;
7945
7946 /* take a breather every nr_migrate tasks */
7947 if (env->loop > env->loop_break) {
7948 env->loop_break += sched_nr_migrate_break;
7949 env->flags |= LBF_NEED_BREAK;
7950 break;
7951 }
7952
7953 if (!can_migrate_task(p, env))
7954 goto next;
7955
7956 switch (env->migration_type) {
7957 case migrate_load:
7958 /*
7959 * Depending of the number of CPUs and tasks and the
7960 * cgroup hierarchy, task_h_load() can return a null
7961 * value. Make sure that env->imbalance decreases
7962 * otherwise detach_tasks() will stop only after
7963 * detaching up to loop_max tasks.
7964 */
7965 load = max_t(unsigned long, task_h_load(p), 1);
7966
7967 if (sched_feat(LB_MIN) &&
7968 load < 16 && !env->sd->nr_balance_failed)
7969 goto next;
7970
7971 /*
7972 * Make sure that we don't migrate too much load.
7973 * Nevertheless, let relax the constraint if
7974 * scheduler fails to find a good waiting task to
7975 * migrate.
7976 */
7977 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7978 goto next;
7979
7980 env->imbalance -= load;
7981 break;
7982
7983 case migrate_util:
7984 util = task_util_est(p);
7985
7986 if (util > env->imbalance)
7987 goto next;
7988
7989 env->imbalance -= util;
7990 break;
7991
7992 case migrate_task:
7993 env->imbalance--;
7994 break;
7995
7996 case migrate_misfit:
7997 /* This is not a misfit task */
7998 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7999 goto next;
8000
8001 env->imbalance = 0;
8002 break;
8003 }
8004
8005 detach_task(p, env);
8006 list_add(&p->se.group_node, &env->tasks);
8007
8008 detached++;
8009
8010 #ifdef CONFIG_PREEMPTION
8011 /*
8012 * NEWIDLE balancing is a source of latency, so preemptible
8013 * kernels will stop after the first task is detached to minimize
8014 * the critical section.
8015 */
8016 if (env->idle == CPU_NEWLY_IDLE)
8017 break;
8018 #endif
8019
8020 /*
8021 * We only want to steal up to the prescribed amount of
8022 * load/util/tasks.
8023 */
8024 if (env->imbalance <= 0)
8025 break;
8026
8027 continue;
8028 next:
8029 list_move(&p->se.group_node, tasks);
8030 }
8031
8032 /*
8033 * Right now, this is one of only two places we collect this stat
8034 * so we can safely collect detach_one_task() stats here rather
8035 * than inside detach_one_task().
8036 */
8037 schedstat_add(env->sd->lb_gained[env->idle], detached);
8038
8039 return detached;
8040 }
8041
8042 /*
8043 * attach_task() -- attach the task detached by detach_task() to its new rq.
8044 */
attach_task(struct rq * rq,struct task_struct * p)8045 static void attach_task(struct rq *rq, struct task_struct *p)
8046 {
8047 lockdep_assert_rq_held(rq);
8048
8049 BUG_ON(task_rq(p) != rq);
8050 activate_task(rq, p, ENQUEUE_NOCLOCK);
8051 check_preempt_curr(rq, p, 0);
8052 }
8053
8054 /*
8055 * attach_one_task() -- attaches the task returned from detach_one_task() to
8056 * its new rq.
8057 */
attach_one_task(struct rq * rq,struct task_struct * p)8058 static void attach_one_task(struct rq *rq, struct task_struct *p)
8059 {
8060 struct rq_flags rf;
8061
8062 rq_lock(rq, &rf);
8063 update_rq_clock(rq);
8064 attach_task(rq, p);
8065 rq_unlock(rq, &rf);
8066 }
8067
8068 /*
8069 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8070 * new rq.
8071 */
attach_tasks(struct lb_env * env)8072 static void attach_tasks(struct lb_env *env)
8073 {
8074 struct list_head *tasks = &env->tasks;
8075 struct task_struct *p;
8076 struct rq_flags rf;
8077
8078 rq_lock(env->dst_rq, &rf);
8079 update_rq_clock(env->dst_rq);
8080
8081 while (!list_empty(tasks)) {
8082 p = list_first_entry(tasks, struct task_struct, se.group_node);
8083 list_del_init(&p->se.group_node);
8084
8085 attach_task(env->dst_rq, p);
8086 }
8087
8088 rq_unlock(env->dst_rq, &rf);
8089 }
8090
8091 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8092 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8093 {
8094 if (cfs_rq->avg.load_avg)
8095 return true;
8096
8097 if (cfs_rq->avg.util_avg)
8098 return true;
8099
8100 return false;
8101 }
8102
others_have_blocked(struct rq * rq)8103 static inline bool others_have_blocked(struct rq *rq)
8104 {
8105 if (READ_ONCE(rq->avg_rt.util_avg))
8106 return true;
8107
8108 if (READ_ONCE(rq->avg_dl.util_avg))
8109 return true;
8110
8111 if (thermal_load_avg(rq))
8112 return true;
8113
8114 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8115 if (READ_ONCE(rq->avg_irq.util_avg))
8116 return true;
8117 #endif
8118
8119 return false;
8120 }
8121
update_blocked_load_tick(struct rq * rq)8122 static inline void update_blocked_load_tick(struct rq *rq)
8123 {
8124 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8125 }
8126
update_blocked_load_status(struct rq * rq,bool has_blocked)8127 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8128 {
8129 if (!has_blocked)
8130 rq->has_blocked_load = 0;
8131 }
8132 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8133 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8134 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)8135 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)8136 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8137 #endif
8138
__update_blocked_others(struct rq * rq,bool * done)8139 static bool __update_blocked_others(struct rq *rq, bool *done)
8140 {
8141 const struct sched_class *curr_class;
8142 u64 now = rq_clock_pelt(rq);
8143 unsigned long thermal_pressure;
8144 bool decayed;
8145
8146 /*
8147 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8148 * DL and IRQ signals have been updated before updating CFS.
8149 */
8150 curr_class = rq->curr->sched_class;
8151
8152 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8153
8154 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8155 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8156 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8157 update_irq_load_avg(rq, 0);
8158
8159 if (others_have_blocked(rq))
8160 *done = false;
8161
8162 return decayed;
8163 }
8164
8165 #ifdef CONFIG_FAIR_GROUP_SCHED
8166
__update_blocked_fair(struct rq * rq,bool * done)8167 static bool __update_blocked_fair(struct rq *rq, bool *done)
8168 {
8169 struct cfs_rq *cfs_rq, *pos;
8170 bool decayed = false;
8171 int cpu = cpu_of(rq);
8172
8173 /*
8174 * Iterates the task_group tree in a bottom up fashion, see
8175 * list_add_leaf_cfs_rq() for details.
8176 */
8177 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8178 struct sched_entity *se;
8179
8180 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8181 update_tg_load_avg(cfs_rq);
8182
8183 if (cfs_rq == &rq->cfs)
8184 decayed = true;
8185 }
8186
8187 /* Propagate pending load changes to the parent, if any: */
8188 se = cfs_rq->tg->se[cpu];
8189 if (se && !skip_blocked_update(se))
8190 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8191
8192 /*
8193 * There can be a lot of idle CPU cgroups. Don't let fully
8194 * decayed cfs_rqs linger on the list.
8195 */
8196 if (cfs_rq_is_decayed(cfs_rq))
8197 list_del_leaf_cfs_rq(cfs_rq);
8198
8199 /* Don't need periodic decay once load/util_avg are null */
8200 if (cfs_rq_has_blocked(cfs_rq))
8201 *done = false;
8202 }
8203
8204 return decayed;
8205 }
8206
8207 /*
8208 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8209 * This needs to be done in a top-down fashion because the load of a child
8210 * group is a fraction of its parents load.
8211 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8212 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8213 {
8214 struct rq *rq = rq_of(cfs_rq);
8215 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8216 unsigned long now = jiffies;
8217 unsigned long load;
8218
8219 if (cfs_rq->last_h_load_update == now)
8220 return;
8221
8222 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8223 for_each_sched_entity(se) {
8224 cfs_rq = cfs_rq_of(se);
8225 WRITE_ONCE(cfs_rq->h_load_next, se);
8226 if (cfs_rq->last_h_load_update == now)
8227 break;
8228 }
8229
8230 if (!se) {
8231 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8232 cfs_rq->last_h_load_update = now;
8233 }
8234
8235 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8236 load = cfs_rq->h_load;
8237 load = div64_ul(load * se->avg.load_avg,
8238 cfs_rq_load_avg(cfs_rq) + 1);
8239 cfs_rq = group_cfs_rq(se);
8240 cfs_rq->h_load = load;
8241 cfs_rq->last_h_load_update = now;
8242 }
8243 }
8244
task_h_load(struct task_struct * p)8245 static unsigned long task_h_load(struct task_struct *p)
8246 {
8247 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8248
8249 update_cfs_rq_h_load(cfs_rq);
8250 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8251 cfs_rq_load_avg(cfs_rq) + 1);
8252 }
8253 #else
__update_blocked_fair(struct rq * rq,bool * done)8254 static bool __update_blocked_fair(struct rq *rq, bool *done)
8255 {
8256 struct cfs_rq *cfs_rq = &rq->cfs;
8257 bool decayed;
8258
8259 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8260 if (cfs_rq_has_blocked(cfs_rq))
8261 *done = false;
8262
8263 return decayed;
8264 }
8265
task_h_load(struct task_struct * p)8266 static unsigned long task_h_load(struct task_struct *p)
8267 {
8268 return p->se.avg.load_avg;
8269 }
8270 #endif
8271
update_blocked_averages(int cpu)8272 static void update_blocked_averages(int cpu)
8273 {
8274 bool decayed = false, done = true;
8275 struct rq *rq = cpu_rq(cpu);
8276 struct rq_flags rf;
8277
8278 rq_lock_irqsave(rq, &rf);
8279 update_blocked_load_tick(rq);
8280 update_rq_clock(rq);
8281
8282 decayed |= __update_blocked_others(rq, &done);
8283 decayed |= __update_blocked_fair(rq, &done);
8284
8285 update_blocked_load_status(rq, !done);
8286 if (decayed)
8287 cpufreq_update_util(rq, 0);
8288 rq_unlock_irqrestore(rq, &rf);
8289 }
8290
8291 /********** Helpers for find_busiest_group ************************/
8292
8293 /*
8294 * sg_lb_stats - stats of a sched_group required for load_balancing
8295 */
8296 struct sg_lb_stats {
8297 unsigned long avg_load; /*Avg load across the CPUs of the group */
8298 unsigned long group_load; /* Total load over the CPUs of the group */
8299 unsigned long group_capacity;
8300 unsigned long group_util; /* Total utilization over the CPUs of the group */
8301 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8302 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8303 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8304 unsigned int idle_cpus;
8305 unsigned int group_weight;
8306 enum group_type group_type;
8307 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8308 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8309 #ifdef CONFIG_NUMA_BALANCING
8310 unsigned int nr_numa_running;
8311 unsigned int nr_preferred_running;
8312 #endif
8313 };
8314
8315 /*
8316 * sd_lb_stats - Structure to store the statistics of a sched_domain
8317 * during load balancing.
8318 */
8319 struct sd_lb_stats {
8320 struct sched_group *busiest; /* Busiest group in this sd */
8321 struct sched_group *local; /* Local group in this sd */
8322 unsigned long total_load; /* Total load of all groups in sd */
8323 unsigned long total_capacity; /* Total capacity of all groups in sd */
8324 unsigned long avg_load; /* Average load across all groups in sd */
8325 unsigned int prefer_sibling; /* tasks should go to sibling first */
8326
8327 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8328 struct sg_lb_stats local_stat; /* Statistics of the local group */
8329 };
8330
init_sd_lb_stats(struct sd_lb_stats * sds)8331 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8332 {
8333 /*
8334 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8335 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8336 * We must however set busiest_stat::group_type and
8337 * busiest_stat::idle_cpus to the worst busiest group because
8338 * update_sd_pick_busiest() reads these before assignment.
8339 */
8340 *sds = (struct sd_lb_stats){
8341 .busiest = NULL,
8342 .local = NULL,
8343 .total_load = 0UL,
8344 .total_capacity = 0UL,
8345 .busiest_stat = {
8346 .idle_cpus = UINT_MAX,
8347 .group_type = group_has_spare,
8348 },
8349 };
8350 }
8351
scale_rt_capacity(int cpu)8352 static unsigned long scale_rt_capacity(int cpu)
8353 {
8354 struct rq *rq = cpu_rq(cpu);
8355 unsigned long max = arch_scale_cpu_capacity(cpu);
8356 unsigned long used, free;
8357 unsigned long irq;
8358
8359 irq = cpu_util_irq(rq);
8360
8361 if (unlikely(irq >= max))
8362 return 1;
8363
8364 /*
8365 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8366 * (running and not running) with weights 0 and 1024 respectively.
8367 * avg_thermal.load_avg tracks thermal pressure and the weighted
8368 * average uses the actual delta max capacity(load).
8369 */
8370 used = READ_ONCE(rq->avg_rt.util_avg);
8371 used += READ_ONCE(rq->avg_dl.util_avg);
8372 used += thermal_load_avg(rq);
8373
8374 if (unlikely(used >= max))
8375 return 1;
8376
8377 free = max - used;
8378
8379 return scale_irq_capacity(free, irq, max);
8380 }
8381
update_cpu_capacity(struct sched_domain * sd,int cpu)8382 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8383 {
8384 unsigned long capacity = scale_rt_capacity(cpu);
8385 struct sched_group *sdg = sd->groups;
8386
8387 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8388
8389 if (!capacity)
8390 capacity = 1;
8391
8392 cpu_rq(cpu)->cpu_capacity = capacity;
8393 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8394
8395 sdg->sgc->capacity = capacity;
8396 sdg->sgc->min_capacity = capacity;
8397 sdg->sgc->max_capacity = capacity;
8398 }
8399
update_group_capacity(struct sched_domain * sd,int cpu)8400 void update_group_capacity(struct sched_domain *sd, int cpu)
8401 {
8402 struct sched_domain *child = sd->child;
8403 struct sched_group *group, *sdg = sd->groups;
8404 unsigned long capacity, min_capacity, max_capacity;
8405 unsigned long interval;
8406
8407 interval = msecs_to_jiffies(sd->balance_interval);
8408 interval = clamp(interval, 1UL, max_load_balance_interval);
8409 sdg->sgc->next_update = jiffies + interval;
8410
8411 if (!child) {
8412 update_cpu_capacity(sd, cpu);
8413 return;
8414 }
8415
8416 capacity = 0;
8417 min_capacity = ULONG_MAX;
8418 max_capacity = 0;
8419
8420 if (child->flags & SD_OVERLAP) {
8421 /*
8422 * SD_OVERLAP domains cannot assume that child groups
8423 * span the current group.
8424 */
8425
8426 for_each_cpu(cpu, sched_group_span(sdg)) {
8427 unsigned long cpu_cap = capacity_of(cpu);
8428
8429 capacity += cpu_cap;
8430 min_capacity = min(cpu_cap, min_capacity);
8431 max_capacity = max(cpu_cap, max_capacity);
8432 }
8433 } else {
8434 /*
8435 * !SD_OVERLAP domains can assume that child groups
8436 * span the current group.
8437 */
8438
8439 group = child->groups;
8440 do {
8441 struct sched_group_capacity *sgc = group->sgc;
8442
8443 capacity += sgc->capacity;
8444 min_capacity = min(sgc->min_capacity, min_capacity);
8445 max_capacity = max(sgc->max_capacity, max_capacity);
8446 group = group->next;
8447 } while (group != child->groups);
8448 }
8449
8450 sdg->sgc->capacity = capacity;
8451 sdg->sgc->min_capacity = min_capacity;
8452 sdg->sgc->max_capacity = max_capacity;
8453 }
8454
8455 /*
8456 * Check whether the capacity of the rq has been noticeably reduced by side
8457 * activity. The imbalance_pct is used for the threshold.
8458 * Return true is the capacity is reduced
8459 */
8460 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8461 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8462 {
8463 return ((rq->cpu_capacity * sd->imbalance_pct) <
8464 (rq->cpu_capacity_orig * 100));
8465 }
8466
8467 /*
8468 * Check whether a rq has a misfit task and if it looks like we can actually
8469 * help that task: we can migrate the task to a CPU of higher capacity, or
8470 * the task's current CPU is heavily pressured.
8471 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8472 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8473 {
8474 return rq->misfit_task_load &&
8475 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8476 check_cpu_capacity(rq, sd));
8477 }
8478
8479 /*
8480 * Group imbalance indicates (and tries to solve) the problem where balancing
8481 * groups is inadequate due to ->cpus_ptr constraints.
8482 *
8483 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8484 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8485 * Something like:
8486 *
8487 * { 0 1 2 3 } { 4 5 6 7 }
8488 * * * * *
8489 *
8490 * If we were to balance group-wise we'd place two tasks in the first group and
8491 * two tasks in the second group. Clearly this is undesired as it will overload
8492 * cpu 3 and leave one of the CPUs in the second group unused.
8493 *
8494 * The current solution to this issue is detecting the skew in the first group
8495 * by noticing the lower domain failed to reach balance and had difficulty
8496 * moving tasks due to affinity constraints.
8497 *
8498 * When this is so detected; this group becomes a candidate for busiest; see
8499 * update_sd_pick_busiest(). And calculate_imbalance() and
8500 * find_busiest_group() avoid some of the usual balance conditions to allow it
8501 * to create an effective group imbalance.
8502 *
8503 * This is a somewhat tricky proposition since the next run might not find the
8504 * group imbalance and decide the groups need to be balanced again. A most
8505 * subtle and fragile situation.
8506 */
8507
sg_imbalanced(struct sched_group * group)8508 static inline int sg_imbalanced(struct sched_group *group)
8509 {
8510 return group->sgc->imbalance;
8511 }
8512
8513 /*
8514 * group_has_capacity returns true if the group has spare capacity that could
8515 * be used by some tasks.
8516 * We consider that a group has spare capacity if the * number of task is
8517 * smaller than the number of CPUs or if the utilization is lower than the
8518 * available capacity for CFS tasks.
8519 * For the latter, we use a threshold to stabilize the state, to take into
8520 * account the variance of the tasks' load and to return true if the available
8521 * capacity in meaningful for the load balancer.
8522 * As an example, an available capacity of 1% can appear but it doesn't make
8523 * any benefit for the load balance.
8524 */
8525 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8526 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8527 {
8528 if (sgs->sum_nr_running < sgs->group_weight)
8529 return true;
8530
8531 if ((sgs->group_capacity * imbalance_pct) <
8532 (sgs->group_runnable * 100))
8533 return false;
8534
8535 if ((sgs->group_capacity * 100) >
8536 (sgs->group_util * imbalance_pct))
8537 return true;
8538
8539 return false;
8540 }
8541
8542 /*
8543 * group_is_overloaded returns true if the group has more tasks than it can
8544 * handle.
8545 * group_is_overloaded is not equals to !group_has_capacity because a group
8546 * with the exact right number of tasks, has no more spare capacity but is not
8547 * overloaded so both group_has_capacity and group_is_overloaded return
8548 * false.
8549 */
8550 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8551 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8552 {
8553 if (sgs->sum_nr_running <= sgs->group_weight)
8554 return false;
8555
8556 if ((sgs->group_capacity * 100) <
8557 (sgs->group_util * imbalance_pct))
8558 return true;
8559
8560 if ((sgs->group_capacity * imbalance_pct) <
8561 (sgs->group_runnable * 100))
8562 return true;
8563
8564 return false;
8565 }
8566
8567 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)8568 group_type group_classify(unsigned int imbalance_pct,
8569 struct sched_group *group,
8570 struct sg_lb_stats *sgs)
8571 {
8572 if (group_is_overloaded(imbalance_pct, sgs))
8573 return group_overloaded;
8574
8575 if (sg_imbalanced(group))
8576 return group_imbalanced;
8577
8578 if (sgs->group_asym_packing)
8579 return group_asym_packing;
8580
8581 if (sgs->group_misfit_task_load)
8582 return group_misfit_task;
8583
8584 if (!group_has_capacity(imbalance_pct, sgs))
8585 return group_fully_busy;
8586
8587 return group_has_spare;
8588 }
8589
8590 /**
8591 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8592 * @dst_cpu: Destination CPU of the load balancing
8593 * @sds: Load-balancing data with statistics of the local group
8594 * @sgs: Load-balancing statistics of the candidate busiest group
8595 * @sg: The candidate busiest group
8596 *
8597 * Check the state of the SMT siblings of both @sds::local and @sg and decide
8598 * if @dst_cpu can pull tasks.
8599 *
8600 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8601 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8602 * only if @dst_cpu has higher priority.
8603 *
8604 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8605 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8606 * Bigger imbalances in the number of busy CPUs will be dealt with in
8607 * update_sd_pick_busiest().
8608 *
8609 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8610 * of @dst_cpu are idle and @sg has lower priority.
8611 *
8612 * Return: true if @dst_cpu can pull tasks, false otherwise.
8613 */
asym_smt_can_pull_tasks(int dst_cpu,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * sg)8614 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8615 struct sg_lb_stats *sgs,
8616 struct sched_group *sg)
8617 {
8618 #ifdef CONFIG_SCHED_SMT
8619 bool local_is_smt, sg_is_smt;
8620 int sg_busy_cpus;
8621
8622 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8623 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8624
8625 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8626
8627 if (!local_is_smt) {
8628 /*
8629 * If we are here, @dst_cpu is idle and does not have SMT
8630 * siblings. Pull tasks if candidate group has two or more
8631 * busy CPUs.
8632 */
8633 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8634 return true;
8635
8636 /*
8637 * @dst_cpu does not have SMT siblings. @sg may have SMT
8638 * siblings and only one is busy. In such case, @dst_cpu
8639 * can help if it has higher priority and is idle (i.e.,
8640 * it has no running tasks).
8641 */
8642 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8643 }
8644
8645 /* @dst_cpu has SMT siblings. */
8646
8647 if (sg_is_smt) {
8648 int local_busy_cpus = sds->local->group_weight -
8649 sds->local_stat.idle_cpus;
8650 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8651
8652 if (busy_cpus_delta == 1)
8653 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8654
8655 return false;
8656 }
8657
8658 /*
8659 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8660 * up with more than one busy SMT sibling and only pull tasks if there
8661 * are not busy CPUs (i.e., no CPU has running tasks).
8662 */
8663 if (!sds->local_stat.sum_nr_running)
8664 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8665
8666 return false;
8667 #else
8668 /* Always return false so that callers deal with non-SMT cases. */
8669 return false;
8670 #endif
8671 }
8672
8673 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)8674 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
8675 struct sched_group *group)
8676 {
8677 /* Only do SMT checks if either local or candidate have SMT siblings */
8678 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8679 (group->flags & SD_SHARE_CPUCAPACITY))
8680 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8681
8682 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8683 }
8684
8685 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)8686 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
8687 {
8688 /*
8689 * When there is more than 1 task, the group_overloaded case already
8690 * takes care of cpu with reduced capacity
8691 */
8692 if (rq->cfs.h_nr_running != 1)
8693 return false;
8694
8695 return check_cpu_capacity(rq, sd);
8696 }
8697
8698 /**
8699 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8700 * @env: The load balancing environment.
8701 * @sds: Load-balancing data with statistics of the local group.
8702 * @group: sched_group whose statistics are to be updated.
8703 * @sgs: variable to hold the statistics for this group.
8704 * @sg_status: Holds flag indicating the status of the sched_group
8705 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)8706 static inline void update_sg_lb_stats(struct lb_env *env,
8707 struct sd_lb_stats *sds,
8708 struct sched_group *group,
8709 struct sg_lb_stats *sgs,
8710 int *sg_status)
8711 {
8712 int i, nr_running, local_group;
8713
8714 memset(sgs, 0, sizeof(*sgs));
8715
8716 local_group = group == sds->local;
8717
8718 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8719 struct rq *rq = cpu_rq(i);
8720 unsigned long load = cpu_load(rq);
8721
8722 sgs->group_load += load;
8723 sgs->group_util += cpu_util_cfs(i);
8724 sgs->group_runnable += cpu_runnable(rq);
8725 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8726
8727 nr_running = rq->nr_running;
8728 sgs->sum_nr_running += nr_running;
8729
8730 if (nr_running > 1)
8731 *sg_status |= SG_OVERLOAD;
8732
8733 if (cpu_overutilized(i))
8734 *sg_status |= SG_OVERUTILIZED;
8735
8736 #ifdef CONFIG_NUMA_BALANCING
8737 sgs->nr_numa_running += rq->nr_numa_running;
8738 sgs->nr_preferred_running += rq->nr_preferred_running;
8739 #endif
8740 /*
8741 * No need to call idle_cpu() if nr_running is not 0
8742 */
8743 if (!nr_running && idle_cpu(i)) {
8744 sgs->idle_cpus++;
8745 /* Idle cpu can't have misfit task */
8746 continue;
8747 }
8748
8749 if (local_group)
8750 continue;
8751
8752 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
8753 /* Check for a misfit task on the cpu */
8754 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
8755 sgs->group_misfit_task_load = rq->misfit_task_load;
8756 *sg_status |= SG_OVERLOAD;
8757 }
8758 } else if ((env->idle != CPU_NOT_IDLE) &&
8759 sched_reduced_capacity(rq, env->sd)) {
8760 /* Check for a task running on a CPU with reduced capacity */
8761 if (sgs->group_misfit_task_load < load)
8762 sgs->group_misfit_task_load = load;
8763 }
8764 }
8765
8766 sgs->group_capacity = group->sgc->capacity;
8767
8768 sgs->group_weight = group->group_weight;
8769
8770 /* Check if dst CPU is idle and preferred to this group */
8771 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8772 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8773 sched_asym(env, sds, sgs, group)) {
8774 sgs->group_asym_packing = 1;
8775 }
8776
8777 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8778
8779 /* Computing avg_load makes sense only when group is overloaded */
8780 if (sgs->group_type == group_overloaded)
8781 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8782 sgs->group_capacity;
8783 }
8784
8785 /**
8786 * update_sd_pick_busiest - return 1 on busiest group
8787 * @env: The load balancing environment.
8788 * @sds: sched_domain statistics
8789 * @sg: sched_group candidate to be checked for being the busiest
8790 * @sgs: sched_group statistics
8791 *
8792 * Determine if @sg is a busier group than the previously selected
8793 * busiest group.
8794 *
8795 * Return: %true if @sg is a busier group than the previously selected
8796 * busiest group. %false otherwise.
8797 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)8798 static bool update_sd_pick_busiest(struct lb_env *env,
8799 struct sd_lb_stats *sds,
8800 struct sched_group *sg,
8801 struct sg_lb_stats *sgs)
8802 {
8803 struct sg_lb_stats *busiest = &sds->busiest_stat;
8804
8805 /* Make sure that there is at least one task to pull */
8806 if (!sgs->sum_h_nr_running)
8807 return false;
8808
8809 /*
8810 * Don't try to pull misfit tasks we can't help.
8811 * We can use max_capacity here as reduction in capacity on some
8812 * CPUs in the group should either be possible to resolve
8813 * internally or be covered by avg_load imbalance (eventually).
8814 */
8815 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8816 (sgs->group_type == group_misfit_task) &&
8817 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8818 sds->local_stat.group_type != group_has_spare))
8819 return false;
8820
8821 if (sgs->group_type > busiest->group_type)
8822 return true;
8823
8824 if (sgs->group_type < busiest->group_type)
8825 return false;
8826
8827 /*
8828 * The candidate and the current busiest group are the same type of
8829 * group. Let check which one is the busiest according to the type.
8830 */
8831
8832 switch (sgs->group_type) {
8833 case group_overloaded:
8834 /* Select the overloaded group with highest avg_load. */
8835 if (sgs->avg_load <= busiest->avg_load)
8836 return false;
8837 break;
8838
8839 case group_imbalanced:
8840 /*
8841 * Select the 1st imbalanced group as we don't have any way to
8842 * choose one more than another.
8843 */
8844 return false;
8845
8846 case group_asym_packing:
8847 /* Prefer to move from lowest priority CPU's work */
8848 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8849 return false;
8850 break;
8851
8852 case group_misfit_task:
8853 /*
8854 * If we have more than one misfit sg go with the biggest
8855 * misfit.
8856 */
8857 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8858 return false;
8859 break;
8860
8861 case group_fully_busy:
8862 /*
8863 * Select the fully busy group with highest avg_load. In
8864 * theory, there is no need to pull task from such kind of
8865 * group because tasks have all compute capacity that they need
8866 * but we can still improve the overall throughput by reducing
8867 * contention when accessing shared HW resources.
8868 *
8869 * XXX for now avg_load is not computed and always 0 so we
8870 * select the 1st one.
8871 */
8872 if (sgs->avg_load <= busiest->avg_load)
8873 return false;
8874 break;
8875
8876 case group_has_spare:
8877 /*
8878 * Select not overloaded group with lowest number of idle cpus
8879 * and highest number of running tasks. We could also compare
8880 * the spare capacity which is more stable but it can end up
8881 * that the group has less spare capacity but finally more idle
8882 * CPUs which means less opportunity to pull tasks.
8883 */
8884 if (sgs->idle_cpus > busiest->idle_cpus)
8885 return false;
8886 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8887 (sgs->sum_nr_running <= busiest->sum_nr_running))
8888 return false;
8889
8890 break;
8891 }
8892
8893 /*
8894 * Candidate sg has no more than one task per CPU and has higher
8895 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8896 * throughput. Maximize throughput, power/energy consequences are not
8897 * considered.
8898 */
8899 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8900 (sgs->group_type <= group_fully_busy) &&
8901 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8902 return false;
8903
8904 return true;
8905 }
8906
8907 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)8908 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8909 {
8910 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8911 return regular;
8912 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8913 return remote;
8914 return all;
8915 }
8916
fbq_classify_rq(struct rq * rq)8917 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8918 {
8919 if (rq->nr_running > rq->nr_numa_running)
8920 return regular;
8921 if (rq->nr_running > rq->nr_preferred_running)
8922 return remote;
8923 return all;
8924 }
8925 #else
fbq_classify_group(struct sg_lb_stats * sgs)8926 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8927 {
8928 return all;
8929 }
8930
fbq_classify_rq(struct rq * rq)8931 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8932 {
8933 return regular;
8934 }
8935 #endif /* CONFIG_NUMA_BALANCING */
8936
8937
8938 struct sg_lb_stats;
8939
8940 /*
8941 * task_running_on_cpu - return 1 if @p is running on @cpu.
8942 */
8943
task_running_on_cpu(int cpu,struct task_struct * p)8944 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8945 {
8946 /* Task has no contribution or is new */
8947 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8948 return 0;
8949
8950 if (task_on_rq_queued(p))
8951 return 1;
8952
8953 return 0;
8954 }
8955
8956 /**
8957 * idle_cpu_without - would a given CPU be idle without p ?
8958 * @cpu: the processor on which idleness is tested.
8959 * @p: task which should be ignored.
8960 *
8961 * Return: 1 if the CPU would be idle. 0 otherwise.
8962 */
idle_cpu_without(int cpu,struct task_struct * p)8963 static int idle_cpu_without(int cpu, struct task_struct *p)
8964 {
8965 struct rq *rq = cpu_rq(cpu);
8966
8967 if (rq->curr != rq->idle && rq->curr != p)
8968 return 0;
8969
8970 /*
8971 * rq->nr_running can't be used but an updated version without the
8972 * impact of p on cpu must be used instead. The updated nr_running
8973 * be computed and tested before calling idle_cpu_without().
8974 */
8975
8976 #ifdef CONFIG_SMP
8977 if (rq->ttwu_pending)
8978 return 0;
8979 #endif
8980
8981 return 1;
8982 }
8983
8984 /*
8985 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8986 * @sd: The sched_domain level to look for idlest group.
8987 * @group: sched_group whose statistics are to be updated.
8988 * @sgs: variable to hold the statistics for this group.
8989 * @p: The task for which we look for the idlest group/CPU.
8990 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)8991 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8992 struct sched_group *group,
8993 struct sg_lb_stats *sgs,
8994 struct task_struct *p)
8995 {
8996 int i, nr_running;
8997
8998 memset(sgs, 0, sizeof(*sgs));
8999
9000 for_each_cpu(i, sched_group_span(group)) {
9001 struct rq *rq = cpu_rq(i);
9002 unsigned int local;
9003
9004 sgs->group_load += cpu_load_without(rq, p);
9005 sgs->group_util += cpu_util_without(i, p);
9006 sgs->group_runnable += cpu_runnable_without(rq, p);
9007 local = task_running_on_cpu(i, p);
9008 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9009
9010 nr_running = rq->nr_running - local;
9011 sgs->sum_nr_running += nr_running;
9012
9013 /*
9014 * No need to call idle_cpu_without() if nr_running is not 0
9015 */
9016 if (!nr_running && idle_cpu_without(i, p))
9017 sgs->idle_cpus++;
9018
9019 }
9020
9021 /* Check if task fits in the group */
9022 if (sd->flags & SD_ASYM_CPUCAPACITY &&
9023 !task_fits_capacity(p, group->sgc->max_capacity)) {
9024 sgs->group_misfit_task_load = 1;
9025 }
9026
9027 sgs->group_capacity = group->sgc->capacity;
9028
9029 sgs->group_weight = group->group_weight;
9030
9031 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9032
9033 /*
9034 * Computing avg_load makes sense only when group is fully busy or
9035 * overloaded
9036 */
9037 if (sgs->group_type == group_fully_busy ||
9038 sgs->group_type == group_overloaded)
9039 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9040 sgs->group_capacity;
9041 }
9042
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9043 static bool update_pick_idlest(struct sched_group *idlest,
9044 struct sg_lb_stats *idlest_sgs,
9045 struct sched_group *group,
9046 struct sg_lb_stats *sgs)
9047 {
9048 if (sgs->group_type < idlest_sgs->group_type)
9049 return true;
9050
9051 if (sgs->group_type > idlest_sgs->group_type)
9052 return false;
9053
9054 /*
9055 * The candidate and the current idlest group are the same type of
9056 * group. Let check which one is the idlest according to the type.
9057 */
9058
9059 switch (sgs->group_type) {
9060 case group_overloaded:
9061 case group_fully_busy:
9062 /* Select the group with lowest avg_load. */
9063 if (idlest_sgs->avg_load <= sgs->avg_load)
9064 return false;
9065 break;
9066
9067 case group_imbalanced:
9068 case group_asym_packing:
9069 /* Those types are not used in the slow wakeup path */
9070 return false;
9071
9072 case group_misfit_task:
9073 /* Select group with the highest max capacity */
9074 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9075 return false;
9076 break;
9077
9078 case group_has_spare:
9079 /* Select group with most idle CPUs */
9080 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9081 return false;
9082
9083 /* Select group with lowest group_util */
9084 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9085 idlest_sgs->group_util <= sgs->group_util)
9086 return false;
9087
9088 break;
9089 }
9090
9091 return true;
9092 }
9093
9094 /*
9095 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9096 * This is an approximation as the number of running tasks may not be
9097 * related to the number of busy CPUs due to sched_setaffinity.
9098 */
allow_numa_imbalance(int running,int imb_numa_nr)9099 static inline bool allow_numa_imbalance(int running, int imb_numa_nr)
9100 {
9101 return running <= imb_numa_nr;
9102 }
9103
9104 /*
9105 * find_idlest_group() finds and returns the least busy CPU group within the
9106 * domain.
9107 *
9108 * Assumes p is allowed on at least one CPU in sd.
9109 */
9110 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9111 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9112 {
9113 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9114 struct sg_lb_stats local_sgs, tmp_sgs;
9115 struct sg_lb_stats *sgs;
9116 unsigned long imbalance;
9117 struct sg_lb_stats idlest_sgs = {
9118 .avg_load = UINT_MAX,
9119 .group_type = group_overloaded,
9120 };
9121
9122 do {
9123 int local_group;
9124
9125 /* Skip over this group if it has no CPUs allowed */
9126 if (!cpumask_intersects(sched_group_span(group),
9127 p->cpus_ptr))
9128 continue;
9129
9130 /* Skip over this group if no cookie matched */
9131 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9132 continue;
9133
9134 local_group = cpumask_test_cpu(this_cpu,
9135 sched_group_span(group));
9136
9137 if (local_group) {
9138 sgs = &local_sgs;
9139 local = group;
9140 } else {
9141 sgs = &tmp_sgs;
9142 }
9143
9144 update_sg_wakeup_stats(sd, group, sgs, p);
9145
9146 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9147 idlest = group;
9148 idlest_sgs = *sgs;
9149 }
9150
9151 } while (group = group->next, group != sd->groups);
9152
9153
9154 /* There is no idlest group to push tasks to */
9155 if (!idlest)
9156 return NULL;
9157
9158 /* The local group has been skipped because of CPU affinity */
9159 if (!local)
9160 return idlest;
9161
9162 /*
9163 * If the local group is idler than the selected idlest group
9164 * don't try and push the task.
9165 */
9166 if (local_sgs.group_type < idlest_sgs.group_type)
9167 return NULL;
9168
9169 /*
9170 * If the local group is busier than the selected idlest group
9171 * try and push the task.
9172 */
9173 if (local_sgs.group_type > idlest_sgs.group_type)
9174 return idlest;
9175
9176 switch (local_sgs.group_type) {
9177 case group_overloaded:
9178 case group_fully_busy:
9179
9180 /* Calculate allowed imbalance based on load */
9181 imbalance = scale_load_down(NICE_0_LOAD) *
9182 (sd->imbalance_pct-100) / 100;
9183
9184 /*
9185 * When comparing groups across NUMA domains, it's possible for
9186 * the local domain to be very lightly loaded relative to the
9187 * remote domains but "imbalance" skews the comparison making
9188 * remote CPUs look much more favourable. When considering
9189 * cross-domain, add imbalance to the load on the remote node
9190 * and consider staying local.
9191 */
9192
9193 if ((sd->flags & SD_NUMA) &&
9194 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9195 return NULL;
9196
9197 /*
9198 * If the local group is less loaded than the selected
9199 * idlest group don't try and push any tasks.
9200 */
9201 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9202 return NULL;
9203
9204 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9205 return NULL;
9206 break;
9207
9208 case group_imbalanced:
9209 case group_asym_packing:
9210 /* Those type are not used in the slow wakeup path */
9211 return NULL;
9212
9213 case group_misfit_task:
9214 /* Select group with the highest max capacity */
9215 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9216 return NULL;
9217 break;
9218
9219 case group_has_spare:
9220 if (sd->flags & SD_NUMA) {
9221 #ifdef CONFIG_NUMA_BALANCING
9222 int idlest_cpu;
9223 /*
9224 * If there is spare capacity at NUMA, try to select
9225 * the preferred node
9226 */
9227 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9228 return NULL;
9229
9230 idlest_cpu = cpumask_first(sched_group_span(idlest));
9231 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9232 return idlest;
9233 #endif
9234 /*
9235 * Otherwise, keep the task close to the wakeup source
9236 * and improve locality if the number of running tasks
9237 * would remain below threshold where an imbalance is
9238 * allowed. If there is a real need of migration,
9239 * periodic load balance will take care of it.
9240 */
9241 if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr))
9242 return NULL;
9243 }
9244
9245 /*
9246 * Select group with highest number of idle CPUs. We could also
9247 * compare the utilization which is more stable but it can end
9248 * up that the group has less spare capacity but finally more
9249 * idle CPUs which means more opportunity to run task.
9250 */
9251 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9252 return NULL;
9253 break;
9254 }
9255
9256 return idlest;
9257 }
9258
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)9259 static void update_idle_cpu_scan(struct lb_env *env,
9260 unsigned long sum_util)
9261 {
9262 struct sched_domain_shared *sd_share;
9263 int llc_weight, pct;
9264 u64 x, y, tmp;
9265 /*
9266 * Update the number of CPUs to scan in LLC domain, which could
9267 * be used as a hint in select_idle_cpu(). The update of sd_share
9268 * could be expensive because it is within a shared cache line.
9269 * So the write of this hint only occurs during periodic load
9270 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9271 * can fire way more frequently than the former.
9272 */
9273 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9274 return;
9275
9276 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9277 if (env->sd->span_weight != llc_weight)
9278 return;
9279
9280 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9281 if (!sd_share)
9282 return;
9283
9284 /*
9285 * The number of CPUs to search drops as sum_util increases, when
9286 * sum_util hits 85% or above, the scan stops.
9287 * The reason to choose 85% as the threshold is because this is the
9288 * imbalance_pct(117) when a LLC sched group is overloaded.
9289 *
9290 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
9291 * and y'= y / SCHED_CAPACITY_SCALE
9292 *
9293 * x is the ratio of sum_util compared to the CPU capacity:
9294 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9295 * y' is the ratio of CPUs to be scanned in the LLC domain,
9296 * and the number of CPUs to scan is calculated by:
9297 *
9298 * nr_scan = llc_weight * y' [2]
9299 *
9300 * When x hits the threshold of overloaded, AKA, when
9301 * x = 100 / pct, y drops to 0. According to [1],
9302 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9303 *
9304 * Scale x by SCHED_CAPACITY_SCALE:
9305 * x' = sum_util / llc_weight; [3]
9306 *
9307 * and finally [1] becomes:
9308 * y = SCHED_CAPACITY_SCALE -
9309 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
9310 *
9311 */
9312 /* equation [3] */
9313 x = sum_util;
9314 do_div(x, llc_weight);
9315
9316 /* equation [4] */
9317 pct = env->sd->imbalance_pct;
9318 tmp = x * x * pct * pct;
9319 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9320 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9321 y = SCHED_CAPACITY_SCALE - tmp;
9322
9323 /* equation [2] */
9324 y *= llc_weight;
9325 do_div(y, SCHED_CAPACITY_SCALE);
9326 if ((int)y != sd_share->nr_idle_scan)
9327 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9328 }
9329
9330 /**
9331 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9332 * @env: The load balancing environment.
9333 * @sds: variable to hold the statistics for this sched_domain.
9334 */
9335
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9336 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9337 {
9338 struct sched_domain *child = env->sd->child;
9339 struct sched_group *sg = env->sd->groups;
9340 struct sg_lb_stats *local = &sds->local_stat;
9341 struct sg_lb_stats tmp_sgs;
9342 unsigned long sum_util = 0;
9343 int sg_status = 0;
9344
9345 do {
9346 struct sg_lb_stats *sgs = &tmp_sgs;
9347 int local_group;
9348
9349 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9350 if (local_group) {
9351 sds->local = sg;
9352 sgs = local;
9353
9354 if (env->idle != CPU_NEWLY_IDLE ||
9355 time_after_eq(jiffies, sg->sgc->next_update))
9356 update_group_capacity(env->sd, env->dst_cpu);
9357 }
9358
9359 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9360
9361 if (local_group)
9362 goto next_group;
9363
9364
9365 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9366 sds->busiest = sg;
9367 sds->busiest_stat = *sgs;
9368 }
9369
9370 next_group:
9371 /* Now, start updating sd_lb_stats */
9372 sds->total_load += sgs->group_load;
9373 sds->total_capacity += sgs->group_capacity;
9374
9375 sum_util += sgs->group_util;
9376 sg = sg->next;
9377 } while (sg != env->sd->groups);
9378
9379 /* Tag domain that child domain prefers tasks go to siblings first */
9380 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9381
9382
9383 if (env->sd->flags & SD_NUMA)
9384 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9385
9386 if (!env->sd->parent) {
9387 struct root_domain *rd = env->dst_rq->rd;
9388
9389 /* update overload indicator if we are at root domain */
9390 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9391
9392 /* Update over-utilization (tipping point, U >= 0) indicator */
9393 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9394 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9395 } else if (sg_status & SG_OVERUTILIZED) {
9396 struct root_domain *rd = env->dst_rq->rd;
9397
9398 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9399 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9400 }
9401
9402 update_idle_cpu_scan(env, sum_util);
9403 }
9404
9405 #define NUMA_IMBALANCE_MIN 2
9406
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)9407 static inline long adjust_numa_imbalance(int imbalance,
9408 int dst_running, int imb_numa_nr)
9409 {
9410 if (!allow_numa_imbalance(dst_running, imb_numa_nr))
9411 return imbalance;
9412
9413 /*
9414 * Allow a small imbalance based on a simple pair of communicating
9415 * tasks that remain local when the destination is lightly loaded.
9416 */
9417 if (imbalance <= NUMA_IMBALANCE_MIN)
9418 return 0;
9419
9420 return imbalance;
9421 }
9422
9423 /**
9424 * calculate_imbalance - Calculate the amount of imbalance present within the
9425 * groups of a given sched_domain during load balance.
9426 * @env: load balance environment
9427 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9428 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9429 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9430 {
9431 struct sg_lb_stats *local, *busiest;
9432
9433 local = &sds->local_stat;
9434 busiest = &sds->busiest_stat;
9435
9436 if (busiest->group_type == group_misfit_task) {
9437 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9438 /* Set imbalance to allow misfit tasks to be balanced. */
9439 env->migration_type = migrate_misfit;
9440 env->imbalance = 1;
9441 } else {
9442 /*
9443 * Set load imbalance to allow moving task from cpu
9444 * with reduced capacity.
9445 */
9446 env->migration_type = migrate_load;
9447 env->imbalance = busiest->group_misfit_task_load;
9448 }
9449 return;
9450 }
9451
9452 if (busiest->group_type == group_asym_packing) {
9453 /*
9454 * In case of asym capacity, we will try to migrate all load to
9455 * the preferred CPU.
9456 */
9457 env->migration_type = migrate_task;
9458 env->imbalance = busiest->sum_h_nr_running;
9459 return;
9460 }
9461
9462 if (busiest->group_type == group_imbalanced) {
9463 /*
9464 * In the group_imb case we cannot rely on group-wide averages
9465 * to ensure CPU-load equilibrium, try to move any task to fix
9466 * the imbalance. The next load balance will take care of
9467 * balancing back the system.
9468 */
9469 env->migration_type = migrate_task;
9470 env->imbalance = 1;
9471 return;
9472 }
9473
9474 /*
9475 * Try to use spare capacity of local group without overloading it or
9476 * emptying busiest.
9477 */
9478 if (local->group_type == group_has_spare) {
9479 if ((busiest->group_type > group_fully_busy) &&
9480 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9481 /*
9482 * If busiest is overloaded, try to fill spare
9483 * capacity. This might end up creating spare capacity
9484 * in busiest or busiest still being overloaded but
9485 * there is no simple way to directly compute the
9486 * amount of load to migrate in order to balance the
9487 * system.
9488 */
9489 env->migration_type = migrate_util;
9490 env->imbalance = max(local->group_capacity, local->group_util) -
9491 local->group_util;
9492
9493 /*
9494 * In some cases, the group's utilization is max or even
9495 * higher than capacity because of migrations but the
9496 * local CPU is (newly) idle. There is at least one
9497 * waiting task in this overloaded busiest group. Let's
9498 * try to pull it.
9499 */
9500 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9501 env->migration_type = migrate_task;
9502 env->imbalance = 1;
9503 }
9504
9505 return;
9506 }
9507
9508 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9509 unsigned int nr_diff = busiest->sum_nr_running;
9510 /*
9511 * When prefer sibling, evenly spread running tasks on
9512 * groups.
9513 */
9514 env->migration_type = migrate_task;
9515 lsub_positive(&nr_diff, local->sum_nr_running);
9516 env->imbalance = nr_diff >> 1;
9517 } else {
9518
9519 /*
9520 * If there is no overload, we just want to even the number of
9521 * idle cpus.
9522 */
9523 env->migration_type = migrate_task;
9524 env->imbalance = max_t(long, 0, (local->idle_cpus -
9525 busiest->idle_cpus) >> 1);
9526 }
9527
9528 /* Consider allowing a small imbalance between NUMA groups */
9529 if (env->sd->flags & SD_NUMA) {
9530 env->imbalance = adjust_numa_imbalance(env->imbalance,
9531 local->sum_nr_running + 1, env->sd->imb_numa_nr);
9532 }
9533
9534 return;
9535 }
9536
9537 /*
9538 * Local is fully busy but has to take more load to relieve the
9539 * busiest group
9540 */
9541 if (local->group_type < group_overloaded) {
9542 /*
9543 * Local will become overloaded so the avg_load metrics are
9544 * finally needed.
9545 */
9546
9547 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9548 local->group_capacity;
9549
9550 /*
9551 * If the local group is more loaded than the selected
9552 * busiest group don't try to pull any tasks.
9553 */
9554 if (local->avg_load >= busiest->avg_load) {
9555 env->imbalance = 0;
9556 return;
9557 }
9558
9559 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9560 sds->total_capacity;
9561 }
9562
9563 /*
9564 * Both group are or will become overloaded and we're trying to get all
9565 * the CPUs to the average_load, so we don't want to push ourselves
9566 * above the average load, nor do we wish to reduce the max loaded CPU
9567 * below the average load. At the same time, we also don't want to
9568 * reduce the group load below the group capacity. Thus we look for
9569 * the minimum possible imbalance.
9570 */
9571 env->migration_type = migrate_load;
9572 env->imbalance = min(
9573 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9574 (sds->avg_load - local->avg_load) * local->group_capacity
9575 ) / SCHED_CAPACITY_SCALE;
9576 }
9577
9578 /******* find_busiest_group() helpers end here *********************/
9579
9580 /*
9581 * Decision matrix according to the local and busiest group type:
9582 *
9583 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9584 * has_spare nr_idle balanced N/A N/A balanced balanced
9585 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9586 * misfit_task force N/A N/A N/A N/A N/A
9587 * asym_packing force force N/A N/A force force
9588 * imbalanced force force N/A N/A force force
9589 * overloaded force force N/A N/A force avg_load
9590 *
9591 * N/A : Not Applicable because already filtered while updating
9592 * statistics.
9593 * balanced : The system is balanced for these 2 groups.
9594 * force : Calculate the imbalance as load migration is probably needed.
9595 * avg_load : Only if imbalance is significant enough.
9596 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9597 * different in groups.
9598 */
9599
9600 /**
9601 * find_busiest_group - Returns the busiest group within the sched_domain
9602 * if there is an imbalance.
9603 * @env: The load balancing environment.
9604 *
9605 * Also calculates the amount of runnable load which should be moved
9606 * to restore balance.
9607 *
9608 * Return: - The busiest group if imbalance exists.
9609 */
find_busiest_group(struct lb_env * env)9610 static struct sched_group *find_busiest_group(struct lb_env *env)
9611 {
9612 struct sg_lb_stats *local, *busiest;
9613 struct sd_lb_stats sds;
9614
9615 init_sd_lb_stats(&sds);
9616
9617 /*
9618 * Compute the various statistics relevant for load balancing at
9619 * this level.
9620 */
9621 update_sd_lb_stats(env, &sds);
9622
9623 if (sched_energy_enabled()) {
9624 struct root_domain *rd = env->dst_rq->rd;
9625
9626 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9627 goto out_balanced;
9628 }
9629
9630 local = &sds.local_stat;
9631 busiest = &sds.busiest_stat;
9632
9633 /* There is no busy sibling group to pull tasks from */
9634 if (!sds.busiest)
9635 goto out_balanced;
9636
9637 /* Misfit tasks should be dealt with regardless of the avg load */
9638 if (busiest->group_type == group_misfit_task)
9639 goto force_balance;
9640
9641 /* ASYM feature bypasses nice load balance check */
9642 if (busiest->group_type == group_asym_packing)
9643 goto force_balance;
9644
9645 /*
9646 * If the busiest group is imbalanced the below checks don't
9647 * work because they assume all things are equal, which typically
9648 * isn't true due to cpus_ptr constraints and the like.
9649 */
9650 if (busiest->group_type == group_imbalanced)
9651 goto force_balance;
9652
9653 /*
9654 * If the local group is busier than the selected busiest group
9655 * don't try and pull any tasks.
9656 */
9657 if (local->group_type > busiest->group_type)
9658 goto out_balanced;
9659
9660 /*
9661 * When groups are overloaded, use the avg_load to ensure fairness
9662 * between tasks.
9663 */
9664 if (local->group_type == group_overloaded) {
9665 /*
9666 * If the local group is more loaded than the selected
9667 * busiest group don't try to pull any tasks.
9668 */
9669 if (local->avg_load >= busiest->avg_load)
9670 goto out_balanced;
9671
9672 /* XXX broken for overlapping NUMA groups */
9673 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9674 sds.total_capacity;
9675
9676 /*
9677 * Don't pull any tasks if this group is already above the
9678 * domain average load.
9679 */
9680 if (local->avg_load >= sds.avg_load)
9681 goto out_balanced;
9682
9683 /*
9684 * If the busiest group is more loaded, use imbalance_pct to be
9685 * conservative.
9686 */
9687 if (100 * busiest->avg_load <=
9688 env->sd->imbalance_pct * local->avg_load)
9689 goto out_balanced;
9690 }
9691
9692 /* Try to move all excess tasks to child's sibling domain */
9693 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9694 busiest->sum_nr_running > local->sum_nr_running + 1)
9695 goto force_balance;
9696
9697 if (busiest->group_type != group_overloaded) {
9698 if (env->idle == CPU_NOT_IDLE)
9699 /*
9700 * If the busiest group is not overloaded (and as a
9701 * result the local one too) but this CPU is already
9702 * busy, let another idle CPU try to pull task.
9703 */
9704 goto out_balanced;
9705
9706 if (busiest->group_weight > 1 &&
9707 local->idle_cpus <= (busiest->idle_cpus + 1))
9708 /*
9709 * If the busiest group is not overloaded
9710 * and there is no imbalance between this and busiest
9711 * group wrt idle CPUs, it is balanced. The imbalance
9712 * becomes significant if the diff is greater than 1
9713 * otherwise we might end up to just move the imbalance
9714 * on another group. Of course this applies only if
9715 * there is more than 1 CPU per group.
9716 */
9717 goto out_balanced;
9718
9719 if (busiest->sum_h_nr_running == 1)
9720 /*
9721 * busiest doesn't have any tasks waiting to run
9722 */
9723 goto out_balanced;
9724 }
9725
9726 force_balance:
9727 /* Looks like there is an imbalance. Compute it */
9728 calculate_imbalance(env, &sds);
9729 return env->imbalance ? sds.busiest : NULL;
9730
9731 out_balanced:
9732 env->imbalance = 0;
9733 return NULL;
9734 }
9735
9736 /*
9737 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9738 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)9739 static struct rq *find_busiest_queue(struct lb_env *env,
9740 struct sched_group *group)
9741 {
9742 struct rq *busiest = NULL, *rq;
9743 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9744 unsigned int busiest_nr = 0;
9745 int i;
9746
9747 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9748 unsigned long capacity, load, util;
9749 unsigned int nr_running;
9750 enum fbq_type rt;
9751
9752 rq = cpu_rq(i);
9753 rt = fbq_classify_rq(rq);
9754
9755 /*
9756 * We classify groups/runqueues into three groups:
9757 * - regular: there are !numa tasks
9758 * - remote: there are numa tasks that run on the 'wrong' node
9759 * - all: there is no distinction
9760 *
9761 * In order to avoid migrating ideally placed numa tasks,
9762 * ignore those when there's better options.
9763 *
9764 * If we ignore the actual busiest queue to migrate another
9765 * task, the next balance pass can still reduce the busiest
9766 * queue by moving tasks around inside the node.
9767 *
9768 * If we cannot move enough load due to this classification
9769 * the next pass will adjust the group classification and
9770 * allow migration of more tasks.
9771 *
9772 * Both cases only affect the total convergence complexity.
9773 */
9774 if (rt > env->fbq_type)
9775 continue;
9776
9777 nr_running = rq->cfs.h_nr_running;
9778 if (!nr_running)
9779 continue;
9780
9781 capacity = capacity_of(i);
9782
9783 /*
9784 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9785 * eventually lead to active_balancing high->low capacity.
9786 * Higher per-CPU capacity is considered better than balancing
9787 * average load.
9788 */
9789 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9790 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9791 nr_running == 1)
9792 continue;
9793
9794 /* Make sure we only pull tasks from a CPU of lower priority */
9795 if ((env->sd->flags & SD_ASYM_PACKING) &&
9796 sched_asym_prefer(i, env->dst_cpu) &&
9797 nr_running == 1)
9798 continue;
9799
9800 switch (env->migration_type) {
9801 case migrate_load:
9802 /*
9803 * When comparing with load imbalance, use cpu_load()
9804 * which is not scaled with the CPU capacity.
9805 */
9806 load = cpu_load(rq);
9807
9808 if (nr_running == 1 && load > env->imbalance &&
9809 !check_cpu_capacity(rq, env->sd))
9810 break;
9811
9812 /*
9813 * For the load comparisons with the other CPUs,
9814 * consider the cpu_load() scaled with the CPU
9815 * capacity, so that the load can be moved away
9816 * from the CPU that is potentially running at a
9817 * lower capacity.
9818 *
9819 * Thus we're looking for max(load_i / capacity_i),
9820 * crosswise multiplication to rid ourselves of the
9821 * division works out to:
9822 * load_i * capacity_j > load_j * capacity_i;
9823 * where j is our previous maximum.
9824 */
9825 if (load * busiest_capacity > busiest_load * capacity) {
9826 busiest_load = load;
9827 busiest_capacity = capacity;
9828 busiest = rq;
9829 }
9830 break;
9831
9832 case migrate_util:
9833 util = cpu_util_cfs(i);
9834
9835 /*
9836 * Don't try to pull utilization from a CPU with one
9837 * running task. Whatever its utilization, we will fail
9838 * detach the task.
9839 */
9840 if (nr_running <= 1)
9841 continue;
9842
9843 if (busiest_util < util) {
9844 busiest_util = util;
9845 busiest = rq;
9846 }
9847 break;
9848
9849 case migrate_task:
9850 if (busiest_nr < nr_running) {
9851 busiest_nr = nr_running;
9852 busiest = rq;
9853 }
9854 break;
9855
9856 case migrate_misfit:
9857 /*
9858 * For ASYM_CPUCAPACITY domains with misfit tasks we
9859 * simply seek the "biggest" misfit task.
9860 */
9861 if (rq->misfit_task_load > busiest_load) {
9862 busiest_load = rq->misfit_task_load;
9863 busiest = rq;
9864 }
9865
9866 break;
9867
9868 }
9869 }
9870
9871 return busiest;
9872 }
9873
9874 /*
9875 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9876 * so long as it is large enough.
9877 */
9878 #define MAX_PINNED_INTERVAL 512
9879
9880 static inline bool
asym_active_balance(struct lb_env * env)9881 asym_active_balance(struct lb_env *env)
9882 {
9883 /*
9884 * ASYM_PACKING needs to force migrate tasks from busy but
9885 * lower priority CPUs in order to pack all tasks in the
9886 * highest priority CPUs.
9887 */
9888 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9889 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9890 }
9891
9892 static inline bool
imbalanced_active_balance(struct lb_env * env)9893 imbalanced_active_balance(struct lb_env *env)
9894 {
9895 struct sched_domain *sd = env->sd;
9896
9897 /*
9898 * The imbalanced case includes the case of pinned tasks preventing a fair
9899 * distribution of the load on the system but also the even distribution of the
9900 * threads on a system with spare capacity
9901 */
9902 if ((env->migration_type == migrate_task) &&
9903 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9904 return 1;
9905
9906 return 0;
9907 }
9908
need_active_balance(struct lb_env * env)9909 static int need_active_balance(struct lb_env *env)
9910 {
9911 struct sched_domain *sd = env->sd;
9912
9913 if (asym_active_balance(env))
9914 return 1;
9915
9916 if (imbalanced_active_balance(env))
9917 return 1;
9918
9919 /*
9920 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9921 * It's worth migrating the task if the src_cpu's capacity is reduced
9922 * because of other sched_class or IRQs if more capacity stays
9923 * available on dst_cpu.
9924 */
9925 if ((env->idle != CPU_NOT_IDLE) &&
9926 (env->src_rq->cfs.h_nr_running == 1)) {
9927 if ((check_cpu_capacity(env->src_rq, sd)) &&
9928 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9929 return 1;
9930 }
9931
9932 if (env->migration_type == migrate_misfit)
9933 return 1;
9934
9935 return 0;
9936 }
9937
9938 static int active_load_balance_cpu_stop(void *data);
9939
should_we_balance(struct lb_env * env)9940 static int should_we_balance(struct lb_env *env)
9941 {
9942 struct sched_group *sg = env->sd->groups;
9943 int cpu;
9944
9945 /*
9946 * Ensure the balancing environment is consistent; can happen
9947 * when the softirq triggers 'during' hotplug.
9948 */
9949 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9950 return 0;
9951
9952 /*
9953 * In the newly idle case, we will allow all the CPUs
9954 * to do the newly idle load balance.
9955 */
9956 if (env->idle == CPU_NEWLY_IDLE)
9957 return 1;
9958
9959 /* Try to find first idle CPU */
9960 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9961 if (!idle_cpu(cpu))
9962 continue;
9963
9964 /* Are we the first idle CPU? */
9965 return cpu == env->dst_cpu;
9966 }
9967
9968 /* Are we the first CPU of this group ? */
9969 return group_balance_cpu(sg) == env->dst_cpu;
9970 }
9971
9972 /*
9973 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9974 * tasks if there is an imbalance.
9975 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)9976 static int load_balance(int this_cpu, struct rq *this_rq,
9977 struct sched_domain *sd, enum cpu_idle_type idle,
9978 int *continue_balancing)
9979 {
9980 int ld_moved, cur_ld_moved, active_balance = 0;
9981 struct sched_domain *sd_parent = sd->parent;
9982 struct sched_group *group;
9983 struct rq *busiest;
9984 struct rq_flags rf;
9985 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9986
9987 struct lb_env env = {
9988 .sd = sd,
9989 .dst_cpu = this_cpu,
9990 .dst_rq = this_rq,
9991 .dst_grpmask = sched_group_span(sd->groups),
9992 .idle = idle,
9993 .loop_break = sched_nr_migrate_break,
9994 .cpus = cpus,
9995 .fbq_type = all,
9996 .tasks = LIST_HEAD_INIT(env.tasks),
9997 };
9998
9999 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10000
10001 schedstat_inc(sd->lb_count[idle]);
10002
10003 redo:
10004 if (!should_we_balance(&env)) {
10005 *continue_balancing = 0;
10006 goto out_balanced;
10007 }
10008
10009 group = find_busiest_group(&env);
10010 if (!group) {
10011 schedstat_inc(sd->lb_nobusyg[idle]);
10012 goto out_balanced;
10013 }
10014
10015 busiest = find_busiest_queue(&env, group);
10016 if (!busiest) {
10017 schedstat_inc(sd->lb_nobusyq[idle]);
10018 goto out_balanced;
10019 }
10020
10021 BUG_ON(busiest == env.dst_rq);
10022
10023 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10024
10025 env.src_cpu = busiest->cpu;
10026 env.src_rq = busiest;
10027
10028 ld_moved = 0;
10029 /* Clear this flag as soon as we find a pullable task */
10030 env.flags |= LBF_ALL_PINNED;
10031 if (busiest->nr_running > 1) {
10032 /*
10033 * Attempt to move tasks. If find_busiest_group has found
10034 * an imbalance but busiest->nr_running <= 1, the group is
10035 * still unbalanced. ld_moved simply stays zero, so it is
10036 * correctly treated as an imbalance.
10037 */
10038 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
10039
10040 more_balance:
10041 rq_lock_irqsave(busiest, &rf);
10042 update_rq_clock(busiest);
10043
10044 /*
10045 * cur_ld_moved - load moved in current iteration
10046 * ld_moved - cumulative load moved across iterations
10047 */
10048 cur_ld_moved = detach_tasks(&env);
10049
10050 /*
10051 * We've detached some tasks from busiest_rq. Every
10052 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10053 * unlock busiest->lock, and we are able to be sure
10054 * that nobody can manipulate the tasks in parallel.
10055 * See task_rq_lock() family for the details.
10056 */
10057
10058 rq_unlock(busiest, &rf);
10059
10060 if (cur_ld_moved) {
10061 attach_tasks(&env);
10062 ld_moved += cur_ld_moved;
10063 }
10064
10065 local_irq_restore(rf.flags);
10066
10067 if (env.flags & LBF_NEED_BREAK) {
10068 env.flags &= ~LBF_NEED_BREAK;
10069 goto more_balance;
10070 }
10071
10072 /*
10073 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10074 * us and move them to an alternate dst_cpu in our sched_group
10075 * where they can run. The upper limit on how many times we
10076 * iterate on same src_cpu is dependent on number of CPUs in our
10077 * sched_group.
10078 *
10079 * This changes load balance semantics a bit on who can move
10080 * load to a given_cpu. In addition to the given_cpu itself
10081 * (or a ilb_cpu acting on its behalf where given_cpu is
10082 * nohz-idle), we now have balance_cpu in a position to move
10083 * load to given_cpu. In rare situations, this may cause
10084 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10085 * _independently_ and at _same_ time to move some load to
10086 * given_cpu) causing excess load to be moved to given_cpu.
10087 * This however should not happen so much in practice and
10088 * moreover subsequent load balance cycles should correct the
10089 * excess load moved.
10090 */
10091 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10092
10093 /* Prevent to re-select dst_cpu via env's CPUs */
10094 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
10095
10096 env.dst_rq = cpu_rq(env.new_dst_cpu);
10097 env.dst_cpu = env.new_dst_cpu;
10098 env.flags &= ~LBF_DST_PINNED;
10099 env.loop = 0;
10100 env.loop_break = sched_nr_migrate_break;
10101
10102 /*
10103 * Go back to "more_balance" rather than "redo" since we
10104 * need to continue with same src_cpu.
10105 */
10106 goto more_balance;
10107 }
10108
10109 /*
10110 * We failed to reach balance because of affinity.
10111 */
10112 if (sd_parent) {
10113 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10114
10115 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10116 *group_imbalance = 1;
10117 }
10118
10119 /* All tasks on this runqueue were pinned by CPU affinity */
10120 if (unlikely(env.flags & LBF_ALL_PINNED)) {
10121 __cpumask_clear_cpu(cpu_of(busiest), cpus);
10122 /*
10123 * Attempting to continue load balancing at the current
10124 * sched_domain level only makes sense if there are
10125 * active CPUs remaining as possible busiest CPUs to
10126 * pull load from which are not contained within the
10127 * destination group that is receiving any migrated
10128 * load.
10129 */
10130 if (!cpumask_subset(cpus, env.dst_grpmask)) {
10131 env.loop = 0;
10132 env.loop_break = sched_nr_migrate_break;
10133 goto redo;
10134 }
10135 goto out_all_pinned;
10136 }
10137 }
10138
10139 if (!ld_moved) {
10140 schedstat_inc(sd->lb_failed[idle]);
10141 /*
10142 * Increment the failure counter only on periodic balance.
10143 * We do not want newidle balance, which can be very
10144 * frequent, pollute the failure counter causing
10145 * excessive cache_hot migrations and active balances.
10146 */
10147 if (idle != CPU_NEWLY_IDLE)
10148 sd->nr_balance_failed++;
10149
10150 if (need_active_balance(&env)) {
10151 unsigned long flags;
10152
10153 raw_spin_rq_lock_irqsave(busiest, flags);
10154
10155 /*
10156 * Don't kick the active_load_balance_cpu_stop,
10157 * if the curr task on busiest CPU can't be
10158 * moved to this_cpu:
10159 */
10160 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10161 raw_spin_rq_unlock_irqrestore(busiest, flags);
10162 goto out_one_pinned;
10163 }
10164
10165 /* Record that we found at least one task that could run on this_cpu */
10166 env.flags &= ~LBF_ALL_PINNED;
10167
10168 /*
10169 * ->active_balance synchronizes accesses to
10170 * ->active_balance_work. Once set, it's cleared
10171 * only after active load balance is finished.
10172 */
10173 if (!busiest->active_balance) {
10174 busiest->active_balance = 1;
10175 busiest->push_cpu = this_cpu;
10176 active_balance = 1;
10177 }
10178 raw_spin_rq_unlock_irqrestore(busiest, flags);
10179
10180 if (active_balance) {
10181 stop_one_cpu_nowait(cpu_of(busiest),
10182 active_load_balance_cpu_stop, busiest,
10183 &busiest->active_balance_work);
10184 }
10185 }
10186 } else {
10187 sd->nr_balance_failed = 0;
10188 }
10189
10190 if (likely(!active_balance) || need_active_balance(&env)) {
10191 /* We were unbalanced, so reset the balancing interval */
10192 sd->balance_interval = sd->min_interval;
10193 }
10194
10195 goto out;
10196
10197 out_balanced:
10198 /*
10199 * We reach balance although we may have faced some affinity
10200 * constraints. Clear the imbalance flag only if other tasks got
10201 * a chance to move and fix the imbalance.
10202 */
10203 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10204 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10205
10206 if (*group_imbalance)
10207 *group_imbalance = 0;
10208 }
10209
10210 out_all_pinned:
10211 /*
10212 * We reach balance because all tasks are pinned at this level so
10213 * we can't migrate them. Let the imbalance flag set so parent level
10214 * can try to migrate them.
10215 */
10216 schedstat_inc(sd->lb_balanced[idle]);
10217
10218 sd->nr_balance_failed = 0;
10219
10220 out_one_pinned:
10221 ld_moved = 0;
10222
10223 /*
10224 * newidle_balance() disregards balance intervals, so we could
10225 * repeatedly reach this code, which would lead to balance_interval
10226 * skyrocketing in a short amount of time. Skip the balance_interval
10227 * increase logic to avoid that.
10228 */
10229 if (env.idle == CPU_NEWLY_IDLE)
10230 goto out;
10231
10232 /* tune up the balancing interval */
10233 if ((env.flags & LBF_ALL_PINNED &&
10234 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10235 sd->balance_interval < sd->max_interval)
10236 sd->balance_interval *= 2;
10237 out:
10238 return ld_moved;
10239 }
10240
10241 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10242 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10243 {
10244 unsigned long interval = sd->balance_interval;
10245
10246 if (cpu_busy)
10247 interval *= sd->busy_factor;
10248
10249 /* scale ms to jiffies */
10250 interval = msecs_to_jiffies(interval);
10251
10252 /*
10253 * Reduce likelihood of busy balancing at higher domains racing with
10254 * balancing at lower domains by preventing their balancing periods
10255 * from being multiples of each other.
10256 */
10257 if (cpu_busy)
10258 interval -= 1;
10259
10260 interval = clamp(interval, 1UL, max_load_balance_interval);
10261
10262 return interval;
10263 }
10264
10265 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10266 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10267 {
10268 unsigned long interval, next;
10269
10270 /* used by idle balance, so cpu_busy = 0 */
10271 interval = get_sd_balance_interval(sd, 0);
10272 next = sd->last_balance + interval;
10273
10274 if (time_after(*next_balance, next))
10275 *next_balance = next;
10276 }
10277
10278 /*
10279 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10280 * running tasks off the busiest CPU onto idle CPUs. It requires at
10281 * least 1 task to be running on each physical CPU where possible, and
10282 * avoids physical / logical imbalances.
10283 */
active_load_balance_cpu_stop(void * data)10284 static int active_load_balance_cpu_stop(void *data)
10285 {
10286 struct rq *busiest_rq = data;
10287 int busiest_cpu = cpu_of(busiest_rq);
10288 int target_cpu = busiest_rq->push_cpu;
10289 struct rq *target_rq = cpu_rq(target_cpu);
10290 struct sched_domain *sd;
10291 struct task_struct *p = NULL;
10292 struct rq_flags rf;
10293
10294 rq_lock_irq(busiest_rq, &rf);
10295 /*
10296 * Between queueing the stop-work and running it is a hole in which
10297 * CPUs can become inactive. We should not move tasks from or to
10298 * inactive CPUs.
10299 */
10300 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10301 goto out_unlock;
10302
10303 /* Make sure the requested CPU hasn't gone down in the meantime: */
10304 if (unlikely(busiest_cpu != smp_processor_id() ||
10305 !busiest_rq->active_balance))
10306 goto out_unlock;
10307
10308 /* Is there any task to move? */
10309 if (busiest_rq->nr_running <= 1)
10310 goto out_unlock;
10311
10312 /*
10313 * This condition is "impossible", if it occurs
10314 * we need to fix it. Originally reported by
10315 * Bjorn Helgaas on a 128-CPU setup.
10316 */
10317 BUG_ON(busiest_rq == target_rq);
10318
10319 /* Search for an sd spanning us and the target CPU. */
10320 rcu_read_lock();
10321 for_each_domain(target_cpu, sd) {
10322 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10323 break;
10324 }
10325
10326 if (likely(sd)) {
10327 struct lb_env env = {
10328 .sd = sd,
10329 .dst_cpu = target_cpu,
10330 .dst_rq = target_rq,
10331 .src_cpu = busiest_rq->cpu,
10332 .src_rq = busiest_rq,
10333 .idle = CPU_IDLE,
10334 .flags = LBF_ACTIVE_LB,
10335 };
10336
10337 schedstat_inc(sd->alb_count);
10338 update_rq_clock(busiest_rq);
10339
10340 p = detach_one_task(&env);
10341 if (p) {
10342 schedstat_inc(sd->alb_pushed);
10343 /* Active balancing done, reset the failure counter. */
10344 sd->nr_balance_failed = 0;
10345 } else {
10346 schedstat_inc(sd->alb_failed);
10347 }
10348 }
10349 rcu_read_unlock();
10350 out_unlock:
10351 busiest_rq->active_balance = 0;
10352 rq_unlock(busiest_rq, &rf);
10353
10354 if (p)
10355 attach_one_task(target_rq, p);
10356
10357 local_irq_enable();
10358
10359 return 0;
10360 }
10361
10362 static DEFINE_SPINLOCK(balancing);
10363
10364 /*
10365 * Scale the max load_balance interval with the number of CPUs in the system.
10366 * This trades load-balance latency on larger machines for less cross talk.
10367 */
update_max_interval(void)10368 void update_max_interval(void)
10369 {
10370 max_load_balance_interval = HZ*num_online_cpus()/10;
10371 }
10372
update_newidle_cost(struct sched_domain * sd,u64 cost)10373 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10374 {
10375 if (cost > sd->max_newidle_lb_cost) {
10376 /*
10377 * Track max cost of a domain to make sure to not delay the
10378 * next wakeup on the CPU.
10379 */
10380 sd->max_newidle_lb_cost = cost;
10381 sd->last_decay_max_lb_cost = jiffies;
10382 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10383 /*
10384 * Decay the newidle max times by ~1% per second to ensure that
10385 * it is not outdated and the current max cost is actually
10386 * shorter.
10387 */
10388 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10389 sd->last_decay_max_lb_cost = jiffies;
10390
10391 return true;
10392 }
10393
10394 return false;
10395 }
10396
10397 /*
10398 * It checks each scheduling domain to see if it is due to be balanced,
10399 * and initiates a balancing operation if so.
10400 *
10401 * Balancing parameters are set up in init_sched_domains.
10402 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10403 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10404 {
10405 int continue_balancing = 1;
10406 int cpu = rq->cpu;
10407 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10408 unsigned long interval;
10409 struct sched_domain *sd;
10410 /* Earliest time when we have to do rebalance again */
10411 unsigned long next_balance = jiffies + 60*HZ;
10412 int update_next_balance = 0;
10413 int need_serialize, need_decay = 0;
10414 u64 max_cost = 0;
10415
10416 rcu_read_lock();
10417 for_each_domain(cpu, sd) {
10418 /*
10419 * Decay the newidle max times here because this is a regular
10420 * visit to all the domains.
10421 */
10422 need_decay = update_newidle_cost(sd, 0);
10423 max_cost += sd->max_newidle_lb_cost;
10424
10425 /*
10426 * Stop the load balance at this level. There is another
10427 * CPU in our sched group which is doing load balancing more
10428 * actively.
10429 */
10430 if (!continue_balancing) {
10431 if (need_decay)
10432 continue;
10433 break;
10434 }
10435
10436 interval = get_sd_balance_interval(sd, busy);
10437
10438 need_serialize = sd->flags & SD_SERIALIZE;
10439 if (need_serialize) {
10440 if (!spin_trylock(&balancing))
10441 goto out;
10442 }
10443
10444 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10445 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10446 /*
10447 * The LBF_DST_PINNED logic could have changed
10448 * env->dst_cpu, so we can't know our idle
10449 * state even if we migrated tasks. Update it.
10450 */
10451 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10452 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10453 }
10454 sd->last_balance = jiffies;
10455 interval = get_sd_balance_interval(sd, busy);
10456 }
10457 if (need_serialize)
10458 spin_unlock(&balancing);
10459 out:
10460 if (time_after(next_balance, sd->last_balance + interval)) {
10461 next_balance = sd->last_balance + interval;
10462 update_next_balance = 1;
10463 }
10464 }
10465 if (need_decay) {
10466 /*
10467 * Ensure the rq-wide value also decays but keep it at a
10468 * reasonable floor to avoid funnies with rq->avg_idle.
10469 */
10470 rq->max_idle_balance_cost =
10471 max((u64)sysctl_sched_migration_cost, max_cost);
10472 }
10473 rcu_read_unlock();
10474
10475 /*
10476 * next_balance will be updated only when there is a need.
10477 * When the cpu is attached to null domain for ex, it will not be
10478 * updated.
10479 */
10480 if (likely(update_next_balance))
10481 rq->next_balance = next_balance;
10482
10483 }
10484
on_null_domain(struct rq * rq)10485 static inline int on_null_domain(struct rq *rq)
10486 {
10487 return unlikely(!rcu_dereference_sched(rq->sd));
10488 }
10489
10490 #ifdef CONFIG_NO_HZ_COMMON
10491 /*
10492 * idle load balancing details
10493 * - When one of the busy CPUs notice that there may be an idle rebalancing
10494 * needed, they will kick the idle load balancer, which then does idle
10495 * load balancing for all the idle CPUs.
10496 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10497 * anywhere yet.
10498 */
10499
find_new_ilb(void)10500 static inline int find_new_ilb(void)
10501 {
10502 int ilb;
10503 const struct cpumask *hk_mask;
10504
10505 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10506
10507 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10508
10509 if (ilb == smp_processor_id())
10510 continue;
10511
10512 if (idle_cpu(ilb))
10513 return ilb;
10514 }
10515
10516 return nr_cpu_ids;
10517 }
10518
10519 /*
10520 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10521 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10522 */
kick_ilb(unsigned int flags)10523 static void kick_ilb(unsigned int flags)
10524 {
10525 int ilb_cpu;
10526
10527 /*
10528 * Increase nohz.next_balance only when if full ilb is triggered but
10529 * not if we only update stats.
10530 */
10531 if (flags & NOHZ_BALANCE_KICK)
10532 nohz.next_balance = jiffies+1;
10533
10534 ilb_cpu = find_new_ilb();
10535
10536 if (ilb_cpu >= nr_cpu_ids)
10537 return;
10538
10539 /*
10540 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10541 * the first flag owns it; cleared by nohz_csd_func().
10542 */
10543 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10544 if (flags & NOHZ_KICK_MASK)
10545 return;
10546
10547 /*
10548 * This way we generate an IPI on the target CPU which
10549 * is idle. And the softirq performing nohz idle load balance
10550 * will be run before returning from the IPI.
10551 */
10552 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10553 }
10554
10555 /*
10556 * Current decision point for kicking the idle load balancer in the presence
10557 * of idle CPUs in the system.
10558 */
nohz_balancer_kick(struct rq * rq)10559 static void nohz_balancer_kick(struct rq *rq)
10560 {
10561 unsigned long now = jiffies;
10562 struct sched_domain_shared *sds;
10563 struct sched_domain *sd;
10564 int nr_busy, i, cpu = rq->cpu;
10565 unsigned int flags = 0;
10566
10567 if (unlikely(rq->idle_balance))
10568 return;
10569
10570 /*
10571 * We may be recently in ticked or tickless idle mode. At the first
10572 * busy tick after returning from idle, we will update the busy stats.
10573 */
10574 nohz_balance_exit_idle(rq);
10575
10576 /*
10577 * None are in tickless mode and hence no need for NOHZ idle load
10578 * balancing.
10579 */
10580 if (likely(!atomic_read(&nohz.nr_cpus)))
10581 return;
10582
10583 if (READ_ONCE(nohz.has_blocked) &&
10584 time_after(now, READ_ONCE(nohz.next_blocked)))
10585 flags = NOHZ_STATS_KICK;
10586
10587 if (time_before(now, nohz.next_balance))
10588 goto out;
10589
10590 if (rq->nr_running >= 2) {
10591 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10592 goto out;
10593 }
10594
10595 rcu_read_lock();
10596
10597 sd = rcu_dereference(rq->sd);
10598 if (sd) {
10599 /*
10600 * If there's a CFS task and the current CPU has reduced
10601 * capacity; kick the ILB to see if there's a better CPU to run
10602 * on.
10603 */
10604 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10605 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10606 goto unlock;
10607 }
10608 }
10609
10610 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10611 if (sd) {
10612 /*
10613 * When ASYM_PACKING; see if there's a more preferred CPU
10614 * currently idle; in which case, kick the ILB to move tasks
10615 * around.
10616 */
10617 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10618 if (sched_asym_prefer(i, cpu)) {
10619 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10620 goto unlock;
10621 }
10622 }
10623 }
10624
10625 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10626 if (sd) {
10627 /*
10628 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10629 * to run the misfit task on.
10630 */
10631 if (check_misfit_status(rq, sd)) {
10632 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10633 goto unlock;
10634 }
10635
10636 /*
10637 * For asymmetric systems, we do not want to nicely balance
10638 * cache use, instead we want to embrace asymmetry and only
10639 * ensure tasks have enough CPU capacity.
10640 *
10641 * Skip the LLC logic because it's not relevant in that case.
10642 */
10643 goto unlock;
10644 }
10645
10646 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10647 if (sds) {
10648 /*
10649 * If there is an imbalance between LLC domains (IOW we could
10650 * increase the overall cache use), we need some less-loaded LLC
10651 * domain to pull some load. Likewise, we may need to spread
10652 * load within the current LLC domain (e.g. packed SMT cores but
10653 * other CPUs are idle). We can't really know from here how busy
10654 * the others are - so just get a nohz balance going if it looks
10655 * like this LLC domain has tasks we could move.
10656 */
10657 nr_busy = atomic_read(&sds->nr_busy_cpus);
10658 if (nr_busy > 1) {
10659 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10660 goto unlock;
10661 }
10662 }
10663 unlock:
10664 rcu_read_unlock();
10665 out:
10666 if (READ_ONCE(nohz.needs_update))
10667 flags |= NOHZ_NEXT_KICK;
10668
10669 if (flags)
10670 kick_ilb(flags);
10671 }
10672
set_cpu_sd_state_busy(int cpu)10673 static void set_cpu_sd_state_busy(int cpu)
10674 {
10675 struct sched_domain *sd;
10676
10677 rcu_read_lock();
10678 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10679
10680 if (!sd || !sd->nohz_idle)
10681 goto unlock;
10682 sd->nohz_idle = 0;
10683
10684 atomic_inc(&sd->shared->nr_busy_cpus);
10685 unlock:
10686 rcu_read_unlock();
10687 }
10688
nohz_balance_exit_idle(struct rq * rq)10689 void nohz_balance_exit_idle(struct rq *rq)
10690 {
10691 SCHED_WARN_ON(rq != this_rq());
10692
10693 if (likely(!rq->nohz_tick_stopped))
10694 return;
10695
10696 rq->nohz_tick_stopped = 0;
10697 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10698 atomic_dec(&nohz.nr_cpus);
10699
10700 set_cpu_sd_state_busy(rq->cpu);
10701 }
10702
set_cpu_sd_state_idle(int cpu)10703 static void set_cpu_sd_state_idle(int cpu)
10704 {
10705 struct sched_domain *sd;
10706
10707 rcu_read_lock();
10708 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10709
10710 if (!sd || sd->nohz_idle)
10711 goto unlock;
10712 sd->nohz_idle = 1;
10713
10714 atomic_dec(&sd->shared->nr_busy_cpus);
10715 unlock:
10716 rcu_read_unlock();
10717 }
10718
10719 /*
10720 * This routine will record that the CPU is going idle with tick stopped.
10721 * This info will be used in performing idle load balancing in the future.
10722 */
nohz_balance_enter_idle(int cpu)10723 void nohz_balance_enter_idle(int cpu)
10724 {
10725 struct rq *rq = cpu_rq(cpu);
10726
10727 SCHED_WARN_ON(cpu != smp_processor_id());
10728
10729 /* If this CPU is going down, then nothing needs to be done: */
10730 if (!cpu_active(cpu))
10731 return;
10732
10733 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10734 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
10735 return;
10736
10737 /*
10738 * Can be set safely without rq->lock held
10739 * If a clear happens, it will have evaluated last additions because
10740 * rq->lock is held during the check and the clear
10741 */
10742 rq->has_blocked_load = 1;
10743
10744 /*
10745 * The tick is still stopped but load could have been added in the
10746 * meantime. We set the nohz.has_blocked flag to trig a check of the
10747 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10748 * of nohz.has_blocked can only happen after checking the new load
10749 */
10750 if (rq->nohz_tick_stopped)
10751 goto out;
10752
10753 /* If we're a completely isolated CPU, we don't play: */
10754 if (on_null_domain(rq))
10755 return;
10756
10757 rq->nohz_tick_stopped = 1;
10758
10759 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10760 atomic_inc(&nohz.nr_cpus);
10761
10762 /*
10763 * Ensures that if nohz_idle_balance() fails to observe our
10764 * @idle_cpus_mask store, it must observe the @has_blocked
10765 * and @needs_update stores.
10766 */
10767 smp_mb__after_atomic();
10768
10769 set_cpu_sd_state_idle(cpu);
10770
10771 WRITE_ONCE(nohz.needs_update, 1);
10772 out:
10773 /*
10774 * Each time a cpu enter idle, we assume that it has blocked load and
10775 * enable the periodic update of the load of idle cpus
10776 */
10777 WRITE_ONCE(nohz.has_blocked, 1);
10778 }
10779
update_nohz_stats(struct rq * rq)10780 static bool update_nohz_stats(struct rq *rq)
10781 {
10782 unsigned int cpu = rq->cpu;
10783
10784 if (!rq->has_blocked_load)
10785 return false;
10786
10787 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10788 return false;
10789
10790 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10791 return true;
10792
10793 update_blocked_averages(cpu);
10794
10795 return rq->has_blocked_load;
10796 }
10797
10798 /*
10799 * Internal function that runs load balance for all idle cpus. The load balance
10800 * can be a simple update of blocked load or a complete load balance with
10801 * tasks movement depending of flags.
10802 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)10803 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10804 enum cpu_idle_type idle)
10805 {
10806 /* Earliest time when we have to do rebalance again */
10807 unsigned long now = jiffies;
10808 unsigned long next_balance = now + 60*HZ;
10809 bool has_blocked_load = false;
10810 int update_next_balance = 0;
10811 int this_cpu = this_rq->cpu;
10812 int balance_cpu;
10813 struct rq *rq;
10814
10815 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10816
10817 /*
10818 * We assume there will be no idle load after this update and clear
10819 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10820 * set the has_blocked flag and trigger another update of idle load.
10821 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10822 * setting the flag, we are sure to not clear the state and not
10823 * check the load of an idle cpu.
10824 *
10825 * Same applies to idle_cpus_mask vs needs_update.
10826 */
10827 if (flags & NOHZ_STATS_KICK)
10828 WRITE_ONCE(nohz.has_blocked, 0);
10829 if (flags & NOHZ_NEXT_KICK)
10830 WRITE_ONCE(nohz.needs_update, 0);
10831
10832 /*
10833 * Ensures that if we miss the CPU, we must see the has_blocked
10834 * store from nohz_balance_enter_idle().
10835 */
10836 smp_mb();
10837
10838 /*
10839 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10840 * chance for other idle cpu to pull load.
10841 */
10842 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10843 if (!idle_cpu(balance_cpu))
10844 continue;
10845
10846 /*
10847 * If this CPU gets work to do, stop the load balancing
10848 * work being done for other CPUs. Next load
10849 * balancing owner will pick it up.
10850 */
10851 if (need_resched()) {
10852 if (flags & NOHZ_STATS_KICK)
10853 has_blocked_load = true;
10854 if (flags & NOHZ_NEXT_KICK)
10855 WRITE_ONCE(nohz.needs_update, 1);
10856 goto abort;
10857 }
10858
10859 rq = cpu_rq(balance_cpu);
10860
10861 if (flags & NOHZ_STATS_KICK)
10862 has_blocked_load |= update_nohz_stats(rq);
10863
10864 /*
10865 * If time for next balance is due,
10866 * do the balance.
10867 */
10868 if (time_after_eq(jiffies, rq->next_balance)) {
10869 struct rq_flags rf;
10870
10871 rq_lock_irqsave(rq, &rf);
10872 update_rq_clock(rq);
10873 rq_unlock_irqrestore(rq, &rf);
10874
10875 if (flags & NOHZ_BALANCE_KICK)
10876 rebalance_domains(rq, CPU_IDLE);
10877 }
10878
10879 if (time_after(next_balance, rq->next_balance)) {
10880 next_balance = rq->next_balance;
10881 update_next_balance = 1;
10882 }
10883 }
10884
10885 /*
10886 * next_balance will be updated only when there is a need.
10887 * When the CPU is attached to null domain for ex, it will not be
10888 * updated.
10889 */
10890 if (likely(update_next_balance))
10891 nohz.next_balance = next_balance;
10892
10893 if (flags & NOHZ_STATS_KICK)
10894 WRITE_ONCE(nohz.next_blocked,
10895 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10896
10897 abort:
10898 /* There is still blocked load, enable periodic update */
10899 if (has_blocked_load)
10900 WRITE_ONCE(nohz.has_blocked, 1);
10901 }
10902
10903 /*
10904 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10905 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10906 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10907 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10908 {
10909 unsigned int flags = this_rq->nohz_idle_balance;
10910
10911 if (!flags)
10912 return false;
10913
10914 this_rq->nohz_idle_balance = 0;
10915
10916 if (idle != CPU_IDLE)
10917 return false;
10918
10919 _nohz_idle_balance(this_rq, flags, idle);
10920
10921 return true;
10922 }
10923
10924 /*
10925 * Check if we need to run the ILB for updating blocked load before entering
10926 * idle state.
10927 */
nohz_run_idle_balance(int cpu)10928 void nohz_run_idle_balance(int cpu)
10929 {
10930 unsigned int flags;
10931
10932 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10933
10934 /*
10935 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10936 * (ie NOHZ_STATS_KICK set) and will do the same.
10937 */
10938 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10939 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10940 }
10941
nohz_newidle_balance(struct rq * this_rq)10942 static void nohz_newidle_balance(struct rq *this_rq)
10943 {
10944 int this_cpu = this_rq->cpu;
10945
10946 /*
10947 * This CPU doesn't want to be disturbed by scheduler
10948 * housekeeping
10949 */
10950 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
10951 return;
10952
10953 /* Will wake up very soon. No time for doing anything else*/
10954 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10955 return;
10956
10957 /* Don't need to update blocked load of idle CPUs*/
10958 if (!READ_ONCE(nohz.has_blocked) ||
10959 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10960 return;
10961
10962 /*
10963 * Set the need to trigger ILB in order to update blocked load
10964 * before entering idle state.
10965 */
10966 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10967 }
10968
10969 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)10970 static inline void nohz_balancer_kick(struct rq *rq) { }
10971
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10972 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10973 {
10974 return false;
10975 }
10976
nohz_newidle_balance(struct rq * this_rq)10977 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10978 #endif /* CONFIG_NO_HZ_COMMON */
10979
10980 /*
10981 * newidle_balance is called by schedule() if this_cpu is about to become
10982 * idle. Attempts to pull tasks from other CPUs.
10983 *
10984 * Returns:
10985 * < 0 - we released the lock and there are !fair tasks present
10986 * 0 - failed, no new tasks
10987 * > 0 - success, new (fair) tasks present
10988 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)10989 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10990 {
10991 unsigned long next_balance = jiffies + HZ;
10992 int this_cpu = this_rq->cpu;
10993 u64 t0, t1, curr_cost = 0;
10994 struct sched_domain *sd;
10995 int pulled_task = 0;
10996
10997 update_misfit_status(NULL, this_rq);
10998
10999 /*
11000 * There is a task waiting to run. No need to search for one.
11001 * Return 0; the task will be enqueued when switching to idle.
11002 */
11003 if (this_rq->ttwu_pending)
11004 return 0;
11005
11006 /*
11007 * We must set idle_stamp _before_ calling idle_balance(), such that we
11008 * measure the duration of idle_balance() as idle time.
11009 */
11010 this_rq->idle_stamp = rq_clock(this_rq);
11011
11012 /*
11013 * Do not pull tasks towards !active CPUs...
11014 */
11015 if (!cpu_active(this_cpu))
11016 return 0;
11017
11018 /*
11019 * This is OK, because current is on_cpu, which avoids it being picked
11020 * for load-balance and preemption/IRQs are still disabled avoiding
11021 * further scheduler activity on it and we're being very careful to
11022 * re-start the picking loop.
11023 */
11024 rq_unpin_lock(this_rq, rf);
11025
11026 rcu_read_lock();
11027 sd = rcu_dereference_check_sched_domain(this_rq->sd);
11028
11029 if (!READ_ONCE(this_rq->rd->overload) ||
11030 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11031
11032 if (sd)
11033 update_next_balance(sd, &next_balance);
11034 rcu_read_unlock();
11035
11036 goto out;
11037 }
11038 rcu_read_unlock();
11039
11040 raw_spin_rq_unlock(this_rq);
11041
11042 t0 = sched_clock_cpu(this_cpu);
11043 update_blocked_averages(this_cpu);
11044
11045 rcu_read_lock();
11046 for_each_domain(this_cpu, sd) {
11047 int continue_balancing = 1;
11048 u64 domain_cost;
11049
11050 update_next_balance(sd, &next_balance);
11051
11052 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11053 break;
11054
11055 if (sd->flags & SD_BALANCE_NEWIDLE) {
11056
11057 pulled_task = load_balance(this_cpu, this_rq,
11058 sd, CPU_NEWLY_IDLE,
11059 &continue_balancing);
11060
11061 t1 = sched_clock_cpu(this_cpu);
11062 domain_cost = t1 - t0;
11063 update_newidle_cost(sd, domain_cost);
11064
11065 curr_cost += domain_cost;
11066 t0 = t1;
11067 }
11068
11069 /*
11070 * Stop searching for tasks to pull if there are
11071 * now runnable tasks on this rq.
11072 */
11073 if (pulled_task || this_rq->nr_running > 0 ||
11074 this_rq->ttwu_pending)
11075 break;
11076 }
11077 rcu_read_unlock();
11078
11079 raw_spin_rq_lock(this_rq);
11080
11081 if (curr_cost > this_rq->max_idle_balance_cost)
11082 this_rq->max_idle_balance_cost = curr_cost;
11083
11084 /*
11085 * While browsing the domains, we released the rq lock, a task could
11086 * have been enqueued in the meantime. Since we're not going idle,
11087 * pretend we pulled a task.
11088 */
11089 if (this_rq->cfs.h_nr_running && !pulled_task)
11090 pulled_task = 1;
11091
11092 /* Is there a task of a high priority class? */
11093 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11094 pulled_task = -1;
11095
11096 out:
11097 /* Move the next balance forward */
11098 if (time_after(this_rq->next_balance, next_balance))
11099 this_rq->next_balance = next_balance;
11100
11101 if (pulled_task)
11102 this_rq->idle_stamp = 0;
11103 else
11104 nohz_newidle_balance(this_rq);
11105
11106 rq_repin_lock(this_rq, rf);
11107
11108 return pulled_task;
11109 }
11110
11111 /*
11112 * run_rebalance_domains is triggered when needed from the scheduler tick.
11113 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11114 */
run_rebalance_domains(struct softirq_action * h)11115 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11116 {
11117 struct rq *this_rq = this_rq();
11118 enum cpu_idle_type idle = this_rq->idle_balance ?
11119 CPU_IDLE : CPU_NOT_IDLE;
11120
11121 /*
11122 * If this CPU has a pending nohz_balance_kick, then do the
11123 * balancing on behalf of the other idle CPUs whose ticks are
11124 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11125 * give the idle CPUs a chance to load balance. Else we may
11126 * load balance only within the local sched_domain hierarchy
11127 * and abort nohz_idle_balance altogether if we pull some load.
11128 */
11129 if (nohz_idle_balance(this_rq, idle))
11130 return;
11131
11132 /* normal load balance */
11133 update_blocked_averages(this_rq->cpu);
11134 rebalance_domains(this_rq, idle);
11135 }
11136
11137 /*
11138 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11139 */
trigger_load_balance(struct rq * rq)11140 void trigger_load_balance(struct rq *rq)
11141 {
11142 /*
11143 * Don't need to rebalance while attached to NULL domain or
11144 * runqueue CPU is not active
11145 */
11146 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11147 return;
11148
11149 if (time_after_eq(jiffies, rq->next_balance))
11150 raise_softirq(SCHED_SOFTIRQ);
11151
11152 nohz_balancer_kick(rq);
11153 }
11154
rq_online_fair(struct rq * rq)11155 static void rq_online_fair(struct rq *rq)
11156 {
11157 update_sysctl();
11158
11159 update_runtime_enabled(rq);
11160 }
11161
rq_offline_fair(struct rq * rq)11162 static void rq_offline_fair(struct rq *rq)
11163 {
11164 update_sysctl();
11165
11166 /* Ensure any throttled groups are reachable by pick_next_task */
11167 unthrottle_offline_cfs_rqs(rq);
11168 }
11169
11170 #endif /* CONFIG_SMP */
11171
11172 #ifdef CONFIG_SCHED_CORE
11173 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)11174 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11175 {
11176 u64 slice = sched_slice(cfs_rq_of(se), se);
11177 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11178
11179 return (rtime * min_nr_tasks > slice);
11180 }
11181
11182 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)11183 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11184 {
11185 if (!sched_core_enabled(rq))
11186 return;
11187
11188 /*
11189 * If runqueue has only one task which used up its slice and
11190 * if the sibling is forced idle, then trigger schedule to
11191 * give forced idle task a chance.
11192 *
11193 * sched_slice() considers only this active rq and it gets the
11194 * whole slice. But during force idle, we have siblings acting
11195 * like a single runqueue and hence we need to consider runnable
11196 * tasks on this CPU and the forced idle CPU. Ideally, we should
11197 * go through the forced idle rq, but that would be a perf hit.
11198 * We can assume that the forced idle CPU has at least
11199 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11200 * if we need to give up the CPU.
11201 */
11202 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11203 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11204 resched_curr(rq);
11205 }
11206
11207 /*
11208 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11209 */
se_fi_update(struct sched_entity * se,unsigned int fi_seq,bool forceidle)11210 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11211 {
11212 for_each_sched_entity(se) {
11213 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11214
11215 if (forceidle) {
11216 if (cfs_rq->forceidle_seq == fi_seq)
11217 break;
11218 cfs_rq->forceidle_seq = fi_seq;
11219 }
11220
11221 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11222 }
11223 }
11224
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)11225 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11226 {
11227 struct sched_entity *se = &p->se;
11228
11229 if (p->sched_class != &fair_sched_class)
11230 return;
11231
11232 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11233 }
11234
cfs_prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)11235 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11236 {
11237 struct rq *rq = task_rq(a);
11238 struct sched_entity *sea = &a->se;
11239 struct sched_entity *seb = &b->se;
11240 struct cfs_rq *cfs_rqa;
11241 struct cfs_rq *cfs_rqb;
11242 s64 delta;
11243
11244 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11245
11246 #ifdef CONFIG_FAIR_GROUP_SCHED
11247 /*
11248 * Find an se in the hierarchy for tasks a and b, such that the se's
11249 * are immediate siblings.
11250 */
11251 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11252 int sea_depth = sea->depth;
11253 int seb_depth = seb->depth;
11254
11255 if (sea_depth >= seb_depth)
11256 sea = parent_entity(sea);
11257 if (sea_depth <= seb_depth)
11258 seb = parent_entity(seb);
11259 }
11260
11261 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11262 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11263
11264 cfs_rqa = sea->cfs_rq;
11265 cfs_rqb = seb->cfs_rq;
11266 #else
11267 cfs_rqa = &task_rq(a)->cfs;
11268 cfs_rqb = &task_rq(b)->cfs;
11269 #endif
11270
11271 /*
11272 * Find delta after normalizing se's vruntime with its cfs_rq's
11273 * min_vruntime_fi, which would have been updated in prior calls
11274 * to se_fi_update().
11275 */
11276 delta = (s64)(sea->vruntime - seb->vruntime) +
11277 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11278
11279 return delta > 0;
11280 }
11281 #else
task_tick_core(struct rq * rq,struct task_struct * curr)11282 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11283 #endif
11284
11285 /*
11286 * scheduler tick hitting a task of our scheduling class.
11287 *
11288 * NOTE: This function can be called remotely by the tick offload that
11289 * goes along full dynticks. Therefore no local assumption can be made
11290 * and everything must be accessed through the @rq and @curr passed in
11291 * parameters.
11292 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11293 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11294 {
11295 struct cfs_rq *cfs_rq;
11296 struct sched_entity *se = &curr->se;
11297
11298 for_each_sched_entity(se) {
11299 cfs_rq = cfs_rq_of(se);
11300 entity_tick(cfs_rq, se, queued);
11301 }
11302
11303 if (static_branch_unlikely(&sched_numa_balancing))
11304 task_tick_numa(rq, curr);
11305
11306 update_misfit_status(curr, rq);
11307 update_overutilized_status(task_rq(curr));
11308
11309 task_tick_core(rq, curr);
11310 }
11311
11312 /*
11313 * called on fork with the child task as argument from the parent's context
11314 * - child not yet on the tasklist
11315 * - preemption disabled
11316 */
task_fork_fair(struct task_struct * p)11317 static void task_fork_fair(struct task_struct *p)
11318 {
11319 struct cfs_rq *cfs_rq;
11320 struct sched_entity *se = &p->se, *curr;
11321 struct rq *rq = this_rq();
11322 struct rq_flags rf;
11323
11324 rq_lock(rq, &rf);
11325 update_rq_clock(rq);
11326
11327 cfs_rq = task_cfs_rq(current);
11328 curr = cfs_rq->curr;
11329 if (curr) {
11330 update_curr(cfs_rq);
11331 se->vruntime = curr->vruntime;
11332 }
11333 place_entity(cfs_rq, se, 1);
11334
11335 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11336 /*
11337 * Upon rescheduling, sched_class::put_prev_task() will place
11338 * 'current' within the tree based on its new key value.
11339 */
11340 swap(curr->vruntime, se->vruntime);
11341 resched_curr(rq);
11342 }
11343
11344 se->vruntime -= cfs_rq->min_vruntime;
11345 rq_unlock(rq, &rf);
11346 }
11347
11348 /*
11349 * Priority of the task has changed. Check to see if we preempt
11350 * the current task.
11351 */
11352 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11353 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11354 {
11355 if (!task_on_rq_queued(p))
11356 return;
11357
11358 if (rq->cfs.nr_running == 1)
11359 return;
11360
11361 /*
11362 * Reschedule if we are currently running on this runqueue and
11363 * our priority decreased, or if we are not currently running on
11364 * this runqueue and our priority is higher than the current's
11365 */
11366 if (task_current(rq, p)) {
11367 if (p->prio > oldprio)
11368 resched_curr(rq);
11369 } else
11370 check_preempt_curr(rq, p, 0);
11371 }
11372
vruntime_normalized(struct task_struct * p)11373 static inline bool vruntime_normalized(struct task_struct *p)
11374 {
11375 struct sched_entity *se = &p->se;
11376
11377 /*
11378 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11379 * the dequeue_entity(.flags=0) will already have normalized the
11380 * vruntime.
11381 */
11382 if (p->on_rq)
11383 return true;
11384
11385 /*
11386 * When !on_rq, vruntime of the task has usually NOT been normalized.
11387 * But there are some cases where it has already been normalized:
11388 *
11389 * - A forked child which is waiting for being woken up by
11390 * wake_up_new_task().
11391 * - A task which has been woken up by try_to_wake_up() and
11392 * waiting for actually being woken up by sched_ttwu_pending().
11393 */
11394 if (!se->sum_exec_runtime ||
11395 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11396 return true;
11397
11398 return false;
11399 }
11400
11401 #ifdef CONFIG_FAIR_GROUP_SCHED
11402 /*
11403 * Propagate the changes of the sched_entity across the tg tree to make it
11404 * visible to the root
11405 */
propagate_entity_cfs_rq(struct sched_entity * se)11406 static void propagate_entity_cfs_rq(struct sched_entity *se)
11407 {
11408 struct cfs_rq *cfs_rq;
11409
11410 list_add_leaf_cfs_rq(cfs_rq_of(se));
11411
11412 /* Start to propagate at parent */
11413 se = se->parent;
11414
11415 for_each_sched_entity(se) {
11416 cfs_rq = cfs_rq_of(se);
11417
11418 if (!cfs_rq_throttled(cfs_rq)){
11419 update_load_avg(cfs_rq, se, UPDATE_TG);
11420 list_add_leaf_cfs_rq(cfs_rq);
11421 continue;
11422 }
11423
11424 if (list_add_leaf_cfs_rq(cfs_rq))
11425 break;
11426 }
11427 }
11428 #else
propagate_entity_cfs_rq(struct sched_entity * se)11429 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11430 #endif
11431
detach_entity_cfs_rq(struct sched_entity * se)11432 static void detach_entity_cfs_rq(struct sched_entity *se)
11433 {
11434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11435
11436 /* Catch up with the cfs_rq and remove our load when we leave */
11437 update_load_avg(cfs_rq, se, 0);
11438 detach_entity_load_avg(cfs_rq, se);
11439 update_tg_load_avg(cfs_rq);
11440 propagate_entity_cfs_rq(se);
11441 }
11442
attach_entity_cfs_rq(struct sched_entity * se)11443 static void attach_entity_cfs_rq(struct sched_entity *se)
11444 {
11445 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11446
11447 #ifdef CONFIG_FAIR_GROUP_SCHED
11448 /*
11449 * Since the real-depth could have been changed (only FAIR
11450 * class maintain depth value), reset depth properly.
11451 */
11452 se->depth = se->parent ? se->parent->depth + 1 : 0;
11453 #endif
11454
11455 /* Synchronize entity with its cfs_rq */
11456 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11457 attach_entity_load_avg(cfs_rq, se);
11458 update_tg_load_avg(cfs_rq);
11459 propagate_entity_cfs_rq(se);
11460 }
11461
detach_task_cfs_rq(struct task_struct * p)11462 static void detach_task_cfs_rq(struct task_struct *p)
11463 {
11464 struct sched_entity *se = &p->se;
11465 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11466
11467 if (!vruntime_normalized(p)) {
11468 /*
11469 * Fix up our vruntime so that the current sleep doesn't
11470 * cause 'unlimited' sleep bonus.
11471 */
11472 place_entity(cfs_rq, se, 0);
11473 se->vruntime -= cfs_rq->min_vruntime;
11474 }
11475
11476 detach_entity_cfs_rq(se);
11477 }
11478
attach_task_cfs_rq(struct task_struct * p)11479 static void attach_task_cfs_rq(struct task_struct *p)
11480 {
11481 struct sched_entity *se = &p->se;
11482 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11483
11484 attach_entity_cfs_rq(se);
11485
11486 if (!vruntime_normalized(p))
11487 se->vruntime += cfs_rq->min_vruntime;
11488 }
11489
switched_from_fair(struct rq * rq,struct task_struct * p)11490 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11491 {
11492 detach_task_cfs_rq(p);
11493 }
11494
switched_to_fair(struct rq * rq,struct task_struct * p)11495 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11496 {
11497 attach_task_cfs_rq(p);
11498
11499 if (task_on_rq_queued(p)) {
11500 /*
11501 * We were most likely switched from sched_rt, so
11502 * kick off the schedule if running, otherwise just see
11503 * if we can still preempt the current task.
11504 */
11505 if (task_current(rq, p))
11506 resched_curr(rq);
11507 else
11508 check_preempt_curr(rq, p, 0);
11509 }
11510 }
11511
11512 /* Account for a task changing its policy or group.
11513 *
11514 * This routine is mostly called to set cfs_rq->curr field when a task
11515 * migrates between groups/classes.
11516 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)11517 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11518 {
11519 struct sched_entity *se = &p->se;
11520
11521 #ifdef CONFIG_SMP
11522 if (task_on_rq_queued(p)) {
11523 /*
11524 * Move the next running task to the front of the list, so our
11525 * cfs_tasks list becomes MRU one.
11526 */
11527 list_move(&se->group_node, &rq->cfs_tasks);
11528 }
11529 #endif
11530
11531 for_each_sched_entity(se) {
11532 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11533
11534 set_next_entity(cfs_rq, se);
11535 /* ensure bandwidth has been allocated on our new cfs_rq */
11536 account_cfs_rq_runtime(cfs_rq, 0);
11537 }
11538 }
11539
init_cfs_rq(struct cfs_rq * cfs_rq)11540 void init_cfs_rq(struct cfs_rq *cfs_rq)
11541 {
11542 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11543 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11544 #ifndef CONFIG_64BIT
11545 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11546 #endif
11547 #ifdef CONFIG_SMP
11548 raw_spin_lock_init(&cfs_rq->removed.lock);
11549 #endif
11550 }
11551
11552 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)11553 static void task_set_group_fair(struct task_struct *p)
11554 {
11555 struct sched_entity *se = &p->se;
11556
11557 set_task_rq(p, task_cpu(p));
11558 se->depth = se->parent ? se->parent->depth + 1 : 0;
11559 }
11560
task_move_group_fair(struct task_struct * p)11561 static void task_move_group_fair(struct task_struct *p)
11562 {
11563 detach_task_cfs_rq(p);
11564 set_task_rq(p, task_cpu(p));
11565
11566 #ifdef CONFIG_SMP
11567 /* Tell se's cfs_rq has been changed -- migrated */
11568 p->se.avg.last_update_time = 0;
11569 #endif
11570 attach_task_cfs_rq(p);
11571 }
11572
task_change_group_fair(struct task_struct * p,int type)11573 static void task_change_group_fair(struct task_struct *p, int type)
11574 {
11575 switch (type) {
11576 case TASK_SET_GROUP:
11577 task_set_group_fair(p);
11578 break;
11579
11580 case TASK_MOVE_GROUP:
11581 task_move_group_fair(p);
11582 break;
11583 }
11584 }
11585
free_fair_sched_group(struct task_group * tg)11586 void free_fair_sched_group(struct task_group *tg)
11587 {
11588 int i;
11589
11590 for_each_possible_cpu(i) {
11591 if (tg->cfs_rq)
11592 kfree(tg->cfs_rq[i]);
11593 if (tg->se)
11594 kfree(tg->se[i]);
11595 }
11596
11597 kfree(tg->cfs_rq);
11598 kfree(tg->se);
11599 }
11600
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11601 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11602 {
11603 struct sched_entity *se;
11604 struct cfs_rq *cfs_rq;
11605 int i;
11606
11607 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11608 if (!tg->cfs_rq)
11609 goto err;
11610 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11611 if (!tg->se)
11612 goto err;
11613
11614 tg->shares = NICE_0_LOAD;
11615
11616 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11617
11618 for_each_possible_cpu(i) {
11619 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11620 GFP_KERNEL, cpu_to_node(i));
11621 if (!cfs_rq)
11622 goto err;
11623
11624 se = kzalloc_node(sizeof(struct sched_entity_stats),
11625 GFP_KERNEL, cpu_to_node(i));
11626 if (!se)
11627 goto err_free_rq;
11628
11629 init_cfs_rq(cfs_rq);
11630 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11631 init_entity_runnable_average(se);
11632 }
11633
11634 return 1;
11635
11636 err_free_rq:
11637 kfree(cfs_rq);
11638 err:
11639 return 0;
11640 }
11641
online_fair_sched_group(struct task_group * tg)11642 void online_fair_sched_group(struct task_group *tg)
11643 {
11644 struct sched_entity *se;
11645 struct rq_flags rf;
11646 struct rq *rq;
11647 int i;
11648
11649 for_each_possible_cpu(i) {
11650 rq = cpu_rq(i);
11651 se = tg->se[i];
11652 rq_lock_irq(rq, &rf);
11653 update_rq_clock(rq);
11654 attach_entity_cfs_rq(se);
11655 sync_throttle(tg, i);
11656 rq_unlock_irq(rq, &rf);
11657 }
11658 }
11659
unregister_fair_sched_group(struct task_group * tg)11660 void unregister_fair_sched_group(struct task_group *tg)
11661 {
11662 unsigned long flags;
11663 struct rq *rq;
11664 int cpu;
11665
11666 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11667
11668 for_each_possible_cpu(cpu) {
11669 if (tg->se[cpu])
11670 remove_entity_load_avg(tg->se[cpu]);
11671
11672 /*
11673 * Only empty task groups can be destroyed; so we can speculatively
11674 * check on_list without danger of it being re-added.
11675 */
11676 if (!tg->cfs_rq[cpu]->on_list)
11677 continue;
11678
11679 rq = cpu_rq(cpu);
11680
11681 raw_spin_rq_lock_irqsave(rq, flags);
11682 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11683 raw_spin_rq_unlock_irqrestore(rq, flags);
11684 }
11685 }
11686
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)11687 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11688 struct sched_entity *se, int cpu,
11689 struct sched_entity *parent)
11690 {
11691 struct rq *rq = cpu_rq(cpu);
11692
11693 cfs_rq->tg = tg;
11694 cfs_rq->rq = rq;
11695 init_cfs_rq_runtime(cfs_rq);
11696
11697 tg->cfs_rq[cpu] = cfs_rq;
11698 tg->se[cpu] = se;
11699
11700 /* se could be NULL for root_task_group */
11701 if (!se)
11702 return;
11703
11704 if (!parent) {
11705 se->cfs_rq = &rq->cfs;
11706 se->depth = 0;
11707 } else {
11708 se->cfs_rq = parent->my_q;
11709 se->depth = parent->depth + 1;
11710 }
11711
11712 se->my_q = cfs_rq;
11713 /* guarantee group entities always have weight */
11714 update_load_set(&se->load, NICE_0_LOAD);
11715 se->parent = parent;
11716 }
11717
11718 static DEFINE_MUTEX(shares_mutex);
11719
__sched_group_set_shares(struct task_group * tg,unsigned long shares)11720 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11721 {
11722 int i;
11723
11724 lockdep_assert_held(&shares_mutex);
11725
11726 /*
11727 * We can't change the weight of the root cgroup.
11728 */
11729 if (!tg->se[0])
11730 return -EINVAL;
11731
11732 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11733
11734 if (tg->shares == shares)
11735 return 0;
11736
11737 tg->shares = shares;
11738 for_each_possible_cpu(i) {
11739 struct rq *rq = cpu_rq(i);
11740 struct sched_entity *se = tg->se[i];
11741 struct rq_flags rf;
11742
11743 /* Propagate contribution to hierarchy */
11744 rq_lock_irqsave(rq, &rf);
11745 update_rq_clock(rq);
11746 for_each_sched_entity(se) {
11747 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11748 update_cfs_group(se);
11749 }
11750 rq_unlock_irqrestore(rq, &rf);
11751 }
11752
11753 return 0;
11754 }
11755
sched_group_set_shares(struct task_group * tg,unsigned long shares)11756 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11757 {
11758 int ret;
11759
11760 mutex_lock(&shares_mutex);
11761 if (tg_is_idle(tg))
11762 ret = -EINVAL;
11763 else
11764 ret = __sched_group_set_shares(tg, shares);
11765 mutex_unlock(&shares_mutex);
11766
11767 return ret;
11768 }
11769
sched_group_set_idle(struct task_group * tg,long idle)11770 int sched_group_set_idle(struct task_group *tg, long idle)
11771 {
11772 int i;
11773
11774 if (tg == &root_task_group)
11775 return -EINVAL;
11776
11777 if (idle < 0 || idle > 1)
11778 return -EINVAL;
11779
11780 mutex_lock(&shares_mutex);
11781
11782 if (tg->idle == idle) {
11783 mutex_unlock(&shares_mutex);
11784 return 0;
11785 }
11786
11787 tg->idle = idle;
11788
11789 for_each_possible_cpu(i) {
11790 struct rq *rq = cpu_rq(i);
11791 struct sched_entity *se = tg->se[i];
11792 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11793 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11794 long idle_task_delta;
11795 struct rq_flags rf;
11796
11797 rq_lock_irqsave(rq, &rf);
11798
11799 grp_cfs_rq->idle = idle;
11800 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11801 goto next_cpu;
11802
11803 if (se->on_rq) {
11804 parent_cfs_rq = cfs_rq_of(se);
11805 if (cfs_rq_is_idle(grp_cfs_rq))
11806 parent_cfs_rq->idle_nr_running++;
11807 else
11808 parent_cfs_rq->idle_nr_running--;
11809 }
11810
11811 idle_task_delta = grp_cfs_rq->h_nr_running -
11812 grp_cfs_rq->idle_h_nr_running;
11813 if (!cfs_rq_is_idle(grp_cfs_rq))
11814 idle_task_delta *= -1;
11815
11816 for_each_sched_entity(se) {
11817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11818
11819 if (!se->on_rq)
11820 break;
11821
11822 cfs_rq->idle_h_nr_running += idle_task_delta;
11823
11824 /* Already accounted at parent level and above. */
11825 if (cfs_rq_is_idle(cfs_rq))
11826 break;
11827 }
11828
11829 next_cpu:
11830 rq_unlock_irqrestore(rq, &rf);
11831 }
11832
11833 /* Idle groups have minimum weight. */
11834 if (tg_is_idle(tg))
11835 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11836 else
11837 __sched_group_set_shares(tg, NICE_0_LOAD);
11838
11839 mutex_unlock(&shares_mutex);
11840 return 0;
11841 }
11842
11843 #else /* CONFIG_FAIR_GROUP_SCHED */
11844
free_fair_sched_group(struct task_group * tg)11845 void free_fair_sched_group(struct task_group *tg) { }
11846
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11847 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11848 {
11849 return 1;
11850 }
11851
online_fair_sched_group(struct task_group * tg)11852 void online_fair_sched_group(struct task_group *tg) { }
11853
unregister_fair_sched_group(struct task_group * tg)11854 void unregister_fair_sched_group(struct task_group *tg) { }
11855
11856 #endif /* CONFIG_FAIR_GROUP_SCHED */
11857
11858
get_rr_interval_fair(struct rq * rq,struct task_struct * task)11859 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11860 {
11861 struct sched_entity *se = &task->se;
11862 unsigned int rr_interval = 0;
11863
11864 /*
11865 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11866 * idle runqueue:
11867 */
11868 if (rq->cfs.load.weight)
11869 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11870
11871 return rr_interval;
11872 }
11873
11874 /*
11875 * All the scheduling class methods:
11876 */
11877 DEFINE_SCHED_CLASS(fair) = {
11878
11879 .enqueue_task = enqueue_task_fair,
11880 .dequeue_task = dequeue_task_fair,
11881 .yield_task = yield_task_fair,
11882 .yield_to_task = yield_to_task_fair,
11883
11884 .check_preempt_curr = check_preempt_wakeup,
11885
11886 .pick_next_task = __pick_next_task_fair,
11887 .put_prev_task = put_prev_task_fair,
11888 .set_next_task = set_next_task_fair,
11889
11890 #ifdef CONFIG_SMP
11891 .balance = balance_fair,
11892 .pick_task = pick_task_fair,
11893 .select_task_rq = select_task_rq_fair,
11894 .migrate_task_rq = migrate_task_rq_fair,
11895
11896 .rq_online = rq_online_fair,
11897 .rq_offline = rq_offline_fair,
11898
11899 .task_dead = task_dead_fair,
11900 .set_cpus_allowed = set_cpus_allowed_common,
11901 #endif
11902
11903 .task_tick = task_tick_fair,
11904 .task_fork = task_fork_fair,
11905
11906 .prio_changed = prio_changed_fair,
11907 .switched_from = switched_from_fair,
11908 .switched_to = switched_to_fair,
11909
11910 .get_rr_interval = get_rr_interval_fair,
11911
11912 .update_curr = update_curr_fair,
11913
11914 #ifdef CONFIG_FAIR_GROUP_SCHED
11915 .task_change_group = task_change_group_fair,
11916 #endif
11917
11918 #ifdef CONFIG_UCLAMP_TASK
11919 .uclamp_enabled = 1,
11920 #endif
11921 };
11922
11923 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)11924 void print_cfs_stats(struct seq_file *m, int cpu)
11925 {
11926 struct cfs_rq *cfs_rq, *pos;
11927
11928 rcu_read_lock();
11929 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11930 print_cfs_rq(m, cpu, cfs_rq);
11931 rcu_read_unlock();
11932 }
11933
11934 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)11935 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11936 {
11937 int node;
11938 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11939 struct numa_group *ng;
11940
11941 rcu_read_lock();
11942 ng = rcu_dereference(p->numa_group);
11943 for_each_online_node(node) {
11944 if (p->numa_faults) {
11945 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11946 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11947 }
11948 if (ng) {
11949 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11950 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11951 }
11952 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11953 }
11954 rcu_read_unlock();
11955 }
11956 #endif /* CONFIG_NUMA_BALANCING */
11957 #endif /* CONFIG_SCHED_DEBUG */
11958
init_sched_fair_class(void)11959 __init void init_sched_fair_class(void)
11960 {
11961 #ifdef CONFIG_SMP
11962 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11963
11964 #ifdef CONFIG_NO_HZ_COMMON
11965 nohz.next_balance = jiffies;
11966 nohz.next_blocked = jiffies;
11967 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11968 #endif
11969 #endif /* SMP */
11970
11971 }
11972