1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/hugetlb.h>
38 #include <linux/fs_parser.h>
39 #include <linux/swapfile.h>
40 #include "swap.h"
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_rwsem making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
98 */
99 struct shmem_falloc {
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105 };
106
107 struct shmem_options {
108 unsigned long long blocks;
109 unsigned long long inodes;
110 struct mempolicy *mpol;
111 kuid_t uid;
112 kgid_t gid;
113 umode_t mode;
114 bool full_inums;
115 int huge;
116 int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122
123 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)124 static unsigned long shmem_default_max_blocks(void)
125 {
126 return totalram_pages() / 2;
127 }
128
shmem_default_max_inodes(void)129 static unsigned long shmem_default_max_inodes(void)
130 {
131 unsigned long nr_pages = totalram_pages();
132
133 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136
137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
138 struct folio **foliop, enum sgp_type sgp,
139 gfp_t gfp, struct vm_area_struct *vma,
140 vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 struct page **pagep, enum sgp_type sgp,
143 gfp_t gfp, struct vm_area_struct *vma,
144 struct vm_fault *vmf, vm_fault_t *fault_type);
145
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp)
148 {
149 return shmem_getpage_gfp(inode, index, pagep, sgp,
150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152
SHMEM_SB(struct super_block * sb)153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
shmem_acct_size(unsigned long flags,loff_t size)164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
shmem_unacct_size(unsigned long flags,loff_t size)170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178 {
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187 }
188
189 /*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
shmem_acct_block(unsigned long flags,long pages)195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
202 }
203
shmem_unacct_blocks(unsigned long flags,long pages)204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
shmem_inode_acct_block(struct inode * inode,long pages)210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214
215 if (shmem_acct_block(info->flags, pages))
216 return false;
217
218 if (sbinfo->max_blocks) {
219 if (percpu_counter_compare(&sbinfo->used_blocks,
220 sbinfo->max_blocks - pages) > 0)
221 goto unacct;
222 percpu_counter_add(&sbinfo->used_blocks, pages);
223 }
224
225 return true;
226
227 unacct:
228 shmem_unacct_blocks(info->flags, pages);
229 return false;
230 }
231
shmem_inode_unacct_blocks(struct inode * inode,long pages)232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 struct shmem_inode_info *info = SHMEM_I(inode);
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236
237 if (sbinfo->max_blocks)
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 shmem_unacct_blocks(info->flags, pages);
240 }
241
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250
vma_is_shmem(struct vm_area_struct * vma)251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 return vma->vm_ops == &shmem_vm_ops;
254 }
255
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258
259 /*
260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261 * produces a novel ino for the newly allocated inode.
262 *
263 * It may also be called when making a hard link to permit the space needed by
264 * each dentry. However, in that case, no new inode number is needed since that
265 * internally draws from another pool of inode numbers (currently global
266 * get_next_ino()). This case is indicated by passing NULL as inop.
267 */
268 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 ino_t ino;
273
274 if (!(sb->s_flags & SB_KERNMOUNT)) {
275 raw_spin_lock(&sbinfo->stat_lock);
276 if (sbinfo->max_inodes) {
277 if (!sbinfo->free_inodes) {
278 raw_spin_unlock(&sbinfo->stat_lock);
279 return -ENOSPC;
280 }
281 sbinfo->free_inodes--;
282 }
283 if (inop) {
284 ino = sbinfo->next_ino++;
285 if (unlikely(is_zero_ino(ino)))
286 ino = sbinfo->next_ino++;
287 if (unlikely(!sbinfo->full_inums &&
288 ino > UINT_MAX)) {
289 /*
290 * Emulate get_next_ino uint wraparound for
291 * compatibility
292 */
293 if (IS_ENABLED(CONFIG_64BIT))
294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 __func__, MINOR(sb->s_dev));
296 sbinfo->next_ino = 1;
297 ino = sbinfo->next_ino++;
298 }
299 *inop = ino;
300 }
301 raw_spin_unlock(&sbinfo->stat_lock);
302 } else if (inop) {
303 /*
304 * __shmem_file_setup, one of our callers, is lock-free: it
305 * doesn't hold stat_lock in shmem_reserve_inode since
306 * max_inodes is always 0, and is called from potentially
307 * unknown contexts. As such, use a per-cpu batched allocator
308 * which doesn't require the per-sb stat_lock unless we are at
309 * the batch boundary.
310 *
311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 * shmem mounts are not exposed to userspace, so we don't need
313 * to worry about things like glibc compatibility.
314 */
315 ino_t *next_ino;
316
317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 ino = *next_ino;
319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 raw_spin_lock(&sbinfo->stat_lock);
321 ino = sbinfo->next_ino;
322 sbinfo->next_ino += SHMEM_INO_BATCH;
323 raw_spin_unlock(&sbinfo->stat_lock);
324 if (unlikely(is_zero_ino(ino)))
325 ino++;
326 }
327 *inop = ino;
328 *next_ino = ++ino;
329 put_cpu();
330 }
331
332 return 0;
333 }
334
shmem_free_inode(struct super_block * sb)335 static void shmem_free_inode(struct super_block *sb)
336 {
337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 if (sbinfo->max_inodes) {
339 raw_spin_lock(&sbinfo->stat_lock);
340 sbinfo->free_inodes++;
341 raw_spin_unlock(&sbinfo->stat_lock);
342 }
343 }
344
345 /**
346 * shmem_recalc_inode - recalculate the block usage of an inode
347 * @inode: inode to recalc
348 *
349 * We have to calculate the free blocks since the mm can drop
350 * undirtied hole pages behind our back.
351 *
352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354 *
355 * It has to be called with the spinlock held.
356 */
shmem_recalc_inode(struct inode * inode)357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 struct shmem_inode_info *info = SHMEM_I(inode);
360 long freed;
361
362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 if (freed > 0) {
364 info->alloced -= freed;
365 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 shmem_inode_unacct_blocks(inode, freed);
367 }
368 }
369
shmem_charge(struct inode * inode,long pages)370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 struct shmem_inode_info *info = SHMEM_I(inode);
373 unsigned long flags;
374
375 if (!shmem_inode_acct_block(inode, pages))
376 return false;
377
378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 inode->i_mapping->nrpages += pages;
380
381 spin_lock_irqsave(&info->lock, flags);
382 info->alloced += pages;
383 inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 shmem_recalc_inode(inode);
385 spin_unlock_irqrestore(&info->lock, flags);
386
387 return true;
388 }
389
shmem_uncharge(struct inode * inode,long pages)390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 struct shmem_inode_info *info = SHMEM_I(inode);
393 unsigned long flags;
394
395 /* nrpages adjustment done by __delete_from_page_cache() or caller */
396
397 spin_lock_irqsave(&info->lock, flags);
398 info->alloced -= pages;
399 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 shmem_recalc_inode(inode);
401 spin_unlock_irqrestore(&info->lock, flags);
402
403 shmem_inode_unacct_blocks(inode, pages);
404 }
405
406 /*
407 * Replace item expected in xarray by a new item, while holding xa_lock.
408 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)409 static int shmem_replace_entry(struct address_space *mapping,
410 pgoff_t index, void *expected, void *replacement)
411 {
412 XA_STATE(xas, &mapping->i_pages, index);
413 void *item;
414
415 VM_BUG_ON(!expected);
416 VM_BUG_ON(!replacement);
417 item = xas_load(&xas);
418 if (item != expected)
419 return -ENOENT;
420 xas_store(&xas, replacement);
421 return 0;
422 }
423
424 /*
425 * Sometimes, before we decide whether to proceed or to fail, we must check
426 * that an entry was not already brought back from swap by a racing thread.
427 *
428 * Checking page is not enough: by the time a SwapCache page is locked, it
429 * might be reused, and again be SwapCache, using the same swap as before.
430 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)431 static bool shmem_confirm_swap(struct address_space *mapping,
432 pgoff_t index, swp_entry_t swap)
433 {
434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436
437 /*
438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439 *
440 * SHMEM_HUGE_NEVER:
441 * disables huge pages for the mount;
442 * SHMEM_HUGE_ALWAYS:
443 * enables huge pages for the mount;
444 * SHMEM_HUGE_WITHIN_SIZE:
445 * only allocate huge pages if the page will be fully within i_size,
446 * also respect fadvise()/madvise() hints;
447 * SHMEM_HUGE_ADVISE:
448 * only allocate huge pages if requested with fadvise()/madvise();
449 */
450
451 #define SHMEM_HUGE_NEVER 0
452 #define SHMEM_HUGE_ALWAYS 1
453 #define SHMEM_HUGE_WITHIN_SIZE 2
454 #define SHMEM_HUGE_ADVISE 3
455
456 /*
457 * Special values.
458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459 *
460 * SHMEM_HUGE_DENY:
461 * disables huge on shm_mnt and all mounts, for emergency use;
462 * SHMEM_HUGE_FORCE:
463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464 *
465 */
466 #define SHMEM_HUGE_DENY (-1)
467 #define SHMEM_HUGE_FORCE (-2)
468
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)474 bool shmem_is_huge(struct vm_area_struct *vma,
475 struct inode *inode, pgoff_t index)
476 {
477 loff_t i_size;
478
479 if (!S_ISREG(inode->i_mode))
480 return false;
481 if (shmem_huge == SHMEM_HUGE_DENY)
482 return false;
483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 return false;
486 if (shmem_huge == SHMEM_HUGE_FORCE)
487 return true;
488
489 switch (SHMEM_SB(inode->i_sb)->huge) {
490 case SHMEM_HUGE_ALWAYS:
491 return true;
492 case SHMEM_HUGE_WITHIN_SIZE:
493 index = round_up(index + 1, HPAGE_PMD_NR);
494 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 if (i_size >> PAGE_SHIFT >= index)
496 return true;
497 fallthrough;
498 case SHMEM_HUGE_ADVISE:
499 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 return true;
501 fallthrough;
502 default:
503 return false;
504 }
505 }
506
507 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)508 static int shmem_parse_huge(const char *str)
509 {
510 if (!strcmp(str, "never"))
511 return SHMEM_HUGE_NEVER;
512 if (!strcmp(str, "always"))
513 return SHMEM_HUGE_ALWAYS;
514 if (!strcmp(str, "within_size"))
515 return SHMEM_HUGE_WITHIN_SIZE;
516 if (!strcmp(str, "advise"))
517 return SHMEM_HUGE_ADVISE;
518 if (!strcmp(str, "deny"))
519 return SHMEM_HUGE_DENY;
520 if (!strcmp(str, "force"))
521 return SHMEM_HUGE_FORCE;
522 return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)527 static const char *shmem_format_huge(int huge)
528 {
529 switch (huge) {
530 case SHMEM_HUGE_NEVER:
531 return "never";
532 case SHMEM_HUGE_ALWAYS:
533 return "always";
534 case SHMEM_HUGE_WITHIN_SIZE:
535 return "within_size";
536 case SHMEM_HUGE_ADVISE:
537 return "advise";
538 case SHMEM_HUGE_DENY:
539 return "deny";
540 case SHMEM_HUGE_FORCE:
541 return "force";
542 default:
543 VM_BUG_ON(1);
544 return "bad_val";
545 }
546 }
547 #endif
548
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 LIST_HEAD(list), *pos, *next;
553 LIST_HEAD(to_remove);
554 struct inode *inode;
555 struct shmem_inode_info *info;
556 struct folio *folio;
557 unsigned long batch = sc ? sc->nr_to_scan : 128;
558 int split = 0;
559
560 if (list_empty(&sbinfo->shrinklist))
561 return SHRINK_STOP;
562
563 spin_lock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567 /* pin the inode */
568 inode = igrab(&info->vfs_inode);
569
570 /* inode is about to be evicted */
571 if (!inode) {
572 list_del_init(&info->shrinklist);
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 list_move(&info->shrinklist, &to_remove);
580 goto next;
581 }
582
583 list_move(&info->shrinklist, &list);
584 next:
585 sbinfo->shrinklist_len--;
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600 pgoff_t index;
601
602 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 inode = &info->vfs_inode;
604
605 if (nr_to_split && split >= nr_to_split)
606 goto move_back;
607
608 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
609 folio = filemap_get_folio(inode->i_mapping, index);
610 if (!folio)
611 goto drop;
612
613 /* No huge page at the end of the file: nothing to split */
614 if (!folio_test_large(folio)) {
615 folio_put(folio);
616 goto drop;
617 }
618
619 /*
620 * Move the inode on the list back to shrinklist if we failed
621 * to lock the page at this time.
622 *
623 * Waiting for the lock may lead to deadlock in the
624 * reclaim path.
625 */
626 if (!folio_trylock(folio)) {
627 folio_put(folio);
628 goto move_back;
629 }
630
631 ret = split_huge_page(&folio->page);
632 folio_unlock(folio);
633 folio_put(folio);
634
635 /* If split failed move the inode on the list back to shrinklist */
636 if (ret)
637 goto move_back;
638
639 split++;
640 drop:
641 list_del_init(&info->shrinklist);
642 goto put;
643 move_back:
644 /*
645 * Make sure the inode is either on the global list or deleted
646 * from any local list before iput() since it could be deleted
647 * in another thread once we put the inode (then the local list
648 * is corrupted).
649 */
650 spin_lock(&sbinfo->shrinklist_lock);
651 list_move(&info->shrinklist, &sbinfo->shrinklist);
652 sbinfo->shrinklist_len++;
653 spin_unlock(&sbinfo->shrinklist_lock);
654 put:
655 iput(inode);
656 }
657
658 return split;
659 }
660
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)661 static long shmem_unused_huge_scan(struct super_block *sb,
662 struct shrink_control *sc)
663 {
664 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665
666 if (!READ_ONCE(sbinfo->shrinklist_len))
667 return SHRINK_STOP;
668
669 return shmem_unused_huge_shrink(sbinfo, sc, 0);
670 }
671
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)672 static long shmem_unused_huge_count(struct super_block *sb,
673 struct shrink_control *sc)
674 {
675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 return READ_ONCE(sbinfo->shrinklist_len);
677 }
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679
680 #define shmem_huge SHMEM_HUGE_DENY
681
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)682 bool shmem_is_huge(struct vm_area_struct *vma,
683 struct inode *inode, pgoff_t index)
684 {
685 return false;
686 }
687
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 struct shrink_control *sc, unsigned long nr_to_split)
690 {
691 return 0;
692 }
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
694
695 /*
696 * Like add_to_page_cache_locked, but error if expected item has gone.
697 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)698 static int shmem_add_to_page_cache(struct folio *folio,
699 struct address_space *mapping,
700 pgoff_t index, void *expected, gfp_t gfp,
701 struct mm_struct *charge_mm)
702 {
703 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
704 long nr = folio_nr_pages(folio);
705 int error;
706
707 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
708 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
709 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
710 VM_BUG_ON(expected && folio_test_large(folio));
711
712 folio_ref_add(folio, nr);
713 folio->mapping = mapping;
714 folio->index = index;
715
716 if (!folio_test_swapcache(folio)) {
717 error = mem_cgroup_charge(folio, charge_mm, gfp);
718 if (error) {
719 if (folio_test_pmd_mappable(folio)) {
720 count_vm_event(THP_FILE_FALLBACK);
721 count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 }
723 goto error;
724 }
725 }
726 folio_throttle_swaprate(folio, gfp);
727
728 do {
729 xas_lock_irq(&xas);
730 if (expected != xas_find_conflict(&xas)) {
731 xas_set_err(&xas, -EEXIST);
732 goto unlock;
733 }
734 if (expected && xas_find_conflict(&xas)) {
735 xas_set_err(&xas, -EEXIST);
736 goto unlock;
737 }
738 xas_store(&xas, folio);
739 if (xas_error(&xas))
740 goto unlock;
741 if (folio_test_pmd_mappable(folio)) {
742 count_vm_event(THP_FILE_ALLOC);
743 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
744 }
745 mapping->nrpages += nr;
746 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
747 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
748 unlock:
749 xas_unlock_irq(&xas);
750 } while (xas_nomem(&xas, gfp));
751
752 if (xas_error(&xas)) {
753 error = xas_error(&xas);
754 goto error;
755 }
756
757 return 0;
758 error:
759 folio->mapping = NULL;
760 folio_ref_sub(folio, nr);
761 return error;
762 }
763
764 /*
765 * Like delete_from_page_cache, but substitutes swap for page.
766 */
shmem_delete_from_page_cache(struct page * page,void * radswap)767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769 struct address_space *mapping = page->mapping;
770 int error;
771
772 VM_BUG_ON_PAGE(PageCompound(page), page);
773
774 xa_lock_irq(&mapping->i_pages);
775 error = shmem_replace_entry(mapping, page->index, page, radswap);
776 page->mapping = NULL;
777 mapping->nrpages--;
778 __dec_lruvec_page_state(page, NR_FILE_PAGES);
779 __dec_lruvec_page_state(page, NR_SHMEM);
780 xa_unlock_irq(&mapping->i_pages);
781 put_page(page);
782 BUG_ON(error);
783 }
784
785 /*
786 * Remove swap entry from page cache, free the swap and its page cache.
787 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)788 static int shmem_free_swap(struct address_space *mapping,
789 pgoff_t index, void *radswap)
790 {
791 void *old;
792
793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 if (old != radswap)
795 return -ENOENT;
796 free_swap_and_cache(radix_to_swp_entry(radswap));
797 return 0;
798 }
799
800 /*
801 * Determine (in bytes) how many of the shmem object's pages mapped by the
802 * given offsets are swapped out.
803 *
804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805 * as long as the inode doesn't go away and racy results are not a problem.
806 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 pgoff_t start, pgoff_t end)
809 {
810 XA_STATE(xas, &mapping->i_pages, start);
811 struct page *page;
812 unsigned long swapped = 0;
813
814 rcu_read_lock();
815 xas_for_each(&xas, page, end - 1) {
816 if (xas_retry(&xas, page))
817 continue;
818 if (xa_is_value(page))
819 swapped++;
820
821 if (need_resched()) {
822 xas_pause(&xas);
823 cond_resched_rcu();
824 }
825 }
826
827 rcu_read_unlock();
828
829 return swapped << PAGE_SHIFT;
830 }
831
832 /*
833 * Determine (in bytes) how many of the shmem object's pages mapped by the
834 * given vma is swapped out.
835 *
836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837 * as long as the inode doesn't go away and racy results are not a problem.
838 */
shmem_swap_usage(struct vm_area_struct * vma)839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 struct inode *inode = file_inode(vma->vm_file);
842 struct shmem_inode_info *info = SHMEM_I(inode);
843 struct address_space *mapping = inode->i_mapping;
844 unsigned long swapped;
845
846 /* Be careful as we don't hold info->lock */
847 swapped = READ_ONCE(info->swapped);
848
849 /*
850 * The easier cases are when the shmem object has nothing in swap, or
851 * the vma maps it whole. Then we can simply use the stats that we
852 * already track.
853 */
854 if (!swapped)
855 return 0;
856
857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 return swapped << PAGE_SHIFT;
859
860 /* Here comes the more involved part */
861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 vma->vm_pgoff + vma_pages(vma));
863 }
864
865 /*
866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867 */
shmem_unlock_mapping(struct address_space * mapping)868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 struct pagevec pvec;
871 pgoff_t index = 0;
872
873 pagevec_init(&pvec);
874 /*
875 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 */
877 while (!mapping_unevictable(mapping)) {
878 if (!pagevec_lookup(&pvec, mapping, &index))
879 break;
880 check_move_unevictable_pages(&pvec);
881 pagevec_release(&pvec);
882 cond_resched();
883 }
884 }
885
shmem_get_partial_folio(struct inode * inode,pgoff_t index)886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888 struct folio *folio;
889 struct page *page;
890
891 /*
892 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 * beyond i_size, and reports fallocated pages as holes.
894 */
895 folio = __filemap_get_folio(inode->i_mapping, index,
896 FGP_ENTRY | FGP_LOCK, 0);
897 if (!xa_is_value(folio))
898 return folio;
899 /*
900 * But read a page back from swap if any of it is within i_size
901 * (although in some cases this is just a waste of time).
902 */
903 page = NULL;
904 shmem_getpage(inode, index, &page, SGP_READ);
905 return page ? page_folio(page) : NULL;
906 }
907
908 /*
909 * Remove range of pages and swap entries from page cache, and free them.
910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 bool unfalloc)
914 {
915 struct address_space *mapping = inode->i_mapping;
916 struct shmem_inode_info *info = SHMEM_I(inode);
917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 struct folio_batch fbatch;
920 pgoff_t indices[PAGEVEC_SIZE];
921 struct folio *folio;
922 bool same_folio;
923 long nr_swaps_freed = 0;
924 pgoff_t index;
925 int i;
926
927 if (lend == -1)
928 end = -1; /* unsigned, so actually very big */
929
930 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 info->fallocend = start;
932
933 folio_batch_init(&fbatch);
934 index = start;
935 while (index < end && find_lock_entries(mapping, index, end - 1,
936 &fbatch, indices)) {
937 for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 folio = fbatch.folios[i];
939
940 index = indices[i];
941
942 if (xa_is_value(folio)) {
943 if (unfalloc)
944 continue;
945 nr_swaps_freed += !shmem_free_swap(mapping,
946 index, folio);
947 continue;
948 }
949 index += folio_nr_pages(folio) - 1;
950
951 if (!unfalloc || !folio_test_uptodate(folio))
952 truncate_inode_folio(mapping, folio);
953 folio_unlock(folio);
954 }
955 folio_batch_remove_exceptionals(&fbatch);
956 folio_batch_release(&fbatch);
957 cond_resched();
958 index++;
959 }
960
961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 if (folio) {
964 same_folio = lend < folio_pos(folio) + folio_size(folio);
965 folio_mark_dirty(folio);
966 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 start = folio->index + folio_nr_pages(folio);
968 if (same_folio)
969 end = folio->index;
970 }
971 folio_unlock(folio);
972 folio_put(folio);
973 folio = NULL;
974 }
975
976 if (!same_folio)
977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 if (folio) {
979 folio_mark_dirty(folio);
980 if (!truncate_inode_partial_folio(folio, lstart, lend))
981 end = folio->index;
982 folio_unlock(folio);
983 folio_put(folio);
984 }
985
986 index = start;
987 while (index < end) {
988 cond_resched();
989
990 if (!find_get_entries(mapping, index, end - 1, &fbatch,
991 indices)) {
992 /* If all gone or hole-punch or unfalloc, we're done */
993 if (index == start || end != -1)
994 break;
995 /* But if truncating, restart to make sure all gone */
996 index = start;
997 continue;
998 }
999 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 folio = fbatch.folios[i];
1001
1002 index = indices[i];
1003 if (xa_is_value(folio)) {
1004 if (unfalloc)
1005 continue;
1006 if (shmem_free_swap(mapping, index, folio)) {
1007 /* Swap was replaced by page: retry */
1008 index--;
1009 break;
1010 }
1011 nr_swaps_freed++;
1012 continue;
1013 }
1014
1015 folio_lock(folio);
1016
1017 if (!unfalloc || !folio_test_uptodate(folio)) {
1018 if (folio_mapping(folio) != mapping) {
1019 /* Page was replaced by swap: retry */
1020 folio_unlock(folio);
1021 index--;
1022 break;
1023 }
1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 folio);
1026 truncate_inode_folio(mapping, folio);
1027 }
1028 index = folio->index + folio_nr_pages(folio) - 1;
1029 folio_unlock(folio);
1030 }
1031 folio_batch_remove_exceptionals(&fbatch);
1032 folio_batch_release(&fbatch);
1033 index++;
1034 }
1035
1036 spin_lock_irq(&info->lock);
1037 info->swapped -= nr_swaps_freed;
1038 shmem_recalc_inode(inode);
1039 spin_unlock_irq(&info->lock);
1040 }
1041
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 shmem_undo_range(inode, lstart, lend, false);
1045 inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048
shmem_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 const struct path *path, struct kstat *stat,
1051 u32 request_mask, unsigned int query_flags)
1052 {
1053 struct inode *inode = path->dentry->d_inode;
1054 struct shmem_inode_info *info = SHMEM_I(inode);
1055
1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 spin_lock_irq(&info->lock);
1058 shmem_recalc_inode(inode);
1059 spin_unlock_irq(&info->lock);
1060 }
1061 generic_fillattr(&init_user_ns, inode, stat);
1062
1063 if (shmem_is_huge(NULL, inode, 0))
1064 stat->blksize = HPAGE_PMD_SIZE;
1065
1066 if (request_mask & STATX_BTIME) {
1067 stat->result_mask |= STATX_BTIME;
1068 stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 }
1071
1072 return 0;
1073 }
1074
shmem_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 struct dentry *dentry, struct iattr *attr)
1077 {
1078 struct inode *inode = d_inode(dentry);
1079 struct shmem_inode_info *info = SHMEM_I(inode);
1080 int error;
1081
1082 error = setattr_prepare(&init_user_ns, dentry, attr);
1083 if (error)
1084 return error;
1085
1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 loff_t oldsize = inode->i_size;
1088 loff_t newsize = attr->ia_size;
1089
1090 /* protected by i_rwsem */
1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 return -EPERM;
1094
1095 if (newsize != oldsize) {
1096 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 oldsize, newsize);
1098 if (error)
1099 return error;
1100 i_size_write(inode, newsize);
1101 inode->i_ctime = inode->i_mtime = current_time(inode);
1102 }
1103 if (newsize <= oldsize) {
1104 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105 if (oldsize > holebegin)
1106 unmap_mapping_range(inode->i_mapping,
1107 holebegin, 0, 1);
1108 if (info->alloced)
1109 shmem_truncate_range(inode,
1110 newsize, (loff_t)-1);
1111 /* unmap again to remove racily COWed private pages */
1112 if (oldsize > holebegin)
1113 unmap_mapping_range(inode->i_mapping,
1114 holebegin, 0, 1);
1115 }
1116 }
1117
1118 setattr_copy(&init_user_ns, inode, attr);
1119 if (attr->ia_valid & ATTR_MODE)
1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 return error;
1122 }
1123
shmem_evict_inode(struct inode * inode)1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 struct shmem_inode_info *info = SHMEM_I(inode);
1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129 if (shmem_mapping(inode->i_mapping)) {
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
1132 mapping_set_exiting(inode->i_mapping);
1133 shmem_truncate_range(inode, 0, (loff_t)-1);
1134 if (!list_empty(&info->shrinklist)) {
1135 spin_lock(&sbinfo->shrinklist_lock);
1136 if (!list_empty(&info->shrinklist)) {
1137 list_del_init(&info->shrinklist);
1138 sbinfo->shrinklist_len--;
1139 }
1140 spin_unlock(&sbinfo->shrinklist_lock);
1141 }
1142 while (!list_empty(&info->swaplist)) {
1143 /* Wait while shmem_unuse() is scanning this inode... */
1144 wait_var_event(&info->stop_eviction,
1145 !atomic_read(&info->stop_eviction));
1146 mutex_lock(&shmem_swaplist_mutex);
1147 /* ...but beware of the race if we peeked too early */
1148 if (!atomic_read(&info->stop_eviction))
1149 list_del_init(&info->swaplist);
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 }
1152 }
1153
1154 simple_xattrs_free(&info->xattrs);
1155 WARN_ON(inode->i_blocks);
1156 shmem_free_inode(inode->i_sb);
1157 clear_inode(inode);
1158 }
1159
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161 pgoff_t start, struct folio_batch *fbatch,
1162 pgoff_t *indices, unsigned int type)
1163 {
1164 XA_STATE(xas, &mapping->i_pages, start);
1165 struct folio *folio;
1166 swp_entry_t entry;
1167
1168 rcu_read_lock();
1169 xas_for_each(&xas, folio, ULONG_MAX) {
1170 if (xas_retry(&xas, folio))
1171 continue;
1172
1173 if (!xa_is_value(folio))
1174 continue;
1175
1176 entry = radix_to_swp_entry(folio);
1177 /*
1178 * swapin error entries can be found in the mapping. But they're
1179 * deliberately ignored here as we've done everything we can do.
1180 */
1181 if (swp_type(entry) != type)
1182 continue;
1183
1184 indices[folio_batch_count(fbatch)] = xas.xa_index;
1185 if (!folio_batch_add(fbatch, folio))
1186 break;
1187
1188 if (need_resched()) {
1189 xas_pause(&xas);
1190 cond_resched_rcu();
1191 }
1192 }
1193 rcu_read_unlock();
1194
1195 return xas.xa_index;
1196 }
1197
1198 /*
1199 * Move the swapped pages for an inode to page cache. Returns the count
1200 * of pages swapped in, or the error in case of failure.
1201 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1202 static int shmem_unuse_swap_entries(struct inode *inode,
1203 struct folio_batch *fbatch, pgoff_t *indices)
1204 {
1205 int i = 0;
1206 int ret = 0;
1207 int error = 0;
1208 struct address_space *mapping = inode->i_mapping;
1209
1210 for (i = 0; i < folio_batch_count(fbatch); i++) {
1211 struct folio *folio = fbatch->folios[i];
1212
1213 if (!xa_is_value(folio))
1214 continue;
1215 error = shmem_swapin_folio(inode, indices[i],
1216 &folio, SGP_CACHE,
1217 mapping_gfp_mask(mapping),
1218 NULL, NULL);
1219 if (error == 0) {
1220 folio_unlock(folio);
1221 folio_put(folio);
1222 ret++;
1223 }
1224 if (error == -ENOMEM)
1225 break;
1226 error = 0;
1227 }
1228 return error ? error : ret;
1229 }
1230
1231 /*
1232 * If swap found in inode, free it and move page from swapcache to filecache.
1233 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1234 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1235 {
1236 struct address_space *mapping = inode->i_mapping;
1237 pgoff_t start = 0;
1238 struct folio_batch fbatch;
1239 pgoff_t indices[PAGEVEC_SIZE];
1240 int ret = 0;
1241
1242 do {
1243 folio_batch_init(&fbatch);
1244 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1245 if (folio_batch_count(&fbatch) == 0) {
1246 ret = 0;
1247 break;
1248 }
1249
1250 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1251 if (ret < 0)
1252 break;
1253
1254 start = indices[folio_batch_count(&fbatch) - 1];
1255 } while (true);
1256
1257 return ret;
1258 }
1259
1260 /*
1261 * Read all the shared memory data that resides in the swap
1262 * device 'type' back into memory, so the swap device can be
1263 * unused.
1264 */
shmem_unuse(unsigned int type)1265 int shmem_unuse(unsigned int type)
1266 {
1267 struct shmem_inode_info *info, *next;
1268 int error = 0;
1269
1270 if (list_empty(&shmem_swaplist))
1271 return 0;
1272
1273 mutex_lock(&shmem_swaplist_mutex);
1274 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1275 if (!info->swapped) {
1276 list_del_init(&info->swaplist);
1277 continue;
1278 }
1279 /*
1280 * Drop the swaplist mutex while searching the inode for swap;
1281 * but before doing so, make sure shmem_evict_inode() will not
1282 * remove placeholder inode from swaplist, nor let it be freed
1283 * (igrab() would protect from unlink, but not from unmount).
1284 */
1285 atomic_inc(&info->stop_eviction);
1286 mutex_unlock(&shmem_swaplist_mutex);
1287
1288 error = shmem_unuse_inode(&info->vfs_inode, type);
1289 cond_resched();
1290
1291 mutex_lock(&shmem_swaplist_mutex);
1292 next = list_next_entry(info, swaplist);
1293 if (!info->swapped)
1294 list_del_init(&info->swaplist);
1295 if (atomic_dec_and_test(&info->stop_eviction))
1296 wake_up_var(&info->stop_eviction);
1297 if (error)
1298 break;
1299 }
1300 mutex_unlock(&shmem_swaplist_mutex);
1301
1302 return error;
1303 }
1304
1305 /*
1306 * Move the page from the page cache to the swap cache.
1307 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1308 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1309 {
1310 struct folio *folio = page_folio(page);
1311 struct shmem_inode_info *info;
1312 struct address_space *mapping;
1313 struct inode *inode;
1314 swp_entry_t swap;
1315 pgoff_t index;
1316
1317 /*
1318 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1319 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1320 * and its shmem_writeback() needs them to be split when swapping.
1321 */
1322 if (PageTransCompound(page)) {
1323 /* Ensure the subpages are still dirty */
1324 SetPageDirty(page);
1325 if (split_huge_page(page) < 0)
1326 goto redirty;
1327 ClearPageDirty(page);
1328 }
1329
1330 BUG_ON(!PageLocked(page));
1331 mapping = page->mapping;
1332 index = page->index;
1333 inode = mapping->host;
1334 info = SHMEM_I(inode);
1335 if (info->flags & VM_LOCKED)
1336 goto redirty;
1337 if (!total_swap_pages)
1338 goto redirty;
1339
1340 /*
1341 * Our capabilities prevent regular writeback or sync from ever calling
1342 * shmem_writepage; but a stacking filesystem might use ->writepage of
1343 * its underlying filesystem, in which case tmpfs should write out to
1344 * swap only in response to memory pressure, and not for the writeback
1345 * threads or sync.
1346 */
1347 if (!wbc->for_reclaim) {
1348 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1349 goto redirty;
1350 }
1351
1352 /*
1353 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1354 * value into swapfile.c, the only way we can correctly account for a
1355 * fallocated page arriving here is now to initialize it and write it.
1356 *
1357 * That's okay for a page already fallocated earlier, but if we have
1358 * not yet completed the fallocation, then (a) we want to keep track
1359 * of this page in case we have to undo it, and (b) it may not be a
1360 * good idea to continue anyway, once we're pushing into swap. So
1361 * reactivate the page, and let shmem_fallocate() quit when too many.
1362 */
1363 if (!PageUptodate(page)) {
1364 if (inode->i_private) {
1365 struct shmem_falloc *shmem_falloc;
1366 spin_lock(&inode->i_lock);
1367 shmem_falloc = inode->i_private;
1368 if (shmem_falloc &&
1369 !shmem_falloc->waitq &&
1370 index >= shmem_falloc->start &&
1371 index < shmem_falloc->next)
1372 shmem_falloc->nr_unswapped++;
1373 else
1374 shmem_falloc = NULL;
1375 spin_unlock(&inode->i_lock);
1376 if (shmem_falloc)
1377 goto redirty;
1378 }
1379 clear_highpage(page);
1380 flush_dcache_page(page);
1381 SetPageUptodate(page);
1382 }
1383
1384 swap = folio_alloc_swap(folio);
1385 if (!swap.val)
1386 goto redirty;
1387
1388 /*
1389 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1390 * if it's not already there. Do it now before the page is
1391 * moved to swap cache, when its pagelock no longer protects
1392 * the inode from eviction. But don't unlock the mutex until
1393 * we've incremented swapped, because shmem_unuse_inode() will
1394 * prune a !swapped inode from the swaplist under this mutex.
1395 */
1396 mutex_lock(&shmem_swaplist_mutex);
1397 if (list_empty(&info->swaplist))
1398 list_add(&info->swaplist, &shmem_swaplist);
1399
1400 if (add_to_swap_cache(page, swap,
1401 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1402 NULL) == 0) {
1403 spin_lock_irq(&info->lock);
1404 shmem_recalc_inode(inode);
1405 info->swapped++;
1406 spin_unlock_irq(&info->lock);
1407
1408 swap_shmem_alloc(swap);
1409 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1410
1411 mutex_unlock(&shmem_swaplist_mutex);
1412 BUG_ON(page_mapped(page));
1413 swap_writepage(page, wbc);
1414 return 0;
1415 }
1416
1417 mutex_unlock(&shmem_swaplist_mutex);
1418 put_swap_page(page, swap);
1419 redirty:
1420 set_page_dirty(page);
1421 if (wbc->for_reclaim)
1422 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1423 unlock_page(page);
1424 return 0;
1425 }
1426
1427 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1428 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1429 {
1430 char buffer[64];
1431
1432 if (!mpol || mpol->mode == MPOL_DEFAULT)
1433 return; /* show nothing */
1434
1435 mpol_to_str(buffer, sizeof(buffer), mpol);
1436
1437 seq_printf(seq, ",mpol=%s", buffer);
1438 }
1439
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1440 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1441 {
1442 struct mempolicy *mpol = NULL;
1443 if (sbinfo->mpol) {
1444 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1445 mpol = sbinfo->mpol;
1446 mpol_get(mpol);
1447 raw_spin_unlock(&sbinfo->stat_lock);
1448 }
1449 return mpol;
1450 }
1451 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1452 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1453 {
1454 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1455 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1456 {
1457 return NULL;
1458 }
1459 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1460 #ifndef CONFIG_NUMA
1461 #define vm_policy vm_private_data
1462 #endif
1463
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1464 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1465 struct shmem_inode_info *info, pgoff_t index)
1466 {
1467 /* Create a pseudo vma that just contains the policy */
1468 vma_init(vma, NULL);
1469 /* Bias interleave by inode number to distribute better across nodes */
1470 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1471 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1472 }
1473
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1474 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1475 {
1476 /* Drop reference taken by mpol_shared_policy_lookup() */
1477 mpol_cond_put(vma->vm_policy);
1478 }
1479
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1480 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1481 struct shmem_inode_info *info, pgoff_t index)
1482 {
1483 struct vm_area_struct pvma;
1484 struct page *page;
1485 struct vm_fault vmf = {
1486 .vma = &pvma,
1487 };
1488
1489 shmem_pseudo_vma_init(&pvma, info, index);
1490 page = swap_cluster_readahead(swap, gfp, &vmf);
1491 shmem_pseudo_vma_destroy(&pvma);
1492
1493 return page;
1494 }
1495
1496 /*
1497 * Make sure huge_gfp is always more limited than limit_gfp.
1498 * Some of the flags set permissions, while others set limitations.
1499 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1500 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1501 {
1502 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1503 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1504 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1505 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1506
1507 /* Allow allocations only from the originally specified zones. */
1508 result |= zoneflags;
1509
1510 /*
1511 * Minimize the result gfp by taking the union with the deny flags,
1512 * and the intersection of the allow flags.
1513 */
1514 result |= (limit_gfp & denyflags);
1515 result |= (huge_gfp & limit_gfp) & allowflags;
1516
1517 return result;
1518 }
1519
shmem_alloc_hugefolio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1520 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1521 struct shmem_inode_info *info, pgoff_t index)
1522 {
1523 struct vm_area_struct pvma;
1524 struct address_space *mapping = info->vfs_inode.i_mapping;
1525 pgoff_t hindex;
1526 struct folio *folio;
1527
1528 hindex = round_down(index, HPAGE_PMD_NR);
1529 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1530 XA_PRESENT))
1531 return NULL;
1532
1533 shmem_pseudo_vma_init(&pvma, info, hindex);
1534 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1535 shmem_pseudo_vma_destroy(&pvma);
1536 if (!folio)
1537 count_vm_event(THP_FILE_FALLBACK);
1538 return folio;
1539 }
1540
shmem_alloc_folio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1541 static struct folio *shmem_alloc_folio(gfp_t gfp,
1542 struct shmem_inode_info *info, pgoff_t index)
1543 {
1544 struct vm_area_struct pvma;
1545 struct folio *folio;
1546
1547 shmem_pseudo_vma_init(&pvma, info, index);
1548 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1549 shmem_pseudo_vma_destroy(&pvma);
1550
1551 return folio;
1552 }
1553
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1554 static struct page *shmem_alloc_page(gfp_t gfp,
1555 struct shmem_inode_info *info, pgoff_t index)
1556 {
1557 return &shmem_alloc_folio(gfp, info, index)->page;
1558 }
1559
shmem_alloc_and_acct_folio(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1560 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1561 pgoff_t index, bool huge)
1562 {
1563 struct shmem_inode_info *info = SHMEM_I(inode);
1564 struct folio *folio;
1565 int nr;
1566 int err = -ENOSPC;
1567
1568 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1569 huge = false;
1570 nr = huge ? HPAGE_PMD_NR : 1;
1571
1572 if (!shmem_inode_acct_block(inode, nr))
1573 goto failed;
1574
1575 if (huge)
1576 folio = shmem_alloc_hugefolio(gfp, info, index);
1577 else
1578 folio = shmem_alloc_folio(gfp, info, index);
1579 if (folio) {
1580 __folio_set_locked(folio);
1581 __folio_set_swapbacked(folio);
1582 return folio;
1583 }
1584
1585 err = -ENOMEM;
1586 shmem_inode_unacct_blocks(inode, nr);
1587 failed:
1588 return ERR_PTR(err);
1589 }
1590
1591 /*
1592 * When a page is moved from swapcache to shmem filecache (either by the
1593 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1594 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1595 * ignorance of the mapping it belongs to. If that mapping has special
1596 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1597 * we may need to copy to a suitable page before moving to filecache.
1598 *
1599 * In a future release, this may well be extended to respect cpuset and
1600 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1601 * but for now it is a simple matter of zone.
1602 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1603 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1604 {
1605 return folio_zonenum(folio) > gfp_zone(gfp);
1606 }
1607
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1608 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1609 struct shmem_inode_info *info, pgoff_t index)
1610 {
1611 struct page *oldpage, *newpage;
1612 struct folio *old, *new;
1613 struct address_space *swap_mapping;
1614 swp_entry_t entry;
1615 pgoff_t swap_index;
1616 int error;
1617
1618 oldpage = *pagep;
1619 entry.val = page_private(oldpage);
1620 swap_index = swp_offset(entry);
1621 swap_mapping = page_mapping(oldpage);
1622
1623 /*
1624 * We have arrived here because our zones are constrained, so don't
1625 * limit chance of success by further cpuset and node constraints.
1626 */
1627 gfp &= ~GFP_CONSTRAINT_MASK;
1628 newpage = shmem_alloc_page(gfp, info, index);
1629 if (!newpage)
1630 return -ENOMEM;
1631
1632 get_page(newpage);
1633 copy_highpage(newpage, oldpage);
1634 flush_dcache_page(newpage);
1635
1636 __SetPageLocked(newpage);
1637 __SetPageSwapBacked(newpage);
1638 SetPageUptodate(newpage);
1639 set_page_private(newpage, entry.val);
1640 SetPageSwapCache(newpage);
1641
1642 /*
1643 * Our caller will very soon move newpage out of swapcache, but it's
1644 * a nice clean interface for us to replace oldpage by newpage there.
1645 */
1646 xa_lock_irq(&swap_mapping->i_pages);
1647 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1648 if (!error) {
1649 old = page_folio(oldpage);
1650 new = page_folio(newpage);
1651 mem_cgroup_migrate(old, new);
1652 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1653 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1654 }
1655 xa_unlock_irq(&swap_mapping->i_pages);
1656
1657 if (unlikely(error)) {
1658 /*
1659 * Is this possible? I think not, now that our callers check
1660 * both PageSwapCache and page_private after getting page lock;
1661 * but be defensive. Reverse old to newpage for clear and free.
1662 */
1663 oldpage = newpage;
1664 } else {
1665 lru_cache_add(newpage);
1666 *pagep = newpage;
1667 }
1668
1669 ClearPageSwapCache(oldpage);
1670 set_page_private(oldpage, 0);
1671
1672 unlock_page(oldpage);
1673 put_page(oldpage);
1674 put_page(oldpage);
1675 return error;
1676 }
1677
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1678 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1679 struct folio *folio, swp_entry_t swap)
1680 {
1681 struct address_space *mapping = inode->i_mapping;
1682 struct shmem_inode_info *info = SHMEM_I(inode);
1683 swp_entry_t swapin_error;
1684 void *old;
1685
1686 swapin_error = make_swapin_error_entry(&folio->page);
1687 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1688 swp_to_radix_entry(swap),
1689 swp_to_radix_entry(swapin_error), 0);
1690 if (old != swp_to_radix_entry(swap))
1691 return;
1692
1693 folio_wait_writeback(folio);
1694 delete_from_swap_cache(&folio->page);
1695 spin_lock_irq(&info->lock);
1696 /*
1697 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1698 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1699 * shmem_evict_inode.
1700 */
1701 info->alloced--;
1702 info->swapped--;
1703 shmem_recalc_inode(inode);
1704 spin_unlock_irq(&info->lock);
1705 swap_free(swap);
1706 }
1707
1708 /*
1709 * Swap in the page pointed to by *pagep.
1710 * Caller has to make sure that *pagep contains a valid swapped page.
1711 * Returns 0 and the page in pagep if success. On failure, returns the
1712 * error code and NULL in *pagep.
1713 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1714 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1715 struct folio **foliop, enum sgp_type sgp,
1716 gfp_t gfp, struct vm_area_struct *vma,
1717 vm_fault_t *fault_type)
1718 {
1719 struct address_space *mapping = inode->i_mapping;
1720 struct shmem_inode_info *info = SHMEM_I(inode);
1721 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1722 struct page *page;
1723 struct folio *folio = NULL;
1724 swp_entry_t swap;
1725 int error;
1726
1727 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1728 swap = radix_to_swp_entry(*foliop);
1729 *foliop = NULL;
1730
1731 if (is_swapin_error_entry(swap))
1732 return -EIO;
1733
1734 /* Look it up and read it in.. */
1735 page = lookup_swap_cache(swap, NULL, 0);
1736 if (!page) {
1737 /* Or update major stats only when swapin succeeds?? */
1738 if (fault_type) {
1739 *fault_type |= VM_FAULT_MAJOR;
1740 count_vm_event(PGMAJFAULT);
1741 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1742 }
1743 /* Here we actually start the io */
1744 page = shmem_swapin(swap, gfp, info, index);
1745 if (!page) {
1746 error = -ENOMEM;
1747 goto failed;
1748 }
1749 }
1750 folio = page_folio(page);
1751
1752 /* We have to do this with page locked to prevent races */
1753 folio_lock(folio);
1754 if (!folio_test_swapcache(folio) ||
1755 folio_swap_entry(folio).val != swap.val ||
1756 !shmem_confirm_swap(mapping, index, swap)) {
1757 error = -EEXIST;
1758 goto unlock;
1759 }
1760 if (!folio_test_uptodate(folio)) {
1761 error = -EIO;
1762 goto failed;
1763 }
1764 folio_wait_writeback(folio);
1765
1766 /*
1767 * Some architectures may have to restore extra metadata to the
1768 * folio after reading from swap.
1769 */
1770 arch_swap_restore(swap, folio);
1771
1772 if (shmem_should_replace_folio(folio, gfp)) {
1773 error = shmem_replace_page(&page, gfp, info, index);
1774 folio = page_folio(page);
1775 if (error)
1776 goto failed;
1777 }
1778
1779 error = shmem_add_to_page_cache(folio, mapping, index,
1780 swp_to_radix_entry(swap), gfp,
1781 charge_mm);
1782 if (error)
1783 goto failed;
1784
1785 spin_lock_irq(&info->lock);
1786 info->swapped--;
1787 shmem_recalc_inode(inode);
1788 spin_unlock_irq(&info->lock);
1789
1790 if (sgp == SGP_WRITE)
1791 folio_mark_accessed(folio);
1792
1793 delete_from_swap_cache(&folio->page);
1794 folio_mark_dirty(folio);
1795 swap_free(swap);
1796
1797 *foliop = folio;
1798 return 0;
1799 failed:
1800 if (!shmem_confirm_swap(mapping, index, swap))
1801 error = -EEXIST;
1802 if (error == -EIO)
1803 shmem_set_folio_swapin_error(inode, index, folio, swap);
1804 unlock:
1805 if (folio) {
1806 folio_unlock(folio);
1807 folio_put(folio);
1808 }
1809
1810 return error;
1811 }
1812
1813 /*
1814 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1815 *
1816 * If we allocate a new one we do not mark it dirty. That's up to the
1817 * vm. If we swap it in we mark it dirty since we also free the swap
1818 * entry since a page cannot live in both the swap and page cache.
1819 *
1820 * vma, vmf, and fault_type are only supplied by shmem_fault:
1821 * otherwise they are NULL.
1822 */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1823 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1824 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1825 struct vm_area_struct *vma, struct vm_fault *vmf,
1826 vm_fault_t *fault_type)
1827 {
1828 struct address_space *mapping = inode->i_mapping;
1829 struct shmem_inode_info *info = SHMEM_I(inode);
1830 struct shmem_sb_info *sbinfo;
1831 struct mm_struct *charge_mm;
1832 struct folio *folio;
1833 pgoff_t hindex = index;
1834 gfp_t huge_gfp;
1835 int error;
1836 int once = 0;
1837 int alloced = 0;
1838
1839 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1840 return -EFBIG;
1841 repeat:
1842 if (sgp <= SGP_CACHE &&
1843 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1844 return -EINVAL;
1845 }
1846
1847 sbinfo = SHMEM_SB(inode->i_sb);
1848 charge_mm = vma ? vma->vm_mm : NULL;
1849
1850 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1851 if (folio && vma && userfaultfd_minor(vma)) {
1852 if (!xa_is_value(folio)) {
1853 folio_unlock(folio);
1854 folio_put(folio);
1855 }
1856 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1857 return 0;
1858 }
1859
1860 if (xa_is_value(folio)) {
1861 error = shmem_swapin_folio(inode, index, &folio,
1862 sgp, gfp, vma, fault_type);
1863 if (error == -EEXIST)
1864 goto repeat;
1865
1866 *pagep = &folio->page;
1867 return error;
1868 }
1869
1870 if (folio) {
1871 hindex = folio->index;
1872 if (sgp == SGP_WRITE)
1873 folio_mark_accessed(folio);
1874 if (folio_test_uptodate(folio))
1875 goto out;
1876 /* fallocated page */
1877 if (sgp != SGP_READ)
1878 goto clear;
1879 folio_unlock(folio);
1880 folio_put(folio);
1881 }
1882
1883 /*
1884 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1885 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1886 */
1887 *pagep = NULL;
1888 if (sgp == SGP_READ)
1889 return 0;
1890 if (sgp == SGP_NOALLOC)
1891 return -ENOENT;
1892
1893 /*
1894 * Fast cache lookup and swap lookup did not find it: allocate.
1895 */
1896
1897 if (vma && userfaultfd_missing(vma)) {
1898 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1899 return 0;
1900 }
1901
1902 if (!shmem_is_huge(vma, inode, index))
1903 goto alloc_nohuge;
1904
1905 huge_gfp = vma_thp_gfp_mask(vma);
1906 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1907 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1908 if (IS_ERR(folio)) {
1909 alloc_nohuge:
1910 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1911 }
1912 if (IS_ERR(folio)) {
1913 int retry = 5;
1914
1915 error = PTR_ERR(folio);
1916 folio = NULL;
1917 if (error != -ENOSPC)
1918 goto unlock;
1919 /*
1920 * Try to reclaim some space by splitting a huge page
1921 * beyond i_size on the filesystem.
1922 */
1923 while (retry--) {
1924 int ret;
1925
1926 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1927 if (ret == SHRINK_STOP)
1928 break;
1929 if (ret)
1930 goto alloc_nohuge;
1931 }
1932 goto unlock;
1933 }
1934
1935 hindex = round_down(index, folio_nr_pages(folio));
1936
1937 if (sgp == SGP_WRITE)
1938 __folio_set_referenced(folio);
1939
1940 error = shmem_add_to_page_cache(folio, mapping, hindex,
1941 NULL, gfp & GFP_RECLAIM_MASK,
1942 charge_mm);
1943 if (error)
1944 goto unacct;
1945 folio_add_lru(folio);
1946
1947 spin_lock_irq(&info->lock);
1948 info->alloced += folio_nr_pages(folio);
1949 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1950 shmem_recalc_inode(inode);
1951 spin_unlock_irq(&info->lock);
1952 alloced = true;
1953
1954 if (folio_test_pmd_mappable(folio) &&
1955 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1956 hindex + HPAGE_PMD_NR - 1) {
1957 /*
1958 * Part of the huge page is beyond i_size: subject
1959 * to shrink under memory pressure.
1960 */
1961 spin_lock(&sbinfo->shrinklist_lock);
1962 /*
1963 * _careful to defend against unlocked access to
1964 * ->shrink_list in shmem_unused_huge_shrink()
1965 */
1966 if (list_empty_careful(&info->shrinklist)) {
1967 list_add_tail(&info->shrinklist,
1968 &sbinfo->shrinklist);
1969 sbinfo->shrinklist_len++;
1970 }
1971 spin_unlock(&sbinfo->shrinklist_lock);
1972 }
1973
1974 /*
1975 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976 */
1977 if (sgp == SGP_FALLOC)
1978 sgp = SGP_WRITE;
1979 clear:
1980 /*
1981 * Let SGP_WRITE caller clear ends if write does not fill page;
1982 * but SGP_FALLOC on a page fallocated earlier must initialize
1983 * it now, lest undo on failure cancel our earlier guarantee.
1984 */
1985 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1986 long i, n = folio_nr_pages(folio);
1987
1988 for (i = 0; i < n; i++)
1989 clear_highpage(folio_page(folio, i));
1990 flush_dcache_folio(folio);
1991 folio_mark_uptodate(folio);
1992 }
1993
1994 /* Perhaps the file has been truncated since we checked */
1995 if (sgp <= SGP_CACHE &&
1996 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1997 if (alloced) {
1998 folio_clear_dirty(folio);
1999 filemap_remove_folio(folio);
2000 spin_lock_irq(&info->lock);
2001 shmem_recalc_inode(inode);
2002 spin_unlock_irq(&info->lock);
2003 }
2004 error = -EINVAL;
2005 goto unlock;
2006 }
2007 out:
2008 *pagep = folio_page(folio, index - hindex);
2009 return 0;
2010
2011 /*
2012 * Error recovery.
2013 */
2014 unacct:
2015 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2016
2017 if (folio_test_large(folio)) {
2018 folio_unlock(folio);
2019 folio_put(folio);
2020 goto alloc_nohuge;
2021 }
2022 unlock:
2023 if (folio) {
2024 folio_unlock(folio);
2025 folio_put(folio);
2026 }
2027 if (error == -ENOSPC && !once++) {
2028 spin_lock_irq(&info->lock);
2029 shmem_recalc_inode(inode);
2030 spin_unlock_irq(&info->lock);
2031 goto repeat;
2032 }
2033 if (error == -EEXIST)
2034 goto repeat;
2035 return error;
2036 }
2037
2038 /*
2039 * This is like autoremove_wake_function, but it removes the wait queue
2040 * entry unconditionally - even if something else had already woken the
2041 * target.
2042 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2043 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2044 {
2045 int ret = default_wake_function(wait, mode, sync, key);
2046 list_del_init(&wait->entry);
2047 return ret;
2048 }
2049
shmem_fault(struct vm_fault * vmf)2050 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2051 {
2052 struct vm_area_struct *vma = vmf->vma;
2053 struct inode *inode = file_inode(vma->vm_file);
2054 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2055 int err;
2056 vm_fault_t ret = VM_FAULT_LOCKED;
2057
2058 /*
2059 * Trinity finds that probing a hole which tmpfs is punching can
2060 * prevent the hole-punch from ever completing: which in turn
2061 * locks writers out with its hold on i_rwsem. So refrain from
2062 * faulting pages into the hole while it's being punched. Although
2063 * shmem_undo_range() does remove the additions, it may be unable to
2064 * keep up, as each new page needs its own unmap_mapping_range() call,
2065 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2066 *
2067 * It does not matter if we sometimes reach this check just before the
2068 * hole-punch begins, so that one fault then races with the punch:
2069 * we just need to make racing faults a rare case.
2070 *
2071 * The implementation below would be much simpler if we just used a
2072 * standard mutex or completion: but we cannot take i_rwsem in fault,
2073 * and bloating every shmem inode for this unlikely case would be sad.
2074 */
2075 if (unlikely(inode->i_private)) {
2076 struct shmem_falloc *shmem_falloc;
2077
2078 spin_lock(&inode->i_lock);
2079 shmem_falloc = inode->i_private;
2080 if (shmem_falloc &&
2081 shmem_falloc->waitq &&
2082 vmf->pgoff >= shmem_falloc->start &&
2083 vmf->pgoff < shmem_falloc->next) {
2084 struct file *fpin;
2085 wait_queue_head_t *shmem_falloc_waitq;
2086 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2087
2088 ret = VM_FAULT_NOPAGE;
2089 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2090 if (fpin)
2091 ret = VM_FAULT_RETRY;
2092
2093 shmem_falloc_waitq = shmem_falloc->waitq;
2094 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2095 TASK_UNINTERRUPTIBLE);
2096 spin_unlock(&inode->i_lock);
2097 schedule();
2098
2099 /*
2100 * shmem_falloc_waitq points into the shmem_fallocate()
2101 * stack of the hole-punching task: shmem_falloc_waitq
2102 * is usually invalid by the time we reach here, but
2103 * finish_wait() does not dereference it in that case;
2104 * though i_lock needed lest racing with wake_up_all().
2105 */
2106 spin_lock(&inode->i_lock);
2107 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2108 spin_unlock(&inode->i_lock);
2109
2110 if (fpin)
2111 fput(fpin);
2112 return ret;
2113 }
2114 spin_unlock(&inode->i_lock);
2115 }
2116
2117 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2118 gfp, vma, vmf, &ret);
2119 if (err)
2120 return vmf_error(err);
2121 return ret;
2122 }
2123
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2124 unsigned long shmem_get_unmapped_area(struct file *file,
2125 unsigned long uaddr, unsigned long len,
2126 unsigned long pgoff, unsigned long flags)
2127 {
2128 unsigned long (*get_area)(struct file *,
2129 unsigned long, unsigned long, unsigned long, unsigned long);
2130 unsigned long addr;
2131 unsigned long offset;
2132 unsigned long inflated_len;
2133 unsigned long inflated_addr;
2134 unsigned long inflated_offset;
2135
2136 if (len > TASK_SIZE)
2137 return -ENOMEM;
2138
2139 get_area = current->mm->get_unmapped_area;
2140 addr = get_area(file, uaddr, len, pgoff, flags);
2141
2142 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2143 return addr;
2144 if (IS_ERR_VALUE(addr))
2145 return addr;
2146 if (addr & ~PAGE_MASK)
2147 return addr;
2148 if (addr > TASK_SIZE - len)
2149 return addr;
2150
2151 if (shmem_huge == SHMEM_HUGE_DENY)
2152 return addr;
2153 if (len < HPAGE_PMD_SIZE)
2154 return addr;
2155 if (flags & MAP_FIXED)
2156 return addr;
2157 /*
2158 * Our priority is to support MAP_SHARED mapped hugely;
2159 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2160 * But if caller specified an address hint and we allocated area there
2161 * successfully, respect that as before.
2162 */
2163 if (uaddr == addr)
2164 return addr;
2165
2166 if (shmem_huge != SHMEM_HUGE_FORCE) {
2167 struct super_block *sb;
2168
2169 if (file) {
2170 VM_BUG_ON(file->f_op != &shmem_file_operations);
2171 sb = file_inode(file)->i_sb;
2172 } else {
2173 /*
2174 * Called directly from mm/mmap.c, or drivers/char/mem.c
2175 * for "/dev/zero", to create a shared anonymous object.
2176 */
2177 if (IS_ERR(shm_mnt))
2178 return addr;
2179 sb = shm_mnt->mnt_sb;
2180 }
2181 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2182 return addr;
2183 }
2184
2185 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2186 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2187 return addr;
2188 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2189 return addr;
2190
2191 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2192 if (inflated_len > TASK_SIZE)
2193 return addr;
2194 if (inflated_len < len)
2195 return addr;
2196
2197 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2198 if (IS_ERR_VALUE(inflated_addr))
2199 return addr;
2200 if (inflated_addr & ~PAGE_MASK)
2201 return addr;
2202
2203 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2204 inflated_addr += offset - inflated_offset;
2205 if (inflated_offset > offset)
2206 inflated_addr += HPAGE_PMD_SIZE;
2207
2208 if (inflated_addr > TASK_SIZE - len)
2209 return addr;
2210 return inflated_addr;
2211 }
2212
2213 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2214 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2215 {
2216 struct inode *inode = file_inode(vma->vm_file);
2217 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2218 }
2219
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2220 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2221 unsigned long addr)
2222 {
2223 struct inode *inode = file_inode(vma->vm_file);
2224 pgoff_t index;
2225
2226 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2227 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2228 }
2229 #endif
2230
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2231 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2232 {
2233 struct inode *inode = file_inode(file);
2234 struct shmem_inode_info *info = SHMEM_I(inode);
2235 int retval = -ENOMEM;
2236
2237 /*
2238 * What serializes the accesses to info->flags?
2239 * ipc_lock_object() when called from shmctl_do_lock(),
2240 * no serialization needed when called from shm_destroy().
2241 */
2242 if (lock && !(info->flags & VM_LOCKED)) {
2243 if (!user_shm_lock(inode->i_size, ucounts))
2244 goto out_nomem;
2245 info->flags |= VM_LOCKED;
2246 mapping_set_unevictable(file->f_mapping);
2247 }
2248 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2249 user_shm_unlock(inode->i_size, ucounts);
2250 info->flags &= ~VM_LOCKED;
2251 mapping_clear_unevictable(file->f_mapping);
2252 }
2253 retval = 0;
2254
2255 out_nomem:
2256 return retval;
2257 }
2258
shmem_mmap(struct file * file,struct vm_area_struct * vma)2259 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2260 {
2261 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2262 int ret;
2263
2264 ret = seal_check_future_write(info->seals, vma);
2265 if (ret)
2266 return ret;
2267
2268 /* arm64 - allow memory tagging on RAM-based files */
2269 vma->vm_flags |= VM_MTE_ALLOWED;
2270
2271 file_accessed(file);
2272 vma->vm_ops = &shmem_vm_ops;
2273 return 0;
2274 }
2275
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2276 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2277 umode_t mode, dev_t dev, unsigned long flags)
2278 {
2279 struct inode *inode;
2280 struct shmem_inode_info *info;
2281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2282 ino_t ino;
2283
2284 if (shmem_reserve_inode(sb, &ino))
2285 return NULL;
2286
2287 inode = new_inode(sb);
2288 if (inode) {
2289 inode->i_ino = ino;
2290 inode_init_owner(&init_user_ns, inode, dir, mode);
2291 inode->i_blocks = 0;
2292 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2293 inode->i_generation = prandom_u32();
2294 info = SHMEM_I(inode);
2295 memset(info, 0, (char *)inode - (char *)info);
2296 spin_lock_init(&info->lock);
2297 atomic_set(&info->stop_eviction, 0);
2298 info->seals = F_SEAL_SEAL;
2299 info->flags = flags & VM_NORESERVE;
2300 info->i_crtime = inode->i_mtime;
2301 INIT_LIST_HEAD(&info->shrinklist);
2302 INIT_LIST_HEAD(&info->swaplist);
2303 simple_xattrs_init(&info->xattrs);
2304 cache_no_acl(inode);
2305 mapping_set_large_folios(inode->i_mapping);
2306
2307 switch (mode & S_IFMT) {
2308 default:
2309 inode->i_op = &shmem_special_inode_operations;
2310 init_special_inode(inode, mode, dev);
2311 break;
2312 case S_IFREG:
2313 inode->i_mapping->a_ops = &shmem_aops;
2314 inode->i_op = &shmem_inode_operations;
2315 inode->i_fop = &shmem_file_operations;
2316 mpol_shared_policy_init(&info->policy,
2317 shmem_get_sbmpol(sbinfo));
2318 break;
2319 case S_IFDIR:
2320 inc_nlink(inode);
2321 /* Some things misbehave if size == 0 on a directory */
2322 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2323 inode->i_op = &shmem_dir_inode_operations;
2324 inode->i_fop = &simple_dir_operations;
2325 break;
2326 case S_IFLNK:
2327 /*
2328 * Must not load anything in the rbtree,
2329 * mpol_free_shared_policy will not be called.
2330 */
2331 mpol_shared_policy_init(&info->policy, NULL);
2332 break;
2333 }
2334
2335 lockdep_annotate_inode_mutex_key(inode);
2336 } else
2337 shmem_free_inode(sb);
2338 return inode;
2339 }
2340
2341 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,bool wp_copy,struct page ** pagep)2342 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2343 pmd_t *dst_pmd,
2344 struct vm_area_struct *dst_vma,
2345 unsigned long dst_addr,
2346 unsigned long src_addr,
2347 bool zeropage, bool wp_copy,
2348 struct page **pagep)
2349 {
2350 struct inode *inode = file_inode(dst_vma->vm_file);
2351 struct shmem_inode_info *info = SHMEM_I(inode);
2352 struct address_space *mapping = inode->i_mapping;
2353 gfp_t gfp = mapping_gfp_mask(mapping);
2354 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2355 void *page_kaddr;
2356 struct folio *folio;
2357 struct page *page;
2358 int ret;
2359 pgoff_t max_off;
2360
2361 if (!shmem_inode_acct_block(inode, 1)) {
2362 /*
2363 * We may have got a page, returned -ENOENT triggering a retry,
2364 * and now we find ourselves with -ENOMEM. Release the page, to
2365 * avoid a BUG_ON in our caller.
2366 */
2367 if (unlikely(*pagep)) {
2368 put_page(*pagep);
2369 *pagep = NULL;
2370 }
2371 return -ENOMEM;
2372 }
2373
2374 if (!*pagep) {
2375 ret = -ENOMEM;
2376 page = shmem_alloc_page(gfp, info, pgoff);
2377 if (!page)
2378 goto out_unacct_blocks;
2379
2380 if (!zeropage) { /* COPY */
2381 page_kaddr = kmap_atomic(page);
2382 ret = copy_from_user(page_kaddr,
2383 (const void __user *)src_addr,
2384 PAGE_SIZE);
2385 kunmap_atomic(page_kaddr);
2386
2387 /* fallback to copy_from_user outside mmap_lock */
2388 if (unlikely(ret)) {
2389 *pagep = page;
2390 ret = -ENOENT;
2391 /* don't free the page */
2392 goto out_unacct_blocks;
2393 }
2394
2395 flush_dcache_page(page);
2396 } else { /* ZEROPAGE */
2397 clear_user_highpage(page, dst_addr);
2398 }
2399 } else {
2400 page = *pagep;
2401 *pagep = NULL;
2402 }
2403
2404 VM_BUG_ON(PageLocked(page));
2405 VM_BUG_ON(PageSwapBacked(page));
2406 __SetPageLocked(page);
2407 __SetPageSwapBacked(page);
2408 __SetPageUptodate(page);
2409
2410 ret = -EFAULT;
2411 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2412 if (unlikely(pgoff >= max_off))
2413 goto out_release;
2414
2415 folio = page_folio(page);
2416 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2417 gfp & GFP_RECLAIM_MASK, dst_mm);
2418 if (ret)
2419 goto out_release;
2420
2421 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2422 page, true, wp_copy);
2423 if (ret)
2424 goto out_delete_from_cache;
2425
2426 spin_lock_irq(&info->lock);
2427 info->alloced++;
2428 inode->i_blocks += BLOCKS_PER_PAGE;
2429 shmem_recalc_inode(inode);
2430 spin_unlock_irq(&info->lock);
2431
2432 unlock_page(page);
2433 return 0;
2434 out_delete_from_cache:
2435 delete_from_page_cache(page);
2436 out_release:
2437 unlock_page(page);
2438 put_page(page);
2439 out_unacct_blocks:
2440 shmem_inode_unacct_blocks(inode, 1);
2441 return ret;
2442 }
2443 #endif /* CONFIG_USERFAULTFD */
2444
2445 #ifdef CONFIG_TMPFS
2446 static const struct inode_operations shmem_symlink_inode_operations;
2447 static const struct inode_operations shmem_short_symlink_operations;
2448
2449 #ifdef CONFIG_TMPFS_XATTR
2450 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2451 #else
2452 #define shmem_initxattrs NULL
2453 #endif
2454
2455 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2456 shmem_write_begin(struct file *file, struct address_space *mapping,
2457 loff_t pos, unsigned len,
2458 struct page **pagep, void **fsdata)
2459 {
2460 struct inode *inode = mapping->host;
2461 struct shmem_inode_info *info = SHMEM_I(inode);
2462 pgoff_t index = pos >> PAGE_SHIFT;
2463 int ret = 0;
2464
2465 /* i_rwsem is held by caller */
2466 if (unlikely(info->seals & (F_SEAL_GROW |
2467 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2468 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2469 return -EPERM;
2470 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2471 return -EPERM;
2472 }
2473
2474 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2475
2476 if (ret)
2477 return ret;
2478
2479 if (PageHWPoison(*pagep)) {
2480 unlock_page(*pagep);
2481 put_page(*pagep);
2482 *pagep = NULL;
2483 return -EIO;
2484 }
2485
2486 return 0;
2487 }
2488
2489 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2490 shmem_write_end(struct file *file, struct address_space *mapping,
2491 loff_t pos, unsigned len, unsigned copied,
2492 struct page *page, void *fsdata)
2493 {
2494 struct inode *inode = mapping->host;
2495
2496 if (pos + copied > inode->i_size)
2497 i_size_write(inode, pos + copied);
2498
2499 if (!PageUptodate(page)) {
2500 struct page *head = compound_head(page);
2501 if (PageTransCompound(page)) {
2502 int i;
2503
2504 for (i = 0; i < HPAGE_PMD_NR; i++) {
2505 if (head + i == page)
2506 continue;
2507 clear_highpage(head + i);
2508 flush_dcache_page(head + i);
2509 }
2510 }
2511 if (copied < PAGE_SIZE) {
2512 unsigned from = pos & (PAGE_SIZE - 1);
2513 zero_user_segments(page, 0, from,
2514 from + copied, PAGE_SIZE);
2515 }
2516 SetPageUptodate(head);
2517 }
2518 set_page_dirty(page);
2519 unlock_page(page);
2520 put_page(page);
2521
2522 return copied;
2523 }
2524
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2525 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2526 {
2527 struct file *file = iocb->ki_filp;
2528 struct inode *inode = file_inode(file);
2529 struct address_space *mapping = inode->i_mapping;
2530 pgoff_t index;
2531 unsigned long offset;
2532 int error = 0;
2533 ssize_t retval = 0;
2534 loff_t *ppos = &iocb->ki_pos;
2535
2536 index = *ppos >> PAGE_SHIFT;
2537 offset = *ppos & ~PAGE_MASK;
2538
2539 for (;;) {
2540 struct page *page = NULL;
2541 pgoff_t end_index;
2542 unsigned long nr, ret;
2543 loff_t i_size = i_size_read(inode);
2544
2545 end_index = i_size >> PAGE_SHIFT;
2546 if (index > end_index)
2547 break;
2548 if (index == end_index) {
2549 nr = i_size & ~PAGE_MASK;
2550 if (nr <= offset)
2551 break;
2552 }
2553
2554 error = shmem_getpage(inode, index, &page, SGP_READ);
2555 if (error) {
2556 if (error == -EINVAL)
2557 error = 0;
2558 break;
2559 }
2560 if (page) {
2561 unlock_page(page);
2562
2563 if (PageHWPoison(page)) {
2564 put_page(page);
2565 error = -EIO;
2566 break;
2567 }
2568 }
2569
2570 /*
2571 * We must evaluate after, since reads (unlike writes)
2572 * are called without i_rwsem protection against truncate
2573 */
2574 nr = PAGE_SIZE;
2575 i_size = i_size_read(inode);
2576 end_index = i_size >> PAGE_SHIFT;
2577 if (index == end_index) {
2578 nr = i_size & ~PAGE_MASK;
2579 if (nr <= offset) {
2580 if (page)
2581 put_page(page);
2582 break;
2583 }
2584 }
2585 nr -= offset;
2586
2587 if (page) {
2588 /*
2589 * If users can be writing to this page using arbitrary
2590 * virtual addresses, take care about potential aliasing
2591 * before reading the page on the kernel side.
2592 */
2593 if (mapping_writably_mapped(mapping))
2594 flush_dcache_page(page);
2595 /*
2596 * Mark the page accessed if we read the beginning.
2597 */
2598 if (!offset)
2599 mark_page_accessed(page);
2600 /*
2601 * Ok, we have the page, and it's up-to-date, so
2602 * now we can copy it to user space...
2603 */
2604 ret = copy_page_to_iter(page, offset, nr, to);
2605 put_page(page);
2606
2607 } else if (iter_is_iovec(to)) {
2608 /*
2609 * Copy to user tends to be so well optimized, but
2610 * clear_user() not so much, that it is noticeably
2611 * faster to copy the zero page instead of clearing.
2612 */
2613 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2614 } else {
2615 /*
2616 * But submitting the same page twice in a row to
2617 * splice() - or others? - can result in confusion:
2618 * so don't attempt that optimization on pipes etc.
2619 */
2620 ret = iov_iter_zero(nr, to);
2621 }
2622
2623 retval += ret;
2624 offset += ret;
2625 index += offset >> PAGE_SHIFT;
2626 offset &= ~PAGE_MASK;
2627
2628 if (!iov_iter_count(to))
2629 break;
2630 if (ret < nr) {
2631 error = -EFAULT;
2632 break;
2633 }
2634 cond_resched();
2635 }
2636
2637 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2638 file_accessed(file);
2639 return retval ? retval : error;
2640 }
2641
shmem_file_llseek(struct file * file,loff_t offset,int whence)2642 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2643 {
2644 struct address_space *mapping = file->f_mapping;
2645 struct inode *inode = mapping->host;
2646
2647 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2648 return generic_file_llseek_size(file, offset, whence,
2649 MAX_LFS_FILESIZE, i_size_read(inode));
2650 if (offset < 0)
2651 return -ENXIO;
2652
2653 inode_lock(inode);
2654 /* We're holding i_rwsem so we can access i_size directly */
2655 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2656 if (offset >= 0)
2657 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2658 inode_unlock(inode);
2659 return offset;
2660 }
2661
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2662 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2663 loff_t len)
2664 {
2665 struct inode *inode = file_inode(file);
2666 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2667 struct shmem_inode_info *info = SHMEM_I(inode);
2668 struct shmem_falloc shmem_falloc;
2669 pgoff_t start, index, end, undo_fallocend;
2670 int error;
2671
2672 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2673 return -EOPNOTSUPP;
2674
2675 inode_lock(inode);
2676
2677 if (mode & FALLOC_FL_PUNCH_HOLE) {
2678 struct address_space *mapping = file->f_mapping;
2679 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2680 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2681 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2682
2683 /* protected by i_rwsem */
2684 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2685 error = -EPERM;
2686 goto out;
2687 }
2688
2689 shmem_falloc.waitq = &shmem_falloc_waitq;
2690 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2691 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2692 spin_lock(&inode->i_lock);
2693 inode->i_private = &shmem_falloc;
2694 spin_unlock(&inode->i_lock);
2695
2696 if ((u64)unmap_end > (u64)unmap_start)
2697 unmap_mapping_range(mapping, unmap_start,
2698 1 + unmap_end - unmap_start, 0);
2699 shmem_truncate_range(inode, offset, offset + len - 1);
2700 /* No need to unmap again: hole-punching leaves COWed pages */
2701
2702 spin_lock(&inode->i_lock);
2703 inode->i_private = NULL;
2704 wake_up_all(&shmem_falloc_waitq);
2705 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2706 spin_unlock(&inode->i_lock);
2707 error = 0;
2708 goto out;
2709 }
2710
2711 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2712 error = inode_newsize_ok(inode, offset + len);
2713 if (error)
2714 goto out;
2715
2716 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2717 error = -EPERM;
2718 goto out;
2719 }
2720
2721 start = offset >> PAGE_SHIFT;
2722 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2723 /* Try to avoid a swapstorm if len is impossible to satisfy */
2724 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2725 error = -ENOSPC;
2726 goto out;
2727 }
2728
2729 shmem_falloc.waitq = NULL;
2730 shmem_falloc.start = start;
2731 shmem_falloc.next = start;
2732 shmem_falloc.nr_falloced = 0;
2733 shmem_falloc.nr_unswapped = 0;
2734 spin_lock(&inode->i_lock);
2735 inode->i_private = &shmem_falloc;
2736 spin_unlock(&inode->i_lock);
2737
2738 /*
2739 * info->fallocend is only relevant when huge pages might be
2740 * involved: to prevent split_huge_page() freeing fallocated
2741 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2742 */
2743 undo_fallocend = info->fallocend;
2744 if (info->fallocend < end)
2745 info->fallocend = end;
2746
2747 for (index = start; index < end; ) {
2748 struct page *page;
2749
2750 /*
2751 * Good, the fallocate(2) manpage permits EINTR: we may have
2752 * been interrupted because we are using up too much memory.
2753 */
2754 if (signal_pending(current))
2755 error = -EINTR;
2756 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2757 error = -ENOMEM;
2758 else
2759 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2760 if (error) {
2761 info->fallocend = undo_fallocend;
2762 /* Remove the !PageUptodate pages we added */
2763 if (index > start) {
2764 shmem_undo_range(inode,
2765 (loff_t)start << PAGE_SHIFT,
2766 ((loff_t)index << PAGE_SHIFT) - 1, true);
2767 }
2768 goto undone;
2769 }
2770
2771 index++;
2772 /*
2773 * Here is a more important optimization than it appears:
2774 * a second SGP_FALLOC on the same huge page will clear it,
2775 * making it PageUptodate and un-undoable if we fail later.
2776 */
2777 if (PageTransCompound(page)) {
2778 index = round_up(index, HPAGE_PMD_NR);
2779 /* Beware 32-bit wraparound */
2780 if (!index)
2781 index--;
2782 }
2783
2784 /*
2785 * Inform shmem_writepage() how far we have reached.
2786 * No need for lock or barrier: we have the page lock.
2787 */
2788 if (!PageUptodate(page))
2789 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2790 shmem_falloc.next = index;
2791
2792 /*
2793 * If !PageUptodate, leave it that way so that freeable pages
2794 * can be recognized if we need to rollback on error later.
2795 * But set_page_dirty so that memory pressure will swap rather
2796 * than free the pages we are allocating (and SGP_CACHE pages
2797 * might still be clean: we now need to mark those dirty too).
2798 */
2799 set_page_dirty(page);
2800 unlock_page(page);
2801 put_page(page);
2802 cond_resched();
2803 }
2804
2805 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2806 i_size_write(inode, offset + len);
2807 inode->i_ctime = current_time(inode);
2808 undone:
2809 spin_lock(&inode->i_lock);
2810 inode->i_private = NULL;
2811 spin_unlock(&inode->i_lock);
2812 out:
2813 inode_unlock(inode);
2814 return error;
2815 }
2816
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2817 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2818 {
2819 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2820
2821 buf->f_type = TMPFS_MAGIC;
2822 buf->f_bsize = PAGE_SIZE;
2823 buf->f_namelen = NAME_MAX;
2824 if (sbinfo->max_blocks) {
2825 buf->f_blocks = sbinfo->max_blocks;
2826 buf->f_bavail =
2827 buf->f_bfree = sbinfo->max_blocks -
2828 percpu_counter_sum(&sbinfo->used_blocks);
2829 }
2830 if (sbinfo->max_inodes) {
2831 buf->f_files = sbinfo->max_inodes;
2832 buf->f_ffree = sbinfo->free_inodes;
2833 }
2834 /* else leave those fields 0 like simple_statfs */
2835
2836 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2837
2838 return 0;
2839 }
2840
2841 /*
2842 * File creation. Allocate an inode, and we're done..
2843 */
2844 static int
shmem_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2845 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2846 struct dentry *dentry, umode_t mode, dev_t dev)
2847 {
2848 struct inode *inode;
2849 int error = -ENOSPC;
2850
2851 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2852 if (inode) {
2853 error = simple_acl_create(dir, inode);
2854 if (error)
2855 goto out_iput;
2856 error = security_inode_init_security(inode, dir,
2857 &dentry->d_name,
2858 shmem_initxattrs, NULL);
2859 if (error && error != -EOPNOTSUPP)
2860 goto out_iput;
2861
2862 error = 0;
2863 dir->i_size += BOGO_DIRENT_SIZE;
2864 dir->i_ctime = dir->i_mtime = current_time(dir);
2865 d_instantiate(dentry, inode);
2866 dget(dentry); /* Extra count - pin the dentry in core */
2867 }
2868 return error;
2869 out_iput:
2870 iput(inode);
2871 return error;
2872 }
2873
2874 static int
shmem_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2875 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2876 struct dentry *dentry, umode_t mode)
2877 {
2878 struct inode *inode;
2879 int error = -ENOSPC;
2880
2881 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2882 if (inode) {
2883 error = security_inode_init_security(inode, dir,
2884 NULL,
2885 shmem_initxattrs, NULL);
2886 if (error && error != -EOPNOTSUPP)
2887 goto out_iput;
2888 error = simple_acl_create(dir, inode);
2889 if (error)
2890 goto out_iput;
2891 d_tmpfile(dentry, inode);
2892 }
2893 return error;
2894 out_iput:
2895 iput(inode);
2896 return error;
2897 }
2898
shmem_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2899 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2900 struct dentry *dentry, umode_t mode)
2901 {
2902 int error;
2903
2904 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2905 mode | S_IFDIR, 0)))
2906 return error;
2907 inc_nlink(dir);
2908 return 0;
2909 }
2910
shmem_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2911 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2912 struct dentry *dentry, umode_t mode, bool excl)
2913 {
2914 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2915 }
2916
2917 /*
2918 * Link a file..
2919 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2920 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2921 {
2922 struct inode *inode = d_inode(old_dentry);
2923 int ret = 0;
2924
2925 /*
2926 * No ordinary (disk based) filesystem counts links as inodes;
2927 * but each new link needs a new dentry, pinning lowmem, and
2928 * tmpfs dentries cannot be pruned until they are unlinked.
2929 * But if an O_TMPFILE file is linked into the tmpfs, the
2930 * first link must skip that, to get the accounting right.
2931 */
2932 if (inode->i_nlink) {
2933 ret = shmem_reserve_inode(inode->i_sb, NULL);
2934 if (ret)
2935 goto out;
2936 }
2937
2938 dir->i_size += BOGO_DIRENT_SIZE;
2939 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2940 inc_nlink(inode);
2941 ihold(inode); /* New dentry reference */
2942 dget(dentry); /* Extra pinning count for the created dentry */
2943 d_instantiate(dentry, inode);
2944 out:
2945 return ret;
2946 }
2947
shmem_unlink(struct inode * dir,struct dentry * dentry)2948 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2949 {
2950 struct inode *inode = d_inode(dentry);
2951
2952 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2953 shmem_free_inode(inode->i_sb);
2954
2955 dir->i_size -= BOGO_DIRENT_SIZE;
2956 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2957 drop_nlink(inode);
2958 dput(dentry); /* Undo the count from "create" - this does all the work */
2959 return 0;
2960 }
2961
shmem_rmdir(struct inode * dir,struct dentry * dentry)2962 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2963 {
2964 if (!simple_empty(dentry))
2965 return -ENOTEMPTY;
2966
2967 drop_nlink(d_inode(dentry));
2968 drop_nlink(dir);
2969 return shmem_unlink(dir, dentry);
2970 }
2971
shmem_whiteout(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry)2972 static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975 struct dentry *whiteout;
2976 int error;
2977
2978 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 if (!whiteout)
2980 return -ENOMEM;
2981
2982 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2983 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 dput(whiteout);
2985 if (error)
2986 return error;
2987
2988 /*
2989 * Cheat and hash the whiteout while the old dentry is still in
2990 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 *
2992 * d_lookup() will consistently find one of them at this point,
2993 * not sure which one, but that isn't even important.
2994 */
2995 d_rehash(whiteout);
2996 return 0;
2997 }
2998
2999 /*
3000 * The VFS layer already does all the dentry stuff for rename,
3001 * we just have to decrement the usage count for the target if
3002 * it exists so that the VFS layer correctly free's it when it
3003 * gets overwritten.
3004 */
shmem_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3005 static int shmem_rename2(struct user_namespace *mnt_userns,
3006 struct inode *old_dir, struct dentry *old_dentry,
3007 struct inode *new_dir, struct dentry *new_dentry,
3008 unsigned int flags)
3009 {
3010 struct inode *inode = d_inode(old_dentry);
3011 int they_are_dirs = S_ISDIR(inode->i_mode);
3012
3013 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3014 return -EINVAL;
3015
3016 if (flags & RENAME_EXCHANGE)
3017 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018
3019 if (!simple_empty(new_dentry))
3020 return -ENOTEMPTY;
3021
3022 if (flags & RENAME_WHITEOUT) {
3023 int error;
3024
3025 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3026 if (error)
3027 return error;
3028 }
3029
3030 if (d_really_is_positive(new_dentry)) {
3031 (void) shmem_unlink(new_dir, new_dentry);
3032 if (they_are_dirs) {
3033 drop_nlink(d_inode(new_dentry));
3034 drop_nlink(old_dir);
3035 }
3036 } else if (they_are_dirs) {
3037 drop_nlink(old_dir);
3038 inc_nlink(new_dir);
3039 }
3040
3041 old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 new_dir->i_size += BOGO_DIRENT_SIZE;
3043 old_dir->i_ctime = old_dir->i_mtime =
3044 new_dir->i_ctime = new_dir->i_mtime =
3045 inode->i_ctime = current_time(old_dir);
3046 return 0;
3047 }
3048
shmem_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)3049 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 struct dentry *dentry, const char *symname)
3051 {
3052 int error;
3053 int len;
3054 struct inode *inode;
3055 struct page *page;
3056
3057 len = strlen(symname) + 1;
3058 if (len > PAGE_SIZE)
3059 return -ENAMETOOLONG;
3060
3061 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 VM_NORESERVE);
3063 if (!inode)
3064 return -ENOSPC;
3065
3066 error = security_inode_init_security(inode, dir, &dentry->d_name,
3067 shmem_initxattrs, NULL);
3068 if (error && error != -EOPNOTSUPP) {
3069 iput(inode);
3070 return error;
3071 }
3072
3073 inode->i_size = len-1;
3074 if (len <= SHORT_SYMLINK_LEN) {
3075 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 if (!inode->i_link) {
3077 iput(inode);
3078 return -ENOMEM;
3079 }
3080 inode->i_op = &shmem_short_symlink_operations;
3081 } else {
3082 inode_nohighmem(inode);
3083 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3084 if (error) {
3085 iput(inode);
3086 return error;
3087 }
3088 inode->i_mapping->a_ops = &shmem_aops;
3089 inode->i_op = &shmem_symlink_inode_operations;
3090 memcpy(page_address(page), symname, len);
3091 SetPageUptodate(page);
3092 set_page_dirty(page);
3093 unlock_page(page);
3094 put_page(page);
3095 }
3096 dir->i_size += BOGO_DIRENT_SIZE;
3097 dir->i_ctime = dir->i_mtime = current_time(dir);
3098 d_instantiate(dentry, inode);
3099 dget(dentry);
3100 return 0;
3101 }
3102
shmem_put_link(void * arg)3103 static void shmem_put_link(void *arg)
3104 {
3105 mark_page_accessed(arg);
3106 put_page(arg);
3107 }
3108
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3109 static const char *shmem_get_link(struct dentry *dentry,
3110 struct inode *inode,
3111 struct delayed_call *done)
3112 {
3113 struct page *page = NULL;
3114 int error;
3115 if (!dentry) {
3116 page = find_get_page(inode->i_mapping, 0);
3117 if (!page)
3118 return ERR_PTR(-ECHILD);
3119 if (PageHWPoison(page) ||
3120 !PageUptodate(page)) {
3121 put_page(page);
3122 return ERR_PTR(-ECHILD);
3123 }
3124 } else {
3125 error = shmem_getpage(inode, 0, &page, SGP_READ);
3126 if (error)
3127 return ERR_PTR(error);
3128 if (!page)
3129 return ERR_PTR(-ECHILD);
3130 if (PageHWPoison(page)) {
3131 unlock_page(page);
3132 put_page(page);
3133 return ERR_PTR(-ECHILD);
3134 }
3135 unlock_page(page);
3136 }
3137 set_delayed_call(done, shmem_put_link, page);
3138 return page_address(page);
3139 }
3140
3141 #ifdef CONFIG_TMPFS_XATTR
3142 /*
3143 * Superblocks without xattr inode operations may get some security.* xattr
3144 * support from the LSM "for free". As soon as we have any other xattrs
3145 * like ACLs, we also need to implement the security.* handlers at
3146 * filesystem level, though.
3147 */
3148
3149 /*
3150 * Callback for security_inode_init_security() for acquiring xattrs.
3151 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3152 static int shmem_initxattrs(struct inode *inode,
3153 const struct xattr *xattr_array,
3154 void *fs_info)
3155 {
3156 struct shmem_inode_info *info = SHMEM_I(inode);
3157 const struct xattr *xattr;
3158 struct simple_xattr *new_xattr;
3159 size_t len;
3160
3161 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3162 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3163 if (!new_xattr)
3164 return -ENOMEM;
3165
3166 len = strlen(xattr->name) + 1;
3167 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3168 GFP_KERNEL);
3169 if (!new_xattr->name) {
3170 kvfree(new_xattr);
3171 return -ENOMEM;
3172 }
3173
3174 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3175 XATTR_SECURITY_PREFIX_LEN);
3176 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3177 xattr->name, len);
3178
3179 simple_xattr_list_add(&info->xattrs, new_xattr);
3180 }
3181
3182 return 0;
3183 }
3184
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3185 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3186 struct dentry *unused, struct inode *inode,
3187 const char *name, void *buffer, size_t size)
3188 {
3189 struct shmem_inode_info *info = SHMEM_I(inode);
3190
3191 name = xattr_full_name(handler, name);
3192 return simple_xattr_get(&info->xattrs, name, buffer, size);
3193 }
3194
shmem_xattr_handler_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3195 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3196 struct user_namespace *mnt_userns,
3197 struct dentry *unused, struct inode *inode,
3198 const char *name, const void *value,
3199 size_t size, int flags)
3200 {
3201 struct shmem_inode_info *info = SHMEM_I(inode);
3202
3203 name = xattr_full_name(handler, name);
3204 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3205 }
3206
3207 static const struct xattr_handler shmem_security_xattr_handler = {
3208 .prefix = XATTR_SECURITY_PREFIX,
3209 .get = shmem_xattr_handler_get,
3210 .set = shmem_xattr_handler_set,
3211 };
3212
3213 static const struct xattr_handler shmem_trusted_xattr_handler = {
3214 .prefix = XATTR_TRUSTED_PREFIX,
3215 .get = shmem_xattr_handler_get,
3216 .set = shmem_xattr_handler_set,
3217 };
3218
3219 static const struct xattr_handler *shmem_xattr_handlers[] = {
3220 #ifdef CONFIG_TMPFS_POSIX_ACL
3221 &posix_acl_access_xattr_handler,
3222 &posix_acl_default_xattr_handler,
3223 #endif
3224 &shmem_security_xattr_handler,
3225 &shmem_trusted_xattr_handler,
3226 NULL
3227 };
3228
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3229 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3230 {
3231 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3232 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3233 }
3234 #endif /* CONFIG_TMPFS_XATTR */
3235
3236 static const struct inode_operations shmem_short_symlink_operations = {
3237 .getattr = shmem_getattr,
3238 .get_link = simple_get_link,
3239 #ifdef CONFIG_TMPFS_XATTR
3240 .listxattr = shmem_listxattr,
3241 #endif
3242 };
3243
3244 static const struct inode_operations shmem_symlink_inode_operations = {
3245 .getattr = shmem_getattr,
3246 .get_link = shmem_get_link,
3247 #ifdef CONFIG_TMPFS_XATTR
3248 .listxattr = shmem_listxattr,
3249 #endif
3250 };
3251
shmem_get_parent(struct dentry * child)3252 static struct dentry *shmem_get_parent(struct dentry *child)
3253 {
3254 return ERR_PTR(-ESTALE);
3255 }
3256
shmem_match(struct inode * ino,void * vfh)3257 static int shmem_match(struct inode *ino, void *vfh)
3258 {
3259 __u32 *fh = vfh;
3260 __u64 inum = fh[2];
3261 inum = (inum << 32) | fh[1];
3262 return ino->i_ino == inum && fh[0] == ino->i_generation;
3263 }
3264
3265 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3266 static struct dentry *shmem_find_alias(struct inode *inode)
3267 {
3268 struct dentry *alias = d_find_alias(inode);
3269
3270 return alias ?: d_find_any_alias(inode);
3271 }
3272
3273
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3274 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3275 struct fid *fid, int fh_len, int fh_type)
3276 {
3277 struct inode *inode;
3278 struct dentry *dentry = NULL;
3279 u64 inum;
3280
3281 if (fh_len < 3)
3282 return NULL;
3283
3284 inum = fid->raw[2];
3285 inum = (inum << 32) | fid->raw[1];
3286
3287 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3288 shmem_match, fid->raw);
3289 if (inode) {
3290 dentry = shmem_find_alias(inode);
3291 iput(inode);
3292 }
3293
3294 return dentry;
3295 }
3296
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3297 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3298 struct inode *parent)
3299 {
3300 if (*len < 3) {
3301 *len = 3;
3302 return FILEID_INVALID;
3303 }
3304
3305 if (inode_unhashed(inode)) {
3306 /* Unfortunately insert_inode_hash is not idempotent,
3307 * so as we hash inodes here rather than at creation
3308 * time, we need a lock to ensure we only try
3309 * to do it once
3310 */
3311 static DEFINE_SPINLOCK(lock);
3312 spin_lock(&lock);
3313 if (inode_unhashed(inode))
3314 __insert_inode_hash(inode,
3315 inode->i_ino + inode->i_generation);
3316 spin_unlock(&lock);
3317 }
3318
3319 fh[0] = inode->i_generation;
3320 fh[1] = inode->i_ino;
3321 fh[2] = ((__u64)inode->i_ino) >> 32;
3322
3323 *len = 3;
3324 return 1;
3325 }
3326
3327 static const struct export_operations shmem_export_ops = {
3328 .get_parent = shmem_get_parent,
3329 .encode_fh = shmem_encode_fh,
3330 .fh_to_dentry = shmem_fh_to_dentry,
3331 };
3332
3333 enum shmem_param {
3334 Opt_gid,
3335 Opt_huge,
3336 Opt_mode,
3337 Opt_mpol,
3338 Opt_nr_blocks,
3339 Opt_nr_inodes,
3340 Opt_size,
3341 Opt_uid,
3342 Opt_inode32,
3343 Opt_inode64,
3344 };
3345
3346 static const struct constant_table shmem_param_enums_huge[] = {
3347 {"never", SHMEM_HUGE_NEVER },
3348 {"always", SHMEM_HUGE_ALWAYS },
3349 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3350 {"advise", SHMEM_HUGE_ADVISE },
3351 {}
3352 };
3353
3354 const struct fs_parameter_spec shmem_fs_parameters[] = {
3355 fsparam_u32 ("gid", Opt_gid),
3356 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3357 fsparam_u32oct("mode", Opt_mode),
3358 fsparam_string("mpol", Opt_mpol),
3359 fsparam_string("nr_blocks", Opt_nr_blocks),
3360 fsparam_string("nr_inodes", Opt_nr_inodes),
3361 fsparam_string("size", Opt_size),
3362 fsparam_u32 ("uid", Opt_uid),
3363 fsparam_flag ("inode32", Opt_inode32),
3364 fsparam_flag ("inode64", Opt_inode64),
3365 {}
3366 };
3367
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3368 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3369 {
3370 struct shmem_options *ctx = fc->fs_private;
3371 struct fs_parse_result result;
3372 unsigned long long size;
3373 char *rest;
3374 int opt;
3375
3376 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3377 if (opt < 0)
3378 return opt;
3379
3380 switch (opt) {
3381 case Opt_size:
3382 size = memparse(param->string, &rest);
3383 if (*rest == '%') {
3384 size <<= PAGE_SHIFT;
3385 size *= totalram_pages();
3386 do_div(size, 100);
3387 rest++;
3388 }
3389 if (*rest)
3390 goto bad_value;
3391 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3392 ctx->seen |= SHMEM_SEEN_BLOCKS;
3393 break;
3394 case Opt_nr_blocks:
3395 ctx->blocks = memparse(param->string, &rest);
3396 if (*rest || ctx->blocks > S64_MAX)
3397 goto bad_value;
3398 ctx->seen |= SHMEM_SEEN_BLOCKS;
3399 break;
3400 case Opt_nr_inodes:
3401 ctx->inodes = memparse(param->string, &rest);
3402 if (*rest)
3403 goto bad_value;
3404 ctx->seen |= SHMEM_SEEN_INODES;
3405 break;
3406 case Opt_mode:
3407 ctx->mode = result.uint_32 & 07777;
3408 break;
3409 case Opt_uid:
3410 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3411 if (!uid_valid(ctx->uid))
3412 goto bad_value;
3413 break;
3414 case Opt_gid:
3415 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3416 if (!gid_valid(ctx->gid))
3417 goto bad_value;
3418 break;
3419 case Opt_huge:
3420 ctx->huge = result.uint_32;
3421 if (ctx->huge != SHMEM_HUGE_NEVER &&
3422 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3423 has_transparent_hugepage()))
3424 goto unsupported_parameter;
3425 ctx->seen |= SHMEM_SEEN_HUGE;
3426 break;
3427 case Opt_mpol:
3428 if (IS_ENABLED(CONFIG_NUMA)) {
3429 mpol_put(ctx->mpol);
3430 ctx->mpol = NULL;
3431 if (mpol_parse_str(param->string, &ctx->mpol))
3432 goto bad_value;
3433 break;
3434 }
3435 goto unsupported_parameter;
3436 case Opt_inode32:
3437 ctx->full_inums = false;
3438 ctx->seen |= SHMEM_SEEN_INUMS;
3439 break;
3440 case Opt_inode64:
3441 if (sizeof(ino_t) < 8) {
3442 return invalfc(fc,
3443 "Cannot use inode64 with <64bit inums in kernel\n");
3444 }
3445 ctx->full_inums = true;
3446 ctx->seen |= SHMEM_SEEN_INUMS;
3447 break;
3448 }
3449 return 0;
3450
3451 unsupported_parameter:
3452 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3453 bad_value:
3454 return invalfc(fc, "Bad value for '%s'", param->key);
3455 }
3456
shmem_parse_options(struct fs_context * fc,void * data)3457 static int shmem_parse_options(struct fs_context *fc, void *data)
3458 {
3459 char *options = data;
3460
3461 if (options) {
3462 int err = security_sb_eat_lsm_opts(options, &fc->security);
3463 if (err)
3464 return err;
3465 }
3466
3467 while (options != NULL) {
3468 char *this_char = options;
3469 for (;;) {
3470 /*
3471 * NUL-terminate this option: unfortunately,
3472 * mount options form a comma-separated list,
3473 * but mpol's nodelist may also contain commas.
3474 */
3475 options = strchr(options, ',');
3476 if (options == NULL)
3477 break;
3478 options++;
3479 if (!isdigit(*options)) {
3480 options[-1] = '\0';
3481 break;
3482 }
3483 }
3484 if (*this_char) {
3485 char *value = strchr(this_char, '=');
3486 size_t len = 0;
3487 int err;
3488
3489 if (value) {
3490 *value++ = '\0';
3491 len = strlen(value);
3492 }
3493 err = vfs_parse_fs_string(fc, this_char, value, len);
3494 if (err < 0)
3495 return err;
3496 }
3497 }
3498 return 0;
3499 }
3500
3501 /*
3502 * Reconfigure a shmem filesystem.
3503 *
3504 * Note that we disallow change from limited->unlimited blocks/inodes while any
3505 * are in use; but we must separately disallow unlimited->limited, because in
3506 * that case we have no record of how much is already in use.
3507 */
shmem_reconfigure(struct fs_context * fc)3508 static int shmem_reconfigure(struct fs_context *fc)
3509 {
3510 struct shmem_options *ctx = fc->fs_private;
3511 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3512 unsigned long inodes;
3513 struct mempolicy *mpol = NULL;
3514 const char *err;
3515
3516 raw_spin_lock(&sbinfo->stat_lock);
3517 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3518
3519 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3520 if (!sbinfo->max_blocks) {
3521 err = "Cannot retroactively limit size";
3522 goto out;
3523 }
3524 if (percpu_counter_compare(&sbinfo->used_blocks,
3525 ctx->blocks) > 0) {
3526 err = "Too small a size for current use";
3527 goto out;
3528 }
3529 }
3530 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3531 if (!sbinfo->max_inodes) {
3532 err = "Cannot retroactively limit inodes";
3533 goto out;
3534 }
3535 if (ctx->inodes < inodes) {
3536 err = "Too few inodes for current use";
3537 goto out;
3538 }
3539 }
3540
3541 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3542 sbinfo->next_ino > UINT_MAX) {
3543 err = "Current inum too high to switch to 32-bit inums";
3544 goto out;
3545 }
3546
3547 if (ctx->seen & SHMEM_SEEN_HUGE)
3548 sbinfo->huge = ctx->huge;
3549 if (ctx->seen & SHMEM_SEEN_INUMS)
3550 sbinfo->full_inums = ctx->full_inums;
3551 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3552 sbinfo->max_blocks = ctx->blocks;
3553 if (ctx->seen & SHMEM_SEEN_INODES) {
3554 sbinfo->max_inodes = ctx->inodes;
3555 sbinfo->free_inodes = ctx->inodes - inodes;
3556 }
3557
3558 /*
3559 * Preserve previous mempolicy unless mpol remount option was specified.
3560 */
3561 if (ctx->mpol) {
3562 mpol = sbinfo->mpol;
3563 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3564 ctx->mpol = NULL;
3565 }
3566 raw_spin_unlock(&sbinfo->stat_lock);
3567 mpol_put(mpol);
3568 return 0;
3569 out:
3570 raw_spin_unlock(&sbinfo->stat_lock);
3571 return invalfc(fc, "%s", err);
3572 }
3573
shmem_show_options(struct seq_file * seq,struct dentry * root)3574 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3575 {
3576 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3577
3578 if (sbinfo->max_blocks != shmem_default_max_blocks())
3579 seq_printf(seq, ",size=%luk",
3580 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3581 if (sbinfo->max_inodes != shmem_default_max_inodes())
3582 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3583 if (sbinfo->mode != (0777 | S_ISVTX))
3584 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3585 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3586 seq_printf(seq, ",uid=%u",
3587 from_kuid_munged(&init_user_ns, sbinfo->uid));
3588 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3589 seq_printf(seq, ",gid=%u",
3590 from_kgid_munged(&init_user_ns, sbinfo->gid));
3591
3592 /*
3593 * Showing inode{64,32} might be useful even if it's the system default,
3594 * since then people don't have to resort to checking both here and
3595 * /proc/config.gz to confirm 64-bit inums were successfully applied
3596 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3597 *
3598 * We hide it when inode64 isn't the default and we are using 32-bit
3599 * inodes, since that probably just means the feature isn't even under
3600 * consideration.
3601 *
3602 * As such:
3603 *
3604 * +-----------------+-----------------+
3605 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3606 * +------------------+-----------------+-----------------+
3607 * | full_inums=true | show | show |
3608 * | full_inums=false | show | hide |
3609 * +------------------+-----------------+-----------------+
3610 *
3611 */
3612 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3613 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3615 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3616 if (sbinfo->huge)
3617 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3618 #endif
3619 shmem_show_mpol(seq, sbinfo->mpol);
3620 return 0;
3621 }
3622
3623 #endif /* CONFIG_TMPFS */
3624
shmem_put_super(struct super_block * sb)3625 static void shmem_put_super(struct super_block *sb)
3626 {
3627 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3628
3629 free_percpu(sbinfo->ino_batch);
3630 percpu_counter_destroy(&sbinfo->used_blocks);
3631 mpol_put(sbinfo->mpol);
3632 kfree(sbinfo);
3633 sb->s_fs_info = NULL;
3634 }
3635
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3636 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3637 {
3638 struct shmem_options *ctx = fc->fs_private;
3639 struct inode *inode;
3640 struct shmem_sb_info *sbinfo;
3641
3642 /* Round up to L1_CACHE_BYTES to resist false sharing */
3643 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3644 L1_CACHE_BYTES), GFP_KERNEL);
3645 if (!sbinfo)
3646 return -ENOMEM;
3647
3648 sb->s_fs_info = sbinfo;
3649
3650 #ifdef CONFIG_TMPFS
3651 /*
3652 * Per default we only allow half of the physical ram per
3653 * tmpfs instance, limiting inodes to one per page of lowmem;
3654 * but the internal instance is left unlimited.
3655 */
3656 if (!(sb->s_flags & SB_KERNMOUNT)) {
3657 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3658 ctx->blocks = shmem_default_max_blocks();
3659 if (!(ctx->seen & SHMEM_SEEN_INODES))
3660 ctx->inodes = shmem_default_max_inodes();
3661 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3662 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3663 } else {
3664 sb->s_flags |= SB_NOUSER;
3665 }
3666 sb->s_export_op = &shmem_export_ops;
3667 sb->s_flags |= SB_NOSEC;
3668 #else
3669 sb->s_flags |= SB_NOUSER;
3670 #endif
3671 sbinfo->max_blocks = ctx->blocks;
3672 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3673 if (sb->s_flags & SB_KERNMOUNT) {
3674 sbinfo->ino_batch = alloc_percpu(ino_t);
3675 if (!sbinfo->ino_batch)
3676 goto failed;
3677 }
3678 sbinfo->uid = ctx->uid;
3679 sbinfo->gid = ctx->gid;
3680 sbinfo->full_inums = ctx->full_inums;
3681 sbinfo->mode = ctx->mode;
3682 sbinfo->huge = ctx->huge;
3683 sbinfo->mpol = ctx->mpol;
3684 ctx->mpol = NULL;
3685
3686 raw_spin_lock_init(&sbinfo->stat_lock);
3687 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3688 goto failed;
3689 spin_lock_init(&sbinfo->shrinklist_lock);
3690 INIT_LIST_HEAD(&sbinfo->shrinklist);
3691
3692 sb->s_maxbytes = MAX_LFS_FILESIZE;
3693 sb->s_blocksize = PAGE_SIZE;
3694 sb->s_blocksize_bits = PAGE_SHIFT;
3695 sb->s_magic = TMPFS_MAGIC;
3696 sb->s_op = &shmem_ops;
3697 sb->s_time_gran = 1;
3698 #ifdef CONFIG_TMPFS_XATTR
3699 sb->s_xattr = shmem_xattr_handlers;
3700 #endif
3701 #ifdef CONFIG_TMPFS_POSIX_ACL
3702 sb->s_flags |= SB_POSIXACL;
3703 #endif
3704 uuid_gen(&sb->s_uuid);
3705
3706 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3707 if (!inode)
3708 goto failed;
3709 inode->i_uid = sbinfo->uid;
3710 inode->i_gid = sbinfo->gid;
3711 sb->s_root = d_make_root(inode);
3712 if (!sb->s_root)
3713 goto failed;
3714 return 0;
3715
3716 failed:
3717 shmem_put_super(sb);
3718 return -ENOMEM;
3719 }
3720
shmem_get_tree(struct fs_context * fc)3721 static int shmem_get_tree(struct fs_context *fc)
3722 {
3723 return get_tree_nodev(fc, shmem_fill_super);
3724 }
3725
shmem_free_fc(struct fs_context * fc)3726 static void shmem_free_fc(struct fs_context *fc)
3727 {
3728 struct shmem_options *ctx = fc->fs_private;
3729
3730 if (ctx) {
3731 mpol_put(ctx->mpol);
3732 kfree(ctx);
3733 }
3734 }
3735
3736 static const struct fs_context_operations shmem_fs_context_ops = {
3737 .free = shmem_free_fc,
3738 .get_tree = shmem_get_tree,
3739 #ifdef CONFIG_TMPFS
3740 .parse_monolithic = shmem_parse_options,
3741 .parse_param = shmem_parse_one,
3742 .reconfigure = shmem_reconfigure,
3743 #endif
3744 };
3745
3746 static struct kmem_cache *shmem_inode_cachep;
3747
shmem_alloc_inode(struct super_block * sb)3748 static struct inode *shmem_alloc_inode(struct super_block *sb)
3749 {
3750 struct shmem_inode_info *info;
3751 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3752 if (!info)
3753 return NULL;
3754 return &info->vfs_inode;
3755 }
3756
shmem_free_in_core_inode(struct inode * inode)3757 static void shmem_free_in_core_inode(struct inode *inode)
3758 {
3759 if (S_ISLNK(inode->i_mode))
3760 kfree(inode->i_link);
3761 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3762 }
3763
shmem_destroy_inode(struct inode * inode)3764 static void shmem_destroy_inode(struct inode *inode)
3765 {
3766 if (S_ISREG(inode->i_mode))
3767 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3768 }
3769
shmem_init_inode(void * foo)3770 static void shmem_init_inode(void *foo)
3771 {
3772 struct shmem_inode_info *info = foo;
3773 inode_init_once(&info->vfs_inode);
3774 }
3775
shmem_init_inodecache(void)3776 static void shmem_init_inodecache(void)
3777 {
3778 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3779 sizeof(struct shmem_inode_info),
3780 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3781 }
3782
shmem_destroy_inodecache(void)3783 static void shmem_destroy_inodecache(void)
3784 {
3785 kmem_cache_destroy(shmem_inode_cachep);
3786 }
3787
3788 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_page(struct address_space * mapping,struct page * page)3789 static int shmem_error_remove_page(struct address_space *mapping,
3790 struct page *page)
3791 {
3792 return 0;
3793 }
3794
3795 const struct address_space_operations shmem_aops = {
3796 .writepage = shmem_writepage,
3797 .dirty_folio = noop_dirty_folio,
3798 #ifdef CONFIG_TMPFS
3799 .write_begin = shmem_write_begin,
3800 .write_end = shmem_write_end,
3801 #endif
3802 #ifdef CONFIG_MIGRATION
3803 .migratepage = migrate_page,
3804 #endif
3805 .error_remove_page = shmem_error_remove_page,
3806 };
3807 EXPORT_SYMBOL(shmem_aops);
3808
3809 static const struct file_operations shmem_file_operations = {
3810 .mmap = shmem_mmap,
3811 .get_unmapped_area = shmem_get_unmapped_area,
3812 #ifdef CONFIG_TMPFS
3813 .llseek = shmem_file_llseek,
3814 .read_iter = shmem_file_read_iter,
3815 .write_iter = generic_file_write_iter,
3816 .fsync = noop_fsync,
3817 .splice_read = generic_file_splice_read,
3818 .splice_write = iter_file_splice_write,
3819 .fallocate = shmem_fallocate,
3820 #endif
3821 };
3822
3823 static const struct inode_operations shmem_inode_operations = {
3824 .getattr = shmem_getattr,
3825 .setattr = shmem_setattr,
3826 #ifdef CONFIG_TMPFS_XATTR
3827 .listxattr = shmem_listxattr,
3828 .set_acl = simple_set_acl,
3829 #endif
3830 };
3831
3832 static const struct inode_operations shmem_dir_inode_operations = {
3833 #ifdef CONFIG_TMPFS
3834 .getattr = shmem_getattr,
3835 .create = shmem_create,
3836 .lookup = simple_lookup,
3837 .link = shmem_link,
3838 .unlink = shmem_unlink,
3839 .symlink = shmem_symlink,
3840 .mkdir = shmem_mkdir,
3841 .rmdir = shmem_rmdir,
3842 .mknod = shmem_mknod,
3843 .rename = shmem_rename2,
3844 .tmpfile = shmem_tmpfile,
3845 #endif
3846 #ifdef CONFIG_TMPFS_XATTR
3847 .listxattr = shmem_listxattr,
3848 #endif
3849 #ifdef CONFIG_TMPFS_POSIX_ACL
3850 .setattr = shmem_setattr,
3851 .set_acl = simple_set_acl,
3852 #endif
3853 };
3854
3855 static const struct inode_operations shmem_special_inode_operations = {
3856 .getattr = shmem_getattr,
3857 #ifdef CONFIG_TMPFS_XATTR
3858 .listxattr = shmem_listxattr,
3859 #endif
3860 #ifdef CONFIG_TMPFS_POSIX_ACL
3861 .setattr = shmem_setattr,
3862 .set_acl = simple_set_acl,
3863 #endif
3864 };
3865
3866 static const struct super_operations shmem_ops = {
3867 .alloc_inode = shmem_alloc_inode,
3868 .free_inode = shmem_free_in_core_inode,
3869 .destroy_inode = shmem_destroy_inode,
3870 #ifdef CONFIG_TMPFS
3871 .statfs = shmem_statfs,
3872 .show_options = shmem_show_options,
3873 #endif
3874 .evict_inode = shmem_evict_inode,
3875 .drop_inode = generic_delete_inode,
3876 .put_super = shmem_put_super,
3877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3878 .nr_cached_objects = shmem_unused_huge_count,
3879 .free_cached_objects = shmem_unused_huge_scan,
3880 #endif
3881 };
3882
3883 static const struct vm_operations_struct shmem_vm_ops = {
3884 .fault = shmem_fault,
3885 .map_pages = filemap_map_pages,
3886 #ifdef CONFIG_NUMA
3887 .set_policy = shmem_set_policy,
3888 .get_policy = shmem_get_policy,
3889 #endif
3890 };
3891
shmem_init_fs_context(struct fs_context * fc)3892 int shmem_init_fs_context(struct fs_context *fc)
3893 {
3894 struct shmem_options *ctx;
3895
3896 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3897 if (!ctx)
3898 return -ENOMEM;
3899
3900 ctx->mode = 0777 | S_ISVTX;
3901 ctx->uid = current_fsuid();
3902 ctx->gid = current_fsgid();
3903
3904 fc->fs_private = ctx;
3905 fc->ops = &shmem_fs_context_ops;
3906 return 0;
3907 }
3908
3909 static struct file_system_type shmem_fs_type = {
3910 .owner = THIS_MODULE,
3911 .name = "tmpfs",
3912 .init_fs_context = shmem_init_fs_context,
3913 #ifdef CONFIG_TMPFS
3914 .parameters = shmem_fs_parameters,
3915 #endif
3916 .kill_sb = kill_litter_super,
3917 .fs_flags = FS_USERNS_MOUNT,
3918 };
3919
shmem_init(void)3920 void __init shmem_init(void)
3921 {
3922 int error;
3923
3924 shmem_init_inodecache();
3925
3926 error = register_filesystem(&shmem_fs_type);
3927 if (error) {
3928 pr_err("Could not register tmpfs\n");
3929 goto out2;
3930 }
3931
3932 shm_mnt = kern_mount(&shmem_fs_type);
3933 if (IS_ERR(shm_mnt)) {
3934 error = PTR_ERR(shm_mnt);
3935 pr_err("Could not kern_mount tmpfs\n");
3936 goto out1;
3937 }
3938
3939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3940 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3941 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3942 else
3943 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3944 #endif
3945 return;
3946
3947 out1:
3948 unregister_filesystem(&shmem_fs_type);
3949 out2:
3950 shmem_destroy_inodecache();
3951 shm_mnt = ERR_PTR(error);
3952 }
3953
3954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3955 static ssize_t shmem_enabled_show(struct kobject *kobj,
3956 struct kobj_attribute *attr, char *buf)
3957 {
3958 static const int values[] = {
3959 SHMEM_HUGE_ALWAYS,
3960 SHMEM_HUGE_WITHIN_SIZE,
3961 SHMEM_HUGE_ADVISE,
3962 SHMEM_HUGE_NEVER,
3963 SHMEM_HUGE_DENY,
3964 SHMEM_HUGE_FORCE,
3965 };
3966 int len = 0;
3967 int i;
3968
3969 for (i = 0; i < ARRAY_SIZE(values); i++) {
3970 len += sysfs_emit_at(buf, len,
3971 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3972 i ? " " : "",
3973 shmem_format_huge(values[i]));
3974 }
3975
3976 len += sysfs_emit_at(buf, len, "\n");
3977
3978 return len;
3979 }
3980
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3981 static ssize_t shmem_enabled_store(struct kobject *kobj,
3982 struct kobj_attribute *attr, const char *buf, size_t count)
3983 {
3984 char tmp[16];
3985 int huge;
3986
3987 if (count + 1 > sizeof(tmp))
3988 return -EINVAL;
3989 memcpy(tmp, buf, count);
3990 tmp[count] = '\0';
3991 if (count && tmp[count - 1] == '\n')
3992 tmp[count - 1] = '\0';
3993
3994 huge = shmem_parse_huge(tmp);
3995 if (huge == -EINVAL)
3996 return -EINVAL;
3997 if (!has_transparent_hugepage() &&
3998 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3999 return -EINVAL;
4000
4001 shmem_huge = huge;
4002 if (shmem_huge > SHMEM_HUGE_DENY)
4003 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4004 return count;
4005 }
4006
4007 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4009
4010 #else /* !CONFIG_SHMEM */
4011
4012 /*
4013 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4014 *
4015 * This is intended for small system where the benefits of the full
4016 * shmem code (swap-backed and resource-limited) are outweighed by
4017 * their complexity. On systems without swap this code should be
4018 * effectively equivalent, but much lighter weight.
4019 */
4020
4021 static struct file_system_type shmem_fs_type = {
4022 .name = "tmpfs",
4023 .init_fs_context = ramfs_init_fs_context,
4024 .parameters = ramfs_fs_parameters,
4025 .kill_sb = kill_litter_super,
4026 .fs_flags = FS_USERNS_MOUNT,
4027 };
4028
shmem_init(void)4029 void __init shmem_init(void)
4030 {
4031 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4032
4033 shm_mnt = kern_mount(&shmem_fs_type);
4034 BUG_ON(IS_ERR(shm_mnt));
4035 }
4036
shmem_unuse(unsigned int type)4037 int shmem_unuse(unsigned int type)
4038 {
4039 return 0;
4040 }
4041
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4042 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4043 {
4044 return 0;
4045 }
4046
shmem_unlock_mapping(struct address_space * mapping)4047 void shmem_unlock_mapping(struct address_space *mapping)
4048 {
4049 }
4050
4051 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4052 unsigned long shmem_get_unmapped_area(struct file *file,
4053 unsigned long addr, unsigned long len,
4054 unsigned long pgoff, unsigned long flags)
4055 {
4056 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4057 }
4058 #endif
4059
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4060 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4061 {
4062 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4063 }
4064 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4065
4066 #define shmem_vm_ops generic_file_vm_ops
4067 #define shmem_file_operations ramfs_file_operations
4068 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4069 #define shmem_acct_size(flags, size) 0
4070 #define shmem_unacct_size(flags, size) do {} while (0)
4071
4072 #endif /* CONFIG_SHMEM */
4073
4074 /* common code */
4075
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4076 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4077 unsigned long flags, unsigned int i_flags)
4078 {
4079 struct inode *inode;
4080 struct file *res;
4081
4082 if (IS_ERR(mnt))
4083 return ERR_CAST(mnt);
4084
4085 if (size < 0 || size > MAX_LFS_FILESIZE)
4086 return ERR_PTR(-EINVAL);
4087
4088 if (shmem_acct_size(flags, size))
4089 return ERR_PTR(-ENOMEM);
4090
4091 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4092 flags);
4093 if (unlikely(!inode)) {
4094 shmem_unacct_size(flags, size);
4095 return ERR_PTR(-ENOSPC);
4096 }
4097 inode->i_flags |= i_flags;
4098 inode->i_size = size;
4099 clear_nlink(inode); /* It is unlinked */
4100 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4101 if (!IS_ERR(res))
4102 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4103 &shmem_file_operations);
4104 if (IS_ERR(res))
4105 iput(inode);
4106 return res;
4107 }
4108
4109 /**
4110 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4111 * kernel internal. There will be NO LSM permission checks against the
4112 * underlying inode. So users of this interface must do LSM checks at a
4113 * higher layer. The users are the big_key and shm implementations. LSM
4114 * checks are provided at the key or shm level rather than the inode.
4115 * @name: name for dentry (to be seen in /proc/<pid>/maps
4116 * @size: size to be set for the file
4117 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4118 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4119 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4120 {
4121 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4122 }
4123
4124 /**
4125 * shmem_file_setup - get an unlinked file living in tmpfs
4126 * @name: name for dentry (to be seen in /proc/<pid>/maps
4127 * @size: size to be set for the file
4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4130 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4131 {
4132 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4133 }
4134 EXPORT_SYMBOL_GPL(shmem_file_setup);
4135
4136 /**
4137 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4138 * @mnt: the tmpfs mount where the file will be created
4139 * @name: name for dentry (to be seen in /proc/<pid>/maps
4140 * @size: size to be set for the file
4141 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4142 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4143 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4144 loff_t size, unsigned long flags)
4145 {
4146 return __shmem_file_setup(mnt, name, size, flags, 0);
4147 }
4148 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4149
4150 /**
4151 * shmem_zero_setup - setup a shared anonymous mapping
4152 * @vma: the vma to be mmapped is prepared by do_mmap
4153 */
shmem_zero_setup(struct vm_area_struct * vma)4154 int shmem_zero_setup(struct vm_area_struct *vma)
4155 {
4156 struct file *file;
4157 loff_t size = vma->vm_end - vma->vm_start;
4158
4159 /*
4160 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4161 * between XFS directory reading and selinux: since this file is only
4162 * accessible to the user through its mapping, use S_PRIVATE flag to
4163 * bypass file security, in the same way as shmem_kernel_file_setup().
4164 */
4165 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4166 if (IS_ERR(file))
4167 return PTR_ERR(file);
4168
4169 if (vma->vm_file)
4170 fput(vma->vm_file);
4171 vma->vm_file = file;
4172 vma->vm_ops = &shmem_vm_ops;
4173
4174 return 0;
4175 }
4176
4177 /**
4178 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4179 * @mapping: the page's address_space
4180 * @index: the page index
4181 * @gfp: the page allocator flags to use if allocating
4182 *
4183 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4184 * with any new page allocations done using the specified allocation flags.
4185 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4186 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4187 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4188 *
4189 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4190 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4191 */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4192 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4193 pgoff_t index, gfp_t gfp)
4194 {
4195 #ifdef CONFIG_SHMEM
4196 struct inode *inode = mapping->host;
4197 struct page *page;
4198 int error;
4199
4200 BUG_ON(!shmem_mapping(mapping));
4201 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4202 gfp, NULL, NULL, NULL);
4203 if (error)
4204 return ERR_PTR(error);
4205
4206 unlock_page(page);
4207 if (PageHWPoison(page)) {
4208 put_page(page);
4209 return ERR_PTR(-EIO);
4210 }
4211
4212 return page;
4213 #else
4214 /*
4215 * The tiny !SHMEM case uses ramfs without swap
4216 */
4217 return read_cache_page_gfp(mapping, index, gfp);
4218 #endif
4219 }
4220 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4221