1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/hugetlb.h>
38 #include <linux/fs_parser.h>
39 #include <linux/swapfile.h>
40 #include "swap.h"
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 struct shmem_options {
108 	unsigned long long blocks;
109 	unsigned long long inodes;
110 	struct mempolicy *mpol;
111 	kuid_t uid;
112 	kgid_t gid;
113 	umode_t mode;
114 	bool full_inums;
115 	int huge;
116 	int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122 
123 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)124 static unsigned long shmem_default_max_blocks(void)
125 {
126 	return totalram_pages() / 2;
127 }
128 
shmem_default_max_inodes(void)129 static unsigned long shmem_default_max_inodes(void)
130 {
131 	unsigned long nr_pages = totalram_pages();
132 
133 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136 
137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
138 			     struct folio **foliop, enum sgp_type sgp,
139 			     gfp_t gfp, struct vm_area_struct *vma,
140 			     vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 		struct page **pagep, enum sgp_type sgp,
143 		gfp_t gfp, struct vm_area_struct *vma,
144 		struct vm_fault *vmf, vm_fault_t *fault_type);
145 
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp)
148 {
149 	return shmem_getpage_gfp(inode, index, pagep, sgp,
150 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152 
SHMEM_SB(struct super_block * sb)153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
shmem_acct_size(unsigned long flags,loff_t size)164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
shmem_unacct_size(unsigned long flags,loff_t size)170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
shmem_acct_block(unsigned long flags,long pages)195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
shmem_unacct_blocks(unsigned long flags,long pages)204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
shmem_inode_acct_block(struct inode * inode,long pages)210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 
215 	if (shmem_acct_block(info->flags, pages))
216 		return false;
217 
218 	if (sbinfo->max_blocks) {
219 		if (percpu_counter_compare(&sbinfo->used_blocks,
220 					   sbinfo->max_blocks - pages) > 0)
221 			goto unacct;
222 		percpu_counter_add(&sbinfo->used_blocks, pages);
223 	}
224 
225 	return true;
226 
227 unacct:
228 	shmem_unacct_blocks(info->flags, pages);
229 	return false;
230 }
231 
shmem_inode_unacct_blocks(struct inode * inode,long pages)232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_inode_info *info = SHMEM_I(inode);
235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 
237 	if (sbinfo->max_blocks)
238 		percpu_counter_sub(&sbinfo->used_blocks, pages);
239 	shmem_unacct_blocks(info->flags, pages);
240 }
241 
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250 
vma_is_shmem(struct vm_area_struct * vma)251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 	return vma->vm_ops == &shmem_vm_ops;
254 }
255 
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258 
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 	ino_t ino;
273 
274 	if (!(sb->s_flags & SB_KERNMOUNT)) {
275 		raw_spin_lock(&sbinfo->stat_lock);
276 		if (sbinfo->max_inodes) {
277 			if (!sbinfo->free_inodes) {
278 				raw_spin_unlock(&sbinfo->stat_lock);
279 				return -ENOSPC;
280 			}
281 			sbinfo->free_inodes--;
282 		}
283 		if (inop) {
284 			ino = sbinfo->next_ino++;
285 			if (unlikely(is_zero_ino(ino)))
286 				ino = sbinfo->next_ino++;
287 			if (unlikely(!sbinfo->full_inums &&
288 				     ino > UINT_MAX)) {
289 				/*
290 				 * Emulate get_next_ino uint wraparound for
291 				 * compatibility
292 				 */
293 				if (IS_ENABLED(CONFIG_64BIT))
294 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 						__func__, MINOR(sb->s_dev));
296 				sbinfo->next_ino = 1;
297 				ino = sbinfo->next_ino++;
298 			}
299 			*inop = ino;
300 		}
301 		raw_spin_unlock(&sbinfo->stat_lock);
302 	} else if (inop) {
303 		/*
304 		 * __shmem_file_setup, one of our callers, is lock-free: it
305 		 * doesn't hold stat_lock in shmem_reserve_inode since
306 		 * max_inodes is always 0, and is called from potentially
307 		 * unknown contexts. As such, use a per-cpu batched allocator
308 		 * which doesn't require the per-sb stat_lock unless we are at
309 		 * the batch boundary.
310 		 *
311 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 		 * shmem mounts are not exposed to userspace, so we don't need
313 		 * to worry about things like glibc compatibility.
314 		 */
315 		ino_t *next_ino;
316 
317 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 		ino = *next_ino;
319 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 			raw_spin_lock(&sbinfo->stat_lock);
321 			ino = sbinfo->next_ino;
322 			sbinfo->next_ino += SHMEM_INO_BATCH;
323 			raw_spin_unlock(&sbinfo->stat_lock);
324 			if (unlikely(is_zero_ino(ino)))
325 				ino++;
326 		}
327 		*inop = ino;
328 		*next_ino = ++ino;
329 		put_cpu();
330 	}
331 
332 	return 0;
333 }
334 
shmem_free_inode(struct super_block * sb)335 static void shmem_free_inode(struct super_block *sb)
336 {
337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 	if (sbinfo->max_inodes) {
339 		raw_spin_lock(&sbinfo->stat_lock);
340 		sbinfo->free_inodes++;
341 		raw_spin_unlock(&sbinfo->stat_lock);
342 	}
343 }
344 
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
shmem_recalc_inode(struct inode * inode)357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 	struct shmem_inode_info *info = SHMEM_I(inode);
360 	long freed;
361 
362 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 	if (freed > 0) {
364 		info->alloced -= freed;
365 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 		shmem_inode_unacct_blocks(inode, freed);
367 	}
368 }
369 
shmem_charge(struct inode * inode,long pages)370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 	struct shmem_inode_info *info = SHMEM_I(inode);
373 	unsigned long flags;
374 
375 	if (!shmem_inode_acct_block(inode, pages))
376 		return false;
377 
378 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 	inode->i_mapping->nrpages += pages;
380 
381 	spin_lock_irqsave(&info->lock, flags);
382 	info->alloced += pages;
383 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 	shmem_recalc_inode(inode);
385 	spin_unlock_irqrestore(&info->lock, flags);
386 
387 	return true;
388 }
389 
shmem_uncharge(struct inode * inode,long pages)390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 	struct shmem_inode_info *info = SHMEM_I(inode);
393 	unsigned long flags;
394 
395 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
396 
397 	spin_lock_irqsave(&info->lock, flags);
398 	info->alloced -= pages;
399 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 	shmem_recalc_inode(inode);
401 	spin_unlock_irqrestore(&info->lock, flags);
402 
403 	shmem_inode_unacct_blocks(inode, pages);
404 }
405 
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)409 static int shmem_replace_entry(struct address_space *mapping,
410 			pgoff_t index, void *expected, void *replacement)
411 {
412 	XA_STATE(xas, &mapping->i_pages, index);
413 	void *item;
414 
415 	VM_BUG_ON(!expected);
416 	VM_BUG_ON(!replacement);
417 	item = xas_load(&xas);
418 	if (item != expected)
419 		return -ENOENT;
420 	xas_store(&xas, replacement);
421 	return 0;
422 }
423 
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)431 static bool shmem_confirm_swap(struct address_space *mapping,
432 			       pgoff_t index, swp_entry_t swap)
433 {
434 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436 
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *	disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *	enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *	only allocate huge pages if the page will be fully within i_size,
446  *	also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *	only allocate huge pages if requested with fadvise()/madvise();
449  */
450 
451 #define SHMEM_HUGE_NEVER	0
452 #define SHMEM_HUGE_ALWAYS	1
453 #define SHMEM_HUGE_WITHIN_SIZE	2
454 #define SHMEM_HUGE_ADVISE	3
455 
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *	disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY		(-1)
467 #define SHMEM_HUGE_FORCE	(-2)
468 
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471 
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473 
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)474 bool shmem_is_huge(struct vm_area_struct *vma,
475 		   struct inode *inode, pgoff_t index)
476 {
477 	loff_t i_size;
478 
479 	if (!S_ISREG(inode->i_mode))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 		return false;
486 	if (shmem_huge == SHMEM_HUGE_FORCE)
487 		return true;
488 
489 	switch (SHMEM_SB(inode->i_sb)->huge) {
490 	case SHMEM_HUGE_ALWAYS:
491 		return true;
492 	case SHMEM_HUGE_WITHIN_SIZE:
493 		index = round_up(index + 1, HPAGE_PMD_NR);
494 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 		if (i_size >> PAGE_SHIFT >= index)
496 			return true;
497 		fallthrough;
498 	case SHMEM_HUGE_ADVISE:
499 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 			return true;
501 		fallthrough;
502 	default:
503 		return false;
504 	}
505 }
506 
507 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)508 static int shmem_parse_huge(const char *str)
509 {
510 	if (!strcmp(str, "never"))
511 		return SHMEM_HUGE_NEVER;
512 	if (!strcmp(str, "always"))
513 		return SHMEM_HUGE_ALWAYS;
514 	if (!strcmp(str, "within_size"))
515 		return SHMEM_HUGE_WITHIN_SIZE;
516 	if (!strcmp(str, "advise"))
517 		return SHMEM_HUGE_ADVISE;
518 	if (!strcmp(str, "deny"))
519 		return SHMEM_HUGE_DENY;
520 	if (!strcmp(str, "force"))
521 		return SHMEM_HUGE_FORCE;
522 	return -EINVAL;
523 }
524 #endif
525 
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)527 static const char *shmem_format_huge(int huge)
528 {
529 	switch (huge) {
530 	case SHMEM_HUGE_NEVER:
531 		return "never";
532 	case SHMEM_HUGE_ALWAYS:
533 		return "always";
534 	case SHMEM_HUGE_WITHIN_SIZE:
535 		return "within_size";
536 	case SHMEM_HUGE_ADVISE:
537 		return "advise";
538 	case SHMEM_HUGE_DENY:
539 		return "deny";
540 	case SHMEM_HUGE_FORCE:
541 		return "force";
542 	default:
543 		VM_BUG_ON(1);
544 		return "bad_val";
545 	}
546 }
547 #endif
548 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 		struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 	LIST_HEAD(list), *pos, *next;
553 	LIST_HEAD(to_remove);
554 	struct inode *inode;
555 	struct shmem_inode_info *info;
556 	struct folio *folio;
557 	unsigned long batch = sc ? sc->nr_to_scan : 128;
558 	int split = 0;
559 
560 	if (list_empty(&sbinfo->shrinklist))
561 		return SHRINK_STOP;
562 
563 	spin_lock(&sbinfo->shrinklist_lock);
564 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 
567 		/* pin the inode */
568 		inode = igrab(&info->vfs_inode);
569 
570 		/* inode is about to be evicted */
571 		if (!inode) {
572 			list_del_init(&info->shrinklist);
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			goto next;
581 		}
582 
583 		list_move(&info->shrinklist, &list);
584 next:
585 		sbinfo->shrinklist_len--;
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 		pgoff_t index;
601 
602 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 		inode = &info->vfs_inode;
604 
605 		if (nr_to_split && split >= nr_to_split)
606 			goto move_back;
607 
608 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
609 		folio = filemap_get_folio(inode->i_mapping, index);
610 		if (!folio)
611 			goto drop;
612 
613 		/* No huge page at the end of the file: nothing to split */
614 		if (!folio_test_large(folio)) {
615 			folio_put(folio);
616 			goto drop;
617 		}
618 
619 		/*
620 		 * Move the inode on the list back to shrinklist if we failed
621 		 * to lock the page at this time.
622 		 *
623 		 * Waiting for the lock may lead to deadlock in the
624 		 * reclaim path.
625 		 */
626 		if (!folio_trylock(folio)) {
627 			folio_put(folio);
628 			goto move_back;
629 		}
630 
631 		ret = split_huge_page(&folio->page);
632 		folio_unlock(folio);
633 		folio_put(folio);
634 
635 		/* If split failed move the inode on the list back to shrinklist */
636 		if (ret)
637 			goto move_back;
638 
639 		split++;
640 drop:
641 		list_del_init(&info->shrinklist);
642 		goto put;
643 move_back:
644 		/*
645 		 * Make sure the inode is either on the global list or deleted
646 		 * from any local list before iput() since it could be deleted
647 		 * in another thread once we put the inode (then the local list
648 		 * is corrupted).
649 		 */
650 		spin_lock(&sbinfo->shrinklist_lock);
651 		list_move(&info->shrinklist, &sbinfo->shrinklist);
652 		sbinfo->shrinklist_len++;
653 		spin_unlock(&sbinfo->shrinklist_lock);
654 put:
655 		iput(inode);
656 	}
657 
658 	return split;
659 }
660 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)661 static long shmem_unused_huge_scan(struct super_block *sb,
662 		struct shrink_control *sc)
663 {
664 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665 
666 	if (!READ_ONCE(sbinfo->shrinklist_len))
667 		return SHRINK_STOP;
668 
669 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
670 }
671 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)672 static long shmem_unused_huge_count(struct super_block *sb,
673 		struct shrink_control *sc)
674 {
675 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 	return READ_ONCE(sbinfo->shrinklist_len);
677 }
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679 
680 #define shmem_huge SHMEM_HUGE_DENY
681 
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)682 bool shmem_is_huge(struct vm_area_struct *vma,
683 		   struct inode *inode, pgoff_t index)
684 {
685 	return false;
686 }
687 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 		struct shrink_control *sc, unsigned long nr_to_split)
690 {
691 	return 0;
692 }
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
694 
695 /*
696  * Like add_to_page_cache_locked, but error if expected item has gone.
697  */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)698 static int shmem_add_to_page_cache(struct folio *folio,
699 				   struct address_space *mapping,
700 				   pgoff_t index, void *expected, gfp_t gfp,
701 				   struct mm_struct *charge_mm)
702 {
703 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
704 	long nr = folio_nr_pages(folio);
705 	int error;
706 
707 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
708 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
709 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
710 	VM_BUG_ON(expected && folio_test_large(folio));
711 
712 	folio_ref_add(folio, nr);
713 	folio->mapping = mapping;
714 	folio->index = index;
715 
716 	if (!folio_test_swapcache(folio)) {
717 		error = mem_cgroup_charge(folio, charge_mm, gfp);
718 		if (error) {
719 			if (folio_test_pmd_mappable(folio)) {
720 				count_vm_event(THP_FILE_FALLBACK);
721 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 			}
723 			goto error;
724 		}
725 	}
726 	folio_throttle_swaprate(folio, gfp);
727 
728 	do {
729 		xas_lock_irq(&xas);
730 		if (expected != xas_find_conflict(&xas)) {
731 			xas_set_err(&xas, -EEXIST);
732 			goto unlock;
733 		}
734 		if (expected && xas_find_conflict(&xas)) {
735 			xas_set_err(&xas, -EEXIST);
736 			goto unlock;
737 		}
738 		xas_store(&xas, folio);
739 		if (xas_error(&xas))
740 			goto unlock;
741 		if (folio_test_pmd_mappable(folio)) {
742 			count_vm_event(THP_FILE_ALLOC);
743 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
744 		}
745 		mapping->nrpages += nr;
746 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
747 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
748 unlock:
749 		xas_unlock_irq(&xas);
750 	} while (xas_nomem(&xas, gfp));
751 
752 	if (xas_error(&xas)) {
753 		error = xas_error(&xas);
754 		goto error;
755 	}
756 
757 	return 0;
758 error:
759 	folio->mapping = NULL;
760 	folio_ref_sub(folio, nr);
761 	return error;
762 }
763 
764 /*
765  * Like delete_from_page_cache, but substitutes swap for page.
766  */
shmem_delete_from_page_cache(struct page * page,void * radswap)767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769 	struct address_space *mapping = page->mapping;
770 	int error;
771 
772 	VM_BUG_ON_PAGE(PageCompound(page), page);
773 
774 	xa_lock_irq(&mapping->i_pages);
775 	error = shmem_replace_entry(mapping, page->index, page, radswap);
776 	page->mapping = NULL;
777 	mapping->nrpages--;
778 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
779 	__dec_lruvec_page_state(page, NR_SHMEM);
780 	xa_unlock_irq(&mapping->i_pages);
781 	put_page(page);
782 	BUG_ON(error);
783 }
784 
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)788 static int shmem_free_swap(struct address_space *mapping,
789 			   pgoff_t index, void *radswap)
790 {
791 	void *old;
792 
793 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 	if (old != radswap)
795 		return -ENOENT;
796 	free_swap_and_cache(radix_to_swp_entry(radswap));
797 	return 0;
798 }
799 
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 						pgoff_t start, pgoff_t end)
809 {
810 	XA_STATE(xas, &mapping->i_pages, start);
811 	struct page *page;
812 	unsigned long swapped = 0;
813 
814 	rcu_read_lock();
815 	xas_for_each(&xas, page, end - 1) {
816 		if (xas_retry(&xas, page))
817 			continue;
818 		if (xa_is_value(page))
819 			swapped++;
820 
821 		if (need_resched()) {
822 			xas_pause(&xas);
823 			cond_resched_rcu();
824 		}
825 	}
826 
827 	rcu_read_unlock();
828 
829 	return swapped << PAGE_SHIFT;
830 }
831 
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
shmem_swap_usage(struct vm_area_struct * vma)839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 	struct inode *inode = file_inode(vma->vm_file);
842 	struct shmem_inode_info *info = SHMEM_I(inode);
843 	struct address_space *mapping = inode->i_mapping;
844 	unsigned long swapped;
845 
846 	/* Be careful as we don't hold info->lock */
847 	swapped = READ_ONCE(info->swapped);
848 
849 	/*
850 	 * The easier cases are when the shmem object has nothing in swap, or
851 	 * the vma maps it whole. Then we can simply use the stats that we
852 	 * already track.
853 	 */
854 	if (!swapped)
855 		return 0;
856 
857 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 		return swapped << PAGE_SHIFT;
859 
860 	/* Here comes the more involved part */
861 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 					vma->vm_pgoff + vma_pages(vma));
863 }
864 
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
shmem_unlock_mapping(struct address_space * mapping)868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 	struct pagevec pvec;
871 	pgoff_t index = 0;
872 
873 	pagevec_init(&pvec);
874 	/*
875 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 	 */
877 	while (!mapping_unevictable(mapping)) {
878 		if (!pagevec_lookup(&pvec, mapping, &index))
879 			break;
880 		check_move_unevictable_pages(&pvec);
881 		pagevec_release(&pvec);
882 		cond_resched();
883 	}
884 }
885 
shmem_get_partial_folio(struct inode * inode,pgoff_t index)886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888 	struct folio *folio;
889 	struct page *page;
890 
891 	/*
892 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 	 * beyond i_size, and reports fallocated pages as holes.
894 	 */
895 	folio = __filemap_get_folio(inode->i_mapping, index,
896 					FGP_ENTRY | FGP_LOCK, 0);
897 	if (!xa_is_value(folio))
898 		return folio;
899 	/*
900 	 * But read a page back from swap if any of it is within i_size
901 	 * (although in some cases this is just a waste of time).
902 	 */
903 	page = NULL;
904 	shmem_getpage(inode, index, &page, SGP_READ);
905 	return page ? page_folio(page) : NULL;
906 }
907 
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 								 bool unfalloc)
914 {
915 	struct address_space *mapping = inode->i_mapping;
916 	struct shmem_inode_info *info = SHMEM_I(inode);
917 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 	struct folio_batch fbatch;
920 	pgoff_t indices[PAGEVEC_SIZE];
921 	struct folio *folio;
922 	bool same_folio;
923 	long nr_swaps_freed = 0;
924 	pgoff_t index;
925 	int i;
926 
927 	if (lend == -1)
928 		end = -1;	/* unsigned, so actually very big */
929 
930 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 		info->fallocend = start;
932 
933 	folio_batch_init(&fbatch);
934 	index = start;
935 	while (index < end && find_lock_entries(mapping, index, end - 1,
936 			&fbatch, indices)) {
937 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 			folio = fbatch.folios[i];
939 
940 			index = indices[i];
941 
942 			if (xa_is_value(folio)) {
943 				if (unfalloc)
944 					continue;
945 				nr_swaps_freed += !shmem_free_swap(mapping,
946 								index, folio);
947 				continue;
948 			}
949 			index += folio_nr_pages(folio) - 1;
950 
951 			if (!unfalloc || !folio_test_uptodate(folio))
952 				truncate_inode_folio(mapping, folio);
953 			folio_unlock(folio);
954 		}
955 		folio_batch_remove_exceptionals(&fbatch);
956 		folio_batch_release(&fbatch);
957 		cond_resched();
958 		index++;
959 	}
960 
961 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 	if (folio) {
964 		same_folio = lend < folio_pos(folio) + folio_size(folio);
965 		folio_mark_dirty(folio);
966 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 			start = folio->index + folio_nr_pages(folio);
968 			if (same_folio)
969 				end = folio->index;
970 		}
971 		folio_unlock(folio);
972 		folio_put(folio);
973 		folio = NULL;
974 	}
975 
976 	if (!same_folio)
977 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 	if (folio) {
979 		folio_mark_dirty(folio);
980 		if (!truncate_inode_partial_folio(folio, lstart, lend))
981 			end = folio->index;
982 		folio_unlock(folio);
983 		folio_put(folio);
984 	}
985 
986 	index = start;
987 	while (index < end) {
988 		cond_resched();
989 
990 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
991 				indices)) {
992 			/* If all gone or hole-punch or unfalloc, we're done */
993 			if (index == start || end != -1)
994 				break;
995 			/* But if truncating, restart to make sure all gone */
996 			index = start;
997 			continue;
998 		}
999 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 			folio = fbatch.folios[i];
1001 
1002 			index = indices[i];
1003 			if (xa_is_value(folio)) {
1004 				if (unfalloc)
1005 					continue;
1006 				if (shmem_free_swap(mapping, index, folio)) {
1007 					/* Swap was replaced by page: retry */
1008 					index--;
1009 					break;
1010 				}
1011 				nr_swaps_freed++;
1012 				continue;
1013 			}
1014 
1015 			folio_lock(folio);
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio)) {
1018 				if (folio_mapping(folio) != mapping) {
1019 					/* Page was replaced by swap: retry */
1020 					folio_unlock(folio);
1021 					index--;
1022 					break;
1023 				}
1024 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 						folio);
1026 				truncate_inode_folio(mapping, folio);
1027 			}
1028 			index = folio->index + folio_nr_pages(folio) - 1;
1029 			folio_unlock(folio);
1030 		}
1031 		folio_batch_remove_exceptionals(&fbatch);
1032 		folio_batch_release(&fbatch);
1033 		index++;
1034 	}
1035 
1036 	spin_lock_irq(&info->lock);
1037 	info->swapped -= nr_swaps_freed;
1038 	shmem_recalc_inode(inode);
1039 	spin_unlock_irq(&info->lock);
1040 }
1041 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 	shmem_undo_range(inode, lstart, lend, false);
1045 	inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048 
shmem_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 			 const struct path *path, struct kstat *stat,
1051 			 u32 request_mask, unsigned int query_flags)
1052 {
1053 	struct inode *inode = path->dentry->d_inode;
1054 	struct shmem_inode_info *info = SHMEM_I(inode);
1055 
1056 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 		spin_lock_irq(&info->lock);
1058 		shmem_recalc_inode(inode);
1059 		spin_unlock_irq(&info->lock);
1060 	}
1061 	generic_fillattr(&init_user_ns, inode, stat);
1062 
1063 	if (shmem_is_huge(NULL, inode, 0))
1064 		stat->blksize = HPAGE_PMD_SIZE;
1065 
1066 	if (request_mask & STATX_BTIME) {
1067 		stat->result_mask |= STATX_BTIME;
1068 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
shmem_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 			 struct dentry *dentry, struct iattr *attr)
1077 {
1078 	struct inode *inode = d_inode(dentry);
1079 	struct shmem_inode_info *info = SHMEM_I(inode);
1080 	int error;
1081 
1082 	error = setattr_prepare(&init_user_ns, dentry, attr);
1083 	if (error)
1084 		return error;
1085 
1086 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 		loff_t oldsize = inode->i_size;
1088 		loff_t newsize = attr->ia_size;
1089 
1090 		/* protected by i_rwsem */
1091 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 			return -EPERM;
1094 
1095 		if (newsize != oldsize) {
1096 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 					oldsize, newsize);
1098 			if (error)
1099 				return error;
1100 			i_size_write(inode, newsize);
1101 			inode->i_ctime = inode->i_mtime = current_time(inode);
1102 		}
1103 		if (newsize <= oldsize) {
1104 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105 			if (oldsize > holebegin)
1106 				unmap_mapping_range(inode->i_mapping,
1107 							holebegin, 0, 1);
1108 			if (info->alloced)
1109 				shmem_truncate_range(inode,
1110 							newsize, (loff_t)-1);
1111 			/* unmap again to remove racily COWed private pages */
1112 			if (oldsize > holebegin)
1113 				unmap_mapping_range(inode->i_mapping,
1114 							holebegin, 0, 1);
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
shmem_evict_inode(struct inode * inode)1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		mapping_set_exiting(inode->i_mapping);
1133 		shmem_truncate_range(inode, 0, (loff_t)-1);
1134 		if (!list_empty(&info->shrinklist)) {
1135 			spin_lock(&sbinfo->shrinklist_lock);
1136 			if (!list_empty(&info->shrinklist)) {
1137 				list_del_init(&info->shrinklist);
1138 				sbinfo->shrinklist_len--;
1139 			}
1140 			spin_unlock(&sbinfo->shrinklist_lock);
1141 		}
1142 		while (!list_empty(&info->swaplist)) {
1143 			/* Wait while shmem_unuse() is scanning this inode... */
1144 			wait_var_event(&info->stop_eviction,
1145 				       !atomic_read(&info->stop_eviction));
1146 			mutex_lock(&shmem_swaplist_mutex);
1147 			/* ...but beware of the race if we peeked too early */
1148 			if (!atomic_read(&info->stop_eviction))
1149 				list_del_init(&info->swaplist);
1150 			mutex_unlock(&shmem_swaplist_mutex);
1151 		}
1152 	}
1153 
1154 	simple_xattrs_free(&info->xattrs);
1155 	WARN_ON(inode->i_blocks);
1156 	shmem_free_inode(inode->i_sb);
1157 	clear_inode(inode);
1158 }
1159 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161 				   pgoff_t start, struct folio_batch *fbatch,
1162 				   pgoff_t *indices, unsigned int type)
1163 {
1164 	XA_STATE(xas, &mapping->i_pages, start);
1165 	struct folio *folio;
1166 	swp_entry_t entry;
1167 
1168 	rcu_read_lock();
1169 	xas_for_each(&xas, folio, ULONG_MAX) {
1170 		if (xas_retry(&xas, folio))
1171 			continue;
1172 
1173 		if (!xa_is_value(folio))
1174 			continue;
1175 
1176 		entry = radix_to_swp_entry(folio);
1177 		/*
1178 		 * swapin error entries can be found in the mapping. But they're
1179 		 * deliberately ignored here as we've done everything we can do.
1180 		 */
1181 		if (swp_type(entry) != type)
1182 			continue;
1183 
1184 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1185 		if (!folio_batch_add(fbatch, folio))
1186 			break;
1187 
1188 		if (need_resched()) {
1189 			xas_pause(&xas);
1190 			cond_resched_rcu();
1191 		}
1192 	}
1193 	rcu_read_unlock();
1194 
1195 	return xas.xa_index;
1196 }
1197 
1198 /*
1199  * Move the swapped pages for an inode to page cache. Returns the count
1200  * of pages swapped in, or the error in case of failure.
1201  */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1202 static int shmem_unuse_swap_entries(struct inode *inode,
1203 		struct folio_batch *fbatch, pgoff_t *indices)
1204 {
1205 	int i = 0;
1206 	int ret = 0;
1207 	int error = 0;
1208 	struct address_space *mapping = inode->i_mapping;
1209 
1210 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1211 		struct folio *folio = fbatch->folios[i];
1212 
1213 		if (!xa_is_value(folio))
1214 			continue;
1215 		error = shmem_swapin_folio(inode, indices[i],
1216 					  &folio, SGP_CACHE,
1217 					  mapping_gfp_mask(mapping),
1218 					  NULL, NULL);
1219 		if (error == 0) {
1220 			folio_unlock(folio);
1221 			folio_put(folio);
1222 			ret++;
1223 		}
1224 		if (error == -ENOMEM)
1225 			break;
1226 		error = 0;
1227 	}
1228 	return error ? error : ret;
1229 }
1230 
1231 /*
1232  * If swap found in inode, free it and move page from swapcache to filecache.
1233  */
shmem_unuse_inode(struct inode * inode,unsigned int type)1234 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1235 {
1236 	struct address_space *mapping = inode->i_mapping;
1237 	pgoff_t start = 0;
1238 	struct folio_batch fbatch;
1239 	pgoff_t indices[PAGEVEC_SIZE];
1240 	int ret = 0;
1241 
1242 	do {
1243 		folio_batch_init(&fbatch);
1244 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1245 		if (folio_batch_count(&fbatch) == 0) {
1246 			ret = 0;
1247 			break;
1248 		}
1249 
1250 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1251 		if (ret < 0)
1252 			break;
1253 
1254 		start = indices[folio_batch_count(&fbatch) - 1];
1255 	} while (true);
1256 
1257 	return ret;
1258 }
1259 
1260 /*
1261  * Read all the shared memory data that resides in the swap
1262  * device 'type' back into memory, so the swap device can be
1263  * unused.
1264  */
shmem_unuse(unsigned int type)1265 int shmem_unuse(unsigned int type)
1266 {
1267 	struct shmem_inode_info *info, *next;
1268 	int error = 0;
1269 
1270 	if (list_empty(&shmem_swaplist))
1271 		return 0;
1272 
1273 	mutex_lock(&shmem_swaplist_mutex);
1274 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1275 		if (!info->swapped) {
1276 			list_del_init(&info->swaplist);
1277 			continue;
1278 		}
1279 		/*
1280 		 * Drop the swaplist mutex while searching the inode for swap;
1281 		 * but before doing so, make sure shmem_evict_inode() will not
1282 		 * remove placeholder inode from swaplist, nor let it be freed
1283 		 * (igrab() would protect from unlink, but not from unmount).
1284 		 */
1285 		atomic_inc(&info->stop_eviction);
1286 		mutex_unlock(&shmem_swaplist_mutex);
1287 
1288 		error = shmem_unuse_inode(&info->vfs_inode, type);
1289 		cond_resched();
1290 
1291 		mutex_lock(&shmem_swaplist_mutex);
1292 		next = list_next_entry(info, swaplist);
1293 		if (!info->swapped)
1294 			list_del_init(&info->swaplist);
1295 		if (atomic_dec_and_test(&info->stop_eviction))
1296 			wake_up_var(&info->stop_eviction);
1297 		if (error)
1298 			break;
1299 	}
1300 	mutex_unlock(&shmem_swaplist_mutex);
1301 
1302 	return error;
1303 }
1304 
1305 /*
1306  * Move the page from the page cache to the swap cache.
1307  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1308 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1309 {
1310 	struct folio *folio = page_folio(page);
1311 	struct shmem_inode_info *info;
1312 	struct address_space *mapping;
1313 	struct inode *inode;
1314 	swp_entry_t swap;
1315 	pgoff_t index;
1316 
1317 	/*
1318 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1319 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1320 	 * and its shmem_writeback() needs them to be split when swapping.
1321 	 */
1322 	if (PageTransCompound(page)) {
1323 		/* Ensure the subpages are still dirty */
1324 		SetPageDirty(page);
1325 		if (split_huge_page(page) < 0)
1326 			goto redirty;
1327 		ClearPageDirty(page);
1328 	}
1329 
1330 	BUG_ON(!PageLocked(page));
1331 	mapping = page->mapping;
1332 	index = page->index;
1333 	inode = mapping->host;
1334 	info = SHMEM_I(inode);
1335 	if (info->flags & VM_LOCKED)
1336 		goto redirty;
1337 	if (!total_swap_pages)
1338 		goto redirty;
1339 
1340 	/*
1341 	 * Our capabilities prevent regular writeback or sync from ever calling
1342 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1343 	 * its underlying filesystem, in which case tmpfs should write out to
1344 	 * swap only in response to memory pressure, and not for the writeback
1345 	 * threads or sync.
1346 	 */
1347 	if (!wbc->for_reclaim) {
1348 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1349 		goto redirty;
1350 	}
1351 
1352 	/*
1353 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1354 	 * value into swapfile.c, the only way we can correctly account for a
1355 	 * fallocated page arriving here is now to initialize it and write it.
1356 	 *
1357 	 * That's okay for a page already fallocated earlier, but if we have
1358 	 * not yet completed the fallocation, then (a) we want to keep track
1359 	 * of this page in case we have to undo it, and (b) it may not be a
1360 	 * good idea to continue anyway, once we're pushing into swap.  So
1361 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1362 	 */
1363 	if (!PageUptodate(page)) {
1364 		if (inode->i_private) {
1365 			struct shmem_falloc *shmem_falloc;
1366 			spin_lock(&inode->i_lock);
1367 			shmem_falloc = inode->i_private;
1368 			if (shmem_falloc &&
1369 			    !shmem_falloc->waitq &&
1370 			    index >= shmem_falloc->start &&
1371 			    index < shmem_falloc->next)
1372 				shmem_falloc->nr_unswapped++;
1373 			else
1374 				shmem_falloc = NULL;
1375 			spin_unlock(&inode->i_lock);
1376 			if (shmem_falloc)
1377 				goto redirty;
1378 		}
1379 		clear_highpage(page);
1380 		flush_dcache_page(page);
1381 		SetPageUptodate(page);
1382 	}
1383 
1384 	swap = folio_alloc_swap(folio);
1385 	if (!swap.val)
1386 		goto redirty;
1387 
1388 	/*
1389 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1390 	 * if it's not already there.  Do it now before the page is
1391 	 * moved to swap cache, when its pagelock no longer protects
1392 	 * the inode from eviction.  But don't unlock the mutex until
1393 	 * we've incremented swapped, because shmem_unuse_inode() will
1394 	 * prune a !swapped inode from the swaplist under this mutex.
1395 	 */
1396 	mutex_lock(&shmem_swaplist_mutex);
1397 	if (list_empty(&info->swaplist))
1398 		list_add(&info->swaplist, &shmem_swaplist);
1399 
1400 	if (add_to_swap_cache(page, swap,
1401 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1402 			NULL) == 0) {
1403 		spin_lock_irq(&info->lock);
1404 		shmem_recalc_inode(inode);
1405 		info->swapped++;
1406 		spin_unlock_irq(&info->lock);
1407 
1408 		swap_shmem_alloc(swap);
1409 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1410 
1411 		mutex_unlock(&shmem_swaplist_mutex);
1412 		BUG_ON(page_mapped(page));
1413 		swap_writepage(page, wbc);
1414 		return 0;
1415 	}
1416 
1417 	mutex_unlock(&shmem_swaplist_mutex);
1418 	put_swap_page(page, swap);
1419 redirty:
1420 	set_page_dirty(page);
1421 	if (wbc->for_reclaim)
1422 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1423 	unlock_page(page);
1424 	return 0;
1425 }
1426 
1427 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1428 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1429 {
1430 	char buffer[64];
1431 
1432 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1433 		return;		/* show nothing */
1434 
1435 	mpol_to_str(buffer, sizeof(buffer), mpol);
1436 
1437 	seq_printf(seq, ",mpol=%s", buffer);
1438 }
1439 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1440 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1441 {
1442 	struct mempolicy *mpol = NULL;
1443 	if (sbinfo->mpol) {
1444 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1445 		mpol = sbinfo->mpol;
1446 		mpol_get(mpol);
1447 		raw_spin_unlock(&sbinfo->stat_lock);
1448 	}
1449 	return mpol;
1450 }
1451 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1452 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1453 {
1454 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1455 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1456 {
1457 	return NULL;
1458 }
1459 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1460 #ifndef CONFIG_NUMA
1461 #define vm_policy vm_private_data
1462 #endif
1463 
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1464 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1465 		struct shmem_inode_info *info, pgoff_t index)
1466 {
1467 	/* Create a pseudo vma that just contains the policy */
1468 	vma_init(vma, NULL);
1469 	/* Bias interleave by inode number to distribute better across nodes */
1470 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1471 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1472 }
1473 
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1474 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1475 {
1476 	/* Drop reference taken by mpol_shared_policy_lookup() */
1477 	mpol_cond_put(vma->vm_policy);
1478 }
1479 
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1480 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1481 			struct shmem_inode_info *info, pgoff_t index)
1482 {
1483 	struct vm_area_struct pvma;
1484 	struct page *page;
1485 	struct vm_fault vmf = {
1486 		.vma = &pvma,
1487 	};
1488 
1489 	shmem_pseudo_vma_init(&pvma, info, index);
1490 	page = swap_cluster_readahead(swap, gfp, &vmf);
1491 	shmem_pseudo_vma_destroy(&pvma);
1492 
1493 	return page;
1494 }
1495 
1496 /*
1497  * Make sure huge_gfp is always more limited than limit_gfp.
1498  * Some of the flags set permissions, while others set limitations.
1499  */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1500 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1501 {
1502 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1503 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1504 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1505 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1506 
1507 	/* Allow allocations only from the originally specified zones. */
1508 	result |= zoneflags;
1509 
1510 	/*
1511 	 * Minimize the result gfp by taking the union with the deny flags,
1512 	 * and the intersection of the allow flags.
1513 	 */
1514 	result |= (limit_gfp & denyflags);
1515 	result |= (huge_gfp & limit_gfp) & allowflags;
1516 
1517 	return result;
1518 }
1519 
shmem_alloc_hugefolio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1520 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1521 		struct shmem_inode_info *info, pgoff_t index)
1522 {
1523 	struct vm_area_struct pvma;
1524 	struct address_space *mapping = info->vfs_inode.i_mapping;
1525 	pgoff_t hindex;
1526 	struct folio *folio;
1527 
1528 	hindex = round_down(index, HPAGE_PMD_NR);
1529 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1530 								XA_PRESENT))
1531 		return NULL;
1532 
1533 	shmem_pseudo_vma_init(&pvma, info, hindex);
1534 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1535 	shmem_pseudo_vma_destroy(&pvma);
1536 	if (!folio)
1537 		count_vm_event(THP_FILE_FALLBACK);
1538 	return folio;
1539 }
1540 
shmem_alloc_folio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1541 static struct folio *shmem_alloc_folio(gfp_t gfp,
1542 			struct shmem_inode_info *info, pgoff_t index)
1543 {
1544 	struct vm_area_struct pvma;
1545 	struct folio *folio;
1546 
1547 	shmem_pseudo_vma_init(&pvma, info, index);
1548 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1549 	shmem_pseudo_vma_destroy(&pvma);
1550 
1551 	return folio;
1552 }
1553 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1554 static struct page *shmem_alloc_page(gfp_t gfp,
1555 			struct shmem_inode_info *info, pgoff_t index)
1556 {
1557 	return &shmem_alloc_folio(gfp, info, index)->page;
1558 }
1559 
shmem_alloc_and_acct_folio(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1560 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1561 		pgoff_t index, bool huge)
1562 {
1563 	struct shmem_inode_info *info = SHMEM_I(inode);
1564 	struct folio *folio;
1565 	int nr;
1566 	int err = -ENOSPC;
1567 
1568 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1569 		huge = false;
1570 	nr = huge ? HPAGE_PMD_NR : 1;
1571 
1572 	if (!shmem_inode_acct_block(inode, nr))
1573 		goto failed;
1574 
1575 	if (huge)
1576 		folio = shmem_alloc_hugefolio(gfp, info, index);
1577 	else
1578 		folio = shmem_alloc_folio(gfp, info, index);
1579 	if (folio) {
1580 		__folio_set_locked(folio);
1581 		__folio_set_swapbacked(folio);
1582 		return folio;
1583 	}
1584 
1585 	err = -ENOMEM;
1586 	shmem_inode_unacct_blocks(inode, nr);
1587 failed:
1588 	return ERR_PTR(err);
1589 }
1590 
1591 /*
1592  * When a page is moved from swapcache to shmem filecache (either by the
1593  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1594  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1595  * ignorance of the mapping it belongs to.  If that mapping has special
1596  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1597  * we may need to copy to a suitable page before moving to filecache.
1598  *
1599  * In a future release, this may well be extended to respect cpuset and
1600  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1601  * but for now it is a simple matter of zone.
1602  */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1603 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1604 {
1605 	return folio_zonenum(folio) > gfp_zone(gfp);
1606 }
1607 
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1608 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1609 				struct shmem_inode_info *info, pgoff_t index)
1610 {
1611 	struct page *oldpage, *newpage;
1612 	struct folio *old, *new;
1613 	struct address_space *swap_mapping;
1614 	swp_entry_t entry;
1615 	pgoff_t swap_index;
1616 	int error;
1617 
1618 	oldpage = *pagep;
1619 	entry.val = page_private(oldpage);
1620 	swap_index = swp_offset(entry);
1621 	swap_mapping = page_mapping(oldpage);
1622 
1623 	/*
1624 	 * We have arrived here because our zones are constrained, so don't
1625 	 * limit chance of success by further cpuset and node constraints.
1626 	 */
1627 	gfp &= ~GFP_CONSTRAINT_MASK;
1628 	newpage = shmem_alloc_page(gfp, info, index);
1629 	if (!newpage)
1630 		return -ENOMEM;
1631 
1632 	get_page(newpage);
1633 	copy_highpage(newpage, oldpage);
1634 	flush_dcache_page(newpage);
1635 
1636 	__SetPageLocked(newpage);
1637 	__SetPageSwapBacked(newpage);
1638 	SetPageUptodate(newpage);
1639 	set_page_private(newpage, entry.val);
1640 	SetPageSwapCache(newpage);
1641 
1642 	/*
1643 	 * Our caller will very soon move newpage out of swapcache, but it's
1644 	 * a nice clean interface for us to replace oldpage by newpage there.
1645 	 */
1646 	xa_lock_irq(&swap_mapping->i_pages);
1647 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1648 	if (!error) {
1649 		old = page_folio(oldpage);
1650 		new = page_folio(newpage);
1651 		mem_cgroup_migrate(old, new);
1652 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1653 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1654 	}
1655 	xa_unlock_irq(&swap_mapping->i_pages);
1656 
1657 	if (unlikely(error)) {
1658 		/*
1659 		 * Is this possible?  I think not, now that our callers check
1660 		 * both PageSwapCache and page_private after getting page lock;
1661 		 * but be defensive.  Reverse old to newpage for clear and free.
1662 		 */
1663 		oldpage = newpage;
1664 	} else {
1665 		lru_cache_add(newpage);
1666 		*pagep = newpage;
1667 	}
1668 
1669 	ClearPageSwapCache(oldpage);
1670 	set_page_private(oldpage, 0);
1671 
1672 	unlock_page(oldpage);
1673 	put_page(oldpage);
1674 	put_page(oldpage);
1675 	return error;
1676 }
1677 
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1678 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1679 					 struct folio *folio, swp_entry_t swap)
1680 {
1681 	struct address_space *mapping = inode->i_mapping;
1682 	struct shmem_inode_info *info = SHMEM_I(inode);
1683 	swp_entry_t swapin_error;
1684 	void *old;
1685 
1686 	swapin_error = make_swapin_error_entry(&folio->page);
1687 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1688 			     swp_to_radix_entry(swap),
1689 			     swp_to_radix_entry(swapin_error), 0);
1690 	if (old != swp_to_radix_entry(swap))
1691 		return;
1692 
1693 	folio_wait_writeback(folio);
1694 	delete_from_swap_cache(&folio->page);
1695 	spin_lock_irq(&info->lock);
1696 	/*
1697 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1698 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1699 	 * shmem_evict_inode.
1700 	 */
1701 	info->alloced--;
1702 	info->swapped--;
1703 	shmem_recalc_inode(inode);
1704 	spin_unlock_irq(&info->lock);
1705 	swap_free(swap);
1706 }
1707 
1708 /*
1709  * Swap in the page pointed to by *pagep.
1710  * Caller has to make sure that *pagep contains a valid swapped page.
1711  * Returns 0 and the page in pagep if success. On failure, returns the
1712  * error code and NULL in *pagep.
1713  */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1714 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1715 			     struct folio **foliop, enum sgp_type sgp,
1716 			     gfp_t gfp, struct vm_area_struct *vma,
1717 			     vm_fault_t *fault_type)
1718 {
1719 	struct address_space *mapping = inode->i_mapping;
1720 	struct shmem_inode_info *info = SHMEM_I(inode);
1721 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1722 	struct page *page;
1723 	struct folio *folio = NULL;
1724 	swp_entry_t swap;
1725 	int error;
1726 
1727 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1728 	swap = radix_to_swp_entry(*foliop);
1729 	*foliop = NULL;
1730 
1731 	if (is_swapin_error_entry(swap))
1732 		return -EIO;
1733 
1734 	/* Look it up and read it in.. */
1735 	page = lookup_swap_cache(swap, NULL, 0);
1736 	if (!page) {
1737 		/* Or update major stats only when swapin succeeds?? */
1738 		if (fault_type) {
1739 			*fault_type |= VM_FAULT_MAJOR;
1740 			count_vm_event(PGMAJFAULT);
1741 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1742 		}
1743 		/* Here we actually start the io */
1744 		page = shmem_swapin(swap, gfp, info, index);
1745 		if (!page) {
1746 			error = -ENOMEM;
1747 			goto failed;
1748 		}
1749 	}
1750 	folio = page_folio(page);
1751 
1752 	/* We have to do this with page locked to prevent races */
1753 	folio_lock(folio);
1754 	if (!folio_test_swapcache(folio) ||
1755 	    folio_swap_entry(folio).val != swap.val ||
1756 	    !shmem_confirm_swap(mapping, index, swap)) {
1757 		error = -EEXIST;
1758 		goto unlock;
1759 	}
1760 	if (!folio_test_uptodate(folio)) {
1761 		error = -EIO;
1762 		goto failed;
1763 	}
1764 	folio_wait_writeback(folio);
1765 
1766 	/*
1767 	 * Some architectures may have to restore extra metadata to the
1768 	 * folio after reading from swap.
1769 	 */
1770 	arch_swap_restore(swap, folio);
1771 
1772 	if (shmem_should_replace_folio(folio, gfp)) {
1773 		error = shmem_replace_page(&page, gfp, info, index);
1774 		folio = page_folio(page);
1775 		if (error)
1776 			goto failed;
1777 	}
1778 
1779 	error = shmem_add_to_page_cache(folio, mapping, index,
1780 					swp_to_radix_entry(swap), gfp,
1781 					charge_mm);
1782 	if (error)
1783 		goto failed;
1784 
1785 	spin_lock_irq(&info->lock);
1786 	info->swapped--;
1787 	shmem_recalc_inode(inode);
1788 	spin_unlock_irq(&info->lock);
1789 
1790 	if (sgp == SGP_WRITE)
1791 		folio_mark_accessed(folio);
1792 
1793 	delete_from_swap_cache(&folio->page);
1794 	folio_mark_dirty(folio);
1795 	swap_free(swap);
1796 
1797 	*foliop = folio;
1798 	return 0;
1799 failed:
1800 	if (!shmem_confirm_swap(mapping, index, swap))
1801 		error = -EEXIST;
1802 	if (error == -EIO)
1803 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1804 unlock:
1805 	if (folio) {
1806 		folio_unlock(folio);
1807 		folio_put(folio);
1808 	}
1809 
1810 	return error;
1811 }
1812 
1813 /*
1814  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1815  *
1816  * If we allocate a new one we do not mark it dirty. That's up to the
1817  * vm. If we swap it in we mark it dirty since we also free the swap
1818  * entry since a page cannot live in both the swap and page cache.
1819  *
1820  * vma, vmf, and fault_type are only supplied by shmem_fault:
1821  * otherwise they are NULL.
1822  */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1823 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1824 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1825 	struct vm_area_struct *vma, struct vm_fault *vmf,
1826 			vm_fault_t *fault_type)
1827 {
1828 	struct address_space *mapping = inode->i_mapping;
1829 	struct shmem_inode_info *info = SHMEM_I(inode);
1830 	struct shmem_sb_info *sbinfo;
1831 	struct mm_struct *charge_mm;
1832 	struct folio *folio;
1833 	pgoff_t hindex = index;
1834 	gfp_t huge_gfp;
1835 	int error;
1836 	int once = 0;
1837 	int alloced = 0;
1838 
1839 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1840 		return -EFBIG;
1841 repeat:
1842 	if (sgp <= SGP_CACHE &&
1843 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1844 		return -EINVAL;
1845 	}
1846 
1847 	sbinfo = SHMEM_SB(inode->i_sb);
1848 	charge_mm = vma ? vma->vm_mm : NULL;
1849 
1850 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1851 	if (folio && vma && userfaultfd_minor(vma)) {
1852 		if (!xa_is_value(folio)) {
1853 			folio_unlock(folio);
1854 			folio_put(folio);
1855 		}
1856 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1857 		return 0;
1858 	}
1859 
1860 	if (xa_is_value(folio)) {
1861 		error = shmem_swapin_folio(inode, index, &folio,
1862 					  sgp, gfp, vma, fault_type);
1863 		if (error == -EEXIST)
1864 			goto repeat;
1865 
1866 		*pagep = &folio->page;
1867 		return error;
1868 	}
1869 
1870 	if (folio) {
1871 		hindex = folio->index;
1872 		if (sgp == SGP_WRITE)
1873 			folio_mark_accessed(folio);
1874 		if (folio_test_uptodate(folio))
1875 			goto out;
1876 		/* fallocated page */
1877 		if (sgp != SGP_READ)
1878 			goto clear;
1879 		folio_unlock(folio);
1880 		folio_put(folio);
1881 	}
1882 
1883 	/*
1884 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1885 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1886 	 */
1887 	*pagep = NULL;
1888 	if (sgp == SGP_READ)
1889 		return 0;
1890 	if (sgp == SGP_NOALLOC)
1891 		return -ENOENT;
1892 
1893 	/*
1894 	 * Fast cache lookup and swap lookup did not find it: allocate.
1895 	 */
1896 
1897 	if (vma && userfaultfd_missing(vma)) {
1898 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1899 		return 0;
1900 	}
1901 
1902 	if (!shmem_is_huge(vma, inode, index))
1903 		goto alloc_nohuge;
1904 
1905 	huge_gfp = vma_thp_gfp_mask(vma);
1906 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1907 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1908 	if (IS_ERR(folio)) {
1909 alloc_nohuge:
1910 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1911 	}
1912 	if (IS_ERR(folio)) {
1913 		int retry = 5;
1914 
1915 		error = PTR_ERR(folio);
1916 		folio = NULL;
1917 		if (error != -ENOSPC)
1918 			goto unlock;
1919 		/*
1920 		 * Try to reclaim some space by splitting a huge page
1921 		 * beyond i_size on the filesystem.
1922 		 */
1923 		while (retry--) {
1924 			int ret;
1925 
1926 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1927 			if (ret == SHRINK_STOP)
1928 				break;
1929 			if (ret)
1930 				goto alloc_nohuge;
1931 		}
1932 		goto unlock;
1933 	}
1934 
1935 	hindex = round_down(index, folio_nr_pages(folio));
1936 
1937 	if (sgp == SGP_WRITE)
1938 		__folio_set_referenced(folio);
1939 
1940 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1941 					NULL, gfp & GFP_RECLAIM_MASK,
1942 					charge_mm);
1943 	if (error)
1944 		goto unacct;
1945 	folio_add_lru(folio);
1946 
1947 	spin_lock_irq(&info->lock);
1948 	info->alloced += folio_nr_pages(folio);
1949 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1950 	shmem_recalc_inode(inode);
1951 	spin_unlock_irq(&info->lock);
1952 	alloced = true;
1953 
1954 	if (folio_test_pmd_mappable(folio) &&
1955 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1956 			hindex + HPAGE_PMD_NR - 1) {
1957 		/*
1958 		 * Part of the huge page is beyond i_size: subject
1959 		 * to shrink under memory pressure.
1960 		 */
1961 		spin_lock(&sbinfo->shrinklist_lock);
1962 		/*
1963 		 * _careful to defend against unlocked access to
1964 		 * ->shrink_list in shmem_unused_huge_shrink()
1965 		 */
1966 		if (list_empty_careful(&info->shrinklist)) {
1967 			list_add_tail(&info->shrinklist,
1968 				      &sbinfo->shrinklist);
1969 			sbinfo->shrinklist_len++;
1970 		}
1971 		spin_unlock(&sbinfo->shrinklist_lock);
1972 	}
1973 
1974 	/*
1975 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976 	 */
1977 	if (sgp == SGP_FALLOC)
1978 		sgp = SGP_WRITE;
1979 clear:
1980 	/*
1981 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1982 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1983 	 * it now, lest undo on failure cancel our earlier guarantee.
1984 	 */
1985 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1986 		long i, n = folio_nr_pages(folio);
1987 
1988 		for (i = 0; i < n; i++)
1989 			clear_highpage(folio_page(folio, i));
1990 		flush_dcache_folio(folio);
1991 		folio_mark_uptodate(folio);
1992 	}
1993 
1994 	/* Perhaps the file has been truncated since we checked */
1995 	if (sgp <= SGP_CACHE &&
1996 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1997 		if (alloced) {
1998 			folio_clear_dirty(folio);
1999 			filemap_remove_folio(folio);
2000 			spin_lock_irq(&info->lock);
2001 			shmem_recalc_inode(inode);
2002 			spin_unlock_irq(&info->lock);
2003 		}
2004 		error = -EINVAL;
2005 		goto unlock;
2006 	}
2007 out:
2008 	*pagep = folio_page(folio, index - hindex);
2009 	return 0;
2010 
2011 	/*
2012 	 * Error recovery.
2013 	 */
2014 unacct:
2015 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2016 
2017 	if (folio_test_large(folio)) {
2018 		folio_unlock(folio);
2019 		folio_put(folio);
2020 		goto alloc_nohuge;
2021 	}
2022 unlock:
2023 	if (folio) {
2024 		folio_unlock(folio);
2025 		folio_put(folio);
2026 	}
2027 	if (error == -ENOSPC && !once++) {
2028 		spin_lock_irq(&info->lock);
2029 		shmem_recalc_inode(inode);
2030 		spin_unlock_irq(&info->lock);
2031 		goto repeat;
2032 	}
2033 	if (error == -EEXIST)
2034 		goto repeat;
2035 	return error;
2036 }
2037 
2038 /*
2039  * This is like autoremove_wake_function, but it removes the wait queue
2040  * entry unconditionally - even if something else had already woken the
2041  * target.
2042  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2043 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2044 {
2045 	int ret = default_wake_function(wait, mode, sync, key);
2046 	list_del_init(&wait->entry);
2047 	return ret;
2048 }
2049 
shmem_fault(struct vm_fault * vmf)2050 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2051 {
2052 	struct vm_area_struct *vma = vmf->vma;
2053 	struct inode *inode = file_inode(vma->vm_file);
2054 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2055 	int err;
2056 	vm_fault_t ret = VM_FAULT_LOCKED;
2057 
2058 	/*
2059 	 * Trinity finds that probing a hole which tmpfs is punching can
2060 	 * prevent the hole-punch from ever completing: which in turn
2061 	 * locks writers out with its hold on i_rwsem.  So refrain from
2062 	 * faulting pages into the hole while it's being punched.  Although
2063 	 * shmem_undo_range() does remove the additions, it may be unable to
2064 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2065 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2066 	 *
2067 	 * It does not matter if we sometimes reach this check just before the
2068 	 * hole-punch begins, so that one fault then races with the punch:
2069 	 * we just need to make racing faults a rare case.
2070 	 *
2071 	 * The implementation below would be much simpler if we just used a
2072 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2073 	 * and bloating every shmem inode for this unlikely case would be sad.
2074 	 */
2075 	if (unlikely(inode->i_private)) {
2076 		struct shmem_falloc *shmem_falloc;
2077 
2078 		spin_lock(&inode->i_lock);
2079 		shmem_falloc = inode->i_private;
2080 		if (shmem_falloc &&
2081 		    shmem_falloc->waitq &&
2082 		    vmf->pgoff >= shmem_falloc->start &&
2083 		    vmf->pgoff < shmem_falloc->next) {
2084 			struct file *fpin;
2085 			wait_queue_head_t *shmem_falloc_waitq;
2086 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2087 
2088 			ret = VM_FAULT_NOPAGE;
2089 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2090 			if (fpin)
2091 				ret = VM_FAULT_RETRY;
2092 
2093 			shmem_falloc_waitq = shmem_falloc->waitq;
2094 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2095 					TASK_UNINTERRUPTIBLE);
2096 			spin_unlock(&inode->i_lock);
2097 			schedule();
2098 
2099 			/*
2100 			 * shmem_falloc_waitq points into the shmem_fallocate()
2101 			 * stack of the hole-punching task: shmem_falloc_waitq
2102 			 * is usually invalid by the time we reach here, but
2103 			 * finish_wait() does not dereference it in that case;
2104 			 * though i_lock needed lest racing with wake_up_all().
2105 			 */
2106 			spin_lock(&inode->i_lock);
2107 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2108 			spin_unlock(&inode->i_lock);
2109 
2110 			if (fpin)
2111 				fput(fpin);
2112 			return ret;
2113 		}
2114 		spin_unlock(&inode->i_lock);
2115 	}
2116 
2117 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2118 				  gfp, vma, vmf, &ret);
2119 	if (err)
2120 		return vmf_error(err);
2121 	return ret;
2122 }
2123 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2124 unsigned long shmem_get_unmapped_area(struct file *file,
2125 				      unsigned long uaddr, unsigned long len,
2126 				      unsigned long pgoff, unsigned long flags)
2127 {
2128 	unsigned long (*get_area)(struct file *,
2129 		unsigned long, unsigned long, unsigned long, unsigned long);
2130 	unsigned long addr;
2131 	unsigned long offset;
2132 	unsigned long inflated_len;
2133 	unsigned long inflated_addr;
2134 	unsigned long inflated_offset;
2135 
2136 	if (len > TASK_SIZE)
2137 		return -ENOMEM;
2138 
2139 	get_area = current->mm->get_unmapped_area;
2140 	addr = get_area(file, uaddr, len, pgoff, flags);
2141 
2142 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2143 		return addr;
2144 	if (IS_ERR_VALUE(addr))
2145 		return addr;
2146 	if (addr & ~PAGE_MASK)
2147 		return addr;
2148 	if (addr > TASK_SIZE - len)
2149 		return addr;
2150 
2151 	if (shmem_huge == SHMEM_HUGE_DENY)
2152 		return addr;
2153 	if (len < HPAGE_PMD_SIZE)
2154 		return addr;
2155 	if (flags & MAP_FIXED)
2156 		return addr;
2157 	/*
2158 	 * Our priority is to support MAP_SHARED mapped hugely;
2159 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2160 	 * But if caller specified an address hint and we allocated area there
2161 	 * successfully, respect that as before.
2162 	 */
2163 	if (uaddr == addr)
2164 		return addr;
2165 
2166 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2167 		struct super_block *sb;
2168 
2169 		if (file) {
2170 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2171 			sb = file_inode(file)->i_sb;
2172 		} else {
2173 			/*
2174 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2175 			 * for "/dev/zero", to create a shared anonymous object.
2176 			 */
2177 			if (IS_ERR(shm_mnt))
2178 				return addr;
2179 			sb = shm_mnt->mnt_sb;
2180 		}
2181 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2182 			return addr;
2183 	}
2184 
2185 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2186 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2187 		return addr;
2188 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2189 		return addr;
2190 
2191 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2192 	if (inflated_len > TASK_SIZE)
2193 		return addr;
2194 	if (inflated_len < len)
2195 		return addr;
2196 
2197 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2198 	if (IS_ERR_VALUE(inflated_addr))
2199 		return addr;
2200 	if (inflated_addr & ~PAGE_MASK)
2201 		return addr;
2202 
2203 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2204 	inflated_addr += offset - inflated_offset;
2205 	if (inflated_offset > offset)
2206 		inflated_addr += HPAGE_PMD_SIZE;
2207 
2208 	if (inflated_addr > TASK_SIZE - len)
2209 		return addr;
2210 	return inflated_addr;
2211 }
2212 
2213 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2214 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2215 {
2216 	struct inode *inode = file_inode(vma->vm_file);
2217 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2218 }
2219 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2220 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2221 					  unsigned long addr)
2222 {
2223 	struct inode *inode = file_inode(vma->vm_file);
2224 	pgoff_t index;
2225 
2226 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2227 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2228 }
2229 #endif
2230 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2231 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2232 {
2233 	struct inode *inode = file_inode(file);
2234 	struct shmem_inode_info *info = SHMEM_I(inode);
2235 	int retval = -ENOMEM;
2236 
2237 	/*
2238 	 * What serializes the accesses to info->flags?
2239 	 * ipc_lock_object() when called from shmctl_do_lock(),
2240 	 * no serialization needed when called from shm_destroy().
2241 	 */
2242 	if (lock && !(info->flags & VM_LOCKED)) {
2243 		if (!user_shm_lock(inode->i_size, ucounts))
2244 			goto out_nomem;
2245 		info->flags |= VM_LOCKED;
2246 		mapping_set_unevictable(file->f_mapping);
2247 	}
2248 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2249 		user_shm_unlock(inode->i_size, ucounts);
2250 		info->flags &= ~VM_LOCKED;
2251 		mapping_clear_unevictable(file->f_mapping);
2252 	}
2253 	retval = 0;
2254 
2255 out_nomem:
2256 	return retval;
2257 }
2258 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2259 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2260 {
2261 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2262 	int ret;
2263 
2264 	ret = seal_check_future_write(info->seals, vma);
2265 	if (ret)
2266 		return ret;
2267 
2268 	/* arm64 - allow memory tagging on RAM-based files */
2269 	vma->vm_flags |= VM_MTE_ALLOWED;
2270 
2271 	file_accessed(file);
2272 	vma->vm_ops = &shmem_vm_ops;
2273 	return 0;
2274 }
2275 
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2276 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2277 				     umode_t mode, dev_t dev, unsigned long flags)
2278 {
2279 	struct inode *inode;
2280 	struct shmem_inode_info *info;
2281 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2282 	ino_t ino;
2283 
2284 	if (shmem_reserve_inode(sb, &ino))
2285 		return NULL;
2286 
2287 	inode = new_inode(sb);
2288 	if (inode) {
2289 		inode->i_ino = ino;
2290 		inode_init_owner(&init_user_ns, inode, dir, mode);
2291 		inode->i_blocks = 0;
2292 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2293 		inode->i_generation = prandom_u32();
2294 		info = SHMEM_I(inode);
2295 		memset(info, 0, (char *)inode - (char *)info);
2296 		spin_lock_init(&info->lock);
2297 		atomic_set(&info->stop_eviction, 0);
2298 		info->seals = F_SEAL_SEAL;
2299 		info->flags = flags & VM_NORESERVE;
2300 		info->i_crtime = inode->i_mtime;
2301 		INIT_LIST_HEAD(&info->shrinklist);
2302 		INIT_LIST_HEAD(&info->swaplist);
2303 		simple_xattrs_init(&info->xattrs);
2304 		cache_no_acl(inode);
2305 		mapping_set_large_folios(inode->i_mapping);
2306 
2307 		switch (mode & S_IFMT) {
2308 		default:
2309 			inode->i_op = &shmem_special_inode_operations;
2310 			init_special_inode(inode, mode, dev);
2311 			break;
2312 		case S_IFREG:
2313 			inode->i_mapping->a_ops = &shmem_aops;
2314 			inode->i_op = &shmem_inode_operations;
2315 			inode->i_fop = &shmem_file_operations;
2316 			mpol_shared_policy_init(&info->policy,
2317 						 shmem_get_sbmpol(sbinfo));
2318 			break;
2319 		case S_IFDIR:
2320 			inc_nlink(inode);
2321 			/* Some things misbehave if size == 0 on a directory */
2322 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2323 			inode->i_op = &shmem_dir_inode_operations;
2324 			inode->i_fop = &simple_dir_operations;
2325 			break;
2326 		case S_IFLNK:
2327 			/*
2328 			 * Must not load anything in the rbtree,
2329 			 * mpol_free_shared_policy will not be called.
2330 			 */
2331 			mpol_shared_policy_init(&info->policy, NULL);
2332 			break;
2333 		}
2334 
2335 		lockdep_annotate_inode_mutex_key(inode);
2336 	} else
2337 		shmem_free_inode(sb);
2338 	return inode;
2339 }
2340 
2341 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,bool wp_copy,struct page ** pagep)2342 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2343 			   pmd_t *dst_pmd,
2344 			   struct vm_area_struct *dst_vma,
2345 			   unsigned long dst_addr,
2346 			   unsigned long src_addr,
2347 			   bool zeropage, bool wp_copy,
2348 			   struct page **pagep)
2349 {
2350 	struct inode *inode = file_inode(dst_vma->vm_file);
2351 	struct shmem_inode_info *info = SHMEM_I(inode);
2352 	struct address_space *mapping = inode->i_mapping;
2353 	gfp_t gfp = mapping_gfp_mask(mapping);
2354 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2355 	void *page_kaddr;
2356 	struct folio *folio;
2357 	struct page *page;
2358 	int ret;
2359 	pgoff_t max_off;
2360 
2361 	if (!shmem_inode_acct_block(inode, 1)) {
2362 		/*
2363 		 * We may have got a page, returned -ENOENT triggering a retry,
2364 		 * and now we find ourselves with -ENOMEM. Release the page, to
2365 		 * avoid a BUG_ON in our caller.
2366 		 */
2367 		if (unlikely(*pagep)) {
2368 			put_page(*pagep);
2369 			*pagep = NULL;
2370 		}
2371 		return -ENOMEM;
2372 	}
2373 
2374 	if (!*pagep) {
2375 		ret = -ENOMEM;
2376 		page = shmem_alloc_page(gfp, info, pgoff);
2377 		if (!page)
2378 			goto out_unacct_blocks;
2379 
2380 		if (!zeropage) {	/* COPY */
2381 			page_kaddr = kmap_atomic(page);
2382 			ret = copy_from_user(page_kaddr,
2383 					     (const void __user *)src_addr,
2384 					     PAGE_SIZE);
2385 			kunmap_atomic(page_kaddr);
2386 
2387 			/* fallback to copy_from_user outside mmap_lock */
2388 			if (unlikely(ret)) {
2389 				*pagep = page;
2390 				ret = -ENOENT;
2391 				/* don't free the page */
2392 				goto out_unacct_blocks;
2393 			}
2394 
2395 			flush_dcache_page(page);
2396 		} else {		/* ZEROPAGE */
2397 			clear_user_highpage(page, dst_addr);
2398 		}
2399 	} else {
2400 		page = *pagep;
2401 		*pagep = NULL;
2402 	}
2403 
2404 	VM_BUG_ON(PageLocked(page));
2405 	VM_BUG_ON(PageSwapBacked(page));
2406 	__SetPageLocked(page);
2407 	__SetPageSwapBacked(page);
2408 	__SetPageUptodate(page);
2409 
2410 	ret = -EFAULT;
2411 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2412 	if (unlikely(pgoff >= max_off))
2413 		goto out_release;
2414 
2415 	folio = page_folio(page);
2416 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2417 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2418 	if (ret)
2419 		goto out_release;
2420 
2421 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2422 				       page, true, wp_copy);
2423 	if (ret)
2424 		goto out_delete_from_cache;
2425 
2426 	spin_lock_irq(&info->lock);
2427 	info->alloced++;
2428 	inode->i_blocks += BLOCKS_PER_PAGE;
2429 	shmem_recalc_inode(inode);
2430 	spin_unlock_irq(&info->lock);
2431 
2432 	unlock_page(page);
2433 	return 0;
2434 out_delete_from_cache:
2435 	delete_from_page_cache(page);
2436 out_release:
2437 	unlock_page(page);
2438 	put_page(page);
2439 out_unacct_blocks:
2440 	shmem_inode_unacct_blocks(inode, 1);
2441 	return ret;
2442 }
2443 #endif /* CONFIG_USERFAULTFD */
2444 
2445 #ifdef CONFIG_TMPFS
2446 static const struct inode_operations shmem_symlink_inode_operations;
2447 static const struct inode_operations shmem_short_symlink_operations;
2448 
2449 #ifdef CONFIG_TMPFS_XATTR
2450 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2451 #else
2452 #define shmem_initxattrs NULL
2453 #endif
2454 
2455 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2456 shmem_write_begin(struct file *file, struct address_space *mapping,
2457 			loff_t pos, unsigned len,
2458 			struct page **pagep, void **fsdata)
2459 {
2460 	struct inode *inode = mapping->host;
2461 	struct shmem_inode_info *info = SHMEM_I(inode);
2462 	pgoff_t index = pos >> PAGE_SHIFT;
2463 	int ret = 0;
2464 
2465 	/* i_rwsem is held by caller */
2466 	if (unlikely(info->seals & (F_SEAL_GROW |
2467 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2468 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2469 			return -EPERM;
2470 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2471 			return -EPERM;
2472 	}
2473 
2474 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2475 
2476 	if (ret)
2477 		return ret;
2478 
2479 	if (PageHWPoison(*pagep)) {
2480 		unlock_page(*pagep);
2481 		put_page(*pagep);
2482 		*pagep = NULL;
2483 		return -EIO;
2484 	}
2485 
2486 	return 0;
2487 }
2488 
2489 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2490 shmem_write_end(struct file *file, struct address_space *mapping,
2491 			loff_t pos, unsigned len, unsigned copied,
2492 			struct page *page, void *fsdata)
2493 {
2494 	struct inode *inode = mapping->host;
2495 
2496 	if (pos + copied > inode->i_size)
2497 		i_size_write(inode, pos + copied);
2498 
2499 	if (!PageUptodate(page)) {
2500 		struct page *head = compound_head(page);
2501 		if (PageTransCompound(page)) {
2502 			int i;
2503 
2504 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2505 				if (head + i == page)
2506 					continue;
2507 				clear_highpage(head + i);
2508 				flush_dcache_page(head + i);
2509 			}
2510 		}
2511 		if (copied < PAGE_SIZE) {
2512 			unsigned from = pos & (PAGE_SIZE - 1);
2513 			zero_user_segments(page, 0, from,
2514 					from + copied, PAGE_SIZE);
2515 		}
2516 		SetPageUptodate(head);
2517 	}
2518 	set_page_dirty(page);
2519 	unlock_page(page);
2520 	put_page(page);
2521 
2522 	return copied;
2523 }
2524 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2525 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2526 {
2527 	struct file *file = iocb->ki_filp;
2528 	struct inode *inode = file_inode(file);
2529 	struct address_space *mapping = inode->i_mapping;
2530 	pgoff_t index;
2531 	unsigned long offset;
2532 	int error = 0;
2533 	ssize_t retval = 0;
2534 	loff_t *ppos = &iocb->ki_pos;
2535 
2536 	index = *ppos >> PAGE_SHIFT;
2537 	offset = *ppos & ~PAGE_MASK;
2538 
2539 	for (;;) {
2540 		struct page *page = NULL;
2541 		pgoff_t end_index;
2542 		unsigned long nr, ret;
2543 		loff_t i_size = i_size_read(inode);
2544 
2545 		end_index = i_size >> PAGE_SHIFT;
2546 		if (index > end_index)
2547 			break;
2548 		if (index == end_index) {
2549 			nr = i_size & ~PAGE_MASK;
2550 			if (nr <= offset)
2551 				break;
2552 		}
2553 
2554 		error = shmem_getpage(inode, index, &page, SGP_READ);
2555 		if (error) {
2556 			if (error == -EINVAL)
2557 				error = 0;
2558 			break;
2559 		}
2560 		if (page) {
2561 			unlock_page(page);
2562 
2563 			if (PageHWPoison(page)) {
2564 				put_page(page);
2565 				error = -EIO;
2566 				break;
2567 			}
2568 		}
2569 
2570 		/*
2571 		 * We must evaluate after, since reads (unlike writes)
2572 		 * are called without i_rwsem protection against truncate
2573 		 */
2574 		nr = PAGE_SIZE;
2575 		i_size = i_size_read(inode);
2576 		end_index = i_size >> PAGE_SHIFT;
2577 		if (index == end_index) {
2578 			nr = i_size & ~PAGE_MASK;
2579 			if (nr <= offset) {
2580 				if (page)
2581 					put_page(page);
2582 				break;
2583 			}
2584 		}
2585 		nr -= offset;
2586 
2587 		if (page) {
2588 			/*
2589 			 * If users can be writing to this page using arbitrary
2590 			 * virtual addresses, take care about potential aliasing
2591 			 * before reading the page on the kernel side.
2592 			 */
2593 			if (mapping_writably_mapped(mapping))
2594 				flush_dcache_page(page);
2595 			/*
2596 			 * Mark the page accessed if we read the beginning.
2597 			 */
2598 			if (!offset)
2599 				mark_page_accessed(page);
2600 			/*
2601 			 * Ok, we have the page, and it's up-to-date, so
2602 			 * now we can copy it to user space...
2603 			 */
2604 			ret = copy_page_to_iter(page, offset, nr, to);
2605 			put_page(page);
2606 
2607 		} else if (iter_is_iovec(to)) {
2608 			/*
2609 			 * Copy to user tends to be so well optimized, but
2610 			 * clear_user() not so much, that it is noticeably
2611 			 * faster to copy the zero page instead of clearing.
2612 			 */
2613 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2614 		} else {
2615 			/*
2616 			 * But submitting the same page twice in a row to
2617 			 * splice() - or others? - can result in confusion:
2618 			 * so don't attempt that optimization on pipes etc.
2619 			 */
2620 			ret = iov_iter_zero(nr, to);
2621 		}
2622 
2623 		retval += ret;
2624 		offset += ret;
2625 		index += offset >> PAGE_SHIFT;
2626 		offset &= ~PAGE_MASK;
2627 
2628 		if (!iov_iter_count(to))
2629 			break;
2630 		if (ret < nr) {
2631 			error = -EFAULT;
2632 			break;
2633 		}
2634 		cond_resched();
2635 	}
2636 
2637 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2638 	file_accessed(file);
2639 	return retval ? retval : error;
2640 }
2641 
shmem_file_llseek(struct file * file,loff_t offset,int whence)2642 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2643 {
2644 	struct address_space *mapping = file->f_mapping;
2645 	struct inode *inode = mapping->host;
2646 
2647 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2648 		return generic_file_llseek_size(file, offset, whence,
2649 					MAX_LFS_FILESIZE, i_size_read(inode));
2650 	if (offset < 0)
2651 		return -ENXIO;
2652 
2653 	inode_lock(inode);
2654 	/* We're holding i_rwsem so we can access i_size directly */
2655 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2656 	if (offset >= 0)
2657 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2658 	inode_unlock(inode);
2659 	return offset;
2660 }
2661 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2662 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2663 							 loff_t len)
2664 {
2665 	struct inode *inode = file_inode(file);
2666 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2667 	struct shmem_inode_info *info = SHMEM_I(inode);
2668 	struct shmem_falloc shmem_falloc;
2669 	pgoff_t start, index, end, undo_fallocend;
2670 	int error;
2671 
2672 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2673 		return -EOPNOTSUPP;
2674 
2675 	inode_lock(inode);
2676 
2677 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2678 		struct address_space *mapping = file->f_mapping;
2679 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2680 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2681 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2682 
2683 		/* protected by i_rwsem */
2684 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2685 			error = -EPERM;
2686 			goto out;
2687 		}
2688 
2689 		shmem_falloc.waitq = &shmem_falloc_waitq;
2690 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2691 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2692 		spin_lock(&inode->i_lock);
2693 		inode->i_private = &shmem_falloc;
2694 		spin_unlock(&inode->i_lock);
2695 
2696 		if ((u64)unmap_end > (u64)unmap_start)
2697 			unmap_mapping_range(mapping, unmap_start,
2698 					    1 + unmap_end - unmap_start, 0);
2699 		shmem_truncate_range(inode, offset, offset + len - 1);
2700 		/* No need to unmap again: hole-punching leaves COWed pages */
2701 
2702 		spin_lock(&inode->i_lock);
2703 		inode->i_private = NULL;
2704 		wake_up_all(&shmem_falloc_waitq);
2705 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2706 		spin_unlock(&inode->i_lock);
2707 		error = 0;
2708 		goto out;
2709 	}
2710 
2711 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2712 	error = inode_newsize_ok(inode, offset + len);
2713 	if (error)
2714 		goto out;
2715 
2716 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2717 		error = -EPERM;
2718 		goto out;
2719 	}
2720 
2721 	start = offset >> PAGE_SHIFT;
2722 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2723 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2724 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2725 		error = -ENOSPC;
2726 		goto out;
2727 	}
2728 
2729 	shmem_falloc.waitq = NULL;
2730 	shmem_falloc.start = start;
2731 	shmem_falloc.next  = start;
2732 	shmem_falloc.nr_falloced = 0;
2733 	shmem_falloc.nr_unswapped = 0;
2734 	spin_lock(&inode->i_lock);
2735 	inode->i_private = &shmem_falloc;
2736 	spin_unlock(&inode->i_lock);
2737 
2738 	/*
2739 	 * info->fallocend is only relevant when huge pages might be
2740 	 * involved: to prevent split_huge_page() freeing fallocated
2741 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2742 	 */
2743 	undo_fallocend = info->fallocend;
2744 	if (info->fallocend < end)
2745 		info->fallocend = end;
2746 
2747 	for (index = start; index < end; ) {
2748 		struct page *page;
2749 
2750 		/*
2751 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2752 		 * been interrupted because we are using up too much memory.
2753 		 */
2754 		if (signal_pending(current))
2755 			error = -EINTR;
2756 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2757 			error = -ENOMEM;
2758 		else
2759 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2760 		if (error) {
2761 			info->fallocend = undo_fallocend;
2762 			/* Remove the !PageUptodate pages we added */
2763 			if (index > start) {
2764 				shmem_undo_range(inode,
2765 				    (loff_t)start << PAGE_SHIFT,
2766 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2767 			}
2768 			goto undone;
2769 		}
2770 
2771 		index++;
2772 		/*
2773 		 * Here is a more important optimization than it appears:
2774 		 * a second SGP_FALLOC on the same huge page will clear it,
2775 		 * making it PageUptodate and un-undoable if we fail later.
2776 		 */
2777 		if (PageTransCompound(page)) {
2778 			index = round_up(index, HPAGE_PMD_NR);
2779 			/* Beware 32-bit wraparound */
2780 			if (!index)
2781 				index--;
2782 		}
2783 
2784 		/*
2785 		 * Inform shmem_writepage() how far we have reached.
2786 		 * No need for lock or barrier: we have the page lock.
2787 		 */
2788 		if (!PageUptodate(page))
2789 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2790 		shmem_falloc.next = index;
2791 
2792 		/*
2793 		 * If !PageUptodate, leave it that way so that freeable pages
2794 		 * can be recognized if we need to rollback on error later.
2795 		 * But set_page_dirty so that memory pressure will swap rather
2796 		 * than free the pages we are allocating (and SGP_CACHE pages
2797 		 * might still be clean: we now need to mark those dirty too).
2798 		 */
2799 		set_page_dirty(page);
2800 		unlock_page(page);
2801 		put_page(page);
2802 		cond_resched();
2803 	}
2804 
2805 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2806 		i_size_write(inode, offset + len);
2807 	inode->i_ctime = current_time(inode);
2808 undone:
2809 	spin_lock(&inode->i_lock);
2810 	inode->i_private = NULL;
2811 	spin_unlock(&inode->i_lock);
2812 out:
2813 	inode_unlock(inode);
2814 	return error;
2815 }
2816 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2817 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2818 {
2819 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2820 
2821 	buf->f_type = TMPFS_MAGIC;
2822 	buf->f_bsize = PAGE_SIZE;
2823 	buf->f_namelen = NAME_MAX;
2824 	if (sbinfo->max_blocks) {
2825 		buf->f_blocks = sbinfo->max_blocks;
2826 		buf->f_bavail =
2827 		buf->f_bfree  = sbinfo->max_blocks -
2828 				percpu_counter_sum(&sbinfo->used_blocks);
2829 	}
2830 	if (sbinfo->max_inodes) {
2831 		buf->f_files = sbinfo->max_inodes;
2832 		buf->f_ffree = sbinfo->free_inodes;
2833 	}
2834 	/* else leave those fields 0 like simple_statfs */
2835 
2836 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2837 
2838 	return 0;
2839 }
2840 
2841 /*
2842  * File creation. Allocate an inode, and we're done..
2843  */
2844 static int
shmem_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2845 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2846 	    struct dentry *dentry, umode_t mode, dev_t dev)
2847 {
2848 	struct inode *inode;
2849 	int error = -ENOSPC;
2850 
2851 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2852 	if (inode) {
2853 		error = simple_acl_create(dir, inode);
2854 		if (error)
2855 			goto out_iput;
2856 		error = security_inode_init_security(inode, dir,
2857 						     &dentry->d_name,
2858 						     shmem_initxattrs, NULL);
2859 		if (error && error != -EOPNOTSUPP)
2860 			goto out_iput;
2861 
2862 		error = 0;
2863 		dir->i_size += BOGO_DIRENT_SIZE;
2864 		dir->i_ctime = dir->i_mtime = current_time(dir);
2865 		d_instantiate(dentry, inode);
2866 		dget(dentry); /* Extra count - pin the dentry in core */
2867 	}
2868 	return error;
2869 out_iput:
2870 	iput(inode);
2871 	return error;
2872 }
2873 
2874 static int
shmem_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2875 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2876 	      struct dentry *dentry, umode_t mode)
2877 {
2878 	struct inode *inode;
2879 	int error = -ENOSPC;
2880 
2881 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2882 	if (inode) {
2883 		error = security_inode_init_security(inode, dir,
2884 						     NULL,
2885 						     shmem_initxattrs, NULL);
2886 		if (error && error != -EOPNOTSUPP)
2887 			goto out_iput;
2888 		error = simple_acl_create(dir, inode);
2889 		if (error)
2890 			goto out_iput;
2891 		d_tmpfile(dentry, inode);
2892 	}
2893 	return error;
2894 out_iput:
2895 	iput(inode);
2896 	return error;
2897 }
2898 
shmem_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2899 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2900 		       struct dentry *dentry, umode_t mode)
2901 {
2902 	int error;
2903 
2904 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2905 				 mode | S_IFDIR, 0)))
2906 		return error;
2907 	inc_nlink(dir);
2908 	return 0;
2909 }
2910 
shmem_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2911 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2912 			struct dentry *dentry, umode_t mode, bool excl)
2913 {
2914 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2915 }
2916 
2917 /*
2918  * Link a file..
2919  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2920 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2921 {
2922 	struct inode *inode = d_inode(old_dentry);
2923 	int ret = 0;
2924 
2925 	/*
2926 	 * No ordinary (disk based) filesystem counts links as inodes;
2927 	 * but each new link needs a new dentry, pinning lowmem, and
2928 	 * tmpfs dentries cannot be pruned until they are unlinked.
2929 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2930 	 * first link must skip that, to get the accounting right.
2931 	 */
2932 	if (inode->i_nlink) {
2933 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2934 		if (ret)
2935 			goto out;
2936 	}
2937 
2938 	dir->i_size += BOGO_DIRENT_SIZE;
2939 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2940 	inc_nlink(inode);
2941 	ihold(inode);	/* New dentry reference */
2942 	dget(dentry);		/* Extra pinning count for the created dentry */
2943 	d_instantiate(dentry, inode);
2944 out:
2945 	return ret;
2946 }
2947 
shmem_unlink(struct inode * dir,struct dentry * dentry)2948 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2949 {
2950 	struct inode *inode = d_inode(dentry);
2951 
2952 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2953 		shmem_free_inode(inode->i_sb);
2954 
2955 	dir->i_size -= BOGO_DIRENT_SIZE;
2956 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2957 	drop_nlink(inode);
2958 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2959 	return 0;
2960 }
2961 
shmem_rmdir(struct inode * dir,struct dentry * dentry)2962 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2963 {
2964 	if (!simple_empty(dentry))
2965 		return -ENOTEMPTY;
2966 
2967 	drop_nlink(d_inode(dentry));
2968 	drop_nlink(dir);
2969 	return shmem_unlink(dir, dentry);
2970 }
2971 
shmem_whiteout(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry)2972 static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 			  struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975 	struct dentry *whiteout;
2976 	int error;
2977 
2978 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 	if (!whiteout)
2980 		return -ENOMEM;
2981 
2982 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2983 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 	dput(whiteout);
2985 	if (error)
2986 		return error;
2987 
2988 	/*
2989 	 * Cheat and hash the whiteout while the old dentry is still in
2990 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 	 *
2992 	 * d_lookup() will consistently find one of them at this point,
2993 	 * not sure which one, but that isn't even important.
2994 	 */
2995 	d_rehash(whiteout);
2996 	return 0;
2997 }
2998 
2999 /*
3000  * The VFS layer already does all the dentry stuff for rename,
3001  * we just have to decrement the usage count for the target if
3002  * it exists so that the VFS layer correctly free's it when it
3003  * gets overwritten.
3004  */
shmem_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3005 static int shmem_rename2(struct user_namespace *mnt_userns,
3006 			 struct inode *old_dir, struct dentry *old_dentry,
3007 			 struct inode *new_dir, struct dentry *new_dentry,
3008 			 unsigned int flags)
3009 {
3010 	struct inode *inode = d_inode(old_dentry);
3011 	int they_are_dirs = S_ISDIR(inode->i_mode);
3012 
3013 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3014 		return -EINVAL;
3015 
3016 	if (flags & RENAME_EXCHANGE)
3017 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018 
3019 	if (!simple_empty(new_dentry))
3020 		return -ENOTEMPTY;
3021 
3022 	if (flags & RENAME_WHITEOUT) {
3023 		int error;
3024 
3025 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3026 		if (error)
3027 			return error;
3028 	}
3029 
3030 	if (d_really_is_positive(new_dentry)) {
3031 		(void) shmem_unlink(new_dir, new_dentry);
3032 		if (they_are_dirs) {
3033 			drop_nlink(d_inode(new_dentry));
3034 			drop_nlink(old_dir);
3035 		}
3036 	} else if (they_are_dirs) {
3037 		drop_nlink(old_dir);
3038 		inc_nlink(new_dir);
3039 	}
3040 
3041 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 	new_dir->i_size += BOGO_DIRENT_SIZE;
3043 	old_dir->i_ctime = old_dir->i_mtime =
3044 	new_dir->i_ctime = new_dir->i_mtime =
3045 	inode->i_ctime = current_time(old_dir);
3046 	return 0;
3047 }
3048 
shmem_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)3049 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 			 struct dentry *dentry, const char *symname)
3051 {
3052 	int error;
3053 	int len;
3054 	struct inode *inode;
3055 	struct page *page;
3056 
3057 	len = strlen(symname) + 1;
3058 	if (len > PAGE_SIZE)
3059 		return -ENAMETOOLONG;
3060 
3061 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 				VM_NORESERVE);
3063 	if (!inode)
3064 		return -ENOSPC;
3065 
3066 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3067 					     shmem_initxattrs, NULL);
3068 	if (error && error != -EOPNOTSUPP) {
3069 		iput(inode);
3070 		return error;
3071 	}
3072 
3073 	inode->i_size = len-1;
3074 	if (len <= SHORT_SYMLINK_LEN) {
3075 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 		if (!inode->i_link) {
3077 			iput(inode);
3078 			return -ENOMEM;
3079 		}
3080 		inode->i_op = &shmem_short_symlink_operations;
3081 	} else {
3082 		inode_nohighmem(inode);
3083 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3084 		if (error) {
3085 			iput(inode);
3086 			return error;
3087 		}
3088 		inode->i_mapping->a_ops = &shmem_aops;
3089 		inode->i_op = &shmem_symlink_inode_operations;
3090 		memcpy(page_address(page), symname, len);
3091 		SetPageUptodate(page);
3092 		set_page_dirty(page);
3093 		unlock_page(page);
3094 		put_page(page);
3095 	}
3096 	dir->i_size += BOGO_DIRENT_SIZE;
3097 	dir->i_ctime = dir->i_mtime = current_time(dir);
3098 	d_instantiate(dentry, inode);
3099 	dget(dentry);
3100 	return 0;
3101 }
3102 
shmem_put_link(void * arg)3103 static void shmem_put_link(void *arg)
3104 {
3105 	mark_page_accessed(arg);
3106 	put_page(arg);
3107 }
3108 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3109 static const char *shmem_get_link(struct dentry *dentry,
3110 				  struct inode *inode,
3111 				  struct delayed_call *done)
3112 {
3113 	struct page *page = NULL;
3114 	int error;
3115 	if (!dentry) {
3116 		page = find_get_page(inode->i_mapping, 0);
3117 		if (!page)
3118 			return ERR_PTR(-ECHILD);
3119 		if (PageHWPoison(page) ||
3120 		    !PageUptodate(page)) {
3121 			put_page(page);
3122 			return ERR_PTR(-ECHILD);
3123 		}
3124 	} else {
3125 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3126 		if (error)
3127 			return ERR_PTR(error);
3128 		if (!page)
3129 			return ERR_PTR(-ECHILD);
3130 		if (PageHWPoison(page)) {
3131 			unlock_page(page);
3132 			put_page(page);
3133 			return ERR_PTR(-ECHILD);
3134 		}
3135 		unlock_page(page);
3136 	}
3137 	set_delayed_call(done, shmem_put_link, page);
3138 	return page_address(page);
3139 }
3140 
3141 #ifdef CONFIG_TMPFS_XATTR
3142 /*
3143  * Superblocks without xattr inode operations may get some security.* xattr
3144  * support from the LSM "for free". As soon as we have any other xattrs
3145  * like ACLs, we also need to implement the security.* handlers at
3146  * filesystem level, though.
3147  */
3148 
3149 /*
3150  * Callback for security_inode_init_security() for acquiring xattrs.
3151  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3152 static int shmem_initxattrs(struct inode *inode,
3153 			    const struct xattr *xattr_array,
3154 			    void *fs_info)
3155 {
3156 	struct shmem_inode_info *info = SHMEM_I(inode);
3157 	const struct xattr *xattr;
3158 	struct simple_xattr *new_xattr;
3159 	size_t len;
3160 
3161 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3162 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3163 		if (!new_xattr)
3164 			return -ENOMEM;
3165 
3166 		len = strlen(xattr->name) + 1;
3167 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3168 					  GFP_KERNEL);
3169 		if (!new_xattr->name) {
3170 			kvfree(new_xattr);
3171 			return -ENOMEM;
3172 		}
3173 
3174 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3175 		       XATTR_SECURITY_PREFIX_LEN);
3176 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3177 		       xattr->name, len);
3178 
3179 		simple_xattr_list_add(&info->xattrs, new_xattr);
3180 	}
3181 
3182 	return 0;
3183 }
3184 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3185 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3186 				   struct dentry *unused, struct inode *inode,
3187 				   const char *name, void *buffer, size_t size)
3188 {
3189 	struct shmem_inode_info *info = SHMEM_I(inode);
3190 
3191 	name = xattr_full_name(handler, name);
3192 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3193 }
3194 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3195 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3196 				   struct user_namespace *mnt_userns,
3197 				   struct dentry *unused, struct inode *inode,
3198 				   const char *name, const void *value,
3199 				   size_t size, int flags)
3200 {
3201 	struct shmem_inode_info *info = SHMEM_I(inode);
3202 
3203 	name = xattr_full_name(handler, name);
3204 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3205 }
3206 
3207 static const struct xattr_handler shmem_security_xattr_handler = {
3208 	.prefix = XATTR_SECURITY_PREFIX,
3209 	.get = shmem_xattr_handler_get,
3210 	.set = shmem_xattr_handler_set,
3211 };
3212 
3213 static const struct xattr_handler shmem_trusted_xattr_handler = {
3214 	.prefix = XATTR_TRUSTED_PREFIX,
3215 	.get = shmem_xattr_handler_get,
3216 	.set = shmem_xattr_handler_set,
3217 };
3218 
3219 static const struct xattr_handler *shmem_xattr_handlers[] = {
3220 #ifdef CONFIG_TMPFS_POSIX_ACL
3221 	&posix_acl_access_xattr_handler,
3222 	&posix_acl_default_xattr_handler,
3223 #endif
3224 	&shmem_security_xattr_handler,
3225 	&shmem_trusted_xattr_handler,
3226 	NULL
3227 };
3228 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3229 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3230 {
3231 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3232 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3233 }
3234 #endif /* CONFIG_TMPFS_XATTR */
3235 
3236 static const struct inode_operations shmem_short_symlink_operations = {
3237 	.getattr	= shmem_getattr,
3238 	.get_link	= simple_get_link,
3239 #ifdef CONFIG_TMPFS_XATTR
3240 	.listxattr	= shmem_listxattr,
3241 #endif
3242 };
3243 
3244 static const struct inode_operations shmem_symlink_inode_operations = {
3245 	.getattr	= shmem_getattr,
3246 	.get_link	= shmem_get_link,
3247 #ifdef CONFIG_TMPFS_XATTR
3248 	.listxattr	= shmem_listxattr,
3249 #endif
3250 };
3251 
shmem_get_parent(struct dentry * child)3252 static struct dentry *shmem_get_parent(struct dentry *child)
3253 {
3254 	return ERR_PTR(-ESTALE);
3255 }
3256 
shmem_match(struct inode * ino,void * vfh)3257 static int shmem_match(struct inode *ino, void *vfh)
3258 {
3259 	__u32 *fh = vfh;
3260 	__u64 inum = fh[2];
3261 	inum = (inum << 32) | fh[1];
3262 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3263 }
3264 
3265 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3266 static struct dentry *shmem_find_alias(struct inode *inode)
3267 {
3268 	struct dentry *alias = d_find_alias(inode);
3269 
3270 	return alias ?: d_find_any_alias(inode);
3271 }
3272 
3273 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3274 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3275 		struct fid *fid, int fh_len, int fh_type)
3276 {
3277 	struct inode *inode;
3278 	struct dentry *dentry = NULL;
3279 	u64 inum;
3280 
3281 	if (fh_len < 3)
3282 		return NULL;
3283 
3284 	inum = fid->raw[2];
3285 	inum = (inum << 32) | fid->raw[1];
3286 
3287 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3288 			shmem_match, fid->raw);
3289 	if (inode) {
3290 		dentry = shmem_find_alias(inode);
3291 		iput(inode);
3292 	}
3293 
3294 	return dentry;
3295 }
3296 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3297 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3298 				struct inode *parent)
3299 {
3300 	if (*len < 3) {
3301 		*len = 3;
3302 		return FILEID_INVALID;
3303 	}
3304 
3305 	if (inode_unhashed(inode)) {
3306 		/* Unfortunately insert_inode_hash is not idempotent,
3307 		 * so as we hash inodes here rather than at creation
3308 		 * time, we need a lock to ensure we only try
3309 		 * to do it once
3310 		 */
3311 		static DEFINE_SPINLOCK(lock);
3312 		spin_lock(&lock);
3313 		if (inode_unhashed(inode))
3314 			__insert_inode_hash(inode,
3315 					    inode->i_ino + inode->i_generation);
3316 		spin_unlock(&lock);
3317 	}
3318 
3319 	fh[0] = inode->i_generation;
3320 	fh[1] = inode->i_ino;
3321 	fh[2] = ((__u64)inode->i_ino) >> 32;
3322 
3323 	*len = 3;
3324 	return 1;
3325 }
3326 
3327 static const struct export_operations shmem_export_ops = {
3328 	.get_parent     = shmem_get_parent,
3329 	.encode_fh      = shmem_encode_fh,
3330 	.fh_to_dentry	= shmem_fh_to_dentry,
3331 };
3332 
3333 enum shmem_param {
3334 	Opt_gid,
3335 	Opt_huge,
3336 	Opt_mode,
3337 	Opt_mpol,
3338 	Opt_nr_blocks,
3339 	Opt_nr_inodes,
3340 	Opt_size,
3341 	Opt_uid,
3342 	Opt_inode32,
3343 	Opt_inode64,
3344 };
3345 
3346 static const struct constant_table shmem_param_enums_huge[] = {
3347 	{"never",	SHMEM_HUGE_NEVER },
3348 	{"always",	SHMEM_HUGE_ALWAYS },
3349 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3350 	{"advise",	SHMEM_HUGE_ADVISE },
3351 	{}
3352 };
3353 
3354 const struct fs_parameter_spec shmem_fs_parameters[] = {
3355 	fsparam_u32   ("gid",		Opt_gid),
3356 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3357 	fsparam_u32oct("mode",		Opt_mode),
3358 	fsparam_string("mpol",		Opt_mpol),
3359 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3360 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3361 	fsparam_string("size",		Opt_size),
3362 	fsparam_u32   ("uid",		Opt_uid),
3363 	fsparam_flag  ("inode32",	Opt_inode32),
3364 	fsparam_flag  ("inode64",	Opt_inode64),
3365 	{}
3366 };
3367 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3368 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3369 {
3370 	struct shmem_options *ctx = fc->fs_private;
3371 	struct fs_parse_result result;
3372 	unsigned long long size;
3373 	char *rest;
3374 	int opt;
3375 
3376 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3377 	if (opt < 0)
3378 		return opt;
3379 
3380 	switch (opt) {
3381 	case Opt_size:
3382 		size = memparse(param->string, &rest);
3383 		if (*rest == '%') {
3384 			size <<= PAGE_SHIFT;
3385 			size *= totalram_pages();
3386 			do_div(size, 100);
3387 			rest++;
3388 		}
3389 		if (*rest)
3390 			goto bad_value;
3391 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3392 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3393 		break;
3394 	case Opt_nr_blocks:
3395 		ctx->blocks = memparse(param->string, &rest);
3396 		if (*rest || ctx->blocks > S64_MAX)
3397 			goto bad_value;
3398 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3399 		break;
3400 	case Opt_nr_inodes:
3401 		ctx->inodes = memparse(param->string, &rest);
3402 		if (*rest)
3403 			goto bad_value;
3404 		ctx->seen |= SHMEM_SEEN_INODES;
3405 		break;
3406 	case Opt_mode:
3407 		ctx->mode = result.uint_32 & 07777;
3408 		break;
3409 	case Opt_uid:
3410 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3411 		if (!uid_valid(ctx->uid))
3412 			goto bad_value;
3413 		break;
3414 	case Opt_gid:
3415 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3416 		if (!gid_valid(ctx->gid))
3417 			goto bad_value;
3418 		break;
3419 	case Opt_huge:
3420 		ctx->huge = result.uint_32;
3421 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3422 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3423 		      has_transparent_hugepage()))
3424 			goto unsupported_parameter;
3425 		ctx->seen |= SHMEM_SEEN_HUGE;
3426 		break;
3427 	case Opt_mpol:
3428 		if (IS_ENABLED(CONFIG_NUMA)) {
3429 			mpol_put(ctx->mpol);
3430 			ctx->mpol = NULL;
3431 			if (mpol_parse_str(param->string, &ctx->mpol))
3432 				goto bad_value;
3433 			break;
3434 		}
3435 		goto unsupported_parameter;
3436 	case Opt_inode32:
3437 		ctx->full_inums = false;
3438 		ctx->seen |= SHMEM_SEEN_INUMS;
3439 		break;
3440 	case Opt_inode64:
3441 		if (sizeof(ino_t) < 8) {
3442 			return invalfc(fc,
3443 				       "Cannot use inode64 with <64bit inums in kernel\n");
3444 		}
3445 		ctx->full_inums = true;
3446 		ctx->seen |= SHMEM_SEEN_INUMS;
3447 		break;
3448 	}
3449 	return 0;
3450 
3451 unsupported_parameter:
3452 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3453 bad_value:
3454 	return invalfc(fc, "Bad value for '%s'", param->key);
3455 }
3456 
shmem_parse_options(struct fs_context * fc,void * data)3457 static int shmem_parse_options(struct fs_context *fc, void *data)
3458 {
3459 	char *options = data;
3460 
3461 	if (options) {
3462 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3463 		if (err)
3464 			return err;
3465 	}
3466 
3467 	while (options != NULL) {
3468 		char *this_char = options;
3469 		for (;;) {
3470 			/*
3471 			 * NUL-terminate this option: unfortunately,
3472 			 * mount options form a comma-separated list,
3473 			 * but mpol's nodelist may also contain commas.
3474 			 */
3475 			options = strchr(options, ',');
3476 			if (options == NULL)
3477 				break;
3478 			options++;
3479 			if (!isdigit(*options)) {
3480 				options[-1] = '\0';
3481 				break;
3482 			}
3483 		}
3484 		if (*this_char) {
3485 			char *value = strchr(this_char, '=');
3486 			size_t len = 0;
3487 			int err;
3488 
3489 			if (value) {
3490 				*value++ = '\0';
3491 				len = strlen(value);
3492 			}
3493 			err = vfs_parse_fs_string(fc, this_char, value, len);
3494 			if (err < 0)
3495 				return err;
3496 		}
3497 	}
3498 	return 0;
3499 }
3500 
3501 /*
3502  * Reconfigure a shmem filesystem.
3503  *
3504  * Note that we disallow change from limited->unlimited blocks/inodes while any
3505  * are in use; but we must separately disallow unlimited->limited, because in
3506  * that case we have no record of how much is already in use.
3507  */
shmem_reconfigure(struct fs_context * fc)3508 static int shmem_reconfigure(struct fs_context *fc)
3509 {
3510 	struct shmem_options *ctx = fc->fs_private;
3511 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3512 	unsigned long inodes;
3513 	struct mempolicy *mpol = NULL;
3514 	const char *err;
3515 
3516 	raw_spin_lock(&sbinfo->stat_lock);
3517 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3518 
3519 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3520 		if (!sbinfo->max_blocks) {
3521 			err = "Cannot retroactively limit size";
3522 			goto out;
3523 		}
3524 		if (percpu_counter_compare(&sbinfo->used_blocks,
3525 					   ctx->blocks) > 0) {
3526 			err = "Too small a size for current use";
3527 			goto out;
3528 		}
3529 	}
3530 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3531 		if (!sbinfo->max_inodes) {
3532 			err = "Cannot retroactively limit inodes";
3533 			goto out;
3534 		}
3535 		if (ctx->inodes < inodes) {
3536 			err = "Too few inodes for current use";
3537 			goto out;
3538 		}
3539 	}
3540 
3541 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3542 	    sbinfo->next_ino > UINT_MAX) {
3543 		err = "Current inum too high to switch to 32-bit inums";
3544 		goto out;
3545 	}
3546 
3547 	if (ctx->seen & SHMEM_SEEN_HUGE)
3548 		sbinfo->huge = ctx->huge;
3549 	if (ctx->seen & SHMEM_SEEN_INUMS)
3550 		sbinfo->full_inums = ctx->full_inums;
3551 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3552 		sbinfo->max_blocks  = ctx->blocks;
3553 	if (ctx->seen & SHMEM_SEEN_INODES) {
3554 		sbinfo->max_inodes  = ctx->inodes;
3555 		sbinfo->free_inodes = ctx->inodes - inodes;
3556 	}
3557 
3558 	/*
3559 	 * Preserve previous mempolicy unless mpol remount option was specified.
3560 	 */
3561 	if (ctx->mpol) {
3562 		mpol = sbinfo->mpol;
3563 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3564 		ctx->mpol = NULL;
3565 	}
3566 	raw_spin_unlock(&sbinfo->stat_lock);
3567 	mpol_put(mpol);
3568 	return 0;
3569 out:
3570 	raw_spin_unlock(&sbinfo->stat_lock);
3571 	return invalfc(fc, "%s", err);
3572 }
3573 
shmem_show_options(struct seq_file * seq,struct dentry * root)3574 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3575 {
3576 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3577 
3578 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3579 		seq_printf(seq, ",size=%luk",
3580 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3581 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3582 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3583 	if (sbinfo->mode != (0777 | S_ISVTX))
3584 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3585 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3586 		seq_printf(seq, ",uid=%u",
3587 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3588 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3589 		seq_printf(seq, ",gid=%u",
3590 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3591 
3592 	/*
3593 	 * Showing inode{64,32} might be useful even if it's the system default,
3594 	 * since then people don't have to resort to checking both here and
3595 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3596 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3597 	 *
3598 	 * We hide it when inode64 isn't the default and we are using 32-bit
3599 	 * inodes, since that probably just means the feature isn't even under
3600 	 * consideration.
3601 	 *
3602 	 * As such:
3603 	 *
3604 	 *                     +-----------------+-----------------+
3605 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3606 	 *  +------------------+-----------------+-----------------+
3607 	 *  | full_inums=true  | show            | show            |
3608 	 *  | full_inums=false | show            | hide            |
3609 	 *  +------------------+-----------------+-----------------+
3610 	 *
3611 	 */
3612 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3613 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3615 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3616 	if (sbinfo->huge)
3617 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3618 #endif
3619 	shmem_show_mpol(seq, sbinfo->mpol);
3620 	return 0;
3621 }
3622 
3623 #endif /* CONFIG_TMPFS */
3624 
shmem_put_super(struct super_block * sb)3625 static void shmem_put_super(struct super_block *sb)
3626 {
3627 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3628 
3629 	free_percpu(sbinfo->ino_batch);
3630 	percpu_counter_destroy(&sbinfo->used_blocks);
3631 	mpol_put(sbinfo->mpol);
3632 	kfree(sbinfo);
3633 	sb->s_fs_info = NULL;
3634 }
3635 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3636 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3637 {
3638 	struct shmem_options *ctx = fc->fs_private;
3639 	struct inode *inode;
3640 	struct shmem_sb_info *sbinfo;
3641 
3642 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3643 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3644 				L1_CACHE_BYTES), GFP_KERNEL);
3645 	if (!sbinfo)
3646 		return -ENOMEM;
3647 
3648 	sb->s_fs_info = sbinfo;
3649 
3650 #ifdef CONFIG_TMPFS
3651 	/*
3652 	 * Per default we only allow half of the physical ram per
3653 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3654 	 * but the internal instance is left unlimited.
3655 	 */
3656 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3657 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3658 			ctx->blocks = shmem_default_max_blocks();
3659 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3660 			ctx->inodes = shmem_default_max_inodes();
3661 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3662 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3663 	} else {
3664 		sb->s_flags |= SB_NOUSER;
3665 	}
3666 	sb->s_export_op = &shmem_export_ops;
3667 	sb->s_flags |= SB_NOSEC;
3668 #else
3669 	sb->s_flags |= SB_NOUSER;
3670 #endif
3671 	sbinfo->max_blocks = ctx->blocks;
3672 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3673 	if (sb->s_flags & SB_KERNMOUNT) {
3674 		sbinfo->ino_batch = alloc_percpu(ino_t);
3675 		if (!sbinfo->ino_batch)
3676 			goto failed;
3677 	}
3678 	sbinfo->uid = ctx->uid;
3679 	sbinfo->gid = ctx->gid;
3680 	sbinfo->full_inums = ctx->full_inums;
3681 	sbinfo->mode = ctx->mode;
3682 	sbinfo->huge = ctx->huge;
3683 	sbinfo->mpol = ctx->mpol;
3684 	ctx->mpol = NULL;
3685 
3686 	raw_spin_lock_init(&sbinfo->stat_lock);
3687 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3688 		goto failed;
3689 	spin_lock_init(&sbinfo->shrinklist_lock);
3690 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3691 
3692 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3693 	sb->s_blocksize = PAGE_SIZE;
3694 	sb->s_blocksize_bits = PAGE_SHIFT;
3695 	sb->s_magic = TMPFS_MAGIC;
3696 	sb->s_op = &shmem_ops;
3697 	sb->s_time_gran = 1;
3698 #ifdef CONFIG_TMPFS_XATTR
3699 	sb->s_xattr = shmem_xattr_handlers;
3700 #endif
3701 #ifdef CONFIG_TMPFS_POSIX_ACL
3702 	sb->s_flags |= SB_POSIXACL;
3703 #endif
3704 	uuid_gen(&sb->s_uuid);
3705 
3706 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3707 	if (!inode)
3708 		goto failed;
3709 	inode->i_uid = sbinfo->uid;
3710 	inode->i_gid = sbinfo->gid;
3711 	sb->s_root = d_make_root(inode);
3712 	if (!sb->s_root)
3713 		goto failed;
3714 	return 0;
3715 
3716 failed:
3717 	shmem_put_super(sb);
3718 	return -ENOMEM;
3719 }
3720 
shmem_get_tree(struct fs_context * fc)3721 static int shmem_get_tree(struct fs_context *fc)
3722 {
3723 	return get_tree_nodev(fc, shmem_fill_super);
3724 }
3725 
shmem_free_fc(struct fs_context * fc)3726 static void shmem_free_fc(struct fs_context *fc)
3727 {
3728 	struct shmem_options *ctx = fc->fs_private;
3729 
3730 	if (ctx) {
3731 		mpol_put(ctx->mpol);
3732 		kfree(ctx);
3733 	}
3734 }
3735 
3736 static const struct fs_context_operations shmem_fs_context_ops = {
3737 	.free			= shmem_free_fc,
3738 	.get_tree		= shmem_get_tree,
3739 #ifdef CONFIG_TMPFS
3740 	.parse_monolithic	= shmem_parse_options,
3741 	.parse_param		= shmem_parse_one,
3742 	.reconfigure		= shmem_reconfigure,
3743 #endif
3744 };
3745 
3746 static struct kmem_cache *shmem_inode_cachep;
3747 
shmem_alloc_inode(struct super_block * sb)3748 static struct inode *shmem_alloc_inode(struct super_block *sb)
3749 {
3750 	struct shmem_inode_info *info;
3751 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3752 	if (!info)
3753 		return NULL;
3754 	return &info->vfs_inode;
3755 }
3756 
shmem_free_in_core_inode(struct inode * inode)3757 static void shmem_free_in_core_inode(struct inode *inode)
3758 {
3759 	if (S_ISLNK(inode->i_mode))
3760 		kfree(inode->i_link);
3761 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3762 }
3763 
shmem_destroy_inode(struct inode * inode)3764 static void shmem_destroy_inode(struct inode *inode)
3765 {
3766 	if (S_ISREG(inode->i_mode))
3767 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3768 }
3769 
shmem_init_inode(void * foo)3770 static void shmem_init_inode(void *foo)
3771 {
3772 	struct shmem_inode_info *info = foo;
3773 	inode_init_once(&info->vfs_inode);
3774 }
3775 
shmem_init_inodecache(void)3776 static void shmem_init_inodecache(void)
3777 {
3778 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3779 				sizeof(struct shmem_inode_info),
3780 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3781 }
3782 
shmem_destroy_inodecache(void)3783 static void shmem_destroy_inodecache(void)
3784 {
3785 	kmem_cache_destroy(shmem_inode_cachep);
3786 }
3787 
3788 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_page(struct address_space * mapping,struct page * page)3789 static int shmem_error_remove_page(struct address_space *mapping,
3790 				   struct page *page)
3791 {
3792 	return 0;
3793 }
3794 
3795 const struct address_space_operations shmem_aops = {
3796 	.writepage	= shmem_writepage,
3797 	.dirty_folio	= noop_dirty_folio,
3798 #ifdef CONFIG_TMPFS
3799 	.write_begin	= shmem_write_begin,
3800 	.write_end	= shmem_write_end,
3801 #endif
3802 #ifdef CONFIG_MIGRATION
3803 	.migratepage	= migrate_page,
3804 #endif
3805 	.error_remove_page = shmem_error_remove_page,
3806 };
3807 EXPORT_SYMBOL(shmem_aops);
3808 
3809 static const struct file_operations shmem_file_operations = {
3810 	.mmap		= shmem_mmap,
3811 	.get_unmapped_area = shmem_get_unmapped_area,
3812 #ifdef CONFIG_TMPFS
3813 	.llseek		= shmem_file_llseek,
3814 	.read_iter	= shmem_file_read_iter,
3815 	.write_iter	= generic_file_write_iter,
3816 	.fsync		= noop_fsync,
3817 	.splice_read	= generic_file_splice_read,
3818 	.splice_write	= iter_file_splice_write,
3819 	.fallocate	= shmem_fallocate,
3820 #endif
3821 };
3822 
3823 static const struct inode_operations shmem_inode_operations = {
3824 	.getattr	= shmem_getattr,
3825 	.setattr	= shmem_setattr,
3826 #ifdef CONFIG_TMPFS_XATTR
3827 	.listxattr	= shmem_listxattr,
3828 	.set_acl	= simple_set_acl,
3829 #endif
3830 };
3831 
3832 static const struct inode_operations shmem_dir_inode_operations = {
3833 #ifdef CONFIG_TMPFS
3834 	.getattr	= shmem_getattr,
3835 	.create		= shmem_create,
3836 	.lookup		= simple_lookup,
3837 	.link		= shmem_link,
3838 	.unlink		= shmem_unlink,
3839 	.symlink	= shmem_symlink,
3840 	.mkdir		= shmem_mkdir,
3841 	.rmdir		= shmem_rmdir,
3842 	.mknod		= shmem_mknod,
3843 	.rename		= shmem_rename2,
3844 	.tmpfile	= shmem_tmpfile,
3845 #endif
3846 #ifdef CONFIG_TMPFS_XATTR
3847 	.listxattr	= shmem_listxattr,
3848 #endif
3849 #ifdef CONFIG_TMPFS_POSIX_ACL
3850 	.setattr	= shmem_setattr,
3851 	.set_acl	= simple_set_acl,
3852 #endif
3853 };
3854 
3855 static const struct inode_operations shmem_special_inode_operations = {
3856 	.getattr	= shmem_getattr,
3857 #ifdef CONFIG_TMPFS_XATTR
3858 	.listxattr	= shmem_listxattr,
3859 #endif
3860 #ifdef CONFIG_TMPFS_POSIX_ACL
3861 	.setattr	= shmem_setattr,
3862 	.set_acl	= simple_set_acl,
3863 #endif
3864 };
3865 
3866 static const struct super_operations shmem_ops = {
3867 	.alloc_inode	= shmem_alloc_inode,
3868 	.free_inode	= shmem_free_in_core_inode,
3869 	.destroy_inode	= shmem_destroy_inode,
3870 #ifdef CONFIG_TMPFS
3871 	.statfs		= shmem_statfs,
3872 	.show_options	= shmem_show_options,
3873 #endif
3874 	.evict_inode	= shmem_evict_inode,
3875 	.drop_inode	= generic_delete_inode,
3876 	.put_super	= shmem_put_super,
3877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3878 	.nr_cached_objects	= shmem_unused_huge_count,
3879 	.free_cached_objects	= shmem_unused_huge_scan,
3880 #endif
3881 };
3882 
3883 static const struct vm_operations_struct shmem_vm_ops = {
3884 	.fault		= shmem_fault,
3885 	.map_pages	= filemap_map_pages,
3886 #ifdef CONFIG_NUMA
3887 	.set_policy     = shmem_set_policy,
3888 	.get_policy     = shmem_get_policy,
3889 #endif
3890 };
3891 
shmem_init_fs_context(struct fs_context * fc)3892 int shmem_init_fs_context(struct fs_context *fc)
3893 {
3894 	struct shmem_options *ctx;
3895 
3896 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3897 	if (!ctx)
3898 		return -ENOMEM;
3899 
3900 	ctx->mode = 0777 | S_ISVTX;
3901 	ctx->uid = current_fsuid();
3902 	ctx->gid = current_fsgid();
3903 
3904 	fc->fs_private = ctx;
3905 	fc->ops = &shmem_fs_context_ops;
3906 	return 0;
3907 }
3908 
3909 static struct file_system_type shmem_fs_type = {
3910 	.owner		= THIS_MODULE,
3911 	.name		= "tmpfs",
3912 	.init_fs_context = shmem_init_fs_context,
3913 #ifdef CONFIG_TMPFS
3914 	.parameters	= shmem_fs_parameters,
3915 #endif
3916 	.kill_sb	= kill_litter_super,
3917 	.fs_flags	= FS_USERNS_MOUNT,
3918 };
3919 
shmem_init(void)3920 void __init shmem_init(void)
3921 {
3922 	int error;
3923 
3924 	shmem_init_inodecache();
3925 
3926 	error = register_filesystem(&shmem_fs_type);
3927 	if (error) {
3928 		pr_err("Could not register tmpfs\n");
3929 		goto out2;
3930 	}
3931 
3932 	shm_mnt = kern_mount(&shmem_fs_type);
3933 	if (IS_ERR(shm_mnt)) {
3934 		error = PTR_ERR(shm_mnt);
3935 		pr_err("Could not kern_mount tmpfs\n");
3936 		goto out1;
3937 	}
3938 
3939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3940 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3941 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3942 	else
3943 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3944 #endif
3945 	return;
3946 
3947 out1:
3948 	unregister_filesystem(&shmem_fs_type);
3949 out2:
3950 	shmem_destroy_inodecache();
3951 	shm_mnt = ERR_PTR(error);
3952 }
3953 
3954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3955 static ssize_t shmem_enabled_show(struct kobject *kobj,
3956 				  struct kobj_attribute *attr, char *buf)
3957 {
3958 	static const int values[] = {
3959 		SHMEM_HUGE_ALWAYS,
3960 		SHMEM_HUGE_WITHIN_SIZE,
3961 		SHMEM_HUGE_ADVISE,
3962 		SHMEM_HUGE_NEVER,
3963 		SHMEM_HUGE_DENY,
3964 		SHMEM_HUGE_FORCE,
3965 	};
3966 	int len = 0;
3967 	int i;
3968 
3969 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3970 		len += sysfs_emit_at(buf, len,
3971 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3972 				     i ? " " : "",
3973 				     shmem_format_huge(values[i]));
3974 	}
3975 
3976 	len += sysfs_emit_at(buf, len, "\n");
3977 
3978 	return len;
3979 }
3980 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3981 static ssize_t shmem_enabled_store(struct kobject *kobj,
3982 		struct kobj_attribute *attr, const char *buf, size_t count)
3983 {
3984 	char tmp[16];
3985 	int huge;
3986 
3987 	if (count + 1 > sizeof(tmp))
3988 		return -EINVAL;
3989 	memcpy(tmp, buf, count);
3990 	tmp[count] = '\0';
3991 	if (count && tmp[count - 1] == '\n')
3992 		tmp[count - 1] = '\0';
3993 
3994 	huge = shmem_parse_huge(tmp);
3995 	if (huge == -EINVAL)
3996 		return -EINVAL;
3997 	if (!has_transparent_hugepage() &&
3998 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3999 		return -EINVAL;
4000 
4001 	shmem_huge = huge;
4002 	if (shmem_huge > SHMEM_HUGE_DENY)
4003 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4004 	return count;
4005 }
4006 
4007 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4009 
4010 #else /* !CONFIG_SHMEM */
4011 
4012 /*
4013  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4014  *
4015  * This is intended for small system where the benefits of the full
4016  * shmem code (swap-backed and resource-limited) are outweighed by
4017  * their complexity. On systems without swap this code should be
4018  * effectively equivalent, but much lighter weight.
4019  */
4020 
4021 static struct file_system_type shmem_fs_type = {
4022 	.name		= "tmpfs",
4023 	.init_fs_context = ramfs_init_fs_context,
4024 	.parameters	= ramfs_fs_parameters,
4025 	.kill_sb	= kill_litter_super,
4026 	.fs_flags	= FS_USERNS_MOUNT,
4027 };
4028 
shmem_init(void)4029 void __init shmem_init(void)
4030 {
4031 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4032 
4033 	shm_mnt = kern_mount(&shmem_fs_type);
4034 	BUG_ON(IS_ERR(shm_mnt));
4035 }
4036 
shmem_unuse(unsigned int type)4037 int shmem_unuse(unsigned int type)
4038 {
4039 	return 0;
4040 }
4041 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4042 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4043 {
4044 	return 0;
4045 }
4046 
shmem_unlock_mapping(struct address_space * mapping)4047 void shmem_unlock_mapping(struct address_space *mapping)
4048 {
4049 }
4050 
4051 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4052 unsigned long shmem_get_unmapped_area(struct file *file,
4053 				      unsigned long addr, unsigned long len,
4054 				      unsigned long pgoff, unsigned long flags)
4055 {
4056 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4057 }
4058 #endif
4059 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4060 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4061 {
4062 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4063 }
4064 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4065 
4066 #define shmem_vm_ops				generic_file_vm_ops
4067 #define shmem_file_operations			ramfs_file_operations
4068 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4069 #define shmem_acct_size(flags, size)		0
4070 #define shmem_unacct_size(flags, size)		do {} while (0)
4071 
4072 #endif /* CONFIG_SHMEM */
4073 
4074 /* common code */
4075 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4076 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4077 				       unsigned long flags, unsigned int i_flags)
4078 {
4079 	struct inode *inode;
4080 	struct file *res;
4081 
4082 	if (IS_ERR(mnt))
4083 		return ERR_CAST(mnt);
4084 
4085 	if (size < 0 || size > MAX_LFS_FILESIZE)
4086 		return ERR_PTR(-EINVAL);
4087 
4088 	if (shmem_acct_size(flags, size))
4089 		return ERR_PTR(-ENOMEM);
4090 
4091 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4092 				flags);
4093 	if (unlikely(!inode)) {
4094 		shmem_unacct_size(flags, size);
4095 		return ERR_PTR(-ENOSPC);
4096 	}
4097 	inode->i_flags |= i_flags;
4098 	inode->i_size = size;
4099 	clear_nlink(inode);	/* It is unlinked */
4100 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4101 	if (!IS_ERR(res))
4102 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4103 				&shmem_file_operations);
4104 	if (IS_ERR(res))
4105 		iput(inode);
4106 	return res;
4107 }
4108 
4109 /**
4110  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4111  * 	kernel internal.  There will be NO LSM permission checks against the
4112  * 	underlying inode.  So users of this interface must do LSM checks at a
4113  *	higher layer.  The users are the big_key and shm implementations.  LSM
4114  *	checks are provided at the key or shm level rather than the inode.
4115  * @name: name for dentry (to be seen in /proc/<pid>/maps
4116  * @size: size to be set for the file
4117  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4118  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4119 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4120 {
4121 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4122 }
4123 
4124 /**
4125  * shmem_file_setup - get an unlinked file living in tmpfs
4126  * @name: name for dentry (to be seen in /proc/<pid>/maps
4127  * @size: size to be set for the file
4128  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4130 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4131 {
4132 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4133 }
4134 EXPORT_SYMBOL_GPL(shmem_file_setup);
4135 
4136 /**
4137  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4138  * @mnt: the tmpfs mount where the file will be created
4139  * @name: name for dentry (to be seen in /proc/<pid>/maps
4140  * @size: size to be set for the file
4141  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4142  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4143 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4144 				       loff_t size, unsigned long flags)
4145 {
4146 	return __shmem_file_setup(mnt, name, size, flags, 0);
4147 }
4148 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4149 
4150 /**
4151  * shmem_zero_setup - setup a shared anonymous mapping
4152  * @vma: the vma to be mmapped is prepared by do_mmap
4153  */
shmem_zero_setup(struct vm_area_struct * vma)4154 int shmem_zero_setup(struct vm_area_struct *vma)
4155 {
4156 	struct file *file;
4157 	loff_t size = vma->vm_end - vma->vm_start;
4158 
4159 	/*
4160 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4161 	 * between XFS directory reading and selinux: since this file is only
4162 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4163 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4164 	 */
4165 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4166 	if (IS_ERR(file))
4167 		return PTR_ERR(file);
4168 
4169 	if (vma->vm_file)
4170 		fput(vma->vm_file);
4171 	vma->vm_file = file;
4172 	vma->vm_ops = &shmem_vm_ops;
4173 
4174 	return 0;
4175 }
4176 
4177 /**
4178  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4179  * @mapping:	the page's address_space
4180  * @index:	the page index
4181  * @gfp:	the page allocator flags to use if allocating
4182  *
4183  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4184  * with any new page allocations done using the specified allocation flags.
4185  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4186  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4187  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4188  *
4189  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4190  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4191  */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4192 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4193 					 pgoff_t index, gfp_t gfp)
4194 {
4195 #ifdef CONFIG_SHMEM
4196 	struct inode *inode = mapping->host;
4197 	struct page *page;
4198 	int error;
4199 
4200 	BUG_ON(!shmem_mapping(mapping));
4201 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4202 				  gfp, NULL, NULL, NULL);
4203 	if (error)
4204 		return ERR_PTR(error);
4205 
4206 	unlock_page(page);
4207 	if (PageHWPoison(page)) {
4208 		put_page(page);
4209 		return ERR_PTR(-EIO);
4210 	}
4211 
4212 	return page;
4213 #else
4214 	/*
4215 	 * The tiny !SHMEM case uses ramfs without swap
4216 	 */
4217 	return read_cache_page_gfp(mapping, index, gfp);
4218 #endif
4219 }
4220 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4221