1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include <linux/iversion.h>
42 #include "swap.h"
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
shmem_default_max_inodes(void)131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 			     struct folio **foliop, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 
SHMEM_SB(struct super_block * sb)144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 {
146 	return sb->s_fs_info;
147 }
148 
149 /*
150  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151  * for shared memory and for shared anonymous (/dev/zero) mappings
152  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153  * consistent with the pre-accounting of private mappings ...
154  */
shmem_acct_size(unsigned long flags,loff_t size)155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
159 }
160 
shmem_unacct_size(unsigned long flags,loff_t size)161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 {
163 	if (!(flags & VM_NORESERVE))
164 		vm_unacct_memory(VM_ACCT(size));
165 }
166 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)167 static inline int shmem_reacct_size(unsigned long flags,
168 		loff_t oldsize, loff_t newsize)
169 {
170 	if (!(flags & VM_NORESERVE)) {
171 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 			return security_vm_enough_memory_mm(current->mm,
173 					VM_ACCT(newsize) - VM_ACCT(oldsize));
174 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
176 	}
177 	return 0;
178 }
179 
180 /*
181  * ... whereas tmpfs objects are accounted incrementally as
182  * pages are allocated, in order to allow large sparse files.
183  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185  */
shmem_acct_block(unsigned long flags,long pages)186 static inline int shmem_acct_block(unsigned long flags, long pages)
187 {
188 	if (!(flags & VM_NORESERVE))
189 		return 0;
190 
191 	return security_vm_enough_memory_mm(current->mm,
192 			pages * VM_ACCT(PAGE_SIZE));
193 }
194 
shmem_unacct_blocks(unsigned long flags,long pages)195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 	if (flags & VM_NORESERVE)
198 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
199 }
200 
shmem_inode_acct_block(struct inode * inode,long pages)201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 {
203 	struct shmem_inode_info *info = SHMEM_I(inode);
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205 
206 	if (shmem_acct_block(info->flags, pages))
207 		return false;
208 
209 	if (sbinfo->max_blocks) {
210 		if (percpu_counter_compare(&sbinfo->used_blocks,
211 					   sbinfo->max_blocks - pages) > 0)
212 			goto unacct;
213 		percpu_counter_add(&sbinfo->used_blocks, pages);
214 	}
215 
216 	return true;
217 
218 unacct:
219 	shmem_unacct_blocks(info->flags, pages);
220 	return false;
221 }
222 
shmem_inode_unacct_blocks(struct inode * inode,long pages)223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 
228 	if (sbinfo->max_blocks)
229 		percpu_counter_sub(&sbinfo->used_blocks, pages);
230 	shmem_unacct_blocks(info->flags, pages);
231 }
232 
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static struct file_system_type shmem_fs_type;
241 
vma_is_shmem(struct vm_area_struct * vma)242 bool vma_is_shmem(struct vm_area_struct *vma)
243 {
244 	return vma->vm_ops == &shmem_vm_ops;
245 }
246 
247 static LIST_HEAD(shmem_swaplist);
248 static DEFINE_MUTEX(shmem_swaplist_mutex);
249 
250 /*
251  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
252  * produces a novel ino for the newly allocated inode.
253  *
254  * It may also be called when making a hard link to permit the space needed by
255  * each dentry. However, in that case, no new inode number is needed since that
256  * internally draws from another pool of inode numbers (currently global
257  * get_next_ino()). This case is indicated by passing NULL as inop.
258  */
259 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)260 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
261 {
262 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 	ino_t ino;
264 
265 	if (!(sb->s_flags & SB_KERNMOUNT)) {
266 		raw_spin_lock(&sbinfo->stat_lock);
267 		if (sbinfo->max_inodes) {
268 			if (!sbinfo->free_inodes) {
269 				raw_spin_unlock(&sbinfo->stat_lock);
270 				return -ENOSPC;
271 			}
272 			sbinfo->free_inodes--;
273 		}
274 		if (inop) {
275 			ino = sbinfo->next_ino++;
276 			if (unlikely(is_zero_ino(ino)))
277 				ino = sbinfo->next_ino++;
278 			if (unlikely(!sbinfo->full_inums &&
279 				     ino > UINT_MAX)) {
280 				/*
281 				 * Emulate get_next_ino uint wraparound for
282 				 * compatibility
283 				 */
284 				if (IS_ENABLED(CONFIG_64BIT))
285 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
286 						__func__, MINOR(sb->s_dev));
287 				sbinfo->next_ino = 1;
288 				ino = sbinfo->next_ino++;
289 			}
290 			*inop = ino;
291 		}
292 		raw_spin_unlock(&sbinfo->stat_lock);
293 	} else if (inop) {
294 		/*
295 		 * __shmem_file_setup, one of our callers, is lock-free: it
296 		 * doesn't hold stat_lock in shmem_reserve_inode since
297 		 * max_inodes is always 0, and is called from potentially
298 		 * unknown contexts. As such, use a per-cpu batched allocator
299 		 * which doesn't require the per-sb stat_lock unless we are at
300 		 * the batch boundary.
301 		 *
302 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
303 		 * shmem mounts are not exposed to userspace, so we don't need
304 		 * to worry about things like glibc compatibility.
305 		 */
306 		ino_t *next_ino;
307 
308 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
309 		ino = *next_ino;
310 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
311 			raw_spin_lock(&sbinfo->stat_lock);
312 			ino = sbinfo->next_ino;
313 			sbinfo->next_ino += SHMEM_INO_BATCH;
314 			raw_spin_unlock(&sbinfo->stat_lock);
315 			if (unlikely(is_zero_ino(ino)))
316 				ino++;
317 		}
318 		*inop = ino;
319 		*next_ino = ++ino;
320 		put_cpu();
321 	}
322 
323 	return 0;
324 }
325 
shmem_free_inode(struct super_block * sb)326 static void shmem_free_inode(struct super_block *sb)
327 {
328 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
329 	if (sbinfo->max_inodes) {
330 		raw_spin_lock(&sbinfo->stat_lock);
331 		sbinfo->free_inodes++;
332 		raw_spin_unlock(&sbinfo->stat_lock);
333 	}
334 }
335 
336 /**
337  * shmem_recalc_inode - recalculate the block usage of an inode
338  * @inode: inode to recalc
339  *
340  * We have to calculate the free blocks since the mm can drop
341  * undirtied hole pages behind our back.
342  *
343  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
344  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
345  *
346  * It has to be called with the spinlock held.
347  */
shmem_recalc_inode(struct inode * inode)348 static void shmem_recalc_inode(struct inode *inode)
349 {
350 	struct shmem_inode_info *info = SHMEM_I(inode);
351 	long freed;
352 
353 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
354 	if (freed > 0) {
355 		info->alloced -= freed;
356 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
357 		shmem_inode_unacct_blocks(inode, freed);
358 	}
359 }
360 
shmem_charge(struct inode * inode,long pages)361 bool shmem_charge(struct inode *inode, long pages)
362 {
363 	struct shmem_inode_info *info = SHMEM_I(inode);
364 	unsigned long flags;
365 
366 	if (!shmem_inode_acct_block(inode, pages))
367 		return false;
368 
369 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
370 	inode->i_mapping->nrpages += pages;
371 
372 	spin_lock_irqsave(&info->lock, flags);
373 	info->alloced += pages;
374 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
375 	shmem_recalc_inode(inode);
376 	spin_unlock_irqrestore(&info->lock, flags);
377 
378 	return true;
379 }
380 
shmem_uncharge(struct inode * inode,long pages)381 void shmem_uncharge(struct inode *inode, long pages)
382 {
383 	struct shmem_inode_info *info = SHMEM_I(inode);
384 	unsigned long flags;
385 
386 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
387 
388 	spin_lock_irqsave(&info->lock, flags);
389 	info->alloced -= pages;
390 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
391 	shmem_recalc_inode(inode);
392 	spin_unlock_irqrestore(&info->lock, flags);
393 
394 	shmem_inode_unacct_blocks(inode, pages);
395 }
396 
397 /*
398  * Replace item expected in xarray by a new item, while holding xa_lock.
399  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)400 static int shmem_replace_entry(struct address_space *mapping,
401 			pgoff_t index, void *expected, void *replacement)
402 {
403 	XA_STATE(xas, &mapping->i_pages, index);
404 	void *item;
405 
406 	VM_BUG_ON(!expected);
407 	VM_BUG_ON(!replacement);
408 	item = xas_load(&xas);
409 	if (item != expected)
410 		return -ENOENT;
411 	xas_store(&xas, replacement);
412 	return 0;
413 }
414 
415 /*
416  * Sometimes, before we decide whether to proceed or to fail, we must check
417  * that an entry was not already brought back from swap by a racing thread.
418  *
419  * Checking page is not enough: by the time a SwapCache page is locked, it
420  * might be reused, and again be SwapCache, using the same swap as before.
421  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)422 static bool shmem_confirm_swap(struct address_space *mapping,
423 			       pgoff_t index, swp_entry_t swap)
424 {
425 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
426 }
427 
428 /*
429  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
430  *
431  * SHMEM_HUGE_NEVER:
432  *	disables huge pages for the mount;
433  * SHMEM_HUGE_ALWAYS:
434  *	enables huge pages for the mount;
435  * SHMEM_HUGE_WITHIN_SIZE:
436  *	only allocate huge pages if the page will be fully within i_size,
437  *	also respect fadvise()/madvise() hints;
438  * SHMEM_HUGE_ADVISE:
439  *	only allocate huge pages if requested with fadvise()/madvise();
440  */
441 
442 #define SHMEM_HUGE_NEVER	0
443 #define SHMEM_HUGE_ALWAYS	1
444 #define SHMEM_HUGE_WITHIN_SIZE	2
445 #define SHMEM_HUGE_ADVISE	3
446 
447 /*
448  * Special values.
449  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
450  *
451  * SHMEM_HUGE_DENY:
452  *	disables huge on shm_mnt and all mounts, for emergency use;
453  * SHMEM_HUGE_FORCE:
454  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
455  *
456  */
457 #define SHMEM_HUGE_DENY		(-1)
458 #define SHMEM_HUGE_FORCE	(-2)
459 
460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
461 /* ifdef here to avoid bloating shmem.o when not necessary */
462 
463 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
464 
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index,bool shmem_huge_force)465 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
466 		   pgoff_t index, bool shmem_huge_force)
467 {
468 	loff_t i_size;
469 
470 	if (!S_ISREG(inode->i_mode))
471 		return false;
472 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
473 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
474 		return false;
475 	if (shmem_huge == SHMEM_HUGE_DENY)
476 		return false;
477 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
478 		return true;
479 
480 	switch (SHMEM_SB(inode->i_sb)->huge) {
481 	case SHMEM_HUGE_ALWAYS:
482 		return true;
483 	case SHMEM_HUGE_WITHIN_SIZE:
484 		index = round_up(index + 1, HPAGE_PMD_NR);
485 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
486 		if (i_size >> PAGE_SHIFT >= index)
487 			return true;
488 		fallthrough;
489 	case SHMEM_HUGE_ADVISE:
490 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
491 			return true;
492 		fallthrough;
493 	default:
494 		return false;
495 	}
496 }
497 
498 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)499 static int shmem_parse_huge(const char *str)
500 {
501 	if (!strcmp(str, "never"))
502 		return SHMEM_HUGE_NEVER;
503 	if (!strcmp(str, "always"))
504 		return SHMEM_HUGE_ALWAYS;
505 	if (!strcmp(str, "within_size"))
506 		return SHMEM_HUGE_WITHIN_SIZE;
507 	if (!strcmp(str, "advise"))
508 		return SHMEM_HUGE_ADVISE;
509 	if (!strcmp(str, "deny"))
510 		return SHMEM_HUGE_DENY;
511 	if (!strcmp(str, "force"))
512 		return SHMEM_HUGE_FORCE;
513 	return -EINVAL;
514 }
515 #endif
516 
517 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)518 static const char *shmem_format_huge(int huge)
519 {
520 	switch (huge) {
521 	case SHMEM_HUGE_NEVER:
522 		return "never";
523 	case SHMEM_HUGE_ALWAYS:
524 		return "always";
525 	case SHMEM_HUGE_WITHIN_SIZE:
526 		return "within_size";
527 	case SHMEM_HUGE_ADVISE:
528 		return "advise";
529 	case SHMEM_HUGE_DENY:
530 		return "deny";
531 	case SHMEM_HUGE_FORCE:
532 		return "force";
533 	default:
534 		VM_BUG_ON(1);
535 		return "bad_val";
536 	}
537 }
538 #endif
539 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)540 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
541 		struct shrink_control *sc, unsigned long nr_to_split)
542 {
543 	LIST_HEAD(list), *pos, *next;
544 	LIST_HEAD(to_remove);
545 	struct inode *inode;
546 	struct shmem_inode_info *info;
547 	struct folio *folio;
548 	unsigned long batch = sc ? sc->nr_to_scan : 128;
549 	int split = 0;
550 
551 	if (list_empty(&sbinfo->shrinklist))
552 		return SHRINK_STOP;
553 
554 	spin_lock(&sbinfo->shrinklist_lock);
555 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
556 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
557 
558 		/* pin the inode */
559 		inode = igrab(&info->vfs_inode);
560 
561 		/* inode is about to be evicted */
562 		if (!inode) {
563 			list_del_init(&info->shrinklist);
564 			goto next;
565 		}
566 
567 		/* Check if there's anything to gain */
568 		if (round_up(inode->i_size, PAGE_SIZE) ==
569 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
570 			list_move(&info->shrinklist, &to_remove);
571 			goto next;
572 		}
573 
574 		list_move(&info->shrinklist, &list);
575 next:
576 		sbinfo->shrinklist_len--;
577 		if (!--batch)
578 			break;
579 	}
580 	spin_unlock(&sbinfo->shrinklist_lock);
581 
582 	list_for_each_safe(pos, next, &to_remove) {
583 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
584 		inode = &info->vfs_inode;
585 		list_del_init(&info->shrinklist);
586 		iput(inode);
587 	}
588 
589 	list_for_each_safe(pos, next, &list) {
590 		int ret;
591 		pgoff_t index;
592 
593 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 		inode = &info->vfs_inode;
595 
596 		if (nr_to_split && split >= nr_to_split)
597 			goto move_back;
598 
599 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
600 		folio = filemap_get_folio(inode->i_mapping, index);
601 		if (!folio)
602 			goto drop;
603 
604 		/* No huge page at the end of the file: nothing to split */
605 		if (!folio_test_large(folio)) {
606 			folio_put(folio);
607 			goto drop;
608 		}
609 
610 		/*
611 		 * Move the inode on the list back to shrinklist if we failed
612 		 * to lock the page at this time.
613 		 *
614 		 * Waiting for the lock may lead to deadlock in the
615 		 * reclaim path.
616 		 */
617 		if (!folio_trylock(folio)) {
618 			folio_put(folio);
619 			goto move_back;
620 		}
621 
622 		ret = split_folio(folio);
623 		folio_unlock(folio);
624 		folio_put(folio);
625 
626 		/* If split failed move the inode on the list back to shrinklist */
627 		if (ret)
628 			goto move_back;
629 
630 		split++;
631 drop:
632 		list_del_init(&info->shrinklist);
633 		goto put;
634 move_back:
635 		/*
636 		 * Make sure the inode is either on the global list or deleted
637 		 * from any local list before iput() since it could be deleted
638 		 * in another thread once we put the inode (then the local list
639 		 * is corrupted).
640 		 */
641 		spin_lock(&sbinfo->shrinklist_lock);
642 		list_move(&info->shrinklist, &sbinfo->shrinklist);
643 		sbinfo->shrinklist_len++;
644 		spin_unlock(&sbinfo->shrinklist_lock);
645 put:
646 		iput(inode);
647 	}
648 
649 	return split;
650 }
651 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)652 static long shmem_unused_huge_scan(struct super_block *sb,
653 		struct shrink_control *sc)
654 {
655 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
656 
657 	if (!READ_ONCE(sbinfo->shrinklist_len))
658 		return SHRINK_STOP;
659 
660 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
661 }
662 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)663 static long shmem_unused_huge_count(struct super_block *sb,
664 		struct shrink_control *sc)
665 {
666 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
667 	return READ_ONCE(sbinfo->shrinklist_len);
668 }
669 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
670 
671 #define shmem_huge SHMEM_HUGE_DENY
672 
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index,bool shmem_huge_force)673 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
674 		   pgoff_t index, bool shmem_huge_force)
675 {
676 	return false;
677 }
678 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)679 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
680 		struct shrink_control *sc, unsigned long nr_to_split)
681 {
682 	return 0;
683 }
684 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
685 
686 /*
687  * Like filemap_add_folio, but error if expected item has gone.
688  */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)689 static int shmem_add_to_page_cache(struct folio *folio,
690 				   struct address_space *mapping,
691 				   pgoff_t index, void *expected, gfp_t gfp,
692 				   struct mm_struct *charge_mm)
693 {
694 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
695 	long nr = folio_nr_pages(folio);
696 	int error;
697 
698 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
699 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
700 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
701 	VM_BUG_ON(expected && folio_test_large(folio));
702 
703 	folio_ref_add(folio, nr);
704 	folio->mapping = mapping;
705 	folio->index = index;
706 
707 	if (!folio_test_swapcache(folio)) {
708 		error = mem_cgroup_charge(folio, charge_mm, gfp);
709 		if (error) {
710 			if (folio_test_pmd_mappable(folio)) {
711 				count_vm_event(THP_FILE_FALLBACK);
712 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
713 			}
714 			goto error;
715 		}
716 	}
717 	folio_throttle_swaprate(folio, gfp);
718 
719 	do {
720 		xas_lock_irq(&xas);
721 		if (expected != xas_find_conflict(&xas)) {
722 			xas_set_err(&xas, -EEXIST);
723 			goto unlock;
724 		}
725 		if (expected && xas_find_conflict(&xas)) {
726 			xas_set_err(&xas, -EEXIST);
727 			goto unlock;
728 		}
729 		xas_store(&xas, folio);
730 		if (xas_error(&xas))
731 			goto unlock;
732 		if (folio_test_pmd_mappable(folio)) {
733 			count_vm_event(THP_FILE_ALLOC);
734 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
735 		}
736 		mapping->nrpages += nr;
737 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
738 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
739 unlock:
740 		xas_unlock_irq(&xas);
741 	} while (xas_nomem(&xas, gfp));
742 
743 	if (xas_error(&xas)) {
744 		error = xas_error(&xas);
745 		goto error;
746 	}
747 
748 	return 0;
749 error:
750 	folio->mapping = NULL;
751 	folio_ref_sub(folio, nr);
752 	return error;
753 }
754 
755 /*
756  * Like delete_from_page_cache, but substitutes swap for @folio.
757  */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)758 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
759 {
760 	struct address_space *mapping = folio->mapping;
761 	long nr = folio_nr_pages(folio);
762 	int error;
763 
764 	xa_lock_irq(&mapping->i_pages);
765 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
766 	folio->mapping = NULL;
767 	mapping->nrpages -= nr;
768 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
769 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
770 	xa_unlock_irq(&mapping->i_pages);
771 	folio_put(folio);
772 	BUG_ON(error);
773 }
774 
775 /*
776  * Remove swap entry from page cache, free the swap and its page cache.
777  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)778 static int shmem_free_swap(struct address_space *mapping,
779 			   pgoff_t index, void *radswap)
780 {
781 	void *old;
782 
783 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
784 	if (old != radswap)
785 		return -ENOENT;
786 	free_swap_and_cache(radix_to_swp_entry(radswap));
787 	return 0;
788 }
789 
790 /*
791  * Determine (in bytes) how many of the shmem object's pages mapped by the
792  * given offsets are swapped out.
793  *
794  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
795  * as long as the inode doesn't go away and racy results are not a problem.
796  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)797 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
798 						pgoff_t start, pgoff_t end)
799 {
800 	XA_STATE(xas, &mapping->i_pages, start);
801 	struct page *page;
802 	unsigned long swapped = 0;
803 
804 	rcu_read_lock();
805 	xas_for_each(&xas, page, end - 1) {
806 		if (xas_retry(&xas, page))
807 			continue;
808 		if (xa_is_value(page))
809 			swapped++;
810 
811 		if (need_resched()) {
812 			xas_pause(&xas);
813 			cond_resched_rcu();
814 		}
815 	}
816 
817 	rcu_read_unlock();
818 
819 	return swapped << PAGE_SHIFT;
820 }
821 
822 /*
823  * Determine (in bytes) how many of the shmem object's pages mapped by the
824  * given vma is swapped out.
825  *
826  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
827  * as long as the inode doesn't go away and racy results are not a problem.
828  */
shmem_swap_usage(struct vm_area_struct * vma)829 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
830 {
831 	struct inode *inode = file_inode(vma->vm_file);
832 	struct shmem_inode_info *info = SHMEM_I(inode);
833 	struct address_space *mapping = inode->i_mapping;
834 	unsigned long swapped;
835 
836 	/* Be careful as we don't hold info->lock */
837 	swapped = READ_ONCE(info->swapped);
838 
839 	/*
840 	 * The easier cases are when the shmem object has nothing in swap, or
841 	 * the vma maps it whole. Then we can simply use the stats that we
842 	 * already track.
843 	 */
844 	if (!swapped)
845 		return 0;
846 
847 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
848 		return swapped << PAGE_SHIFT;
849 
850 	/* Here comes the more involved part */
851 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
852 					vma->vm_pgoff + vma_pages(vma));
853 }
854 
855 /*
856  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
857  */
shmem_unlock_mapping(struct address_space * mapping)858 void shmem_unlock_mapping(struct address_space *mapping)
859 {
860 	struct folio_batch fbatch;
861 	pgoff_t index = 0;
862 
863 	folio_batch_init(&fbatch);
864 	/*
865 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
866 	 */
867 	while (!mapping_unevictable(mapping) &&
868 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
869 		check_move_unevictable_folios(&fbatch);
870 		folio_batch_release(&fbatch);
871 		cond_resched();
872 	}
873 }
874 
shmem_get_partial_folio(struct inode * inode,pgoff_t index)875 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
876 {
877 	struct folio *folio;
878 
879 	/*
880 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
881 	 * beyond i_size, and reports fallocated pages as holes.
882 	 */
883 	folio = __filemap_get_folio(inode->i_mapping, index,
884 					FGP_ENTRY | FGP_LOCK, 0);
885 	if (!xa_is_value(folio))
886 		return folio;
887 	/*
888 	 * But read a page back from swap if any of it is within i_size
889 	 * (although in some cases this is just a waste of time).
890 	 */
891 	folio = NULL;
892 	shmem_get_folio(inode, index, &folio, SGP_READ);
893 	return folio;
894 }
895 
896 /*
897  * Remove range of pages and swap entries from page cache, and free them.
898  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
899  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)900 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
901 								 bool unfalloc)
902 {
903 	struct address_space *mapping = inode->i_mapping;
904 	struct shmem_inode_info *info = SHMEM_I(inode);
905 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
906 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
907 	struct folio_batch fbatch;
908 	pgoff_t indices[PAGEVEC_SIZE];
909 	struct folio *folio;
910 	bool same_folio;
911 	long nr_swaps_freed = 0;
912 	pgoff_t index;
913 	int i;
914 
915 	if (lend == -1)
916 		end = -1;	/* unsigned, so actually very big */
917 
918 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
919 		info->fallocend = start;
920 
921 	folio_batch_init(&fbatch);
922 	index = start;
923 	while (index < end && find_lock_entries(mapping, index, end - 1,
924 			&fbatch, indices)) {
925 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
926 			folio = fbatch.folios[i];
927 
928 			index = indices[i];
929 
930 			if (xa_is_value(folio)) {
931 				if (unfalloc)
932 					continue;
933 				nr_swaps_freed += !shmem_free_swap(mapping,
934 								index, folio);
935 				continue;
936 			}
937 			index += folio_nr_pages(folio) - 1;
938 
939 			if (!unfalloc || !folio_test_uptodate(folio))
940 				truncate_inode_folio(mapping, folio);
941 			folio_unlock(folio);
942 		}
943 		folio_batch_remove_exceptionals(&fbatch);
944 		folio_batch_release(&fbatch);
945 		cond_resched();
946 		index++;
947 	}
948 
949 	/*
950 	 * When undoing a failed fallocate, we want none of the partial folio
951 	 * zeroing and splitting below, but shall want to truncate the whole
952 	 * folio when !uptodate indicates that it was added by this fallocate,
953 	 * even when [lstart, lend] covers only a part of the folio.
954 	 */
955 	if (unfalloc)
956 		goto whole_folios;
957 
958 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
959 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
960 	if (folio) {
961 		same_folio = lend < folio_pos(folio) + folio_size(folio);
962 		folio_mark_dirty(folio);
963 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
964 			start = folio->index + folio_nr_pages(folio);
965 			if (same_folio)
966 				end = folio->index;
967 		}
968 		folio_unlock(folio);
969 		folio_put(folio);
970 		folio = NULL;
971 	}
972 
973 	if (!same_folio)
974 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
975 	if (folio) {
976 		folio_mark_dirty(folio);
977 		if (!truncate_inode_partial_folio(folio, lstart, lend))
978 			end = folio->index;
979 		folio_unlock(folio);
980 		folio_put(folio);
981 	}
982 
983 whole_folios:
984 
985 	index = start;
986 	while (index < end) {
987 		cond_resched();
988 
989 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
990 				indices)) {
991 			/* If all gone or hole-punch or unfalloc, we're done */
992 			if (index == start || end != -1)
993 				break;
994 			/* But if truncating, restart to make sure all gone */
995 			index = start;
996 			continue;
997 		}
998 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
999 			folio = fbatch.folios[i];
1000 
1001 			index = indices[i];
1002 			if (xa_is_value(folio)) {
1003 				if (unfalloc)
1004 					continue;
1005 				if (shmem_free_swap(mapping, index, folio)) {
1006 					/* Swap was replaced by page: retry */
1007 					index--;
1008 					break;
1009 				}
1010 				nr_swaps_freed++;
1011 				continue;
1012 			}
1013 
1014 			folio_lock(folio);
1015 
1016 			if (!unfalloc || !folio_test_uptodate(folio)) {
1017 				if (folio_mapping(folio) != mapping) {
1018 					/* Page was replaced by swap: retry */
1019 					folio_unlock(folio);
1020 					index--;
1021 					break;
1022 				}
1023 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1024 						folio);
1025 				truncate_inode_folio(mapping, folio);
1026 			}
1027 			index = folio->index + folio_nr_pages(folio) - 1;
1028 			folio_unlock(folio);
1029 		}
1030 		folio_batch_remove_exceptionals(&fbatch);
1031 		folio_batch_release(&fbatch);
1032 		index++;
1033 	}
1034 
1035 	spin_lock_irq(&info->lock);
1036 	info->swapped -= nr_swaps_freed;
1037 	shmem_recalc_inode(inode);
1038 	spin_unlock_irq(&info->lock);
1039 }
1040 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1041 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1042 {
1043 	shmem_undo_range(inode, lstart, lend, false);
1044 	inode->i_ctime = inode->i_mtime = current_time(inode);
1045 	inode_inc_iversion(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048 
shmem_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 			 const struct path *path, struct kstat *stat,
1051 			 u32 request_mask, unsigned int query_flags)
1052 {
1053 	struct inode *inode = path->dentry->d_inode;
1054 	struct shmem_inode_info *info = SHMEM_I(inode);
1055 
1056 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 		spin_lock_irq(&info->lock);
1058 		shmem_recalc_inode(inode);
1059 		spin_unlock_irq(&info->lock);
1060 	}
1061 	if (info->fsflags & FS_APPEND_FL)
1062 		stat->attributes |= STATX_ATTR_APPEND;
1063 	if (info->fsflags & FS_IMMUTABLE_FL)
1064 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1065 	if (info->fsflags & FS_NODUMP_FL)
1066 		stat->attributes |= STATX_ATTR_NODUMP;
1067 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1068 			STATX_ATTR_IMMUTABLE |
1069 			STATX_ATTR_NODUMP);
1070 	generic_fillattr(&init_user_ns, inode, stat);
1071 
1072 	if (shmem_is_huge(NULL, inode, 0, false))
1073 		stat->blksize = HPAGE_PMD_SIZE;
1074 
1075 	if (request_mask & STATX_BTIME) {
1076 		stat->result_mask |= STATX_BTIME;
1077 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1078 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1079 	}
1080 
1081 	return 0;
1082 }
1083 
shmem_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1084 static int shmem_setattr(struct user_namespace *mnt_userns,
1085 			 struct dentry *dentry, struct iattr *attr)
1086 {
1087 	struct inode *inode = d_inode(dentry);
1088 	struct shmem_inode_info *info = SHMEM_I(inode);
1089 	int error;
1090 	bool update_mtime = false;
1091 	bool update_ctime = true;
1092 
1093 	error = setattr_prepare(&init_user_ns, dentry, attr);
1094 	if (error)
1095 		return error;
1096 
1097 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1098 		loff_t oldsize = inode->i_size;
1099 		loff_t newsize = attr->ia_size;
1100 
1101 		/* protected by i_rwsem */
1102 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1103 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1104 			return -EPERM;
1105 
1106 		if (newsize != oldsize) {
1107 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1108 					oldsize, newsize);
1109 			if (error)
1110 				return error;
1111 			i_size_write(inode, newsize);
1112 			update_mtime = true;
1113 		} else {
1114 			update_ctime = false;
1115 		}
1116 		if (newsize <= oldsize) {
1117 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1118 			if (oldsize > holebegin)
1119 				unmap_mapping_range(inode->i_mapping,
1120 							holebegin, 0, 1);
1121 			if (info->alloced)
1122 				shmem_truncate_range(inode,
1123 							newsize, (loff_t)-1);
1124 			/* unmap again to remove racily COWed private pages */
1125 			if (oldsize > holebegin)
1126 				unmap_mapping_range(inode->i_mapping,
1127 							holebegin, 0, 1);
1128 		}
1129 	}
1130 
1131 	setattr_copy(&init_user_ns, inode, attr);
1132 	if (attr->ia_valid & ATTR_MODE)
1133 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1134 	if (!error && update_ctime) {
1135 		inode->i_ctime = current_time(inode);
1136 		if (update_mtime)
1137 			inode->i_mtime = inode->i_ctime;
1138 		inode_inc_iversion(inode);
1139 	}
1140 	return error;
1141 }
1142 
shmem_evict_inode(struct inode * inode)1143 static void shmem_evict_inode(struct inode *inode)
1144 {
1145 	struct shmem_inode_info *info = SHMEM_I(inode);
1146 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1147 
1148 	if (shmem_mapping(inode->i_mapping)) {
1149 		shmem_unacct_size(info->flags, inode->i_size);
1150 		inode->i_size = 0;
1151 		mapping_set_exiting(inode->i_mapping);
1152 		shmem_truncate_range(inode, 0, (loff_t)-1);
1153 		if (!list_empty(&info->shrinklist)) {
1154 			spin_lock(&sbinfo->shrinklist_lock);
1155 			if (!list_empty(&info->shrinklist)) {
1156 				list_del_init(&info->shrinklist);
1157 				sbinfo->shrinklist_len--;
1158 			}
1159 			spin_unlock(&sbinfo->shrinklist_lock);
1160 		}
1161 		while (!list_empty(&info->swaplist)) {
1162 			/* Wait while shmem_unuse() is scanning this inode... */
1163 			wait_var_event(&info->stop_eviction,
1164 				       !atomic_read(&info->stop_eviction));
1165 			mutex_lock(&shmem_swaplist_mutex);
1166 			/* ...but beware of the race if we peeked too early */
1167 			if (!atomic_read(&info->stop_eviction))
1168 				list_del_init(&info->swaplist);
1169 			mutex_unlock(&shmem_swaplist_mutex);
1170 		}
1171 	}
1172 
1173 	simple_xattrs_free(&info->xattrs);
1174 	WARN_ON(inode->i_blocks);
1175 	shmem_free_inode(inode->i_sb);
1176 	clear_inode(inode);
1177 }
1178 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1179 static int shmem_find_swap_entries(struct address_space *mapping,
1180 				   pgoff_t start, struct folio_batch *fbatch,
1181 				   pgoff_t *indices, unsigned int type)
1182 {
1183 	XA_STATE(xas, &mapping->i_pages, start);
1184 	struct folio *folio;
1185 	swp_entry_t entry;
1186 
1187 	rcu_read_lock();
1188 	xas_for_each(&xas, folio, ULONG_MAX) {
1189 		if (xas_retry(&xas, folio))
1190 			continue;
1191 
1192 		if (!xa_is_value(folio))
1193 			continue;
1194 
1195 		entry = radix_to_swp_entry(folio);
1196 		/*
1197 		 * swapin error entries can be found in the mapping. But they're
1198 		 * deliberately ignored here as we've done everything we can do.
1199 		 */
1200 		if (swp_type(entry) != type)
1201 			continue;
1202 
1203 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1204 		if (!folio_batch_add(fbatch, folio))
1205 			break;
1206 
1207 		if (need_resched()) {
1208 			xas_pause(&xas);
1209 			cond_resched_rcu();
1210 		}
1211 	}
1212 	rcu_read_unlock();
1213 
1214 	return xas.xa_index;
1215 }
1216 
1217 /*
1218  * Move the swapped pages for an inode to page cache. Returns the count
1219  * of pages swapped in, or the error in case of failure.
1220  */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1221 static int shmem_unuse_swap_entries(struct inode *inode,
1222 		struct folio_batch *fbatch, pgoff_t *indices)
1223 {
1224 	int i = 0;
1225 	int ret = 0;
1226 	int error = 0;
1227 	struct address_space *mapping = inode->i_mapping;
1228 
1229 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1230 		struct folio *folio = fbatch->folios[i];
1231 
1232 		if (!xa_is_value(folio))
1233 			continue;
1234 		error = shmem_swapin_folio(inode, indices[i],
1235 					  &folio, SGP_CACHE,
1236 					  mapping_gfp_mask(mapping),
1237 					  NULL, NULL);
1238 		if (error == 0) {
1239 			folio_unlock(folio);
1240 			folio_put(folio);
1241 			ret++;
1242 		}
1243 		if (error == -ENOMEM)
1244 			break;
1245 		error = 0;
1246 	}
1247 	return error ? error : ret;
1248 }
1249 
1250 /*
1251  * If swap found in inode, free it and move page from swapcache to filecache.
1252  */
shmem_unuse_inode(struct inode * inode,unsigned int type)1253 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1254 {
1255 	struct address_space *mapping = inode->i_mapping;
1256 	pgoff_t start = 0;
1257 	struct folio_batch fbatch;
1258 	pgoff_t indices[PAGEVEC_SIZE];
1259 	int ret = 0;
1260 
1261 	do {
1262 		folio_batch_init(&fbatch);
1263 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1264 		if (folio_batch_count(&fbatch) == 0) {
1265 			ret = 0;
1266 			break;
1267 		}
1268 
1269 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1270 		if (ret < 0)
1271 			break;
1272 
1273 		start = indices[folio_batch_count(&fbatch) - 1];
1274 	} while (true);
1275 
1276 	return ret;
1277 }
1278 
1279 /*
1280  * Read all the shared memory data that resides in the swap
1281  * device 'type' back into memory, so the swap device can be
1282  * unused.
1283  */
shmem_unuse(unsigned int type)1284 int shmem_unuse(unsigned int type)
1285 {
1286 	struct shmem_inode_info *info, *next;
1287 	int error = 0;
1288 
1289 	if (list_empty(&shmem_swaplist))
1290 		return 0;
1291 
1292 	mutex_lock(&shmem_swaplist_mutex);
1293 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1294 		if (!info->swapped) {
1295 			list_del_init(&info->swaplist);
1296 			continue;
1297 		}
1298 		/*
1299 		 * Drop the swaplist mutex while searching the inode for swap;
1300 		 * but before doing so, make sure shmem_evict_inode() will not
1301 		 * remove placeholder inode from swaplist, nor let it be freed
1302 		 * (igrab() would protect from unlink, but not from unmount).
1303 		 */
1304 		atomic_inc(&info->stop_eviction);
1305 		mutex_unlock(&shmem_swaplist_mutex);
1306 
1307 		error = shmem_unuse_inode(&info->vfs_inode, type);
1308 		cond_resched();
1309 
1310 		mutex_lock(&shmem_swaplist_mutex);
1311 		next = list_next_entry(info, swaplist);
1312 		if (!info->swapped)
1313 			list_del_init(&info->swaplist);
1314 		if (atomic_dec_and_test(&info->stop_eviction))
1315 			wake_up_var(&info->stop_eviction);
1316 		if (error)
1317 			break;
1318 	}
1319 	mutex_unlock(&shmem_swaplist_mutex);
1320 
1321 	return error;
1322 }
1323 
1324 /*
1325  * Move the page from the page cache to the swap cache.
1326  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1327 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1328 {
1329 	struct folio *folio = page_folio(page);
1330 	struct shmem_inode_info *info;
1331 	struct address_space *mapping;
1332 	struct inode *inode;
1333 	swp_entry_t swap;
1334 	pgoff_t index;
1335 
1336 	/*
1337 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1338 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1339 	 * and its shmem_writeback() needs them to be split when swapping.
1340 	 */
1341 	if (folio_test_large(folio)) {
1342 		/* Ensure the subpages are still dirty */
1343 		folio_test_set_dirty(folio);
1344 		if (split_huge_page(page) < 0)
1345 			goto redirty;
1346 		folio = page_folio(page);
1347 		folio_clear_dirty(folio);
1348 	}
1349 
1350 	BUG_ON(!folio_test_locked(folio));
1351 	mapping = folio->mapping;
1352 	index = folio->index;
1353 	inode = mapping->host;
1354 	info = SHMEM_I(inode);
1355 	if (info->flags & VM_LOCKED)
1356 		goto redirty;
1357 	if (!total_swap_pages)
1358 		goto redirty;
1359 
1360 	/*
1361 	 * Our capabilities prevent regular writeback or sync from ever calling
1362 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1363 	 * its underlying filesystem, in which case tmpfs should write out to
1364 	 * swap only in response to memory pressure, and not for the writeback
1365 	 * threads or sync.
1366 	 */
1367 	if (!wbc->for_reclaim) {
1368 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1369 		goto redirty;
1370 	}
1371 
1372 	/*
1373 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1374 	 * value into swapfile.c, the only way we can correctly account for a
1375 	 * fallocated folio arriving here is now to initialize it and write it.
1376 	 *
1377 	 * That's okay for a folio already fallocated earlier, but if we have
1378 	 * not yet completed the fallocation, then (a) we want to keep track
1379 	 * of this folio in case we have to undo it, and (b) it may not be a
1380 	 * good idea to continue anyway, once we're pushing into swap.  So
1381 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1382 	 */
1383 	if (!folio_test_uptodate(folio)) {
1384 		if (inode->i_private) {
1385 			struct shmem_falloc *shmem_falloc;
1386 			spin_lock(&inode->i_lock);
1387 			shmem_falloc = inode->i_private;
1388 			if (shmem_falloc &&
1389 			    !shmem_falloc->waitq &&
1390 			    index >= shmem_falloc->start &&
1391 			    index < shmem_falloc->next)
1392 				shmem_falloc->nr_unswapped++;
1393 			else
1394 				shmem_falloc = NULL;
1395 			spin_unlock(&inode->i_lock);
1396 			if (shmem_falloc)
1397 				goto redirty;
1398 		}
1399 		folio_zero_range(folio, 0, folio_size(folio));
1400 		flush_dcache_folio(folio);
1401 		folio_mark_uptodate(folio);
1402 	}
1403 
1404 	swap = folio_alloc_swap(folio);
1405 	if (!swap.val)
1406 		goto redirty;
1407 
1408 	/*
1409 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1410 	 * if it's not already there.  Do it now before the folio is
1411 	 * moved to swap cache, when its pagelock no longer protects
1412 	 * the inode from eviction.  But don't unlock the mutex until
1413 	 * we've incremented swapped, because shmem_unuse_inode() will
1414 	 * prune a !swapped inode from the swaplist under this mutex.
1415 	 */
1416 	mutex_lock(&shmem_swaplist_mutex);
1417 	if (list_empty(&info->swaplist))
1418 		list_add(&info->swaplist, &shmem_swaplist);
1419 
1420 	if (add_to_swap_cache(folio, swap,
1421 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1422 			NULL) == 0) {
1423 		spin_lock_irq(&info->lock);
1424 		shmem_recalc_inode(inode);
1425 		info->swapped++;
1426 		spin_unlock_irq(&info->lock);
1427 
1428 		swap_shmem_alloc(swap);
1429 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1430 
1431 		mutex_unlock(&shmem_swaplist_mutex);
1432 		BUG_ON(folio_mapped(folio));
1433 		swap_writepage(&folio->page, wbc);
1434 		return 0;
1435 	}
1436 
1437 	mutex_unlock(&shmem_swaplist_mutex);
1438 	put_swap_folio(folio, swap);
1439 redirty:
1440 	folio_mark_dirty(folio);
1441 	if (wbc->for_reclaim)
1442 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1443 	folio_unlock(folio);
1444 	return 0;
1445 }
1446 
1447 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1448 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1449 {
1450 	char buffer[64];
1451 
1452 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1453 		return;		/* show nothing */
1454 
1455 	mpol_to_str(buffer, sizeof(buffer), mpol);
1456 
1457 	seq_printf(seq, ",mpol=%s", buffer);
1458 }
1459 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1460 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1461 {
1462 	struct mempolicy *mpol = NULL;
1463 	if (sbinfo->mpol) {
1464 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1465 		mpol = sbinfo->mpol;
1466 		mpol_get(mpol);
1467 		raw_spin_unlock(&sbinfo->stat_lock);
1468 	}
1469 	return mpol;
1470 }
1471 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1472 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1473 {
1474 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1475 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1476 {
1477 	return NULL;
1478 }
1479 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1480 #ifndef CONFIG_NUMA
1481 #define vm_policy vm_private_data
1482 #endif
1483 
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1484 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1485 		struct shmem_inode_info *info, pgoff_t index)
1486 {
1487 	/* Create a pseudo vma that just contains the policy */
1488 	vma_init(vma, NULL);
1489 	/* Bias interleave by inode number to distribute better across nodes */
1490 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1491 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1492 }
1493 
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1494 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1495 {
1496 	/* Drop reference taken by mpol_shared_policy_lookup() */
1497 	mpol_cond_put(vma->vm_policy);
1498 }
1499 
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1500 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1501 			struct shmem_inode_info *info, pgoff_t index)
1502 {
1503 	struct vm_area_struct pvma;
1504 	struct page *page;
1505 	struct vm_fault vmf = {
1506 		.vma = &pvma,
1507 	};
1508 
1509 	shmem_pseudo_vma_init(&pvma, info, index);
1510 	page = swap_cluster_readahead(swap, gfp, &vmf);
1511 	shmem_pseudo_vma_destroy(&pvma);
1512 
1513 	if (!page)
1514 		return NULL;
1515 	return page_folio(page);
1516 }
1517 
1518 /*
1519  * Make sure huge_gfp is always more limited than limit_gfp.
1520  * Some of the flags set permissions, while others set limitations.
1521  */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1522 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1523 {
1524 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1525 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1526 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1527 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1528 
1529 	/* Allow allocations only from the originally specified zones. */
1530 	result |= zoneflags;
1531 
1532 	/*
1533 	 * Minimize the result gfp by taking the union with the deny flags,
1534 	 * and the intersection of the allow flags.
1535 	 */
1536 	result |= (limit_gfp & denyflags);
1537 	result |= (huge_gfp & limit_gfp) & allowflags;
1538 
1539 	return result;
1540 }
1541 
shmem_alloc_hugefolio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1542 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1543 		struct shmem_inode_info *info, pgoff_t index)
1544 {
1545 	struct vm_area_struct pvma;
1546 	struct address_space *mapping = info->vfs_inode.i_mapping;
1547 	pgoff_t hindex;
1548 	struct folio *folio;
1549 
1550 	hindex = round_down(index, HPAGE_PMD_NR);
1551 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1552 								XA_PRESENT))
1553 		return NULL;
1554 
1555 	shmem_pseudo_vma_init(&pvma, info, hindex);
1556 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1557 	shmem_pseudo_vma_destroy(&pvma);
1558 	if (!folio)
1559 		count_vm_event(THP_FILE_FALLBACK);
1560 	return folio;
1561 }
1562 
shmem_alloc_folio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1563 static struct folio *shmem_alloc_folio(gfp_t gfp,
1564 			struct shmem_inode_info *info, pgoff_t index)
1565 {
1566 	struct vm_area_struct pvma;
1567 	struct folio *folio;
1568 
1569 	shmem_pseudo_vma_init(&pvma, info, index);
1570 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1571 	shmem_pseudo_vma_destroy(&pvma);
1572 
1573 	return folio;
1574 }
1575 
shmem_alloc_and_acct_folio(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1576 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1577 		pgoff_t index, bool huge)
1578 {
1579 	struct shmem_inode_info *info = SHMEM_I(inode);
1580 	struct folio *folio;
1581 	int nr;
1582 	int err = -ENOSPC;
1583 
1584 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1585 		huge = false;
1586 	nr = huge ? HPAGE_PMD_NR : 1;
1587 
1588 	if (!shmem_inode_acct_block(inode, nr))
1589 		goto failed;
1590 
1591 	if (huge)
1592 		folio = shmem_alloc_hugefolio(gfp, info, index);
1593 	else
1594 		folio = shmem_alloc_folio(gfp, info, index);
1595 	if (folio) {
1596 		__folio_set_locked(folio);
1597 		__folio_set_swapbacked(folio);
1598 		return folio;
1599 	}
1600 
1601 	err = -ENOMEM;
1602 	shmem_inode_unacct_blocks(inode, nr);
1603 failed:
1604 	return ERR_PTR(err);
1605 }
1606 
1607 /*
1608  * When a page is moved from swapcache to shmem filecache (either by the
1609  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1610  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1611  * ignorance of the mapping it belongs to.  If that mapping has special
1612  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1613  * we may need to copy to a suitable page before moving to filecache.
1614  *
1615  * In a future release, this may well be extended to respect cpuset and
1616  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1617  * but for now it is a simple matter of zone.
1618  */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1619 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1620 {
1621 	return folio_zonenum(folio) > gfp_zone(gfp);
1622 }
1623 
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1624 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1625 				struct shmem_inode_info *info, pgoff_t index)
1626 {
1627 	struct folio *old, *new;
1628 	struct address_space *swap_mapping;
1629 	swp_entry_t entry;
1630 	pgoff_t swap_index;
1631 	int error;
1632 
1633 	old = *foliop;
1634 	entry = folio_swap_entry(old);
1635 	swap_index = swp_offset(entry);
1636 	swap_mapping = swap_address_space(entry);
1637 
1638 	/*
1639 	 * We have arrived here because our zones are constrained, so don't
1640 	 * limit chance of success by further cpuset and node constraints.
1641 	 */
1642 	gfp &= ~GFP_CONSTRAINT_MASK;
1643 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1644 	new = shmem_alloc_folio(gfp, info, index);
1645 	if (!new)
1646 		return -ENOMEM;
1647 
1648 	folio_get(new);
1649 	folio_copy(new, old);
1650 	flush_dcache_folio(new);
1651 
1652 	__folio_set_locked(new);
1653 	__folio_set_swapbacked(new);
1654 	folio_mark_uptodate(new);
1655 	folio_set_swap_entry(new, entry);
1656 	folio_set_swapcache(new);
1657 
1658 	/*
1659 	 * Our caller will very soon move newpage out of swapcache, but it's
1660 	 * a nice clean interface for us to replace oldpage by newpage there.
1661 	 */
1662 	xa_lock_irq(&swap_mapping->i_pages);
1663 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1664 	if (!error) {
1665 		mem_cgroup_migrate(old, new);
1666 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1667 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1668 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1669 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1670 	}
1671 	xa_unlock_irq(&swap_mapping->i_pages);
1672 
1673 	if (unlikely(error)) {
1674 		/*
1675 		 * Is this possible?  I think not, now that our callers check
1676 		 * both PageSwapCache and page_private after getting page lock;
1677 		 * but be defensive.  Reverse old to newpage for clear and free.
1678 		 */
1679 		old = new;
1680 	} else {
1681 		folio_add_lru(new);
1682 		*foliop = new;
1683 	}
1684 
1685 	folio_clear_swapcache(old);
1686 	old->private = NULL;
1687 
1688 	folio_unlock(old);
1689 	folio_put_refs(old, 2);
1690 	return error;
1691 }
1692 
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1693 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1694 					 struct folio *folio, swp_entry_t swap)
1695 {
1696 	struct address_space *mapping = inode->i_mapping;
1697 	struct shmem_inode_info *info = SHMEM_I(inode);
1698 	swp_entry_t swapin_error;
1699 	void *old;
1700 
1701 	swapin_error = make_swapin_error_entry(&folio->page);
1702 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1703 			     swp_to_radix_entry(swap),
1704 			     swp_to_radix_entry(swapin_error), 0);
1705 	if (old != swp_to_radix_entry(swap))
1706 		return;
1707 
1708 	folio_wait_writeback(folio);
1709 	delete_from_swap_cache(folio);
1710 	spin_lock_irq(&info->lock);
1711 	/*
1712 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1713 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1714 	 * shmem_evict_inode.
1715 	 */
1716 	info->alloced--;
1717 	info->swapped--;
1718 	shmem_recalc_inode(inode);
1719 	spin_unlock_irq(&info->lock);
1720 	swap_free(swap);
1721 }
1722 
1723 /*
1724  * Swap in the folio pointed to by *foliop.
1725  * Caller has to make sure that *foliop contains a valid swapped folio.
1726  * Returns 0 and the folio in foliop if success. On failure, returns the
1727  * error code and NULL in *foliop.
1728  */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1729 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1730 			     struct folio **foliop, enum sgp_type sgp,
1731 			     gfp_t gfp, struct vm_area_struct *vma,
1732 			     vm_fault_t *fault_type)
1733 {
1734 	struct address_space *mapping = inode->i_mapping;
1735 	struct shmem_inode_info *info = SHMEM_I(inode);
1736 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1737 	struct folio *folio = NULL;
1738 	swp_entry_t swap;
1739 	int error;
1740 
1741 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1742 	swap = radix_to_swp_entry(*foliop);
1743 	*foliop = NULL;
1744 
1745 	if (is_swapin_error_entry(swap))
1746 		return -EIO;
1747 
1748 	/* Look it up and read it in.. */
1749 	folio = swap_cache_get_folio(swap, NULL, 0);
1750 	if (!folio) {
1751 		/* Or update major stats only when swapin succeeds?? */
1752 		if (fault_type) {
1753 			*fault_type |= VM_FAULT_MAJOR;
1754 			count_vm_event(PGMAJFAULT);
1755 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1756 		}
1757 		/* Here we actually start the io */
1758 		folio = shmem_swapin(swap, gfp, info, index);
1759 		if (!folio) {
1760 			error = -ENOMEM;
1761 			goto failed;
1762 		}
1763 	}
1764 
1765 	/* We have to do this with folio locked to prevent races */
1766 	folio_lock(folio);
1767 	if (!folio_test_swapcache(folio) ||
1768 	    folio_swap_entry(folio).val != swap.val ||
1769 	    !shmem_confirm_swap(mapping, index, swap)) {
1770 		error = -EEXIST;
1771 		goto unlock;
1772 	}
1773 	if (!folio_test_uptodate(folio)) {
1774 		error = -EIO;
1775 		goto failed;
1776 	}
1777 	folio_wait_writeback(folio);
1778 
1779 	/*
1780 	 * Some architectures may have to restore extra metadata to the
1781 	 * folio after reading from swap.
1782 	 */
1783 	arch_swap_restore(swap, folio);
1784 
1785 	if (shmem_should_replace_folio(folio, gfp)) {
1786 		error = shmem_replace_folio(&folio, gfp, info, index);
1787 		if (error)
1788 			goto failed;
1789 	}
1790 
1791 	error = shmem_add_to_page_cache(folio, mapping, index,
1792 					swp_to_radix_entry(swap), gfp,
1793 					charge_mm);
1794 	if (error)
1795 		goto failed;
1796 
1797 	spin_lock_irq(&info->lock);
1798 	info->swapped--;
1799 	shmem_recalc_inode(inode);
1800 	spin_unlock_irq(&info->lock);
1801 
1802 	if (sgp == SGP_WRITE)
1803 		folio_mark_accessed(folio);
1804 
1805 	delete_from_swap_cache(folio);
1806 	folio_mark_dirty(folio);
1807 	swap_free(swap);
1808 
1809 	*foliop = folio;
1810 	return 0;
1811 failed:
1812 	if (!shmem_confirm_swap(mapping, index, swap))
1813 		error = -EEXIST;
1814 	if (error == -EIO)
1815 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1816 unlock:
1817 	if (folio) {
1818 		folio_unlock(folio);
1819 		folio_put(folio);
1820 	}
1821 
1822 	return error;
1823 }
1824 
1825 /*
1826  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1827  *
1828  * If we allocate a new one we do not mark it dirty. That's up to the
1829  * vm. If we swap it in we mark it dirty since we also free the swap
1830  * entry since a page cannot live in both the swap and page cache.
1831  *
1832  * vma, vmf, and fault_type are only supplied by shmem_fault:
1833  * otherwise they are NULL.
1834  */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1835 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1836 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1837 		struct vm_area_struct *vma, struct vm_fault *vmf,
1838 		vm_fault_t *fault_type)
1839 {
1840 	struct address_space *mapping = inode->i_mapping;
1841 	struct shmem_inode_info *info = SHMEM_I(inode);
1842 	struct shmem_sb_info *sbinfo;
1843 	struct mm_struct *charge_mm;
1844 	struct folio *folio;
1845 	pgoff_t hindex = index;
1846 	gfp_t huge_gfp;
1847 	int error;
1848 	int once = 0;
1849 	int alloced = 0;
1850 
1851 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1852 		return -EFBIG;
1853 repeat:
1854 	if (sgp <= SGP_CACHE &&
1855 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1856 		return -EINVAL;
1857 	}
1858 
1859 	sbinfo = SHMEM_SB(inode->i_sb);
1860 	charge_mm = vma ? vma->vm_mm : NULL;
1861 
1862 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1863 	if (folio && vma && userfaultfd_minor(vma)) {
1864 		if (!xa_is_value(folio)) {
1865 			folio_unlock(folio);
1866 			folio_put(folio);
1867 		}
1868 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1869 		return 0;
1870 	}
1871 
1872 	if (xa_is_value(folio)) {
1873 		error = shmem_swapin_folio(inode, index, &folio,
1874 					  sgp, gfp, vma, fault_type);
1875 		if (error == -EEXIST)
1876 			goto repeat;
1877 
1878 		*foliop = folio;
1879 		return error;
1880 	}
1881 
1882 	if (folio) {
1883 		hindex = folio->index;
1884 		if (sgp == SGP_WRITE)
1885 			folio_mark_accessed(folio);
1886 		if (folio_test_uptodate(folio))
1887 			goto out;
1888 		/* fallocated folio */
1889 		if (sgp != SGP_READ)
1890 			goto clear;
1891 		folio_unlock(folio);
1892 		folio_put(folio);
1893 	}
1894 
1895 	/*
1896 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1897 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1898 	 */
1899 	*foliop = NULL;
1900 	if (sgp == SGP_READ)
1901 		return 0;
1902 	if (sgp == SGP_NOALLOC)
1903 		return -ENOENT;
1904 
1905 	/*
1906 	 * Fast cache lookup and swap lookup did not find it: allocate.
1907 	 */
1908 
1909 	if (vma && userfaultfd_missing(vma)) {
1910 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1911 		return 0;
1912 	}
1913 
1914 	if (!shmem_is_huge(vma, inode, index, false))
1915 		goto alloc_nohuge;
1916 
1917 	huge_gfp = vma_thp_gfp_mask(vma);
1918 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1919 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1920 	if (IS_ERR(folio)) {
1921 alloc_nohuge:
1922 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1923 	}
1924 	if (IS_ERR(folio)) {
1925 		int retry = 5;
1926 
1927 		error = PTR_ERR(folio);
1928 		folio = NULL;
1929 		if (error != -ENOSPC)
1930 			goto unlock;
1931 		/*
1932 		 * Try to reclaim some space by splitting a large folio
1933 		 * beyond i_size on the filesystem.
1934 		 */
1935 		while (retry--) {
1936 			int ret;
1937 
1938 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1939 			if (ret == SHRINK_STOP)
1940 				break;
1941 			if (ret)
1942 				goto alloc_nohuge;
1943 		}
1944 		goto unlock;
1945 	}
1946 
1947 	hindex = round_down(index, folio_nr_pages(folio));
1948 
1949 	if (sgp == SGP_WRITE)
1950 		__folio_set_referenced(folio);
1951 
1952 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1953 					NULL, gfp & GFP_RECLAIM_MASK,
1954 					charge_mm);
1955 	if (error)
1956 		goto unacct;
1957 	folio_add_lru(folio);
1958 
1959 	spin_lock_irq(&info->lock);
1960 	info->alloced += folio_nr_pages(folio);
1961 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1962 	shmem_recalc_inode(inode);
1963 	spin_unlock_irq(&info->lock);
1964 	alloced = true;
1965 
1966 	if (folio_test_pmd_mappable(folio) &&
1967 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1968 					folio_next_index(folio) - 1) {
1969 		/*
1970 		 * Part of the large folio is beyond i_size: subject
1971 		 * to shrink under memory pressure.
1972 		 */
1973 		spin_lock(&sbinfo->shrinklist_lock);
1974 		/*
1975 		 * _careful to defend against unlocked access to
1976 		 * ->shrink_list in shmem_unused_huge_shrink()
1977 		 */
1978 		if (list_empty_careful(&info->shrinklist)) {
1979 			list_add_tail(&info->shrinklist,
1980 				      &sbinfo->shrinklist);
1981 			sbinfo->shrinklist_len++;
1982 		}
1983 		spin_unlock(&sbinfo->shrinklist_lock);
1984 	}
1985 
1986 	/*
1987 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1988 	 */
1989 	if (sgp == SGP_FALLOC)
1990 		sgp = SGP_WRITE;
1991 clear:
1992 	/*
1993 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1994 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1995 	 * it now, lest undo on failure cancel our earlier guarantee.
1996 	 */
1997 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1998 		long i, n = folio_nr_pages(folio);
1999 
2000 		for (i = 0; i < n; i++)
2001 			clear_highpage(folio_page(folio, i));
2002 		flush_dcache_folio(folio);
2003 		folio_mark_uptodate(folio);
2004 	}
2005 
2006 	/* Perhaps the file has been truncated since we checked */
2007 	if (sgp <= SGP_CACHE &&
2008 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2009 		if (alloced) {
2010 			folio_clear_dirty(folio);
2011 			filemap_remove_folio(folio);
2012 			spin_lock_irq(&info->lock);
2013 			shmem_recalc_inode(inode);
2014 			spin_unlock_irq(&info->lock);
2015 		}
2016 		error = -EINVAL;
2017 		goto unlock;
2018 	}
2019 out:
2020 	*foliop = folio;
2021 	return 0;
2022 
2023 	/*
2024 	 * Error recovery.
2025 	 */
2026 unacct:
2027 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2028 
2029 	if (folio_test_large(folio)) {
2030 		folio_unlock(folio);
2031 		folio_put(folio);
2032 		goto alloc_nohuge;
2033 	}
2034 unlock:
2035 	if (folio) {
2036 		folio_unlock(folio);
2037 		folio_put(folio);
2038 	}
2039 	if (error == -ENOSPC && !once++) {
2040 		spin_lock_irq(&info->lock);
2041 		shmem_recalc_inode(inode);
2042 		spin_unlock_irq(&info->lock);
2043 		goto repeat;
2044 	}
2045 	if (error == -EEXIST)
2046 		goto repeat;
2047 	return error;
2048 }
2049 
shmem_get_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp)2050 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2051 		enum sgp_type sgp)
2052 {
2053 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2054 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2055 }
2056 
2057 /*
2058  * This is like autoremove_wake_function, but it removes the wait queue
2059  * entry unconditionally - even if something else had already woken the
2060  * target.
2061  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2062 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2063 {
2064 	int ret = default_wake_function(wait, mode, sync, key);
2065 	list_del_init(&wait->entry);
2066 	return ret;
2067 }
2068 
shmem_fault(struct vm_fault * vmf)2069 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2070 {
2071 	struct vm_area_struct *vma = vmf->vma;
2072 	struct inode *inode = file_inode(vma->vm_file);
2073 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2074 	struct folio *folio = NULL;
2075 	int err;
2076 	vm_fault_t ret = VM_FAULT_LOCKED;
2077 
2078 	/*
2079 	 * Trinity finds that probing a hole which tmpfs is punching can
2080 	 * prevent the hole-punch from ever completing: which in turn
2081 	 * locks writers out with its hold on i_rwsem.  So refrain from
2082 	 * faulting pages into the hole while it's being punched.  Although
2083 	 * shmem_undo_range() does remove the additions, it may be unable to
2084 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2085 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2086 	 *
2087 	 * It does not matter if we sometimes reach this check just before the
2088 	 * hole-punch begins, so that one fault then races with the punch:
2089 	 * we just need to make racing faults a rare case.
2090 	 *
2091 	 * The implementation below would be much simpler if we just used a
2092 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2093 	 * and bloating every shmem inode for this unlikely case would be sad.
2094 	 */
2095 	if (unlikely(inode->i_private)) {
2096 		struct shmem_falloc *shmem_falloc;
2097 
2098 		spin_lock(&inode->i_lock);
2099 		shmem_falloc = inode->i_private;
2100 		if (shmem_falloc &&
2101 		    shmem_falloc->waitq &&
2102 		    vmf->pgoff >= shmem_falloc->start &&
2103 		    vmf->pgoff < shmem_falloc->next) {
2104 			struct file *fpin;
2105 			wait_queue_head_t *shmem_falloc_waitq;
2106 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2107 
2108 			ret = VM_FAULT_NOPAGE;
2109 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2110 			if (fpin)
2111 				ret = VM_FAULT_RETRY;
2112 
2113 			shmem_falloc_waitq = shmem_falloc->waitq;
2114 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2115 					TASK_UNINTERRUPTIBLE);
2116 			spin_unlock(&inode->i_lock);
2117 			schedule();
2118 
2119 			/*
2120 			 * shmem_falloc_waitq points into the shmem_fallocate()
2121 			 * stack of the hole-punching task: shmem_falloc_waitq
2122 			 * is usually invalid by the time we reach here, but
2123 			 * finish_wait() does not dereference it in that case;
2124 			 * though i_lock needed lest racing with wake_up_all().
2125 			 */
2126 			spin_lock(&inode->i_lock);
2127 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2128 			spin_unlock(&inode->i_lock);
2129 
2130 			if (fpin)
2131 				fput(fpin);
2132 			return ret;
2133 		}
2134 		spin_unlock(&inode->i_lock);
2135 	}
2136 
2137 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2138 				  gfp, vma, vmf, &ret);
2139 	if (err)
2140 		return vmf_error(err);
2141 	if (folio)
2142 		vmf->page = folio_file_page(folio, vmf->pgoff);
2143 	return ret;
2144 }
2145 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2146 unsigned long shmem_get_unmapped_area(struct file *file,
2147 				      unsigned long uaddr, unsigned long len,
2148 				      unsigned long pgoff, unsigned long flags)
2149 {
2150 	unsigned long (*get_area)(struct file *,
2151 		unsigned long, unsigned long, unsigned long, unsigned long);
2152 	unsigned long addr;
2153 	unsigned long offset;
2154 	unsigned long inflated_len;
2155 	unsigned long inflated_addr;
2156 	unsigned long inflated_offset;
2157 
2158 	if (len > TASK_SIZE)
2159 		return -ENOMEM;
2160 
2161 	get_area = current->mm->get_unmapped_area;
2162 	addr = get_area(file, uaddr, len, pgoff, flags);
2163 
2164 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2165 		return addr;
2166 	if (IS_ERR_VALUE(addr))
2167 		return addr;
2168 	if (addr & ~PAGE_MASK)
2169 		return addr;
2170 	if (addr > TASK_SIZE - len)
2171 		return addr;
2172 
2173 	if (shmem_huge == SHMEM_HUGE_DENY)
2174 		return addr;
2175 	if (len < HPAGE_PMD_SIZE)
2176 		return addr;
2177 	if (flags & MAP_FIXED)
2178 		return addr;
2179 	/*
2180 	 * Our priority is to support MAP_SHARED mapped hugely;
2181 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2182 	 * But if caller specified an address hint and we allocated area there
2183 	 * successfully, respect that as before.
2184 	 */
2185 	if (uaddr == addr)
2186 		return addr;
2187 
2188 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2189 		struct super_block *sb;
2190 
2191 		if (file) {
2192 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2193 			sb = file_inode(file)->i_sb;
2194 		} else {
2195 			/*
2196 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2197 			 * for "/dev/zero", to create a shared anonymous object.
2198 			 */
2199 			if (IS_ERR(shm_mnt))
2200 				return addr;
2201 			sb = shm_mnt->mnt_sb;
2202 		}
2203 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2204 			return addr;
2205 	}
2206 
2207 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2208 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2209 		return addr;
2210 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2211 		return addr;
2212 
2213 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2214 	if (inflated_len > TASK_SIZE)
2215 		return addr;
2216 	if (inflated_len < len)
2217 		return addr;
2218 
2219 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2220 	if (IS_ERR_VALUE(inflated_addr))
2221 		return addr;
2222 	if (inflated_addr & ~PAGE_MASK)
2223 		return addr;
2224 
2225 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2226 	inflated_addr += offset - inflated_offset;
2227 	if (inflated_offset > offset)
2228 		inflated_addr += HPAGE_PMD_SIZE;
2229 
2230 	if (inflated_addr > TASK_SIZE - len)
2231 		return addr;
2232 	return inflated_addr;
2233 }
2234 
2235 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2236 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2237 {
2238 	struct inode *inode = file_inode(vma->vm_file);
2239 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2240 }
2241 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2242 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2243 					  unsigned long addr)
2244 {
2245 	struct inode *inode = file_inode(vma->vm_file);
2246 	pgoff_t index;
2247 
2248 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2249 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2250 }
2251 #endif
2252 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2253 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2254 {
2255 	struct inode *inode = file_inode(file);
2256 	struct shmem_inode_info *info = SHMEM_I(inode);
2257 	int retval = -ENOMEM;
2258 
2259 	/*
2260 	 * What serializes the accesses to info->flags?
2261 	 * ipc_lock_object() when called from shmctl_do_lock(),
2262 	 * no serialization needed when called from shm_destroy().
2263 	 */
2264 	if (lock && !(info->flags & VM_LOCKED)) {
2265 		if (!user_shm_lock(inode->i_size, ucounts))
2266 			goto out_nomem;
2267 		info->flags |= VM_LOCKED;
2268 		mapping_set_unevictable(file->f_mapping);
2269 	}
2270 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2271 		user_shm_unlock(inode->i_size, ucounts);
2272 		info->flags &= ~VM_LOCKED;
2273 		mapping_clear_unevictable(file->f_mapping);
2274 	}
2275 	retval = 0;
2276 
2277 out_nomem:
2278 	return retval;
2279 }
2280 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2281 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2282 {
2283 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2284 	int ret;
2285 
2286 	ret = seal_check_future_write(info->seals, vma);
2287 	if (ret)
2288 		return ret;
2289 
2290 	/* arm64 - allow memory tagging on RAM-based files */
2291 	vma->vm_flags |= VM_MTE_ALLOWED;
2292 
2293 	file_accessed(file);
2294 	vma->vm_ops = &shmem_vm_ops;
2295 	return 0;
2296 }
2297 
2298 #ifdef CONFIG_TMPFS_XATTR
2299 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2300 
2301 /*
2302  * chattr's fsflags are unrelated to extended attributes,
2303  * but tmpfs has chosen to enable them under the same config option.
2304  */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2305 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2306 {
2307 	unsigned int i_flags = 0;
2308 
2309 	if (fsflags & FS_NOATIME_FL)
2310 		i_flags |= S_NOATIME;
2311 	if (fsflags & FS_APPEND_FL)
2312 		i_flags |= S_APPEND;
2313 	if (fsflags & FS_IMMUTABLE_FL)
2314 		i_flags |= S_IMMUTABLE;
2315 	/*
2316 	 * But FS_NODUMP_FL does not require any action in i_flags.
2317 	 */
2318 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2319 }
2320 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2321 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2322 {
2323 }
2324 #define shmem_initxattrs NULL
2325 #endif
2326 
shmem_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2327 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2328 				     umode_t mode, dev_t dev, unsigned long flags)
2329 {
2330 	struct inode *inode;
2331 	struct shmem_inode_info *info;
2332 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2333 	ino_t ino;
2334 
2335 	if (shmem_reserve_inode(sb, &ino))
2336 		return NULL;
2337 
2338 	inode = new_inode(sb);
2339 	if (inode) {
2340 		inode->i_ino = ino;
2341 		inode_init_owner(&init_user_ns, inode, dir, mode);
2342 		inode->i_blocks = 0;
2343 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2344 		inode->i_generation = get_random_u32();
2345 		info = SHMEM_I(inode);
2346 		memset(info, 0, (char *)inode - (char *)info);
2347 		spin_lock_init(&info->lock);
2348 		atomic_set(&info->stop_eviction, 0);
2349 		info->seals = F_SEAL_SEAL;
2350 		info->flags = flags & VM_NORESERVE;
2351 		info->i_crtime = inode->i_mtime;
2352 		info->fsflags = (dir == NULL) ? 0 :
2353 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2354 		if (info->fsflags)
2355 			shmem_set_inode_flags(inode, info->fsflags);
2356 		INIT_LIST_HEAD(&info->shrinklist);
2357 		INIT_LIST_HEAD(&info->swaplist);
2358 		simple_xattrs_init(&info->xattrs);
2359 		cache_no_acl(inode);
2360 		mapping_set_large_folios(inode->i_mapping);
2361 
2362 		switch (mode & S_IFMT) {
2363 		default:
2364 			inode->i_op = &shmem_special_inode_operations;
2365 			init_special_inode(inode, mode, dev);
2366 			break;
2367 		case S_IFREG:
2368 			inode->i_mapping->a_ops = &shmem_aops;
2369 			inode->i_op = &shmem_inode_operations;
2370 			inode->i_fop = &shmem_file_operations;
2371 			mpol_shared_policy_init(&info->policy,
2372 						 shmem_get_sbmpol(sbinfo));
2373 			break;
2374 		case S_IFDIR:
2375 			inc_nlink(inode);
2376 			/* Some things misbehave if size == 0 on a directory */
2377 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2378 			inode->i_op = &shmem_dir_inode_operations;
2379 			inode->i_fop = &simple_dir_operations;
2380 			break;
2381 		case S_IFLNK:
2382 			/*
2383 			 * Must not load anything in the rbtree,
2384 			 * mpol_free_shared_policy will not be called.
2385 			 */
2386 			mpol_shared_policy_init(&info->policy, NULL);
2387 			break;
2388 		}
2389 
2390 		lockdep_annotate_inode_mutex_key(inode);
2391 	} else
2392 		shmem_free_inode(sb);
2393 	return inode;
2394 }
2395 
2396 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,bool wp_copy,struct page ** pagep)2397 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2398 			   pmd_t *dst_pmd,
2399 			   struct vm_area_struct *dst_vma,
2400 			   unsigned long dst_addr,
2401 			   unsigned long src_addr,
2402 			   bool zeropage, bool wp_copy,
2403 			   struct page **pagep)
2404 {
2405 	struct inode *inode = file_inode(dst_vma->vm_file);
2406 	struct shmem_inode_info *info = SHMEM_I(inode);
2407 	struct address_space *mapping = inode->i_mapping;
2408 	gfp_t gfp = mapping_gfp_mask(mapping);
2409 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2410 	void *page_kaddr;
2411 	struct folio *folio;
2412 	int ret;
2413 	pgoff_t max_off;
2414 
2415 	if (!shmem_inode_acct_block(inode, 1)) {
2416 		/*
2417 		 * We may have got a page, returned -ENOENT triggering a retry,
2418 		 * and now we find ourselves with -ENOMEM. Release the page, to
2419 		 * avoid a BUG_ON in our caller.
2420 		 */
2421 		if (unlikely(*pagep)) {
2422 			put_page(*pagep);
2423 			*pagep = NULL;
2424 		}
2425 		return -ENOMEM;
2426 	}
2427 
2428 	if (!*pagep) {
2429 		ret = -ENOMEM;
2430 		folio = shmem_alloc_folio(gfp, info, pgoff);
2431 		if (!folio)
2432 			goto out_unacct_blocks;
2433 
2434 		if (!zeropage) {	/* COPY */
2435 			page_kaddr = kmap_local_folio(folio, 0);
2436 			/*
2437 			 * The read mmap_lock is held here.  Despite the
2438 			 * mmap_lock being read recursive a deadlock is still
2439 			 * possible if a writer has taken a lock.  For example:
2440 			 *
2441 			 * process A thread 1 takes read lock on own mmap_lock
2442 			 * process A thread 2 calls mmap, blocks taking write lock
2443 			 * process B thread 1 takes page fault, read lock on own mmap lock
2444 			 * process B thread 2 calls mmap, blocks taking write lock
2445 			 * process A thread 1 blocks taking read lock on process B
2446 			 * process B thread 1 blocks taking read lock on process A
2447 			 *
2448 			 * Disable page faults to prevent potential deadlock
2449 			 * and retry the copy outside the mmap_lock.
2450 			 */
2451 			pagefault_disable();
2452 			ret = copy_from_user(page_kaddr,
2453 					     (const void __user *)src_addr,
2454 					     PAGE_SIZE);
2455 			pagefault_enable();
2456 			kunmap_local(page_kaddr);
2457 
2458 			/* fallback to copy_from_user outside mmap_lock */
2459 			if (unlikely(ret)) {
2460 				*pagep = &folio->page;
2461 				ret = -ENOENT;
2462 				/* don't free the page */
2463 				goto out_unacct_blocks;
2464 			}
2465 
2466 			flush_dcache_folio(folio);
2467 		} else {		/* ZEROPAGE */
2468 			clear_user_highpage(&folio->page, dst_addr);
2469 		}
2470 	} else {
2471 		folio = page_folio(*pagep);
2472 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2473 		*pagep = NULL;
2474 	}
2475 
2476 	VM_BUG_ON(folio_test_locked(folio));
2477 	VM_BUG_ON(folio_test_swapbacked(folio));
2478 	__folio_set_locked(folio);
2479 	__folio_set_swapbacked(folio);
2480 	__folio_mark_uptodate(folio);
2481 
2482 	ret = -EFAULT;
2483 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2484 	if (unlikely(pgoff >= max_off))
2485 		goto out_release;
2486 
2487 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2488 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2489 	if (ret)
2490 		goto out_release;
2491 
2492 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2493 				       &folio->page, true, wp_copy);
2494 	if (ret)
2495 		goto out_delete_from_cache;
2496 
2497 	spin_lock_irq(&info->lock);
2498 	info->alloced++;
2499 	inode->i_blocks += BLOCKS_PER_PAGE;
2500 	shmem_recalc_inode(inode);
2501 	spin_unlock_irq(&info->lock);
2502 
2503 	folio_unlock(folio);
2504 	return 0;
2505 out_delete_from_cache:
2506 	filemap_remove_folio(folio);
2507 out_release:
2508 	folio_unlock(folio);
2509 	folio_put(folio);
2510 out_unacct_blocks:
2511 	shmem_inode_unacct_blocks(inode, 1);
2512 	return ret;
2513 }
2514 #endif /* CONFIG_USERFAULTFD */
2515 
2516 #ifdef CONFIG_TMPFS
2517 static const struct inode_operations shmem_symlink_inode_operations;
2518 static const struct inode_operations shmem_short_symlink_operations;
2519 
2520 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2521 shmem_write_begin(struct file *file, struct address_space *mapping,
2522 			loff_t pos, unsigned len,
2523 			struct page **pagep, void **fsdata)
2524 {
2525 	struct inode *inode = mapping->host;
2526 	struct shmem_inode_info *info = SHMEM_I(inode);
2527 	pgoff_t index = pos >> PAGE_SHIFT;
2528 	struct folio *folio;
2529 	int ret = 0;
2530 
2531 	/* i_rwsem is held by caller */
2532 	if (unlikely(info->seals & (F_SEAL_GROW |
2533 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2534 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2535 			return -EPERM;
2536 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2537 			return -EPERM;
2538 	}
2539 
2540 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2541 
2542 	if (ret)
2543 		return ret;
2544 
2545 	*pagep = folio_file_page(folio, index);
2546 	if (PageHWPoison(*pagep)) {
2547 		folio_unlock(folio);
2548 		folio_put(folio);
2549 		*pagep = NULL;
2550 		return -EIO;
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2557 shmem_write_end(struct file *file, struct address_space *mapping,
2558 			loff_t pos, unsigned len, unsigned copied,
2559 			struct page *page, void *fsdata)
2560 {
2561 	struct inode *inode = mapping->host;
2562 
2563 	if (pos + copied > inode->i_size)
2564 		i_size_write(inode, pos + copied);
2565 
2566 	if (!PageUptodate(page)) {
2567 		struct page *head = compound_head(page);
2568 		if (PageTransCompound(page)) {
2569 			int i;
2570 
2571 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2572 				if (head + i == page)
2573 					continue;
2574 				clear_highpage(head + i);
2575 				flush_dcache_page(head + i);
2576 			}
2577 		}
2578 		if (copied < PAGE_SIZE) {
2579 			unsigned from = pos & (PAGE_SIZE - 1);
2580 			zero_user_segments(page, 0, from,
2581 					from + copied, PAGE_SIZE);
2582 		}
2583 		SetPageUptodate(head);
2584 	}
2585 	set_page_dirty(page);
2586 	unlock_page(page);
2587 	put_page(page);
2588 
2589 	return copied;
2590 }
2591 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2592 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2593 {
2594 	struct file *file = iocb->ki_filp;
2595 	struct inode *inode = file_inode(file);
2596 	struct address_space *mapping = inode->i_mapping;
2597 	pgoff_t index;
2598 	unsigned long offset;
2599 	int error = 0;
2600 	ssize_t retval = 0;
2601 	loff_t *ppos = &iocb->ki_pos;
2602 
2603 	index = *ppos >> PAGE_SHIFT;
2604 	offset = *ppos & ~PAGE_MASK;
2605 
2606 	for (;;) {
2607 		struct folio *folio = NULL;
2608 		struct page *page = NULL;
2609 		pgoff_t end_index;
2610 		unsigned long nr, ret;
2611 		loff_t i_size = i_size_read(inode);
2612 
2613 		end_index = i_size >> PAGE_SHIFT;
2614 		if (index > end_index)
2615 			break;
2616 		if (index == end_index) {
2617 			nr = i_size & ~PAGE_MASK;
2618 			if (nr <= offset)
2619 				break;
2620 		}
2621 
2622 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2623 		if (error) {
2624 			if (error == -EINVAL)
2625 				error = 0;
2626 			break;
2627 		}
2628 		if (folio) {
2629 			folio_unlock(folio);
2630 
2631 			page = folio_file_page(folio, index);
2632 			if (PageHWPoison(page)) {
2633 				folio_put(folio);
2634 				error = -EIO;
2635 				break;
2636 			}
2637 		}
2638 
2639 		/*
2640 		 * We must evaluate after, since reads (unlike writes)
2641 		 * are called without i_rwsem protection against truncate
2642 		 */
2643 		nr = PAGE_SIZE;
2644 		i_size = i_size_read(inode);
2645 		end_index = i_size >> PAGE_SHIFT;
2646 		if (index == end_index) {
2647 			nr = i_size & ~PAGE_MASK;
2648 			if (nr <= offset) {
2649 				if (folio)
2650 					folio_put(folio);
2651 				break;
2652 			}
2653 		}
2654 		nr -= offset;
2655 
2656 		if (folio) {
2657 			/*
2658 			 * If users can be writing to this page using arbitrary
2659 			 * virtual addresses, take care about potential aliasing
2660 			 * before reading the page on the kernel side.
2661 			 */
2662 			if (mapping_writably_mapped(mapping))
2663 				flush_dcache_page(page);
2664 			/*
2665 			 * Mark the page accessed if we read the beginning.
2666 			 */
2667 			if (!offset)
2668 				folio_mark_accessed(folio);
2669 			/*
2670 			 * Ok, we have the page, and it's up-to-date, so
2671 			 * now we can copy it to user space...
2672 			 */
2673 			ret = copy_page_to_iter(page, offset, nr, to);
2674 			folio_put(folio);
2675 
2676 		} else if (user_backed_iter(to)) {
2677 			/*
2678 			 * Copy to user tends to be so well optimized, but
2679 			 * clear_user() not so much, that it is noticeably
2680 			 * faster to copy the zero page instead of clearing.
2681 			 */
2682 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2683 		} else {
2684 			/*
2685 			 * But submitting the same page twice in a row to
2686 			 * splice() - or others? - can result in confusion:
2687 			 * so don't attempt that optimization on pipes etc.
2688 			 */
2689 			ret = iov_iter_zero(nr, to);
2690 		}
2691 
2692 		retval += ret;
2693 		offset += ret;
2694 		index += offset >> PAGE_SHIFT;
2695 		offset &= ~PAGE_MASK;
2696 
2697 		if (!iov_iter_count(to))
2698 			break;
2699 		if (ret < nr) {
2700 			error = -EFAULT;
2701 			break;
2702 		}
2703 		cond_resched();
2704 	}
2705 
2706 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2707 	file_accessed(file);
2708 	return retval ? retval : error;
2709 }
2710 
shmem_file_llseek(struct file * file,loff_t offset,int whence)2711 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2712 {
2713 	struct address_space *mapping = file->f_mapping;
2714 	struct inode *inode = mapping->host;
2715 
2716 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2717 		return generic_file_llseek_size(file, offset, whence,
2718 					MAX_LFS_FILESIZE, i_size_read(inode));
2719 	if (offset < 0)
2720 		return -ENXIO;
2721 
2722 	inode_lock(inode);
2723 	/* We're holding i_rwsem so we can access i_size directly */
2724 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2725 	if (offset >= 0)
2726 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2727 	inode_unlock(inode);
2728 	return offset;
2729 }
2730 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2731 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2732 							 loff_t len)
2733 {
2734 	struct inode *inode = file_inode(file);
2735 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2736 	struct shmem_inode_info *info = SHMEM_I(inode);
2737 	struct shmem_falloc shmem_falloc;
2738 	pgoff_t start, index, end, undo_fallocend;
2739 	int error;
2740 
2741 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2742 		return -EOPNOTSUPP;
2743 
2744 	inode_lock(inode);
2745 
2746 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2747 		struct address_space *mapping = file->f_mapping;
2748 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2749 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2750 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2751 
2752 		/* protected by i_rwsem */
2753 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2754 			error = -EPERM;
2755 			goto out;
2756 		}
2757 
2758 		shmem_falloc.waitq = &shmem_falloc_waitq;
2759 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2760 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2761 		spin_lock(&inode->i_lock);
2762 		inode->i_private = &shmem_falloc;
2763 		spin_unlock(&inode->i_lock);
2764 
2765 		if ((u64)unmap_end > (u64)unmap_start)
2766 			unmap_mapping_range(mapping, unmap_start,
2767 					    1 + unmap_end - unmap_start, 0);
2768 		shmem_truncate_range(inode, offset, offset + len - 1);
2769 		/* No need to unmap again: hole-punching leaves COWed pages */
2770 
2771 		spin_lock(&inode->i_lock);
2772 		inode->i_private = NULL;
2773 		wake_up_all(&shmem_falloc_waitq);
2774 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2775 		spin_unlock(&inode->i_lock);
2776 		error = 0;
2777 		goto out;
2778 	}
2779 
2780 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2781 	error = inode_newsize_ok(inode, offset + len);
2782 	if (error)
2783 		goto out;
2784 
2785 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2786 		error = -EPERM;
2787 		goto out;
2788 	}
2789 
2790 	start = offset >> PAGE_SHIFT;
2791 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2792 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2793 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2794 		error = -ENOSPC;
2795 		goto out;
2796 	}
2797 
2798 	shmem_falloc.waitq = NULL;
2799 	shmem_falloc.start = start;
2800 	shmem_falloc.next  = start;
2801 	shmem_falloc.nr_falloced = 0;
2802 	shmem_falloc.nr_unswapped = 0;
2803 	spin_lock(&inode->i_lock);
2804 	inode->i_private = &shmem_falloc;
2805 	spin_unlock(&inode->i_lock);
2806 
2807 	/*
2808 	 * info->fallocend is only relevant when huge pages might be
2809 	 * involved: to prevent split_huge_page() freeing fallocated
2810 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2811 	 */
2812 	undo_fallocend = info->fallocend;
2813 	if (info->fallocend < end)
2814 		info->fallocend = end;
2815 
2816 	for (index = start; index < end; ) {
2817 		struct folio *folio;
2818 
2819 		/*
2820 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2821 		 * been interrupted because we are using up too much memory.
2822 		 */
2823 		if (signal_pending(current))
2824 			error = -EINTR;
2825 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2826 			error = -ENOMEM;
2827 		else
2828 			error = shmem_get_folio(inode, index, &folio,
2829 						SGP_FALLOC);
2830 		if (error) {
2831 			info->fallocend = undo_fallocend;
2832 			/* Remove the !uptodate folios we added */
2833 			if (index > start) {
2834 				shmem_undo_range(inode,
2835 				    (loff_t)start << PAGE_SHIFT,
2836 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2837 			}
2838 			goto undone;
2839 		}
2840 
2841 		/*
2842 		 * Here is a more important optimization than it appears:
2843 		 * a second SGP_FALLOC on the same large folio will clear it,
2844 		 * making it uptodate and un-undoable if we fail later.
2845 		 */
2846 		index = folio_next_index(folio);
2847 		/* Beware 32-bit wraparound */
2848 		if (!index)
2849 			index--;
2850 
2851 		/*
2852 		 * Inform shmem_writepage() how far we have reached.
2853 		 * No need for lock or barrier: we have the page lock.
2854 		 */
2855 		if (!folio_test_uptodate(folio))
2856 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2857 		shmem_falloc.next = index;
2858 
2859 		/*
2860 		 * If !uptodate, leave it that way so that freeable folios
2861 		 * can be recognized if we need to rollback on error later.
2862 		 * But mark it dirty so that memory pressure will swap rather
2863 		 * than free the folios we are allocating (and SGP_CACHE folios
2864 		 * might still be clean: we now need to mark those dirty too).
2865 		 */
2866 		folio_mark_dirty(folio);
2867 		folio_unlock(folio);
2868 		folio_put(folio);
2869 		cond_resched();
2870 	}
2871 
2872 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2873 		i_size_write(inode, offset + len);
2874 undone:
2875 	spin_lock(&inode->i_lock);
2876 	inode->i_private = NULL;
2877 	spin_unlock(&inode->i_lock);
2878 out:
2879 	if (!error)
2880 		file_modified(file);
2881 	inode_unlock(inode);
2882 	return error;
2883 }
2884 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2885 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2886 {
2887 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2888 
2889 	buf->f_type = TMPFS_MAGIC;
2890 	buf->f_bsize = PAGE_SIZE;
2891 	buf->f_namelen = NAME_MAX;
2892 	if (sbinfo->max_blocks) {
2893 		buf->f_blocks = sbinfo->max_blocks;
2894 		buf->f_bavail =
2895 		buf->f_bfree  = sbinfo->max_blocks -
2896 				percpu_counter_sum(&sbinfo->used_blocks);
2897 	}
2898 	if (sbinfo->max_inodes) {
2899 		buf->f_files = sbinfo->max_inodes;
2900 		buf->f_ffree = sbinfo->free_inodes;
2901 	}
2902 	/* else leave those fields 0 like simple_statfs */
2903 
2904 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2905 
2906 	return 0;
2907 }
2908 
2909 /*
2910  * File creation. Allocate an inode, and we're done..
2911  */
2912 static int
shmem_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2913 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2914 	    struct dentry *dentry, umode_t mode, dev_t dev)
2915 {
2916 	struct inode *inode;
2917 	int error = -ENOSPC;
2918 
2919 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2920 	if (inode) {
2921 		error = simple_acl_create(dir, inode);
2922 		if (error)
2923 			goto out_iput;
2924 		error = security_inode_init_security(inode, dir,
2925 						     &dentry->d_name,
2926 						     shmem_initxattrs, NULL);
2927 		if (error && error != -EOPNOTSUPP)
2928 			goto out_iput;
2929 
2930 		error = 0;
2931 		dir->i_size += BOGO_DIRENT_SIZE;
2932 		dir->i_ctime = dir->i_mtime = current_time(dir);
2933 		inode_inc_iversion(dir);
2934 		d_instantiate(dentry, inode);
2935 		dget(dentry); /* Extra count - pin the dentry in core */
2936 	}
2937 	return error;
2938 out_iput:
2939 	iput(inode);
2940 	return error;
2941 }
2942 
2943 static int
shmem_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct file * file,umode_t mode)2944 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2945 	      struct file *file, umode_t mode)
2946 {
2947 	struct inode *inode;
2948 	int error = -ENOSPC;
2949 
2950 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2951 	if (inode) {
2952 		error = security_inode_init_security(inode, dir,
2953 						     NULL,
2954 						     shmem_initxattrs, NULL);
2955 		if (error && error != -EOPNOTSUPP)
2956 			goto out_iput;
2957 		error = simple_acl_create(dir, inode);
2958 		if (error)
2959 			goto out_iput;
2960 		d_tmpfile(file, inode);
2961 	}
2962 	return finish_open_simple(file, error);
2963 out_iput:
2964 	iput(inode);
2965 	return error;
2966 }
2967 
shmem_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2968 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2969 		       struct dentry *dentry, umode_t mode)
2970 {
2971 	int error;
2972 
2973 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2974 				 mode | S_IFDIR, 0)))
2975 		return error;
2976 	inc_nlink(dir);
2977 	return 0;
2978 }
2979 
shmem_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2980 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2981 			struct dentry *dentry, umode_t mode, bool excl)
2982 {
2983 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2984 }
2985 
2986 /*
2987  * Link a file..
2988  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2989 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2990 {
2991 	struct inode *inode = d_inode(old_dentry);
2992 	int ret = 0;
2993 
2994 	/*
2995 	 * No ordinary (disk based) filesystem counts links as inodes;
2996 	 * but each new link needs a new dentry, pinning lowmem, and
2997 	 * tmpfs dentries cannot be pruned until they are unlinked.
2998 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2999 	 * first link must skip that, to get the accounting right.
3000 	 */
3001 	if (inode->i_nlink) {
3002 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3003 		if (ret)
3004 			goto out;
3005 	}
3006 
3007 	dir->i_size += BOGO_DIRENT_SIZE;
3008 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3009 	inode_inc_iversion(dir);
3010 	inc_nlink(inode);
3011 	ihold(inode);	/* New dentry reference */
3012 	dget(dentry);		/* Extra pinning count for the created dentry */
3013 	d_instantiate(dentry, inode);
3014 out:
3015 	return ret;
3016 }
3017 
shmem_unlink(struct inode * dir,struct dentry * dentry)3018 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3019 {
3020 	struct inode *inode = d_inode(dentry);
3021 
3022 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3023 		shmem_free_inode(inode->i_sb);
3024 
3025 	dir->i_size -= BOGO_DIRENT_SIZE;
3026 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3027 	inode_inc_iversion(dir);
3028 	drop_nlink(inode);
3029 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3030 	return 0;
3031 }
3032 
shmem_rmdir(struct inode * dir,struct dentry * dentry)3033 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3034 {
3035 	if (!simple_empty(dentry))
3036 		return -ENOTEMPTY;
3037 
3038 	drop_nlink(d_inode(dentry));
3039 	drop_nlink(dir);
3040 	return shmem_unlink(dir, dentry);
3041 }
3042 
shmem_whiteout(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry)3043 static int shmem_whiteout(struct user_namespace *mnt_userns,
3044 			  struct inode *old_dir, struct dentry *old_dentry)
3045 {
3046 	struct dentry *whiteout;
3047 	int error;
3048 
3049 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3050 	if (!whiteout)
3051 		return -ENOMEM;
3052 
3053 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3054 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3055 	dput(whiteout);
3056 	if (error)
3057 		return error;
3058 
3059 	/*
3060 	 * Cheat and hash the whiteout while the old dentry is still in
3061 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3062 	 *
3063 	 * d_lookup() will consistently find one of them at this point,
3064 	 * not sure which one, but that isn't even important.
3065 	 */
3066 	d_rehash(whiteout);
3067 	return 0;
3068 }
3069 
3070 /*
3071  * The VFS layer already does all the dentry stuff for rename,
3072  * we just have to decrement the usage count for the target if
3073  * it exists so that the VFS layer correctly free's it when it
3074  * gets overwritten.
3075  */
shmem_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3076 static int shmem_rename2(struct user_namespace *mnt_userns,
3077 			 struct inode *old_dir, struct dentry *old_dentry,
3078 			 struct inode *new_dir, struct dentry *new_dentry,
3079 			 unsigned int flags)
3080 {
3081 	struct inode *inode = d_inode(old_dentry);
3082 	int they_are_dirs = S_ISDIR(inode->i_mode);
3083 
3084 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3085 		return -EINVAL;
3086 
3087 	if (flags & RENAME_EXCHANGE)
3088 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3089 
3090 	if (!simple_empty(new_dentry))
3091 		return -ENOTEMPTY;
3092 
3093 	if (flags & RENAME_WHITEOUT) {
3094 		int error;
3095 
3096 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3097 		if (error)
3098 			return error;
3099 	}
3100 
3101 	if (d_really_is_positive(new_dentry)) {
3102 		(void) shmem_unlink(new_dir, new_dentry);
3103 		if (they_are_dirs) {
3104 			drop_nlink(d_inode(new_dentry));
3105 			drop_nlink(old_dir);
3106 		}
3107 	} else if (they_are_dirs) {
3108 		drop_nlink(old_dir);
3109 		inc_nlink(new_dir);
3110 	}
3111 
3112 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3113 	new_dir->i_size += BOGO_DIRENT_SIZE;
3114 	old_dir->i_ctime = old_dir->i_mtime =
3115 	new_dir->i_ctime = new_dir->i_mtime =
3116 	inode->i_ctime = current_time(old_dir);
3117 	inode_inc_iversion(old_dir);
3118 	inode_inc_iversion(new_dir);
3119 	return 0;
3120 }
3121 
shmem_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)3122 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3123 			 struct dentry *dentry, const char *symname)
3124 {
3125 	int error;
3126 	int len;
3127 	struct inode *inode;
3128 	struct folio *folio;
3129 
3130 	len = strlen(symname) + 1;
3131 	if (len > PAGE_SIZE)
3132 		return -ENAMETOOLONG;
3133 
3134 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3135 				VM_NORESERVE);
3136 	if (!inode)
3137 		return -ENOSPC;
3138 
3139 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3140 					     shmem_initxattrs, NULL);
3141 	if (error && error != -EOPNOTSUPP) {
3142 		iput(inode);
3143 		return error;
3144 	}
3145 
3146 	inode->i_size = len-1;
3147 	if (len <= SHORT_SYMLINK_LEN) {
3148 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3149 		if (!inode->i_link) {
3150 			iput(inode);
3151 			return -ENOMEM;
3152 		}
3153 		inode->i_op = &shmem_short_symlink_operations;
3154 	} else {
3155 		inode_nohighmem(inode);
3156 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3157 		if (error) {
3158 			iput(inode);
3159 			return error;
3160 		}
3161 		inode->i_mapping->a_ops = &shmem_aops;
3162 		inode->i_op = &shmem_symlink_inode_operations;
3163 		memcpy(folio_address(folio), symname, len);
3164 		folio_mark_uptodate(folio);
3165 		folio_mark_dirty(folio);
3166 		folio_unlock(folio);
3167 		folio_put(folio);
3168 	}
3169 	dir->i_size += BOGO_DIRENT_SIZE;
3170 	dir->i_ctime = dir->i_mtime = current_time(dir);
3171 	inode_inc_iversion(dir);
3172 	d_instantiate(dentry, inode);
3173 	dget(dentry);
3174 	return 0;
3175 }
3176 
shmem_put_link(void * arg)3177 static void shmem_put_link(void *arg)
3178 {
3179 	folio_mark_accessed(arg);
3180 	folio_put(arg);
3181 }
3182 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3183 static const char *shmem_get_link(struct dentry *dentry,
3184 				  struct inode *inode,
3185 				  struct delayed_call *done)
3186 {
3187 	struct folio *folio = NULL;
3188 	int error;
3189 
3190 	if (!dentry) {
3191 		folio = filemap_get_folio(inode->i_mapping, 0);
3192 		if (!folio)
3193 			return ERR_PTR(-ECHILD);
3194 		if (PageHWPoison(folio_page(folio, 0)) ||
3195 		    !folio_test_uptodate(folio)) {
3196 			folio_put(folio);
3197 			return ERR_PTR(-ECHILD);
3198 		}
3199 	} else {
3200 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3201 		if (error)
3202 			return ERR_PTR(error);
3203 		if (!folio)
3204 			return ERR_PTR(-ECHILD);
3205 		if (PageHWPoison(folio_page(folio, 0))) {
3206 			folio_unlock(folio);
3207 			folio_put(folio);
3208 			return ERR_PTR(-ECHILD);
3209 		}
3210 		folio_unlock(folio);
3211 	}
3212 	set_delayed_call(done, shmem_put_link, folio);
3213 	return folio_address(folio);
3214 }
3215 
3216 #ifdef CONFIG_TMPFS_XATTR
3217 
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)3218 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3219 {
3220 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3221 
3222 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3223 
3224 	return 0;
3225 }
3226 
shmem_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)3227 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3228 			      struct dentry *dentry, struct fileattr *fa)
3229 {
3230 	struct inode *inode = d_inode(dentry);
3231 	struct shmem_inode_info *info = SHMEM_I(inode);
3232 
3233 	if (fileattr_has_fsx(fa))
3234 		return -EOPNOTSUPP;
3235 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3236 		return -EOPNOTSUPP;
3237 
3238 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3239 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3240 
3241 	shmem_set_inode_flags(inode, info->fsflags);
3242 	inode->i_ctime = current_time(inode);
3243 	inode_inc_iversion(inode);
3244 	return 0;
3245 }
3246 
3247 /*
3248  * Superblocks without xattr inode operations may get some security.* xattr
3249  * support from the LSM "for free". As soon as we have any other xattrs
3250  * like ACLs, we also need to implement the security.* handlers at
3251  * filesystem level, though.
3252  */
3253 
3254 /*
3255  * Callback for security_inode_init_security() for acquiring xattrs.
3256  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3257 static int shmem_initxattrs(struct inode *inode,
3258 			    const struct xattr *xattr_array,
3259 			    void *fs_info)
3260 {
3261 	struct shmem_inode_info *info = SHMEM_I(inode);
3262 	const struct xattr *xattr;
3263 	struct simple_xattr *new_xattr;
3264 	size_t len;
3265 
3266 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3267 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3268 		if (!new_xattr)
3269 			return -ENOMEM;
3270 
3271 		len = strlen(xattr->name) + 1;
3272 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3273 					  GFP_KERNEL);
3274 		if (!new_xattr->name) {
3275 			kvfree(new_xattr);
3276 			return -ENOMEM;
3277 		}
3278 
3279 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3280 		       XATTR_SECURITY_PREFIX_LEN);
3281 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3282 		       xattr->name, len);
3283 
3284 		simple_xattr_list_add(&info->xattrs, new_xattr);
3285 	}
3286 
3287 	return 0;
3288 }
3289 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3290 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3291 				   struct dentry *unused, struct inode *inode,
3292 				   const char *name, void *buffer, size_t size)
3293 {
3294 	struct shmem_inode_info *info = SHMEM_I(inode);
3295 
3296 	name = xattr_full_name(handler, name);
3297 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3298 }
3299 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3300 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3301 				   struct user_namespace *mnt_userns,
3302 				   struct dentry *unused, struct inode *inode,
3303 				   const char *name, const void *value,
3304 				   size_t size, int flags)
3305 {
3306 	struct shmem_inode_info *info = SHMEM_I(inode);
3307 	int err;
3308 
3309 	name = xattr_full_name(handler, name);
3310 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3311 	if (!err) {
3312 		inode->i_ctime = current_time(inode);
3313 		inode_inc_iversion(inode);
3314 	}
3315 	return err;
3316 }
3317 
3318 static const struct xattr_handler shmem_security_xattr_handler = {
3319 	.prefix = XATTR_SECURITY_PREFIX,
3320 	.get = shmem_xattr_handler_get,
3321 	.set = shmem_xattr_handler_set,
3322 };
3323 
3324 static const struct xattr_handler shmem_trusted_xattr_handler = {
3325 	.prefix = XATTR_TRUSTED_PREFIX,
3326 	.get = shmem_xattr_handler_get,
3327 	.set = shmem_xattr_handler_set,
3328 };
3329 
3330 static const struct xattr_handler *shmem_xattr_handlers[] = {
3331 #ifdef CONFIG_TMPFS_POSIX_ACL
3332 	&posix_acl_access_xattr_handler,
3333 	&posix_acl_default_xattr_handler,
3334 #endif
3335 	&shmem_security_xattr_handler,
3336 	&shmem_trusted_xattr_handler,
3337 	NULL
3338 };
3339 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3340 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3341 {
3342 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3343 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3344 }
3345 #endif /* CONFIG_TMPFS_XATTR */
3346 
3347 static const struct inode_operations shmem_short_symlink_operations = {
3348 	.getattr	= shmem_getattr,
3349 	.get_link	= simple_get_link,
3350 #ifdef CONFIG_TMPFS_XATTR
3351 	.listxattr	= shmem_listxattr,
3352 #endif
3353 };
3354 
3355 static const struct inode_operations shmem_symlink_inode_operations = {
3356 	.getattr	= shmem_getattr,
3357 	.get_link	= shmem_get_link,
3358 #ifdef CONFIG_TMPFS_XATTR
3359 	.listxattr	= shmem_listxattr,
3360 #endif
3361 };
3362 
shmem_get_parent(struct dentry * child)3363 static struct dentry *shmem_get_parent(struct dentry *child)
3364 {
3365 	return ERR_PTR(-ESTALE);
3366 }
3367 
shmem_match(struct inode * ino,void * vfh)3368 static int shmem_match(struct inode *ino, void *vfh)
3369 {
3370 	__u32 *fh = vfh;
3371 	__u64 inum = fh[2];
3372 	inum = (inum << 32) | fh[1];
3373 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3374 }
3375 
3376 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3377 static struct dentry *shmem_find_alias(struct inode *inode)
3378 {
3379 	struct dentry *alias = d_find_alias(inode);
3380 
3381 	return alias ?: d_find_any_alias(inode);
3382 }
3383 
3384 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3385 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3386 		struct fid *fid, int fh_len, int fh_type)
3387 {
3388 	struct inode *inode;
3389 	struct dentry *dentry = NULL;
3390 	u64 inum;
3391 
3392 	if (fh_len < 3)
3393 		return NULL;
3394 
3395 	inum = fid->raw[2];
3396 	inum = (inum << 32) | fid->raw[1];
3397 
3398 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3399 			shmem_match, fid->raw);
3400 	if (inode) {
3401 		dentry = shmem_find_alias(inode);
3402 		iput(inode);
3403 	}
3404 
3405 	return dentry;
3406 }
3407 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3408 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3409 				struct inode *parent)
3410 {
3411 	if (*len < 3) {
3412 		*len = 3;
3413 		return FILEID_INVALID;
3414 	}
3415 
3416 	if (inode_unhashed(inode)) {
3417 		/* Unfortunately insert_inode_hash is not idempotent,
3418 		 * so as we hash inodes here rather than at creation
3419 		 * time, we need a lock to ensure we only try
3420 		 * to do it once
3421 		 */
3422 		static DEFINE_SPINLOCK(lock);
3423 		spin_lock(&lock);
3424 		if (inode_unhashed(inode))
3425 			__insert_inode_hash(inode,
3426 					    inode->i_ino + inode->i_generation);
3427 		spin_unlock(&lock);
3428 	}
3429 
3430 	fh[0] = inode->i_generation;
3431 	fh[1] = inode->i_ino;
3432 	fh[2] = ((__u64)inode->i_ino) >> 32;
3433 
3434 	*len = 3;
3435 	return 1;
3436 }
3437 
3438 static const struct export_operations shmem_export_ops = {
3439 	.get_parent     = shmem_get_parent,
3440 	.encode_fh      = shmem_encode_fh,
3441 	.fh_to_dentry	= shmem_fh_to_dentry,
3442 };
3443 
3444 enum shmem_param {
3445 	Opt_gid,
3446 	Opt_huge,
3447 	Opt_mode,
3448 	Opt_mpol,
3449 	Opt_nr_blocks,
3450 	Opt_nr_inodes,
3451 	Opt_size,
3452 	Opt_uid,
3453 	Opt_inode32,
3454 	Opt_inode64,
3455 };
3456 
3457 static const struct constant_table shmem_param_enums_huge[] = {
3458 	{"never",	SHMEM_HUGE_NEVER },
3459 	{"always",	SHMEM_HUGE_ALWAYS },
3460 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3461 	{"advise",	SHMEM_HUGE_ADVISE },
3462 	{}
3463 };
3464 
3465 const struct fs_parameter_spec shmem_fs_parameters[] = {
3466 	fsparam_u32   ("gid",		Opt_gid),
3467 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3468 	fsparam_u32oct("mode",		Opt_mode),
3469 	fsparam_string("mpol",		Opt_mpol),
3470 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3471 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3472 	fsparam_string("size",		Opt_size),
3473 	fsparam_u32   ("uid",		Opt_uid),
3474 	fsparam_flag  ("inode32",	Opt_inode32),
3475 	fsparam_flag  ("inode64",	Opt_inode64),
3476 	{}
3477 };
3478 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3479 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3480 {
3481 	struct shmem_options *ctx = fc->fs_private;
3482 	struct fs_parse_result result;
3483 	unsigned long long size;
3484 	char *rest;
3485 	int opt;
3486 
3487 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3488 	if (opt < 0)
3489 		return opt;
3490 
3491 	switch (opt) {
3492 	case Opt_size:
3493 		size = memparse(param->string, &rest);
3494 		if (*rest == '%') {
3495 			size <<= PAGE_SHIFT;
3496 			size *= totalram_pages();
3497 			do_div(size, 100);
3498 			rest++;
3499 		}
3500 		if (*rest)
3501 			goto bad_value;
3502 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3503 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3504 		break;
3505 	case Opt_nr_blocks:
3506 		ctx->blocks = memparse(param->string, &rest);
3507 		if (*rest || ctx->blocks > S64_MAX)
3508 			goto bad_value;
3509 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3510 		break;
3511 	case Opt_nr_inodes:
3512 		ctx->inodes = memparse(param->string, &rest);
3513 		if (*rest)
3514 			goto bad_value;
3515 		ctx->seen |= SHMEM_SEEN_INODES;
3516 		break;
3517 	case Opt_mode:
3518 		ctx->mode = result.uint_32 & 07777;
3519 		break;
3520 	case Opt_uid:
3521 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3522 		if (!uid_valid(ctx->uid))
3523 			goto bad_value;
3524 		break;
3525 	case Opt_gid:
3526 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3527 		if (!gid_valid(ctx->gid))
3528 			goto bad_value;
3529 		break;
3530 	case Opt_huge:
3531 		ctx->huge = result.uint_32;
3532 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3533 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3534 		      has_transparent_hugepage()))
3535 			goto unsupported_parameter;
3536 		ctx->seen |= SHMEM_SEEN_HUGE;
3537 		break;
3538 	case Opt_mpol:
3539 		if (IS_ENABLED(CONFIG_NUMA)) {
3540 			mpol_put(ctx->mpol);
3541 			ctx->mpol = NULL;
3542 			if (mpol_parse_str(param->string, &ctx->mpol))
3543 				goto bad_value;
3544 			break;
3545 		}
3546 		goto unsupported_parameter;
3547 	case Opt_inode32:
3548 		ctx->full_inums = false;
3549 		ctx->seen |= SHMEM_SEEN_INUMS;
3550 		break;
3551 	case Opt_inode64:
3552 		if (sizeof(ino_t) < 8) {
3553 			return invalfc(fc,
3554 				       "Cannot use inode64 with <64bit inums in kernel\n");
3555 		}
3556 		ctx->full_inums = true;
3557 		ctx->seen |= SHMEM_SEEN_INUMS;
3558 		break;
3559 	}
3560 	return 0;
3561 
3562 unsupported_parameter:
3563 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3564 bad_value:
3565 	return invalfc(fc, "Bad value for '%s'", param->key);
3566 }
3567 
shmem_parse_options(struct fs_context * fc,void * data)3568 static int shmem_parse_options(struct fs_context *fc, void *data)
3569 {
3570 	char *options = data;
3571 
3572 	if (options) {
3573 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3574 		if (err)
3575 			return err;
3576 	}
3577 
3578 	while (options != NULL) {
3579 		char *this_char = options;
3580 		for (;;) {
3581 			/*
3582 			 * NUL-terminate this option: unfortunately,
3583 			 * mount options form a comma-separated list,
3584 			 * but mpol's nodelist may also contain commas.
3585 			 */
3586 			options = strchr(options, ',');
3587 			if (options == NULL)
3588 				break;
3589 			options++;
3590 			if (!isdigit(*options)) {
3591 				options[-1] = '\0';
3592 				break;
3593 			}
3594 		}
3595 		if (*this_char) {
3596 			char *value = strchr(this_char, '=');
3597 			size_t len = 0;
3598 			int err;
3599 
3600 			if (value) {
3601 				*value++ = '\0';
3602 				len = strlen(value);
3603 			}
3604 			err = vfs_parse_fs_string(fc, this_char, value, len);
3605 			if (err < 0)
3606 				return err;
3607 		}
3608 	}
3609 	return 0;
3610 }
3611 
3612 /*
3613  * Reconfigure a shmem filesystem.
3614  *
3615  * Note that we disallow change from limited->unlimited blocks/inodes while any
3616  * are in use; but we must separately disallow unlimited->limited, because in
3617  * that case we have no record of how much is already in use.
3618  */
shmem_reconfigure(struct fs_context * fc)3619 static int shmem_reconfigure(struct fs_context *fc)
3620 {
3621 	struct shmem_options *ctx = fc->fs_private;
3622 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3623 	unsigned long inodes;
3624 	struct mempolicy *mpol = NULL;
3625 	const char *err;
3626 
3627 	raw_spin_lock(&sbinfo->stat_lock);
3628 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3629 
3630 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3631 		if (!sbinfo->max_blocks) {
3632 			err = "Cannot retroactively limit size";
3633 			goto out;
3634 		}
3635 		if (percpu_counter_compare(&sbinfo->used_blocks,
3636 					   ctx->blocks) > 0) {
3637 			err = "Too small a size for current use";
3638 			goto out;
3639 		}
3640 	}
3641 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3642 		if (!sbinfo->max_inodes) {
3643 			err = "Cannot retroactively limit inodes";
3644 			goto out;
3645 		}
3646 		if (ctx->inodes < inodes) {
3647 			err = "Too few inodes for current use";
3648 			goto out;
3649 		}
3650 	}
3651 
3652 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3653 	    sbinfo->next_ino > UINT_MAX) {
3654 		err = "Current inum too high to switch to 32-bit inums";
3655 		goto out;
3656 	}
3657 
3658 	if (ctx->seen & SHMEM_SEEN_HUGE)
3659 		sbinfo->huge = ctx->huge;
3660 	if (ctx->seen & SHMEM_SEEN_INUMS)
3661 		sbinfo->full_inums = ctx->full_inums;
3662 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3663 		sbinfo->max_blocks  = ctx->blocks;
3664 	if (ctx->seen & SHMEM_SEEN_INODES) {
3665 		sbinfo->max_inodes  = ctx->inodes;
3666 		sbinfo->free_inodes = ctx->inodes - inodes;
3667 	}
3668 
3669 	/*
3670 	 * Preserve previous mempolicy unless mpol remount option was specified.
3671 	 */
3672 	if (ctx->mpol) {
3673 		mpol = sbinfo->mpol;
3674 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3675 		ctx->mpol = NULL;
3676 	}
3677 	raw_spin_unlock(&sbinfo->stat_lock);
3678 	mpol_put(mpol);
3679 	return 0;
3680 out:
3681 	raw_spin_unlock(&sbinfo->stat_lock);
3682 	return invalfc(fc, "%s", err);
3683 }
3684 
shmem_show_options(struct seq_file * seq,struct dentry * root)3685 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3686 {
3687 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3688 
3689 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3690 		seq_printf(seq, ",size=%luk",
3691 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3692 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3693 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3694 	if (sbinfo->mode != (0777 | S_ISVTX))
3695 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3696 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3697 		seq_printf(seq, ",uid=%u",
3698 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3699 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3700 		seq_printf(seq, ",gid=%u",
3701 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3702 
3703 	/*
3704 	 * Showing inode{64,32} might be useful even if it's the system default,
3705 	 * since then people don't have to resort to checking both here and
3706 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3707 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3708 	 *
3709 	 * We hide it when inode64 isn't the default and we are using 32-bit
3710 	 * inodes, since that probably just means the feature isn't even under
3711 	 * consideration.
3712 	 *
3713 	 * As such:
3714 	 *
3715 	 *                     +-----------------+-----------------+
3716 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3717 	 *  +------------------+-----------------+-----------------+
3718 	 *  | full_inums=true  | show            | show            |
3719 	 *  | full_inums=false | show            | hide            |
3720 	 *  +------------------+-----------------+-----------------+
3721 	 *
3722 	 */
3723 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3724 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3725 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3726 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3727 	if (sbinfo->huge)
3728 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3729 #endif
3730 	shmem_show_mpol(seq, sbinfo->mpol);
3731 	return 0;
3732 }
3733 
3734 #endif /* CONFIG_TMPFS */
3735 
shmem_put_super(struct super_block * sb)3736 static void shmem_put_super(struct super_block *sb)
3737 {
3738 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3739 
3740 	free_percpu(sbinfo->ino_batch);
3741 	percpu_counter_destroy(&sbinfo->used_blocks);
3742 	mpol_put(sbinfo->mpol);
3743 	kfree(sbinfo);
3744 	sb->s_fs_info = NULL;
3745 }
3746 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3747 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3748 {
3749 	struct shmem_options *ctx = fc->fs_private;
3750 	struct inode *inode;
3751 	struct shmem_sb_info *sbinfo;
3752 
3753 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3754 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3755 				L1_CACHE_BYTES), GFP_KERNEL);
3756 	if (!sbinfo)
3757 		return -ENOMEM;
3758 
3759 	sb->s_fs_info = sbinfo;
3760 
3761 #ifdef CONFIG_TMPFS
3762 	/*
3763 	 * Per default we only allow half of the physical ram per
3764 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3765 	 * but the internal instance is left unlimited.
3766 	 */
3767 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3768 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3769 			ctx->blocks = shmem_default_max_blocks();
3770 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3771 			ctx->inodes = shmem_default_max_inodes();
3772 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3773 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3774 	} else {
3775 		sb->s_flags |= SB_NOUSER;
3776 	}
3777 	sb->s_export_op = &shmem_export_ops;
3778 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3779 #else
3780 	sb->s_flags |= SB_NOUSER;
3781 #endif
3782 	sbinfo->max_blocks = ctx->blocks;
3783 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3784 	if (sb->s_flags & SB_KERNMOUNT) {
3785 		sbinfo->ino_batch = alloc_percpu(ino_t);
3786 		if (!sbinfo->ino_batch)
3787 			goto failed;
3788 	}
3789 	sbinfo->uid = ctx->uid;
3790 	sbinfo->gid = ctx->gid;
3791 	sbinfo->full_inums = ctx->full_inums;
3792 	sbinfo->mode = ctx->mode;
3793 	sbinfo->huge = ctx->huge;
3794 	sbinfo->mpol = ctx->mpol;
3795 	ctx->mpol = NULL;
3796 
3797 	raw_spin_lock_init(&sbinfo->stat_lock);
3798 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3799 		goto failed;
3800 	spin_lock_init(&sbinfo->shrinklist_lock);
3801 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3802 
3803 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3804 	sb->s_blocksize = PAGE_SIZE;
3805 	sb->s_blocksize_bits = PAGE_SHIFT;
3806 	sb->s_magic = TMPFS_MAGIC;
3807 	sb->s_op = &shmem_ops;
3808 	sb->s_time_gran = 1;
3809 #ifdef CONFIG_TMPFS_XATTR
3810 	sb->s_xattr = shmem_xattr_handlers;
3811 #endif
3812 #ifdef CONFIG_TMPFS_POSIX_ACL
3813 	sb->s_flags |= SB_POSIXACL;
3814 #endif
3815 	uuid_gen(&sb->s_uuid);
3816 
3817 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3818 	if (!inode)
3819 		goto failed;
3820 	inode->i_uid = sbinfo->uid;
3821 	inode->i_gid = sbinfo->gid;
3822 	sb->s_root = d_make_root(inode);
3823 	if (!sb->s_root)
3824 		goto failed;
3825 	return 0;
3826 
3827 failed:
3828 	shmem_put_super(sb);
3829 	return -ENOMEM;
3830 }
3831 
shmem_get_tree(struct fs_context * fc)3832 static int shmem_get_tree(struct fs_context *fc)
3833 {
3834 	return get_tree_nodev(fc, shmem_fill_super);
3835 }
3836 
shmem_free_fc(struct fs_context * fc)3837 static void shmem_free_fc(struct fs_context *fc)
3838 {
3839 	struct shmem_options *ctx = fc->fs_private;
3840 
3841 	if (ctx) {
3842 		mpol_put(ctx->mpol);
3843 		kfree(ctx);
3844 	}
3845 }
3846 
3847 static const struct fs_context_operations shmem_fs_context_ops = {
3848 	.free			= shmem_free_fc,
3849 	.get_tree		= shmem_get_tree,
3850 #ifdef CONFIG_TMPFS
3851 	.parse_monolithic	= shmem_parse_options,
3852 	.parse_param		= shmem_parse_one,
3853 	.reconfigure		= shmem_reconfigure,
3854 #endif
3855 };
3856 
3857 static struct kmem_cache *shmem_inode_cachep;
3858 
shmem_alloc_inode(struct super_block * sb)3859 static struct inode *shmem_alloc_inode(struct super_block *sb)
3860 {
3861 	struct shmem_inode_info *info;
3862 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3863 	if (!info)
3864 		return NULL;
3865 	return &info->vfs_inode;
3866 }
3867 
shmem_free_in_core_inode(struct inode * inode)3868 static void shmem_free_in_core_inode(struct inode *inode)
3869 {
3870 	if (S_ISLNK(inode->i_mode))
3871 		kfree(inode->i_link);
3872 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3873 }
3874 
shmem_destroy_inode(struct inode * inode)3875 static void shmem_destroy_inode(struct inode *inode)
3876 {
3877 	if (S_ISREG(inode->i_mode))
3878 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3879 }
3880 
shmem_init_inode(void * foo)3881 static void shmem_init_inode(void *foo)
3882 {
3883 	struct shmem_inode_info *info = foo;
3884 	inode_init_once(&info->vfs_inode);
3885 }
3886 
shmem_init_inodecache(void)3887 static void shmem_init_inodecache(void)
3888 {
3889 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3890 				sizeof(struct shmem_inode_info),
3891 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3892 }
3893 
shmem_destroy_inodecache(void)3894 static void shmem_destroy_inodecache(void)
3895 {
3896 	kmem_cache_destroy(shmem_inode_cachep);
3897 }
3898 
3899 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_page(struct address_space * mapping,struct page * page)3900 static int shmem_error_remove_page(struct address_space *mapping,
3901 				   struct page *page)
3902 {
3903 	return 0;
3904 }
3905 
3906 const struct address_space_operations shmem_aops = {
3907 	.writepage	= shmem_writepage,
3908 	.dirty_folio	= noop_dirty_folio,
3909 #ifdef CONFIG_TMPFS
3910 	.write_begin	= shmem_write_begin,
3911 	.write_end	= shmem_write_end,
3912 #endif
3913 #ifdef CONFIG_MIGRATION
3914 	.migrate_folio	= migrate_folio,
3915 #endif
3916 	.error_remove_page = shmem_error_remove_page,
3917 };
3918 EXPORT_SYMBOL(shmem_aops);
3919 
3920 static const struct file_operations shmem_file_operations = {
3921 	.mmap		= shmem_mmap,
3922 	.get_unmapped_area = shmem_get_unmapped_area,
3923 #ifdef CONFIG_TMPFS
3924 	.llseek		= shmem_file_llseek,
3925 	.read_iter	= shmem_file_read_iter,
3926 	.write_iter	= generic_file_write_iter,
3927 	.fsync		= noop_fsync,
3928 	.splice_read	= generic_file_splice_read,
3929 	.splice_write	= iter_file_splice_write,
3930 	.fallocate	= shmem_fallocate,
3931 #endif
3932 };
3933 
3934 static const struct inode_operations shmem_inode_operations = {
3935 	.getattr	= shmem_getattr,
3936 	.setattr	= shmem_setattr,
3937 #ifdef CONFIG_TMPFS_XATTR
3938 	.listxattr	= shmem_listxattr,
3939 	.set_acl	= simple_set_acl,
3940 	.fileattr_get	= shmem_fileattr_get,
3941 	.fileattr_set	= shmem_fileattr_set,
3942 #endif
3943 };
3944 
3945 static const struct inode_operations shmem_dir_inode_operations = {
3946 #ifdef CONFIG_TMPFS
3947 	.getattr	= shmem_getattr,
3948 	.create		= shmem_create,
3949 	.lookup		= simple_lookup,
3950 	.link		= shmem_link,
3951 	.unlink		= shmem_unlink,
3952 	.symlink	= shmem_symlink,
3953 	.mkdir		= shmem_mkdir,
3954 	.rmdir		= shmem_rmdir,
3955 	.mknod		= shmem_mknod,
3956 	.rename		= shmem_rename2,
3957 	.tmpfile	= shmem_tmpfile,
3958 #endif
3959 #ifdef CONFIG_TMPFS_XATTR
3960 	.listxattr	= shmem_listxattr,
3961 	.fileattr_get	= shmem_fileattr_get,
3962 	.fileattr_set	= shmem_fileattr_set,
3963 #endif
3964 #ifdef CONFIG_TMPFS_POSIX_ACL
3965 	.setattr	= shmem_setattr,
3966 	.set_acl	= simple_set_acl,
3967 #endif
3968 };
3969 
3970 static const struct inode_operations shmem_special_inode_operations = {
3971 	.getattr	= shmem_getattr,
3972 #ifdef CONFIG_TMPFS_XATTR
3973 	.listxattr	= shmem_listxattr,
3974 #endif
3975 #ifdef CONFIG_TMPFS_POSIX_ACL
3976 	.setattr	= shmem_setattr,
3977 	.set_acl	= simple_set_acl,
3978 #endif
3979 };
3980 
3981 static const struct super_operations shmem_ops = {
3982 	.alloc_inode	= shmem_alloc_inode,
3983 	.free_inode	= shmem_free_in_core_inode,
3984 	.destroy_inode	= shmem_destroy_inode,
3985 #ifdef CONFIG_TMPFS
3986 	.statfs		= shmem_statfs,
3987 	.show_options	= shmem_show_options,
3988 #endif
3989 	.evict_inode	= shmem_evict_inode,
3990 	.drop_inode	= generic_delete_inode,
3991 	.put_super	= shmem_put_super,
3992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3993 	.nr_cached_objects	= shmem_unused_huge_count,
3994 	.free_cached_objects	= shmem_unused_huge_scan,
3995 #endif
3996 };
3997 
3998 static const struct vm_operations_struct shmem_vm_ops = {
3999 	.fault		= shmem_fault,
4000 	.map_pages	= filemap_map_pages,
4001 #ifdef CONFIG_NUMA
4002 	.set_policy     = shmem_set_policy,
4003 	.get_policy     = shmem_get_policy,
4004 #endif
4005 };
4006 
shmem_init_fs_context(struct fs_context * fc)4007 int shmem_init_fs_context(struct fs_context *fc)
4008 {
4009 	struct shmem_options *ctx;
4010 
4011 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4012 	if (!ctx)
4013 		return -ENOMEM;
4014 
4015 	ctx->mode = 0777 | S_ISVTX;
4016 	ctx->uid = current_fsuid();
4017 	ctx->gid = current_fsgid();
4018 
4019 	fc->fs_private = ctx;
4020 	fc->ops = &shmem_fs_context_ops;
4021 	return 0;
4022 }
4023 
4024 static struct file_system_type shmem_fs_type = {
4025 	.owner		= THIS_MODULE,
4026 	.name		= "tmpfs",
4027 	.init_fs_context = shmem_init_fs_context,
4028 #ifdef CONFIG_TMPFS
4029 	.parameters	= shmem_fs_parameters,
4030 #endif
4031 	.kill_sb	= kill_litter_super,
4032 	.fs_flags	= FS_USERNS_MOUNT,
4033 };
4034 
shmem_init(void)4035 void __init shmem_init(void)
4036 {
4037 	int error;
4038 
4039 	shmem_init_inodecache();
4040 
4041 	error = register_filesystem(&shmem_fs_type);
4042 	if (error) {
4043 		pr_err("Could not register tmpfs\n");
4044 		goto out2;
4045 	}
4046 
4047 	shm_mnt = kern_mount(&shmem_fs_type);
4048 	if (IS_ERR(shm_mnt)) {
4049 		error = PTR_ERR(shm_mnt);
4050 		pr_err("Could not kern_mount tmpfs\n");
4051 		goto out1;
4052 	}
4053 
4054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4055 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4056 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4057 	else
4058 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4059 #endif
4060 	return;
4061 
4062 out1:
4063 	unregister_filesystem(&shmem_fs_type);
4064 out2:
4065 	shmem_destroy_inodecache();
4066 	shm_mnt = ERR_PTR(error);
4067 }
4068 
4069 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4070 static ssize_t shmem_enabled_show(struct kobject *kobj,
4071 				  struct kobj_attribute *attr, char *buf)
4072 {
4073 	static const int values[] = {
4074 		SHMEM_HUGE_ALWAYS,
4075 		SHMEM_HUGE_WITHIN_SIZE,
4076 		SHMEM_HUGE_ADVISE,
4077 		SHMEM_HUGE_NEVER,
4078 		SHMEM_HUGE_DENY,
4079 		SHMEM_HUGE_FORCE,
4080 	};
4081 	int len = 0;
4082 	int i;
4083 
4084 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4085 		len += sysfs_emit_at(buf, len,
4086 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4087 				     i ? " " : "",
4088 				     shmem_format_huge(values[i]));
4089 	}
4090 
4091 	len += sysfs_emit_at(buf, len, "\n");
4092 
4093 	return len;
4094 }
4095 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4096 static ssize_t shmem_enabled_store(struct kobject *kobj,
4097 		struct kobj_attribute *attr, const char *buf, size_t count)
4098 {
4099 	char tmp[16];
4100 	int huge;
4101 
4102 	if (count + 1 > sizeof(tmp))
4103 		return -EINVAL;
4104 	memcpy(tmp, buf, count);
4105 	tmp[count] = '\0';
4106 	if (count && tmp[count - 1] == '\n')
4107 		tmp[count - 1] = '\0';
4108 
4109 	huge = shmem_parse_huge(tmp);
4110 	if (huge == -EINVAL)
4111 		return -EINVAL;
4112 	if (!has_transparent_hugepage() &&
4113 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4114 		return -EINVAL;
4115 
4116 	shmem_huge = huge;
4117 	if (shmem_huge > SHMEM_HUGE_DENY)
4118 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4119 	return count;
4120 }
4121 
4122 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4123 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4124 
4125 #else /* !CONFIG_SHMEM */
4126 
4127 /*
4128  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4129  *
4130  * This is intended for small system where the benefits of the full
4131  * shmem code (swap-backed and resource-limited) are outweighed by
4132  * their complexity. On systems without swap this code should be
4133  * effectively equivalent, but much lighter weight.
4134  */
4135 
4136 static struct file_system_type shmem_fs_type = {
4137 	.name		= "tmpfs",
4138 	.init_fs_context = ramfs_init_fs_context,
4139 	.parameters	= ramfs_fs_parameters,
4140 	.kill_sb	= kill_litter_super,
4141 	.fs_flags	= FS_USERNS_MOUNT,
4142 };
4143 
shmem_init(void)4144 void __init shmem_init(void)
4145 {
4146 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4147 
4148 	shm_mnt = kern_mount(&shmem_fs_type);
4149 	BUG_ON(IS_ERR(shm_mnt));
4150 }
4151 
shmem_unuse(unsigned int type)4152 int shmem_unuse(unsigned int type)
4153 {
4154 	return 0;
4155 }
4156 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4157 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4158 {
4159 	return 0;
4160 }
4161 
shmem_unlock_mapping(struct address_space * mapping)4162 void shmem_unlock_mapping(struct address_space *mapping)
4163 {
4164 }
4165 
4166 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4167 unsigned long shmem_get_unmapped_area(struct file *file,
4168 				      unsigned long addr, unsigned long len,
4169 				      unsigned long pgoff, unsigned long flags)
4170 {
4171 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4172 }
4173 #endif
4174 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4175 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4176 {
4177 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4178 }
4179 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4180 
4181 #define shmem_vm_ops				generic_file_vm_ops
4182 #define shmem_file_operations			ramfs_file_operations
4183 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4184 #define shmem_acct_size(flags, size)		0
4185 #define shmem_unacct_size(flags, size)		do {} while (0)
4186 
4187 #endif /* CONFIG_SHMEM */
4188 
4189 /* common code */
4190 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4191 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4192 				       unsigned long flags, unsigned int i_flags)
4193 {
4194 	struct inode *inode;
4195 	struct file *res;
4196 
4197 	if (IS_ERR(mnt))
4198 		return ERR_CAST(mnt);
4199 
4200 	if (size < 0 || size > MAX_LFS_FILESIZE)
4201 		return ERR_PTR(-EINVAL);
4202 
4203 	if (shmem_acct_size(flags, size))
4204 		return ERR_PTR(-ENOMEM);
4205 
4206 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4207 				flags);
4208 	if (unlikely(!inode)) {
4209 		shmem_unacct_size(flags, size);
4210 		return ERR_PTR(-ENOSPC);
4211 	}
4212 	inode->i_flags |= i_flags;
4213 	inode->i_size = size;
4214 	clear_nlink(inode);	/* It is unlinked */
4215 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4216 	if (!IS_ERR(res))
4217 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4218 				&shmem_file_operations);
4219 	if (IS_ERR(res))
4220 		iput(inode);
4221 	return res;
4222 }
4223 
4224 /**
4225  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4226  * 	kernel internal.  There will be NO LSM permission checks against the
4227  * 	underlying inode.  So users of this interface must do LSM checks at a
4228  *	higher layer.  The users are the big_key and shm implementations.  LSM
4229  *	checks are provided at the key or shm level rather than the inode.
4230  * @name: name for dentry (to be seen in /proc/<pid>/maps
4231  * @size: size to be set for the file
4232  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4233  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4234 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4235 {
4236 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4237 }
4238 
4239 /**
4240  * shmem_file_setup - get an unlinked file living in tmpfs
4241  * @name: name for dentry (to be seen in /proc/<pid>/maps
4242  * @size: size to be set for the file
4243  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4244  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4245 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4246 {
4247 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4248 }
4249 EXPORT_SYMBOL_GPL(shmem_file_setup);
4250 
4251 /**
4252  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4253  * @mnt: the tmpfs mount where the file will be created
4254  * @name: name for dentry (to be seen in /proc/<pid>/maps
4255  * @size: size to be set for the file
4256  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4257  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4258 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4259 				       loff_t size, unsigned long flags)
4260 {
4261 	return __shmem_file_setup(mnt, name, size, flags, 0);
4262 }
4263 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4264 
4265 /**
4266  * shmem_zero_setup - setup a shared anonymous mapping
4267  * @vma: the vma to be mmapped is prepared by do_mmap
4268  */
shmem_zero_setup(struct vm_area_struct * vma)4269 int shmem_zero_setup(struct vm_area_struct *vma)
4270 {
4271 	struct file *file;
4272 	loff_t size = vma->vm_end - vma->vm_start;
4273 
4274 	/*
4275 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4276 	 * between XFS directory reading and selinux: since this file is only
4277 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4278 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4279 	 */
4280 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4281 	if (IS_ERR(file))
4282 		return PTR_ERR(file);
4283 
4284 	if (vma->vm_file)
4285 		fput(vma->vm_file);
4286 	vma->vm_file = file;
4287 	vma->vm_ops = &shmem_vm_ops;
4288 
4289 	return 0;
4290 }
4291 
4292 /**
4293  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4294  * @mapping:	the page's address_space
4295  * @index:	the page index
4296  * @gfp:	the page allocator flags to use if allocating
4297  *
4298  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4299  * with any new page allocations done using the specified allocation flags.
4300  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4301  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4302  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4303  *
4304  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4305  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4306  */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4307 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4308 					 pgoff_t index, gfp_t gfp)
4309 {
4310 #ifdef CONFIG_SHMEM
4311 	struct inode *inode = mapping->host;
4312 	struct folio *folio;
4313 	struct page *page;
4314 	int error;
4315 
4316 	BUG_ON(!shmem_mapping(mapping));
4317 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4318 				  gfp, NULL, NULL, NULL);
4319 	if (error)
4320 		return ERR_PTR(error);
4321 
4322 	folio_unlock(folio);
4323 	page = folio_file_page(folio, index);
4324 	if (PageHWPoison(page)) {
4325 		folio_put(folio);
4326 		return ERR_PTR(-EIO);
4327 	}
4328 
4329 	return page;
4330 #else
4331 	/*
4332 	 * The tiny !SHMEM case uses ramfs without swap
4333 	 */
4334 	return read_cache_page_gfp(mapping, index, gfp);
4335 #endif
4336 }
4337 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4338