1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63 
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67 
68 /*
69  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71  *
72  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76  *
77  * We use / and * instead of shifts in the definitions below, so that the swap
78  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79  */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82 
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85 
86 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88 
89 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN	 VM_READ
94 #define SHMEM_TRUNCATE	 VM_WRITE
95 
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT	 64
98 
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101 
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104 	SGP_READ,	/* don't exceed i_size, don't allocate page */
105 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
106 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
107 	SGP_WRITE,	/* may exceed i_size, may allocate page */
108 };
109 
110 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)111 static unsigned long shmem_default_max_blocks(void)
112 {
113 	return totalram_pages / 2;
114 }
115 
shmem_default_max_inodes(void)116 static unsigned long shmem_default_max_inodes(void)
117 {
118 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 }
120 #endif
121 
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123 			 struct page **pagep, enum sgp_type sgp, int *type);
124 
shmem_dir_alloc(gfp_t gfp_mask)125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126 {
127 	/*
128 	 * The above definition of ENTRIES_PER_PAGE, and the use of
129 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
131 	 *
132 	 * Mobility flags are masked out as swap vectors cannot move
133 	 */
134 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
136 }
137 
shmem_dir_free(struct page * page)138 static inline void shmem_dir_free(struct page *page)
139 {
140 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141 }
142 
shmem_dir_map(struct page * page)143 static struct page **shmem_dir_map(struct page *page)
144 {
145 	return (struct page **)kmap_atomic(page, KM_USER0);
146 }
147 
shmem_dir_unmap(struct page ** dir)148 static inline void shmem_dir_unmap(struct page **dir)
149 {
150 	kunmap_atomic(dir, KM_USER0);
151 }
152 
shmem_swp_map(struct page * page)153 static swp_entry_t *shmem_swp_map(struct page *page)
154 {
155 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156 }
157 
shmem_swp_balance_unmap(void)158 static inline void shmem_swp_balance_unmap(void)
159 {
160 	/*
161 	 * When passing a pointer to an i_direct entry, to code which
162 	 * also handles indirect entries and so will shmem_swp_unmap,
163 	 * we must arrange for the preempt count to remain in balance.
164 	 * What kmap_atomic of a lowmem page does depends on config
165 	 * and architecture, so pretend to kmap_atomic some lowmem page.
166 	 */
167 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168 }
169 
shmem_swp_unmap(swp_entry_t * entry)170 static inline void shmem_swp_unmap(swp_entry_t *entry)
171 {
172 	kunmap_atomic(entry, KM_USER1);
173 }
174 
SHMEM_SB(struct super_block * sb)175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176 {
177 	return sb->s_fs_info;
178 }
179 
180 /*
181  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182  * for shared memory and for shared anonymous (/dev/zero) mappings
183  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184  * consistent with the pre-accounting of private mappings ...
185  */
shmem_acct_size(unsigned long flags,loff_t size)186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
187 {
188 	return (flags & VM_NORESERVE) ?
189 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
190 }
191 
shmem_unacct_size(unsigned long flags,loff_t size)192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193 {
194 	if (!(flags & VM_NORESERVE))
195 		vm_unacct_memory(VM_ACCT(size));
196 }
197 
198 /*
199  * ... whereas tmpfs objects are accounted incrementally as
200  * pages are allocated, in order to allow huge sparse files.
201  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203  */
shmem_acct_block(unsigned long flags)204 static inline int shmem_acct_block(unsigned long flags)
205 {
206 	return (flags & VM_NORESERVE) ?
207 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208 }
209 
shmem_unacct_blocks(unsigned long flags,long pages)210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214 }
215 
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
223 
224 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
225 	.ra_pages	= 0,	/* No readahead */
226 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227 };
228 
229 static LIST_HEAD(shmem_swaplist);
230 static DEFINE_MUTEX(shmem_swaplist_mutex);
231 
shmem_free_blocks(struct inode * inode,long pages)232 static void shmem_free_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 	if (sbinfo->max_blocks) {
236 		percpu_counter_add(&sbinfo->used_blocks, -pages);
237 		spin_lock(&inode->i_lock);
238 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 		spin_unlock(&inode->i_lock);
240 	}
241 }
242 
shmem_reserve_inode(struct super_block * sb)243 static int shmem_reserve_inode(struct super_block *sb)
244 {
245 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 	if (sbinfo->max_inodes) {
247 		spin_lock(&sbinfo->stat_lock);
248 		if (!sbinfo->free_inodes) {
249 			spin_unlock(&sbinfo->stat_lock);
250 			return -ENOSPC;
251 		}
252 		sbinfo->free_inodes--;
253 		spin_unlock(&sbinfo->stat_lock);
254 	}
255 	return 0;
256 }
257 
shmem_free_inode(struct super_block * sb)258 static void shmem_free_inode(struct super_block *sb)
259 {
260 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 	if (sbinfo->max_inodes) {
262 		spin_lock(&sbinfo->stat_lock);
263 		sbinfo->free_inodes++;
264 		spin_unlock(&sbinfo->stat_lock);
265 	}
266 }
267 
268 /**
269  * shmem_recalc_inode - recalculate the size of an inode
270  * @inode: inode to recalc
271  *
272  * We have to calculate the free blocks since the mm can drop
273  * undirtied hole pages behind our back.
274  *
275  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277  *
278  * It has to be called with the spinlock held.
279  */
shmem_recalc_inode(struct inode * inode)280 static void shmem_recalc_inode(struct inode *inode)
281 {
282 	struct shmem_inode_info *info = SHMEM_I(inode);
283 	long freed;
284 
285 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 	if (freed > 0) {
287 		info->alloced -= freed;
288 		shmem_unacct_blocks(info->flags, freed);
289 		shmem_free_blocks(inode, freed);
290 	}
291 }
292 
293 /**
294  * shmem_swp_entry - find the swap vector position in the info structure
295  * @info:  info structure for the inode
296  * @index: index of the page to find
297  * @page:  optional page to add to the structure. Has to be preset to
298  *         all zeros
299  *
300  * If there is no space allocated yet it will return NULL when
301  * page is NULL, else it will use the page for the needed block,
302  * setting it to NULL on return to indicate that it has been used.
303  *
304  * The swap vector is organized the following way:
305  *
306  * There are SHMEM_NR_DIRECT entries directly stored in the
307  * shmem_inode_info structure. So small files do not need an addional
308  * allocation.
309  *
310  * For pages with index > SHMEM_NR_DIRECT there is the pointer
311  * i_indirect which points to a page which holds in the first half
312  * doubly indirect blocks, in the second half triple indirect blocks:
313  *
314  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315  * following layout (for SHMEM_NR_DIRECT == 16):
316  *
317  * i_indirect -> dir --> 16-19
318  * 	      |	     +-> 20-23
319  * 	      |
320  * 	      +-->dir2 --> 24-27
321  * 	      |	       +-> 28-31
322  * 	      |	       +-> 32-35
323  * 	      |	       +-> 36-39
324  * 	      |
325  * 	      +-->dir3 --> 40-43
326  * 	       	       +-> 44-47
327  * 	      	       +-> 48-51
328  * 	      	       +-> 52-55
329  */
shmem_swp_entry(struct shmem_inode_info * info,unsigned long index,struct page ** page)330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331 {
332 	unsigned long offset;
333 	struct page **dir;
334 	struct page *subdir;
335 
336 	if (index < SHMEM_NR_DIRECT) {
337 		shmem_swp_balance_unmap();
338 		return info->i_direct+index;
339 	}
340 	if (!info->i_indirect) {
341 		if (page) {
342 			info->i_indirect = *page;
343 			*page = NULL;
344 		}
345 		return NULL;			/* need another page */
346 	}
347 
348 	index -= SHMEM_NR_DIRECT;
349 	offset = index % ENTRIES_PER_PAGE;
350 	index /= ENTRIES_PER_PAGE;
351 	dir = shmem_dir_map(info->i_indirect);
352 
353 	if (index >= ENTRIES_PER_PAGE/2) {
354 		index -= ENTRIES_PER_PAGE/2;
355 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 		index %= ENTRIES_PER_PAGE;
357 		subdir = *dir;
358 		if (!subdir) {
359 			if (page) {
360 				*dir = *page;
361 				*page = NULL;
362 			}
363 			shmem_dir_unmap(dir);
364 			return NULL;		/* need another page */
365 		}
366 		shmem_dir_unmap(dir);
367 		dir = shmem_dir_map(subdir);
368 	}
369 
370 	dir += index;
371 	subdir = *dir;
372 	if (!subdir) {
373 		if (!page || !(subdir = *page)) {
374 			shmem_dir_unmap(dir);
375 			return NULL;		/* need a page */
376 		}
377 		*dir = subdir;
378 		*page = NULL;
379 	}
380 	shmem_dir_unmap(dir);
381 	return shmem_swp_map(subdir) + offset;
382 }
383 
shmem_swp_set(struct shmem_inode_info * info,swp_entry_t * entry,unsigned long value)384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385 {
386 	long incdec = value? 1: -1;
387 
388 	entry->val = value;
389 	info->swapped += incdec;
390 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 		struct page *page = kmap_atomic_to_page(entry);
392 		set_page_private(page, page_private(page) + incdec);
393 	}
394 }
395 
396 /**
397  * shmem_swp_alloc - get the position of the swap entry for the page.
398  * @info:	info structure for the inode
399  * @index:	index of the page to find
400  * @sgp:	check and recheck i_size? skip allocation?
401  *
402  * If the entry does not exist, allocate it.
403  */
shmem_swp_alloc(struct shmem_inode_info * info,unsigned long index,enum sgp_type sgp)404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405 {
406 	struct inode *inode = &info->vfs_inode;
407 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 	struct page *page = NULL;
409 	swp_entry_t *entry;
410 
411 	if (sgp != SGP_WRITE &&
412 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 		return ERR_PTR(-EINVAL);
414 
415 	while (!(entry = shmem_swp_entry(info, index, &page))) {
416 		if (sgp == SGP_READ)
417 			return shmem_swp_map(ZERO_PAGE(0));
418 		/*
419 		 * Test used_blocks against 1 less max_blocks, since we have 1 data
420 		 * page (and perhaps indirect index pages) yet to allocate:
421 		 * a waste to allocate index if we cannot allocate data.
422 		 */
423 		if (sbinfo->max_blocks) {
424 			if (percpu_counter_compare(&sbinfo->used_blocks,
425 						sbinfo->max_blocks - 1) >= 0)
426 				return ERR_PTR(-ENOSPC);
427 			percpu_counter_inc(&sbinfo->used_blocks);
428 			spin_lock(&inode->i_lock);
429 			inode->i_blocks += BLOCKS_PER_PAGE;
430 			spin_unlock(&inode->i_lock);
431 		}
432 
433 		spin_unlock(&info->lock);
434 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435 		spin_lock(&info->lock);
436 
437 		if (!page) {
438 			shmem_free_blocks(inode, 1);
439 			return ERR_PTR(-ENOMEM);
440 		}
441 		if (sgp != SGP_WRITE &&
442 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443 			entry = ERR_PTR(-EINVAL);
444 			break;
445 		}
446 		if (info->next_index <= index)
447 			info->next_index = index + 1;
448 	}
449 	if (page) {
450 		/* another task gave its page, or truncated the file */
451 		shmem_free_blocks(inode, 1);
452 		shmem_dir_free(page);
453 	}
454 	if (info->next_index <= index && !IS_ERR(entry))
455 		info->next_index = index + 1;
456 	return entry;
457 }
458 
459 /**
460  * shmem_free_swp - free some swap entries in a directory
461  * @dir:        pointer to the directory
462  * @edir:       pointer after last entry of the directory
463  * @punch_lock: pointer to spinlock when needed for the holepunch case
464  */
shmem_free_swp(swp_entry_t * dir,swp_entry_t * edir,spinlock_t * punch_lock)465 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466 						spinlock_t *punch_lock)
467 {
468 	spinlock_t *punch_unlock = NULL;
469 	swp_entry_t *ptr;
470 	int freed = 0;
471 
472 	for (ptr = dir; ptr < edir; ptr++) {
473 		if (ptr->val) {
474 			if (unlikely(punch_lock)) {
475 				punch_unlock = punch_lock;
476 				punch_lock = NULL;
477 				spin_lock(punch_unlock);
478 				if (!ptr->val)
479 					continue;
480 			}
481 			free_swap_and_cache(*ptr);
482 			*ptr = (swp_entry_t){0};
483 			freed++;
484 		}
485 	}
486 	if (punch_unlock)
487 		spin_unlock(punch_unlock);
488 	return freed;
489 }
490 
shmem_map_and_free_swp(struct page * subdir,int offset,int limit,struct page *** dir,spinlock_t * punch_lock)491 static int shmem_map_and_free_swp(struct page *subdir, int offset,
492 		int limit, struct page ***dir, spinlock_t *punch_lock)
493 {
494 	swp_entry_t *ptr;
495 	int freed = 0;
496 
497 	ptr = shmem_swp_map(subdir);
498 	for (; offset < limit; offset += LATENCY_LIMIT) {
499 		int size = limit - offset;
500 		if (size > LATENCY_LIMIT)
501 			size = LATENCY_LIMIT;
502 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503 							punch_lock);
504 		if (need_resched()) {
505 			shmem_swp_unmap(ptr);
506 			if (*dir) {
507 				shmem_dir_unmap(*dir);
508 				*dir = NULL;
509 			}
510 			cond_resched();
511 			ptr = shmem_swp_map(subdir);
512 		}
513 	}
514 	shmem_swp_unmap(ptr);
515 	return freed;
516 }
517 
shmem_free_pages(struct list_head * next)518 static void shmem_free_pages(struct list_head *next)
519 {
520 	struct page *page;
521 	int freed = 0;
522 
523 	do {
524 		page = container_of(next, struct page, lru);
525 		next = next->next;
526 		shmem_dir_free(page);
527 		freed++;
528 		if (freed >= LATENCY_LIMIT) {
529 			cond_resched();
530 			freed = 0;
531 		}
532 	} while (next);
533 }
534 
shmem_truncate_range(struct inode * inode,loff_t start,loff_t end)535 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536 {
537 	struct shmem_inode_info *info = SHMEM_I(inode);
538 	unsigned long idx;
539 	unsigned long size;
540 	unsigned long limit;
541 	unsigned long stage;
542 	unsigned long diroff;
543 	struct page **dir;
544 	struct page *topdir;
545 	struct page *middir;
546 	struct page *subdir;
547 	swp_entry_t *ptr;
548 	LIST_HEAD(pages_to_free);
549 	long nr_pages_to_free = 0;
550 	long nr_swaps_freed = 0;
551 	int offset;
552 	int freed;
553 	int punch_hole;
554 	spinlock_t *needs_lock;
555 	spinlock_t *punch_lock;
556 	unsigned long upper_limit;
557 
558 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
560 	if (idx >= info->next_index)
561 		return;
562 
563 	spin_lock(&info->lock);
564 	info->flags |= SHMEM_TRUNCATE;
565 	if (likely(end == (loff_t) -1)) {
566 		limit = info->next_index;
567 		upper_limit = SHMEM_MAX_INDEX;
568 		info->next_index = idx;
569 		needs_lock = NULL;
570 		punch_hole = 0;
571 	} else {
572 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
573 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574 							PAGE_CACHE_SHIFT;
575 			upper_limit = SHMEM_MAX_INDEX;
576 		} else {
577 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
578 			upper_limit = limit;
579 		}
580 		needs_lock = &info->lock;
581 		punch_hole = 1;
582 	}
583 
584 	topdir = info->i_indirect;
585 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
586 		info->i_indirect = NULL;
587 		nr_pages_to_free++;
588 		list_add(&topdir->lru, &pages_to_free);
589 	}
590 	spin_unlock(&info->lock);
591 
592 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
593 		ptr = info->i_direct;
594 		size = limit;
595 		if (size > SHMEM_NR_DIRECT)
596 			size = SHMEM_NR_DIRECT;
597 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
598 	}
599 
600 	/*
601 	 * If there are no indirect blocks or we are punching a hole
602 	 * below indirect blocks, nothing to be done.
603 	 */
604 	if (!topdir || limit <= SHMEM_NR_DIRECT)
605 		goto done2;
606 
607 	/*
608 	 * The truncation case has already dropped info->lock, and we're safe
609 	 * because i_size and next_index have already been lowered, preventing
610 	 * access beyond.  But in the punch_hole case, we still need to take
611 	 * the lock when updating the swap directory, because there might be
612 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613 	 * shmem_writepage.  However, whenever we find we can remove a whole
614 	 * directory page (not at the misaligned start or end of the range),
615 	 * we first NULLify its pointer in the level above, and then have no
616 	 * need to take the lock when updating its contents: needs_lock and
617 	 * punch_lock (either pointing to info->lock or NULL) manage this.
618 	 */
619 
620 	upper_limit -= SHMEM_NR_DIRECT;
621 	limit -= SHMEM_NR_DIRECT;
622 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623 	offset = idx % ENTRIES_PER_PAGE;
624 	idx -= offset;
625 
626 	dir = shmem_dir_map(topdir);
627 	stage = ENTRIES_PER_PAGEPAGE/2;
628 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
629 		middir = topdir;
630 		diroff = idx/ENTRIES_PER_PAGE;
631 	} else {
632 		dir += ENTRIES_PER_PAGE/2;
633 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634 		while (stage <= idx)
635 			stage += ENTRIES_PER_PAGEPAGE;
636 		middir = *dir;
637 		if (*dir) {
638 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
640 			if (!diroff && !offset && upper_limit >= stage) {
641 				if (needs_lock) {
642 					spin_lock(needs_lock);
643 					*dir = NULL;
644 					spin_unlock(needs_lock);
645 					needs_lock = NULL;
646 				} else
647 					*dir = NULL;
648 				nr_pages_to_free++;
649 				list_add(&middir->lru, &pages_to_free);
650 			}
651 			shmem_dir_unmap(dir);
652 			dir = shmem_dir_map(middir);
653 		} else {
654 			diroff = 0;
655 			offset = 0;
656 			idx = stage;
657 		}
658 	}
659 
660 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661 		if (unlikely(idx == stage)) {
662 			shmem_dir_unmap(dir);
663 			dir = shmem_dir_map(topdir) +
664 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665 			while (!*dir) {
666 				dir++;
667 				idx += ENTRIES_PER_PAGEPAGE;
668 				if (idx >= limit)
669 					goto done1;
670 			}
671 			stage = idx + ENTRIES_PER_PAGEPAGE;
672 			middir = *dir;
673 			if (punch_hole)
674 				needs_lock = &info->lock;
675 			if (upper_limit >= stage) {
676 				if (needs_lock) {
677 					spin_lock(needs_lock);
678 					*dir = NULL;
679 					spin_unlock(needs_lock);
680 					needs_lock = NULL;
681 				} else
682 					*dir = NULL;
683 				nr_pages_to_free++;
684 				list_add(&middir->lru, &pages_to_free);
685 			}
686 			shmem_dir_unmap(dir);
687 			cond_resched();
688 			dir = shmem_dir_map(middir);
689 			diroff = 0;
690 		}
691 		punch_lock = needs_lock;
692 		subdir = dir[diroff];
693 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694 			if (needs_lock) {
695 				spin_lock(needs_lock);
696 				dir[diroff] = NULL;
697 				spin_unlock(needs_lock);
698 				punch_lock = NULL;
699 			} else
700 				dir[diroff] = NULL;
701 			nr_pages_to_free++;
702 			list_add(&subdir->lru, &pages_to_free);
703 		}
704 		if (subdir && page_private(subdir) /* has swap entries */) {
705 			size = limit - idx;
706 			if (size > ENTRIES_PER_PAGE)
707 				size = ENTRIES_PER_PAGE;
708 			freed = shmem_map_and_free_swp(subdir,
709 					offset, size, &dir, punch_lock);
710 			if (!dir)
711 				dir = shmem_dir_map(middir);
712 			nr_swaps_freed += freed;
713 			if (offset || punch_lock) {
714 				spin_lock(&info->lock);
715 				set_page_private(subdir,
716 					page_private(subdir) - freed);
717 				spin_unlock(&info->lock);
718 			} else
719 				BUG_ON(page_private(subdir) != freed);
720 		}
721 		offset = 0;
722 	}
723 done1:
724 	shmem_dir_unmap(dir);
725 done2:
726 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727 		/*
728 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
729 		 * may have swizzled a page in from swap since
730 		 * truncate_pagecache or generic_delete_inode did it, before we
731 		 * lowered next_index.  Also, though shmem_getpage checks
732 		 * i_size before adding to cache, no recheck after: so fix the
733 		 * narrow window there too.
734 		 *
735 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
736 		 * every time for punch_hole (which never got a chance to clear
737 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738 		 * yet hardly ever necessary: try to optimize them out later.
739 		 */
740 		truncate_inode_pages_range(inode->i_mapping, start, end);
741 		if (punch_hole)
742 			unmap_mapping_range(inode->i_mapping, start,
743 							end - start, 1);
744 	}
745 
746 	spin_lock(&info->lock);
747 	info->flags &= ~SHMEM_TRUNCATE;
748 	info->swapped -= nr_swaps_freed;
749 	if (nr_pages_to_free)
750 		shmem_free_blocks(inode, nr_pages_to_free);
751 	shmem_recalc_inode(inode);
752 	spin_unlock(&info->lock);
753 
754 	/*
755 	 * Empty swap vector directory pages to be freed?
756 	 */
757 	if (!list_empty(&pages_to_free)) {
758 		pages_to_free.prev->next = NULL;
759 		shmem_free_pages(pages_to_free.next);
760 	}
761 }
762 
shmem_notify_change(struct dentry * dentry,struct iattr * attr)763 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764 {
765 	struct inode *inode = dentry->d_inode;
766 	loff_t newsize = attr->ia_size;
767 	int error;
768 
769 	error = inode_change_ok(inode, attr);
770 	if (error)
771 		return error;
772 
773 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
774 					&& newsize != inode->i_size) {
775 		struct page *page = NULL;
776 
777 		if (newsize < inode->i_size) {
778 			/*
779 			 * If truncating down to a partial page, then
780 			 * if that page is already allocated, hold it
781 			 * in memory until the truncation is over, so
782 			 * truncate_partial_page cannot miss it were
783 			 * it assigned to swap.
784 			 */
785 			if (newsize & (PAGE_CACHE_SIZE-1)) {
786 				(void) shmem_getpage(inode,
787 					newsize >> PAGE_CACHE_SHIFT,
788 						&page, SGP_READ, NULL);
789 				if (page)
790 					unlock_page(page);
791 			}
792 			/*
793 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794 			 * detect if any pages might have been added to cache
795 			 * after truncate_inode_pages.  But we needn't bother
796 			 * if it's being fully truncated to zero-length: the
797 			 * nrpages check is efficient enough in that case.
798 			 */
799 			if (newsize) {
800 				struct shmem_inode_info *info = SHMEM_I(inode);
801 				spin_lock(&info->lock);
802 				info->flags &= ~SHMEM_PAGEIN;
803 				spin_unlock(&info->lock);
804 			}
805 		}
806 
807 		/* XXX(truncate): truncate_setsize should be called last */
808 		truncate_setsize(inode, newsize);
809 		if (page)
810 			page_cache_release(page);
811 		shmem_truncate_range(inode, newsize, (loff_t)-1);
812 	}
813 
814 	setattr_copy(inode, attr);
815 #ifdef CONFIG_TMPFS_POSIX_ACL
816 	if (attr->ia_valid & ATTR_MODE)
817 		error = generic_acl_chmod(inode);
818 #endif
819 	return error;
820 }
821 
shmem_evict_inode(struct inode * inode)822 static void shmem_evict_inode(struct inode *inode)
823 {
824 	struct shmem_inode_info *info = SHMEM_I(inode);
825 
826 	if (inode->i_mapping->a_ops == &shmem_aops) {
827 		truncate_inode_pages(inode->i_mapping, 0);
828 		shmem_unacct_size(info->flags, inode->i_size);
829 		inode->i_size = 0;
830 		shmem_truncate_range(inode, 0, (loff_t)-1);
831 		if (!list_empty(&info->swaplist)) {
832 			mutex_lock(&shmem_swaplist_mutex);
833 			list_del_init(&info->swaplist);
834 			mutex_unlock(&shmem_swaplist_mutex);
835 		}
836 	}
837 	BUG_ON(inode->i_blocks);
838 	shmem_free_inode(inode->i_sb);
839 	end_writeback(inode);
840 }
841 
shmem_find_swp(swp_entry_t entry,swp_entry_t * dir,swp_entry_t * edir)842 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843 {
844 	swp_entry_t *ptr;
845 
846 	for (ptr = dir; ptr < edir; ptr++) {
847 		if (ptr->val == entry.val)
848 			return ptr - dir;
849 	}
850 	return -1;
851 }
852 
shmem_unuse_inode(struct shmem_inode_info * info,swp_entry_t entry,struct page * page)853 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854 {
855 	struct address_space *mapping;
856 	unsigned long idx;
857 	unsigned long size;
858 	unsigned long limit;
859 	unsigned long stage;
860 	struct page **dir;
861 	struct page *subdir;
862 	swp_entry_t *ptr;
863 	int offset;
864 	int error;
865 
866 	idx = 0;
867 	ptr = info->i_direct;
868 	spin_lock(&info->lock);
869 	if (!info->swapped) {
870 		list_del_init(&info->swaplist);
871 		goto lost2;
872 	}
873 	limit = info->next_index;
874 	size = limit;
875 	if (size > SHMEM_NR_DIRECT)
876 		size = SHMEM_NR_DIRECT;
877 	offset = shmem_find_swp(entry, ptr, ptr+size);
878 	if (offset >= 0) {
879 		shmem_swp_balance_unmap();
880 		goto found;
881 	}
882 	if (!info->i_indirect)
883 		goto lost2;
884 
885 	dir = shmem_dir_map(info->i_indirect);
886 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
887 
888 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
889 		if (unlikely(idx == stage)) {
890 			shmem_dir_unmap(dir-1);
891 			if (cond_resched_lock(&info->lock)) {
892 				/* check it has not been truncated */
893 				if (limit > info->next_index) {
894 					limit = info->next_index;
895 					if (idx >= limit)
896 						goto lost2;
897 				}
898 			}
899 			dir = shmem_dir_map(info->i_indirect) +
900 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
901 			while (!*dir) {
902 				dir++;
903 				idx += ENTRIES_PER_PAGEPAGE;
904 				if (idx >= limit)
905 					goto lost1;
906 			}
907 			stage = idx + ENTRIES_PER_PAGEPAGE;
908 			subdir = *dir;
909 			shmem_dir_unmap(dir);
910 			dir = shmem_dir_map(subdir);
911 		}
912 		subdir = *dir;
913 		if (subdir && page_private(subdir)) {
914 			ptr = shmem_swp_map(subdir);
915 			size = limit - idx;
916 			if (size > ENTRIES_PER_PAGE)
917 				size = ENTRIES_PER_PAGE;
918 			offset = shmem_find_swp(entry, ptr, ptr+size);
919 			if (offset >= 0) {
920 				shmem_dir_unmap(dir);
921 				goto found;
922 			}
923 			shmem_swp_unmap(ptr);
924 		}
925 	}
926 lost1:
927 	shmem_dir_unmap(dir-1);
928 lost2:
929 	spin_unlock(&info->lock);
930 	return 0;
931 found:
932 	idx += offset;
933 	ptr += offset;
934 
935 	/*
936 	 * Move _head_ to start search for next from here.
937 	 * But be careful: shmem_evict_inode checks list_empty without taking
938 	 * mutex, and there's an instant in list_move_tail when info->swaplist
939 	 * would appear empty, if it were the only one on shmem_swaplist.  We
940 	 * could avoid doing it if inode NULL; or use this minor optimization.
941 	 */
942 	if (shmem_swaplist.next != &info->swaplist)
943 		list_move_tail(&shmem_swaplist, &info->swaplist);
944 
945 	/*
946 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
947 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
948 	 * beneath us (pagelock doesn't help until the page is in pagecache).
949 	 */
950 	mapping = info->vfs_inode.i_mapping;
951 	error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
952 	/* which does mem_cgroup_uncharge_cache_page on error */
953 
954 	if (error == -EEXIST) {
955 		struct page *filepage = find_get_page(mapping, idx);
956 		error = 1;
957 		if (filepage) {
958 			/*
959 			 * There might be a more uptodate page coming down
960 			 * from a stacked writepage: forget our swappage if so.
961 			 */
962 			if (PageUptodate(filepage))
963 				error = 0;
964 			page_cache_release(filepage);
965 		}
966 	}
967 	if (!error) {
968 		delete_from_swap_cache(page);
969 		set_page_dirty(page);
970 		info->flags |= SHMEM_PAGEIN;
971 		shmem_swp_set(info, ptr, 0);
972 		swap_free(entry);
973 		error = 1;	/* not an error, but entry was found */
974 	}
975 	shmem_swp_unmap(ptr);
976 	spin_unlock(&info->lock);
977 	return error;
978 }
979 
980 /*
981  * shmem_unuse() search for an eventually swapped out shmem page.
982  */
shmem_unuse(swp_entry_t entry,struct page * page)983 int shmem_unuse(swp_entry_t entry, struct page *page)
984 {
985 	struct list_head *p, *next;
986 	struct shmem_inode_info *info;
987 	int found = 0;
988 	int error;
989 
990 	/*
991 	 * Charge page using GFP_KERNEL while we can wait, before taking
992 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
993 	 * Charged back to the user (not to caller) when swap account is used.
994 	 * add_to_page_cache() will be called with GFP_NOWAIT.
995 	 */
996 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
997 	if (error)
998 		goto out;
999 	/*
1000 	 * Try to preload while we can wait, to not make a habit of
1001 	 * draining atomic reserves; but don't latch on to this cpu,
1002 	 * it's okay if sometimes we get rescheduled after this.
1003 	 */
1004 	error = radix_tree_preload(GFP_KERNEL);
1005 	if (error)
1006 		goto uncharge;
1007 	radix_tree_preload_end();
1008 
1009 	mutex_lock(&shmem_swaplist_mutex);
1010 	list_for_each_safe(p, next, &shmem_swaplist) {
1011 		info = list_entry(p, struct shmem_inode_info, swaplist);
1012 		found = shmem_unuse_inode(info, entry, page);
1013 		cond_resched();
1014 		if (found)
1015 			break;
1016 	}
1017 	mutex_unlock(&shmem_swaplist_mutex);
1018 
1019 uncharge:
1020 	if (!found)
1021 		mem_cgroup_uncharge_cache_page(page);
1022 	if (found < 0)
1023 		error = found;
1024 out:
1025 	unlock_page(page);
1026 	page_cache_release(page);
1027 	return error;
1028 }
1029 
1030 /*
1031  * Move the page from the page cache to the swap cache.
1032  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1033 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1034 {
1035 	struct shmem_inode_info *info;
1036 	swp_entry_t *entry, swap;
1037 	struct address_space *mapping;
1038 	unsigned long index;
1039 	struct inode *inode;
1040 
1041 	BUG_ON(!PageLocked(page));
1042 	mapping = page->mapping;
1043 	index = page->index;
1044 	inode = mapping->host;
1045 	info = SHMEM_I(inode);
1046 	if (info->flags & VM_LOCKED)
1047 		goto redirty;
1048 	if (!total_swap_pages)
1049 		goto redirty;
1050 
1051 	/*
1052 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1053 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1054 	 * may use the ->writepage of its underlying filesystem, in which case
1055 	 * tmpfs should write out to swap only in response to memory pressure,
1056 	 * and not for the writeback threads or sync.  However, in those cases,
1057 	 * we do still want to check if there's a redundant swappage to be
1058 	 * discarded.
1059 	 */
1060 	if (wbc->for_reclaim)
1061 		swap = get_swap_page();
1062 	else
1063 		swap.val = 0;
1064 
1065 	/*
1066 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1067 	 * if it's not already there.  Do it now because we cannot take
1068 	 * mutex while holding spinlock, and must do so before the page
1069 	 * is moved to swap cache, when its pagelock no longer protects
1070 	 * the inode from eviction.  But don't unlock the mutex until
1071 	 * we've taken the spinlock, because shmem_unuse_inode() will
1072 	 * prune a !swapped inode from the swaplist under both locks.
1073 	 */
1074 	if (swap.val) {
1075 		mutex_lock(&shmem_swaplist_mutex);
1076 		if (list_empty(&info->swaplist))
1077 			list_add_tail(&info->swaplist, &shmem_swaplist);
1078 	}
1079 
1080 	spin_lock(&info->lock);
1081 	if (swap.val)
1082 		mutex_unlock(&shmem_swaplist_mutex);
1083 
1084 	if (index >= info->next_index) {
1085 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1086 		goto unlock;
1087 	}
1088 	entry = shmem_swp_entry(info, index, NULL);
1089 	if (entry->val) {
1090 		/*
1091 		 * The more uptodate page coming down from a stacked
1092 		 * writepage should replace our old swappage.
1093 		 */
1094 		free_swap_and_cache(*entry);
1095 		shmem_swp_set(info, entry, 0);
1096 	}
1097 	shmem_recalc_inode(inode);
1098 
1099 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1100 		delete_from_page_cache(page);
1101 		shmem_swp_set(info, entry, swap.val);
1102 		shmem_swp_unmap(entry);
1103 		spin_unlock(&info->lock);
1104 		swap_shmem_alloc(swap);
1105 		BUG_ON(page_mapped(page));
1106 		swap_writepage(page, wbc);
1107 		return 0;
1108 	}
1109 
1110 	shmem_swp_unmap(entry);
1111 unlock:
1112 	spin_unlock(&info->lock);
1113 	/*
1114 	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1115 	 * clear SWAP_HAS_CACHE flag.
1116 	 */
1117 	swapcache_free(swap, NULL);
1118 redirty:
1119 	set_page_dirty(page);
1120 	if (wbc->for_reclaim)
1121 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1122 	unlock_page(page);
1123 	return 0;
1124 }
1125 
1126 #ifdef CONFIG_NUMA
1127 #ifdef CONFIG_TMPFS
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1128 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1129 {
1130 	char buffer[64];
1131 
1132 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1133 		return;		/* show nothing */
1134 
1135 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1136 
1137 	seq_printf(seq, ",mpol=%s", buffer);
1138 }
1139 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1140 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1141 {
1142 	struct mempolicy *mpol = NULL;
1143 	if (sbinfo->mpol) {
1144 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1145 		mpol = sbinfo->mpol;
1146 		mpol_get(mpol);
1147 		spin_unlock(&sbinfo->stat_lock);
1148 	}
1149 	return mpol;
1150 }
1151 #endif /* CONFIG_TMPFS */
1152 
shmem_swapin(swp_entry_t entry,gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1153 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1154 			struct shmem_inode_info *info, unsigned long idx)
1155 {
1156 	struct mempolicy mpol, *spol;
1157 	struct vm_area_struct pvma;
1158 	struct page *page;
1159 
1160 	spol = mpol_cond_copy(&mpol,
1161 				mpol_shared_policy_lookup(&info->policy, idx));
1162 
1163 	/* Create a pseudo vma that just contains the policy */
1164 	pvma.vm_start = 0;
1165 	pvma.vm_pgoff = idx;
1166 	pvma.vm_ops = NULL;
1167 	pvma.vm_policy = spol;
1168 	page = swapin_readahead(entry, gfp, &pvma, 0);
1169 	return page;
1170 }
1171 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1172 static struct page *shmem_alloc_page(gfp_t gfp,
1173 			struct shmem_inode_info *info, unsigned long idx)
1174 {
1175 	struct vm_area_struct pvma;
1176 
1177 	/* Create a pseudo vma that just contains the policy */
1178 	pvma.vm_start = 0;
1179 	pvma.vm_pgoff = idx;
1180 	pvma.vm_ops = NULL;
1181 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1182 
1183 	/*
1184 	 * alloc_page_vma() will drop the shared policy reference
1185 	 */
1186 	return alloc_page_vma(gfp, &pvma, 0);
1187 }
1188 #else /* !CONFIG_NUMA */
1189 #ifdef CONFIG_TMPFS
shmem_show_mpol(struct seq_file * seq,struct mempolicy * p)1190 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1191 {
1192 }
1193 #endif /* CONFIG_TMPFS */
1194 
shmem_swapin(swp_entry_t entry,gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1195 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1196 			struct shmem_inode_info *info, unsigned long idx)
1197 {
1198 	return swapin_readahead(entry, gfp, NULL, 0);
1199 }
1200 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1201 static inline struct page *shmem_alloc_page(gfp_t gfp,
1202 			struct shmem_inode_info *info, unsigned long idx)
1203 {
1204 	return alloc_page(gfp);
1205 }
1206 #endif /* CONFIG_NUMA */
1207 
1208 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1209 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1210 {
1211 	return NULL;
1212 }
1213 #endif
1214 
1215 /*
1216  * shmem_getpage - either get the page from swap or allocate a new one
1217  *
1218  * If we allocate a new one we do not mark it dirty. That's up to the
1219  * vm. If we swap it in we mark it dirty since we also free the swap
1220  * entry since a page cannot live in both the swap and page cache
1221  */
shmem_getpage(struct inode * inode,unsigned long idx,struct page ** pagep,enum sgp_type sgp,int * type)1222 static int shmem_getpage(struct inode *inode, unsigned long idx,
1223 			struct page **pagep, enum sgp_type sgp, int *type)
1224 {
1225 	struct address_space *mapping = inode->i_mapping;
1226 	struct shmem_inode_info *info = SHMEM_I(inode);
1227 	struct shmem_sb_info *sbinfo;
1228 	struct page *filepage = *pagep;
1229 	struct page *swappage;
1230 	struct page *prealloc_page = NULL;
1231 	swp_entry_t *entry;
1232 	swp_entry_t swap;
1233 	gfp_t gfp;
1234 	int error;
1235 
1236 	if (idx >= SHMEM_MAX_INDEX)
1237 		return -EFBIG;
1238 
1239 	if (type)
1240 		*type = 0;
1241 
1242 	/*
1243 	 * Normally, filepage is NULL on entry, and either found
1244 	 * uptodate immediately, or allocated and zeroed, or read
1245 	 * in under swappage, which is then assigned to filepage.
1246 	 * But shmem_readpage (required for splice) passes in a locked
1247 	 * filepage, which may be found not uptodate by other callers
1248 	 * too, and may need to be copied from the swappage read in.
1249 	 */
1250 repeat:
1251 	if (!filepage)
1252 		filepage = find_lock_page(mapping, idx);
1253 	if (filepage && PageUptodate(filepage))
1254 		goto done;
1255 	gfp = mapping_gfp_mask(mapping);
1256 	if (!filepage) {
1257 		/*
1258 		 * Try to preload while we can wait, to not make a habit of
1259 		 * draining atomic reserves; but don't latch on to this cpu.
1260 		 */
1261 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1262 		if (error)
1263 			goto failed;
1264 		radix_tree_preload_end();
1265 		if (sgp != SGP_READ && !prealloc_page) {
1266 			/* We don't care if this fails */
1267 			prealloc_page = shmem_alloc_page(gfp, info, idx);
1268 			if (prealloc_page) {
1269 				if (mem_cgroup_cache_charge(prealloc_page,
1270 						current->mm, GFP_KERNEL)) {
1271 					page_cache_release(prealloc_page);
1272 					prealloc_page = NULL;
1273 				}
1274 			}
1275 		}
1276 	}
1277 	error = 0;
1278 
1279 	spin_lock(&info->lock);
1280 	shmem_recalc_inode(inode);
1281 	entry = shmem_swp_alloc(info, idx, sgp);
1282 	if (IS_ERR(entry)) {
1283 		spin_unlock(&info->lock);
1284 		error = PTR_ERR(entry);
1285 		goto failed;
1286 	}
1287 	swap = *entry;
1288 
1289 	if (swap.val) {
1290 		/* Look it up and read it in.. */
1291 		swappage = lookup_swap_cache(swap);
1292 		if (!swappage) {
1293 			shmem_swp_unmap(entry);
1294 			/* here we actually do the io */
1295 			if (type && !(*type & VM_FAULT_MAJOR)) {
1296 				__count_vm_event(PGMAJFAULT);
1297 				*type |= VM_FAULT_MAJOR;
1298 			}
1299 			spin_unlock(&info->lock);
1300 			swappage = shmem_swapin(swap, gfp, info, idx);
1301 			if (!swappage) {
1302 				spin_lock(&info->lock);
1303 				entry = shmem_swp_alloc(info, idx, sgp);
1304 				if (IS_ERR(entry))
1305 					error = PTR_ERR(entry);
1306 				else {
1307 					if (entry->val == swap.val)
1308 						error = -ENOMEM;
1309 					shmem_swp_unmap(entry);
1310 				}
1311 				spin_unlock(&info->lock);
1312 				if (error)
1313 					goto failed;
1314 				goto repeat;
1315 			}
1316 			wait_on_page_locked(swappage);
1317 			page_cache_release(swappage);
1318 			goto repeat;
1319 		}
1320 
1321 		/* We have to do this with page locked to prevent races */
1322 		if (!trylock_page(swappage)) {
1323 			shmem_swp_unmap(entry);
1324 			spin_unlock(&info->lock);
1325 			wait_on_page_locked(swappage);
1326 			page_cache_release(swappage);
1327 			goto repeat;
1328 		}
1329 		if (PageWriteback(swappage)) {
1330 			shmem_swp_unmap(entry);
1331 			spin_unlock(&info->lock);
1332 			wait_on_page_writeback(swappage);
1333 			unlock_page(swappage);
1334 			page_cache_release(swappage);
1335 			goto repeat;
1336 		}
1337 		if (!PageUptodate(swappage)) {
1338 			shmem_swp_unmap(entry);
1339 			spin_unlock(&info->lock);
1340 			unlock_page(swappage);
1341 			page_cache_release(swappage);
1342 			error = -EIO;
1343 			goto failed;
1344 		}
1345 
1346 		if (filepage) {
1347 			shmem_swp_set(info, entry, 0);
1348 			shmem_swp_unmap(entry);
1349 			delete_from_swap_cache(swappage);
1350 			spin_unlock(&info->lock);
1351 			copy_highpage(filepage, swappage);
1352 			unlock_page(swappage);
1353 			page_cache_release(swappage);
1354 			flush_dcache_page(filepage);
1355 			SetPageUptodate(filepage);
1356 			set_page_dirty(filepage);
1357 			swap_free(swap);
1358 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1359 					idx, GFP_NOWAIT))) {
1360 			info->flags |= SHMEM_PAGEIN;
1361 			shmem_swp_set(info, entry, 0);
1362 			shmem_swp_unmap(entry);
1363 			delete_from_swap_cache(swappage);
1364 			spin_unlock(&info->lock);
1365 			filepage = swappage;
1366 			set_page_dirty(filepage);
1367 			swap_free(swap);
1368 		} else {
1369 			shmem_swp_unmap(entry);
1370 			spin_unlock(&info->lock);
1371 			if (error == -ENOMEM) {
1372 				/*
1373 				 * reclaim from proper memory cgroup and
1374 				 * call memcg's OOM if needed.
1375 				 */
1376 				error = mem_cgroup_shmem_charge_fallback(
1377 								swappage,
1378 								current->mm,
1379 								gfp);
1380 				if (error) {
1381 					unlock_page(swappage);
1382 					page_cache_release(swappage);
1383 					goto failed;
1384 				}
1385 			}
1386 			unlock_page(swappage);
1387 			page_cache_release(swappage);
1388 			goto repeat;
1389 		}
1390 	} else if (sgp == SGP_READ && !filepage) {
1391 		shmem_swp_unmap(entry);
1392 		filepage = find_get_page(mapping, idx);
1393 		if (filepage &&
1394 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1395 			spin_unlock(&info->lock);
1396 			wait_on_page_locked(filepage);
1397 			page_cache_release(filepage);
1398 			filepage = NULL;
1399 			goto repeat;
1400 		}
1401 		spin_unlock(&info->lock);
1402 	} else {
1403 		shmem_swp_unmap(entry);
1404 		sbinfo = SHMEM_SB(inode->i_sb);
1405 		if (sbinfo->max_blocks) {
1406 			if (percpu_counter_compare(&sbinfo->used_blocks,
1407 						sbinfo->max_blocks) >= 0 ||
1408 			    shmem_acct_block(info->flags))
1409 				goto nospace;
1410 			percpu_counter_inc(&sbinfo->used_blocks);
1411 			spin_lock(&inode->i_lock);
1412 			inode->i_blocks += BLOCKS_PER_PAGE;
1413 			spin_unlock(&inode->i_lock);
1414 		} else if (shmem_acct_block(info->flags))
1415 			goto nospace;
1416 
1417 		if (!filepage) {
1418 			int ret;
1419 
1420 			if (!prealloc_page) {
1421 				spin_unlock(&info->lock);
1422 				filepage = shmem_alloc_page(gfp, info, idx);
1423 				if (!filepage) {
1424 					shmem_unacct_blocks(info->flags, 1);
1425 					shmem_free_blocks(inode, 1);
1426 					error = -ENOMEM;
1427 					goto failed;
1428 				}
1429 				SetPageSwapBacked(filepage);
1430 
1431 				/*
1432 				 * Precharge page while we can wait, compensate
1433 				 * after
1434 				 */
1435 				error = mem_cgroup_cache_charge(filepage,
1436 					current->mm, GFP_KERNEL);
1437 				if (error) {
1438 					page_cache_release(filepage);
1439 					shmem_unacct_blocks(info->flags, 1);
1440 					shmem_free_blocks(inode, 1);
1441 					filepage = NULL;
1442 					goto failed;
1443 				}
1444 
1445 				spin_lock(&info->lock);
1446 			} else {
1447 				filepage = prealloc_page;
1448 				prealloc_page = NULL;
1449 				SetPageSwapBacked(filepage);
1450 			}
1451 
1452 			entry = shmem_swp_alloc(info, idx, sgp);
1453 			if (IS_ERR(entry))
1454 				error = PTR_ERR(entry);
1455 			else {
1456 				swap = *entry;
1457 				shmem_swp_unmap(entry);
1458 			}
1459 			ret = error || swap.val;
1460 			if (ret)
1461 				mem_cgroup_uncharge_cache_page(filepage);
1462 			else
1463 				ret = add_to_page_cache_lru(filepage, mapping,
1464 						idx, GFP_NOWAIT);
1465 			/*
1466 			 * At add_to_page_cache_lru() failure, uncharge will
1467 			 * be done automatically.
1468 			 */
1469 			if (ret) {
1470 				spin_unlock(&info->lock);
1471 				page_cache_release(filepage);
1472 				shmem_unacct_blocks(info->flags, 1);
1473 				shmem_free_blocks(inode, 1);
1474 				filepage = NULL;
1475 				if (error)
1476 					goto failed;
1477 				goto repeat;
1478 			}
1479 			info->flags |= SHMEM_PAGEIN;
1480 		}
1481 
1482 		info->alloced++;
1483 		spin_unlock(&info->lock);
1484 		clear_highpage(filepage);
1485 		flush_dcache_page(filepage);
1486 		SetPageUptodate(filepage);
1487 		if (sgp == SGP_DIRTY)
1488 			set_page_dirty(filepage);
1489 	}
1490 done:
1491 	*pagep = filepage;
1492 	error = 0;
1493 	goto out;
1494 
1495 nospace:
1496 	/*
1497 	 * Perhaps the page was brought in from swap between find_lock_page
1498 	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1499 	 * but must also avoid reporting a spurious ENOSPC while working on a
1500 	 * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1501 	 * is already in page cache, which prevents this race from occurring.)
1502 	 */
1503 	if (!filepage) {
1504 		struct page *page = find_get_page(mapping, idx);
1505 		if (page) {
1506 			spin_unlock(&info->lock);
1507 			page_cache_release(page);
1508 			goto repeat;
1509 		}
1510 	}
1511 	spin_unlock(&info->lock);
1512 	error = -ENOSPC;
1513 failed:
1514 	if (*pagep != filepage) {
1515 		unlock_page(filepage);
1516 		page_cache_release(filepage);
1517 	}
1518 out:
1519 	if (prealloc_page) {
1520 		mem_cgroup_uncharge_cache_page(prealloc_page);
1521 		page_cache_release(prealloc_page);
1522 	}
1523 	return error;
1524 }
1525 
shmem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1526 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1527 {
1528 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1529 	int error;
1530 	int ret;
1531 
1532 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1533 		return VM_FAULT_SIGBUS;
1534 
1535 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1536 	if (error)
1537 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1538 
1539 	return ret | VM_FAULT_LOCKED;
1540 }
1541 
1542 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * new)1543 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1544 {
1545 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1546 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1547 }
1548 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)1549 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1550 					  unsigned long addr)
1551 {
1552 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1553 	unsigned long idx;
1554 
1555 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1556 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1557 }
1558 #endif
1559 
shmem_lock(struct file * file,int lock,struct user_struct * user)1560 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1561 {
1562 	struct inode *inode = file->f_path.dentry->d_inode;
1563 	struct shmem_inode_info *info = SHMEM_I(inode);
1564 	int retval = -ENOMEM;
1565 
1566 	spin_lock(&info->lock);
1567 	if (lock && !(info->flags & VM_LOCKED)) {
1568 		if (!user_shm_lock(inode->i_size, user))
1569 			goto out_nomem;
1570 		info->flags |= VM_LOCKED;
1571 		mapping_set_unevictable(file->f_mapping);
1572 	}
1573 	if (!lock && (info->flags & VM_LOCKED) && user) {
1574 		user_shm_unlock(inode->i_size, user);
1575 		info->flags &= ~VM_LOCKED;
1576 		mapping_clear_unevictable(file->f_mapping);
1577 		scan_mapping_unevictable_pages(file->f_mapping);
1578 	}
1579 	retval = 0;
1580 
1581 out_nomem:
1582 	spin_unlock(&info->lock);
1583 	return retval;
1584 }
1585 
shmem_mmap(struct file * file,struct vm_area_struct * vma)1586 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1587 {
1588 	file_accessed(file);
1589 	vma->vm_ops = &shmem_vm_ops;
1590 	vma->vm_flags |= VM_CAN_NONLINEAR;
1591 	return 0;
1592 }
1593 
shmem_get_inode(struct super_block * sb,const struct inode * dir,int mode,dev_t dev,unsigned long flags)1594 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1595 				     int mode, dev_t dev, unsigned long flags)
1596 {
1597 	struct inode *inode;
1598 	struct shmem_inode_info *info;
1599 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1600 
1601 	if (shmem_reserve_inode(sb))
1602 		return NULL;
1603 
1604 	inode = new_inode(sb);
1605 	if (inode) {
1606 		inode->i_ino = get_next_ino();
1607 		inode_init_owner(inode, dir, mode);
1608 		inode->i_blocks = 0;
1609 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1610 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1611 		inode->i_generation = get_seconds();
1612 		info = SHMEM_I(inode);
1613 		memset(info, 0, (char *)inode - (char *)info);
1614 		spin_lock_init(&info->lock);
1615 		info->flags = flags & VM_NORESERVE;
1616 		INIT_LIST_HEAD(&info->swaplist);
1617 		cache_no_acl(inode);
1618 
1619 		switch (mode & S_IFMT) {
1620 		default:
1621 			inode->i_op = &shmem_special_inode_operations;
1622 			init_special_inode(inode, mode, dev);
1623 			break;
1624 		case S_IFREG:
1625 			inode->i_mapping->a_ops = &shmem_aops;
1626 			inode->i_op = &shmem_inode_operations;
1627 			inode->i_fop = &shmem_file_operations;
1628 			mpol_shared_policy_init(&info->policy,
1629 						 shmem_get_sbmpol(sbinfo));
1630 			break;
1631 		case S_IFDIR:
1632 			inc_nlink(inode);
1633 			/* Some things misbehave if size == 0 on a directory */
1634 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1635 			inode->i_op = &shmem_dir_inode_operations;
1636 			inode->i_fop = &simple_dir_operations;
1637 			break;
1638 		case S_IFLNK:
1639 			/*
1640 			 * Must not load anything in the rbtree,
1641 			 * mpol_free_shared_policy will not be called.
1642 			 */
1643 			mpol_shared_policy_init(&info->policy, NULL);
1644 			break;
1645 		}
1646 	} else
1647 		shmem_free_inode(sb);
1648 	return inode;
1649 }
1650 
1651 #ifdef CONFIG_TMPFS
1652 static const struct inode_operations shmem_symlink_inode_operations;
1653 static const struct inode_operations shmem_symlink_inline_operations;
1654 
1655 /*
1656  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1657  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1658  * below the loop driver, in the generic fashion that many filesystems support.
1659  */
shmem_readpage(struct file * file,struct page * page)1660 static int shmem_readpage(struct file *file, struct page *page)
1661 {
1662 	struct inode *inode = page->mapping->host;
1663 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1664 	unlock_page(page);
1665 	return error;
1666 }
1667 
1668 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1669 shmem_write_begin(struct file *file, struct address_space *mapping,
1670 			loff_t pos, unsigned len, unsigned flags,
1671 			struct page **pagep, void **fsdata)
1672 {
1673 	struct inode *inode = mapping->host;
1674 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1675 	*pagep = NULL;
1676 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1677 }
1678 
1679 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1680 shmem_write_end(struct file *file, struct address_space *mapping,
1681 			loff_t pos, unsigned len, unsigned copied,
1682 			struct page *page, void *fsdata)
1683 {
1684 	struct inode *inode = mapping->host;
1685 
1686 	if (pos + copied > inode->i_size)
1687 		i_size_write(inode, pos + copied);
1688 
1689 	set_page_dirty(page);
1690 	unlock_page(page);
1691 	page_cache_release(page);
1692 
1693 	return copied;
1694 }
1695 
do_shmem_file_read(struct file * filp,loff_t * ppos,read_descriptor_t * desc,read_actor_t actor)1696 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1697 {
1698 	struct inode *inode = filp->f_path.dentry->d_inode;
1699 	struct address_space *mapping = inode->i_mapping;
1700 	unsigned long index, offset;
1701 	enum sgp_type sgp = SGP_READ;
1702 
1703 	/*
1704 	 * Might this read be for a stacking filesystem?  Then when reading
1705 	 * holes of a sparse file, we actually need to allocate those pages,
1706 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1707 	 */
1708 	if (segment_eq(get_fs(), KERNEL_DS))
1709 		sgp = SGP_DIRTY;
1710 
1711 	index = *ppos >> PAGE_CACHE_SHIFT;
1712 	offset = *ppos & ~PAGE_CACHE_MASK;
1713 
1714 	for (;;) {
1715 		struct page *page = NULL;
1716 		unsigned long end_index, nr, ret;
1717 		loff_t i_size = i_size_read(inode);
1718 
1719 		end_index = i_size >> PAGE_CACHE_SHIFT;
1720 		if (index > end_index)
1721 			break;
1722 		if (index == end_index) {
1723 			nr = i_size & ~PAGE_CACHE_MASK;
1724 			if (nr <= offset)
1725 				break;
1726 		}
1727 
1728 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1729 		if (desc->error) {
1730 			if (desc->error == -EINVAL)
1731 				desc->error = 0;
1732 			break;
1733 		}
1734 		if (page)
1735 			unlock_page(page);
1736 
1737 		/*
1738 		 * We must evaluate after, since reads (unlike writes)
1739 		 * are called without i_mutex protection against truncate
1740 		 */
1741 		nr = PAGE_CACHE_SIZE;
1742 		i_size = i_size_read(inode);
1743 		end_index = i_size >> PAGE_CACHE_SHIFT;
1744 		if (index == end_index) {
1745 			nr = i_size & ~PAGE_CACHE_MASK;
1746 			if (nr <= offset) {
1747 				if (page)
1748 					page_cache_release(page);
1749 				break;
1750 			}
1751 		}
1752 		nr -= offset;
1753 
1754 		if (page) {
1755 			/*
1756 			 * If users can be writing to this page using arbitrary
1757 			 * virtual addresses, take care about potential aliasing
1758 			 * before reading the page on the kernel side.
1759 			 */
1760 			if (mapping_writably_mapped(mapping))
1761 				flush_dcache_page(page);
1762 			/*
1763 			 * Mark the page accessed if we read the beginning.
1764 			 */
1765 			if (!offset)
1766 				mark_page_accessed(page);
1767 		} else {
1768 			page = ZERO_PAGE(0);
1769 			page_cache_get(page);
1770 		}
1771 
1772 		/*
1773 		 * Ok, we have the page, and it's up-to-date, so
1774 		 * now we can copy it to user space...
1775 		 *
1776 		 * The actor routine returns how many bytes were actually used..
1777 		 * NOTE! This may not be the same as how much of a user buffer
1778 		 * we filled up (we may be padding etc), so we can only update
1779 		 * "pos" here (the actor routine has to update the user buffer
1780 		 * pointers and the remaining count).
1781 		 */
1782 		ret = actor(desc, page, offset, nr);
1783 		offset += ret;
1784 		index += offset >> PAGE_CACHE_SHIFT;
1785 		offset &= ~PAGE_CACHE_MASK;
1786 
1787 		page_cache_release(page);
1788 		if (ret != nr || !desc->count)
1789 			break;
1790 
1791 		cond_resched();
1792 	}
1793 
1794 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1795 	file_accessed(filp);
1796 }
1797 
shmem_file_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1798 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1799 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1800 {
1801 	struct file *filp = iocb->ki_filp;
1802 	ssize_t retval;
1803 	unsigned long seg;
1804 	size_t count;
1805 	loff_t *ppos = &iocb->ki_pos;
1806 
1807 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1808 	if (retval)
1809 		return retval;
1810 
1811 	for (seg = 0; seg < nr_segs; seg++) {
1812 		read_descriptor_t desc;
1813 
1814 		desc.written = 0;
1815 		desc.arg.buf = iov[seg].iov_base;
1816 		desc.count = iov[seg].iov_len;
1817 		if (desc.count == 0)
1818 			continue;
1819 		desc.error = 0;
1820 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1821 		retval += desc.written;
1822 		if (desc.error) {
1823 			retval = retval ?: desc.error;
1824 			break;
1825 		}
1826 		if (desc.count > 0)
1827 			break;
1828 	}
1829 	return retval;
1830 }
1831 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)1832 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1833 {
1834 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1835 
1836 	buf->f_type = TMPFS_MAGIC;
1837 	buf->f_bsize = PAGE_CACHE_SIZE;
1838 	buf->f_namelen = NAME_MAX;
1839 	if (sbinfo->max_blocks) {
1840 		buf->f_blocks = sbinfo->max_blocks;
1841 		buf->f_bavail = buf->f_bfree =
1842 				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1843 	}
1844 	if (sbinfo->max_inodes) {
1845 		buf->f_files = sbinfo->max_inodes;
1846 		buf->f_ffree = sbinfo->free_inodes;
1847 	}
1848 	/* else leave those fields 0 like simple_statfs */
1849 	return 0;
1850 }
1851 
1852 /*
1853  * File creation. Allocate an inode, and we're done..
1854  */
1855 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t dev)1856 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1857 {
1858 	struct inode *inode;
1859 	int error = -ENOSPC;
1860 
1861 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1862 	if (inode) {
1863 		error = security_inode_init_security(inode, dir,
1864 						     &dentry->d_name, NULL,
1865 						     NULL, NULL);
1866 		if (error) {
1867 			if (error != -EOPNOTSUPP) {
1868 				iput(inode);
1869 				return error;
1870 			}
1871 		}
1872 #ifdef CONFIG_TMPFS_POSIX_ACL
1873 		error = generic_acl_init(inode, dir);
1874 		if (error) {
1875 			iput(inode);
1876 			return error;
1877 		}
1878 #else
1879 		error = 0;
1880 #endif
1881 		dir->i_size += BOGO_DIRENT_SIZE;
1882 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1883 		d_instantiate(dentry, inode);
1884 		dget(dentry); /* Extra count - pin the dentry in core */
1885 	}
1886 	return error;
1887 }
1888 
shmem_mkdir(struct inode * dir,struct dentry * dentry,int mode)1889 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1890 {
1891 	int error;
1892 
1893 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1894 		return error;
1895 	inc_nlink(dir);
1896 	return 0;
1897 }
1898 
shmem_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)1899 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1900 		struct nameidata *nd)
1901 {
1902 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1903 }
1904 
1905 /*
1906  * Link a file..
1907  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)1908 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1909 {
1910 	struct inode *inode = old_dentry->d_inode;
1911 	int ret;
1912 
1913 	/*
1914 	 * No ordinary (disk based) filesystem counts links as inodes;
1915 	 * but each new link needs a new dentry, pinning lowmem, and
1916 	 * tmpfs dentries cannot be pruned until they are unlinked.
1917 	 */
1918 	ret = shmem_reserve_inode(inode->i_sb);
1919 	if (ret)
1920 		goto out;
1921 
1922 	dir->i_size += BOGO_DIRENT_SIZE;
1923 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1924 	inc_nlink(inode);
1925 	ihold(inode);	/* New dentry reference */
1926 	dget(dentry);		/* Extra pinning count for the created dentry */
1927 	d_instantiate(dentry, inode);
1928 out:
1929 	return ret;
1930 }
1931 
shmem_unlink(struct inode * dir,struct dentry * dentry)1932 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1933 {
1934 	struct inode *inode = dentry->d_inode;
1935 
1936 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1937 		shmem_free_inode(inode->i_sb);
1938 
1939 	dir->i_size -= BOGO_DIRENT_SIZE;
1940 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1941 	drop_nlink(inode);
1942 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1943 	return 0;
1944 }
1945 
shmem_rmdir(struct inode * dir,struct dentry * dentry)1946 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1947 {
1948 	if (!simple_empty(dentry))
1949 		return -ENOTEMPTY;
1950 
1951 	drop_nlink(dentry->d_inode);
1952 	drop_nlink(dir);
1953 	return shmem_unlink(dir, dentry);
1954 }
1955 
1956 /*
1957  * The VFS layer already does all the dentry stuff for rename,
1958  * we just have to decrement the usage count for the target if
1959  * it exists so that the VFS layer correctly free's it when it
1960  * gets overwritten.
1961  */
shmem_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1962 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1963 {
1964 	struct inode *inode = old_dentry->d_inode;
1965 	int they_are_dirs = S_ISDIR(inode->i_mode);
1966 
1967 	if (!simple_empty(new_dentry))
1968 		return -ENOTEMPTY;
1969 
1970 	if (new_dentry->d_inode) {
1971 		(void) shmem_unlink(new_dir, new_dentry);
1972 		if (they_are_dirs)
1973 			drop_nlink(old_dir);
1974 	} else if (they_are_dirs) {
1975 		drop_nlink(old_dir);
1976 		inc_nlink(new_dir);
1977 	}
1978 
1979 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1980 	new_dir->i_size += BOGO_DIRENT_SIZE;
1981 	old_dir->i_ctime = old_dir->i_mtime =
1982 	new_dir->i_ctime = new_dir->i_mtime =
1983 	inode->i_ctime = CURRENT_TIME;
1984 	return 0;
1985 }
1986 
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1987 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1988 {
1989 	int error;
1990 	int len;
1991 	struct inode *inode;
1992 	struct page *page = NULL;
1993 	char *kaddr;
1994 	struct shmem_inode_info *info;
1995 
1996 	len = strlen(symname) + 1;
1997 	if (len > PAGE_CACHE_SIZE)
1998 		return -ENAMETOOLONG;
1999 
2000 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2001 	if (!inode)
2002 		return -ENOSPC;
2003 
2004 	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2005 					     NULL, NULL);
2006 	if (error) {
2007 		if (error != -EOPNOTSUPP) {
2008 			iput(inode);
2009 			return error;
2010 		}
2011 		error = 0;
2012 	}
2013 
2014 	info = SHMEM_I(inode);
2015 	inode->i_size = len-1;
2016 	if (len <= (char *)inode - (char *)info) {
2017 		/* do it inline */
2018 		memcpy(info, symname, len);
2019 		inode->i_op = &shmem_symlink_inline_operations;
2020 	} else {
2021 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2022 		if (error) {
2023 			iput(inode);
2024 			return error;
2025 		}
2026 		inode->i_mapping->a_ops = &shmem_aops;
2027 		inode->i_op = &shmem_symlink_inode_operations;
2028 		kaddr = kmap_atomic(page, KM_USER0);
2029 		memcpy(kaddr, symname, len);
2030 		kunmap_atomic(kaddr, KM_USER0);
2031 		set_page_dirty(page);
2032 		unlock_page(page);
2033 		page_cache_release(page);
2034 	}
2035 	dir->i_size += BOGO_DIRENT_SIZE;
2036 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2037 	d_instantiate(dentry, inode);
2038 	dget(dentry);
2039 	return 0;
2040 }
2041 
shmem_follow_link_inline(struct dentry * dentry,struct nameidata * nd)2042 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2043 {
2044 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2045 	return NULL;
2046 }
2047 
shmem_follow_link(struct dentry * dentry,struct nameidata * nd)2048 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2049 {
2050 	struct page *page = NULL;
2051 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2052 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2053 	if (page)
2054 		unlock_page(page);
2055 	return page;
2056 }
2057 
shmem_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)2058 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2059 {
2060 	if (!IS_ERR(nd_get_link(nd))) {
2061 		struct page *page = cookie;
2062 		kunmap(page);
2063 		mark_page_accessed(page);
2064 		page_cache_release(page);
2065 	}
2066 }
2067 
2068 static const struct inode_operations shmem_symlink_inline_operations = {
2069 	.readlink	= generic_readlink,
2070 	.follow_link	= shmem_follow_link_inline,
2071 };
2072 
2073 static const struct inode_operations shmem_symlink_inode_operations = {
2074 	.readlink	= generic_readlink,
2075 	.follow_link	= shmem_follow_link,
2076 	.put_link	= shmem_put_link,
2077 };
2078 
2079 #ifdef CONFIG_TMPFS_POSIX_ACL
2080 /*
2081  * Superblocks without xattr inode operations will get security.* xattr
2082  * support from the VFS "for free". As soon as we have any other xattrs
2083  * like ACLs, we also need to implement the security.* handlers at
2084  * filesystem level, though.
2085  */
2086 
shmem_xattr_security_list(struct dentry * dentry,char * list,size_t list_len,const char * name,size_t name_len,int handler_flags)2087 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2088 					size_t list_len, const char *name,
2089 					size_t name_len, int handler_flags)
2090 {
2091 	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2092 }
2093 
shmem_xattr_security_get(struct dentry * dentry,const char * name,void * buffer,size_t size,int handler_flags)2094 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2095 		void *buffer, size_t size, int handler_flags)
2096 {
2097 	if (strcmp(name, "") == 0)
2098 		return -EINVAL;
2099 	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2100 }
2101 
shmem_xattr_security_set(struct dentry * dentry,const char * name,const void * value,size_t size,int flags,int handler_flags)2102 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2103 		const void *value, size_t size, int flags, int handler_flags)
2104 {
2105 	if (strcmp(name, "") == 0)
2106 		return -EINVAL;
2107 	return security_inode_setsecurity(dentry->d_inode, name, value,
2108 					  size, flags);
2109 }
2110 
2111 static const struct xattr_handler shmem_xattr_security_handler = {
2112 	.prefix = XATTR_SECURITY_PREFIX,
2113 	.list   = shmem_xattr_security_list,
2114 	.get    = shmem_xattr_security_get,
2115 	.set    = shmem_xattr_security_set,
2116 };
2117 
2118 static const struct xattr_handler *shmem_xattr_handlers[] = {
2119 	&generic_acl_access_handler,
2120 	&generic_acl_default_handler,
2121 	&shmem_xattr_security_handler,
2122 	NULL
2123 };
2124 #endif
2125 
shmem_get_parent(struct dentry * child)2126 static struct dentry *shmem_get_parent(struct dentry *child)
2127 {
2128 	return ERR_PTR(-ESTALE);
2129 }
2130 
shmem_match(struct inode * ino,void * vfh)2131 static int shmem_match(struct inode *ino, void *vfh)
2132 {
2133 	__u32 *fh = vfh;
2134 	__u64 inum = fh[2];
2135 	inum = (inum << 32) | fh[1];
2136 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2137 }
2138 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2139 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2140 		struct fid *fid, int fh_len, int fh_type)
2141 {
2142 	struct inode *inode;
2143 	struct dentry *dentry = NULL;
2144 	u64 inum = fid->raw[2];
2145 	inum = (inum << 32) | fid->raw[1];
2146 
2147 	if (fh_len < 3)
2148 		return NULL;
2149 
2150 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2151 			shmem_match, fid->raw);
2152 	if (inode) {
2153 		dentry = d_find_alias(inode);
2154 		iput(inode);
2155 	}
2156 
2157 	return dentry;
2158 }
2159 
shmem_encode_fh(struct dentry * dentry,__u32 * fh,int * len,int connectable)2160 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2161 				int connectable)
2162 {
2163 	struct inode *inode = dentry->d_inode;
2164 
2165 	if (*len < 3) {
2166 		*len = 3;
2167 		return 255;
2168 	}
2169 
2170 	if (inode_unhashed(inode)) {
2171 		/* Unfortunately insert_inode_hash is not idempotent,
2172 		 * so as we hash inodes here rather than at creation
2173 		 * time, we need a lock to ensure we only try
2174 		 * to do it once
2175 		 */
2176 		static DEFINE_SPINLOCK(lock);
2177 		spin_lock(&lock);
2178 		if (inode_unhashed(inode))
2179 			__insert_inode_hash(inode,
2180 					    inode->i_ino + inode->i_generation);
2181 		spin_unlock(&lock);
2182 	}
2183 
2184 	fh[0] = inode->i_generation;
2185 	fh[1] = inode->i_ino;
2186 	fh[2] = ((__u64)inode->i_ino) >> 32;
2187 
2188 	*len = 3;
2189 	return 1;
2190 }
2191 
2192 static const struct export_operations shmem_export_ops = {
2193 	.get_parent     = shmem_get_parent,
2194 	.encode_fh      = shmem_encode_fh,
2195 	.fh_to_dentry	= shmem_fh_to_dentry,
2196 };
2197 
shmem_parse_options(char * options,struct shmem_sb_info * sbinfo,bool remount)2198 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2199 			       bool remount)
2200 {
2201 	char *this_char, *value, *rest;
2202 
2203 	while (options != NULL) {
2204 		this_char = options;
2205 		for (;;) {
2206 			/*
2207 			 * NUL-terminate this option: unfortunately,
2208 			 * mount options form a comma-separated list,
2209 			 * but mpol's nodelist may also contain commas.
2210 			 */
2211 			options = strchr(options, ',');
2212 			if (options == NULL)
2213 				break;
2214 			options++;
2215 			if (!isdigit(*options)) {
2216 				options[-1] = '\0';
2217 				break;
2218 			}
2219 		}
2220 		if (!*this_char)
2221 			continue;
2222 		if ((value = strchr(this_char,'=')) != NULL) {
2223 			*value++ = 0;
2224 		} else {
2225 			printk(KERN_ERR
2226 			    "tmpfs: No value for mount option '%s'\n",
2227 			    this_char);
2228 			return 1;
2229 		}
2230 
2231 		if (!strcmp(this_char,"size")) {
2232 			unsigned long long size;
2233 			size = memparse(value,&rest);
2234 			if (*rest == '%') {
2235 				size <<= PAGE_SHIFT;
2236 				size *= totalram_pages;
2237 				do_div(size, 100);
2238 				rest++;
2239 			}
2240 			if (*rest)
2241 				goto bad_val;
2242 			sbinfo->max_blocks =
2243 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2244 		} else if (!strcmp(this_char,"nr_blocks")) {
2245 			sbinfo->max_blocks = memparse(value, &rest);
2246 			if (*rest)
2247 				goto bad_val;
2248 		} else if (!strcmp(this_char,"nr_inodes")) {
2249 			sbinfo->max_inodes = memparse(value, &rest);
2250 			if (*rest)
2251 				goto bad_val;
2252 		} else if (!strcmp(this_char,"mode")) {
2253 			if (remount)
2254 				continue;
2255 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2256 			if (*rest)
2257 				goto bad_val;
2258 		} else if (!strcmp(this_char,"uid")) {
2259 			if (remount)
2260 				continue;
2261 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2262 			if (*rest)
2263 				goto bad_val;
2264 		} else if (!strcmp(this_char,"gid")) {
2265 			if (remount)
2266 				continue;
2267 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2268 			if (*rest)
2269 				goto bad_val;
2270 		} else if (!strcmp(this_char,"mpol")) {
2271 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2272 				goto bad_val;
2273 		} else {
2274 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2275 			       this_char);
2276 			return 1;
2277 		}
2278 	}
2279 	return 0;
2280 
2281 bad_val:
2282 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2283 	       value, this_char);
2284 	return 1;
2285 
2286 }
2287 
shmem_remount_fs(struct super_block * sb,int * flags,char * data)2288 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2289 {
2290 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2291 	struct shmem_sb_info config = *sbinfo;
2292 	unsigned long inodes;
2293 	int error = -EINVAL;
2294 
2295 	if (shmem_parse_options(data, &config, true))
2296 		return error;
2297 
2298 	spin_lock(&sbinfo->stat_lock);
2299 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2300 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2301 		goto out;
2302 	if (config.max_inodes < inodes)
2303 		goto out;
2304 	/*
2305 	 * Those tests also disallow limited->unlimited while any are in
2306 	 * use, so i_blocks will always be zero when max_blocks is zero;
2307 	 * but we must separately disallow unlimited->limited, because
2308 	 * in that case we have no record of how much is already in use.
2309 	 */
2310 	if (config.max_blocks && !sbinfo->max_blocks)
2311 		goto out;
2312 	if (config.max_inodes && !sbinfo->max_inodes)
2313 		goto out;
2314 
2315 	error = 0;
2316 	sbinfo->max_blocks  = config.max_blocks;
2317 	sbinfo->max_inodes  = config.max_inodes;
2318 	sbinfo->free_inodes = config.max_inodes - inodes;
2319 
2320 	mpol_put(sbinfo->mpol);
2321 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2322 out:
2323 	spin_unlock(&sbinfo->stat_lock);
2324 	return error;
2325 }
2326 
shmem_show_options(struct seq_file * seq,struct vfsmount * vfs)2327 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2328 {
2329 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2330 
2331 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2332 		seq_printf(seq, ",size=%luk",
2333 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2334 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2335 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2336 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2337 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2338 	if (sbinfo->uid != 0)
2339 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2340 	if (sbinfo->gid != 0)
2341 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2342 	shmem_show_mpol(seq, sbinfo->mpol);
2343 	return 0;
2344 }
2345 #endif /* CONFIG_TMPFS */
2346 
shmem_put_super(struct super_block * sb)2347 static void shmem_put_super(struct super_block *sb)
2348 {
2349 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2350 
2351 	percpu_counter_destroy(&sbinfo->used_blocks);
2352 	kfree(sbinfo);
2353 	sb->s_fs_info = NULL;
2354 }
2355 
shmem_fill_super(struct super_block * sb,void * data,int silent)2356 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2357 {
2358 	struct inode *inode;
2359 	struct dentry *root;
2360 	struct shmem_sb_info *sbinfo;
2361 	int err = -ENOMEM;
2362 
2363 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2364 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2365 				L1_CACHE_BYTES), GFP_KERNEL);
2366 	if (!sbinfo)
2367 		return -ENOMEM;
2368 
2369 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2370 	sbinfo->uid = current_fsuid();
2371 	sbinfo->gid = current_fsgid();
2372 	sb->s_fs_info = sbinfo;
2373 
2374 #ifdef CONFIG_TMPFS
2375 	/*
2376 	 * Per default we only allow half of the physical ram per
2377 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2378 	 * but the internal instance is left unlimited.
2379 	 */
2380 	if (!(sb->s_flags & MS_NOUSER)) {
2381 		sbinfo->max_blocks = shmem_default_max_blocks();
2382 		sbinfo->max_inodes = shmem_default_max_inodes();
2383 		if (shmem_parse_options(data, sbinfo, false)) {
2384 			err = -EINVAL;
2385 			goto failed;
2386 		}
2387 	}
2388 	sb->s_export_op = &shmem_export_ops;
2389 #else
2390 	sb->s_flags |= MS_NOUSER;
2391 #endif
2392 
2393 	spin_lock_init(&sbinfo->stat_lock);
2394 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2395 		goto failed;
2396 	sbinfo->free_inodes = sbinfo->max_inodes;
2397 
2398 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2399 	sb->s_blocksize = PAGE_CACHE_SIZE;
2400 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2401 	sb->s_magic = TMPFS_MAGIC;
2402 	sb->s_op = &shmem_ops;
2403 	sb->s_time_gran = 1;
2404 #ifdef CONFIG_TMPFS_POSIX_ACL
2405 	sb->s_xattr = shmem_xattr_handlers;
2406 	sb->s_flags |= MS_POSIXACL;
2407 #endif
2408 
2409 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2410 	if (!inode)
2411 		goto failed;
2412 	inode->i_uid = sbinfo->uid;
2413 	inode->i_gid = sbinfo->gid;
2414 	root = d_alloc_root(inode);
2415 	if (!root)
2416 		goto failed_iput;
2417 	sb->s_root = root;
2418 	return 0;
2419 
2420 failed_iput:
2421 	iput(inode);
2422 failed:
2423 	shmem_put_super(sb);
2424 	return err;
2425 }
2426 
2427 static struct kmem_cache *shmem_inode_cachep;
2428 
shmem_alloc_inode(struct super_block * sb)2429 static struct inode *shmem_alloc_inode(struct super_block *sb)
2430 {
2431 	struct shmem_inode_info *p;
2432 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2433 	if (!p)
2434 		return NULL;
2435 	return &p->vfs_inode;
2436 }
2437 
shmem_i_callback(struct rcu_head * head)2438 static void shmem_i_callback(struct rcu_head *head)
2439 {
2440 	struct inode *inode = container_of(head, struct inode, i_rcu);
2441 	INIT_LIST_HEAD(&inode->i_dentry);
2442 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2443 }
2444 
shmem_destroy_inode(struct inode * inode)2445 static void shmem_destroy_inode(struct inode *inode)
2446 {
2447 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2448 		/* only struct inode is valid if it's an inline symlink */
2449 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2450 	}
2451 	call_rcu(&inode->i_rcu, shmem_i_callback);
2452 }
2453 
init_once(void * foo)2454 static void init_once(void *foo)
2455 {
2456 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2457 
2458 	inode_init_once(&p->vfs_inode);
2459 }
2460 
init_inodecache(void)2461 static int init_inodecache(void)
2462 {
2463 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2464 				sizeof(struct shmem_inode_info),
2465 				0, SLAB_PANIC, init_once);
2466 	return 0;
2467 }
2468 
destroy_inodecache(void)2469 static void destroy_inodecache(void)
2470 {
2471 	kmem_cache_destroy(shmem_inode_cachep);
2472 }
2473 
2474 static const struct address_space_operations shmem_aops = {
2475 	.writepage	= shmem_writepage,
2476 	.set_page_dirty	= __set_page_dirty_no_writeback,
2477 #ifdef CONFIG_TMPFS
2478 	.readpage	= shmem_readpage,
2479 	.write_begin	= shmem_write_begin,
2480 	.write_end	= shmem_write_end,
2481 #endif
2482 	.migratepage	= migrate_page,
2483 	.error_remove_page = generic_error_remove_page,
2484 };
2485 
2486 static const struct file_operations shmem_file_operations = {
2487 	.mmap		= shmem_mmap,
2488 #ifdef CONFIG_TMPFS
2489 	.llseek		= generic_file_llseek,
2490 	.read		= do_sync_read,
2491 	.write		= do_sync_write,
2492 	.aio_read	= shmem_file_aio_read,
2493 	.aio_write	= generic_file_aio_write,
2494 	.fsync		= noop_fsync,
2495 	.splice_read	= generic_file_splice_read,
2496 	.splice_write	= generic_file_splice_write,
2497 #endif
2498 };
2499 
2500 static const struct inode_operations shmem_inode_operations = {
2501 	.setattr	= shmem_notify_change,
2502 	.truncate_range	= shmem_truncate_range,
2503 #ifdef CONFIG_TMPFS_POSIX_ACL
2504 	.setxattr	= generic_setxattr,
2505 	.getxattr	= generic_getxattr,
2506 	.listxattr	= generic_listxattr,
2507 	.removexattr	= generic_removexattr,
2508 	.check_acl	= generic_check_acl,
2509 #endif
2510 
2511 };
2512 
2513 static const struct inode_operations shmem_dir_inode_operations = {
2514 #ifdef CONFIG_TMPFS
2515 	.create		= shmem_create,
2516 	.lookup		= simple_lookup,
2517 	.link		= shmem_link,
2518 	.unlink		= shmem_unlink,
2519 	.symlink	= shmem_symlink,
2520 	.mkdir		= shmem_mkdir,
2521 	.rmdir		= shmem_rmdir,
2522 	.mknod		= shmem_mknod,
2523 	.rename		= shmem_rename,
2524 #endif
2525 #ifdef CONFIG_TMPFS_POSIX_ACL
2526 	.setattr	= shmem_notify_change,
2527 	.setxattr	= generic_setxattr,
2528 	.getxattr	= generic_getxattr,
2529 	.listxattr	= generic_listxattr,
2530 	.removexattr	= generic_removexattr,
2531 	.check_acl	= generic_check_acl,
2532 #endif
2533 };
2534 
2535 static const struct inode_operations shmem_special_inode_operations = {
2536 #ifdef CONFIG_TMPFS_POSIX_ACL
2537 	.setattr	= shmem_notify_change,
2538 	.setxattr	= generic_setxattr,
2539 	.getxattr	= generic_getxattr,
2540 	.listxattr	= generic_listxattr,
2541 	.removexattr	= generic_removexattr,
2542 	.check_acl	= generic_check_acl,
2543 #endif
2544 };
2545 
2546 static const struct super_operations shmem_ops = {
2547 	.alloc_inode	= shmem_alloc_inode,
2548 	.destroy_inode	= shmem_destroy_inode,
2549 #ifdef CONFIG_TMPFS
2550 	.statfs		= shmem_statfs,
2551 	.remount_fs	= shmem_remount_fs,
2552 	.show_options	= shmem_show_options,
2553 #endif
2554 	.evict_inode	= shmem_evict_inode,
2555 	.drop_inode	= generic_delete_inode,
2556 	.put_super	= shmem_put_super,
2557 };
2558 
2559 static const struct vm_operations_struct shmem_vm_ops = {
2560 	.fault		= shmem_fault,
2561 #ifdef CONFIG_NUMA
2562 	.set_policy     = shmem_set_policy,
2563 	.get_policy     = shmem_get_policy,
2564 #endif
2565 };
2566 
2567 
shmem_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)2568 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2569 	int flags, const char *dev_name, void *data)
2570 {
2571 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2572 }
2573 
2574 static struct file_system_type tmpfs_fs_type = {
2575 	.owner		= THIS_MODULE,
2576 	.name		= "tmpfs",
2577 	.mount		= shmem_mount,
2578 	.kill_sb	= kill_litter_super,
2579 };
2580 
init_tmpfs(void)2581 int __init init_tmpfs(void)
2582 {
2583 	int error;
2584 
2585 	error = bdi_init(&shmem_backing_dev_info);
2586 	if (error)
2587 		goto out4;
2588 
2589 	error = init_inodecache();
2590 	if (error)
2591 		goto out3;
2592 
2593 	error = register_filesystem(&tmpfs_fs_type);
2594 	if (error) {
2595 		printk(KERN_ERR "Could not register tmpfs\n");
2596 		goto out2;
2597 	}
2598 
2599 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2600 				tmpfs_fs_type.name, NULL);
2601 	if (IS_ERR(shm_mnt)) {
2602 		error = PTR_ERR(shm_mnt);
2603 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2604 		goto out1;
2605 	}
2606 	return 0;
2607 
2608 out1:
2609 	unregister_filesystem(&tmpfs_fs_type);
2610 out2:
2611 	destroy_inodecache();
2612 out3:
2613 	bdi_destroy(&shmem_backing_dev_info);
2614 out4:
2615 	shm_mnt = ERR_PTR(error);
2616 	return error;
2617 }
2618 
2619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2620 /**
2621  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2622  * @inode: the inode to be searched
2623  * @pgoff: the offset to be searched
2624  * @pagep: the pointer for the found page to be stored
2625  * @ent: the pointer for the found swap entry to be stored
2626  *
2627  * If a page is found, refcount of it is incremented. Callers should handle
2628  * these refcount.
2629  */
mem_cgroup_get_shmem_target(struct inode * inode,pgoff_t pgoff,struct page ** pagep,swp_entry_t * ent)2630 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2631 					struct page **pagep, swp_entry_t *ent)
2632 {
2633 	swp_entry_t entry = { .val = 0 }, *ptr;
2634 	struct page *page = NULL;
2635 	struct shmem_inode_info *info = SHMEM_I(inode);
2636 
2637 	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2638 		goto out;
2639 
2640 	spin_lock(&info->lock);
2641 	ptr = shmem_swp_entry(info, pgoff, NULL);
2642 #ifdef CONFIG_SWAP
2643 	if (ptr && ptr->val) {
2644 		entry.val = ptr->val;
2645 		page = find_get_page(&swapper_space, entry.val);
2646 	} else
2647 #endif
2648 		page = find_get_page(inode->i_mapping, pgoff);
2649 	if (ptr)
2650 		shmem_swp_unmap(ptr);
2651 	spin_unlock(&info->lock);
2652 out:
2653 	*pagep = page;
2654 	*ent = entry;
2655 }
2656 #endif
2657 
2658 #else /* !CONFIG_SHMEM */
2659 
2660 /*
2661  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2662  *
2663  * This is intended for small system where the benefits of the full
2664  * shmem code (swap-backed and resource-limited) are outweighed by
2665  * their complexity. On systems without swap this code should be
2666  * effectively equivalent, but much lighter weight.
2667  */
2668 
2669 #include <linux/ramfs.h>
2670 
2671 static struct file_system_type tmpfs_fs_type = {
2672 	.name		= "tmpfs",
2673 	.mount		= ramfs_mount,
2674 	.kill_sb	= kill_litter_super,
2675 };
2676 
init_tmpfs(void)2677 int __init init_tmpfs(void)
2678 {
2679 	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2680 
2681 	shm_mnt = kern_mount(&tmpfs_fs_type);
2682 	BUG_ON(IS_ERR(shm_mnt));
2683 
2684 	return 0;
2685 }
2686 
shmem_unuse(swp_entry_t entry,struct page * page)2687 int shmem_unuse(swp_entry_t entry, struct page *page)
2688 {
2689 	return 0;
2690 }
2691 
shmem_lock(struct file * file,int lock,struct user_struct * user)2692 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2693 {
2694 	return 0;
2695 }
2696 
2697 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2698 /**
2699  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2700  * @inode: the inode to be searched
2701  * @pgoff: the offset to be searched
2702  * @pagep: the pointer for the found page to be stored
2703  * @ent: the pointer for the found swap entry to be stored
2704  *
2705  * If a page is found, refcount of it is incremented. Callers should handle
2706  * these refcount.
2707  */
mem_cgroup_get_shmem_target(struct inode * inode,pgoff_t pgoff,struct page ** pagep,swp_entry_t * ent)2708 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2709 					struct page **pagep, swp_entry_t *ent)
2710 {
2711 	struct page *page = NULL;
2712 
2713 	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2714 		goto out;
2715 	page = find_get_page(inode->i_mapping, pgoff);
2716 out:
2717 	*pagep = page;
2718 	*ent = (swp_entry_t){ .val = 0 };
2719 }
2720 #endif
2721 
2722 #define shmem_vm_ops				generic_file_vm_ops
2723 #define shmem_file_operations			ramfs_file_operations
2724 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2725 #define shmem_acct_size(flags, size)		0
2726 #define shmem_unacct_size(flags, size)		do {} while (0)
2727 #define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2728 
2729 #endif /* CONFIG_SHMEM */
2730 
2731 /* common code */
2732 
2733 /**
2734  * shmem_file_setup - get an unlinked file living in tmpfs
2735  * @name: name for dentry (to be seen in /proc/<pid>/maps
2736  * @size: size to be set for the file
2737  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2738  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)2739 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2740 {
2741 	int error;
2742 	struct file *file;
2743 	struct inode *inode;
2744 	struct path path;
2745 	struct dentry *root;
2746 	struct qstr this;
2747 
2748 	if (IS_ERR(shm_mnt))
2749 		return (void *)shm_mnt;
2750 
2751 	if (size < 0 || size > SHMEM_MAX_BYTES)
2752 		return ERR_PTR(-EINVAL);
2753 
2754 	if (shmem_acct_size(flags, size))
2755 		return ERR_PTR(-ENOMEM);
2756 
2757 	error = -ENOMEM;
2758 	this.name = name;
2759 	this.len = strlen(name);
2760 	this.hash = 0; /* will go */
2761 	root = shm_mnt->mnt_root;
2762 	path.dentry = d_alloc(root, &this);
2763 	if (!path.dentry)
2764 		goto put_memory;
2765 	path.mnt = mntget(shm_mnt);
2766 
2767 	error = -ENOSPC;
2768 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2769 	if (!inode)
2770 		goto put_dentry;
2771 
2772 	d_instantiate(path.dentry, inode);
2773 	inode->i_size = size;
2774 	inode->i_nlink = 0;	/* It is unlinked */
2775 #ifndef CONFIG_MMU
2776 	error = ramfs_nommu_expand_for_mapping(inode, size);
2777 	if (error)
2778 		goto put_dentry;
2779 #endif
2780 
2781 	error = -ENFILE;
2782 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2783 		  &shmem_file_operations);
2784 	if (!file)
2785 		goto put_dentry;
2786 
2787 	return file;
2788 
2789 put_dentry:
2790 	path_put(&path);
2791 put_memory:
2792 	shmem_unacct_size(flags, size);
2793 	return ERR_PTR(error);
2794 }
2795 EXPORT_SYMBOL_GPL(shmem_file_setup);
2796 
2797 /**
2798  * shmem_zero_setup - setup a shared anonymous mapping
2799  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2800  */
shmem_zero_setup(struct vm_area_struct * vma)2801 int shmem_zero_setup(struct vm_area_struct *vma)
2802 {
2803 	struct file *file;
2804 	loff_t size = vma->vm_end - vma->vm_start;
2805 
2806 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2807 	if (IS_ERR(file))
2808 		return PTR_ERR(file);
2809 
2810 	if (vma->vm_file)
2811 		fput(vma->vm_file);
2812 	vma->vm_file = file;
2813 	vma->vm_ops = &shmem_vm_ops;
2814 	vma->vm_flags |= VM_CAN_NONLINEAR;
2815 	return 0;
2816 }
2817