1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67
68 /*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
95
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
98
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104 SGP_READ, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE, /* may exceed i_size, may allocate page */
108 };
109
110 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)111 static unsigned long shmem_default_max_blocks(void)
112 {
113 return totalram_pages / 2;
114 }
115
shmem_default_max_inodes(void)116 static unsigned long shmem_default_max_inodes(void)
117 {
118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 }
120 #endif
121
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123 struct page **pagep, enum sgp_type sgp, int *type);
124
shmem_dir_alloc(gfp_t gfp_mask)125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126 {
127 /*
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
131 *
132 * Mobility flags are masked out as swap vectors cannot move
133 */
134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135 PAGE_CACHE_SHIFT-PAGE_SHIFT);
136 }
137
shmem_dir_free(struct page * page)138 static inline void shmem_dir_free(struct page *page)
139 {
140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141 }
142
shmem_dir_map(struct page * page)143 static struct page **shmem_dir_map(struct page *page)
144 {
145 return (struct page **)kmap_atomic(page, KM_USER0);
146 }
147
shmem_dir_unmap(struct page ** dir)148 static inline void shmem_dir_unmap(struct page **dir)
149 {
150 kunmap_atomic(dir, KM_USER0);
151 }
152
shmem_swp_map(struct page * page)153 static swp_entry_t *shmem_swp_map(struct page *page)
154 {
155 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156 }
157
shmem_swp_balance_unmap(void)158 static inline void shmem_swp_balance_unmap(void)
159 {
160 /*
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
166 */
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168 }
169
shmem_swp_unmap(swp_entry_t * entry)170 static inline void shmem_swp_unmap(swp_entry_t *entry)
171 {
172 kunmap_atomic(entry, KM_USER1);
173 }
174
SHMEM_SB(struct super_block * sb)175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176 {
177 return sb->s_fs_info;
178 }
179
180 /*
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
185 */
shmem_acct_size(unsigned long flags,loff_t size)186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
187 {
188 return (flags & VM_NORESERVE) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size));
190 }
191
shmem_unacct_size(unsigned long flags,loff_t size)192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193 {
194 if (!(flags & VM_NORESERVE))
195 vm_unacct_memory(VM_ACCT(size));
196 }
197
198 /*
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203 */
shmem_acct_block(unsigned long flags)204 static inline int shmem_acct_block(unsigned long flags)
205 {
206 return (flags & VM_NORESERVE) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208 }
209
shmem_unacct_blocks(unsigned long flags,long pages)210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214 }
215
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
223
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
225 .ra_pages = 0, /* No readahead */
226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227 };
228
229 static LIST_HEAD(shmem_swaplist);
230 static DEFINE_MUTEX(shmem_swaplist_mutex);
231
shmem_free_blocks(struct inode * inode,long pages)232 static void shmem_free_blocks(struct inode *inode, long pages)
233 {
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks) {
236 percpu_counter_add(&sbinfo->used_blocks, -pages);
237 spin_lock(&inode->i_lock);
238 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 spin_unlock(&inode->i_lock);
240 }
241 }
242
shmem_reserve_inode(struct super_block * sb)243 static int shmem_reserve_inode(struct super_block *sb)
244 {
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 if (!sbinfo->free_inodes) {
249 spin_unlock(&sbinfo->stat_lock);
250 return -ENOSPC;
251 }
252 sbinfo->free_inodes--;
253 spin_unlock(&sbinfo->stat_lock);
254 }
255 return 0;
256 }
257
shmem_free_inode(struct super_block * sb)258 static void shmem_free_inode(struct super_block *sb)
259 {
260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 if (sbinfo->max_inodes) {
262 spin_lock(&sbinfo->stat_lock);
263 sbinfo->free_inodes++;
264 spin_unlock(&sbinfo->stat_lock);
265 }
266 }
267
268 /**
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
shmem_recalc_inode(struct inode * inode)280 static void shmem_recalc_inode(struct inode *inode)
281 {
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 long freed;
284
285 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 if (freed > 0) {
287 info->alloced -= freed;
288 shmem_unacct_blocks(info->flags, freed);
289 shmem_free_blocks(inode, freed);
290 }
291 }
292
293 /**
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info: info structure for the inode
296 * @index: index of the page to find
297 * @page: optional page to add to the structure. Has to be preset to
298 * all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * | +-> 20-23
319 * |
320 * +-->dir2 --> 24-27
321 * | +-> 28-31
322 * | +-> 32-35
323 * | +-> 36-39
324 * |
325 * +-->dir3 --> 40-43
326 * +-> 44-47
327 * +-> 48-51
328 * +-> 52-55
329 */
shmem_swp_entry(struct shmem_inode_info * info,unsigned long index,struct page ** page)330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331 {
332 unsigned long offset;
333 struct page **dir;
334 struct page *subdir;
335
336 if (index < SHMEM_NR_DIRECT) {
337 shmem_swp_balance_unmap();
338 return info->i_direct+index;
339 }
340 if (!info->i_indirect) {
341 if (page) {
342 info->i_indirect = *page;
343 *page = NULL;
344 }
345 return NULL; /* need another page */
346 }
347
348 index -= SHMEM_NR_DIRECT;
349 offset = index % ENTRIES_PER_PAGE;
350 index /= ENTRIES_PER_PAGE;
351 dir = shmem_dir_map(info->i_indirect);
352
353 if (index >= ENTRIES_PER_PAGE/2) {
354 index -= ENTRIES_PER_PAGE/2;
355 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 index %= ENTRIES_PER_PAGE;
357 subdir = *dir;
358 if (!subdir) {
359 if (page) {
360 *dir = *page;
361 *page = NULL;
362 }
363 shmem_dir_unmap(dir);
364 return NULL; /* need another page */
365 }
366 shmem_dir_unmap(dir);
367 dir = shmem_dir_map(subdir);
368 }
369
370 dir += index;
371 subdir = *dir;
372 if (!subdir) {
373 if (!page || !(subdir = *page)) {
374 shmem_dir_unmap(dir);
375 return NULL; /* need a page */
376 }
377 *dir = subdir;
378 *page = NULL;
379 }
380 shmem_dir_unmap(dir);
381 return shmem_swp_map(subdir) + offset;
382 }
383
shmem_swp_set(struct shmem_inode_info * info,swp_entry_t * entry,unsigned long value)384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385 {
386 long incdec = value? 1: -1;
387
388 entry->val = value;
389 info->swapped += incdec;
390 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 struct page *page = kmap_atomic_to_page(entry);
392 set_page_private(page, page_private(page) + incdec);
393 }
394 }
395
396 /**
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info: info structure for the inode
399 * @index: index of the page to find
400 * @sgp: check and recheck i_size? skip allocation?
401 *
402 * If the entry does not exist, allocate it.
403 */
shmem_swp_alloc(struct shmem_inode_info * info,unsigned long index,enum sgp_type sgp)404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405 {
406 struct inode *inode = &info->vfs_inode;
407 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 struct page *page = NULL;
409 swp_entry_t *entry;
410
411 if (sgp != SGP_WRITE &&
412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 return ERR_PTR(-EINVAL);
414
415 while (!(entry = shmem_swp_entry(info, index, &page))) {
416 if (sgp == SGP_READ)
417 return shmem_swp_map(ZERO_PAGE(0));
418 /*
419 * Test used_blocks against 1 less max_blocks, since we have 1 data
420 * page (and perhaps indirect index pages) yet to allocate:
421 * a waste to allocate index if we cannot allocate data.
422 */
423 if (sbinfo->max_blocks) {
424 if (percpu_counter_compare(&sbinfo->used_blocks,
425 sbinfo->max_blocks - 1) >= 0)
426 return ERR_PTR(-ENOSPC);
427 percpu_counter_inc(&sbinfo->used_blocks);
428 spin_lock(&inode->i_lock);
429 inode->i_blocks += BLOCKS_PER_PAGE;
430 spin_unlock(&inode->i_lock);
431 }
432
433 spin_unlock(&info->lock);
434 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435 spin_lock(&info->lock);
436
437 if (!page) {
438 shmem_free_blocks(inode, 1);
439 return ERR_PTR(-ENOMEM);
440 }
441 if (sgp != SGP_WRITE &&
442 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443 entry = ERR_PTR(-EINVAL);
444 break;
445 }
446 if (info->next_index <= index)
447 info->next_index = index + 1;
448 }
449 if (page) {
450 /* another task gave its page, or truncated the file */
451 shmem_free_blocks(inode, 1);
452 shmem_dir_free(page);
453 }
454 if (info->next_index <= index && !IS_ERR(entry))
455 info->next_index = index + 1;
456 return entry;
457 }
458
459 /**
460 * shmem_free_swp - free some swap entries in a directory
461 * @dir: pointer to the directory
462 * @edir: pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
464 */
shmem_free_swp(swp_entry_t * dir,swp_entry_t * edir,spinlock_t * punch_lock)465 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466 spinlock_t *punch_lock)
467 {
468 spinlock_t *punch_unlock = NULL;
469 swp_entry_t *ptr;
470 int freed = 0;
471
472 for (ptr = dir; ptr < edir; ptr++) {
473 if (ptr->val) {
474 if (unlikely(punch_lock)) {
475 punch_unlock = punch_lock;
476 punch_lock = NULL;
477 spin_lock(punch_unlock);
478 if (!ptr->val)
479 continue;
480 }
481 free_swap_and_cache(*ptr);
482 *ptr = (swp_entry_t){0};
483 freed++;
484 }
485 }
486 if (punch_unlock)
487 spin_unlock(punch_unlock);
488 return freed;
489 }
490
shmem_map_and_free_swp(struct page * subdir,int offset,int limit,struct page *** dir,spinlock_t * punch_lock)491 static int shmem_map_and_free_swp(struct page *subdir, int offset,
492 int limit, struct page ***dir, spinlock_t *punch_lock)
493 {
494 swp_entry_t *ptr;
495 int freed = 0;
496
497 ptr = shmem_swp_map(subdir);
498 for (; offset < limit; offset += LATENCY_LIMIT) {
499 int size = limit - offset;
500 if (size > LATENCY_LIMIT)
501 size = LATENCY_LIMIT;
502 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503 punch_lock);
504 if (need_resched()) {
505 shmem_swp_unmap(ptr);
506 if (*dir) {
507 shmem_dir_unmap(*dir);
508 *dir = NULL;
509 }
510 cond_resched();
511 ptr = shmem_swp_map(subdir);
512 }
513 }
514 shmem_swp_unmap(ptr);
515 return freed;
516 }
517
shmem_free_pages(struct list_head * next)518 static void shmem_free_pages(struct list_head *next)
519 {
520 struct page *page;
521 int freed = 0;
522
523 do {
524 page = container_of(next, struct page, lru);
525 next = next->next;
526 shmem_dir_free(page);
527 freed++;
528 if (freed >= LATENCY_LIMIT) {
529 cond_resched();
530 freed = 0;
531 }
532 } while (next);
533 }
534
shmem_truncate_range(struct inode * inode,loff_t start,loff_t end)535 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536 {
537 struct shmem_inode_info *info = SHMEM_I(inode);
538 unsigned long idx;
539 unsigned long size;
540 unsigned long limit;
541 unsigned long stage;
542 unsigned long diroff;
543 struct page **dir;
544 struct page *topdir;
545 struct page *middir;
546 struct page *subdir;
547 swp_entry_t *ptr;
548 LIST_HEAD(pages_to_free);
549 long nr_pages_to_free = 0;
550 long nr_swaps_freed = 0;
551 int offset;
552 int freed;
553 int punch_hole;
554 spinlock_t *needs_lock;
555 spinlock_t *punch_lock;
556 unsigned long upper_limit;
557
558 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
560 if (idx >= info->next_index)
561 return;
562
563 spin_lock(&info->lock);
564 info->flags |= SHMEM_TRUNCATE;
565 if (likely(end == (loff_t) -1)) {
566 limit = info->next_index;
567 upper_limit = SHMEM_MAX_INDEX;
568 info->next_index = idx;
569 needs_lock = NULL;
570 punch_hole = 0;
571 } else {
572 if (end + 1 >= inode->i_size) { /* we may free a little more */
573 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574 PAGE_CACHE_SHIFT;
575 upper_limit = SHMEM_MAX_INDEX;
576 } else {
577 limit = (end + 1) >> PAGE_CACHE_SHIFT;
578 upper_limit = limit;
579 }
580 needs_lock = &info->lock;
581 punch_hole = 1;
582 }
583
584 topdir = info->i_indirect;
585 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
586 info->i_indirect = NULL;
587 nr_pages_to_free++;
588 list_add(&topdir->lru, &pages_to_free);
589 }
590 spin_unlock(&info->lock);
591
592 if (info->swapped && idx < SHMEM_NR_DIRECT) {
593 ptr = info->i_direct;
594 size = limit;
595 if (size > SHMEM_NR_DIRECT)
596 size = SHMEM_NR_DIRECT;
597 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
598 }
599
600 /*
601 * If there are no indirect blocks or we are punching a hole
602 * below indirect blocks, nothing to be done.
603 */
604 if (!topdir || limit <= SHMEM_NR_DIRECT)
605 goto done2;
606
607 /*
608 * The truncation case has already dropped info->lock, and we're safe
609 * because i_size and next_index have already been lowered, preventing
610 * access beyond. But in the punch_hole case, we still need to take
611 * the lock when updating the swap directory, because there might be
612 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613 * shmem_writepage. However, whenever we find we can remove a whole
614 * directory page (not at the misaligned start or end of the range),
615 * we first NULLify its pointer in the level above, and then have no
616 * need to take the lock when updating its contents: needs_lock and
617 * punch_lock (either pointing to info->lock or NULL) manage this.
618 */
619
620 upper_limit -= SHMEM_NR_DIRECT;
621 limit -= SHMEM_NR_DIRECT;
622 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623 offset = idx % ENTRIES_PER_PAGE;
624 idx -= offset;
625
626 dir = shmem_dir_map(topdir);
627 stage = ENTRIES_PER_PAGEPAGE/2;
628 if (idx < ENTRIES_PER_PAGEPAGE/2) {
629 middir = topdir;
630 diroff = idx/ENTRIES_PER_PAGE;
631 } else {
632 dir += ENTRIES_PER_PAGE/2;
633 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634 while (stage <= idx)
635 stage += ENTRIES_PER_PAGEPAGE;
636 middir = *dir;
637 if (*dir) {
638 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
640 if (!diroff && !offset && upper_limit >= stage) {
641 if (needs_lock) {
642 spin_lock(needs_lock);
643 *dir = NULL;
644 spin_unlock(needs_lock);
645 needs_lock = NULL;
646 } else
647 *dir = NULL;
648 nr_pages_to_free++;
649 list_add(&middir->lru, &pages_to_free);
650 }
651 shmem_dir_unmap(dir);
652 dir = shmem_dir_map(middir);
653 } else {
654 diroff = 0;
655 offset = 0;
656 idx = stage;
657 }
658 }
659
660 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661 if (unlikely(idx == stage)) {
662 shmem_dir_unmap(dir);
663 dir = shmem_dir_map(topdir) +
664 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665 while (!*dir) {
666 dir++;
667 idx += ENTRIES_PER_PAGEPAGE;
668 if (idx >= limit)
669 goto done1;
670 }
671 stage = idx + ENTRIES_PER_PAGEPAGE;
672 middir = *dir;
673 if (punch_hole)
674 needs_lock = &info->lock;
675 if (upper_limit >= stage) {
676 if (needs_lock) {
677 spin_lock(needs_lock);
678 *dir = NULL;
679 spin_unlock(needs_lock);
680 needs_lock = NULL;
681 } else
682 *dir = NULL;
683 nr_pages_to_free++;
684 list_add(&middir->lru, &pages_to_free);
685 }
686 shmem_dir_unmap(dir);
687 cond_resched();
688 dir = shmem_dir_map(middir);
689 diroff = 0;
690 }
691 punch_lock = needs_lock;
692 subdir = dir[diroff];
693 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694 if (needs_lock) {
695 spin_lock(needs_lock);
696 dir[diroff] = NULL;
697 spin_unlock(needs_lock);
698 punch_lock = NULL;
699 } else
700 dir[diroff] = NULL;
701 nr_pages_to_free++;
702 list_add(&subdir->lru, &pages_to_free);
703 }
704 if (subdir && page_private(subdir) /* has swap entries */) {
705 size = limit - idx;
706 if (size > ENTRIES_PER_PAGE)
707 size = ENTRIES_PER_PAGE;
708 freed = shmem_map_and_free_swp(subdir,
709 offset, size, &dir, punch_lock);
710 if (!dir)
711 dir = shmem_dir_map(middir);
712 nr_swaps_freed += freed;
713 if (offset || punch_lock) {
714 spin_lock(&info->lock);
715 set_page_private(subdir,
716 page_private(subdir) - freed);
717 spin_unlock(&info->lock);
718 } else
719 BUG_ON(page_private(subdir) != freed);
720 }
721 offset = 0;
722 }
723 done1:
724 shmem_dir_unmap(dir);
725 done2:
726 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727 /*
728 * Call truncate_inode_pages again: racing shmem_unuse_inode
729 * may have swizzled a page in from swap since
730 * truncate_pagecache or generic_delete_inode did it, before we
731 * lowered next_index. Also, though shmem_getpage checks
732 * i_size before adding to cache, no recheck after: so fix the
733 * narrow window there too.
734 *
735 * Recalling truncate_inode_pages_range and unmap_mapping_range
736 * every time for punch_hole (which never got a chance to clear
737 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738 * yet hardly ever necessary: try to optimize them out later.
739 */
740 truncate_inode_pages_range(inode->i_mapping, start, end);
741 if (punch_hole)
742 unmap_mapping_range(inode->i_mapping, start,
743 end - start, 1);
744 }
745
746 spin_lock(&info->lock);
747 info->flags &= ~SHMEM_TRUNCATE;
748 info->swapped -= nr_swaps_freed;
749 if (nr_pages_to_free)
750 shmem_free_blocks(inode, nr_pages_to_free);
751 shmem_recalc_inode(inode);
752 spin_unlock(&info->lock);
753
754 /*
755 * Empty swap vector directory pages to be freed?
756 */
757 if (!list_empty(&pages_to_free)) {
758 pages_to_free.prev->next = NULL;
759 shmem_free_pages(pages_to_free.next);
760 }
761 }
762
shmem_notify_change(struct dentry * dentry,struct iattr * attr)763 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764 {
765 struct inode *inode = dentry->d_inode;
766 loff_t newsize = attr->ia_size;
767 int error;
768
769 error = inode_change_ok(inode, attr);
770 if (error)
771 return error;
772
773 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
774 && newsize != inode->i_size) {
775 struct page *page = NULL;
776
777 if (newsize < inode->i_size) {
778 /*
779 * If truncating down to a partial page, then
780 * if that page is already allocated, hold it
781 * in memory until the truncation is over, so
782 * truncate_partial_page cannot miss it were
783 * it assigned to swap.
784 */
785 if (newsize & (PAGE_CACHE_SIZE-1)) {
786 (void) shmem_getpage(inode,
787 newsize >> PAGE_CACHE_SHIFT,
788 &page, SGP_READ, NULL);
789 if (page)
790 unlock_page(page);
791 }
792 /*
793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794 * detect if any pages might have been added to cache
795 * after truncate_inode_pages. But we needn't bother
796 * if it's being fully truncated to zero-length: the
797 * nrpages check is efficient enough in that case.
798 */
799 if (newsize) {
800 struct shmem_inode_info *info = SHMEM_I(inode);
801 spin_lock(&info->lock);
802 info->flags &= ~SHMEM_PAGEIN;
803 spin_unlock(&info->lock);
804 }
805 }
806
807 /* XXX(truncate): truncate_setsize should be called last */
808 truncate_setsize(inode, newsize);
809 if (page)
810 page_cache_release(page);
811 shmem_truncate_range(inode, newsize, (loff_t)-1);
812 }
813
814 setattr_copy(inode, attr);
815 #ifdef CONFIG_TMPFS_POSIX_ACL
816 if (attr->ia_valid & ATTR_MODE)
817 error = generic_acl_chmod(inode);
818 #endif
819 return error;
820 }
821
shmem_evict_inode(struct inode * inode)822 static void shmem_evict_inode(struct inode *inode)
823 {
824 struct shmem_inode_info *info = SHMEM_I(inode);
825
826 if (inode->i_mapping->a_ops == &shmem_aops) {
827 truncate_inode_pages(inode->i_mapping, 0);
828 shmem_unacct_size(info->flags, inode->i_size);
829 inode->i_size = 0;
830 shmem_truncate_range(inode, 0, (loff_t)-1);
831 if (!list_empty(&info->swaplist)) {
832 mutex_lock(&shmem_swaplist_mutex);
833 list_del_init(&info->swaplist);
834 mutex_unlock(&shmem_swaplist_mutex);
835 }
836 }
837 BUG_ON(inode->i_blocks);
838 shmem_free_inode(inode->i_sb);
839 end_writeback(inode);
840 }
841
shmem_find_swp(swp_entry_t entry,swp_entry_t * dir,swp_entry_t * edir)842 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843 {
844 swp_entry_t *ptr;
845
846 for (ptr = dir; ptr < edir; ptr++) {
847 if (ptr->val == entry.val)
848 return ptr - dir;
849 }
850 return -1;
851 }
852
shmem_unuse_inode(struct shmem_inode_info * info,swp_entry_t entry,struct page * page)853 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854 {
855 struct address_space *mapping;
856 unsigned long idx;
857 unsigned long size;
858 unsigned long limit;
859 unsigned long stage;
860 struct page **dir;
861 struct page *subdir;
862 swp_entry_t *ptr;
863 int offset;
864 int error;
865
866 idx = 0;
867 ptr = info->i_direct;
868 spin_lock(&info->lock);
869 if (!info->swapped) {
870 list_del_init(&info->swaplist);
871 goto lost2;
872 }
873 limit = info->next_index;
874 size = limit;
875 if (size > SHMEM_NR_DIRECT)
876 size = SHMEM_NR_DIRECT;
877 offset = shmem_find_swp(entry, ptr, ptr+size);
878 if (offset >= 0) {
879 shmem_swp_balance_unmap();
880 goto found;
881 }
882 if (!info->i_indirect)
883 goto lost2;
884
885 dir = shmem_dir_map(info->i_indirect);
886 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
887
888 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
889 if (unlikely(idx == stage)) {
890 shmem_dir_unmap(dir-1);
891 if (cond_resched_lock(&info->lock)) {
892 /* check it has not been truncated */
893 if (limit > info->next_index) {
894 limit = info->next_index;
895 if (idx >= limit)
896 goto lost2;
897 }
898 }
899 dir = shmem_dir_map(info->i_indirect) +
900 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
901 while (!*dir) {
902 dir++;
903 idx += ENTRIES_PER_PAGEPAGE;
904 if (idx >= limit)
905 goto lost1;
906 }
907 stage = idx + ENTRIES_PER_PAGEPAGE;
908 subdir = *dir;
909 shmem_dir_unmap(dir);
910 dir = shmem_dir_map(subdir);
911 }
912 subdir = *dir;
913 if (subdir && page_private(subdir)) {
914 ptr = shmem_swp_map(subdir);
915 size = limit - idx;
916 if (size > ENTRIES_PER_PAGE)
917 size = ENTRIES_PER_PAGE;
918 offset = shmem_find_swp(entry, ptr, ptr+size);
919 if (offset >= 0) {
920 shmem_dir_unmap(dir);
921 goto found;
922 }
923 shmem_swp_unmap(ptr);
924 }
925 }
926 lost1:
927 shmem_dir_unmap(dir-1);
928 lost2:
929 spin_unlock(&info->lock);
930 return 0;
931 found:
932 idx += offset;
933 ptr += offset;
934
935 /*
936 * Move _head_ to start search for next from here.
937 * But be careful: shmem_evict_inode checks list_empty without taking
938 * mutex, and there's an instant in list_move_tail when info->swaplist
939 * would appear empty, if it were the only one on shmem_swaplist. We
940 * could avoid doing it if inode NULL; or use this minor optimization.
941 */
942 if (shmem_swaplist.next != &info->swaplist)
943 list_move_tail(&shmem_swaplist, &info->swaplist);
944
945 /*
946 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
947 * but also to hold up shmem_evict_inode(): so inode cannot be freed
948 * beneath us (pagelock doesn't help until the page is in pagecache).
949 */
950 mapping = info->vfs_inode.i_mapping;
951 error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
952 /* which does mem_cgroup_uncharge_cache_page on error */
953
954 if (error == -EEXIST) {
955 struct page *filepage = find_get_page(mapping, idx);
956 error = 1;
957 if (filepage) {
958 /*
959 * There might be a more uptodate page coming down
960 * from a stacked writepage: forget our swappage if so.
961 */
962 if (PageUptodate(filepage))
963 error = 0;
964 page_cache_release(filepage);
965 }
966 }
967 if (!error) {
968 delete_from_swap_cache(page);
969 set_page_dirty(page);
970 info->flags |= SHMEM_PAGEIN;
971 shmem_swp_set(info, ptr, 0);
972 swap_free(entry);
973 error = 1; /* not an error, but entry was found */
974 }
975 shmem_swp_unmap(ptr);
976 spin_unlock(&info->lock);
977 return error;
978 }
979
980 /*
981 * shmem_unuse() search for an eventually swapped out shmem page.
982 */
shmem_unuse(swp_entry_t entry,struct page * page)983 int shmem_unuse(swp_entry_t entry, struct page *page)
984 {
985 struct list_head *p, *next;
986 struct shmem_inode_info *info;
987 int found = 0;
988 int error;
989
990 /*
991 * Charge page using GFP_KERNEL while we can wait, before taking
992 * the shmem_swaplist_mutex which might hold up shmem_writepage().
993 * Charged back to the user (not to caller) when swap account is used.
994 * add_to_page_cache() will be called with GFP_NOWAIT.
995 */
996 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
997 if (error)
998 goto out;
999 /*
1000 * Try to preload while we can wait, to not make a habit of
1001 * draining atomic reserves; but don't latch on to this cpu,
1002 * it's okay if sometimes we get rescheduled after this.
1003 */
1004 error = radix_tree_preload(GFP_KERNEL);
1005 if (error)
1006 goto uncharge;
1007 radix_tree_preload_end();
1008
1009 mutex_lock(&shmem_swaplist_mutex);
1010 list_for_each_safe(p, next, &shmem_swaplist) {
1011 info = list_entry(p, struct shmem_inode_info, swaplist);
1012 found = shmem_unuse_inode(info, entry, page);
1013 cond_resched();
1014 if (found)
1015 break;
1016 }
1017 mutex_unlock(&shmem_swaplist_mutex);
1018
1019 uncharge:
1020 if (!found)
1021 mem_cgroup_uncharge_cache_page(page);
1022 if (found < 0)
1023 error = found;
1024 out:
1025 unlock_page(page);
1026 page_cache_release(page);
1027 return error;
1028 }
1029
1030 /*
1031 * Move the page from the page cache to the swap cache.
1032 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1033 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1034 {
1035 struct shmem_inode_info *info;
1036 swp_entry_t *entry, swap;
1037 struct address_space *mapping;
1038 unsigned long index;
1039 struct inode *inode;
1040
1041 BUG_ON(!PageLocked(page));
1042 mapping = page->mapping;
1043 index = page->index;
1044 inode = mapping->host;
1045 info = SHMEM_I(inode);
1046 if (info->flags & VM_LOCKED)
1047 goto redirty;
1048 if (!total_swap_pages)
1049 goto redirty;
1050
1051 /*
1052 * shmem_backing_dev_info's capabilities prevent regular writeback or
1053 * sync from ever calling shmem_writepage; but a stacking filesystem
1054 * may use the ->writepage of its underlying filesystem, in which case
1055 * tmpfs should write out to swap only in response to memory pressure,
1056 * and not for the writeback threads or sync. However, in those cases,
1057 * we do still want to check if there's a redundant swappage to be
1058 * discarded.
1059 */
1060 if (wbc->for_reclaim)
1061 swap = get_swap_page();
1062 else
1063 swap.val = 0;
1064
1065 /*
1066 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1067 * if it's not already there. Do it now because we cannot take
1068 * mutex while holding spinlock, and must do so before the page
1069 * is moved to swap cache, when its pagelock no longer protects
1070 * the inode from eviction. But don't unlock the mutex until
1071 * we've taken the spinlock, because shmem_unuse_inode() will
1072 * prune a !swapped inode from the swaplist under both locks.
1073 */
1074 if (swap.val) {
1075 mutex_lock(&shmem_swaplist_mutex);
1076 if (list_empty(&info->swaplist))
1077 list_add_tail(&info->swaplist, &shmem_swaplist);
1078 }
1079
1080 spin_lock(&info->lock);
1081 if (swap.val)
1082 mutex_unlock(&shmem_swaplist_mutex);
1083
1084 if (index >= info->next_index) {
1085 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1086 goto unlock;
1087 }
1088 entry = shmem_swp_entry(info, index, NULL);
1089 if (entry->val) {
1090 /*
1091 * The more uptodate page coming down from a stacked
1092 * writepage should replace our old swappage.
1093 */
1094 free_swap_and_cache(*entry);
1095 shmem_swp_set(info, entry, 0);
1096 }
1097 shmem_recalc_inode(inode);
1098
1099 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1100 delete_from_page_cache(page);
1101 shmem_swp_set(info, entry, swap.val);
1102 shmem_swp_unmap(entry);
1103 spin_unlock(&info->lock);
1104 swap_shmem_alloc(swap);
1105 BUG_ON(page_mapped(page));
1106 swap_writepage(page, wbc);
1107 return 0;
1108 }
1109
1110 shmem_swp_unmap(entry);
1111 unlock:
1112 spin_unlock(&info->lock);
1113 /*
1114 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1115 * clear SWAP_HAS_CACHE flag.
1116 */
1117 swapcache_free(swap, NULL);
1118 redirty:
1119 set_page_dirty(page);
1120 if (wbc->for_reclaim)
1121 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1122 unlock_page(page);
1123 return 0;
1124 }
1125
1126 #ifdef CONFIG_NUMA
1127 #ifdef CONFIG_TMPFS
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1128 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1129 {
1130 char buffer[64];
1131
1132 if (!mpol || mpol->mode == MPOL_DEFAULT)
1133 return; /* show nothing */
1134
1135 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1136
1137 seq_printf(seq, ",mpol=%s", buffer);
1138 }
1139
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1140 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1141 {
1142 struct mempolicy *mpol = NULL;
1143 if (sbinfo->mpol) {
1144 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1145 mpol = sbinfo->mpol;
1146 mpol_get(mpol);
1147 spin_unlock(&sbinfo->stat_lock);
1148 }
1149 return mpol;
1150 }
1151 #endif /* CONFIG_TMPFS */
1152
shmem_swapin(swp_entry_t entry,gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1153 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1154 struct shmem_inode_info *info, unsigned long idx)
1155 {
1156 struct mempolicy mpol, *spol;
1157 struct vm_area_struct pvma;
1158 struct page *page;
1159
1160 spol = mpol_cond_copy(&mpol,
1161 mpol_shared_policy_lookup(&info->policy, idx));
1162
1163 /* Create a pseudo vma that just contains the policy */
1164 pvma.vm_start = 0;
1165 pvma.vm_pgoff = idx;
1166 pvma.vm_ops = NULL;
1167 pvma.vm_policy = spol;
1168 page = swapin_readahead(entry, gfp, &pvma, 0);
1169 return page;
1170 }
1171
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1172 static struct page *shmem_alloc_page(gfp_t gfp,
1173 struct shmem_inode_info *info, unsigned long idx)
1174 {
1175 struct vm_area_struct pvma;
1176
1177 /* Create a pseudo vma that just contains the policy */
1178 pvma.vm_start = 0;
1179 pvma.vm_pgoff = idx;
1180 pvma.vm_ops = NULL;
1181 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1182
1183 /*
1184 * alloc_page_vma() will drop the shared policy reference
1185 */
1186 return alloc_page_vma(gfp, &pvma, 0);
1187 }
1188 #else /* !CONFIG_NUMA */
1189 #ifdef CONFIG_TMPFS
shmem_show_mpol(struct seq_file * seq,struct mempolicy * p)1190 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1191 {
1192 }
1193 #endif /* CONFIG_TMPFS */
1194
shmem_swapin(swp_entry_t entry,gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1195 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1196 struct shmem_inode_info *info, unsigned long idx)
1197 {
1198 return swapin_readahead(entry, gfp, NULL, 0);
1199 }
1200
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1201 static inline struct page *shmem_alloc_page(gfp_t gfp,
1202 struct shmem_inode_info *info, unsigned long idx)
1203 {
1204 return alloc_page(gfp);
1205 }
1206 #endif /* CONFIG_NUMA */
1207
1208 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1209 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1210 {
1211 return NULL;
1212 }
1213 #endif
1214
1215 /*
1216 * shmem_getpage - either get the page from swap or allocate a new one
1217 *
1218 * If we allocate a new one we do not mark it dirty. That's up to the
1219 * vm. If we swap it in we mark it dirty since we also free the swap
1220 * entry since a page cannot live in both the swap and page cache
1221 */
shmem_getpage(struct inode * inode,unsigned long idx,struct page ** pagep,enum sgp_type sgp,int * type)1222 static int shmem_getpage(struct inode *inode, unsigned long idx,
1223 struct page **pagep, enum sgp_type sgp, int *type)
1224 {
1225 struct address_space *mapping = inode->i_mapping;
1226 struct shmem_inode_info *info = SHMEM_I(inode);
1227 struct shmem_sb_info *sbinfo;
1228 struct page *filepage = *pagep;
1229 struct page *swappage;
1230 struct page *prealloc_page = NULL;
1231 swp_entry_t *entry;
1232 swp_entry_t swap;
1233 gfp_t gfp;
1234 int error;
1235
1236 if (idx >= SHMEM_MAX_INDEX)
1237 return -EFBIG;
1238
1239 if (type)
1240 *type = 0;
1241
1242 /*
1243 * Normally, filepage is NULL on entry, and either found
1244 * uptodate immediately, or allocated and zeroed, or read
1245 * in under swappage, which is then assigned to filepage.
1246 * But shmem_readpage (required for splice) passes in a locked
1247 * filepage, which may be found not uptodate by other callers
1248 * too, and may need to be copied from the swappage read in.
1249 */
1250 repeat:
1251 if (!filepage)
1252 filepage = find_lock_page(mapping, idx);
1253 if (filepage && PageUptodate(filepage))
1254 goto done;
1255 gfp = mapping_gfp_mask(mapping);
1256 if (!filepage) {
1257 /*
1258 * Try to preload while we can wait, to not make a habit of
1259 * draining atomic reserves; but don't latch on to this cpu.
1260 */
1261 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1262 if (error)
1263 goto failed;
1264 radix_tree_preload_end();
1265 if (sgp != SGP_READ && !prealloc_page) {
1266 /* We don't care if this fails */
1267 prealloc_page = shmem_alloc_page(gfp, info, idx);
1268 if (prealloc_page) {
1269 if (mem_cgroup_cache_charge(prealloc_page,
1270 current->mm, GFP_KERNEL)) {
1271 page_cache_release(prealloc_page);
1272 prealloc_page = NULL;
1273 }
1274 }
1275 }
1276 }
1277 error = 0;
1278
1279 spin_lock(&info->lock);
1280 shmem_recalc_inode(inode);
1281 entry = shmem_swp_alloc(info, idx, sgp);
1282 if (IS_ERR(entry)) {
1283 spin_unlock(&info->lock);
1284 error = PTR_ERR(entry);
1285 goto failed;
1286 }
1287 swap = *entry;
1288
1289 if (swap.val) {
1290 /* Look it up and read it in.. */
1291 swappage = lookup_swap_cache(swap);
1292 if (!swappage) {
1293 shmem_swp_unmap(entry);
1294 /* here we actually do the io */
1295 if (type && !(*type & VM_FAULT_MAJOR)) {
1296 __count_vm_event(PGMAJFAULT);
1297 *type |= VM_FAULT_MAJOR;
1298 }
1299 spin_unlock(&info->lock);
1300 swappage = shmem_swapin(swap, gfp, info, idx);
1301 if (!swappage) {
1302 spin_lock(&info->lock);
1303 entry = shmem_swp_alloc(info, idx, sgp);
1304 if (IS_ERR(entry))
1305 error = PTR_ERR(entry);
1306 else {
1307 if (entry->val == swap.val)
1308 error = -ENOMEM;
1309 shmem_swp_unmap(entry);
1310 }
1311 spin_unlock(&info->lock);
1312 if (error)
1313 goto failed;
1314 goto repeat;
1315 }
1316 wait_on_page_locked(swappage);
1317 page_cache_release(swappage);
1318 goto repeat;
1319 }
1320
1321 /* We have to do this with page locked to prevent races */
1322 if (!trylock_page(swappage)) {
1323 shmem_swp_unmap(entry);
1324 spin_unlock(&info->lock);
1325 wait_on_page_locked(swappage);
1326 page_cache_release(swappage);
1327 goto repeat;
1328 }
1329 if (PageWriteback(swappage)) {
1330 shmem_swp_unmap(entry);
1331 spin_unlock(&info->lock);
1332 wait_on_page_writeback(swappage);
1333 unlock_page(swappage);
1334 page_cache_release(swappage);
1335 goto repeat;
1336 }
1337 if (!PageUptodate(swappage)) {
1338 shmem_swp_unmap(entry);
1339 spin_unlock(&info->lock);
1340 unlock_page(swappage);
1341 page_cache_release(swappage);
1342 error = -EIO;
1343 goto failed;
1344 }
1345
1346 if (filepage) {
1347 shmem_swp_set(info, entry, 0);
1348 shmem_swp_unmap(entry);
1349 delete_from_swap_cache(swappage);
1350 spin_unlock(&info->lock);
1351 copy_highpage(filepage, swappage);
1352 unlock_page(swappage);
1353 page_cache_release(swappage);
1354 flush_dcache_page(filepage);
1355 SetPageUptodate(filepage);
1356 set_page_dirty(filepage);
1357 swap_free(swap);
1358 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1359 idx, GFP_NOWAIT))) {
1360 info->flags |= SHMEM_PAGEIN;
1361 shmem_swp_set(info, entry, 0);
1362 shmem_swp_unmap(entry);
1363 delete_from_swap_cache(swappage);
1364 spin_unlock(&info->lock);
1365 filepage = swappage;
1366 set_page_dirty(filepage);
1367 swap_free(swap);
1368 } else {
1369 shmem_swp_unmap(entry);
1370 spin_unlock(&info->lock);
1371 if (error == -ENOMEM) {
1372 /*
1373 * reclaim from proper memory cgroup and
1374 * call memcg's OOM if needed.
1375 */
1376 error = mem_cgroup_shmem_charge_fallback(
1377 swappage,
1378 current->mm,
1379 gfp);
1380 if (error) {
1381 unlock_page(swappage);
1382 page_cache_release(swappage);
1383 goto failed;
1384 }
1385 }
1386 unlock_page(swappage);
1387 page_cache_release(swappage);
1388 goto repeat;
1389 }
1390 } else if (sgp == SGP_READ && !filepage) {
1391 shmem_swp_unmap(entry);
1392 filepage = find_get_page(mapping, idx);
1393 if (filepage &&
1394 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1395 spin_unlock(&info->lock);
1396 wait_on_page_locked(filepage);
1397 page_cache_release(filepage);
1398 filepage = NULL;
1399 goto repeat;
1400 }
1401 spin_unlock(&info->lock);
1402 } else {
1403 shmem_swp_unmap(entry);
1404 sbinfo = SHMEM_SB(inode->i_sb);
1405 if (sbinfo->max_blocks) {
1406 if (percpu_counter_compare(&sbinfo->used_blocks,
1407 sbinfo->max_blocks) >= 0 ||
1408 shmem_acct_block(info->flags))
1409 goto nospace;
1410 percpu_counter_inc(&sbinfo->used_blocks);
1411 spin_lock(&inode->i_lock);
1412 inode->i_blocks += BLOCKS_PER_PAGE;
1413 spin_unlock(&inode->i_lock);
1414 } else if (shmem_acct_block(info->flags))
1415 goto nospace;
1416
1417 if (!filepage) {
1418 int ret;
1419
1420 if (!prealloc_page) {
1421 spin_unlock(&info->lock);
1422 filepage = shmem_alloc_page(gfp, info, idx);
1423 if (!filepage) {
1424 shmem_unacct_blocks(info->flags, 1);
1425 shmem_free_blocks(inode, 1);
1426 error = -ENOMEM;
1427 goto failed;
1428 }
1429 SetPageSwapBacked(filepage);
1430
1431 /*
1432 * Precharge page while we can wait, compensate
1433 * after
1434 */
1435 error = mem_cgroup_cache_charge(filepage,
1436 current->mm, GFP_KERNEL);
1437 if (error) {
1438 page_cache_release(filepage);
1439 shmem_unacct_blocks(info->flags, 1);
1440 shmem_free_blocks(inode, 1);
1441 filepage = NULL;
1442 goto failed;
1443 }
1444
1445 spin_lock(&info->lock);
1446 } else {
1447 filepage = prealloc_page;
1448 prealloc_page = NULL;
1449 SetPageSwapBacked(filepage);
1450 }
1451
1452 entry = shmem_swp_alloc(info, idx, sgp);
1453 if (IS_ERR(entry))
1454 error = PTR_ERR(entry);
1455 else {
1456 swap = *entry;
1457 shmem_swp_unmap(entry);
1458 }
1459 ret = error || swap.val;
1460 if (ret)
1461 mem_cgroup_uncharge_cache_page(filepage);
1462 else
1463 ret = add_to_page_cache_lru(filepage, mapping,
1464 idx, GFP_NOWAIT);
1465 /*
1466 * At add_to_page_cache_lru() failure, uncharge will
1467 * be done automatically.
1468 */
1469 if (ret) {
1470 spin_unlock(&info->lock);
1471 page_cache_release(filepage);
1472 shmem_unacct_blocks(info->flags, 1);
1473 shmem_free_blocks(inode, 1);
1474 filepage = NULL;
1475 if (error)
1476 goto failed;
1477 goto repeat;
1478 }
1479 info->flags |= SHMEM_PAGEIN;
1480 }
1481
1482 info->alloced++;
1483 spin_unlock(&info->lock);
1484 clear_highpage(filepage);
1485 flush_dcache_page(filepage);
1486 SetPageUptodate(filepage);
1487 if (sgp == SGP_DIRTY)
1488 set_page_dirty(filepage);
1489 }
1490 done:
1491 *pagep = filepage;
1492 error = 0;
1493 goto out;
1494
1495 nospace:
1496 /*
1497 * Perhaps the page was brought in from swap between find_lock_page
1498 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1499 * but must also avoid reporting a spurious ENOSPC while working on a
1500 * full tmpfs. (When filepage has been passed in to shmem_getpage, it
1501 * is already in page cache, which prevents this race from occurring.)
1502 */
1503 if (!filepage) {
1504 struct page *page = find_get_page(mapping, idx);
1505 if (page) {
1506 spin_unlock(&info->lock);
1507 page_cache_release(page);
1508 goto repeat;
1509 }
1510 }
1511 spin_unlock(&info->lock);
1512 error = -ENOSPC;
1513 failed:
1514 if (*pagep != filepage) {
1515 unlock_page(filepage);
1516 page_cache_release(filepage);
1517 }
1518 out:
1519 if (prealloc_page) {
1520 mem_cgroup_uncharge_cache_page(prealloc_page);
1521 page_cache_release(prealloc_page);
1522 }
1523 return error;
1524 }
1525
shmem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1526 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1527 {
1528 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1529 int error;
1530 int ret;
1531
1532 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1533 return VM_FAULT_SIGBUS;
1534
1535 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1536 if (error)
1537 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1538
1539 return ret | VM_FAULT_LOCKED;
1540 }
1541
1542 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * new)1543 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1544 {
1545 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1546 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1547 }
1548
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)1549 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1550 unsigned long addr)
1551 {
1552 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1553 unsigned long idx;
1554
1555 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1556 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1557 }
1558 #endif
1559
shmem_lock(struct file * file,int lock,struct user_struct * user)1560 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1561 {
1562 struct inode *inode = file->f_path.dentry->d_inode;
1563 struct shmem_inode_info *info = SHMEM_I(inode);
1564 int retval = -ENOMEM;
1565
1566 spin_lock(&info->lock);
1567 if (lock && !(info->flags & VM_LOCKED)) {
1568 if (!user_shm_lock(inode->i_size, user))
1569 goto out_nomem;
1570 info->flags |= VM_LOCKED;
1571 mapping_set_unevictable(file->f_mapping);
1572 }
1573 if (!lock && (info->flags & VM_LOCKED) && user) {
1574 user_shm_unlock(inode->i_size, user);
1575 info->flags &= ~VM_LOCKED;
1576 mapping_clear_unevictable(file->f_mapping);
1577 scan_mapping_unevictable_pages(file->f_mapping);
1578 }
1579 retval = 0;
1580
1581 out_nomem:
1582 spin_unlock(&info->lock);
1583 return retval;
1584 }
1585
shmem_mmap(struct file * file,struct vm_area_struct * vma)1586 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1587 {
1588 file_accessed(file);
1589 vma->vm_ops = &shmem_vm_ops;
1590 vma->vm_flags |= VM_CAN_NONLINEAR;
1591 return 0;
1592 }
1593
shmem_get_inode(struct super_block * sb,const struct inode * dir,int mode,dev_t dev,unsigned long flags)1594 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1595 int mode, dev_t dev, unsigned long flags)
1596 {
1597 struct inode *inode;
1598 struct shmem_inode_info *info;
1599 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1600
1601 if (shmem_reserve_inode(sb))
1602 return NULL;
1603
1604 inode = new_inode(sb);
1605 if (inode) {
1606 inode->i_ino = get_next_ino();
1607 inode_init_owner(inode, dir, mode);
1608 inode->i_blocks = 0;
1609 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1610 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1611 inode->i_generation = get_seconds();
1612 info = SHMEM_I(inode);
1613 memset(info, 0, (char *)inode - (char *)info);
1614 spin_lock_init(&info->lock);
1615 info->flags = flags & VM_NORESERVE;
1616 INIT_LIST_HEAD(&info->swaplist);
1617 cache_no_acl(inode);
1618
1619 switch (mode & S_IFMT) {
1620 default:
1621 inode->i_op = &shmem_special_inode_operations;
1622 init_special_inode(inode, mode, dev);
1623 break;
1624 case S_IFREG:
1625 inode->i_mapping->a_ops = &shmem_aops;
1626 inode->i_op = &shmem_inode_operations;
1627 inode->i_fop = &shmem_file_operations;
1628 mpol_shared_policy_init(&info->policy,
1629 shmem_get_sbmpol(sbinfo));
1630 break;
1631 case S_IFDIR:
1632 inc_nlink(inode);
1633 /* Some things misbehave if size == 0 on a directory */
1634 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1635 inode->i_op = &shmem_dir_inode_operations;
1636 inode->i_fop = &simple_dir_operations;
1637 break;
1638 case S_IFLNK:
1639 /*
1640 * Must not load anything in the rbtree,
1641 * mpol_free_shared_policy will not be called.
1642 */
1643 mpol_shared_policy_init(&info->policy, NULL);
1644 break;
1645 }
1646 } else
1647 shmem_free_inode(sb);
1648 return inode;
1649 }
1650
1651 #ifdef CONFIG_TMPFS
1652 static const struct inode_operations shmem_symlink_inode_operations;
1653 static const struct inode_operations shmem_symlink_inline_operations;
1654
1655 /*
1656 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1657 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1658 * below the loop driver, in the generic fashion that many filesystems support.
1659 */
shmem_readpage(struct file * file,struct page * page)1660 static int shmem_readpage(struct file *file, struct page *page)
1661 {
1662 struct inode *inode = page->mapping->host;
1663 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1664 unlock_page(page);
1665 return error;
1666 }
1667
1668 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1669 shmem_write_begin(struct file *file, struct address_space *mapping,
1670 loff_t pos, unsigned len, unsigned flags,
1671 struct page **pagep, void **fsdata)
1672 {
1673 struct inode *inode = mapping->host;
1674 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1675 *pagep = NULL;
1676 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1677 }
1678
1679 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1680 shmem_write_end(struct file *file, struct address_space *mapping,
1681 loff_t pos, unsigned len, unsigned copied,
1682 struct page *page, void *fsdata)
1683 {
1684 struct inode *inode = mapping->host;
1685
1686 if (pos + copied > inode->i_size)
1687 i_size_write(inode, pos + copied);
1688
1689 set_page_dirty(page);
1690 unlock_page(page);
1691 page_cache_release(page);
1692
1693 return copied;
1694 }
1695
do_shmem_file_read(struct file * filp,loff_t * ppos,read_descriptor_t * desc,read_actor_t actor)1696 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1697 {
1698 struct inode *inode = filp->f_path.dentry->d_inode;
1699 struct address_space *mapping = inode->i_mapping;
1700 unsigned long index, offset;
1701 enum sgp_type sgp = SGP_READ;
1702
1703 /*
1704 * Might this read be for a stacking filesystem? Then when reading
1705 * holes of a sparse file, we actually need to allocate those pages,
1706 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1707 */
1708 if (segment_eq(get_fs(), KERNEL_DS))
1709 sgp = SGP_DIRTY;
1710
1711 index = *ppos >> PAGE_CACHE_SHIFT;
1712 offset = *ppos & ~PAGE_CACHE_MASK;
1713
1714 for (;;) {
1715 struct page *page = NULL;
1716 unsigned long end_index, nr, ret;
1717 loff_t i_size = i_size_read(inode);
1718
1719 end_index = i_size >> PAGE_CACHE_SHIFT;
1720 if (index > end_index)
1721 break;
1722 if (index == end_index) {
1723 nr = i_size & ~PAGE_CACHE_MASK;
1724 if (nr <= offset)
1725 break;
1726 }
1727
1728 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1729 if (desc->error) {
1730 if (desc->error == -EINVAL)
1731 desc->error = 0;
1732 break;
1733 }
1734 if (page)
1735 unlock_page(page);
1736
1737 /*
1738 * We must evaluate after, since reads (unlike writes)
1739 * are called without i_mutex protection against truncate
1740 */
1741 nr = PAGE_CACHE_SIZE;
1742 i_size = i_size_read(inode);
1743 end_index = i_size >> PAGE_CACHE_SHIFT;
1744 if (index == end_index) {
1745 nr = i_size & ~PAGE_CACHE_MASK;
1746 if (nr <= offset) {
1747 if (page)
1748 page_cache_release(page);
1749 break;
1750 }
1751 }
1752 nr -= offset;
1753
1754 if (page) {
1755 /*
1756 * If users can be writing to this page using arbitrary
1757 * virtual addresses, take care about potential aliasing
1758 * before reading the page on the kernel side.
1759 */
1760 if (mapping_writably_mapped(mapping))
1761 flush_dcache_page(page);
1762 /*
1763 * Mark the page accessed if we read the beginning.
1764 */
1765 if (!offset)
1766 mark_page_accessed(page);
1767 } else {
1768 page = ZERO_PAGE(0);
1769 page_cache_get(page);
1770 }
1771
1772 /*
1773 * Ok, we have the page, and it's up-to-date, so
1774 * now we can copy it to user space...
1775 *
1776 * The actor routine returns how many bytes were actually used..
1777 * NOTE! This may not be the same as how much of a user buffer
1778 * we filled up (we may be padding etc), so we can only update
1779 * "pos" here (the actor routine has to update the user buffer
1780 * pointers and the remaining count).
1781 */
1782 ret = actor(desc, page, offset, nr);
1783 offset += ret;
1784 index += offset >> PAGE_CACHE_SHIFT;
1785 offset &= ~PAGE_CACHE_MASK;
1786
1787 page_cache_release(page);
1788 if (ret != nr || !desc->count)
1789 break;
1790
1791 cond_resched();
1792 }
1793
1794 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1795 file_accessed(filp);
1796 }
1797
shmem_file_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1798 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1799 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1800 {
1801 struct file *filp = iocb->ki_filp;
1802 ssize_t retval;
1803 unsigned long seg;
1804 size_t count;
1805 loff_t *ppos = &iocb->ki_pos;
1806
1807 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1808 if (retval)
1809 return retval;
1810
1811 for (seg = 0; seg < nr_segs; seg++) {
1812 read_descriptor_t desc;
1813
1814 desc.written = 0;
1815 desc.arg.buf = iov[seg].iov_base;
1816 desc.count = iov[seg].iov_len;
1817 if (desc.count == 0)
1818 continue;
1819 desc.error = 0;
1820 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1821 retval += desc.written;
1822 if (desc.error) {
1823 retval = retval ?: desc.error;
1824 break;
1825 }
1826 if (desc.count > 0)
1827 break;
1828 }
1829 return retval;
1830 }
1831
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)1832 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1833 {
1834 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1835
1836 buf->f_type = TMPFS_MAGIC;
1837 buf->f_bsize = PAGE_CACHE_SIZE;
1838 buf->f_namelen = NAME_MAX;
1839 if (sbinfo->max_blocks) {
1840 buf->f_blocks = sbinfo->max_blocks;
1841 buf->f_bavail = buf->f_bfree =
1842 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1843 }
1844 if (sbinfo->max_inodes) {
1845 buf->f_files = sbinfo->max_inodes;
1846 buf->f_ffree = sbinfo->free_inodes;
1847 }
1848 /* else leave those fields 0 like simple_statfs */
1849 return 0;
1850 }
1851
1852 /*
1853 * File creation. Allocate an inode, and we're done..
1854 */
1855 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t dev)1856 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1857 {
1858 struct inode *inode;
1859 int error = -ENOSPC;
1860
1861 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1862 if (inode) {
1863 error = security_inode_init_security(inode, dir,
1864 &dentry->d_name, NULL,
1865 NULL, NULL);
1866 if (error) {
1867 if (error != -EOPNOTSUPP) {
1868 iput(inode);
1869 return error;
1870 }
1871 }
1872 #ifdef CONFIG_TMPFS_POSIX_ACL
1873 error = generic_acl_init(inode, dir);
1874 if (error) {
1875 iput(inode);
1876 return error;
1877 }
1878 #else
1879 error = 0;
1880 #endif
1881 dir->i_size += BOGO_DIRENT_SIZE;
1882 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1883 d_instantiate(dentry, inode);
1884 dget(dentry); /* Extra count - pin the dentry in core */
1885 }
1886 return error;
1887 }
1888
shmem_mkdir(struct inode * dir,struct dentry * dentry,int mode)1889 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1890 {
1891 int error;
1892
1893 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1894 return error;
1895 inc_nlink(dir);
1896 return 0;
1897 }
1898
shmem_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)1899 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1900 struct nameidata *nd)
1901 {
1902 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1903 }
1904
1905 /*
1906 * Link a file..
1907 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)1908 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1909 {
1910 struct inode *inode = old_dentry->d_inode;
1911 int ret;
1912
1913 /*
1914 * No ordinary (disk based) filesystem counts links as inodes;
1915 * but each new link needs a new dentry, pinning lowmem, and
1916 * tmpfs dentries cannot be pruned until they are unlinked.
1917 */
1918 ret = shmem_reserve_inode(inode->i_sb);
1919 if (ret)
1920 goto out;
1921
1922 dir->i_size += BOGO_DIRENT_SIZE;
1923 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1924 inc_nlink(inode);
1925 ihold(inode); /* New dentry reference */
1926 dget(dentry); /* Extra pinning count for the created dentry */
1927 d_instantiate(dentry, inode);
1928 out:
1929 return ret;
1930 }
1931
shmem_unlink(struct inode * dir,struct dentry * dentry)1932 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1933 {
1934 struct inode *inode = dentry->d_inode;
1935
1936 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1937 shmem_free_inode(inode->i_sb);
1938
1939 dir->i_size -= BOGO_DIRENT_SIZE;
1940 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1941 drop_nlink(inode);
1942 dput(dentry); /* Undo the count from "create" - this does all the work */
1943 return 0;
1944 }
1945
shmem_rmdir(struct inode * dir,struct dentry * dentry)1946 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1947 {
1948 if (!simple_empty(dentry))
1949 return -ENOTEMPTY;
1950
1951 drop_nlink(dentry->d_inode);
1952 drop_nlink(dir);
1953 return shmem_unlink(dir, dentry);
1954 }
1955
1956 /*
1957 * The VFS layer already does all the dentry stuff for rename,
1958 * we just have to decrement the usage count for the target if
1959 * it exists so that the VFS layer correctly free's it when it
1960 * gets overwritten.
1961 */
shmem_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1962 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1963 {
1964 struct inode *inode = old_dentry->d_inode;
1965 int they_are_dirs = S_ISDIR(inode->i_mode);
1966
1967 if (!simple_empty(new_dentry))
1968 return -ENOTEMPTY;
1969
1970 if (new_dentry->d_inode) {
1971 (void) shmem_unlink(new_dir, new_dentry);
1972 if (they_are_dirs)
1973 drop_nlink(old_dir);
1974 } else if (they_are_dirs) {
1975 drop_nlink(old_dir);
1976 inc_nlink(new_dir);
1977 }
1978
1979 old_dir->i_size -= BOGO_DIRENT_SIZE;
1980 new_dir->i_size += BOGO_DIRENT_SIZE;
1981 old_dir->i_ctime = old_dir->i_mtime =
1982 new_dir->i_ctime = new_dir->i_mtime =
1983 inode->i_ctime = CURRENT_TIME;
1984 return 0;
1985 }
1986
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1987 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1988 {
1989 int error;
1990 int len;
1991 struct inode *inode;
1992 struct page *page = NULL;
1993 char *kaddr;
1994 struct shmem_inode_info *info;
1995
1996 len = strlen(symname) + 1;
1997 if (len > PAGE_CACHE_SIZE)
1998 return -ENAMETOOLONG;
1999
2000 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2001 if (!inode)
2002 return -ENOSPC;
2003
2004 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2005 NULL, NULL);
2006 if (error) {
2007 if (error != -EOPNOTSUPP) {
2008 iput(inode);
2009 return error;
2010 }
2011 error = 0;
2012 }
2013
2014 info = SHMEM_I(inode);
2015 inode->i_size = len-1;
2016 if (len <= (char *)inode - (char *)info) {
2017 /* do it inline */
2018 memcpy(info, symname, len);
2019 inode->i_op = &shmem_symlink_inline_operations;
2020 } else {
2021 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2022 if (error) {
2023 iput(inode);
2024 return error;
2025 }
2026 inode->i_mapping->a_ops = &shmem_aops;
2027 inode->i_op = &shmem_symlink_inode_operations;
2028 kaddr = kmap_atomic(page, KM_USER0);
2029 memcpy(kaddr, symname, len);
2030 kunmap_atomic(kaddr, KM_USER0);
2031 set_page_dirty(page);
2032 unlock_page(page);
2033 page_cache_release(page);
2034 }
2035 dir->i_size += BOGO_DIRENT_SIZE;
2036 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2037 d_instantiate(dentry, inode);
2038 dget(dentry);
2039 return 0;
2040 }
2041
shmem_follow_link_inline(struct dentry * dentry,struct nameidata * nd)2042 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2043 {
2044 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2045 return NULL;
2046 }
2047
shmem_follow_link(struct dentry * dentry,struct nameidata * nd)2048 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2049 {
2050 struct page *page = NULL;
2051 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2052 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2053 if (page)
2054 unlock_page(page);
2055 return page;
2056 }
2057
shmem_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)2058 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2059 {
2060 if (!IS_ERR(nd_get_link(nd))) {
2061 struct page *page = cookie;
2062 kunmap(page);
2063 mark_page_accessed(page);
2064 page_cache_release(page);
2065 }
2066 }
2067
2068 static const struct inode_operations shmem_symlink_inline_operations = {
2069 .readlink = generic_readlink,
2070 .follow_link = shmem_follow_link_inline,
2071 };
2072
2073 static const struct inode_operations shmem_symlink_inode_operations = {
2074 .readlink = generic_readlink,
2075 .follow_link = shmem_follow_link,
2076 .put_link = shmem_put_link,
2077 };
2078
2079 #ifdef CONFIG_TMPFS_POSIX_ACL
2080 /*
2081 * Superblocks without xattr inode operations will get security.* xattr
2082 * support from the VFS "for free". As soon as we have any other xattrs
2083 * like ACLs, we also need to implement the security.* handlers at
2084 * filesystem level, though.
2085 */
2086
shmem_xattr_security_list(struct dentry * dentry,char * list,size_t list_len,const char * name,size_t name_len,int handler_flags)2087 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2088 size_t list_len, const char *name,
2089 size_t name_len, int handler_flags)
2090 {
2091 return security_inode_listsecurity(dentry->d_inode, list, list_len);
2092 }
2093
shmem_xattr_security_get(struct dentry * dentry,const char * name,void * buffer,size_t size,int handler_flags)2094 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2095 void *buffer, size_t size, int handler_flags)
2096 {
2097 if (strcmp(name, "") == 0)
2098 return -EINVAL;
2099 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2100 }
2101
shmem_xattr_security_set(struct dentry * dentry,const char * name,const void * value,size_t size,int flags,int handler_flags)2102 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2103 const void *value, size_t size, int flags, int handler_flags)
2104 {
2105 if (strcmp(name, "") == 0)
2106 return -EINVAL;
2107 return security_inode_setsecurity(dentry->d_inode, name, value,
2108 size, flags);
2109 }
2110
2111 static const struct xattr_handler shmem_xattr_security_handler = {
2112 .prefix = XATTR_SECURITY_PREFIX,
2113 .list = shmem_xattr_security_list,
2114 .get = shmem_xattr_security_get,
2115 .set = shmem_xattr_security_set,
2116 };
2117
2118 static const struct xattr_handler *shmem_xattr_handlers[] = {
2119 &generic_acl_access_handler,
2120 &generic_acl_default_handler,
2121 &shmem_xattr_security_handler,
2122 NULL
2123 };
2124 #endif
2125
shmem_get_parent(struct dentry * child)2126 static struct dentry *shmem_get_parent(struct dentry *child)
2127 {
2128 return ERR_PTR(-ESTALE);
2129 }
2130
shmem_match(struct inode * ino,void * vfh)2131 static int shmem_match(struct inode *ino, void *vfh)
2132 {
2133 __u32 *fh = vfh;
2134 __u64 inum = fh[2];
2135 inum = (inum << 32) | fh[1];
2136 return ino->i_ino == inum && fh[0] == ino->i_generation;
2137 }
2138
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2139 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2140 struct fid *fid, int fh_len, int fh_type)
2141 {
2142 struct inode *inode;
2143 struct dentry *dentry = NULL;
2144 u64 inum = fid->raw[2];
2145 inum = (inum << 32) | fid->raw[1];
2146
2147 if (fh_len < 3)
2148 return NULL;
2149
2150 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2151 shmem_match, fid->raw);
2152 if (inode) {
2153 dentry = d_find_alias(inode);
2154 iput(inode);
2155 }
2156
2157 return dentry;
2158 }
2159
shmem_encode_fh(struct dentry * dentry,__u32 * fh,int * len,int connectable)2160 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2161 int connectable)
2162 {
2163 struct inode *inode = dentry->d_inode;
2164
2165 if (*len < 3) {
2166 *len = 3;
2167 return 255;
2168 }
2169
2170 if (inode_unhashed(inode)) {
2171 /* Unfortunately insert_inode_hash is not idempotent,
2172 * so as we hash inodes here rather than at creation
2173 * time, we need a lock to ensure we only try
2174 * to do it once
2175 */
2176 static DEFINE_SPINLOCK(lock);
2177 spin_lock(&lock);
2178 if (inode_unhashed(inode))
2179 __insert_inode_hash(inode,
2180 inode->i_ino + inode->i_generation);
2181 spin_unlock(&lock);
2182 }
2183
2184 fh[0] = inode->i_generation;
2185 fh[1] = inode->i_ino;
2186 fh[2] = ((__u64)inode->i_ino) >> 32;
2187
2188 *len = 3;
2189 return 1;
2190 }
2191
2192 static const struct export_operations shmem_export_ops = {
2193 .get_parent = shmem_get_parent,
2194 .encode_fh = shmem_encode_fh,
2195 .fh_to_dentry = shmem_fh_to_dentry,
2196 };
2197
shmem_parse_options(char * options,struct shmem_sb_info * sbinfo,bool remount)2198 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2199 bool remount)
2200 {
2201 char *this_char, *value, *rest;
2202
2203 while (options != NULL) {
2204 this_char = options;
2205 for (;;) {
2206 /*
2207 * NUL-terminate this option: unfortunately,
2208 * mount options form a comma-separated list,
2209 * but mpol's nodelist may also contain commas.
2210 */
2211 options = strchr(options, ',');
2212 if (options == NULL)
2213 break;
2214 options++;
2215 if (!isdigit(*options)) {
2216 options[-1] = '\0';
2217 break;
2218 }
2219 }
2220 if (!*this_char)
2221 continue;
2222 if ((value = strchr(this_char,'=')) != NULL) {
2223 *value++ = 0;
2224 } else {
2225 printk(KERN_ERR
2226 "tmpfs: No value for mount option '%s'\n",
2227 this_char);
2228 return 1;
2229 }
2230
2231 if (!strcmp(this_char,"size")) {
2232 unsigned long long size;
2233 size = memparse(value,&rest);
2234 if (*rest == '%') {
2235 size <<= PAGE_SHIFT;
2236 size *= totalram_pages;
2237 do_div(size, 100);
2238 rest++;
2239 }
2240 if (*rest)
2241 goto bad_val;
2242 sbinfo->max_blocks =
2243 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2244 } else if (!strcmp(this_char,"nr_blocks")) {
2245 sbinfo->max_blocks = memparse(value, &rest);
2246 if (*rest)
2247 goto bad_val;
2248 } else if (!strcmp(this_char,"nr_inodes")) {
2249 sbinfo->max_inodes = memparse(value, &rest);
2250 if (*rest)
2251 goto bad_val;
2252 } else if (!strcmp(this_char,"mode")) {
2253 if (remount)
2254 continue;
2255 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2256 if (*rest)
2257 goto bad_val;
2258 } else if (!strcmp(this_char,"uid")) {
2259 if (remount)
2260 continue;
2261 sbinfo->uid = simple_strtoul(value, &rest, 0);
2262 if (*rest)
2263 goto bad_val;
2264 } else if (!strcmp(this_char,"gid")) {
2265 if (remount)
2266 continue;
2267 sbinfo->gid = simple_strtoul(value, &rest, 0);
2268 if (*rest)
2269 goto bad_val;
2270 } else if (!strcmp(this_char,"mpol")) {
2271 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2272 goto bad_val;
2273 } else {
2274 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2275 this_char);
2276 return 1;
2277 }
2278 }
2279 return 0;
2280
2281 bad_val:
2282 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2283 value, this_char);
2284 return 1;
2285
2286 }
2287
shmem_remount_fs(struct super_block * sb,int * flags,char * data)2288 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2289 {
2290 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2291 struct shmem_sb_info config = *sbinfo;
2292 unsigned long inodes;
2293 int error = -EINVAL;
2294
2295 if (shmem_parse_options(data, &config, true))
2296 return error;
2297
2298 spin_lock(&sbinfo->stat_lock);
2299 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2300 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2301 goto out;
2302 if (config.max_inodes < inodes)
2303 goto out;
2304 /*
2305 * Those tests also disallow limited->unlimited while any are in
2306 * use, so i_blocks will always be zero when max_blocks is zero;
2307 * but we must separately disallow unlimited->limited, because
2308 * in that case we have no record of how much is already in use.
2309 */
2310 if (config.max_blocks && !sbinfo->max_blocks)
2311 goto out;
2312 if (config.max_inodes && !sbinfo->max_inodes)
2313 goto out;
2314
2315 error = 0;
2316 sbinfo->max_blocks = config.max_blocks;
2317 sbinfo->max_inodes = config.max_inodes;
2318 sbinfo->free_inodes = config.max_inodes - inodes;
2319
2320 mpol_put(sbinfo->mpol);
2321 sbinfo->mpol = config.mpol; /* transfers initial ref */
2322 out:
2323 spin_unlock(&sbinfo->stat_lock);
2324 return error;
2325 }
2326
shmem_show_options(struct seq_file * seq,struct vfsmount * vfs)2327 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2328 {
2329 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2330
2331 if (sbinfo->max_blocks != shmem_default_max_blocks())
2332 seq_printf(seq, ",size=%luk",
2333 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2334 if (sbinfo->max_inodes != shmem_default_max_inodes())
2335 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2336 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2337 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2338 if (sbinfo->uid != 0)
2339 seq_printf(seq, ",uid=%u", sbinfo->uid);
2340 if (sbinfo->gid != 0)
2341 seq_printf(seq, ",gid=%u", sbinfo->gid);
2342 shmem_show_mpol(seq, sbinfo->mpol);
2343 return 0;
2344 }
2345 #endif /* CONFIG_TMPFS */
2346
shmem_put_super(struct super_block * sb)2347 static void shmem_put_super(struct super_block *sb)
2348 {
2349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2350
2351 percpu_counter_destroy(&sbinfo->used_blocks);
2352 kfree(sbinfo);
2353 sb->s_fs_info = NULL;
2354 }
2355
shmem_fill_super(struct super_block * sb,void * data,int silent)2356 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2357 {
2358 struct inode *inode;
2359 struct dentry *root;
2360 struct shmem_sb_info *sbinfo;
2361 int err = -ENOMEM;
2362
2363 /* Round up to L1_CACHE_BYTES to resist false sharing */
2364 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2365 L1_CACHE_BYTES), GFP_KERNEL);
2366 if (!sbinfo)
2367 return -ENOMEM;
2368
2369 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2370 sbinfo->uid = current_fsuid();
2371 sbinfo->gid = current_fsgid();
2372 sb->s_fs_info = sbinfo;
2373
2374 #ifdef CONFIG_TMPFS
2375 /*
2376 * Per default we only allow half of the physical ram per
2377 * tmpfs instance, limiting inodes to one per page of lowmem;
2378 * but the internal instance is left unlimited.
2379 */
2380 if (!(sb->s_flags & MS_NOUSER)) {
2381 sbinfo->max_blocks = shmem_default_max_blocks();
2382 sbinfo->max_inodes = shmem_default_max_inodes();
2383 if (shmem_parse_options(data, sbinfo, false)) {
2384 err = -EINVAL;
2385 goto failed;
2386 }
2387 }
2388 sb->s_export_op = &shmem_export_ops;
2389 #else
2390 sb->s_flags |= MS_NOUSER;
2391 #endif
2392
2393 spin_lock_init(&sbinfo->stat_lock);
2394 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2395 goto failed;
2396 sbinfo->free_inodes = sbinfo->max_inodes;
2397
2398 sb->s_maxbytes = SHMEM_MAX_BYTES;
2399 sb->s_blocksize = PAGE_CACHE_SIZE;
2400 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2401 sb->s_magic = TMPFS_MAGIC;
2402 sb->s_op = &shmem_ops;
2403 sb->s_time_gran = 1;
2404 #ifdef CONFIG_TMPFS_POSIX_ACL
2405 sb->s_xattr = shmem_xattr_handlers;
2406 sb->s_flags |= MS_POSIXACL;
2407 #endif
2408
2409 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2410 if (!inode)
2411 goto failed;
2412 inode->i_uid = sbinfo->uid;
2413 inode->i_gid = sbinfo->gid;
2414 root = d_alloc_root(inode);
2415 if (!root)
2416 goto failed_iput;
2417 sb->s_root = root;
2418 return 0;
2419
2420 failed_iput:
2421 iput(inode);
2422 failed:
2423 shmem_put_super(sb);
2424 return err;
2425 }
2426
2427 static struct kmem_cache *shmem_inode_cachep;
2428
shmem_alloc_inode(struct super_block * sb)2429 static struct inode *shmem_alloc_inode(struct super_block *sb)
2430 {
2431 struct shmem_inode_info *p;
2432 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2433 if (!p)
2434 return NULL;
2435 return &p->vfs_inode;
2436 }
2437
shmem_i_callback(struct rcu_head * head)2438 static void shmem_i_callback(struct rcu_head *head)
2439 {
2440 struct inode *inode = container_of(head, struct inode, i_rcu);
2441 INIT_LIST_HEAD(&inode->i_dentry);
2442 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2443 }
2444
shmem_destroy_inode(struct inode * inode)2445 static void shmem_destroy_inode(struct inode *inode)
2446 {
2447 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2448 /* only struct inode is valid if it's an inline symlink */
2449 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2450 }
2451 call_rcu(&inode->i_rcu, shmem_i_callback);
2452 }
2453
init_once(void * foo)2454 static void init_once(void *foo)
2455 {
2456 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2457
2458 inode_init_once(&p->vfs_inode);
2459 }
2460
init_inodecache(void)2461 static int init_inodecache(void)
2462 {
2463 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2464 sizeof(struct shmem_inode_info),
2465 0, SLAB_PANIC, init_once);
2466 return 0;
2467 }
2468
destroy_inodecache(void)2469 static void destroy_inodecache(void)
2470 {
2471 kmem_cache_destroy(shmem_inode_cachep);
2472 }
2473
2474 static const struct address_space_operations shmem_aops = {
2475 .writepage = shmem_writepage,
2476 .set_page_dirty = __set_page_dirty_no_writeback,
2477 #ifdef CONFIG_TMPFS
2478 .readpage = shmem_readpage,
2479 .write_begin = shmem_write_begin,
2480 .write_end = shmem_write_end,
2481 #endif
2482 .migratepage = migrate_page,
2483 .error_remove_page = generic_error_remove_page,
2484 };
2485
2486 static const struct file_operations shmem_file_operations = {
2487 .mmap = shmem_mmap,
2488 #ifdef CONFIG_TMPFS
2489 .llseek = generic_file_llseek,
2490 .read = do_sync_read,
2491 .write = do_sync_write,
2492 .aio_read = shmem_file_aio_read,
2493 .aio_write = generic_file_aio_write,
2494 .fsync = noop_fsync,
2495 .splice_read = generic_file_splice_read,
2496 .splice_write = generic_file_splice_write,
2497 #endif
2498 };
2499
2500 static const struct inode_operations shmem_inode_operations = {
2501 .setattr = shmem_notify_change,
2502 .truncate_range = shmem_truncate_range,
2503 #ifdef CONFIG_TMPFS_POSIX_ACL
2504 .setxattr = generic_setxattr,
2505 .getxattr = generic_getxattr,
2506 .listxattr = generic_listxattr,
2507 .removexattr = generic_removexattr,
2508 .check_acl = generic_check_acl,
2509 #endif
2510
2511 };
2512
2513 static const struct inode_operations shmem_dir_inode_operations = {
2514 #ifdef CONFIG_TMPFS
2515 .create = shmem_create,
2516 .lookup = simple_lookup,
2517 .link = shmem_link,
2518 .unlink = shmem_unlink,
2519 .symlink = shmem_symlink,
2520 .mkdir = shmem_mkdir,
2521 .rmdir = shmem_rmdir,
2522 .mknod = shmem_mknod,
2523 .rename = shmem_rename,
2524 #endif
2525 #ifdef CONFIG_TMPFS_POSIX_ACL
2526 .setattr = shmem_notify_change,
2527 .setxattr = generic_setxattr,
2528 .getxattr = generic_getxattr,
2529 .listxattr = generic_listxattr,
2530 .removexattr = generic_removexattr,
2531 .check_acl = generic_check_acl,
2532 #endif
2533 };
2534
2535 static const struct inode_operations shmem_special_inode_operations = {
2536 #ifdef CONFIG_TMPFS_POSIX_ACL
2537 .setattr = shmem_notify_change,
2538 .setxattr = generic_setxattr,
2539 .getxattr = generic_getxattr,
2540 .listxattr = generic_listxattr,
2541 .removexattr = generic_removexattr,
2542 .check_acl = generic_check_acl,
2543 #endif
2544 };
2545
2546 static const struct super_operations shmem_ops = {
2547 .alloc_inode = shmem_alloc_inode,
2548 .destroy_inode = shmem_destroy_inode,
2549 #ifdef CONFIG_TMPFS
2550 .statfs = shmem_statfs,
2551 .remount_fs = shmem_remount_fs,
2552 .show_options = shmem_show_options,
2553 #endif
2554 .evict_inode = shmem_evict_inode,
2555 .drop_inode = generic_delete_inode,
2556 .put_super = shmem_put_super,
2557 };
2558
2559 static const struct vm_operations_struct shmem_vm_ops = {
2560 .fault = shmem_fault,
2561 #ifdef CONFIG_NUMA
2562 .set_policy = shmem_set_policy,
2563 .get_policy = shmem_get_policy,
2564 #endif
2565 };
2566
2567
shmem_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)2568 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2569 int flags, const char *dev_name, void *data)
2570 {
2571 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2572 }
2573
2574 static struct file_system_type tmpfs_fs_type = {
2575 .owner = THIS_MODULE,
2576 .name = "tmpfs",
2577 .mount = shmem_mount,
2578 .kill_sb = kill_litter_super,
2579 };
2580
init_tmpfs(void)2581 int __init init_tmpfs(void)
2582 {
2583 int error;
2584
2585 error = bdi_init(&shmem_backing_dev_info);
2586 if (error)
2587 goto out4;
2588
2589 error = init_inodecache();
2590 if (error)
2591 goto out3;
2592
2593 error = register_filesystem(&tmpfs_fs_type);
2594 if (error) {
2595 printk(KERN_ERR "Could not register tmpfs\n");
2596 goto out2;
2597 }
2598
2599 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2600 tmpfs_fs_type.name, NULL);
2601 if (IS_ERR(shm_mnt)) {
2602 error = PTR_ERR(shm_mnt);
2603 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2604 goto out1;
2605 }
2606 return 0;
2607
2608 out1:
2609 unregister_filesystem(&tmpfs_fs_type);
2610 out2:
2611 destroy_inodecache();
2612 out3:
2613 bdi_destroy(&shmem_backing_dev_info);
2614 out4:
2615 shm_mnt = ERR_PTR(error);
2616 return error;
2617 }
2618
2619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2620 /**
2621 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2622 * @inode: the inode to be searched
2623 * @pgoff: the offset to be searched
2624 * @pagep: the pointer for the found page to be stored
2625 * @ent: the pointer for the found swap entry to be stored
2626 *
2627 * If a page is found, refcount of it is incremented. Callers should handle
2628 * these refcount.
2629 */
mem_cgroup_get_shmem_target(struct inode * inode,pgoff_t pgoff,struct page ** pagep,swp_entry_t * ent)2630 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2631 struct page **pagep, swp_entry_t *ent)
2632 {
2633 swp_entry_t entry = { .val = 0 }, *ptr;
2634 struct page *page = NULL;
2635 struct shmem_inode_info *info = SHMEM_I(inode);
2636
2637 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2638 goto out;
2639
2640 spin_lock(&info->lock);
2641 ptr = shmem_swp_entry(info, pgoff, NULL);
2642 #ifdef CONFIG_SWAP
2643 if (ptr && ptr->val) {
2644 entry.val = ptr->val;
2645 page = find_get_page(&swapper_space, entry.val);
2646 } else
2647 #endif
2648 page = find_get_page(inode->i_mapping, pgoff);
2649 if (ptr)
2650 shmem_swp_unmap(ptr);
2651 spin_unlock(&info->lock);
2652 out:
2653 *pagep = page;
2654 *ent = entry;
2655 }
2656 #endif
2657
2658 #else /* !CONFIG_SHMEM */
2659
2660 /*
2661 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2662 *
2663 * This is intended for small system where the benefits of the full
2664 * shmem code (swap-backed and resource-limited) are outweighed by
2665 * their complexity. On systems without swap this code should be
2666 * effectively equivalent, but much lighter weight.
2667 */
2668
2669 #include <linux/ramfs.h>
2670
2671 static struct file_system_type tmpfs_fs_type = {
2672 .name = "tmpfs",
2673 .mount = ramfs_mount,
2674 .kill_sb = kill_litter_super,
2675 };
2676
init_tmpfs(void)2677 int __init init_tmpfs(void)
2678 {
2679 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2680
2681 shm_mnt = kern_mount(&tmpfs_fs_type);
2682 BUG_ON(IS_ERR(shm_mnt));
2683
2684 return 0;
2685 }
2686
shmem_unuse(swp_entry_t entry,struct page * page)2687 int shmem_unuse(swp_entry_t entry, struct page *page)
2688 {
2689 return 0;
2690 }
2691
shmem_lock(struct file * file,int lock,struct user_struct * user)2692 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2693 {
2694 return 0;
2695 }
2696
2697 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2698 /**
2699 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2700 * @inode: the inode to be searched
2701 * @pgoff: the offset to be searched
2702 * @pagep: the pointer for the found page to be stored
2703 * @ent: the pointer for the found swap entry to be stored
2704 *
2705 * If a page is found, refcount of it is incremented. Callers should handle
2706 * these refcount.
2707 */
mem_cgroup_get_shmem_target(struct inode * inode,pgoff_t pgoff,struct page ** pagep,swp_entry_t * ent)2708 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2709 struct page **pagep, swp_entry_t *ent)
2710 {
2711 struct page *page = NULL;
2712
2713 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2714 goto out;
2715 page = find_get_page(inode->i_mapping, pgoff);
2716 out:
2717 *pagep = page;
2718 *ent = (swp_entry_t){ .val = 0 };
2719 }
2720 #endif
2721
2722 #define shmem_vm_ops generic_file_vm_ops
2723 #define shmem_file_operations ramfs_file_operations
2724 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2725 #define shmem_acct_size(flags, size) 0
2726 #define shmem_unacct_size(flags, size) do {} while (0)
2727 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2728
2729 #endif /* CONFIG_SHMEM */
2730
2731 /* common code */
2732
2733 /**
2734 * shmem_file_setup - get an unlinked file living in tmpfs
2735 * @name: name for dentry (to be seen in /proc/<pid>/maps
2736 * @size: size to be set for the file
2737 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2738 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)2739 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2740 {
2741 int error;
2742 struct file *file;
2743 struct inode *inode;
2744 struct path path;
2745 struct dentry *root;
2746 struct qstr this;
2747
2748 if (IS_ERR(shm_mnt))
2749 return (void *)shm_mnt;
2750
2751 if (size < 0 || size > SHMEM_MAX_BYTES)
2752 return ERR_PTR(-EINVAL);
2753
2754 if (shmem_acct_size(flags, size))
2755 return ERR_PTR(-ENOMEM);
2756
2757 error = -ENOMEM;
2758 this.name = name;
2759 this.len = strlen(name);
2760 this.hash = 0; /* will go */
2761 root = shm_mnt->mnt_root;
2762 path.dentry = d_alloc(root, &this);
2763 if (!path.dentry)
2764 goto put_memory;
2765 path.mnt = mntget(shm_mnt);
2766
2767 error = -ENOSPC;
2768 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2769 if (!inode)
2770 goto put_dentry;
2771
2772 d_instantiate(path.dentry, inode);
2773 inode->i_size = size;
2774 inode->i_nlink = 0; /* It is unlinked */
2775 #ifndef CONFIG_MMU
2776 error = ramfs_nommu_expand_for_mapping(inode, size);
2777 if (error)
2778 goto put_dentry;
2779 #endif
2780
2781 error = -ENFILE;
2782 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2783 &shmem_file_operations);
2784 if (!file)
2785 goto put_dentry;
2786
2787 return file;
2788
2789 put_dentry:
2790 path_put(&path);
2791 put_memory:
2792 shmem_unacct_size(flags, size);
2793 return ERR_PTR(error);
2794 }
2795 EXPORT_SYMBOL_GPL(shmem_file_setup);
2796
2797 /**
2798 * shmem_zero_setup - setup a shared anonymous mapping
2799 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2800 */
shmem_zero_setup(struct vm_area_struct * vma)2801 int shmem_zero_setup(struct vm_area_struct *vma)
2802 {
2803 struct file *file;
2804 loff_t size = vma->vm_end - vma->vm_start;
2805
2806 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2807 if (IS_ERR(file))
2808 return PTR_ERR(file);
2809
2810 if (vma->vm_file)
2811 fput(vma->vm_file);
2812 vma->vm_file = file;
2813 vma->vm_ops = &shmem_vm_ops;
2814 vma->vm_flags |= VM_CAN_NONLINEAR;
2815 return 0;
2816 }
2817