1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
hwpoison_filter_dev(struct page * p)79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
hwpoison_filter_flags(struct page * p)109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	/* root_mem_cgroup has NULL dentries */
149 	if (!css->cgroup->dentry)
150 		return -EINVAL;
151 
152 	ino = css->cgroup->dentry->d_inode->i_ino;
153 	css_put(css);
154 
155 	if (ino != hwpoison_filter_memcg)
156 		return -EINVAL;
157 
158 	return 0;
159 }
160 #else
hwpoison_filter_task(struct page * p)161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
163 
hwpoison_filter(struct page * p)164 int hwpoison_filter(struct page *p)
165 {
166 	if (!hwpoison_filter_enable)
167 		return 0;
168 
169 	if (hwpoison_filter_dev(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_flags(p))
173 		return -EINVAL;
174 
175 	if (hwpoison_filter_task(p))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 #else
hwpoison_filter(struct page * p)181 int hwpoison_filter(struct page *p)
182 {
183 	return 0;
184 }
185 #endif
186 
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
188 
189 /*
190  * Send all the processes who have the page mapped a signal.
191  * ``action optional'' if they are not immediately affected by the error
192  * ``action required'' if error happened in current execution context
193  */
kill_proc(struct task_struct * t,unsigned long addr,int trapno,unsigned long pfn,struct page * page,int flags)194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 			unsigned long pfn, struct page *page, int flags)
196 {
197 	struct siginfo si;
198 	int ret;
199 
200 	printk(KERN_ERR
201 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 		pfn, t->comm, t->pid);
203 	si.si_signo = SIGBUS;
204 	si.si_errno = 0;
205 	si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 	si.si_trapno = trapno;
208 #endif
209 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210 
211 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
212 		si.si_code = BUS_MCEERR_AR;
213 		ret = force_sig_info(SIGBUS, &si, current);
214 	} else {
215 		/*
216 		 * Don't use force here, it's convenient if the signal
217 		 * can be temporarily blocked.
218 		 * This could cause a loop when the user sets SIGBUS
219 		 * to SIG_IGN, but hopefully no one will do that?
220 		 */
221 		si.si_code = BUS_MCEERR_AO;
222 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
223 	}
224 	if (ret < 0)
225 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 		       t->comm, t->pid, ret);
227 	return ret;
228 }
229 
230 /*
231  * When a unknown page type is encountered drain as many buffers as possible
232  * in the hope to turn the page into a LRU or free page, which we can handle.
233  */
shake_page(struct page * p,int access)234 void shake_page(struct page *p, int access)
235 {
236 	if (!PageSlab(p)) {
237 		lru_add_drain_all();
238 		if (PageLRU(p))
239 			return;
240 		drain_all_pages();
241 		if (PageLRU(p) || is_free_buddy_page(p))
242 			return;
243 	}
244 
245 	/*
246 	 * Only call shrink_slab here (which would also shrink other caches) if
247 	 * access is not potentially fatal.
248 	 */
249 	if (access) {
250 		int nr;
251 		do {
252 			struct shrink_control shrink = {
253 				.gfp_mask = GFP_KERNEL,
254 			};
255 
256 			nr = shrink_slab(&shrink, 1000, 1000);
257 			if (page_count(p) == 1)
258 				break;
259 		} while (nr > 10);
260 	}
261 }
262 EXPORT_SYMBOL_GPL(shake_page);
263 
264 /*
265  * Kill all processes that have a poisoned page mapped and then isolate
266  * the page.
267  *
268  * General strategy:
269  * Find all processes having the page mapped and kill them.
270  * But we keep a page reference around so that the page is not
271  * actually freed yet.
272  * Then stash the page away
273  *
274  * There's no convenient way to get back to mapped processes
275  * from the VMAs. So do a brute-force search over all
276  * running processes.
277  *
278  * Remember that machine checks are not common (or rather
279  * if they are common you have other problems), so this shouldn't
280  * be a performance issue.
281  *
282  * Also there are some races possible while we get from the
283  * error detection to actually handle it.
284  */
285 
286 struct to_kill {
287 	struct list_head nd;
288 	struct task_struct *tsk;
289 	unsigned long addr;
290 	char addr_valid;
291 };
292 
293 /*
294  * Failure handling: if we can't find or can't kill a process there's
295  * not much we can do.	We just print a message and ignore otherwise.
296  */
297 
298 /*
299  * Schedule a process for later kill.
300  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301  * TBD would GFP_NOIO be enough?
302  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)303 static void add_to_kill(struct task_struct *tsk, struct page *p,
304 		       struct vm_area_struct *vma,
305 		       struct list_head *to_kill,
306 		       struct to_kill **tkc)
307 {
308 	struct to_kill *tk;
309 
310 	if (*tkc) {
311 		tk = *tkc;
312 		*tkc = NULL;
313 	} else {
314 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 		if (!tk) {
316 			printk(KERN_ERR
317 		"MCE: Out of memory while machine check handling\n");
318 			return;
319 		}
320 	}
321 	tk->addr = page_address_in_vma(p, vma);
322 	tk->addr_valid = 1;
323 
324 	/*
325 	 * In theory we don't have to kill when the page was
326 	 * munmaped. But it could be also a mremap. Since that's
327 	 * likely very rare kill anyways just out of paranoia, but use
328 	 * a SIGKILL because the error is not contained anymore.
329 	 */
330 	if (tk->addr == -EFAULT) {
331 		pr_info("MCE: Unable to find user space address %lx in %s\n",
332 			page_to_pfn(p), tsk->comm);
333 		tk->addr_valid = 0;
334 	}
335 	get_task_struct(tsk);
336 	tk->tsk = tsk;
337 	list_add_tail(&tk->nd, to_kill);
338 }
339 
340 /*
341  * Kill the processes that have been collected earlier.
342  *
343  * Only do anything when DOIT is set, otherwise just free the list
344  * (this is used for clean pages which do not need killing)
345  * Also when FAIL is set do a force kill because something went
346  * wrong earlier.
347  */
kill_procs(struct list_head * to_kill,int forcekill,int trapno,int fail,struct page * page,unsigned long pfn,int flags)348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
349 			  int fail, struct page *page, unsigned long pfn,
350 			  int flags)
351 {
352 	struct to_kill *tk, *next;
353 
354 	list_for_each_entry_safe (tk, next, to_kill, nd) {
355 		if (forcekill) {
356 			/*
357 			 * In case something went wrong with munmapping
358 			 * make sure the process doesn't catch the
359 			 * signal and then access the memory. Just kill it.
360 			 */
361 			if (fail || tk->addr_valid == 0) {
362 				printk(KERN_ERR
363 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 					pfn, tk->tsk->comm, tk->tsk->pid);
365 				force_sig(SIGKILL, tk->tsk);
366 			}
367 
368 			/*
369 			 * In theory the process could have mapped
370 			 * something else on the address in-between. We could
371 			 * check for that, but we need to tell the
372 			 * process anyways.
373 			 */
374 			else if (kill_proc(tk->tsk, tk->addr, trapno,
375 					      pfn, page, flags) < 0)
376 				printk(KERN_ERR
377 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 					pfn, tk->tsk->comm, tk->tsk->pid);
379 		}
380 		put_task_struct(tk->tsk);
381 		kfree(tk);
382 	}
383 }
384 
task_early_kill(struct task_struct * tsk,int force_early)385 static int task_early_kill(struct task_struct *tsk, int force_early)
386 {
387 	if (!tsk->mm)
388 		return 0;
389 	if (force_early)
390 		return 1;
391 	if (tsk->flags & PF_MCE_PROCESS)
392 		return !!(tsk->flags & PF_MCE_EARLY);
393 	return sysctl_memory_failure_early_kill;
394 }
395 
396 /*
397  * Collect processes when the error hit an anonymous page.
398  */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)399 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
400 			      struct to_kill **tkc, int force_early)
401 {
402 	struct vm_area_struct *vma;
403 	struct task_struct *tsk;
404 	struct anon_vma *av;
405 
406 	av = page_lock_anon_vma(page);
407 	if (av == NULL)	/* Not actually mapped anymore */
408 		return;
409 
410 	read_lock(&tasklist_lock);
411 	for_each_process (tsk) {
412 		struct anon_vma_chain *vmac;
413 
414 		if (!task_early_kill(tsk, force_early))
415 			continue;
416 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
417 			vma = vmac->vma;
418 			if (!page_mapped_in_vma(page, vma))
419 				continue;
420 			if (vma->vm_mm == tsk->mm)
421 				add_to_kill(tsk, page, vma, to_kill, tkc);
422 		}
423 	}
424 	read_unlock(&tasklist_lock);
425 	page_unlock_anon_vma(av);
426 }
427 
428 /*
429  * Collect processes when the error hit a file mapped page.
430  */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)431 static void collect_procs_file(struct page *page, struct list_head *to_kill,
432 			      struct to_kill **tkc, int force_early)
433 {
434 	struct vm_area_struct *vma;
435 	struct task_struct *tsk;
436 	struct prio_tree_iter iter;
437 	struct address_space *mapping = page->mapping;
438 
439 	mutex_lock(&mapping->i_mmap_mutex);
440 	read_lock(&tasklist_lock);
441 	for_each_process(tsk) {
442 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
443 
444 		if (!task_early_kill(tsk, force_early))
445 			continue;
446 
447 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
448 				      pgoff) {
449 			/*
450 			 * Send early kill signal to tasks where a vma covers
451 			 * the page but the corrupted page is not necessarily
452 			 * mapped it in its pte.
453 			 * Assume applications who requested early kill want
454 			 * to be informed of all such data corruptions.
455 			 */
456 			if (vma->vm_mm == tsk->mm)
457 				add_to_kill(tsk, page, vma, to_kill, tkc);
458 		}
459 	}
460 	read_unlock(&tasklist_lock);
461 	mutex_unlock(&mapping->i_mmap_mutex);
462 }
463 
464 /*
465  * Collect the processes who have the corrupted page mapped to kill.
466  * This is done in two steps for locking reasons.
467  * First preallocate one tokill structure outside the spin locks,
468  * so that we can kill at least one process reasonably reliable.
469  */
collect_procs(struct page * page,struct list_head * tokill,int force_early)470 static void collect_procs(struct page *page, struct list_head *tokill,
471 				int force_early)
472 {
473 	struct to_kill *tk;
474 
475 	if (!page->mapping)
476 		return;
477 
478 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
479 	if (!tk)
480 		return;
481 	if (PageAnon(page))
482 		collect_procs_anon(page, tokill, &tk, force_early);
483 	else
484 		collect_procs_file(page, tokill, &tk, force_early);
485 	kfree(tk);
486 }
487 
488 /*
489  * Error handlers for various types of pages.
490  */
491 
492 enum outcome {
493 	IGNORED,	/* Error: cannot be handled */
494 	FAILED,		/* Error: handling failed */
495 	DELAYED,	/* Will be handled later */
496 	RECOVERED,	/* Successfully recovered */
497 };
498 
499 static const char *action_name[] = {
500 	[IGNORED] = "Ignored",
501 	[FAILED] = "Failed",
502 	[DELAYED] = "Delayed",
503 	[RECOVERED] = "Recovered",
504 };
505 
506 /*
507  * XXX: It is possible that a page is isolated from LRU cache,
508  * and then kept in swap cache or failed to remove from page cache.
509  * The page count will stop it from being freed by unpoison.
510  * Stress tests should be aware of this memory leak problem.
511  */
delete_from_lru_cache(struct page * p)512 static int delete_from_lru_cache(struct page *p)
513 {
514 	if (!isolate_lru_page(p)) {
515 		/*
516 		 * Clear sensible page flags, so that the buddy system won't
517 		 * complain when the page is unpoison-and-freed.
518 		 */
519 		ClearPageActive(p);
520 		ClearPageUnevictable(p);
521 		/*
522 		 * drop the page count elevated by isolate_lru_page()
523 		 */
524 		page_cache_release(p);
525 		return 0;
526 	}
527 	return -EIO;
528 }
529 
530 /*
531  * Error hit kernel page.
532  * Do nothing, try to be lucky and not touch this instead. For a few cases we
533  * could be more sophisticated.
534  */
me_kernel(struct page * p,unsigned long pfn)535 static int me_kernel(struct page *p, unsigned long pfn)
536 {
537 	return IGNORED;
538 }
539 
540 /*
541  * Page in unknown state. Do nothing.
542  */
me_unknown(struct page * p,unsigned long pfn)543 static int me_unknown(struct page *p, unsigned long pfn)
544 {
545 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
546 	return FAILED;
547 }
548 
549 /*
550  * Clean (or cleaned) page cache page.
551  */
me_pagecache_clean(struct page * p,unsigned long pfn)552 static int me_pagecache_clean(struct page *p, unsigned long pfn)
553 {
554 	int err;
555 	int ret = FAILED;
556 	struct address_space *mapping;
557 
558 	delete_from_lru_cache(p);
559 
560 	/*
561 	 * For anonymous pages we're done the only reference left
562 	 * should be the one m_f() holds.
563 	 */
564 	if (PageAnon(p))
565 		return RECOVERED;
566 
567 	/*
568 	 * Now truncate the page in the page cache. This is really
569 	 * more like a "temporary hole punch"
570 	 * Don't do this for block devices when someone else
571 	 * has a reference, because it could be file system metadata
572 	 * and that's not safe to truncate.
573 	 */
574 	mapping = page_mapping(p);
575 	if (!mapping) {
576 		/*
577 		 * Page has been teared down in the meanwhile
578 		 */
579 		return FAILED;
580 	}
581 
582 	/*
583 	 * Truncation is a bit tricky. Enable it per file system for now.
584 	 *
585 	 * Open: to take i_mutex or not for this? Right now we don't.
586 	 */
587 	if (mapping->a_ops->error_remove_page) {
588 		err = mapping->a_ops->error_remove_page(mapping, p);
589 		if (err != 0) {
590 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
591 					pfn, err);
592 		} else if (page_has_private(p) &&
593 				!try_to_release_page(p, GFP_NOIO)) {
594 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
595 		} else {
596 			ret = RECOVERED;
597 		}
598 	} else {
599 		/*
600 		 * If the file system doesn't support it just invalidate
601 		 * This fails on dirty or anything with private pages
602 		 */
603 		if (invalidate_inode_page(p))
604 			ret = RECOVERED;
605 		else
606 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
607 				pfn);
608 	}
609 	return ret;
610 }
611 
612 /*
613  * Dirty cache page page
614  * Issues: when the error hit a hole page the error is not properly
615  * propagated.
616  */
me_pagecache_dirty(struct page * p,unsigned long pfn)617 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
618 {
619 	struct address_space *mapping = page_mapping(p);
620 
621 	SetPageError(p);
622 	/* TBD: print more information about the file. */
623 	if (mapping) {
624 		/*
625 		 * IO error will be reported by write(), fsync(), etc.
626 		 * who check the mapping.
627 		 * This way the application knows that something went
628 		 * wrong with its dirty file data.
629 		 *
630 		 * There's one open issue:
631 		 *
632 		 * The EIO will be only reported on the next IO
633 		 * operation and then cleared through the IO map.
634 		 * Normally Linux has two mechanisms to pass IO error
635 		 * first through the AS_EIO flag in the address space
636 		 * and then through the PageError flag in the page.
637 		 * Since we drop pages on memory failure handling the
638 		 * only mechanism open to use is through AS_AIO.
639 		 *
640 		 * This has the disadvantage that it gets cleared on
641 		 * the first operation that returns an error, while
642 		 * the PageError bit is more sticky and only cleared
643 		 * when the page is reread or dropped.  If an
644 		 * application assumes it will always get error on
645 		 * fsync, but does other operations on the fd before
646 		 * and the page is dropped between then the error
647 		 * will not be properly reported.
648 		 *
649 		 * This can already happen even without hwpoisoned
650 		 * pages: first on metadata IO errors (which only
651 		 * report through AS_EIO) or when the page is dropped
652 		 * at the wrong time.
653 		 *
654 		 * So right now we assume that the application DTRT on
655 		 * the first EIO, but we're not worse than other parts
656 		 * of the kernel.
657 		 */
658 		mapping_set_error(mapping, EIO);
659 	}
660 
661 	return me_pagecache_clean(p, pfn);
662 }
663 
664 /*
665  * Clean and dirty swap cache.
666  *
667  * Dirty swap cache page is tricky to handle. The page could live both in page
668  * cache and swap cache(ie. page is freshly swapped in). So it could be
669  * referenced concurrently by 2 types of PTEs:
670  * normal PTEs and swap PTEs. We try to handle them consistently by calling
671  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
672  * and then
673  *      - clear dirty bit to prevent IO
674  *      - remove from LRU
675  *      - but keep in the swap cache, so that when we return to it on
676  *        a later page fault, we know the application is accessing
677  *        corrupted data and shall be killed (we installed simple
678  *        interception code in do_swap_page to catch it).
679  *
680  * Clean swap cache pages can be directly isolated. A later page fault will
681  * bring in the known good data from disk.
682  */
me_swapcache_dirty(struct page * p,unsigned long pfn)683 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
684 {
685 	ClearPageDirty(p);
686 	/* Trigger EIO in shmem: */
687 	ClearPageUptodate(p);
688 
689 	if (!delete_from_lru_cache(p))
690 		return DELAYED;
691 	else
692 		return FAILED;
693 }
694 
me_swapcache_clean(struct page * p,unsigned long pfn)695 static int me_swapcache_clean(struct page *p, unsigned long pfn)
696 {
697 	delete_from_swap_cache(p);
698 
699 	if (!delete_from_lru_cache(p))
700 		return RECOVERED;
701 	else
702 		return FAILED;
703 }
704 
705 /*
706  * Huge pages. Needs work.
707  * Issues:
708  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
709  *   To narrow down kill region to one page, we need to break up pmd.
710  */
me_huge_page(struct page * p,unsigned long pfn)711 static int me_huge_page(struct page *p, unsigned long pfn)
712 {
713 	int res = 0;
714 	struct page *hpage = compound_head(p);
715 	/*
716 	 * We can safely recover from error on free or reserved (i.e.
717 	 * not in-use) hugepage by dequeuing it from freelist.
718 	 * To check whether a hugepage is in-use or not, we can't use
719 	 * page->lru because it can be used in other hugepage operations,
720 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
721 	 * So instead we use page_mapping() and PageAnon().
722 	 * We assume that this function is called with page lock held,
723 	 * so there is no race between isolation and mapping/unmapping.
724 	 */
725 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
726 		res = dequeue_hwpoisoned_huge_page(hpage);
727 		if (!res)
728 			return RECOVERED;
729 	}
730 	return DELAYED;
731 }
732 
733 /*
734  * Various page states we can handle.
735  *
736  * A page state is defined by its current page->flags bits.
737  * The table matches them in order and calls the right handler.
738  *
739  * This is quite tricky because we can access page at any time
740  * in its live cycle, so all accesses have to be extremely careful.
741  *
742  * This is not complete. More states could be added.
743  * For any missing state don't attempt recovery.
744  */
745 
746 #define dirty		(1UL << PG_dirty)
747 #define sc		(1UL << PG_swapcache)
748 #define unevict		(1UL << PG_unevictable)
749 #define mlock		(1UL << PG_mlocked)
750 #define writeback	(1UL << PG_writeback)
751 #define lru		(1UL << PG_lru)
752 #define swapbacked	(1UL << PG_swapbacked)
753 #define head		(1UL << PG_head)
754 #define tail		(1UL << PG_tail)
755 #define compound	(1UL << PG_compound)
756 #define slab		(1UL << PG_slab)
757 #define reserved	(1UL << PG_reserved)
758 
759 static struct page_state {
760 	unsigned long mask;
761 	unsigned long res;
762 	char *msg;
763 	int (*action)(struct page *p, unsigned long pfn);
764 } error_states[] = {
765 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
766 	/*
767 	 * free pages are specially detected outside this table:
768 	 * PG_buddy pages only make a small fraction of all free pages.
769 	 */
770 
771 	/*
772 	 * Could in theory check if slab page is free or if we can drop
773 	 * currently unused objects without touching them. But just
774 	 * treat it as standard kernel for now.
775 	 */
776 	{ slab,		slab,		"kernel slab",	me_kernel },
777 
778 #ifdef CONFIG_PAGEFLAGS_EXTENDED
779 	{ head,		head,		"huge",		me_huge_page },
780 	{ tail,		tail,		"huge",		me_huge_page },
781 #else
782 	{ compound,	compound,	"huge",		me_huge_page },
783 #endif
784 
785 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
786 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
787 
788 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
789 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
790 
791 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
792 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
793 
794 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
795 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
796 
797 	/*
798 	 * Catchall entry: must be at end.
799 	 */
800 	{ 0,		0,		"unknown page state",	me_unknown },
801 };
802 
803 #undef dirty
804 #undef sc
805 #undef unevict
806 #undef mlock
807 #undef writeback
808 #undef lru
809 #undef swapbacked
810 #undef head
811 #undef tail
812 #undef compound
813 #undef slab
814 #undef reserved
815 
action_result(unsigned long pfn,char * msg,int result)816 static void action_result(unsigned long pfn, char *msg, int result)
817 {
818 	struct page *page = pfn_to_page(pfn);
819 
820 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
821 		pfn,
822 		PageDirty(page) ? "dirty " : "",
823 		msg, action_name[result]);
824 }
825 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)826 static int page_action(struct page_state *ps, struct page *p,
827 			unsigned long pfn)
828 {
829 	int result;
830 	int count;
831 
832 	result = ps->action(p, pfn);
833 	action_result(pfn, ps->msg, result);
834 
835 	count = page_count(p) - 1;
836 	if (ps->action == me_swapcache_dirty && result == DELAYED)
837 		count--;
838 	if (count != 0) {
839 		printk(KERN_ERR
840 		       "MCE %#lx: %s page still referenced by %d users\n",
841 		       pfn, ps->msg, count);
842 		result = FAILED;
843 	}
844 
845 	/* Could do more checks here if page looks ok */
846 	/*
847 	 * Could adjust zone counters here to correct for the missing page.
848 	 */
849 
850 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
851 }
852 
853 /*
854  * Do all that is necessary to remove user space mappings. Unmap
855  * the pages and send SIGBUS to the processes if the data was dirty.
856  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int trapno,int flags)857 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
858 				  int trapno, int flags)
859 {
860 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
861 	struct address_space *mapping;
862 	LIST_HEAD(tokill);
863 	int ret;
864 	int kill = 1, forcekill;
865 	struct page *hpage = compound_head(p);
866 	struct page *ppage;
867 
868 	if (PageReserved(p) || PageSlab(p))
869 		return SWAP_SUCCESS;
870 
871 	/*
872 	 * This check implies we don't kill processes if their pages
873 	 * are in the swap cache early. Those are always late kills.
874 	 */
875 	if (!page_mapped(hpage))
876 		return SWAP_SUCCESS;
877 
878 	if (PageKsm(p))
879 		return SWAP_FAIL;
880 
881 	if (PageSwapCache(p)) {
882 		printk(KERN_ERR
883 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
884 		ttu |= TTU_IGNORE_HWPOISON;
885 	}
886 
887 	/*
888 	 * Propagate the dirty bit from PTEs to struct page first, because we
889 	 * need this to decide if we should kill or just drop the page.
890 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
891 	 * be called inside page lock (it's recommended but not enforced).
892 	 */
893 	mapping = page_mapping(hpage);
894 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
895 	    mapping_cap_writeback_dirty(mapping)) {
896 		if (page_mkclean(hpage)) {
897 			SetPageDirty(hpage);
898 		} else {
899 			kill = 0;
900 			ttu |= TTU_IGNORE_HWPOISON;
901 			printk(KERN_INFO
902 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
903 				pfn);
904 		}
905 	}
906 
907 	/*
908 	 * ppage: poisoned page
909 	 *   if p is regular page(4k page)
910 	 *        ppage == real poisoned page;
911 	 *   else p is hugetlb or THP, ppage == head page.
912 	 */
913 	ppage = hpage;
914 
915 	if (PageTransHuge(hpage)) {
916 		/*
917 		 * Verify that this isn't a hugetlbfs head page, the check for
918 		 * PageAnon is just for avoid tripping a split_huge_page
919 		 * internal debug check, as split_huge_page refuses to deal with
920 		 * anything that isn't an anon page. PageAnon can't go away fro
921 		 * under us because we hold a refcount on the hpage, without a
922 		 * refcount on the hpage. split_huge_page can't be safely called
923 		 * in the first place, having a refcount on the tail isn't
924 		 * enough * to be safe.
925 		 */
926 		if (!PageHuge(hpage) && PageAnon(hpage)) {
927 			if (unlikely(split_huge_page(hpage))) {
928 				/*
929 				 * FIXME: if splitting THP is failed, it is
930 				 * better to stop the following operation rather
931 				 * than causing panic by unmapping. System might
932 				 * survive if the page is freed later.
933 				 */
934 				printk(KERN_INFO
935 					"MCE %#lx: failed to split THP\n", pfn);
936 
937 				BUG_ON(!PageHWPoison(p));
938 				return SWAP_FAIL;
939 			}
940 			/* THP is split, so ppage should be the real poisoned page. */
941 			ppage = p;
942 		}
943 	}
944 
945 	/*
946 	 * First collect all the processes that have the page
947 	 * mapped in dirty form.  This has to be done before try_to_unmap,
948 	 * because ttu takes the rmap data structures down.
949 	 *
950 	 * Error handling: We ignore errors here because
951 	 * there's nothing that can be done.
952 	 */
953 	if (kill)
954 		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
955 
956 	if (hpage != ppage)
957 		lock_page(ppage);
958 
959 	ret = try_to_unmap(ppage, ttu);
960 	if (ret != SWAP_SUCCESS)
961 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
962 				pfn, page_mapcount(ppage));
963 
964 	if (hpage != ppage)
965 		unlock_page(ppage);
966 
967 	/*
968 	 * Now that the dirty bit has been propagated to the
969 	 * struct page and all unmaps done we can decide if
970 	 * killing is needed or not.  Only kill when the page
971 	 * was dirty or the process is not restartable,
972 	 * otherwise the tokill list is merely
973 	 * freed.  When there was a problem unmapping earlier
974 	 * use a more force-full uncatchable kill to prevent
975 	 * any accesses to the poisoned memory.
976 	 */
977 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
978 	kill_procs(&tokill, forcekill, trapno,
979 		      ret != SWAP_SUCCESS, p, pfn, flags);
980 
981 	return ret;
982 }
983 
set_page_hwpoison_huge_page(struct page * hpage)984 static void set_page_hwpoison_huge_page(struct page *hpage)
985 {
986 	int i;
987 	int nr_pages = 1 << compound_trans_order(hpage);
988 	for (i = 0; i < nr_pages; i++)
989 		SetPageHWPoison(hpage + i);
990 }
991 
clear_page_hwpoison_huge_page(struct page * hpage)992 static void clear_page_hwpoison_huge_page(struct page *hpage)
993 {
994 	int i;
995 	int nr_pages = 1 << compound_trans_order(hpage);
996 	for (i = 0; i < nr_pages; i++)
997 		ClearPageHWPoison(hpage + i);
998 }
999 
1000 /**
1001  * memory_failure - Handle memory failure of a page.
1002  * @pfn: Page Number of the corrupted page
1003  * @trapno: Trap number reported in the signal to user space.
1004  * @flags: fine tune action taken
1005  *
1006  * This function is called by the low level machine check code
1007  * of an architecture when it detects hardware memory corruption
1008  * of a page. It tries its best to recover, which includes
1009  * dropping pages, killing processes etc.
1010  *
1011  * The function is primarily of use for corruptions that
1012  * happen outside the current execution context (e.g. when
1013  * detected by a background scrubber)
1014  *
1015  * Must run in process context (e.g. a work queue) with interrupts
1016  * enabled and no spinlocks hold.
1017  */
memory_failure(unsigned long pfn,int trapno,int flags)1018 int memory_failure(unsigned long pfn, int trapno, int flags)
1019 {
1020 	struct page_state *ps;
1021 	struct page *p;
1022 	struct page *hpage;
1023 	int res;
1024 	unsigned int nr_pages;
1025 
1026 	if (!sysctl_memory_failure_recovery)
1027 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1028 
1029 	if (!pfn_valid(pfn)) {
1030 		printk(KERN_ERR
1031 		       "MCE %#lx: memory outside kernel control\n",
1032 		       pfn);
1033 		return -ENXIO;
1034 	}
1035 
1036 	p = pfn_to_page(pfn);
1037 	hpage = compound_head(p);
1038 	if (TestSetPageHWPoison(p)) {
1039 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1040 		return 0;
1041 	}
1042 
1043 	nr_pages = 1 << compound_trans_order(hpage);
1044 	atomic_long_add(nr_pages, &mce_bad_pages);
1045 
1046 	/*
1047 	 * We need/can do nothing about count=0 pages.
1048 	 * 1) it's a free page, and therefore in safe hand:
1049 	 *    prep_new_page() will be the gate keeper.
1050 	 * 2) it's a free hugepage, which is also safe:
1051 	 *    an affected hugepage will be dequeued from hugepage freelist,
1052 	 *    so there's no concern about reusing it ever after.
1053 	 * 3) it's part of a non-compound high order page.
1054 	 *    Implies some kernel user: cannot stop them from
1055 	 *    R/W the page; let's pray that the page has been
1056 	 *    used and will be freed some time later.
1057 	 * In fact it's dangerous to directly bump up page count from 0,
1058 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1059 	 */
1060 	if (!(flags & MF_COUNT_INCREASED) &&
1061 		!get_page_unless_zero(hpage)) {
1062 		if (is_free_buddy_page(p)) {
1063 			action_result(pfn, "free buddy", DELAYED);
1064 			return 0;
1065 		} else if (PageHuge(hpage)) {
1066 			/*
1067 			 * Check "filter hit" and "race with other subpage."
1068 			 */
1069 			lock_page(hpage);
1070 			if (PageHWPoison(hpage)) {
1071 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1072 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1073 					atomic_long_sub(nr_pages, &mce_bad_pages);
1074 					unlock_page(hpage);
1075 					return 0;
1076 				}
1077 			}
1078 			set_page_hwpoison_huge_page(hpage);
1079 			res = dequeue_hwpoisoned_huge_page(hpage);
1080 			action_result(pfn, "free huge",
1081 				      res ? IGNORED : DELAYED);
1082 			unlock_page(hpage);
1083 			return res;
1084 		} else {
1085 			action_result(pfn, "high order kernel", IGNORED);
1086 			return -EBUSY;
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * We ignore non-LRU pages for good reasons.
1092 	 * - PG_locked is only well defined for LRU pages and a few others
1093 	 * - to avoid races with __set_page_locked()
1094 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1095 	 * The check (unnecessarily) ignores LRU pages being isolated and
1096 	 * walked by the page reclaim code, however that's not a big loss.
1097 	 */
1098 	if (!PageHuge(p) && !PageTransTail(p)) {
1099 		if (!PageLRU(p))
1100 			shake_page(p, 0);
1101 		if (!PageLRU(p)) {
1102 			/*
1103 			 * shake_page could have turned it free.
1104 			 */
1105 			if (is_free_buddy_page(p)) {
1106 				action_result(pfn, "free buddy, 2nd try",
1107 						DELAYED);
1108 				return 0;
1109 			}
1110 			action_result(pfn, "non LRU", IGNORED);
1111 			put_page(p);
1112 			return -EBUSY;
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * Lock the page and wait for writeback to finish.
1118 	 * It's very difficult to mess with pages currently under IO
1119 	 * and in many cases impossible, so we just avoid it here.
1120 	 */
1121 	lock_page(hpage);
1122 
1123 	/*
1124 	 * unpoison always clear PG_hwpoison inside page lock
1125 	 */
1126 	if (!PageHWPoison(p)) {
1127 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1128 		atomic_long_sub(nr_pages, &mce_bad_pages);
1129 		put_page(hpage);
1130 		res = 0;
1131 		goto out;
1132 	}
1133 	if (hwpoison_filter(p)) {
1134 		if (TestClearPageHWPoison(p))
1135 			atomic_long_sub(nr_pages, &mce_bad_pages);
1136 		unlock_page(hpage);
1137 		put_page(hpage);
1138 		return 0;
1139 	}
1140 
1141 	/*
1142 	 * For error on the tail page, we should set PG_hwpoison
1143 	 * on the head page to show that the hugepage is hwpoisoned
1144 	 */
1145 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1146 		action_result(pfn, "hugepage already hardware poisoned",
1147 				IGNORED);
1148 		unlock_page(hpage);
1149 		put_page(hpage);
1150 		return 0;
1151 	}
1152 	/*
1153 	 * Set PG_hwpoison on all pages in an error hugepage,
1154 	 * because containment is done in hugepage unit for now.
1155 	 * Since we have done TestSetPageHWPoison() for the head page with
1156 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1157 	 */
1158 	if (PageHuge(p))
1159 		set_page_hwpoison_huge_page(hpage);
1160 
1161 	wait_on_page_writeback(p);
1162 
1163 	/*
1164 	 * Now take care of user space mappings.
1165 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1166 	 */
1167 	if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
1168 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1169 		res = -EBUSY;
1170 		goto out;
1171 	}
1172 
1173 	/*
1174 	 * Torn down by someone else?
1175 	 */
1176 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1177 		action_result(pfn, "already truncated LRU", IGNORED);
1178 		res = -EBUSY;
1179 		goto out;
1180 	}
1181 
1182 	res = -EBUSY;
1183 	for (ps = error_states;; ps++) {
1184 		if ((p->flags & ps->mask) == ps->res) {
1185 			res = page_action(ps, p, pfn);
1186 			break;
1187 		}
1188 	}
1189 out:
1190 	unlock_page(hpage);
1191 	return res;
1192 }
1193 EXPORT_SYMBOL_GPL(memory_failure);
1194 
1195 #define MEMORY_FAILURE_FIFO_ORDER	4
1196 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1197 
1198 struct memory_failure_entry {
1199 	unsigned long pfn;
1200 	int trapno;
1201 	int flags;
1202 };
1203 
1204 struct memory_failure_cpu {
1205 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1206 		      MEMORY_FAILURE_FIFO_SIZE);
1207 	spinlock_t lock;
1208 	struct work_struct work;
1209 };
1210 
1211 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1212 
1213 /**
1214  * memory_failure_queue - Schedule handling memory failure of a page.
1215  * @pfn: Page Number of the corrupted page
1216  * @trapno: Trap number reported in the signal to user space.
1217  * @flags: Flags for memory failure handling
1218  *
1219  * This function is called by the low level hardware error handler
1220  * when it detects hardware memory corruption of a page. It schedules
1221  * the recovering of error page, including dropping pages, killing
1222  * processes etc.
1223  *
1224  * The function is primarily of use for corruptions that
1225  * happen outside the current execution context (e.g. when
1226  * detected by a background scrubber)
1227  *
1228  * Can run in IRQ context.
1229  */
memory_failure_queue(unsigned long pfn,int trapno,int flags)1230 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1231 {
1232 	struct memory_failure_cpu *mf_cpu;
1233 	unsigned long proc_flags;
1234 	struct memory_failure_entry entry = {
1235 		.pfn =		pfn,
1236 		.trapno =	trapno,
1237 		.flags =	flags,
1238 	};
1239 
1240 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1241 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1242 	if (kfifo_put(&mf_cpu->fifo, &entry))
1243 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1244 	else
1245 		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1246 		       pfn);
1247 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1248 	put_cpu_var(memory_failure_cpu);
1249 }
1250 EXPORT_SYMBOL_GPL(memory_failure_queue);
1251 
memory_failure_work_func(struct work_struct * work)1252 static void memory_failure_work_func(struct work_struct *work)
1253 {
1254 	struct memory_failure_cpu *mf_cpu;
1255 	struct memory_failure_entry entry = { 0, };
1256 	unsigned long proc_flags;
1257 	int gotten;
1258 
1259 	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1260 	for (;;) {
1261 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1262 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1263 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1264 		if (!gotten)
1265 			break;
1266 		memory_failure(entry.pfn, entry.trapno, entry.flags);
1267 	}
1268 }
1269 
memory_failure_init(void)1270 static int __init memory_failure_init(void)
1271 {
1272 	struct memory_failure_cpu *mf_cpu;
1273 	int cpu;
1274 
1275 	for_each_possible_cpu(cpu) {
1276 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1277 		spin_lock_init(&mf_cpu->lock);
1278 		INIT_KFIFO(mf_cpu->fifo);
1279 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1280 	}
1281 
1282 	return 0;
1283 }
1284 core_initcall(memory_failure_init);
1285 
1286 /**
1287  * unpoison_memory - Unpoison a previously poisoned page
1288  * @pfn: Page number of the to be unpoisoned page
1289  *
1290  * Software-unpoison a page that has been poisoned by
1291  * memory_failure() earlier.
1292  *
1293  * This is only done on the software-level, so it only works
1294  * for linux injected failures, not real hardware failures
1295  *
1296  * Returns 0 for success, otherwise -errno.
1297  */
unpoison_memory(unsigned long pfn)1298 int unpoison_memory(unsigned long pfn)
1299 {
1300 	struct page *page;
1301 	struct page *p;
1302 	int freeit = 0;
1303 	unsigned int nr_pages;
1304 
1305 	if (!pfn_valid(pfn))
1306 		return -ENXIO;
1307 
1308 	p = pfn_to_page(pfn);
1309 	page = compound_head(p);
1310 
1311 	if (!PageHWPoison(p)) {
1312 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1313 		return 0;
1314 	}
1315 
1316 	nr_pages = 1 << compound_trans_order(page);
1317 
1318 	if (!get_page_unless_zero(page)) {
1319 		/*
1320 		 * Since HWPoisoned hugepage should have non-zero refcount,
1321 		 * race between memory failure and unpoison seems to happen.
1322 		 * In such case unpoison fails and memory failure runs
1323 		 * to the end.
1324 		 */
1325 		if (PageHuge(page)) {
1326 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1327 			return 0;
1328 		}
1329 		if (TestClearPageHWPoison(p))
1330 			atomic_long_sub(nr_pages, &mce_bad_pages);
1331 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1332 		return 0;
1333 	}
1334 
1335 	lock_page(page);
1336 	/*
1337 	 * This test is racy because PG_hwpoison is set outside of page lock.
1338 	 * That's acceptable because that won't trigger kernel panic. Instead,
1339 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1340 	 * the free buddy page pool.
1341 	 */
1342 	if (TestClearPageHWPoison(page)) {
1343 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1344 		atomic_long_sub(nr_pages, &mce_bad_pages);
1345 		freeit = 1;
1346 		if (PageHuge(page))
1347 			clear_page_hwpoison_huge_page(page);
1348 	}
1349 	unlock_page(page);
1350 
1351 	put_page(page);
1352 	if (freeit)
1353 		put_page(page);
1354 
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL(unpoison_memory);
1358 
new_page(struct page * p,unsigned long private,int ** x)1359 static struct page *new_page(struct page *p, unsigned long private, int **x)
1360 {
1361 	int nid = page_to_nid(p);
1362 	if (PageHuge(p))
1363 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1364 						   nid);
1365 	else
1366 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1367 }
1368 
1369 /*
1370  * Safely get reference count of an arbitrary page.
1371  * Returns 0 for a free page, -EIO for a zero refcount page
1372  * that is not free, and 1 for any other page type.
1373  * For 1 the page is returned with increased page count, otherwise not.
1374  */
get_any_page(struct page * p,unsigned long pfn,int flags)1375 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1376 {
1377 	int ret;
1378 
1379 	if (flags & MF_COUNT_INCREASED)
1380 		return 1;
1381 
1382 	/*
1383 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1384 	 * This is a big hammer, a better would be nicer.
1385 	 */
1386 	lock_memory_hotplug();
1387 
1388 	/*
1389 	 * Isolate the page, so that it doesn't get reallocated if it
1390 	 * was free.
1391 	 */
1392 	set_migratetype_isolate(p);
1393 	/*
1394 	 * When the target page is a free hugepage, just remove it
1395 	 * from free hugepage list.
1396 	 */
1397 	if (!get_page_unless_zero(compound_head(p))) {
1398 		if (PageHuge(p)) {
1399 			pr_info("get_any_page: %#lx free huge page\n", pfn);
1400 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1401 		} else if (is_free_buddy_page(p)) {
1402 			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1403 			/* Set hwpoison bit while page is still isolated */
1404 			SetPageHWPoison(p);
1405 			ret = 0;
1406 		} else {
1407 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1408 				pfn, p->flags);
1409 			ret = -EIO;
1410 		}
1411 	} else {
1412 		/* Not a free page */
1413 		ret = 1;
1414 	}
1415 	unset_migratetype_isolate(p);
1416 	unlock_memory_hotplug();
1417 	return ret;
1418 }
1419 
soft_offline_huge_page(struct page * page,int flags)1420 static int soft_offline_huge_page(struct page *page, int flags)
1421 {
1422 	int ret;
1423 	unsigned long pfn = page_to_pfn(page);
1424 	struct page *hpage = compound_head(page);
1425 	LIST_HEAD(pagelist);
1426 
1427 	ret = get_any_page(page, pfn, flags);
1428 	if (ret < 0)
1429 		return ret;
1430 	if (ret == 0)
1431 		goto done;
1432 
1433 	if (PageHWPoison(hpage)) {
1434 		put_page(hpage);
1435 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1436 		return -EBUSY;
1437 	}
1438 
1439 	/* Keep page count to indicate a given hugepage is isolated. */
1440 
1441 	list_add(&hpage->lru, &pagelist);
1442 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, false,
1443 				MIGRATE_SYNC);
1444 	if (ret) {
1445 		struct page *page1, *page2;
1446 		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1447 			put_page(page1);
1448 
1449 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1450 			pfn, ret, page->flags);
1451 		if (ret > 0)
1452 			ret = -EIO;
1453 		return ret;
1454 	}
1455 done:
1456 	/* overcommit hugetlb page will be freed to buddy */
1457 	if (PageHuge(hpage)) {
1458 		if (!PageHWPoison(hpage))
1459 			atomic_long_add(1 << compound_trans_order(hpage),
1460 					&mce_bad_pages);
1461 		set_page_hwpoison_huge_page(hpage);
1462 		dequeue_hwpoisoned_huge_page(hpage);
1463 	} else {
1464 		SetPageHWPoison(page);
1465 		atomic_long_inc(&mce_bad_pages);
1466 	}
1467 
1468 	/* keep elevated page count for bad page */
1469 	return ret;
1470 }
1471 
1472 /**
1473  * soft_offline_page - Soft offline a page.
1474  * @page: page to offline
1475  * @flags: flags. Same as memory_failure().
1476  *
1477  * Returns 0 on success, otherwise negated errno.
1478  *
1479  * Soft offline a page, by migration or invalidation,
1480  * without killing anything. This is for the case when
1481  * a page is not corrupted yet (so it's still valid to access),
1482  * but has had a number of corrected errors and is better taken
1483  * out.
1484  *
1485  * The actual policy on when to do that is maintained by
1486  * user space.
1487  *
1488  * This should never impact any application or cause data loss,
1489  * however it might take some time.
1490  *
1491  * This is not a 100% solution for all memory, but tries to be
1492  * ``good enough'' for the majority of memory.
1493  */
soft_offline_page(struct page * page,int flags)1494 int soft_offline_page(struct page *page, int flags)
1495 {
1496 	int ret;
1497 	unsigned long pfn = page_to_pfn(page);
1498 	struct page *hpage = compound_trans_head(page);
1499 
1500 	if (PageHuge(page))
1501 		return soft_offline_huge_page(page, flags);
1502 	if (PageTransHuge(hpage)) {
1503 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1504 			pr_info("soft offline: %#lx: failed to split THP\n",
1505 				pfn);
1506 			return -EBUSY;
1507 		}
1508 	}
1509 
1510 	ret = get_any_page(page, pfn, flags);
1511 	if (ret < 0)
1512 		return ret;
1513 	if (ret == 0)
1514 		goto done;
1515 
1516 	/*
1517 	 * Page cache page we can handle?
1518 	 */
1519 	if (!PageLRU(page)) {
1520 		/*
1521 		 * Try to free it.
1522 		 */
1523 		put_page(page);
1524 		shake_page(page, 1);
1525 
1526 		/*
1527 		 * Did it turn free?
1528 		 */
1529 		ret = get_any_page(page, pfn, 0);
1530 		if (ret < 0)
1531 			return ret;
1532 		if (ret == 0)
1533 			goto done;
1534 	}
1535 	if (!PageLRU(page)) {
1536 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1537 			pfn, page->flags);
1538 		return -EIO;
1539 	}
1540 
1541 	lock_page(page);
1542 	wait_on_page_writeback(page);
1543 
1544 	/*
1545 	 * Synchronized using the page lock with memory_failure()
1546 	 */
1547 	if (PageHWPoison(page)) {
1548 		unlock_page(page);
1549 		put_page(page);
1550 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1551 		return -EBUSY;
1552 	}
1553 
1554 	/*
1555 	 * Try to invalidate first. This should work for
1556 	 * non dirty unmapped page cache pages.
1557 	 */
1558 	ret = invalidate_inode_page(page);
1559 	unlock_page(page);
1560 	/*
1561 	 * RED-PEN would be better to keep it isolated here, but we
1562 	 * would need to fix isolation locking first.
1563 	 */
1564 	if (ret == 1) {
1565 		put_page(page);
1566 		ret = 0;
1567 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1568 		goto done;
1569 	}
1570 
1571 	/*
1572 	 * Simple invalidation didn't work.
1573 	 * Try to migrate to a new page instead. migrate.c
1574 	 * handles a large number of cases for us.
1575 	 */
1576 	ret = isolate_lru_page(page);
1577 	/*
1578 	 * Drop page reference which is came from get_any_page()
1579 	 * successful isolate_lru_page() already took another one.
1580 	 */
1581 	put_page(page);
1582 	if (!ret) {
1583 		LIST_HEAD(pagelist);
1584 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1585 					    page_is_file_cache(page));
1586 		list_add(&page->lru, &pagelist);
1587 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1588 							false, MIGRATE_SYNC);
1589 		if (ret) {
1590 			putback_lru_pages(&pagelist);
1591 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1592 				pfn, ret, page->flags);
1593 			if (ret > 0)
1594 				ret = -EIO;
1595 		}
1596 	} else {
1597 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1598 			pfn, ret, page_count(page), page->flags);
1599 	}
1600 	if (ret)
1601 		return ret;
1602 
1603 done:
1604 	atomic_long_add(1, &mce_bad_pages);
1605 	SetPageHWPoison(page);
1606 	/* keep elevated page count for bad page */
1607 	return ret;
1608 }
1609