1 /*
2 * mrst.c: Intel Moorestown platform specific setup code
3 *
4 * (C) Copyright 2008 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) "mrst: " fmt
14
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/interrupt.h>
18 #include <linux/scatterlist.h>
19 #include <linux/sfi.h>
20 #include <linux/intel_pmic_gpio.h>
21 #include <linux/spi/spi.h>
22 #include <linux/i2c.h>
23 #include <linux/i2c/pca953x.h>
24 #include <linux/gpio_keys.h>
25 #include <linux/input.h>
26 #include <linux/platform_device.h>
27 #include <linux/irq.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/mfd/intel_msic.h>
31 #include <linux/gpio.h>
32 #include <linux/i2c/tc35876x.h>
33
34 #include <asm/setup.h>
35 #include <asm/mpspec_def.h>
36 #include <asm/hw_irq.h>
37 #include <asm/apic.h>
38 #include <asm/io_apic.h>
39 #include <asm/mrst.h>
40 #include <asm/mrst-vrtc.h>
41 #include <asm/io.h>
42 #include <asm/i8259.h>
43 #include <asm/intel_scu_ipc.h>
44 #include <asm/apb_timer.h>
45 #include <asm/reboot.h>
46
47 /*
48 * the clockevent devices on Moorestown/Medfield can be APBT or LAPIC clock,
49 * cmdline option x86_mrst_timer can be used to override the configuration
50 * to prefer one or the other.
51 * at runtime, there are basically three timer configurations:
52 * 1. per cpu apbt clock only
53 * 2. per cpu always-on lapic clocks only, this is Penwell/Medfield only
54 * 3. per cpu lapic clock (C3STOP) and one apbt clock, with broadcast.
55 *
56 * by default (without cmdline option), platform code first detects cpu type
57 * to see if we are on lincroft or penwell, then set up both lapic or apbt
58 * clocks accordingly.
59 * i.e. by default, medfield uses configuration #2, moorestown uses #1.
60 * config #3 is supported but not recommended on medfield.
61 *
62 * rating and feature summary:
63 * lapic (with C3STOP) --------- 100
64 * apbt (always-on) ------------ 110
65 * lapic (always-on,ARAT) ------ 150
66 */
67
68 __cpuinitdata enum mrst_timer_options mrst_timer_options;
69
70 static u32 sfi_mtimer_usage[SFI_MTMR_MAX_NUM];
71 static struct sfi_timer_table_entry sfi_mtimer_array[SFI_MTMR_MAX_NUM];
72 enum mrst_cpu_type __mrst_cpu_chip;
73 EXPORT_SYMBOL_GPL(__mrst_cpu_chip);
74
75 int sfi_mtimer_num;
76
77 struct sfi_rtc_table_entry sfi_mrtc_array[SFI_MRTC_MAX];
78 EXPORT_SYMBOL_GPL(sfi_mrtc_array);
79 int sfi_mrtc_num;
80
mrst_power_off(void)81 static void mrst_power_off(void)
82 {
83 }
84
mrst_reboot(void)85 static void mrst_reboot(void)
86 {
87 intel_scu_ipc_simple_command(IPCMSG_COLD_BOOT, 0);
88 }
89
90 /* parse all the mtimer info to a static mtimer array */
sfi_parse_mtmr(struct sfi_table_header * table)91 static int __init sfi_parse_mtmr(struct sfi_table_header *table)
92 {
93 struct sfi_table_simple *sb;
94 struct sfi_timer_table_entry *pentry;
95 struct mpc_intsrc mp_irq;
96 int totallen;
97
98 sb = (struct sfi_table_simple *)table;
99 if (!sfi_mtimer_num) {
100 sfi_mtimer_num = SFI_GET_NUM_ENTRIES(sb,
101 struct sfi_timer_table_entry);
102 pentry = (struct sfi_timer_table_entry *) sb->pentry;
103 totallen = sfi_mtimer_num * sizeof(*pentry);
104 memcpy(sfi_mtimer_array, pentry, totallen);
105 }
106
107 pr_debug("SFI MTIMER info (num = %d):\n", sfi_mtimer_num);
108 pentry = sfi_mtimer_array;
109 for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) {
110 pr_debug("timer[%d]: paddr = 0x%08x, freq = %dHz,"
111 " irq = %d\n", totallen, (u32)pentry->phys_addr,
112 pentry->freq_hz, pentry->irq);
113 if (!pentry->irq)
114 continue;
115 mp_irq.type = MP_INTSRC;
116 mp_irq.irqtype = mp_INT;
117 /* triggering mode edge bit 2-3, active high polarity bit 0-1 */
118 mp_irq.irqflag = 5;
119 mp_irq.srcbus = MP_BUS_ISA;
120 mp_irq.srcbusirq = pentry->irq; /* IRQ */
121 mp_irq.dstapic = MP_APIC_ALL;
122 mp_irq.dstirq = pentry->irq;
123 mp_save_irq(&mp_irq);
124 }
125
126 return 0;
127 }
128
sfi_get_mtmr(int hint)129 struct sfi_timer_table_entry *sfi_get_mtmr(int hint)
130 {
131 int i;
132 if (hint < sfi_mtimer_num) {
133 if (!sfi_mtimer_usage[hint]) {
134 pr_debug("hint taken for timer %d irq %d\n",\
135 hint, sfi_mtimer_array[hint].irq);
136 sfi_mtimer_usage[hint] = 1;
137 return &sfi_mtimer_array[hint];
138 }
139 }
140 /* take the first timer available */
141 for (i = 0; i < sfi_mtimer_num;) {
142 if (!sfi_mtimer_usage[i]) {
143 sfi_mtimer_usage[i] = 1;
144 return &sfi_mtimer_array[i];
145 }
146 i++;
147 }
148 return NULL;
149 }
150
sfi_free_mtmr(struct sfi_timer_table_entry * mtmr)151 void sfi_free_mtmr(struct sfi_timer_table_entry *mtmr)
152 {
153 int i;
154 for (i = 0; i < sfi_mtimer_num;) {
155 if (mtmr->irq == sfi_mtimer_array[i].irq) {
156 sfi_mtimer_usage[i] = 0;
157 return;
158 }
159 i++;
160 }
161 }
162
163 /* parse all the mrtc info to a global mrtc array */
sfi_parse_mrtc(struct sfi_table_header * table)164 int __init sfi_parse_mrtc(struct sfi_table_header *table)
165 {
166 struct sfi_table_simple *sb;
167 struct sfi_rtc_table_entry *pentry;
168 struct mpc_intsrc mp_irq;
169
170 int totallen;
171
172 sb = (struct sfi_table_simple *)table;
173 if (!sfi_mrtc_num) {
174 sfi_mrtc_num = SFI_GET_NUM_ENTRIES(sb,
175 struct sfi_rtc_table_entry);
176 pentry = (struct sfi_rtc_table_entry *)sb->pentry;
177 totallen = sfi_mrtc_num * sizeof(*pentry);
178 memcpy(sfi_mrtc_array, pentry, totallen);
179 }
180
181 pr_debug("SFI RTC info (num = %d):\n", sfi_mrtc_num);
182 pentry = sfi_mrtc_array;
183 for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) {
184 pr_debug("RTC[%d]: paddr = 0x%08x, irq = %d\n",
185 totallen, (u32)pentry->phys_addr, pentry->irq);
186 mp_irq.type = MP_INTSRC;
187 mp_irq.irqtype = mp_INT;
188 mp_irq.irqflag = 0xf; /* level trigger and active low */
189 mp_irq.srcbus = MP_BUS_ISA;
190 mp_irq.srcbusirq = pentry->irq; /* IRQ */
191 mp_irq.dstapic = MP_APIC_ALL;
192 mp_irq.dstirq = pentry->irq;
193 mp_save_irq(&mp_irq);
194 }
195 return 0;
196 }
197
mrst_calibrate_tsc(void)198 static unsigned long __init mrst_calibrate_tsc(void)
199 {
200 unsigned long fast_calibrate;
201 u32 lo, hi, ratio, fsb;
202
203 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
204 pr_debug("IA32 perf status is 0x%x, 0x%0x\n", lo, hi);
205 ratio = (hi >> 8) & 0x1f;
206 pr_debug("ratio is %d\n", ratio);
207 if (!ratio) {
208 pr_err("read a zero ratio, should be incorrect!\n");
209 pr_err("force tsc ratio to 16 ...\n");
210 ratio = 16;
211 }
212 rdmsr(MSR_FSB_FREQ, lo, hi);
213 if ((lo & 0x7) == 0x7)
214 fsb = PENWELL_FSB_FREQ_83SKU;
215 else
216 fsb = PENWELL_FSB_FREQ_100SKU;
217 fast_calibrate = ratio * fsb;
218 pr_debug("read penwell tsc %lu khz\n", fast_calibrate);
219 lapic_timer_frequency = fsb * 1000 / HZ;
220 /* mark tsc clocksource as reliable */
221 set_cpu_cap(&boot_cpu_data, X86_FEATURE_TSC_RELIABLE);
222
223 if (fast_calibrate)
224 return fast_calibrate;
225
226 return 0;
227 }
228
mrst_time_init(void)229 static void __init mrst_time_init(void)
230 {
231 sfi_table_parse(SFI_SIG_MTMR, NULL, NULL, sfi_parse_mtmr);
232 switch (mrst_timer_options) {
233 case MRST_TIMER_APBT_ONLY:
234 break;
235 case MRST_TIMER_LAPIC_APBT:
236 x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
237 x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
238 break;
239 default:
240 if (!boot_cpu_has(X86_FEATURE_ARAT))
241 break;
242 x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
243 x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
244 return;
245 }
246 /* we need at least one APB timer */
247 pre_init_apic_IRQ0();
248 apbt_time_init();
249 }
250
mrst_arch_setup(void)251 static void __cpuinit mrst_arch_setup(void)
252 {
253 if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x27)
254 __mrst_cpu_chip = MRST_CPU_CHIP_PENWELL;
255 else {
256 pr_err("Unknown Intel MID CPU (%d:%d), default to Penwell\n",
257 boot_cpu_data.x86, boot_cpu_data.x86_model);
258 __mrst_cpu_chip = MRST_CPU_CHIP_PENWELL;
259 }
260 }
261
262 /* MID systems don't have i8042 controller */
mrst_i8042_detect(void)263 static int mrst_i8042_detect(void)
264 {
265 return 0;
266 }
267
268 /*
269 * Moorestown does not have external NMI source nor port 0x61 to report
270 * NMI status. The possible NMI sources are from pmu as a result of NMI
271 * watchdog or lock debug. Reading io port 0x61 results in 0xff which
272 * misled NMI handler.
273 */
mrst_get_nmi_reason(void)274 static unsigned char mrst_get_nmi_reason(void)
275 {
276 return 0;
277 }
278
279 /*
280 * Moorestown specific x86_init function overrides and early setup
281 * calls.
282 */
x86_mrst_early_setup(void)283 void __init x86_mrst_early_setup(void)
284 {
285 x86_init.resources.probe_roms = x86_init_noop;
286 x86_init.resources.reserve_resources = x86_init_noop;
287
288 x86_init.timers.timer_init = mrst_time_init;
289 x86_init.timers.setup_percpu_clockev = x86_init_noop;
290
291 x86_init.irqs.pre_vector_init = x86_init_noop;
292
293 x86_init.oem.arch_setup = mrst_arch_setup;
294
295 x86_cpuinit.setup_percpu_clockev = apbt_setup_secondary_clock;
296
297 x86_platform.calibrate_tsc = mrst_calibrate_tsc;
298 x86_platform.i8042_detect = mrst_i8042_detect;
299 x86_init.timers.wallclock_init = mrst_rtc_init;
300 x86_platform.get_nmi_reason = mrst_get_nmi_reason;
301
302 x86_init.pci.init = pci_mrst_init;
303 x86_init.pci.fixup_irqs = x86_init_noop;
304
305 legacy_pic = &null_legacy_pic;
306
307 /* Moorestown specific power_off/restart method */
308 pm_power_off = mrst_power_off;
309 machine_ops.emergency_restart = mrst_reboot;
310
311 /* Avoid searching for BIOS MP tables */
312 x86_init.mpparse.find_smp_config = x86_init_noop;
313 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
314 set_bit(MP_BUS_ISA, mp_bus_not_pci);
315 }
316
317 /*
318 * if user does not want to use per CPU apb timer, just give it a lower rating
319 * than local apic timer and skip the late per cpu timer init.
320 */
setup_x86_mrst_timer(char * arg)321 static inline int __init setup_x86_mrst_timer(char *arg)
322 {
323 if (!arg)
324 return -EINVAL;
325
326 if (strcmp("apbt_only", arg) == 0)
327 mrst_timer_options = MRST_TIMER_APBT_ONLY;
328 else if (strcmp("lapic_and_apbt", arg) == 0)
329 mrst_timer_options = MRST_TIMER_LAPIC_APBT;
330 else {
331 pr_warning("X86 MRST timer option %s not recognised"
332 " use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
333 arg);
334 return -EINVAL;
335 }
336 return 0;
337 }
338 __setup("x86_mrst_timer=", setup_x86_mrst_timer);
339
340 /*
341 * Parsing GPIO table first, since the DEVS table will need this table
342 * to map the pin name to the actual pin.
343 */
344 static struct sfi_gpio_table_entry *gpio_table;
345 static int gpio_num_entry;
346
sfi_parse_gpio(struct sfi_table_header * table)347 static int __init sfi_parse_gpio(struct sfi_table_header *table)
348 {
349 struct sfi_table_simple *sb;
350 struct sfi_gpio_table_entry *pentry;
351 int num, i;
352
353 if (gpio_table)
354 return 0;
355 sb = (struct sfi_table_simple *)table;
356 num = SFI_GET_NUM_ENTRIES(sb, struct sfi_gpio_table_entry);
357 pentry = (struct sfi_gpio_table_entry *)sb->pentry;
358
359 gpio_table = (struct sfi_gpio_table_entry *)
360 kmalloc(num * sizeof(*pentry), GFP_KERNEL);
361 if (!gpio_table)
362 return -1;
363 memcpy(gpio_table, pentry, num * sizeof(*pentry));
364 gpio_num_entry = num;
365
366 pr_debug("GPIO pin info:\n");
367 for (i = 0; i < num; i++, pentry++)
368 pr_debug("info[%2d]: controller = %16.16s, pin_name = %16.16s,"
369 " pin = %d\n", i,
370 pentry->controller_name,
371 pentry->pin_name,
372 pentry->pin_no);
373 return 0;
374 }
375
get_gpio_by_name(const char * name)376 static int get_gpio_by_name(const char *name)
377 {
378 struct sfi_gpio_table_entry *pentry = gpio_table;
379 int i;
380
381 if (!pentry)
382 return -1;
383 for (i = 0; i < gpio_num_entry; i++, pentry++) {
384 if (!strncmp(name, pentry->pin_name, SFI_NAME_LEN))
385 return pentry->pin_no;
386 }
387 return -1;
388 }
389
390 /*
391 * Here defines the array of devices platform data that IAFW would export
392 * through SFI "DEVS" table, we use name and type to match the device and
393 * its platform data.
394 */
395 struct devs_id {
396 char name[SFI_NAME_LEN + 1];
397 u8 type;
398 u8 delay;
399 void *(*get_platform_data)(void *info);
400 };
401
402 /* the offset for the mapping of global gpio pin to irq */
403 #define MRST_IRQ_OFFSET 0x100
404
pmic_gpio_platform_data(void * info)405 static void __init *pmic_gpio_platform_data(void *info)
406 {
407 static struct intel_pmic_gpio_platform_data pmic_gpio_pdata;
408 int gpio_base = get_gpio_by_name("pmic_gpio_base");
409
410 if (gpio_base == -1)
411 gpio_base = 64;
412 pmic_gpio_pdata.gpio_base = gpio_base;
413 pmic_gpio_pdata.irq_base = gpio_base + MRST_IRQ_OFFSET;
414 pmic_gpio_pdata.gpiointr = 0xffffeff8;
415
416 return &pmic_gpio_pdata;
417 }
418
max3111_platform_data(void * info)419 static void __init *max3111_platform_data(void *info)
420 {
421 struct spi_board_info *spi_info = info;
422 int intr = get_gpio_by_name("max3111_int");
423
424 spi_info->mode = SPI_MODE_0;
425 if (intr == -1)
426 return NULL;
427 spi_info->irq = intr + MRST_IRQ_OFFSET;
428 return NULL;
429 }
430
431 /* we have multiple max7315 on the board ... */
432 #define MAX7315_NUM 2
max7315_platform_data(void * info)433 static void __init *max7315_platform_data(void *info)
434 {
435 static struct pca953x_platform_data max7315_pdata[MAX7315_NUM];
436 static int nr;
437 struct pca953x_platform_data *max7315 = &max7315_pdata[nr];
438 struct i2c_board_info *i2c_info = info;
439 int gpio_base, intr;
440 char base_pin_name[SFI_NAME_LEN + 1];
441 char intr_pin_name[SFI_NAME_LEN + 1];
442
443 if (nr == MAX7315_NUM) {
444 pr_err("too many max7315s, we only support %d\n",
445 MAX7315_NUM);
446 return NULL;
447 }
448 /* we have several max7315 on the board, we only need load several
449 * instances of the same pca953x driver to cover them
450 */
451 strcpy(i2c_info->type, "max7315");
452 if (nr++) {
453 sprintf(base_pin_name, "max7315_%d_base", nr);
454 sprintf(intr_pin_name, "max7315_%d_int", nr);
455 } else {
456 strcpy(base_pin_name, "max7315_base");
457 strcpy(intr_pin_name, "max7315_int");
458 }
459
460 gpio_base = get_gpio_by_name(base_pin_name);
461 intr = get_gpio_by_name(intr_pin_name);
462
463 if (gpio_base == -1)
464 return NULL;
465 max7315->gpio_base = gpio_base;
466 if (intr != -1) {
467 i2c_info->irq = intr + MRST_IRQ_OFFSET;
468 max7315->irq_base = gpio_base + MRST_IRQ_OFFSET;
469 } else {
470 i2c_info->irq = -1;
471 max7315->irq_base = -1;
472 }
473 return max7315;
474 }
475
tca6416_platform_data(void * info)476 static void *tca6416_platform_data(void *info)
477 {
478 static struct pca953x_platform_data tca6416;
479 struct i2c_board_info *i2c_info = info;
480 int gpio_base, intr;
481 char base_pin_name[SFI_NAME_LEN + 1];
482 char intr_pin_name[SFI_NAME_LEN + 1];
483
484 strcpy(i2c_info->type, "tca6416");
485 strcpy(base_pin_name, "tca6416_base");
486 strcpy(intr_pin_name, "tca6416_int");
487
488 gpio_base = get_gpio_by_name(base_pin_name);
489 intr = get_gpio_by_name(intr_pin_name);
490
491 if (gpio_base == -1)
492 return NULL;
493 tca6416.gpio_base = gpio_base;
494 if (intr != -1) {
495 i2c_info->irq = intr + MRST_IRQ_OFFSET;
496 tca6416.irq_base = gpio_base + MRST_IRQ_OFFSET;
497 } else {
498 i2c_info->irq = -1;
499 tca6416.irq_base = -1;
500 }
501 return &tca6416;
502 }
503
mpu3050_platform_data(void * info)504 static void *mpu3050_platform_data(void *info)
505 {
506 struct i2c_board_info *i2c_info = info;
507 int intr = get_gpio_by_name("mpu3050_int");
508
509 if (intr == -1)
510 return NULL;
511
512 i2c_info->irq = intr + MRST_IRQ_OFFSET;
513 return NULL;
514 }
515
emc1403_platform_data(void * info)516 static void __init *emc1403_platform_data(void *info)
517 {
518 static short intr2nd_pdata;
519 struct i2c_board_info *i2c_info = info;
520 int intr = get_gpio_by_name("thermal_int");
521 int intr2nd = get_gpio_by_name("thermal_alert");
522
523 if (intr == -1 || intr2nd == -1)
524 return NULL;
525
526 i2c_info->irq = intr + MRST_IRQ_OFFSET;
527 intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
528
529 return &intr2nd_pdata;
530 }
531
lis331dl_platform_data(void * info)532 static void __init *lis331dl_platform_data(void *info)
533 {
534 static short intr2nd_pdata;
535 struct i2c_board_info *i2c_info = info;
536 int intr = get_gpio_by_name("accel_int");
537 int intr2nd = get_gpio_by_name("accel_2");
538
539 if (intr == -1 || intr2nd == -1)
540 return NULL;
541
542 i2c_info->irq = intr + MRST_IRQ_OFFSET;
543 intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
544
545 return &intr2nd_pdata;
546 }
547
no_platform_data(void * info)548 static void __init *no_platform_data(void *info)
549 {
550 return NULL;
551 }
552
553 static struct resource msic_resources[] = {
554 {
555 .start = INTEL_MSIC_IRQ_PHYS_BASE,
556 .end = INTEL_MSIC_IRQ_PHYS_BASE + 64 - 1,
557 .flags = IORESOURCE_MEM,
558 },
559 };
560
561 static struct intel_msic_platform_data msic_pdata;
562
563 static struct platform_device msic_device = {
564 .name = "intel_msic",
565 .id = -1,
566 .dev = {
567 .platform_data = &msic_pdata,
568 },
569 .num_resources = ARRAY_SIZE(msic_resources),
570 .resource = msic_resources,
571 };
572
mrst_has_msic(void)573 static inline bool mrst_has_msic(void)
574 {
575 return mrst_identify_cpu() == MRST_CPU_CHIP_PENWELL;
576 }
577
msic_scu_status_change(struct notifier_block * nb,unsigned long code,void * data)578 static int msic_scu_status_change(struct notifier_block *nb,
579 unsigned long code, void *data)
580 {
581 if (code == SCU_DOWN) {
582 platform_device_unregister(&msic_device);
583 return 0;
584 }
585
586 return platform_device_register(&msic_device);
587 }
588
msic_init(void)589 static int __init msic_init(void)
590 {
591 static struct notifier_block msic_scu_notifier = {
592 .notifier_call = msic_scu_status_change,
593 };
594
595 /*
596 * We need to be sure that the SCU IPC is ready before MSIC device
597 * can be registered.
598 */
599 if (mrst_has_msic())
600 intel_scu_notifier_add(&msic_scu_notifier);
601
602 return 0;
603 }
604 arch_initcall(msic_init);
605
606 /*
607 * msic_generic_platform_data - sets generic platform data for the block
608 * @info: pointer to the SFI device table entry for this block
609 * @block: MSIC block
610 *
611 * Function sets IRQ number from the SFI table entry for given device to
612 * the MSIC platform data.
613 */
msic_generic_platform_data(void * info,enum intel_msic_block block)614 static void *msic_generic_platform_data(void *info, enum intel_msic_block block)
615 {
616 struct sfi_device_table_entry *entry = info;
617
618 BUG_ON(block < 0 || block >= INTEL_MSIC_BLOCK_LAST);
619 msic_pdata.irq[block] = entry->irq;
620
621 return no_platform_data(info);
622 }
623
msic_battery_platform_data(void * info)624 static void *msic_battery_platform_data(void *info)
625 {
626 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_BATTERY);
627 }
628
msic_gpio_platform_data(void * info)629 static void *msic_gpio_platform_data(void *info)
630 {
631 static struct intel_msic_gpio_pdata pdata;
632 int gpio = get_gpio_by_name("msic_gpio_base");
633
634 if (gpio < 0)
635 return NULL;
636
637 pdata.gpio_base = gpio;
638 msic_pdata.gpio = &pdata;
639
640 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_GPIO);
641 }
642
msic_audio_platform_data(void * info)643 static void *msic_audio_platform_data(void *info)
644 {
645 struct platform_device *pdev;
646
647 pdev = platform_device_register_simple("sst-platform", -1, NULL, 0);
648 if (IS_ERR(pdev)) {
649 pr_err("failed to create audio platform device\n");
650 return NULL;
651 }
652
653 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_AUDIO);
654 }
655
msic_power_btn_platform_data(void * info)656 static void *msic_power_btn_platform_data(void *info)
657 {
658 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_POWER_BTN);
659 }
660
msic_ocd_platform_data(void * info)661 static void *msic_ocd_platform_data(void *info)
662 {
663 static struct intel_msic_ocd_pdata pdata;
664 int gpio = get_gpio_by_name("ocd_gpio");
665
666 if (gpio < 0)
667 return NULL;
668
669 pdata.gpio = gpio;
670 msic_pdata.ocd = &pdata;
671
672 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_OCD);
673 }
674
msic_thermal_platform_data(void * info)675 static void *msic_thermal_platform_data(void *info)
676 {
677 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_THERMAL);
678 }
679
680 /* tc35876x DSI-LVDS bridge chip and panel platform data */
tc35876x_platform_data(void * data)681 static void *tc35876x_platform_data(void *data)
682 {
683 static struct tc35876x_platform_data pdata;
684
685 /* gpio pins set to -1 will not be used by the driver */
686 pdata.gpio_bridge_reset = get_gpio_by_name("LCMB_RXEN");
687 pdata.gpio_panel_bl_en = get_gpio_by_name("6S6P_BL_EN");
688 pdata.gpio_panel_vadd = get_gpio_by_name("EN_VREG_LCD_V3P3");
689
690 return &pdata;
691 }
692
693 static const struct devs_id __initconst device_ids[] = {
694 {"bma023", SFI_DEV_TYPE_I2C, 1, &no_platform_data},
695 {"pmic_gpio", SFI_DEV_TYPE_SPI, 1, &pmic_gpio_platform_data},
696 {"pmic_gpio", SFI_DEV_TYPE_IPC, 1, &pmic_gpio_platform_data},
697 {"spi_max3111", SFI_DEV_TYPE_SPI, 0, &max3111_platform_data},
698 {"i2c_max7315", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
699 {"i2c_max7315_2", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
700 {"tca6416", SFI_DEV_TYPE_I2C, 1, &tca6416_platform_data},
701 {"emc1403", SFI_DEV_TYPE_I2C, 1, &emc1403_platform_data},
702 {"i2c_accel", SFI_DEV_TYPE_I2C, 0, &lis331dl_platform_data},
703 {"pmic_audio", SFI_DEV_TYPE_IPC, 1, &no_platform_data},
704 {"mpu3050", SFI_DEV_TYPE_I2C, 1, &mpu3050_platform_data},
705 {"i2c_disp_brig", SFI_DEV_TYPE_I2C, 0, &tc35876x_platform_data},
706
707 /* MSIC subdevices */
708 {"msic_battery", SFI_DEV_TYPE_IPC, 1, &msic_battery_platform_data},
709 {"msic_gpio", SFI_DEV_TYPE_IPC, 1, &msic_gpio_platform_data},
710 {"msic_audio", SFI_DEV_TYPE_IPC, 1, &msic_audio_platform_data},
711 {"msic_power_btn", SFI_DEV_TYPE_IPC, 1, &msic_power_btn_platform_data},
712 {"msic_ocd", SFI_DEV_TYPE_IPC, 1, &msic_ocd_platform_data},
713 {"msic_thermal", SFI_DEV_TYPE_IPC, 1, &msic_thermal_platform_data},
714
715 {},
716 };
717
718 #define MAX_IPCDEVS 24
719 static struct platform_device *ipc_devs[MAX_IPCDEVS];
720 static int ipc_next_dev;
721
722 #define MAX_SCU_SPI 24
723 static struct spi_board_info *spi_devs[MAX_SCU_SPI];
724 static int spi_next_dev;
725
726 #define MAX_SCU_I2C 24
727 static struct i2c_board_info *i2c_devs[MAX_SCU_I2C];
728 static int i2c_bus[MAX_SCU_I2C];
729 static int i2c_next_dev;
730
intel_scu_device_register(struct platform_device * pdev)731 static void __init intel_scu_device_register(struct platform_device *pdev)
732 {
733 if(ipc_next_dev == MAX_IPCDEVS)
734 pr_err("too many SCU IPC devices");
735 else
736 ipc_devs[ipc_next_dev++] = pdev;
737 }
738
intel_scu_spi_device_register(struct spi_board_info * sdev)739 static void __init intel_scu_spi_device_register(struct spi_board_info *sdev)
740 {
741 struct spi_board_info *new_dev;
742
743 if (spi_next_dev == MAX_SCU_SPI) {
744 pr_err("too many SCU SPI devices");
745 return;
746 }
747
748 new_dev = kzalloc(sizeof(*sdev), GFP_KERNEL);
749 if (!new_dev) {
750 pr_err("failed to alloc mem for delayed spi dev %s\n",
751 sdev->modalias);
752 return;
753 }
754 memcpy(new_dev, sdev, sizeof(*sdev));
755
756 spi_devs[spi_next_dev++] = new_dev;
757 }
758
intel_scu_i2c_device_register(int bus,struct i2c_board_info * idev)759 static void __init intel_scu_i2c_device_register(int bus,
760 struct i2c_board_info *idev)
761 {
762 struct i2c_board_info *new_dev;
763
764 if (i2c_next_dev == MAX_SCU_I2C) {
765 pr_err("too many SCU I2C devices");
766 return;
767 }
768
769 new_dev = kzalloc(sizeof(*idev), GFP_KERNEL);
770 if (!new_dev) {
771 pr_err("failed to alloc mem for delayed i2c dev %s\n",
772 idev->type);
773 return;
774 }
775 memcpy(new_dev, idev, sizeof(*idev));
776
777 i2c_bus[i2c_next_dev] = bus;
778 i2c_devs[i2c_next_dev++] = new_dev;
779 }
780
781 BLOCKING_NOTIFIER_HEAD(intel_scu_notifier);
782 EXPORT_SYMBOL_GPL(intel_scu_notifier);
783
784 /* Called by IPC driver */
intel_scu_devices_create(void)785 void intel_scu_devices_create(void)
786 {
787 int i;
788
789 for (i = 0; i < ipc_next_dev; i++)
790 platform_device_add(ipc_devs[i]);
791
792 for (i = 0; i < spi_next_dev; i++)
793 spi_register_board_info(spi_devs[i], 1);
794
795 for (i = 0; i < i2c_next_dev; i++) {
796 struct i2c_adapter *adapter;
797 struct i2c_client *client;
798
799 adapter = i2c_get_adapter(i2c_bus[i]);
800 if (adapter) {
801 client = i2c_new_device(adapter, i2c_devs[i]);
802 if (!client)
803 pr_err("can't create i2c device %s\n",
804 i2c_devs[i]->type);
805 } else
806 i2c_register_board_info(i2c_bus[i], i2c_devs[i], 1);
807 }
808 intel_scu_notifier_post(SCU_AVAILABLE, NULL);
809 }
810 EXPORT_SYMBOL_GPL(intel_scu_devices_create);
811
812 /* Called by IPC driver */
intel_scu_devices_destroy(void)813 void intel_scu_devices_destroy(void)
814 {
815 int i;
816
817 intel_scu_notifier_post(SCU_DOWN, NULL);
818
819 for (i = 0; i < ipc_next_dev; i++)
820 platform_device_del(ipc_devs[i]);
821 }
822 EXPORT_SYMBOL_GPL(intel_scu_devices_destroy);
823
install_irq_resource(struct platform_device * pdev,int irq)824 static void __init install_irq_resource(struct platform_device *pdev, int irq)
825 {
826 /* Single threaded */
827 static struct resource __initdata res = {
828 .name = "IRQ",
829 .flags = IORESOURCE_IRQ,
830 };
831 res.start = irq;
832 platform_device_add_resources(pdev, &res, 1);
833 }
834
sfi_handle_ipc_dev(struct sfi_device_table_entry * entry)835 static void __init sfi_handle_ipc_dev(struct sfi_device_table_entry *entry)
836 {
837 const struct devs_id *dev = device_ids;
838 struct platform_device *pdev;
839 void *pdata = NULL;
840
841 while (dev->name[0]) {
842 if (dev->type == SFI_DEV_TYPE_IPC &&
843 !strncmp(dev->name, entry->name, SFI_NAME_LEN)) {
844 pdata = dev->get_platform_data(entry);
845 break;
846 }
847 dev++;
848 }
849
850 /*
851 * On Medfield the platform device creation is handled by the MSIC
852 * MFD driver so we don't need to do it here.
853 */
854 if (mrst_has_msic())
855 return;
856
857 pdev = platform_device_alloc(entry->name, 0);
858 if (pdev == NULL) {
859 pr_err("out of memory for SFI platform device '%s'.\n",
860 entry->name);
861 return;
862 }
863 install_irq_resource(pdev, entry->irq);
864
865 pdev->dev.platform_data = pdata;
866 intel_scu_device_register(pdev);
867 }
868
sfi_handle_spi_dev(struct spi_board_info * spi_info)869 static void __init sfi_handle_spi_dev(struct spi_board_info *spi_info)
870 {
871 const struct devs_id *dev = device_ids;
872 void *pdata = NULL;
873
874 while (dev->name[0]) {
875 if (dev->type == SFI_DEV_TYPE_SPI &&
876 !strncmp(dev->name, spi_info->modalias, SFI_NAME_LEN)) {
877 pdata = dev->get_platform_data(spi_info);
878 break;
879 }
880 dev++;
881 }
882 spi_info->platform_data = pdata;
883 if (dev->delay)
884 intel_scu_spi_device_register(spi_info);
885 else
886 spi_register_board_info(spi_info, 1);
887 }
888
sfi_handle_i2c_dev(int bus,struct i2c_board_info * i2c_info)889 static void __init sfi_handle_i2c_dev(int bus, struct i2c_board_info *i2c_info)
890 {
891 const struct devs_id *dev = device_ids;
892 void *pdata = NULL;
893
894 while (dev->name[0]) {
895 if (dev->type == SFI_DEV_TYPE_I2C &&
896 !strncmp(dev->name, i2c_info->type, SFI_NAME_LEN)) {
897 pdata = dev->get_platform_data(i2c_info);
898 break;
899 }
900 dev++;
901 }
902 i2c_info->platform_data = pdata;
903
904 if (dev->delay)
905 intel_scu_i2c_device_register(bus, i2c_info);
906 else
907 i2c_register_board_info(bus, i2c_info, 1);
908 }
909
910
sfi_parse_devs(struct sfi_table_header * table)911 static int __init sfi_parse_devs(struct sfi_table_header *table)
912 {
913 struct sfi_table_simple *sb;
914 struct sfi_device_table_entry *pentry;
915 struct spi_board_info spi_info;
916 struct i2c_board_info i2c_info;
917 int num, i, bus;
918 int ioapic;
919 struct io_apic_irq_attr irq_attr;
920
921 sb = (struct sfi_table_simple *)table;
922 num = SFI_GET_NUM_ENTRIES(sb, struct sfi_device_table_entry);
923 pentry = (struct sfi_device_table_entry *)sb->pentry;
924
925 for (i = 0; i < num; i++, pentry++) {
926 int irq = pentry->irq;
927
928 if (irq != (u8)0xff) { /* native RTE case */
929 /* these SPI2 devices are not exposed to system as PCI
930 * devices, but they have separate RTE entry in IOAPIC
931 * so we have to enable them one by one here
932 */
933 ioapic = mp_find_ioapic(irq);
934 irq_attr.ioapic = ioapic;
935 irq_attr.ioapic_pin = irq;
936 irq_attr.trigger = 1;
937 irq_attr.polarity = 1;
938 io_apic_set_pci_routing(NULL, irq, &irq_attr);
939 } else
940 irq = 0; /* No irq */
941
942 switch (pentry->type) {
943 case SFI_DEV_TYPE_IPC:
944 pr_debug("info[%2d]: IPC bus, name = %16.16s, "
945 "irq = 0x%2x\n", i, pentry->name, pentry->irq);
946 sfi_handle_ipc_dev(pentry);
947 break;
948 case SFI_DEV_TYPE_SPI:
949 memset(&spi_info, 0, sizeof(spi_info));
950 strncpy(spi_info.modalias, pentry->name, SFI_NAME_LEN);
951 spi_info.irq = irq;
952 spi_info.bus_num = pentry->host_num;
953 spi_info.chip_select = pentry->addr;
954 spi_info.max_speed_hz = pentry->max_freq;
955 pr_debug("info[%2d]: SPI bus = %d, name = %16.16s, "
956 "irq = 0x%2x, max_freq = %d, cs = %d\n", i,
957 spi_info.bus_num,
958 spi_info.modalias,
959 spi_info.irq,
960 spi_info.max_speed_hz,
961 spi_info.chip_select);
962 sfi_handle_spi_dev(&spi_info);
963 break;
964 case SFI_DEV_TYPE_I2C:
965 memset(&i2c_info, 0, sizeof(i2c_info));
966 bus = pentry->host_num;
967 strncpy(i2c_info.type, pentry->name, SFI_NAME_LEN);
968 i2c_info.irq = irq;
969 i2c_info.addr = pentry->addr;
970 pr_debug("info[%2d]: I2C bus = %d, name = %16.16s, "
971 "irq = 0x%2x, addr = 0x%x\n", i, bus,
972 i2c_info.type,
973 i2c_info.irq,
974 i2c_info.addr);
975 sfi_handle_i2c_dev(bus, &i2c_info);
976 break;
977 case SFI_DEV_TYPE_UART:
978 case SFI_DEV_TYPE_HSI:
979 default:
980 ;
981 }
982 }
983 return 0;
984 }
985
mrst_platform_init(void)986 static int __init mrst_platform_init(void)
987 {
988 sfi_table_parse(SFI_SIG_GPIO, NULL, NULL, sfi_parse_gpio);
989 sfi_table_parse(SFI_SIG_DEVS, NULL, NULL, sfi_parse_devs);
990 return 0;
991 }
992 arch_initcall(mrst_platform_init);
993
994 /*
995 * we will search these buttons in SFI GPIO table (by name)
996 * and register them dynamically. Please add all possible
997 * buttons here, we will shrink them if no GPIO found.
998 */
999 static struct gpio_keys_button gpio_button[] = {
1000 {KEY_POWER, -1, 1, "power_btn", EV_KEY, 0, 3000},
1001 {KEY_PROG1, -1, 1, "prog_btn1", EV_KEY, 0, 20},
1002 {KEY_PROG2, -1, 1, "prog_btn2", EV_KEY, 0, 20},
1003 {SW_LID, -1, 1, "lid_switch", EV_SW, 0, 20},
1004 {KEY_VOLUMEUP, -1, 1, "vol_up", EV_KEY, 0, 20},
1005 {KEY_VOLUMEDOWN, -1, 1, "vol_down", EV_KEY, 0, 20},
1006 {KEY_CAMERA, -1, 1, "camera_full", EV_KEY, 0, 20},
1007 {KEY_CAMERA_FOCUS, -1, 1, "camera_half", EV_KEY, 0, 20},
1008 {SW_KEYPAD_SLIDE, -1, 1, "MagSw1", EV_SW, 0, 20},
1009 {SW_KEYPAD_SLIDE, -1, 1, "MagSw2", EV_SW, 0, 20},
1010 };
1011
1012 static struct gpio_keys_platform_data mrst_gpio_keys = {
1013 .buttons = gpio_button,
1014 .rep = 1,
1015 .nbuttons = -1, /* will fill it after search */
1016 };
1017
1018 static struct platform_device pb_device = {
1019 .name = "gpio-keys",
1020 .id = -1,
1021 .dev = {
1022 .platform_data = &mrst_gpio_keys,
1023 },
1024 };
1025
1026 /*
1027 * Shrink the non-existent buttons, register the gpio button
1028 * device if there is some
1029 */
pb_keys_init(void)1030 static int __init pb_keys_init(void)
1031 {
1032 struct gpio_keys_button *gb = gpio_button;
1033 int i, num, good = 0;
1034
1035 num = sizeof(gpio_button) / sizeof(struct gpio_keys_button);
1036 for (i = 0; i < num; i++) {
1037 gb[i].gpio = get_gpio_by_name(gb[i].desc);
1038 pr_debug("info[%2d]: name = %s, gpio = %d\n", i, gb[i].desc, gb[i].gpio);
1039 if (gb[i].gpio == -1)
1040 continue;
1041
1042 if (i != good)
1043 gb[good] = gb[i];
1044 good++;
1045 }
1046
1047 if (good) {
1048 mrst_gpio_keys.nbuttons = good;
1049 return platform_device_register(&pb_device);
1050 }
1051 return 0;
1052 }
1053 late_initcall(pb_keys_init);
1054