1 /*
2  * mrst.c: Intel Moorestown platform specific setup code
3  *
4  * (C) Copyright 2008 Intel Corporation
5  * Author: Jacob Pan (jacob.jun.pan@intel.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) "mrst: " fmt
14 
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/interrupt.h>
18 #include <linux/scatterlist.h>
19 #include <linux/sfi.h>
20 #include <linux/intel_pmic_gpio.h>
21 #include <linux/spi/spi.h>
22 #include <linux/i2c.h>
23 #include <linux/i2c/pca953x.h>
24 #include <linux/gpio_keys.h>
25 #include <linux/input.h>
26 #include <linux/platform_device.h>
27 #include <linux/irq.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/mfd/intel_msic.h>
31 #include <linux/gpio.h>
32 #include <linux/i2c/tc35876x.h>
33 
34 #include <asm/setup.h>
35 #include <asm/mpspec_def.h>
36 #include <asm/hw_irq.h>
37 #include <asm/apic.h>
38 #include <asm/io_apic.h>
39 #include <asm/mrst.h>
40 #include <asm/mrst-vrtc.h>
41 #include <asm/io.h>
42 #include <asm/i8259.h>
43 #include <asm/intel_scu_ipc.h>
44 #include <asm/apb_timer.h>
45 #include <asm/reboot.h>
46 
47 /*
48  * the clockevent devices on Moorestown/Medfield can be APBT or LAPIC clock,
49  * cmdline option x86_mrst_timer can be used to override the configuration
50  * to prefer one or the other.
51  * at runtime, there are basically three timer configurations:
52  * 1. per cpu apbt clock only
53  * 2. per cpu always-on lapic clocks only, this is Penwell/Medfield only
54  * 3. per cpu lapic clock (C3STOP) and one apbt clock, with broadcast.
55  *
56  * by default (without cmdline option), platform code first detects cpu type
57  * to see if we are on lincroft or penwell, then set up both lapic or apbt
58  * clocks accordingly.
59  * i.e. by default, medfield uses configuration #2, moorestown uses #1.
60  * config #3 is supported but not recommended on medfield.
61  *
62  * rating and feature summary:
63  * lapic (with C3STOP) --------- 100
64  * apbt (always-on) ------------ 110
65  * lapic (always-on,ARAT) ------ 150
66  */
67 
68 __cpuinitdata enum mrst_timer_options mrst_timer_options;
69 
70 static u32 sfi_mtimer_usage[SFI_MTMR_MAX_NUM];
71 static struct sfi_timer_table_entry sfi_mtimer_array[SFI_MTMR_MAX_NUM];
72 enum mrst_cpu_type __mrst_cpu_chip;
73 EXPORT_SYMBOL_GPL(__mrst_cpu_chip);
74 
75 int sfi_mtimer_num;
76 
77 struct sfi_rtc_table_entry sfi_mrtc_array[SFI_MRTC_MAX];
78 EXPORT_SYMBOL_GPL(sfi_mrtc_array);
79 int sfi_mrtc_num;
80 
mrst_power_off(void)81 static void mrst_power_off(void)
82 {
83 }
84 
mrst_reboot(void)85 static void mrst_reboot(void)
86 {
87 	intel_scu_ipc_simple_command(IPCMSG_COLD_BOOT, 0);
88 }
89 
90 /* parse all the mtimer info to a static mtimer array */
sfi_parse_mtmr(struct sfi_table_header * table)91 static int __init sfi_parse_mtmr(struct sfi_table_header *table)
92 {
93 	struct sfi_table_simple *sb;
94 	struct sfi_timer_table_entry *pentry;
95 	struct mpc_intsrc mp_irq;
96 	int totallen;
97 
98 	sb = (struct sfi_table_simple *)table;
99 	if (!sfi_mtimer_num) {
100 		sfi_mtimer_num = SFI_GET_NUM_ENTRIES(sb,
101 					struct sfi_timer_table_entry);
102 		pentry = (struct sfi_timer_table_entry *) sb->pentry;
103 		totallen = sfi_mtimer_num * sizeof(*pentry);
104 		memcpy(sfi_mtimer_array, pentry, totallen);
105 	}
106 
107 	pr_debug("SFI MTIMER info (num = %d):\n", sfi_mtimer_num);
108 	pentry = sfi_mtimer_array;
109 	for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) {
110 		pr_debug("timer[%d]: paddr = 0x%08x, freq = %dHz,"
111 			" irq = %d\n", totallen, (u32)pentry->phys_addr,
112 			pentry->freq_hz, pentry->irq);
113 			if (!pentry->irq)
114 				continue;
115 			mp_irq.type = MP_INTSRC;
116 			mp_irq.irqtype = mp_INT;
117 /* triggering mode edge bit 2-3, active high polarity bit 0-1 */
118 			mp_irq.irqflag = 5;
119 			mp_irq.srcbus = MP_BUS_ISA;
120 			mp_irq.srcbusirq = pentry->irq;	/* IRQ */
121 			mp_irq.dstapic = MP_APIC_ALL;
122 			mp_irq.dstirq = pentry->irq;
123 			mp_save_irq(&mp_irq);
124 	}
125 
126 	return 0;
127 }
128 
sfi_get_mtmr(int hint)129 struct sfi_timer_table_entry *sfi_get_mtmr(int hint)
130 {
131 	int i;
132 	if (hint < sfi_mtimer_num) {
133 		if (!sfi_mtimer_usage[hint]) {
134 			pr_debug("hint taken for timer %d irq %d\n",\
135 				hint, sfi_mtimer_array[hint].irq);
136 			sfi_mtimer_usage[hint] = 1;
137 			return &sfi_mtimer_array[hint];
138 		}
139 	}
140 	/* take the first timer available */
141 	for (i = 0; i < sfi_mtimer_num;) {
142 		if (!sfi_mtimer_usage[i]) {
143 			sfi_mtimer_usage[i] = 1;
144 			return &sfi_mtimer_array[i];
145 		}
146 		i++;
147 	}
148 	return NULL;
149 }
150 
sfi_free_mtmr(struct sfi_timer_table_entry * mtmr)151 void sfi_free_mtmr(struct sfi_timer_table_entry *mtmr)
152 {
153 	int i;
154 	for (i = 0; i < sfi_mtimer_num;) {
155 		if (mtmr->irq == sfi_mtimer_array[i].irq) {
156 			sfi_mtimer_usage[i] = 0;
157 			return;
158 		}
159 		i++;
160 	}
161 }
162 
163 /* parse all the mrtc info to a global mrtc array */
sfi_parse_mrtc(struct sfi_table_header * table)164 int __init sfi_parse_mrtc(struct sfi_table_header *table)
165 {
166 	struct sfi_table_simple *sb;
167 	struct sfi_rtc_table_entry *pentry;
168 	struct mpc_intsrc mp_irq;
169 
170 	int totallen;
171 
172 	sb = (struct sfi_table_simple *)table;
173 	if (!sfi_mrtc_num) {
174 		sfi_mrtc_num = SFI_GET_NUM_ENTRIES(sb,
175 						struct sfi_rtc_table_entry);
176 		pentry = (struct sfi_rtc_table_entry *)sb->pentry;
177 		totallen = sfi_mrtc_num * sizeof(*pentry);
178 		memcpy(sfi_mrtc_array, pentry, totallen);
179 	}
180 
181 	pr_debug("SFI RTC info (num = %d):\n", sfi_mrtc_num);
182 	pentry = sfi_mrtc_array;
183 	for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) {
184 		pr_debug("RTC[%d]: paddr = 0x%08x, irq = %d\n",
185 			totallen, (u32)pentry->phys_addr, pentry->irq);
186 		mp_irq.type = MP_INTSRC;
187 		mp_irq.irqtype = mp_INT;
188 		mp_irq.irqflag = 0xf;	/* level trigger and active low */
189 		mp_irq.srcbus = MP_BUS_ISA;
190 		mp_irq.srcbusirq = pentry->irq;	/* IRQ */
191 		mp_irq.dstapic = MP_APIC_ALL;
192 		mp_irq.dstirq = pentry->irq;
193 		mp_save_irq(&mp_irq);
194 	}
195 	return 0;
196 }
197 
mrst_calibrate_tsc(void)198 static unsigned long __init mrst_calibrate_tsc(void)
199 {
200 	unsigned long fast_calibrate;
201 	u32 lo, hi, ratio, fsb;
202 
203 	rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
204 	pr_debug("IA32 perf status is 0x%x, 0x%0x\n", lo, hi);
205 	ratio = (hi >> 8) & 0x1f;
206 	pr_debug("ratio is %d\n", ratio);
207 	if (!ratio) {
208 		pr_err("read a zero ratio, should be incorrect!\n");
209 		pr_err("force tsc ratio to 16 ...\n");
210 		ratio = 16;
211 	}
212 	rdmsr(MSR_FSB_FREQ, lo, hi);
213 	if ((lo & 0x7) == 0x7)
214 		fsb = PENWELL_FSB_FREQ_83SKU;
215 	else
216 		fsb = PENWELL_FSB_FREQ_100SKU;
217 	fast_calibrate = ratio * fsb;
218 	pr_debug("read penwell tsc %lu khz\n", fast_calibrate);
219 	lapic_timer_frequency = fsb * 1000 / HZ;
220 	/* mark tsc clocksource as reliable */
221 	set_cpu_cap(&boot_cpu_data, X86_FEATURE_TSC_RELIABLE);
222 
223 	if (fast_calibrate)
224 		return fast_calibrate;
225 
226 	return 0;
227 }
228 
mrst_time_init(void)229 static void __init mrst_time_init(void)
230 {
231 	sfi_table_parse(SFI_SIG_MTMR, NULL, NULL, sfi_parse_mtmr);
232 	switch (mrst_timer_options) {
233 	case MRST_TIMER_APBT_ONLY:
234 		break;
235 	case MRST_TIMER_LAPIC_APBT:
236 		x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
237 		x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
238 		break;
239 	default:
240 		if (!boot_cpu_has(X86_FEATURE_ARAT))
241 			break;
242 		x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
243 		x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
244 		return;
245 	}
246 	/* we need at least one APB timer */
247 	pre_init_apic_IRQ0();
248 	apbt_time_init();
249 }
250 
mrst_arch_setup(void)251 static void __cpuinit mrst_arch_setup(void)
252 {
253 	if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x27)
254 		__mrst_cpu_chip = MRST_CPU_CHIP_PENWELL;
255 	else {
256 		pr_err("Unknown Intel MID CPU (%d:%d), default to Penwell\n",
257 			boot_cpu_data.x86, boot_cpu_data.x86_model);
258 		__mrst_cpu_chip = MRST_CPU_CHIP_PENWELL;
259 	}
260 }
261 
262 /* MID systems don't have i8042 controller */
mrst_i8042_detect(void)263 static int mrst_i8042_detect(void)
264 {
265 	return 0;
266 }
267 
268 /*
269  * Moorestown does not have external NMI source nor port 0x61 to report
270  * NMI status. The possible NMI sources are from pmu as a result of NMI
271  * watchdog or lock debug. Reading io port 0x61 results in 0xff which
272  * misled NMI handler.
273  */
mrst_get_nmi_reason(void)274 static unsigned char mrst_get_nmi_reason(void)
275 {
276 	return 0;
277 }
278 
279 /*
280  * Moorestown specific x86_init function overrides and early setup
281  * calls.
282  */
x86_mrst_early_setup(void)283 void __init x86_mrst_early_setup(void)
284 {
285 	x86_init.resources.probe_roms = x86_init_noop;
286 	x86_init.resources.reserve_resources = x86_init_noop;
287 
288 	x86_init.timers.timer_init = mrst_time_init;
289 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
290 
291 	x86_init.irqs.pre_vector_init = x86_init_noop;
292 
293 	x86_init.oem.arch_setup = mrst_arch_setup;
294 
295 	x86_cpuinit.setup_percpu_clockev = apbt_setup_secondary_clock;
296 
297 	x86_platform.calibrate_tsc = mrst_calibrate_tsc;
298 	x86_platform.i8042_detect = mrst_i8042_detect;
299 	x86_init.timers.wallclock_init = mrst_rtc_init;
300 	x86_platform.get_nmi_reason = mrst_get_nmi_reason;
301 
302 	x86_init.pci.init = pci_mrst_init;
303 	x86_init.pci.fixup_irqs = x86_init_noop;
304 
305 	legacy_pic = &null_legacy_pic;
306 
307 	/* Moorestown specific power_off/restart method */
308 	pm_power_off = mrst_power_off;
309 	machine_ops.emergency_restart  = mrst_reboot;
310 
311 	/* Avoid searching for BIOS MP tables */
312 	x86_init.mpparse.find_smp_config = x86_init_noop;
313 	x86_init.mpparse.get_smp_config = x86_init_uint_noop;
314 	set_bit(MP_BUS_ISA, mp_bus_not_pci);
315 }
316 
317 /*
318  * if user does not want to use per CPU apb timer, just give it a lower rating
319  * than local apic timer and skip the late per cpu timer init.
320  */
setup_x86_mrst_timer(char * arg)321 static inline int __init setup_x86_mrst_timer(char *arg)
322 {
323 	if (!arg)
324 		return -EINVAL;
325 
326 	if (strcmp("apbt_only", arg) == 0)
327 		mrst_timer_options = MRST_TIMER_APBT_ONLY;
328 	else if (strcmp("lapic_and_apbt", arg) == 0)
329 		mrst_timer_options = MRST_TIMER_LAPIC_APBT;
330 	else {
331 		pr_warning("X86 MRST timer option %s not recognised"
332 			   " use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
333 			   arg);
334 		return -EINVAL;
335 	}
336 	return 0;
337 }
338 __setup("x86_mrst_timer=", setup_x86_mrst_timer);
339 
340 /*
341  * Parsing GPIO table first, since the DEVS table will need this table
342  * to map the pin name to the actual pin.
343  */
344 static struct sfi_gpio_table_entry *gpio_table;
345 static int gpio_num_entry;
346 
sfi_parse_gpio(struct sfi_table_header * table)347 static int __init sfi_parse_gpio(struct sfi_table_header *table)
348 {
349 	struct sfi_table_simple *sb;
350 	struct sfi_gpio_table_entry *pentry;
351 	int num, i;
352 
353 	if (gpio_table)
354 		return 0;
355 	sb = (struct sfi_table_simple *)table;
356 	num = SFI_GET_NUM_ENTRIES(sb, struct sfi_gpio_table_entry);
357 	pentry = (struct sfi_gpio_table_entry *)sb->pentry;
358 
359 	gpio_table = (struct sfi_gpio_table_entry *)
360 				kmalloc(num * sizeof(*pentry), GFP_KERNEL);
361 	if (!gpio_table)
362 		return -1;
363 	memcpy(gpio_table, pentry, num * sizeof(*pentry));
364 	gpio_num_entry = num;
365 
366 	pr_debug("GPIO pin info:\n");
367 	for (i = 0; i < num; i++, pentry++)
368 		pr_debug("info[%2d]: controller = %16.16s, pin_name = %16.16s,"
369 		" pin = %d\n", i,
370 			pentry->controller_name,
371 			pentry->pin_name,
372 			pentry->pin_no);
373 	return 0;
374 }
375 
get_gpio_by_name(const char * name)376 static int get_gpio_by_name(const char *name)
377 {
378 	struct sfi_gpio_table_entry *pentry = gpio_table;
379 	int i;
380 
381 	if (!pentry)
382 		return -1;
383 	for (i = 0; i < gpio_num_entry; i++, pentry++) {
384 		if (!strncmp(name, pentry->pin_name, SFI_NAME_LEN))
385 			return pentry->pin_no;
386 	}
387 	return -1;
388 }
389 
390 /*
391  * Here defines the array of devices platform data that IAFW would export
392  * through SFI "DEVS" table, we use name and type to match the device and
393  * its platform data.
394  */
395 struct devs_id {
396 	char name[SFI_NAME_LEN + 1];
397 	u8 type;
398 	u8 delay;
399 	void *(*get_platform_data)(void *info);
400 };
401 
402 /* the offset for the mapping of global gpio pin to irq */
403 #define MRST_IRQ_OFFSET 0x100
404 
pmic_gpio_platform_data(void * info)405 static void __init *pmic_gpio_platform_data(void *info)
406 {
407 	static struct intel_pmic_gpio_platform_data pmic_gpio_pdata;
408 	int gpio_base = get_gpio_by_name("pmic_gpio_base");
409 
410 	if (gpio_base == -1)
411 		gpio_base = 64;
412 	pmic_gpio_pdata.gpio_base = gpio_base;
413 	pmic_gpio_pdata.irq_base = gpio_base + MRST_IRQ_OFFSET;
414 	pmic_gpio_pdata.gpiointr = 0xffffeff8;
415 
416 	return &pmic_gpio_pdata;
417 }
418 
max3111_platform_data(void * info)419 static void __init *max3111_platform_data(void *info)
420 {
421 	struct spi_board_info *spi_info = info;
422 	int intr = get_gpio_by_name("max3111_int");
423 
424 	spi_info->mode = SPI_MODE_0;
425 	if (intr == -1)
426 		return NULL;
427 	spi_info->irq = intr + MRST_IRQ_OFFSET;
428 	return NULL;
429 }
430 
431 /* we have multiple max7315 on the board ... */
432 #define MAX7315_NUM 2
max7315_platform_data(void * info)433 static void __init *max7315_platform_data(void *info)
434 {
435 	static struct pca953x_platform_data max7315_pdata[MAX7315_NUM];
436 	static int nr;
437 	struct pca953x_platform_data *max7315 = &max7315_pdata[nr];
438 	struct i2c_board_info *i2c_info = info;
439 	int gpio_base, intr;
440 	char base_pin_name[SFI_NAME_LEN + 1];
441 	char intr_pin_name[SFI_NAME_LEN + 1];
442 
443 	if (nr == MAX7315_NUM) {
444 		pr_err("too many max7315s, we only support %d\n",
445 				MAX7315_NUM);
446 		return NULL;
447 	}
448 	/* we have several max7315 on the board, we only need load several
449 	 * instances of the same pca953x driver to cover them
450 	 */
451 	strcpy(i2c_info->type, "max7315");
452 	if (nr++) {
453 		sprintf(base_pin_name, "max7315_%d_base", nr);
454 		sprintf(intr_pin_name, "max7315_%d_int", nr);
455 	} else {
456 		strcpy(base_pin_name, "max7315_base");
457 		strcpy(intr_pin_name, "max7315_int");
458 	}
459 
460 	gpio_base = get_gpio_by_name(base_pin_name);
461 	intr = get_gpio_by_name(intr_pin_name);
462 
463 	if (gpio_base == -1)
464 		return NULL;
465 	max7315->gpio_base = gpio_base;
466 	if (intr != -1) {
467 		i2c_info->irq = intr + MRST_IRQ_OFFSET;
468 		max7315->irq_base = gpio_base + MRST_IRQ_OFFSET;
469 	} else {
470 		i2c_info->irq = -1;
471 		max7315->irq_base = -1;
472 	}
473 	return max7315;
474 }
475 
tca6416_platform_data(void * info)476 static void *tca6416_platform_data(void *info)
477 {
478 	static struct pca953x_platform_data tca6416;
479 	struct i2c_board_info *i2c_info = info;
480 	int gpio_base, intr;
481 	char base_pin_name[SFI_NAME_LEN + 1];
482 	char intr_pin_name[SFI_NAME_LEN + 1];
483 
484 	strcpy(i2c_info->type, "tca6416");
485 	strcpy(base_pin_name, "tca6416_base");
486 	strcpy(intr_pin_name, "tca6416_int");
487 
488 	gpio_base = get_gpio_by_name(base_pin_name);
489 	intr = get_gpio_by_name(intr_pin_name);
490 
491 	if (gpio_base == -1)
492 		return NULL;
493 	tca6416.gpio_base = gpio_base;
494 	if (intr != -1) {
495 		i2c_info->irq = intr + MRST_IRQ_OFFSET;
496 		tca6416.irq_base = gpio_base + MRST_IRQ_OFFSET;
497 	} else {
498 		i2c_info->irq = -1;
499 		tca6416.irq_base = -1;
500 	}
501 	return &tca6416;
502 }
503 
mpu3050_platform_data(void * info)504 static void *mpu3050_platform_data(void *info)
505 {
506 	struct i2c_board_info *i2c_info = info;
507 	int intr = get_gpio_by_name("mpu3050_int");
508 
509 	if (intr == -1)
510 		return NULL;
511 
512 	i2c_info->irq = intr + MRST_IRQ_OFFSET;
513 	return NULL;
514 }
515 
emc1403_platform_data(void * info)516 static void __init *emc1403_platform_data(void *info)
517 {
518 	static short intr2nd_pdata;
519 	struct i2c_board_info *i2c_info = info;
520 	int intr = get_gpio_by_name("thermal_int");
521 	int intr2nd = get_gpio_by_name("thermal_alert");
522 
523 	if (intr == -1 || intr2nd == -1)
524 		return NULL;
525 
526 	i2c_info->irq = intr + MRST_IRQ_OFFSET;
527 	intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
528 
529 	return &intr2nd_pdata;
530 }
531 
lis331dl_platform_data(void * info)532 static void __init *lis331dl_platform_data(void *info)
533 {
534 	static short intr2nd_pdata;
535 	struct i2c_board_info *i2c_info = info;
536 	int intr = get_gpio_by_name("accel_int");
537 	int intr2nd = get_gpio_by_name("accel_2");
538 
539 	if (intr == -1 || intr2nd == -1)
540 		return NULL;
541 
542 	i2c_info->irq = intr + MRST_IRQ_OFFSET;
543 	intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
544 
545 	return &intr2nd_pdata;
546 }
547 
no_platform_data(void * info)548 static void __init *no_platform_data(void *info)
549 {
550 	return NULL;
551 }
552 
553 static struct resource msic_resources[] = {
554 	{
555 		.start	= INTEL_MSIC_IRQ_PHYS_BASE,
556 		.end	= INTEL_MSIC_IRQ_PHYS_BASE + 64 - 1,
557 		.flags	= IORESOURCE_MEM,
558 	},
559 };
560 
561 static struct intel_msic_platform_data msic_pdata;
562 
563 static struct platform_device msic_device = {
564 	.name		= "intel_msic",
565 	.id		= -1,
566 	.dev		= {
567 		.platform_data	= &msic_pdata,
568 	},
569 	.num_resources	= ARRAY_SIZE(msic_resources),
570 	.resource	= msic_resources,
571 };
572 
mrst_has_msic(void)573 static inline bool mrst_has_msic(void)
574 {
575 	return mrst_identify_cpu() == MRST_CPU_CHIP_PENWELL;
576 }
577 
msic_scu_status_change(struct notifier_block * nb,unsigned long code,void * data)578 static int msic_scu_status_change(struct notifier_block *nb,
579 				  unsigned long code, void *data)
580 {
581 	if (code == SCU_DOWN) {
582 		platform_device_unregister(&msic_device);
583 		return 0;
584 	}
585 
586 	return platform_device_register(&msic_device);
587 }
588 
msic_init(void)589 static int __init msic_init(void)
590 {
591 	static struct notifier_block msic_scu_notifier = {
592 		.notifier_call	= msic_scu_status_change,
593 	};
594 
595 	/*
596 	 * We need to be sure that the SCU IPC is ready before MSIC device
597 	 * can be registered.
598 	 */
599 	if (mrst_has_msic())
600 		intel_scu_notifier_add(&msic_scu_notifier);
601 
602 	return 0;
603 }
604 arch_initcall(msic_init);
605 
606 /*
607  * msic_generic_platform_data - sets generic platform data for the block
608  * @info: pointer to the SFI device table entry for this block
609  * @block: MSIC block
610  *
611  * Function sets IRQ number from the SFI table entry for given device to
612  * the MSIC platform data.
613  */
msic_generic_platform_data(void * info,enum intel_msic_block block)614 static void *msic_generic_platform_data(void *info, enum intel_msic_block block)
615 {
616 	struct sfi_device_table_entry *entry = info;
617 
618 	BUG_ON(block < 0 || block >= INTEL_MSIC_BLOCK_LAST);
619 	msic_pdata.irq[block] = entry->irq;
620 
621 	return no_platform_data(info);
622 }
623 
msic_battery_platform_data(void * info)624 static void *msic_battery_platform_data(void *info)
625 {
626 	return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_BATTERY);
627 }
628 
msic_gpio_platform_data(void * info)629 static void *msic_gpio_platform_data(void *info)
630 {
631 	static struct intel_msic_gpio_pdata pdata;
632 	int gpio = get_gpio_by_name("msic_gpio_base");
633 
634 	if (gpio < 0)
635 		return NULL;
636 
637 	pdata.gpio_base = gpio;
638 	msic_pdata.gpio = &pdata;
639 
640 	return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_GPIO);
641 }
642 
msic_audio_platform_data(void * info)643 static void *msic_audio_platform_data(void *info)
644 {
645 	struct platform_device *pdev;
646 
647 	pdev = platform_device_register_simple("sst-platform", -1, NULL, 0);
648 	if (IS_ERR(pdev)) {
649 		pr_err("failed to create audio platform device\n");
650 		return NULL;
651 	}
652 
653 	return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_AUDIO);
654 }
655 
msic_power_btn_platform_data(void * info)656 static void *msic_power_btn_platform_data(void *info)
657 {
658 	return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_POWER_BTN);
659 }
660 
msic_ocd_platform_data(void * info)661 static void *msic_ocd_platform_data(void *info)
662 {
663 	static struct intel_msic_ocd_pdata pdata;
664 	int gpio = get_gpio_by_name("ocd_gpio");
665 
666 	if (gpio < 0)
667 		return NULL;
668 
669 	pdata.gpio = gpio;
670 	msic_pdata.ocd = &pdata;
671 
672 	return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_OCD);
673 }
674 
msic_thermal_platform_data(void * info)675 static void *msic_thermal_platform_data(void *info)
676 {
677 	return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_THERMAL);
678 }
679 
680 /* tc35876x DSI-LVDS bridge chip and panel platform data */
tc35876x_platform_data(void * data)681 static void *tc35876x_platform_data(void *data)
682 {
683        static struct tc35876x_platform_data pdata;
684 
685        /* gpio pins set to -1 will not be used by the driver */
686        pdata.gpio_bridge_reset = get_gpio_by_name("LCMB_RXEN");
687        pdata.gpio_panel_bl_en = get_gpio_by_name("6S6P_BL_EN");
688        pdata.gpio_panel_vadd = get_gpio_by_name("EN_VREG_LCD_V3P3");
689 
690        return &pdata;
691 }
692 
693 static const struct devs_id __initconst device_ids[] = {
694 	{"bma023", SFI_DEV_TYPE_I2C, 1, &no_platform_data},
695 	{"pmic_gpio", SFI_DEV_TYPE_SPI, 1, &pmic_gpio_platform_data},
696 	{"pmic_gpio", SFI_DEV_TYPE_IPC, 1, &pmic_gpio_platform_data},
697 	{"spi_max3111", SFI_DEV_TYPE_SPI, 0, &max3111_platform_data},
698 	{"i2c_max7315", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
699 	{"i2c_max7315_2", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
700 	{"tca6416", SFI_DEV_TYPE_I2C, 1, &tca6416_platform_data},
701 	{"emc1403", SFI_DEV_TYPE_I2C, 1, &emc1403_platform_data},
702 	{"i2c_accel", SFI_DEV_TYPE_I2C, 0, &lis331dl_platform_data},
703 	{"pmic_audio", SFI_DEV_TYPE_IPC, 1, &no_platform_data},
704 	{"mpu3050", SFI_DEV_TYPE_I2C, 1, &mpu3050_platform_data},
705 	{"i2c_disp_brig", SFI_DEV_TYPE_I2C, 0, &tc35876x_platform_data},
706 
707 	/* MSIC subdevices */
708 	{"msic_battery", SFI_DEV_TYPE_IPC, 1, &msic_battery_platform_data},
709 	{"msic_gpio", SFI_DEV_TYPE_IPC, 1, &msic_gpio_platform_data},
710 	{"msic_audio", SFI_DEV_TYPE_IPC, 1, &msic_audio_platform_data},
711 	{"msic_power_btn", SFI_DEV_TYPE_IPC, 1, &msic_power_btn_platform_data},
712 	{"msic_ocd", SFI_DEV_TYPE_IPC, 1, &msic_ocd_platform_data},
713 	{"msic_thermal", SFI_DEV_TYPE_IPC, 1, &msic_thermal_platform_data},
714 
715 	{},
716 };
717 
718 #define MAX_IPCDEVS	24
719 static struct platform_device *ipc_devs[MAX_IPCDEVS];
720 static int ipc_next_dev;
721 
722 #define MAX_SCU_SPI	24
723 static struct spi_board_info *spi_devs[MAX_SCU_SPI];
724 static int spi_next_dev;
725 
726 #define MAX_SCU_I2C	24
727 static struct i2c_board_info *i2c_devs[MAX_SCU_I2C];
728 static int i2c_bus[MAX_SCU_I2C];
729 static int i2c_next_dev;
730 
intel_scu_device_register(struct platform_device * pdev)731 static void __init intel_scu_device_register(struct platform_device *pdev)
732 {
733 	if(ipc_next_dev == MAX_IPCDEVS)
734 		pr_err("too many SCU IPC devices");
735 	else
736 		ipc_devs[ipc_next_dev++] = pdev;
737 }
738 
intel_scu_spi_device_register(struct spi_board_info * sdev)739 static void __init intel_scu_spi_device_register(struct spi_board_info *sdev)
740 {
741 	struct spi_board_info *new_dev;
742 
743 	if (spi_next_dev == MAX_SCU_SPI) {
744 		pr_err("too many SCU SPI devices");
745 		return;
746 	}
747 
748 	new_dev = kzalloc(sizeof(*sdev), GFP_KERNEL);
749 	if (!new_dev) {
750 		pr_err("failed to alloc mem for delayed spi dev %s\n",
751 			sdev->modalias);
752 		return;
753 	}
754 	memcpy(new_dev, sdev, sizeof(*sdev));
755 
756 	spi_devs[spi_next_dev++] = new_dev;
757 }
758 
intel_scu_i2c_device_register(int bus,struct i2c_board_info * idev)759 static void __init intel_scu_i2c_device_register(int bus,
760 						struct i2c_board_info *idev)
761 {
762 	struct i2c_board_info *new_dev;
763 
764 	if (i2c_next_dev == MAX_SCU_I2C) {
765 		pr_err("too many SCU I2C devices");
766 		return;
767 	}
768 
769 	new_dev = kzalloc(sizeof(*idev), GFP_KERNEL);
770 	if (!new_dev) {
771 		pr_err("failed to alloc mem for delayed i2c dev %s\n",
772 			idev->type);
773 		return;
774 	}
775 	memcpy(new_dev, idev, sizeof(*idev));
776 
777 	i2c_bus[i2c_next_dev] = bus;
778 	i2c_devs[i2c_next_dev++] = new_dev;
779 }
780 
781 BLOCKING_NOTIFIER_HEAD(intel_scu_notifier);
782 EXPORT_SYMBOL_GPL(intel_scu_notifier);
783 
784 /* Called by IPC driver */
intel_scu_devices_create(void)785 void intel_scu_devices_create(void)
786 {
787 	int i;
788 
789 	for (i = 0; i < ipc_next_dev; i++)
790 		platform_device_add(ipc_devs[i]);
791 
792 	for (i = 0; i < spi_next_dev; i++)
793 		spi_register_board_info(spi_devs[i], 1);
794 
795 	for (i = 0; i < i2c_next_dev; i++) {
796 		struct i2c_adapter *adapter;
797 		struct i2c_client *client;
798 
799 		adapter = i2c_get_adapter(i2c_bus[i]);
800 		if (adapter) {
801 			client = i2c_new_device(adapter, i2c_devs[i]);
802 			if (!client)
803 				pr_err("can't create i2c device %s\n",
804 					i2c_devs[i]->type);
805 		} else
806 			i2c_register_board_info(i2c_bus[i], i2c_devs[i], 1);
807 	}
808 	intel_scu_notifier_post(SCU_AVAILABLE, NULL);
809 }
810 EXPORT_SYMBOL_GPL(intel_scu_devices_create);
811 
812 /* Called by IPC driver */
intel_scu_devices_destroy(void)813 void intel_scu_devices_destroy(void)
814 {
815 	int i;
816 
817 	intel_scu_notifier_post(SCU_DOWN, NULL);
818 
819 	for (i = 0; i < ipc_next_dev; i++)
820 		platform_device_del(ipc_devs[i]);
821 }
822 EXPORT_SYMBOL_GPL(intel_scu_devices_destroy);
823 
install_irq_resource(struct platform_device * pdev,int irq)824 static void __init install_irq_resource(struct platform_device *pdev, int irq)
825 {
826 	/* Single threaded */
827 	static struct resource __initdata res = {
828 		.name = "IRQ",
829 		.flags = IORESOURCE_IRQ,
830 	};
831 	res.start = irq;
832 	platform_device_add_resources(pdev, &res, 1);
833 }
834 
sfi_handle_ipc_dev(struct sfi_device_table_entry * entry)835 static void __init sfi_handle_ipc_dev(struct sfi_device_table_entry *entry)
836 {
837 	const struct devs_id *dev = device_ids;
838 	struct platform_device *pdev;
839 	void *pdata = NULL;
840 
841 	while (dev->name[0]) {
842 		if (dev->type == SFI_DEV_TYPE_IPC &&
843 			!strncmp(dev->name, entry->name, SFI_NAME_LEN)) {
844 			pdata = dev->get_platform_data(entry);
845 			break;
846 		}
847 		dev++;
848 	}
849 
850 	/*
851 	 * On Medfield the platform device creation is handled by the MSIC
852 	 * MFD driver so we don't need to do it here.
853 	 */
854 	if (mrst_has_msic())
855 		return;
856 
857 	pdev = platform_device_alloc(entry->name, 0);
858 	if (pdev == NULL) {
859 		pr_err("out of memory for SFI platform device '%s'.\n",
860 			entry->name);
861 		return;
862 	}
863 	install_irq_resource(pdev, entry->irq);
864 
865 	pdev->dev.platform_data = pdata;
866 	intel_scu_device_register(pdev);
867 }
868 
sfi_handle_spi_dev(struct spi_board_info * spi_info)869 static void __init sfi_handle_spi_dev(struct spi_board_info *spi_info)
870 {
871 	const struct devs_id *dev = device_ids;
872 	void *pdata = NULL;
873 
874 	while (dev->name[0]) {
875 		if (dev->type == SFI_DEV_TYPE_SPI &&
876 				!strncmp(dev->name, spi_info->modalias, SFI_NAME_LEN)) {
877 			pdata = dev->get_platform_data(spi_info);
878 			break;
879 		}
880 		dev++;
881 	}
882 	spi_info->platform_data = pdata;
883 	if (dev->delay)
884 		intel_scu_spi_device_register(spi_info);
885 	else
886 		spi_register_board_info(spi_info, 1);
887 }
888 
sfi_handle_i2c_dev(int bus,struct i2c_board_info * i2c_info)889 static void __init sfi_handle_i2c_dev(int bus, struct i2c_board_info *i2c_info)
890 {
891 	const struct devs_id *dev = device_ids;
892 	void *pdata = NULL;
893 
894 	while (dev->name[0]) {
895 		if (dev->type == SFI_DEV_TYPE_I2C &&
896 			!strncmp(dev->name, i2c_info->type, SFI_NAME_LEN)) {
897 			pdata = dev->get_platform_data(i2c_info);
898 			break;
899 		}
900 		dev++;
901 	}
902 	i2c_info->platform_data = pdata;
903 
904 	if (dev->delay)
905 		intel_scu_i2c_device_register(bus, i2c_info);
906 	else
907 		i2c_register_board_info(bus, i2c_info, 1);
908  }
909 
910 
sfi_parse_devs(struct sfi_table_header * table)911 static int __init sfi_parse_devs(struct sfi_table_header *table)
912 {
913 	struct sfi_table_simple *sb;
914 	struct sfi_device_table_entry *pentry;
915 	struct spi_board_info spi_info;
916 	struct i2c_board_info i2c_info;
917 	int num, i, bus;
918 	int ioapic;
919 	struct io_apic_irq_attr irq_attr;
920 
921 	sb = (struct sfi_table_simple *)table;
922 	num = SFI_GET_NUM_ENTRIES(sb, struct sfi_device_table_entry);
923 	pentry = (struct sfi_device_table_entry *)sb->pentry;
924 
925 	for (i = 0; i < num; i++, pentry++) {
926 		int irq = pentry->irq;
927 
928 		if (irq != (u8)0xff) { /* native RTE case */
929 			/* these SPI2 devices are not exposed to system as PCI
930 			 * devices, but they have separate RTE entry in IOAPIC
931 			 * so we have to enable them one by one here
932 			 */
933 			ioapic = mp_find_ioapic(irq);
934 			irq_attr.ioapic = ioapic;
935 			irq_attr.ioapic_pin = irq;
936 			irq_attr.trigger = 1;
937 			irq_attr.polarity = 1;
938 			io_apic_set_pci_routing(NULL, irq, &irq_attr);
939 		} else
940 			irq = 0; /* No irq */
941 
942 		switch (pentry->type) {
943 		case SFI_DEV_TYPE_IPC:
944 			pr_debug("info[%2d]: IPC bus, name = %16.16s, "
945 				"irq = 0x%2x\n", i, pentry->name, pentry->irq);
946 			sfi_handle_ipc_dev(pentry);
947 			break;
948 		case SFI_DEV_TYPE_SPI:
949 			memset(&spi_info, 0, sizeof(spi_info));
950 			strncpy(spi_info.modalias, pentry->name, SFI_NAME_LEN);
951 			spi_info.irq = irq;
952 			spi_info.bus_num = pentry->host_num;
953 			spi_info.chip_select = pentry->addr;
954 			spi_info.max_speed_hz = pentry->max_freq;
955 			pr_debug("info[%2d]: SPI bus = %d, name = %16.16s, "
956 				"irq = 0x%2x, max_freq = %d, cs = %d\n", i,
957 				spi_info.bus_num,
958 				spi_info.modalias,
959 				spi_info.irq,
960 				spi_info.max_speed_hz,
961 				spi_info.chip_select);
962 			sfi_handle_spi_dev(&spi_info);
963 			break;
964 		case SFI_DEV_TYPE_I2C:
965 			memset(&i2c_info, 0, sizeof(i2c_info));
966 			bus = pentry->host_num;
967 			strncpy(i2c_info.type, pentry->name, SFI_NAME_LEN);
968 			i2c_info.irq = irq;
969 			i2c_info.addr = pentry->addr;
970 			pr_debug("info[%2d]: I2C bus = %d, name = %16.16s, "
971 				"irq = 0x%2x, addr = 0x%x\n", i, bus,
972 				i2c_info.type,
973 				i2c_info.irq,
974 				i2c_info.addr);
975 			sfi_handle_i2c_dev(bus, &i2c_info);
976 			break;
977 		case SFI_DEV_TYPE_UART:
978 		case SFI_DEV_TYPE_HSI:
979 		default:
980 			;
981 		}
982 	}
983 	return 0;
984 }
985 
mrst_platform_init(void)986 static int __init mrst_platform_init(void)
987 {
988 	sfi_table_parse(SFI_SIG_GPIO, NULL, NULL, sfi_parse_gpio);
989 	sfi_table_parse(SFI_SIG_DEVS, NULL, NULL, sfi_parse_devs);
990 	return 0;
991 }
992 arch_initcall(mrst_platform_init);
993 
994 /*
995  * we will search these buttons in SFI GPIO table (by name)
996  * and register them dynamically. Please add all possible
997  * buttons here, we will shrink them if no GPIO found.
998  */
999 static struct gpio_keys_button gpio_button[] = {
1000 	{KEY_POWER,		-1, 1, "power_btn",	EV_KEY, 0, 3000},
1001 	{KEY_PROG1,		-1, 1, "prog_btn1",	EV_KEY, 0, 20},
1002 	{KEY_PROG2,		-1, 1, "prog_btn2",	EV_KEY, 0, 20},
1003 	{SW_LID,		-1, 1, "lid_switch",	EV_SW,  0, 20},
1004 	{KEY_VOLUMEUP,		-1, 1, "vol_up",	EV_KEY, 0, 20},
1005 	{KEY_VOLUMEDOWN,	-1, 1, "vol_down",	EV_KEY, 0, 20},
1006 	{KEY_CAMERA,		-1, 1, "camera_full",	EV_KEY, 0, 20},
1007 	{KEY_CAMERA_FOCUS,	-1, 1, "camera_half",	EV_KEY, 0, 20},
1008 	{SW_KEYPAD_SLIDE,	-1, 1, "MagSw1",	EV_SW,  0, 20},
1009 	{SW_KEYPAD_SLIDE,	-1, 1, "MagSw2",	EV_SW,  0, 20},
1010 };
1011 
1012 static struct gpio_keys_platform_data mrst_gpio_keys = {
1013 	.buttons	= gpio_button,
1014 	.rep		= 1,
1015 	.nbuttons	= -1, /* will fill it after search */
1016 };
1017 
1018 static struct platform_device pb_device = {
1019 	.name		= "gpio-keys",
1020 	.id		= -1,
1021 	.dev		= {
1022 		.platform_data	= &mrst_gpio_keys,
1023 	},
1024 };
1025 
1026 /*
1027  * Shrink the non-existent buttons, register the gpio button
1028  * device if there is some
1029  */
pb_keys_init(void)1030 static int __init pb_keys_init(void)
1031 {
1032 	struct gpio_keys_button *gb = gpio_button;
1033 	int i, num, good = 0;
1034 
1035 	num = sizeof(gpio_button) / sizeof(struct gpio_keys_button);
1036 	for (i = 0; i < num; i++) {
1037 		gb[i].gpio = get_gpio_by_name(gb[i].desc);
1038 		pr_debug("info[%2d]: name = %s, gpio = %d\n", i, gb[i].desc, gb[i].gpio);
1039 		if (gb[i].gpio == -1)
1040 			continue;
1041 
1042 		if (i != good)
1043 			gb[good] = gb[i];
1044 		good++;
1045 	}
1046 
1047 	if (good) {
1048 		mrst_gpio_keys.nbuttons = good;
1049 		return platform_device_register(&pb_device);
1050 	}
1051 	return 0;
1052 }
1053 late_initcall(pb_keys_init);
1054