1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 
21 #include <asm/pkru.h>
22 #include <asm/trapnr.h>
23 #include <asm/fpu/xcr.h>
24 
25 #include "mmu.h"
26 #include "x86.h"
27 #include "svm.h"
28 #include "svm_ops.h"
29 #include "cpuid.h"
30 #include "trace.h"
31 
32 #ifndef CONFIG_KVM_AMD_SEV
33 /*
34  * When this config is not defined, SEV feature is not supported and APIs in
35  * this file are not used but this file still gets compiled into the KVM AMD
36  * module.
37  *
38  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
39  * misc_res_type {} defined in linux/misc_cgroup.h.
40  *
41  * Below macros allow compilation to succeed.
42  */
43 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
44 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
45 #endif
46 
47 #ifdef CONFIG_KVM_AMD_SEV
48 /* enable/disable SEV support */
49 static bool sev_enabled = true;
50 module_param_named(sev, sev_enabled, bool, 0444);
51 
52 /* enable/disable SEV-ES support */
53 static bool sev_es_enabled = true;
54 module_param_named(sev_es, sev_es_enabled, bool, 0444);
55 #else
56 #define sev_enabled false
57 #define sev_es_enabled false
58 #endif /* CONFIG_KVM_AMD_SEV */
59 
60 static u8 sev_enc_bit;
61 static DECLARE_RWSEM(sev_deactivate_lock);
62 static DEFINE_MUTEX(sev_bitmap_lock);
63 unsigned int max_sev_asid;
64 static unsigned int min_sev_asid;
65 static unsigned long sev_me_mask;
66 static unsigned int nr_asids;
67 static unsigned long *sev_asid_bitmap;
68 static unsigned long *sev_reclaim_asid_bitmap;
69 
70 struct enc_region {
71 	struct list_head list;
72 	unsigned long npages;
73 	struct page **pages;
74 	unsigned long uaddr;
75 	unsigned long size;
76 };
77 
78 /* Called with the sev_bitmap_lock held, or on shutdown  */
sev_flush_asids(int min_asid,int max_asid)79 static int sev_flush_asids(int min_asid, int max_asid)
80 {
81 	int ret, asid, error = 0;
82 
83 	/* Check if there are any ASIDs to reclaim before performing a flush */
84 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
85 	if (asid > max_asid)
86 		return -EBUSY;
87 
88 	/*
89 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
90 	 * so it must be guarded.
91 	 */
92 	down_write(&sev_deactivate_lock);
93 
94 	wbinvd_on_all_cpus();
95 	ret = sev_guest_df_flush(&error);
96 
97 	up_write(&sev_deactivate_lock);
98 
99 	if (ret)
100 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
101 
102 	return ret;
103 }
104 
is_mirroring_enc_context(struct kvm * kvm)105 static inline bool is_mirroring_enc_context(struct kvm *kvm)
106 {
107 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
108 }
109 
110 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(int min_asid,int max_asid)111 static bool __sev_recycle_asids(int min_asid, int max_asid)
112 {
113 	if (sev_flush_asids(min_asid, max_asid))
114 		return false;
115 
116 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
117 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
118 		   nr_asids);
119 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
120 
121 	return true;
122 }
123 
sev_misc_cg_try_charge(struct kvm_sev_info * sev)124 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
125 {
126 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
127 	return misc_cg_try_charge(type, sev->misc_cg, 1);
128 }
129 
sev_misc_cg_uncharge(struct kvm_sev_info * sev)130 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
131 {
132 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
133 	misc_cg_uncharge(type, sev->misc_cg, 1);
134 }
135 
sev_asid_new(struct kvm_sev_info * sev)136 static int sev_asid_new(struct kvm_sev_info *sev)
137 {
138 	int asid, min_asid, max_asid, ret;
139 	bool retry = true;
140 
141 	WARN_ON(sev->misc_cg);
142 	sev->misc_cg = get_current_misc_cg();
143 	ret = sev_misc_cg_try_charge(sev);
144 	if (ret) {
145 		put_misc_cg(sev->misc_cg);
146 		sev->misc_cg = NULL;
147 		return ret;
148 	}
149 
150 	mutex_lock(&sev_bitmap_lock);
151 
152 	/*
153 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
154 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
155 	 */
156 	min_asid = sev->es_active ? 1 : min_sev_asid;
157 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
158 again:
159 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
160 	if (asid > max_asid) {
161 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
162 			retry = false;
163 			goto again;
164 		}
165 		mutex_unlock(&sev_bitmap_lock);
166 		ret = -EBUSY;
167 		goto e_uncharge;
168 	}
169 
170 	__set_bit(asid, sev_asid_bitmap);
171 
172 	mutex_unlock(&sev_bitmap_lock);
173 
174 	return asid;
175 e_uncharge:
176 	sev_misc_cg_uncharge(sev);
177 	put_misc_cg(sev->misc_cg);
178 	sev->misc_cg = NULL;
179 	return ret;
180 }
181 
sev_get_asid(struct kvm * kvm)182 static int sev_get_asid(struct kvm *kvm)
183 {
184 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
185 
186 	return sev->asid;
187 }
188 
sev_asid_free(struct kvm_sev_info * sev)189 static void sev_asid_free(struct kvm_sev_info *sev)
190 {
191 	struct svm_cpu_data *sd;
192 	int cpu;
193 
194 	mutex_lock(&sev_bitmap_lock);
195 
196 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
197 
198 	for_each_possible_cpu(cpu) {
199 		sd = per_cpu(svm_data, cpu);
200 		sd->sev_vmcbs[sev->asid] = NULL;
201 	}
202 
203 	mutex_unlock(&sev_bitmap_lock);
204 
205 	sev_misc_cg_uncharge(sev);
206 	put_misc_cg(sev->misc_cg);
207 	sev->misc_cg = NULL;
208 }
209 
sev_decommission(unsigned int handle)210 static void sev_decommission(unsigned int handle)
211 {
212 	struct sev_data_decommission decommission;
213 
214 	if (!handle)
215 		return;
216 
217 	decommission.handle = handle;
218 	sev_guest_decommission(&decommission, NULL);
219 }
220 
sev_unbind_asid(struct kvm * kvm,unsigned int handle)221 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
222 {
223 	struct sev_data_deactivate deactivate;
224 
225 	if (!handle)
226 		return;
227 
228 	deactivate.handle = handle;
229 
230 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
231 	down_read(&sev_deactivate_lock);
232 	sev_guest_deactivate(&deactivate, NULL);
233 	up_read(&sev_deactivate_lock);
234 
235 	sev_decommission(handle);
236 }
237 
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)238 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
239 {
240 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
241 	int asid, ret;
242 
243 	if (kvm->created_vcpus)
244 		return -EINVAL;
245 
246 	ret = -EBUSY;
247 	if (unlikely(sev->active))
248 		return ret;
249 
250 	sev->active = true;
251 	sev->es_active = argp->id == KVM_SEV_ES_INIT;
252 	asid = sev_asid_new(sev);
253 	if (asid < 0)
254 		goto e_no_asid;
255 	sev->asid = asid;
256 
257 	ret = sev_platform_init(&argp->error);
258 	if (ret)
259 		goto e_free;
260 
261 	INIT_LIST_HEAD(&sev->regions_list);
262 	INIT_LIST_HEAD(&sev->mirror_vms);
263 
264 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
265 
266 	return 0;
267 
268 e_free:
269 	sev_asid_free(sev);
270 	sev->asid = 0;
271 e_no_asid:
272 	sev->es_active = false;
273 	sev->active = false;
274 	return ret;
275 }
276 
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)277 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
278 {
279 	struct sev_data_activate activate;
280 	int asid = sev_get_asid(kvm);
281 	int ret;
282 
283 	/* activate ASID on the given handle */
284 	activate.handle = handle;
285 	activate.asid   = asid;
286 	ret = sev_guest_activate(&activate, error);
287 
288 	return ret;
289 }
290 
__sev_issue_cmd(int fd,int id,void * data,int * error)291 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
292 {
293 	struct fd f;
294 	int ret;
295 
296 	f = fdget(fd);
297 	if (!f.file)
298 		return -EBADF;
299 
300 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
301 
302 	fdput(f);
303 	return ret;
304 }
305 
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)306 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
307 {
308 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
309 
310 	return __sev_issue_cmd(sev->fd, id, data, error);
311 }
312 
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)313 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
314 {
315 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
316 	struct sev_data_launch_start start;
317 	struct kvm_sev_launch_start params;
318 	void *dh_blob, *session_blob;
319 	int *error = &argp->error;
320 	int ret;
321 
322 	if (!sev_guest(kvm))
323 		return -ENOTTY;
324 
325 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
326 		return -EFAULT;
327 
328 	memset(&start, 0, sizeof(start));
329 
330 	dh_blob = NULL;
331 	if (params.dh_uaddr) {
332 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
333 		if (IS_ERR(dh_blob))
334 			return PTR_ERR(dh_blob);
335 
336 		start.dh_cert_address = __sme_set(__pa(dh_blob));
337 		start.dh_cert_len = params.dh_len;
338 	}
339 
340 	session_blob = NULL;
341 	if (params.session_uaddr) {
342 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
343 		if (IS_ERR(session_blob)) {
344 			ret = PTR_ERR(session_blob);
345 			goto e_free_dh;
346 		}
347 
348 		start.session_address = __sme_set(__pa(session_blob));
349 		start.session_len = params.session_len;
350 	}
351 
352 	start.handle = params.handle;
353 	start.policy = params.policy;
354 
355 	/* create memory encryption context */
356 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
357 	if (ret)
358 		goto e_free_session;
359 
360 	/* Bind ASID to this guest */
361 	ret = sev_bind_asid(kvm, start.handle, error);
362 	if (ret) {
363 		sev_decommission(start.handle);
364 		goto e_free_session;
365 	}
366 
367 	/* return handle to userspace */
368 	params.handle = start.handle;
369 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
370 		sev_unbind_asid(kvm, start.handle);
371 		ret = -EFAULT;
372 		goto e_free_session;
373 	}
374 
375 	sev->handle = start.handle;
376 	sev->fd = argp->sev_fd;
377 
378 e_free_session:
379 	kfree(session_blob);
380 e_free_dh:
381 	kfree(dh_blob);
382 	return ret;
383 }
384 
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)385 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
386 				    unsigned long ulen, unsigned long *n,
387 				    int write)
388 {
389 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
390 	unsigned long npages, size;
391 	int npinned;
392 	unsigned long locked, lock_limit;
393 	struct page **pages;
394 	unsigned long first, last;
395 	int ret;
396 
397 	lockdep_assert_held(&kvm->lock);
398 
399 	if (ulen == 0 || uaddr + ulen < uaddr)
400 		return ERR_PTR(-EINVAL);
401 
402 	/* Calculate number of pages. */
403 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
404 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
405 	npages = (last - first + 1);
406 
407 	locked = sev->pages_locked + npages;
408 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
409 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
410 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
411 		return ERR_PTR(-ENOMEM);
412 	}
413 
414 	if (WARN_ON_ONCE(npages > INT_MAX))
415 		return ERR_PTR(-EINVAL);
416 
417 	/* Avoid using vmalloc for smaller buffers. */
418 	size = npages * sizeof(struct page *);
419 	if (size > PAGE_SIZE)
420 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
421 	else
422 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
423 
424 	if (!pages)
425 		return ERR_PTR(-ENOMEM);
426 
427 	/* Pin the user virtual address. */
428 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
429 	if (npinned != npages) {
430 		pr_err("SEV: Failure locking %lu pages.\n", npages);
431 		ret = -ENOMEM;
432 		goto err;
433 	}
434 
435 	*n = npages;
436 	sev->pages_locked = locked;
437 
438 	return pages;
439 
440 err:
441 	if (npinned > 0)
442 		unpin_user_pages(pages, npinned);
443 
444 	kvfree(pages);
445 	return ERR_PTR(ret);
446 }
447 
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)448 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
449 			     unsigned long npages)
450 {
451 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
452 
453 	unpin_user_pages(pages, npages);
454 	kvfree(pages);
455 	sev->pages_locked -= npages;
456 }
457 
sev_clflush_pages(struct page * pages[],unsigned long npages)458 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
459 {
460 	uint8_t *page_virtual;
461 	unsigned long i;
462 
463 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
464 	    pages == NULL)
465 		return;
466 
467 	for (i = 0; i < npages; i++) {
468 		page_virtual = kmap_atomic(pages[i]);
469 		clflush_cache_range(page_virtual, PAGE_SIZE);
470 		kunmap_atomic(page_virtual);
471 		cond_resched();
472 	}
473 }
474 
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)475 static unsigned long get_num_contig_pages(unsigned long idx,
476 				struct page **inpages, unsigned long npages)
477 {
478 	unsigned long paddr, next_paddr;
479 	unsigned long i = idx + 1, pages = 1;
480 
481 	/* find the number of contiguous pages starting from idx */
482 	paddr = __sme_page_pa(inpages[idx]);
483 	while (i < npages) {
484 		next_paddr = __sme_page_pa(inpages[i++]);
485 		if ((paddr + PAGE_SIZE) == next_paddr) {
486 			pages++;
487 			paddr = next_paddr;
488 			continue;
489 		}
490 		break;
491 	}
492 
493 	return pages;
494 }
495 
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)496 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
497 {
498 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
499 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
500 	struct kvm_sev_launch_update_data params;
501 	struct sev_data_launch_update_data data;
502 	struct page **inpages;
503 	int ret;
504 
505 	if (!sev_guest(kvm))
506 		return -ENOTTY;
507 
508 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
509 		return -EFAULT;
510 
511 	vaddr = params.uaddr;
512 	size = params.len;
513 	vaddr_end = vaddr + size;
514 
515 	/* Lock the user memory. */
516 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
517 	if (IS_ERR(inpages))
518 		return PTR_ERR(inpages);
519 
520 	/*
521 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
522 	 * place; the cache may contain the data that was written unencrypted.
523 	 */
524 	sev_clflush_pages(inpages, npages);
525 
526 	data.reserved = 0;
527 	data.handle = sev->handle;
528 
529 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
530 		int offset, len;
531 
532 		/*
533 		 * If the user buffer is not page-aligned, calculate the offset
534 		 * within the page.
535 		 */
536 		offset = vaddr & (PAGE_SIZE - 1);
537 
538 		/* Calculate the number of pages that can be encrypted in one go. */
539 		pages = get_num_contig_pages(i, inpages, npages);
540 
541 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
542 
543 		data.len = len;
544 		data.address = __sme_page_pa(inpages[i]) + offset;
545 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
546 		if (ret)
547 			goto e_unpin;
548 
549 		size -= len;
550 		next_vaddr = vaddr + len;
551 	}
552 
553 e_unpin:
554 	/* content of memory is updated, mark pages dirty */
555 	for (i = 0; i < npages; i++) {
556 		set_page_dirty_lock(inpages[i]);
557 		mark_page_accessed(inpages[i]);
558 	}
559 	/* unlock the user pages */
560 	sev_unpin_memory(kvm, inpages, npages);
561 	return ret;
562 }
563 
sev_es_sync_vmsa(struct vcpu_svm * svm)564 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
565 {
566 	struct sev_es_save_area *save = svm->sev_es.vmsa;
567 
568 	/* Check some debug related fields before encrypting the VMSA */
569 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
570 		return -EINVAL;
571 
572 	/*
573 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
574 	 * the traditional VMSA that is part of the VMCB. Copy the
575 	 * traditional VMSA as it has been built so far (in prep
576 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
577 	 */
578 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
579 
580 	/* Sync registgers */
581 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
582 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
583 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
584 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
585 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
586 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
587 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
588 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
589 #ifdef CONFIG_X86_64
590 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
591 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
592 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
593 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
594 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
595 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
596 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
597 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
598 #endif
599 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
600 
601 	/* Sync some non-GPR registers before encrypting */
602 	save->xcr0 = svm->vcpu.arch.xcr0;
603 	save->pkru = svm->vcpu.arch.pkru;
604 	save->xss  = svm->vcpu.arch.ia32_xss;
605 	save->dr6  = svm->vcpu.arch.dr6;
606 
607 	return 0;
608 }
609 
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)610 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
611 				    int *error)
612 {
613 	struct sev_data_launch_update_vmsa vmsa;
614 	struct vcpu_svm *svm = to_svm(vcpu);
615 	int ret;
616 
617 	/* Perform some pre-encryption checks against the VMSA */
618 	ret = sev_es_sync_vmsa(svm);
619 	if (ret)
620 		return ret;
621 
622 	/*
623 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
624 	 * the VMSA memory content (i.e it will write the same memory region
625 	 * with the guest's key), so invalidate it first.
626 	 */
627 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
628 
629 	vmsa.reserved = 0;
630 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
631 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
632 	vmsa.len = PAGE_SIZE;
633 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
634 	if (ret)
635 	  return ret;
636 
637 	vcpu->arch.guest_state_protected = true;
638 	return 0;
639 }
640 
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)641 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
642 {
643 	struct kvm_vcpu *vcpu;
644 	unsigned long i;
645 	int ret;
646 
647 	if (!sev_es_guest(kvm))
648 		return -ENOTTY;
649 
650 	kvm_for_each_vcpu(i, vcpu, kvm) {
651 		ret = mutex_lock_killable(&vcpu->mutex);
652 		if (ret)
653 			return ret;
654 
655 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
656 
657 		mutex_unlock(&vcpu->mutex);
658 		if (ret)
659 			return ret;
660 	}
661 
662 	return 0;
663 }
664 
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)665 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
666 {
667 	void __user *measure = (void __user *)(uintptr_t)argp->data;
668 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
669 	struct sev_data_launch_measure data;
670 	struct kvm_sev_launch_measure params;
671 	void __user *p = NULL;
672 	void *blob = NULL;
673 	int ret;
674 
675 	if (!sev_guest(kvm))
676 		return -ENOTTY;
677 
678 	if (copy_from_user(&params, measure, sizeof(params)))
679 		return -EFAULT;
680 
681 	memset(&data, 0, sizeof(data));
682 
683 	/* User wants to query the blob length */
684 	if (!params.len)
685 		goto cmd;
686 
687 	p = (void __user *)(uintptr_t)params.uaddr;
688 	if (p) {
689 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
690 			return -EINVAL;
691 
692 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
693 		if (!blob)
694 			return -ENOMEM;
695 
696 		data.address = __psp_pa(blob);
697 		data.len = params.len;
698 	}
699 
700 cmd:
701 	data.handle = sev->handle;
702 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
703 
704 	/*
705 	 * If we query the session length, FW responded with expected data.
706 	 */
707 	if (!params.len)
708 		goto done;
709 
710 	if (ret)
711 		goto e_free_blob;
712 
713 	if (blob) {
714 		if (copy_to_user(p, blob, params.len))
715 			ret = -EFAULT;
716 	}
717 
718 done:
719 	params.len = data.len;
720 	if (copy_to_user(measure, &params, sizeof(params)))
721 		ret = -EFAULT;
722 e_free_blob:
723 	kfree(blob);
724 	return ret;
725 }
726 
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)727 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
728 {
729 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
730 	struct sev_data_launch_finish data;
731 
732 	if (!sev_guest(kvm))
733 		return -ENOTTY;
734 
735 	data.handle = sev->handle;
736 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
737 }
738 
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)739 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
740 {
741 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
742 	struct kvm_sev_guest_status params;
743 	struct sev_data_guest_status data;
744 	int ret;
745 
746 	if (!sev_guest(kvm))
747 		return -ENOTTY;
748 
749 	memset(&data, 0, sizeof(data));
750 
751 	data.handle = sev->handle;
752 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
753 	if (ret)
754 		return ret;
755 
756 	params.policy = data.policy;
757 	params.state = data.state;
758 	params.handle = data.handle;
759 
760 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
761 		ret = -EFAULT;
762 
763 	return ret;
764 }
765 
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)766 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
767 			       unsigned long dst, int size,
768 			       int *error, bool enc)
769 {
770 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
771 	struct sev_data_dbg data;
772 
773 	data.reserved = 0;
774 	data.handle = sev->handle;
775 	data.dst_addr = dst;
776 	data.src_addr = src;
777 	data.len = size;
778 
779 	return sev_issue_cmd(kvm,
780 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
781 			     &data, error);
782 }
783 
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)784 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
785 			     unsigned long dst_paddr, int sz, int *err)
786 {
787 	int offset;
788 
789 	/*
790 	 * Its safe to read more than we are asked, caller should ensure that
791 	 * destination has enough space.
792 	 */
793 	offset = src_paddr & 15;
794 	src_paddr = round_down(src_paddr, 16);
795 	sz = round_up(sz + offset, 16);
796 
797 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
798 }
799 
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)800 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
801 				  void __user *dst_uaddr,
802 				  unsigned long dst_paddr,
803 				  int size, int *err)
804 {
805 	struct page *tpage = NULL;
806 	int ret, offset;
807 
808 	/* if inputs are not 16-byte then use intermediate buffer */
809 	if (!IS_ALIGNED(dst_paddr, 16) ||
810 	    !IS_ALIGNED(paddr,     16) ||
811 	    !IS_ALIGNED(size,      16)) {
812 		tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO);
813 		if (!tpage)
814 			return -ENOMEM;
815 
816 		dst_paddr = __sme_page_pa(tpage);
817 	}
818 
819 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
820 	if (ret)
821 		goto e_free;
822 
823 	if (tpage) {
824 		offset = paddr & 15;
825 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
826 			ret = -EFAULT;
827 	}
828 
829 e_free:
830 	if (tpage)
831 		__free_page(tpage);
832 
833 	return ret;
834 }
835 
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)836 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
837 				  void __user *vaddr,
838 				  unsigned long dst_paddr,
839 				  void __user *dst_vaddr,
840 				  int size, int *error)
841 {
842 	struct page *src_tpage = NULL;
843 	struct page *dst_tpage = NULL;
844 	int ret, len = size;
845 
846 	/* If source buffer is not aligned then use an intermediate buffer */
847 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
848 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
849 		if (!src_tpage)
850 			return -ENOMEM;
851 
852 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
853 			__free_page(src_tpage);
854 			return -EFAULT;
855 		}
856 
857 		paddr = __sme_page_pa(src_tpage);
858 	}
859 
860 	/*
861 	 *  If destination buffer or length is not aligned then do read-modify-write:
862 	 *   - decrypt destination in an intermediate buffer
863 	 *   - copy the source buffer in an intermediate buffer
864 	 *   - use the intermediate buffer as source buffer
865 	 */
866 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
867 		int dst_offset;
868 
869 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
870 		if (!dst_tpage) {
871 			ret = -ENOMEM;
872 			goto e_free;
873 		}
874 
875 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
876 					__sme_page_pa(dst_tpage), size, error);
877 		if (ret)
878 			goto e_free;
879 
880 		/*
881 		 *  If source is kernel buffer then use memcpy() otherwise
882 		 *  copy_from_user().
883 		 */
884 		dst_offset = dst_paddr & 15;
885 
886 		if (src_tpage)
887 			memcpy(page_address(dst_tpage) + dst_offset,
888 			       page_address(src_tpage), size);
889 		else {
890 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
891 					   vaddr, size)) {
892 				ret = -EFAULT;
893 				goto e_free;
894 			}
895 		}
896 
897 		paddr = __sme_page_pa(dst_tpage);
898 		dst_paddr = round_down(dst_paddr, 16);
899 		len = round_up(size, 16);
900 	}
901 
902 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
903 
904 e_free:
905 	if (src_tpage)
906 		__free_page(src_tpage);
907 	if (dst_tpage)
908 		__free_page(dst_tpage);
909 	return ret;
910 }
911 
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)912 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
913 {
914 	unsigned long vaddr, vaddr_end, next_vaddr;
915 	unsigned long dst_vaddr;
916 	struct page **src_p, **dst_p;
917 	struct kvm_sev_dbg debug;
918 	unsigned long n;
919 	unsigned int size;
920 	int ret;
921 
922 	if (!sev_guest(kvm))
923 		return -ENOTTY;
924 
925 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
926 		return -EFAULT;
927 
928 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
929 		return -EINVAL;
930 	if (!debug.dst_uaddr)
931 		return -EINVAL;
932 
933 	vaddr = debug.src_uaddr;
934 	size = debug.len;
935 	vaddr_end = vaddr + size;
936 	dst_vaddr = debug.dst_uaddr;
937 
938 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
939 		int len, s_off, d_off;
940 
941 		/* lock userspace source and destination page */
942 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
943 		if (IS_ERR(src_p))
944 			return PTR_ERR(src_p);
945 
946 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
947 		if (IS_ERR(dst_p)) {
948 			sev_unpin_memory(kvm, src_p, n);
949 			return PTR_ERR(dst_p);
950 		}
951 
952 		/*
953 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
954 		 * the pages; flush the destination too so that future accesses do not
955 		 * see stale data.
956 		 */
957 		sev_clflush_pages(src_p, 1);
958 		sev_clflush_pages(dst_p, 1);
959 
960 		/*
961 		 * Since user buffer may not be page aligned, calculate the
962 		 * offset within the page.
963 		 */
964 		s_off = vaddr & ~PAGE_MASK;
965 		d_off = dst_vaddr & ~PAGE_MASK;
966 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
967 
968 		if (dec)
969 			ret = __sev_dbg_decrypt_user(kvm,
970 						     __sme_page_pa(src_p[0]) + s_off,
971 						     (void __user *)dst_vaddr,
972 						     __sme_page_pa(dst_p[0]) + d_off,
973 						     len, &argp->error);
974 		else
975 			ret = __sev_dbg_encrypt_user(kvm,
976 						     __sme_page_pa(src_p[0]) + s_off,
977 						     (void __user *)vaddr,
978 						     __sme_page_pa(dst_p[0]) + d_off,
979 						     (void __user *)dst_vaddr,
980 						     len, &argp->error);
981 
982 		sev_unpin_memory(kvm, src_p, n);
983 		sev_unpin_memory(kvm, dst_p, n);
984 
985 		if (ret)
986 			goto err;
987 
988 		next_vaddr = vaddr + len;
989 		dst_vaddr = dst_vaddr + len;
990 		size -= len;
991 	}
992 err:
993 	return ret;
994 }
995 
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)996 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
997 {
998 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
999 	struct sev_data_launch_secret data;
1000 	struct kvm_sev_launch_secret params;
1001 	struct page **pages;
1002 	void *blob, *hdr;
1003 	unsigned long n, i;
1004 	int ret, offset;
1005 
1006 	if (!sev_guest(kvm))
1007 		return -ENOTTY;
1008 
1009 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1010 		return -EFAULT;
1011 
1012 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1013 	if (IS_ERR(pages))
1014 		return PTR_ERR(pages);
1015 
1016 	/*
1017 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1018 	 * place; the cache may contain the data that was written unencrypted.
1019 	 */
1020 	sev_clflush_pages(pages, n);
1021 
1022 	/*
1023 	 * The secret must be copied into contiguous memory region, lets verify
1024 	 * that userspace memory pages are contiguous before we issue command.
1025 	 */
1026 	if (get_num_contig_pages(0, pages, n) != n) {
1027 		ret = -EINVAL;
1028 		goto e_unpin_memory;
1029 	}
1030 
1031 	memset(&data, 0, sizeof(data));
1032 
1033 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1034 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1035 	data.guest_len = params.guest_len;
1036 
1037 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1038 	if (IS_ERR(blob)) {
1039 		ret = PTR_ERR(blob);
1040 		goto e_unpin_memory;
1041 	}
1042 
1043 	data.trans_address = __psp_pa(blob);
1044 	data.trans_len = params.trans_len;
1045 
1046 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1047 	if (IS_ERR(hdr)) {
1048 		ret = PTR_ERR(hdr);
1049 		goto e_free_blob;
1050 	}
1051 	data.hdr_address = __psp_pa(hdr);
1052 	data.hdr_len = params.hdr_len;
1053 
1054 	data.handle = sev->handle;
1055 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1056 
1057 	kfree(hdr);
1058 
1059 e_free_blob:
1060 	kfree(blob);
1061 e_unpin_memory:
1062 	/* content of memory is updated, mark pages dirty */
1063 	for (i = 0; i < n; i++) {
1064 		set_page_dirty_lock(pages[i]);
1065 		mark_page_accessed(pages[i]);
1066 	}
1067 	sev_unpin_memory(kvm, pages, n);
1068 	return ret;
1069 }
1070 
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1071 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1072 {
1073 	void __user *report = (void __user *)(uintptr_t)argp->data;
1074 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1075 	struct sev_data_attestation_report data;
1076 	struct kvm_sev_attestation_report params;
1077 	void __user *p;
1078 	void *blob = NULL;
1079 	int ret;
1080 
1081 	if (!sev_guest(kvm))
1082 		return -ENOTTY;
1083 
1084 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1085 		return -EFAULT;
1086 
1087 	memset(&data, 0, sizeof(data));
1088 
1089 	/* User wants to query the blob length */
1090 	if (!params.len)
1091 		goto cmd;
1092 
1093 	p = (void __user *)(uintptr_t)params.uaddr;
1094 	if (p) {
1095 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1096 			return -EINVAL;
1097 
1098 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1099 		if (!blob)
1100 			return -ENOMEM;
1101 
1102 		data.address = __psp_pa(blob);
1103 		data.len = params.len;
1104 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1105 	}
1106 cmd:
1107 	data.handle = sev->handle;
1108 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1109 	/*
1110 	 * If we query the session length, FW responded with expected data.
1111 	 */
1112 	if (!params.len)
1113 		goto done;
1114 
1115 	if (ret)
1116 		goto e_free_blob;
1117 
1118 	if (blob) {
1119 		if (copy_to_user(p, blob, params.len))
1120 			ret = -EFAULT;
1121 	}
1122 
1123 done:
1124 	params.len = data.len;
1125 	if (copy_to_user(report, &params, sizeof(params)))
1126 		ret = -EFAULT;
1127 e_free_blob:
1128 	kfree(blob);
1129 	return ret;
1130 }
1131 
1132 /* Userspace wants to query session length. */
1133 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1134 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1135 				      struct kvm_sev_send_start *params)
1136 {
1137 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1138 	struct sev_data_send_start data;
1139 	int ret;
1140 
1141 	memset(&data, 0, sizeof(data));
1142 	data.handle = sev->handle;
1143 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1144 
1145 	params->session_len = data.session_len;
1146 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1147 				sizeof(struct kvm_sev_send_start)))
1148 		ret = -EFAULT;
1149 
1150 	return ret;
1151 }
1152 
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1153 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1154 {
1155 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1156 	struct sev_data_send_start data;
1157 	struct kvm_sev_send_start params;
1158 	void *amd_certs, *session_data;
1159 	void *pdh_cert, *plat_certs;
1160 	int ret;
1161 
1162 	if (!sev_guest(kvm))
1163 		return -ENOTTY;
1164 
1165 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1166 				sizeof(struct kvm_sev_send_start)))
1167 		return -EFAULT;
1168 
1169 	/* if session_len is zero, userspace wants to query the session length */
1170 	if (!params.session_len)
1171 		return __sev_send_start_query_session_length(kvm, argp,
1172 				&params);
1173 
1174 	/* some sanity checks */
1175 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1176 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1177 		return -EINVAL;
1178 
1179 	/* allocate the memory to hold the session data blob */
1180 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1181 	if (!session_data)
1182 		return -ENOMEM;
1183 
1184 	/* copy the certificate blobs from userspace */
1185 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1186 				params.pdh_cert_len);
1187 	if (IS_ERR(pdh_cert)) {
1188 		ret = PTR_ERR(pdh_cert);
1189 		goto e_free_session;
1190 	}
1191 
1192 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1193 				params.plat_certs_len);
1194 	if (IS_ERR(plat_certs)) {
1195 		ret = PTR_ERR(plat_certs);
1196 		goto e_free_pdh;
1197 	}
1198 
1199 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1200 				params.amd_certs_len);
1201 	if (IS_ERR(amd_certs)) {
1202 		ret = PTR_ERR(amd_certs);
1203 		goto e_free_plat_cert;
1204 	}
1205 
1206 	/* populate the FW SEND_START field with system physical address */
1207 	memset(&data, 0, sizeof(data));
1208 	data.pdh_cert_address = __psp_pa(pdh_cert);
1209 	data.pdh_cert_len = params.pdh_cert_len;
1210 	data.plat_certs_address = __psp_pa(plat_certs);
1211 	data.plat_certs_len = params.plat_certs_len;
1212 	data.amd_certs_address = __psp_pa(amd_certs);
1213 	data.amd_certs_len = params.amd_certs_len;
1214 	data.session_address = __psp_pa(session_data);
1215 	data.session_len = params.session_len;
1216 	data.handle = sev->handle;
1217 
1218 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1219 
1220 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1221 			session_data, params.session_len)) {
1222 		ret = -EFAULT;
1223 		goto e_free_amd_cert;
1224 	}
1225 
1226 	params.policy = data.policy;
1227 	params.session_len = data.session_len;
1228 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1229 				sizeof(struct kvm_sev_send_start)))
1230 		ret = -EFAULT;
1231 
1232 e_free_amd_cert:
1233 	kfree(amd_certs);
1234 e_free_plat_cert:
1235 	kfree(plat_certs);
1236 e_free_pdh:
1237 	kfree(pdh_cert);
1238 e_free_session:
1239 	kfree(session_data);
1240 	return ret;
1241 }
1242 
1243 /* Userspace wants to query either header or trans length. */
1244 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1245 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1246 				     struct kvm_sev_send_update_data *params)
1247 {
1248 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1249 	struct sev_data_send_update_data data;
1250 	int ret;
1251 
1252 	memset(&data, 0, sizeof(data));
1253 	data.handle = sev->handle;
1254 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1255 
1256 	params->hdr_len = data.hdr_len;
1257 	params->trans_len = data.trans_len;
1258 
1259 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1260 			 sizeof(struct kvm_sev_send_update_data)))
1261 		ret = -EFAULT;
1262 
1263 	return ret;
1264 }
1265 
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1266 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1267 {
1268 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1269 	struct sev_data_send_update_data data;
1270 	struct kvm_sev_send_update_data params;
1271 	void *hdr, *trans_data;
1272 	struct page **guest_page;
1273 	unsigned long n;
1274 	int ret, offset;
1275 
1276 	if (!sev_guest(kvm))
1277 		return -ENOTTY;
1278 
1279 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1280 			sizeof(struct kvm_sev_send_update_data)))
1281 		return -EFAULT;
1282 
1283 	/* userspace wants to query either header or trans length */
1284 	if (!params.trans_len || !params.hdr_len)
1285 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1286 
1287 	if (!params.trans_uaddr || !params.guest_uaddr ||
1288 	    !params.guest_len || !params.hdr_uaddr)
1289 		return -EINVAL;
1290 
1291 	/* Check if we are crossing the page boundary */
1292 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1293 	if ((params.guest_len + offset > PAGE_SIZE))
1294 		return -EINVAL;
1295 
1296 	/* Pin guest memory */
1297 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1298 				    PAGE_SIZE, &n, 0);
1299 	if (IS_ERR(guest_page))
1300 		return PTR_ERR(guest_page);
1301 
1302 	/* allocate memory for header and transport buffer */
1303 	ret = -ENOMEM;
1304 	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1305 	if (!hdr)
1306 		goto e_unpin;
1307 
1308 	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1309 	if (!trans_data)
1310 		goto e_free_hdr;
1311 
1312 	memset(&data, 0, sizeof(data));
1313 	data.hdr_address = __psp_pa(hdr);
1314 	data.hdr_len = params.hdr_len;
1315 	data.trans_address = __psp_pa(trans_data);
1316 	data.trans_len = params.trans_len;
1317 
1318 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1319 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1320 	data.guest_address |= sev_me_mask;
1321 	data.guest_len = params.guest_len;
1322 	data.handle = sev->handle;
1323 
1324 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1325 
1326 	if (ret)
1327 		goto e_free_trans_data;
1328 
1329 	/* copy transport buffer to user space */
1330 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1331 			 trans_data, params.trans_len)) {
1332 		ret = -EFAULT;
1333 		goto e_free_trans_data;
1334 	}
1335 
1336 	/* Copy packet header to userspace. */
1337 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1338 			 params.hdr_len))
1339 		ret = -EFAULT;
1340 
1341 e_free_trans_data:
1342 	kfree(trans_data);
1343 e_free_hdr:
1344 	kfree(hdr);
1345 e_unpin:
1346 	sev_unpin_memory(kvm, guest_page, n);
1347 
1348 	return ret;
1349 }
1350 
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1351 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1352 {
1353 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1354 	struct sev_data_send_finish data;
1355 
1356 	if (!sev_guest(kvm))
1357 		return -ENOTTY;
1358 
1359 	data.handle = sev->handle;
1360 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1361 }
1362 
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1363 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1364 {
1365 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1366 	struct sev_data_send_cancel data;
1367 
1368 	if (!sev_guest(kvm))
1369 		return -ENOTTY;
1370 
1371 	data.handle = sev->handle;
1372 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1373 }
1374 
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1375 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1376 {
1377 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1378 	struct sev_data_receive_start start;
1379 	struct kvm_sev_receive_start params;
1380 	int *error = &argp->error;
1381 	void *session_data;
1382 	void *pdh_data;
1383 	int ret;
1384 
1385 	if (!sev_guest(kvm))
1386 		return -ENOTTY;
1387 
1388 	/* Get parameter from the userspace */
1389 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1390 			sizeof(struct kvm_sev_receive_start)))
1391 		return -EFAULT;
1392 
1393 	/* some sanity checks */
1394 	if (!params.pdh_uaddr || !params.pdh_len ||
1395 	    !params.session_uaddr || !params.session_len)
1396 		return -EINVAL;
1397 
1398 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1399 	if (IS_ERR(pdh_data))
1400 		return PTR_ERR(pdh_data);
1401 
1402 	session_data = psp_copy_user_blob(params.session_uaddr,
1403 			params.session_len);
1404 	if (IS_ERR(session_data)) {
1405 		ret = PTR_ERR(session_data);
1406 		goto e_free_pdh;
1407 	}
1408 
1409 	memset(&start, 0, sizeof(start));
1410 	start.handle = params.handle;
1411 	start.policy = params.policy;
1412 	start.pdh_cert_address = __psp_pa(pdh_data);
1413 	start.pdh_cert_len = params.pdh_len;
1414 	start.session_address = __psp_pa(session_data);
1415 	start.session_len = params.session_len;
1416 
1417 	/* create memory encryption context */
1418 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1419 				error);
1420 	if (ret)
1421 		goto e_free_session;
1422 
1423 	/* Bind ASID to this guest */
1424 	ret = sev_bind_asid(kvm, start.handle, error);
1425 	if (ret) {
1426 		sev_decommission(start.handle);
1427 		goto e_free_session;
1428 	}
1429 
1430 	params.handle = start.handle;
1431 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1432 			 &params, sizeof(struct kvm_sev_receive_start))) {
1433 		ret = -EFAULT;
1434 		sev_unbind_asid(kvm, start.handle);
1435 		goto e_free_session;
1436 	}
1437 
1438     	sev->handle = start.handle;
1439 	sev->fd = argp->sev_fd;
1440 
1441 e_free_session:
1442 	kfree(session_data);
1443 e_free_pdh:
1444 	kfree(pdh_data);
1445 
1446 	return ret;
1447 }
1448 
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1449 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1450 {
1451 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1452 	struct kvm_sev_receive_update_data params;
1453 	struct sev_data_receive_update_data data;
1454 	void *hdr = NULL, *trans = NULL;
1455 	struct page **guest_page;
1456 	unsigned long n;
1457 	int ret, offset;
1458 
1459 	if (!sev_guest(kvm))
1460 		return -EINVAL;
1461 
1462 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1463 			sizeof(struct kvm_sev_receive_update_data)))
1464 		return -EFAULT;
1465 
1466 	if (!params.hdr_uaddr || !params.hdr_len ||
1467 	    !params.guest_uaddr || !params.guest_len ||
1468 	    !params.trans_uaddr || !params.trans_len)
1469 		return -EINVAL;
1470 
1471 	/* Check if we are crossing the page boundary */
1472 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1473 	if ((params.guest_len + offset > PAGE_SIZE))
1474 		return -EINVAL;
1475 
1476 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1477 	if (IS_ERR(hdr))
1478 		return PTR_ERR(hdr);
1479 
1480 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1481 	if (IS_ERR(trans)) {
1482 		ret = PTR_ERR(trans);
1483 		goto e_free_hdr;
1484 	}
1485 
1486 	memset(&data, 0, sizeof(data));
1487 	data.hdr_address = __psp_pa(hdr);
1488 	data.hdr_len = params.hdr_len;
1489 	data.trans_address = __psp_pa(trans);
1490 	data.trans_len = params.trans_len;
1491 
1492 	/* Pin guest memory */
1493 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1494 				    PAGE_SIZE, &n, 1);
1495 	if (IS_ERR(guest_page)) {
1496 		ret = PTR_ERR(guest_page);
1497 		goto e_free_trans;
1498 	}
1499 
1500 	/*
1501 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1502 	 * encrypts the written data with the guest's key, and the cache may
1503 	 * contain dirty, unencrypted data.
1504 	 */
1505 	sev_clflush_pages(guest_page, n);
1506 
1507 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1508 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1509 	data.guest_address |= sev_me_mask;
1510 	data.guest_len = params.guest_len;
1511 	data.handle = sev->handle;
1512 
1513 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1514 				&argp->error);
1515 
1516 	sev_unpin_memory(kvm, guest_page, n);
1517 
1518 e_free_trans:
1519 	kfree(trans);
1520 e_free_hdr:
1521 	kfree(hdr);
1522 
1523 	return ret;
1524 }
1525 
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1526 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1527 {
1528 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1529 	struct sev_data_receive_finish data;
1530 
1531 	if (!sev_guest(kvm))
1532 		return -ENOTTY;
1533 
1534 	data.handle = sev->handle;
1535 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1536 }
1537 
is_cmd_allowed_from_mirror(u32 cmd_id)1538 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1539 {
1540 	/*
1541 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1542 	 * active mirror VMs. Also allow the debugging and status commands.
1543 	 */
1544 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1545 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1546 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1547 		return true;
1548 
1549 	return false;
1550 }
1551 
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1552 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1553 {
1554 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1555 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1556 	int r = -EBUSY;
1557 
1558 	if (dst_kvm == src_kvm)
1559 		return -EINVAL;
1560 
1561 	/*
1562 	 * Bail if these VMs are already involved in a migration to avoid
1563 	 * deadlock between two VMs trying to migrate to/from each other.
1564 	 */
1565 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1566 		return -EBUSY;
1567 
1568 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1569 		goto release_dst;
1570 
1571 	r = -EINTR;
1572 	if (mutex_lock_killable(&dst_kvm->lock))
1573 		goto release_src;
1574 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1575 		goto unlock_dst;
1576 	return 0;
1577 
1578 unlock_dst:
1579 	mutex_unlock(&dst_kvm->lock);
1580 release_src:
1581 	atomic_set_release(&src_sev->migration_in_progress, 0);
1582 release_dst:
1583 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1584 	return r;
1585 }
1586 
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1587 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1588 {
1589 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1590 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1591 
1592 	mutex_unlock(&dst_kvm->lock);
1593 	mutex_unlock(&src_kvm->lock);
1594 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1595 	atomic_set_release(&src_sev->migration_in_progress, 0);
1596 }
1597 
1598 /* vCPU mutex subclasses.  */
1599 enum sev_migration_role {
1600 	SEV_MIGRATION_SOURCE = 0,
1601 	SEV_MIGRATION_TARGET,
1602 	SEV_NR_MIGRATION_ROLES,
1603 };
1604 
sev_lock_vcpus_for_migration(struct kvm * kvm,enum sev_migration_role role)1605 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1606 					enum sev_migration_role role)
1607 {
1608 	struct kvm_vcpu *vcpu;
1609 	unsigned long i, j;
1610 	bool first = true;
1611 
1612 	kvm_for_each_vcpu(i, vcpu, kvm) {
1613 		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1614 			goto out_unlock;
1615 
1616 		if (first) {
1617 			/*
1618 			 * Reset the role to one that avoids colliding with
1619 			 * the role used for the first vcpu mutex.
1620 			 */
1621 			role = SEV_NR_MIGRATION_ROLES;
1622 			first = false;
1623 		} else {
1624 			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1625 		}
1626 	}
1627 
1628 	return 0;
1629 
1630 out_unlock:
1631 
1632 	first = true;
1633 	kvm_for_each_vcpu(j, vcpu, kvm) {
1634 		if (i == j)
1635 			break;
1636 
1637 		if (first)
1638 			first = false;
1639 		else
1640 			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1641 
1642 
1643 		mutex_unlock(&vcpu->mutex);
1644 	}
1645 	return -EINTR;
1646 }
1647 
sev_unlock_vcpus_for_migration(struct kvm * kvm)1648 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1649 {
1650 	struct kvm_vcpu *vcpu;
1651 	unsigned long i;
1652 	bool first = true;
1653 
1654 	kvm_for_each_vcpu(i, vcpu, kvm) {
1655 		if (first)
1656 			first = false;
1657 		else
1658 			mutex_acquire(&vcpu->mutex.dep_map,
1659 				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1660 
1661 		mutex_unlock(&vcpu->mutex);
1662 	}
1663 }
1664 
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1665 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1666 {
1667 	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1668 	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1669 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1670 	struct vcpu_svm *dst_svm, *src_svm;
1671 	struct kvm_sev_info *mirror;
1672 	unsigned long i;
1673 
1674 	dst->active = true;
1675 	dst->asid = src->asid;
1676 	dst->handle = src->handle;
1677 	dst->pages_locked = src->pages_locked;
1678 	dst->enc_context_owner = src->enc_context_owner;
1679 	dst->es_active = src->es_active;
1680 
1681 	src->asid = 0;
1682 	src->active = false;
1683 	src->handle = 0;
1684 	src->pages_locked = 0;
1685 	src->enc_context_owner = NULL;
1686 	src->es_active = false;
1687 
1688 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1689 
1690 	/*
1691 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1692 	 * source to the destination (this KVM).  The caller holds a reference
1693 	 * to the source, so there's no danger of use-after-free.
1694 	 */
1695 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1696 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1697 		kvm_get_kvm(dst_kvm);
1698 		kvm_put_kvm(src_kvm);
1699 		mirror->enc_context_owner = dst_kvm;
1700 	}
1701 
1702 	/*
1703 	 * If this VM is a mirror, remove the old mirror from the owners list
1704 	 * and add the new mirror to the list.
1705 	 */
1706 	if (is_mirroring_enc_context(dst_kvm)) {
1707 		struct kvm_sev_info *owner_sev_info =
1708 			&to_kvm_svm(dst->enc_context_owner)->sev_info;
1709 
1710 		list_del(&src->mirror_entry);
1711 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1712 	}
1713 
1714 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1715 		dst_svm = to_svm(dst_vcpu);
1716 
1717 		sev_init_vmcb(dst_svm);
1718 
1719 		if (!dst->es_active)
1720 			continue;
1721 
1722 		/*
1723 		 * Note, the source is not required to have the same number of
1724 		 * vCPUs as the destination when migrating a vanilla SEV VM.
1725 		 */
1726 		src_vcpu = kvm_get_vcpu(dst_kvm, i);
1727 		src_svm = to_svm(src_vcpu);
1728 
1729 		/*
1730 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1731 		 * clear source fields as appropriate, the state now belongs to
1732 		 * the destination.
1733 		 */
1734 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1735 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1736 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1737 		dst_vcpu->arch.guest_state_protected = true;
1738 
1739 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1740 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1741 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1742 		src_vcpu->arch.guest_state_protected = false;
1743 	}
1744 }
1745 
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)1746 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1747 {
1748 	struct kvm_vcpu *src_vcpu;
1749 	unsigned long i;
1750 
1751 	if (!sev_es_guest(src))
1752 		return 0;
1753 
1754 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1755 		return -EINVAL;
1756 
1757 	kvm_for_each_vcpu(i, src_vcpu, src) {
1758 		if (!src_vcpu->arch.guest_state_protected)
1759 			return -EINVAL;
1760 	}
1761 
1762 	return 0;
1763 }
1764 
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)1765 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1766 {
1767 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1768 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1769 	struct file *source_kvm_file;
1770 	struct kvm *source_kvm;
1771 	bool charged = false;
1772 	int ret;
1773 
1774 	source_kvm_file = fget(source_fd);
1775 	if (!file_is_kvm(source_kvm_file)) {
1776 		ret = -EBADF;
1777 		goto out_fput;
1778 	}
1779 
1780 	source_kvm = source_kvm_file->private_data;
1781 	ret = sev_lock_two_vms(kvm, source_kvm);
1782 	if (ret)
1783 		goto out_fput;
1784 
1785 	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1786 		ret = -EINVAL;
1787 		goto out_unlock;
1788 	}
1789 
1790 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1791 
1792 	dst_sev->misc_cg = get_current_misc_cg();
1793 	cg_cleanup_sev = dst_sev;
1794 	if (dst_sev->misc_cg != src_sev->misc_cg) {
1795 		ret = sev_misc_cg_try_charge(dst_sev);
1796 		if (ret)
1797 			goto out_dst_cgroup;
1798 		charged = true;
1799 	}
1800 
1801 	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1802 	if (ret)
1803 		goto out_dst_cgroup;
1804 	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1805 	if (ret)
1806 		goto out_dst_vcpu;
1807 
1808 	ret = sev_check_source_vcpus(kvm, source_kvm);
1809 	if (ret)
1810 		goto out_source_vcpu;
1811 
1812 	sev_migrate_from(kvm, source_kvm);
1813 	kvm_vm_dead(source_kvm);
1814 	cg_cleanup_sev = src_sev;
1815 	ret = 0;
1816 
1817 out_source_vcpu:
1818 	sev_unlock_vcpus_for_migration(source_kvm);
1819 out_dst_vcpu:
1820 	sev_unlock_vcpus_for_migration(kvm);
1821 out_dst_cgroup:
1822 	/* Operates on the source on success, on the destination on failure.  */
1823 	if (charged)
1824 		sev_misc_cg_uncharge(cg_cleanup_sev);
1825 	put_misc_cg(cg_cleanup_sev->misc_cg);
1826 	cg_cleanup_sev->misc_cg = NULL;
1827 out_unlock:
1828 	sev_unlock_two_vms(kvm, source_kvm);
1829 out_fput:
1830 	if (source_kvm_file)
1831 		fput(source_kvm_file);
1832 	return ret;
1833 }
1834 
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)1835 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1836 {
1837 	struct kvm_sev_cmd sev_cmd;
1838 	int r;
1839 
1840 	if (!sev_enabled)
1841 		return -ENOTTY;
1842 
1843 	if (!argp)
1844 		return 0;
1845 
1846 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1847 		return -EFAULT;
1848 
1849 	mutex_lock(&kvm->lock);
1850 
1851 	/* Only the enc_context_owner handles some memory enc operations. */
1852 	if (is_mirroring_enc_context(kvm) &&
1853 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1854 		r = -EINVAL;
1855 		goto out;
1856 	}
1857 
1858 	switch (sev_cmd.id) {
1859 	case KVM_SEV_ES_INIT:
1860 		if (!sev_es_enabled) {
1861 			r = -ENOTTY;
1862 			goto out;
1863 		}
1864 		fallthrough;
1865 	case KVM_SEV_INIT:
1866 		r = sev_guest_init(kvm, &sev_cmd);
1867 		break;
1868 	case KVM_SEV_LAUNCH_START:
1869 		r = sev_launch_start(kvm, &sev_cmd);
1870 		break;
1871 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1872 		r = sev_launch_update_data(kvm, &sev_cmd);
1873 		break;
1874 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1875 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1876 		break;
1877 	case KVM_SEV_LAUNCH_MEASURE:
1878 		r = sev_launch_measure(kvm, &sev_cmd);
1879 		break;
1880 	case KVM_SEV_LAUNCH_FINISH:
1881 		r = sev_launch_finish(kvm, &sev_cmd);
1882 		break;
1883 	case KVM_SEV_GUEST_STATUS:
1884 		r = sev_guest_status(kvm, &sev_cmd);
1885 		break;
1886 	case KVM_SEV_DBG_DECRYPT:
1887 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1888 		break;
1889 	case KVM_SEV_DBG_ENCRYPT:
1890 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1891 		break;
1892 	case KVM_SEV_LAUNCH_SECRET:
1893 		r = sev_launch_secret(kvm, &sev_cmd);
1894 		break;
1895 	case KVM_SEV_GET_ATTESTATION_REPORT:
1896 		r = sev_get_attestation_report(kvm, &sev_cmd);
1897 		break;
1898 	case KVM_SEV_SEND_START:
1899 		r = sev_send_start(kvm, &sev_cmd);
1900 		break;
1901 	case KVM_SEV_SEND_UPDATE_DATA:
1902 		r = sev_send_update_data(kvm, &sev_cmd);
1903 		break;
1904 	case KVM_SEV_SEND_FINISH:
1905 		r = sev_send_finish(kvm, &sev_cmd);
1906 		break;
1907 	case KVM_SEV_SEND_CANCEL:
1908 		r = sev_send_cancel(kvm, &sev_cmd);
1909 		break;
1910 	case KVM_SEV_RECEIVE_START:
1911 		r = sev_receive_start(kvm, &sev_cmd);
1912 		break;
1913 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1914 		r = sev_receive_update_data(kvm, &sev_cmd);
1915 		break;
1916 	case KVM_SEV_RECEIVE_FINISH:
1917 		r = sev_receive_finish(kvm, &sev_cmd);
1918 		break;
1919 	default:
1920 		r = -EINVAL;
1921 		goto out;
1922 	}
1923 
1924 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1925 		r = -EFAULT;
1926 
1927 out:
1928 	mutex_unlock(&kvm->lock);
1929 	return r;
1930 }
1931 
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)1932 int sev_mem_enc_register_region(struct kvm *kvm,
1933 				struct kvm_enc_region *range)
1934 {
1935 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1936 	struct enc_region *region;
1937 	int ret = 0;
1938 
1939 	if (!sev_guest(kvm))
1940 		return -ENOTTY;
1941 
1942 	/* If kvm is mirroring encryption context it isn't responsible for it */
1943 	if (is_mirroring_enc_context(kvm))
1944 		return -EINVAL;
1945 
1946 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1947 		return -EINVAL;
1948 
1949 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1950 	if (!region)
1951 		return -ENOMEM;
1952 
1953 	mutex_lock(&kvm->lock);
1954 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1955 	if (IS_ERR(region->pages)) {
1956 		ret = PTR_ERR(region->pages);
1957 		mutex_unlock(&kvm->lock);
1958 		goto e_free;
1959 	}
1960 
1961 	region->uaddr = range->addr;
1962 	region->size = range->size;
1963 
1964 	list_add_tail(&region->list, &sev->regions_list);
1965 	mutex_unlock(&kvm->lock);
1966 
1967 	/*
1968 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1969 	 * or vice versa for this memory range. Lets make sure caches are
1970 	 * flushed to ensure that guest data gets written into memory with
1971 	 * correct C-bit.
1972 	 */
1973 	sev_clflush_pages(region->pages, region->npages);
1974 
1975 	return ret;
1976 
1977 e_free:
1978 	kfree(region);
1979 	return ret;
1980 }
1981 
1982 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)1983 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1984 {
1985 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1986 	struct list_head *head = &sev->regions_list;
1987 	struct enc_region *i;
1988 
1989 	list_for_each_entry(i, head, list) {
1990 		if (i->uaddr == range->addr &&
1991 		    i->size == range->size)
1992 			return i;
1993 	}
1994 
1995 	return NULL;
1996 }
1997 
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)1998 static void __unregister_enc_region_locked(struct kvm *kvm,
1999 					   struct enc_region *region)
2000 {
2001 	sev_unpin_memory(kvm, region->pages, region->npages);
2002 	list_del(&region->list);
2003 	kfree(region);
2004 }
2005 
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2006 int sev_mem_enc_unregister_region(struct kvm *kvm,
2007 				  struct kvm_enc_region *range)
2008 {
2009 	struct enc_region *region;
2010 	int ret;
2011 
2012 	/* If kvm is mirroring encryption context it isn't responsible for it */
2013 	if (is_mirroring_enc_context(kvm))
2014 		return -EINVAL;
2015 
2016 	mutex_lock(&kvm->lock);
2017 
2018 	if (!sev_guest(kvm)) {
2019 		ret = -ENOTTY;
2020 		goto failed;
2021 	}
2022 
2023 	region = find_enc_region(kvm, range);
2024 	if (!region) {
2025 		ret = -EINVAL;
2026 		goto failed;
2027 	}
2028 
2029 	/*
2030 	 * Ensure that all guest tagged cache entries are flushed before
2031 	 * releasing the pages back to the system for use. CLFLUSH will
2032 	 * not do this, so issue a WBINVD.
2033 	 */
2034 	wbinvd_on_all_cpus();
2035 
2036 	__unregister_enc_region_locked(kvm, region);
2037 
2038 	mutex_unlock(&kvm->lock);
2039 	return 0;
2040 
2041 failed:
2042 	mutex_unlock(&kvm->lock);
2043 	return ret;
2044 }
2045 
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2046 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2047 {
2048 	struct file *source_kvm_file;
2049 	struct kvm *source_kvm;
2050 	struct kvm_sev_info *source_sev, *mirror_sev;
2051 	int ret;
2052 
2053 	source_kvm_file = fget(source_fd);
2054 	if (!file_is_kvm(source_kvm_file)) {
2055 		ret = -EBADF;
2056 		goto e_source_fput;
2057 	}
2058 
2059 	source_kvm = source_kvm_file->private_data;
2060 	ret = sev_lock_two_vms(kvm, source_kvm);
2061 	if (ret)
2062 		goto e_source_fput;
2063 
2064 	/*
2065 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2066 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2067 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2068 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2069 	 */
2070 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2071 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2072 		ret = -EINVAL;
2073 		goto e_unlock;
2074 	}
2075 
2076 	/*
2077 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2078 	 * disappear until we're done with it
2079 	 */
2080 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2081 	kvm_get_kvm(source_kvm);
2082 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2083 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2084 
2085 	/* Set enc_context_owner and copy its encryption context over */
2086 	mirror_sev->enc_context_owner = source_kvm;
2087 	mirror_sev->active = true;
2088 	mirror_sev->asid = source_sev->asid;
2089 	mirror_sev->fd = source_sev->fd;
2090 	mirror_sev->es_active = source_sev->es_active;
2091 	mirror_sev->handle = source_sev->handle;
2092 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2093 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2094 	ret = 0;
2095 
2096 	/*
2097 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2098 	 * KVM contexts as the original, and they may have different
2099 	 * memory-views.
2100 	 */
2101 
2102 e_unlock:
2103 	sev_unlock_two_vms(kvm, source_kvm);
2104 e_source_fput:
2105 	if (source_kvm_file)
2106 		fput(source_kvm_file);
2107 	return ret;
2108 }
2109 
sev_vm_destroy(struct kvm * kvm)2110 void sev_vm_destroy(struct kvm *kvm)
2111 {
2112 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2113 	struct list_head *head = &sev->regions_list;
2114 	struct list_head *pos, *q;
2115 
2116 	if (!sev_guest(kvm))
2117 		return;
2118 
2119 	WARN_ON(!list_empty(&sev->mirror_vms));
2120 
2121 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2122 	if (is_mirroring_enc_context(kvm)) {
2123 		struct kvm *owner_kvm = sev->enc_context_owner;
2124 
2125 		mutex_lock(&owner_kvm->lock);
2126 		list_del(&sev->mirror_entry);
2127 		mutex_unlock(&owner_kvm->lock);
2128 		kvm_put_kvm(owner_kvm);
2129 		return;
2130 	}
2131 
2132 	/*
2133 	 * Ensure that all guest tagged cache entries are flushed before
2134 	 * releasing the pages back to the system for use. CLFLUSH will
2135 	 * not do this, so issue a WBINVD.
2136 	 */
2137 	wbinvd_on_all_cpus();
2138 
2139 	/*
2140 	 * if userspace was terminated before unregistering the memory regions
2141 	 * then lets unpin all the registered memory.
2142 	 */
2143 	if (!list_empty(head)) {
2144 		list_for_each_safe(pos, q, head) {
2145 			__unregister_enc_region_locked(kvm,
2146 				list_entry(pos, struct enc_region, list));
2147 			cond_resched();
2148 		}
2149 	}
2150 
2151 	sev_unbind_asid(kvm, sev->handle);
2152 	sev_asid_free(sev);
2153 }
2154 
sev_set_cpu_caps(void)2155 void __init sev_set_cpu_caps(void)
2156 {
2157 	if (!sev_enabled)
2158 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2159 	if (!sev_es_enabled)
2160 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2161 }
2162 
sev_hardware_setup(void)2163 void __init sev_hardware_setup(void)
2164 {
2165 #ifdef CONFIG_KVM_AMD_SEV
2166 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2167 	bool sev_es_supported = false;
2168 	bool sev_supported = false;
2169 
2170 	if (!sev_enabled || !npt_enabled)
2171 		goto out;
2172 
2173 	/*
2174 	 * SEV must obviously be supported in hardware.  Sanity check that the
2175 	 * CPU supports decode assists, which is mandatory for SEV guests to
2176 	 * support instruction emulation.
2177 	 */
2178 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2179 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2180 		goto out;
2181 
2182 	/* Retrieve SEV CPUID information */
2183 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2184 
2185 	/* Set encryption bit location for SEV-ES guests */
2186 	sev_enc_bit = ebx & 0x3f;
2187 
2188 	/* Maximum number of encrypted guests supported simultaneously */
2189 	max_sev_asid = ecx;
2190 	if (!max_sev_asid)
2191 		goto out;
2192 
2193 	/* Minimum ASID value that should be used for SEV guest */
2194 	min_sev_asid = edx;
2195 	sev_me_mask = 1UL << (ebx & 0x3f);
2196 
2197 	/*
2198 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2199 	 * even though it's never used, so that the bitmap is indexed by the
2200 	 * actual ASID.
2201 	 */
2202 	nr_asids = max_sev_asid + 1;
2203 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2204 	if (!sev_asid_bitmap)
2205 		goto out;
2206 
2207 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2208 	if (!sev_reclaim_asid_bitmap) {
2209 		bitmap_free(sev_asid_bitmap);
2210 		sev_asid_bitmap = NULL;
2211 		goto out;
2212 	}
2213 
2214 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
2215 	if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2216 		goto out;
2217 
2218 	pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2219 	sev_supported = true;
2220 
2221 	/* SEV-ES support requested? */
2222 	if (!sev_es_enabled)
2223 		goto out;
2224 
2225 	/*
2226 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2227 	 * instruction stream, i.e. can't emulate in response to a #NPF and
2228 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2229 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2230 	 */
2231 	if (!enable_mmio_caching)
2232 		goto out;
2233 
2234 	/* Does the CPU support SEV-ES? */
2235 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2236 		goto out;
2237 
2238 	/* Has the system been allocated ASIDs for SEV-ES? */
2239 	if (min_sev_asid == 1)
2240 		goto out;
2241 
2242 	sev_es_asid_count = min_sev_asid - 1;
2243 	if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2244 		goto out;
2245 
2246 	pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2247 	sev_es_supported = true;
2248 
2249 out:
2250 	sev_enabled = sev_supported;
2251 	sev_es_enabled = sev_es_supported;
2252 #endif
2253 }
2254 
sev_hardware_unsetup(void)2255 void sev_hardware_unsetup(void)
2256 {
2257 	if (!sev_enabled)
2258 		return;
2259 
2260 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2261 	sev_flush_asids(1, max_sev_asid);
2262 
2263 	bitmap_free(sev_asid_bitmap);
2264 	bitmap_free(sev_reclaim_asid_bitmap);
2265 
2266 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2267 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2268 }
2269 
sev_cpu_init(struct svm_cpu_data * sd)2270 int sev_cpu_init(struct svm_cpu_data *sd)
2271 {
2272 	if (!sev_enabled)
2273 		return 0;
2274 
2275 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2276 	if (!sd->sev_vmcbs)
2277 		return -ENOMEM;
2278 
2279 	return 0;
2280 }
2281 
2282 /*
2283  * Pages used by hardware to hold guest encrypted state must be flushed before
2284  * returning them to the system.
2285  */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)2286 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2287 {
2288 	int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2289 
2290 	/*
2291 	 * Note!  The address must be a kernel address, as regular page walk
2292 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2293 	 * address is non-deterministic and unsafe.  This function deliberately
2294 	 * takes a pointer to deter passing in a user address.
2295 	 */
2296 	unsigned long addr = (unsigned long)va;
2297 
2298 	/*
2299 	 * If CPU enforced cache coherency for encrypted mappings of the
2300 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2301 	 * flush is still needed in order to work properly with DMA devices.
2302 	 */
2303 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2304 		clflush_cache_range(va, PAGE_SIZE);
2305 		return;
2306 	}
2307 
2308 	/*
2309 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2310 	 * back to WBINVD if this faults so as not to make any problems worse
2311 	 * by leaving stale encrypted data in the cache.
2312 	 */
2313 	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2314 		goto do_wbinvd;
2315 
2316 	return;
2317 
2318 do_wbinvd:
2319 	wbinvd_on_all_cpus();
2320 }
2321 
sev_guest_memory_reclaimed(struct kvm * kvm)2322 void sev_guest_memory_reclaimed(struct kvm *kvm)
2323 {
2324 	if (!sev_guest(kvm))
2325 		return;
2326 
2327 	wbinvd_on_all_cpus();
2328 }
2329 
sev_free_vcpu(struct kvm_vcpu * vcpu)2330 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2331 {
2332 	struct vcpu_svm *svm;
2333 
2334 	if (!sev_es_guest(vcpu->kvm))
2335 		return;
2336 
2337 	svm = to_svm(vcpu);
2338 
2339 	if (vcpu->arch.guest_state_protected)
2340 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2341 
2342 	__free_page(virt_to_page(svm->sev_es.vmsa));
2343 
2344 	if (svm->sev_es.ghcb_sa_free)
2345 		kvfree(svm->sev_es.ghcb_sa);
2346 }
2347 
dump_ghcb(struct vcpu_svm * svm)2348 static void dump_ghcb(struct vcpu_svm *svm)
2349 {
2350 	struct ghcb *ghcb = svm->sev_es.ghcb;
2351 	unsigned int nbits;
2352 
2353 	/* Re-use the dump_invalid_vmcb module parameter */
2354 	if (!dump_invalid_vmcb) {
2355 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2356 		return;
2357 	}
2358 
2359 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2360 
2361 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2362 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2363 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2364 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2365 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2366 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2367 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2368 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2369 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2370 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2371 }
2372 
sev_es_sync_to_ghcb(struct vcpu_svm * svm)2373 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2374 {
2375 	struct kvm_vcpu *vcpu = &svm->vcpu;
2376 	struct ghcb *ghcb = svm->sev_es.ghcb;
2377 
2378 	/*
2379 	 * The GHCB protocol so far allows for the following data
2380 	 * to be returned:
2381 	 *   GPRs RAX, RBX, RCX, RDX
2382 	 *
2383 	 * Copy their values, even if they may not have been written during the
2384 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2385 	 */
2386 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2387 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2388 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2389 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2390 }
2391 
sev_es_sync_from_ghcb(struct vcpu_svm * svm)2392 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2393 {
2394 	struct vmcb_control_area *control = &svm->vmcb->control;
2395 	struct kvm_vcpu *vcpu = &svm->vcpu;
2396 	struct ghcb *ghcb = svm->sev_es.ghcb;
2397 	u64 exit_code;
2398 
2399 	/*
2400 	 * The GHCB protocol so far allows for the following data
2401 	 * to be supplied:
2402 	 *   GPRs RAX, RBX, RCX, RDX
2403 	 *   XCR0
2404 	 *   CPL
2405 	 *
2406 	 * VMMCALL allows the guest to provide extra registers. KVM also
2407 	 * expects RSI for hypercalls, so include that, too.
2408 	 *
2409 	 * Copy their values to the appropriate location if supplied.
2410 	 */
2411 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2412 
2413 	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2414 	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2415 	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2416 	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2417 	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2418 
2419 	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2420 
2421 	if (ghcb_xcr0_is_valid(ghcb)) {
2422 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2423 		kvm_update_cpuid_runtime(vcpu);
2424 	}
2425 
2426 	/* Copy the GHCB exit information into the VMCB fields */
2427 	exit_code = ghcb_get_sw_exit_code(ghcb);
2428 	control->exit_code = lower_32_bits(exit_code);
2429 	control->exit_code_hi = upper_32_bits(exit_code);
2430 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2431 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2432 
2433 	/* Clear the valid entries fields */
2434 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2435 }
2436 
sev_es_validate_vmgexit(struct vcpu_svm * svm)2437 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2438 {
2439 	struct kvm_vcpu *vcpu;
2440 	struct ghcb *ghcb;
2441 	u64 exit_code;
2442 	u64 reason;
2443 
2444 	ghcb = svm->sev_es.ghcb;
2445 
2446 	/*
2447 	 * Retrieve the exit code now even though it may not be marked valid
2448 	 * as it could help with debugging.
2449 	 */
2450 	exit_code = ghcb_get_sw_exit_code(ghcb);
2451 
2452 	/* Only GHCB Usage code 0 is supported */
2453 	if (ghcb->ghcb_usage) {
2454 		reason = GHCB_ERR_INVALID_USAGE;
2455 		goto vmgexit_err;
2456 	}
2457 
2458 	reason = GHCB_ERR_MISSING_INPUT;
2459 
2460 	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2461 	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2462 	    !ghcb_sw_exit_info_2_is_valid(ghcb))
2463 		goto vmgexit_err;
2464 
2465 	switch (ghcb_get_sw_exit_code(ghcb)) {
2466 	case SVM_EXIT_READ_DR7:
2467 		break;
2468 	case SVM_EXIT_WRITE_DR7:
2469 		if (!ghcb_rax_is_valid(ghcb))
2470 			goto vmgexit_err;
2471 		break;
2472 	case SVM_EXIT_RDTSC:
2473 		break;
2474 	case SVM_EXIT_RDPMC:
2475 		if (!ghcb_rcx_is_valid(ghcb))
2476 			goto vmgexit_err;
2477 		break;
2478 	case SVM_EXIT_CPUID:
2479 		if (!ghcb_rax_is_valid(ghcb) ||
2480 		    !ghcb_rcx_is_valid(ghcb))
2481 			goto vmgexit_err;
2482 		if (ghcb_get_rax(ghcb) == 0xd)
2483 			if (!ghcb_xcr0_is_valid(ghcb))
2484 				goto vmgexit_err;
2485 		break;
2486 	case SVM_EXIT_INVD:
2487 		break;
2488 	case SVM_EXIT_IOIO:
2489 		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2490 			if (!ghcb_sw_scratch_is_valid(ghcb))
2491 				goto vmgexit_err;
2492 		} else {
2493 			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2494 				if (!ghcb_rax_is_valid(ghcb))
2495 					goto vmgexit_err;
2496 		}
2497 		break;
2498 	case SVM_EXIT_MSR:
2499 		if (!ghcb_rcx_is_valid(ghcb))
2500 			goto vmgexit_err;
2501 		if (ghcb_get_sw_exit_info_1(ghcb)) {
2502 			if (!ghcb_rax_is_valid(ghcb) ||
2503 			    !ghcb_rdx_is_valid(ghcb))
2504 				goto vmgexit_err;
2505 		}
2506 		break;
2507 	case SVM_EXIT_VMMCALL:
2508 		if (!ghcb_rax_is_valid(ghcb) ||
2509 		    !ghcb_cpl_is_valid(ghcb))
2510 			goto vmgexit_err;
2511 		break;
2512 	case SVM_EXIT_RDTSCP:
2513 		break;
2514 	case SVM_EXIT_WBINVD:
2515 		break;
2516 	case SVM_EXIT_MONITOR:
2517 		if (!ghcb_rax_is_valid(ghcb) ||
2518 		    !ghcb_rcx_is_valid(ghcb) ||
2519 		    !ghcb_rdx_is_valid(ghcb))
2520 			goto vmgexit_err;
2521 		break;
2522 	case SVM_EXIT_MWAIT:
2523 		if (!ghcb_rax_is_valid(ghcb) ||
2524 		    !ghcb_rcx_is_valid(ghcb))
2525 			goto vmgexit_err;
2526 		break;
2527 	case SVM_VMGEXIT_MMIO_READ:
2528 	case SVM_VMGEXIT_MMIO_WRITE:
2529 		if (!ghcb_sw_scratch_is_valid(ghcb))
2530 			goto vmgexit_err;
2531 		break;
2532 	case SVM_VMGEXIT_NMI_COMPLETE:
2533 	case SVM_VMGEXIT_AP_HLT_LOOP:
2534 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2535 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2536 		break;
2537 	default:
2538 		reason = GHCB_ERR_INVALID_EVENT;
2539 		goto vmgexit_err;
2540 	}
2541 
2542 	return 0;
2543 
2544 vmgexit_err:
2545 	vcpu = &svm->vcpu;
2546 
2547 	if (reason == GHCB_ERR_INVALID_USAGE) {
2548 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2549 			    ghcb->ghcb_usage);
2550 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2551 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2552 			    exit_code);
2553 	} else {
2554 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2555 			    exit_code);
2556 		dump_ghcb(svm);
2557 	}
2558 
2559 	/* Clear the valid entries fields */
2560 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2561 
2562 	ghcb_set_sw_exit_info_1(ghcb, 2);
2563 	ghcb_set_sw_exit_info_2(ghcb, reason);
2564 
2565 	/* Resume the guest to "return" the error code. */
2566 	return 1;
2567 }
2568 
sev_es_unmap_ghcb(struct vcpu_svm * svm)2569 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2570 {
2571 	if (!svm->sev_es.ghcb)
2572 		return;
2573 
2574 	if (svm->sev_es.ghcb_sa_free) {
2575 		/*
2576 		 * The scratch area lives outside the GHCB, so there is a
2577 		 * buffer that, depending on the operation performed, may
2578 		 * need to be synced, then freed.
2579 		 */
2580 		if (svm->sev_es.ghcb_sa_sync) {
2581 			kvm_write_guest(svm->vcpu.kvm,
2582 					ghcb_get_sw_scratch(svm->sev_es.ghcb),
2583 					svm->sev_es.ghcb_sa,
2584 					svm->sev_es.ghcb_sa_len);
2585 			svm->sev_es.ghcb_sa_sync = false;
2586 		}
2587 
2588 		kvfree(svm->sev_es.ghcb_sa);
2589 		svm->sev_es.ghcb_sa = NULL;
2590 		svm->sev_es.ghcb_sa_free = false;
2591 	}
2592 
2593 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2594 
2595 	sev_es_sync_to_ghcb(svm);
2596 
2597 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2598 	svm->sev_es.ghcb = NULL;
2599 }
2600 
pre_sev_run(struct vcpu_svm * svm,int cpu)2601 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2602 {
2603 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2604 	int asid = sev_get_asid(svm->vcpu.kvm);
2605 
2606 	/* Assign the asid allocated with this SEV guest */
2607 	svm->asid = asid;
2608 
2609 	/*
2610 	 * Flush guest TLB:
2611 	 *
2612 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2613 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2614 	 */
2615 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2616 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2617 		return;
2618 
2619 	sd->sev_vmcbs[asid] = svm->vmcb;
2620 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2621 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2622 }
2623 
2624 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)2625 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2626 {
2627 	struct vmcb_control_area *control = &svm->vmcb->control;
2628 	struct ghcb *ghcb = svm->sev_es.ghcb;
2629 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2630 	u64 scratch_gpa_beg, scratch_gpa_end;
2631 	void *scratch_va;
2632 
2633 	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2634 	if (!scratch_gpa_beg) {
2635 		pr_err("vmgexit: scratch gpa not provided\n");
2636 		goto e_scratch;
2637 	}
2638 
2639 	scratch_gpa_end = scratch_gpa_beg + len;
2640 	if (scratch_gpa_end < scratch_gpa_beg) {
2641 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2642 		       len, scratch_gpa_beg);
2643 		goto e_scratch;
2644 	}
2645 
2646 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2647 		/* Scratch area begins within GHCB */
2648 		ghcb_scratch_beg = control->ghcb_gpa +
2649 				   offsetof(struct ghcb, shared_buffer);
2650 		ghcb_scratch_end = control->ghcb_gpa +
2651 				   offsetof(struct ghcb, reserved_1);
2652 
2653 		/*
2654 		 * If the scratch area begins within the GHCB, it must be
2655 		 * completely contained in the GHCB shared buffer area.
2656 		 */
2657 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2658 		    scratch_gpa_end > ghcb_scratch_end) {
2659 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2660 			       scratch_gpa_beg, scratch_gpa_end);
2661 			goto e_scratch;
2662 		}
2663 
2664 		scratch_va = (void *)svm->sev_es.ghcb;
2665 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2666 	} else {
2667 		/*
2668 		 * The guest memory must be read into a kernel buffer, so
2669 		 * limit the size
2670 		 */
2671 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2672 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2673 			       len, GHCB_SCRATCH_AREA_LIMIT);
2674 			goto e_scratch;
2675 		}
2676 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2677 		if (!scratch_va)
2678 			return -ENOMEM;
2679 
2680 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2681 			/* Unable to copy scratch area from guest */
2682 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2683 
2684 			kvfree(scratch_va);
2685 			return -EFAULT;
2686 		}
2687 
2688 		/*
2689 		 * The scratch area is outside the GHCB. The operation will
2690 		 * dictate whether the buffer needs to be synced before running
2691 		 * the vCPU next time (i.e. a read was requested so the data
2692 		 * must be written back to the guest memory).
2693 		 */
2694 		svm->sev_es.ghcb_sa_sync = sync;
2695 		svm->sev_es.ghcb_sa_free = true;
2696 	}
2697 
2698 	svm->sev_es.ghcb_sa = scratch_va;
2699 	svm->sev_es.ghcb_sa_len = len;
2700 
2701 	return 0;
2702 
2703 e_scratch:
2704 	ghcb_set_sw_exit_info_1(ghcb, 2);
2705 	ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2706 
2707 	return 1;
2708 }
2709 
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)2710 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2711 			      unsigned int pos)
2712 {
2713 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2714 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2715 }
2716 
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)2717 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2718 {
2719 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2720 }
2721 
set_ghcb_msr(struct vcpu_svm * svm,u64 value)2722 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2723 {
2724 	svm->vmcb->control.ghcb_gpa = value;
2725 }
2726 
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)2727 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2728 {
2729 	struct vmcb_control_area *control = &svm->vmcb->control;
2730 	struct kvm_vcpu *vcpu = &svm->vcpu;
2731 	u64 ghcb_info;
2732 	int ret = 1;
2733 
2734 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2735 
2736 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2737 					     control->ghcb_gpa);
2738 
2739 	switch (ghcb_info) {
2740 	case GHCB_MSR_SEV_INFO_REQ:
2741 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2742 						    GHCB_VERSION_MIN,
2743 						    sev_enc_bit));
2744 		break;
2745 	case GHCB_MSR_CPUID_REQ: {
2746 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2747 
2748 		cpuid_fn = get_ghcb_msr_bits(svm,
2749 					     GHCB_MSR_CPUID_FUNC_MASK,
2750 					     GHCB_MSR_CPUID_FUNC_POS);
2751 
2752 		/* Initialize the registers needed by the CPUID intercept */
2753 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2754 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2755 
2756 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2757 		if (!ret) {
2758 			/* Error, keep GHCB MSR value as-is */
2759 			break;
2760 		}
2761 
2762 		cpuid_reg = get_ghcb_msr_bits(svm,
2763 					      GHCB_MSR_CPUID_REG_MASK,
2764 					      GHCB_MSR_CPUID_REG_POS);
2765 		if (cpuid_reg == 0)
2766 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2767 		else if (cpuid_reg == 1)
2768 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2769 		else if (cpuid_reg == 2)
2770 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2771 		else
2772 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2773 
2774 		set_ghcb_msr_bits(svm, cpuid_value,
2775 				  GHCB_MSR_CPUID_VALUE_MASK,
2776 				  GHCB_MSR_CPUID_VALUE_POS);
2777 
2778 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2779 				  GHCB_MSR_INFO_MASK,
2780 				  GHCB_MSR_INFO_POS);
2781 		break;
2782 	}
2783 	case GHCB_MSR_TERM_REQ: {
2784 		u64 reason_set, reason_code;
2785 
2786 		reason_set = get_ghcb_msr_bits(svm,
2787 					       GHCB_MSR_TERM_REASON_SET_MASK,
2788 					       GHCB_MSR_TERM_REASON_SET_POS);
2789 		reason_code = get_ghcb_msr_bits(svm,
2790 						GHCB_MSR_TERM_REASON_MASK,
2791 						GHCB_MSR_TERM_REASON_POS);
2792 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2793 			reason_set, reason_code);
2794 
2795 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2796 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2797 		vcpu->run->system_event.ndata = 1;
2798 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
2799 
2800 		return 0;
2801 	}
2802 	default:
2803 		/* Error, keep GHCB MSR value as-is */
2804 		break;
2805 	}
2806 
2807 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2808 					    control->ghcb_gpa, ret);
2809 
2810 	return ret;
2811 }
2812 
sev_handle_vmgexit(struct kvm_vcpu * vcpu)2813 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2814 {
2815 	struct vcpu_svm *svm = to_svm(vcpu);
2816 	struct vmcb_control_area *control = &svm->vmcb->control;
2817 	u64 ghcb_gpa, exit_code;
2818 	struct ghcb *ghcb;
2819 	int ret;
2820 
2821 	/* Validate the GHCB */
2822 	ghcb_gpa = control->ghcb_gpa;
2823 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2824 		return sev_handle_vmgexit_msr_protocol(svm);
2825 
2826 	if (!ghcb_gpa) {
2827 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2828 
2829 		/* Without a GHCB, just return right back to the guest */
2830 		return 1;
2831 	}
2832 
2833 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2834 		/* Unable to map GHCB from guest */
2835 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2836 			    ghcb_gpa);
2837 
2838 		/* Without a GHCB, just return right back to the guest */
2839 		return 1;
2840 	}
2841 
2842 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2843 	ghcb = svm->sev_es.ghcb_map.hva;
2844 
2845 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2846 
2847 	exit_code = ghcb_get_sw_exit_code(ghcb);
2848 
2849 	ret = sev_es_validate_vmgexit(svm);
2850 	if (ret)
2851 		return ret;
2852 
2853 	sev_es_sync_from_ghcb(svm);
2854 	ghcb_set_sw_exit_info_1(ghcb, 0);
2855 	ghcb_set_sw_exit_info_2(ghcb, 0);
2856 
2857 	switch (exit_code) {
2858 	case SVM_VMGEXIT_MMIO_READ:
2859 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2860 		if (ret)
2861 			break;
2862 
2863 		ret = kvm_sev_es_mmio_read(vcpu,
2864 					   control->exit_info_1,
2865 					   control->exit_info_2,
2866 					   svm->sev_es.ghcb_sa);
2867 		break;
2868 	case SVM_VMGEXIT_MMIO_WRITE:
2869 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2870 		if (ret)
2871 			break;
2872 
2873 		ret = kvm_sev_es_mmio_write(vcpu,
2874 					    control->exit_info_1,
2875 					    control->exit_info_2,
2876 					    svm->sev_es.ghcb_sa);
2877 		break;
2878 	case SVM_VMGEXIT_NMI_COMPLETE:
2879 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2880 		break;
2881 	case SVM_VMGEXIT_AP_HLT_LOOP:
2882 		ret = kvm_emulate_ap_reset_hold(vcpu);
2883 		break;
2884 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2885 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2886 
2887 		switch (control->exit_info_1) {
2888 		case 0:
2889 			/* Set AP jump table address */
2890 			sev->ap_jump_table = control->exit_info_2;
2891 			break;
2892 		case 1:
2893 			/* Get AP jump table address */
2894 			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2895 			break;
2896 		default:
2897 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2898 			       control->exit_info_1);
2899 			ghcb_set_sw_exit_info_1(ghcb, 2);
2900 			ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2901 		}
2902 
2903 		ret = 1;
2904 		break;
2905 	}
2906 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2907 		vcpu_unimpl(vcpu,
2908 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2909 			    control->exit_info_1, control->exit_info_2);
2910 		ret = -EINVAL;
2911 		break;
2912 	default:
2913 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2914 	}
2915 
2916 	return ret;
2917 }
2918 
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)2919 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2920 {
2921 	int count;
2922 	int bytes;
2923 	int r;
2924 
2925 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2926 		return -EINVAL;
2927 
2928 	count = svm->vmcb->control.exit_info_2;
2929 	if (unlikely(check_mul_overflow(count, size, &bytes)))
2930 		return -EINVAL;
2931 
2932 	r = setup_vmgexit_scratch(svm, in, bytes);
2933 	if (r)
2934 		return r;
2935 
2936 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2937 				    count, in);
2938 }
2939 
sev_es_init_vmcb(struct vcpu_svm * svm)2940 static void sev_es_init_vmcb(struct vcpu_svm *svm)
2941 {
2942 	struct kvm_vcpu *vcpu = &svm->vcpu;
2943 
2944 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2945 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2946 
2947 	/*
2948 	 * An SEV-ES guest requires a VMSA area that is a separate from the
2949 	 * VMCB page. Do not include the encryption mask on the VMSA physical
2950 	 * address since hardware will access it using the guest key.
2951 	 */
2952 	svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2953 
2954 	/* Can't intercept CR register access, HV can't modify CR registers */
2955 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2956 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2957 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2958 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2959 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2960 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2961 
2962 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2963 
2964 	/* Track EFER/CR register changes */
2965 	svm_set_intercept(svm, TRAP_EFER_WRITE);
2966 	svm_set_intercept(svm, TRAP_CR0_WRITE);
2967 	svm_set_intercept(svm, TRAP_CR4_WRITE);
2968 	svm_set_intercept(svm, TRAP_CR8_WRITE);
2969 
2970 	/* No support for enable_vmware_backdoor */
2971 	clr_exception_intercept(svm, GP_VECTOR);
2972 
2973 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
2974 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
2975 
2976 	/* Clear intercepts on selected MSRs */
2977 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2978 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2979 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2980 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2981 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2982 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2983 
2984 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) &&
2985 	    (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP) ||
2986 	     guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDPID))) {
2987 		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, 1, 1);
2988 		if (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP))
2989 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
2990 	}
2991 }
2992 
sev_init_vmcb(struct vcpu_svm * svm)2993 void sev_init_vmcb(struct vcpu_svm *svm)
2994 {
2995 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
2996 	clr_exception_intercept(svm, UD_VECTOR);
2997 
2998 	if (sev_es_guest(svm->vcpu.kvm))
2999 		sev_es_init_vmcb(svm);
3000 }
3001 
sev_es_vcpu_reset(struct vcpu_svm * svm)3002 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3003 {
3004 	/*
3005 	 * Set the GHCB MSR value as per the GHCB specification when emulating
3006 	 * vCPU RESET for an SEV-ES guest.
3007 	 */
3008 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3009 					    GHCB_VERSION_MIN,
3010 					    sev_enc_bit));
3011 }
3012 
sev_es_prepare_switch_to_guest(struct sev_es_save_area * hostsa)3013 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3014 {
3015 	/*
3016 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
3017 	 * of which one step is to perform a VMLOAD.  KVM performs the
3018 	 * corresponding VMSAVE in svm_prepare_guest_switch for both
3019 	 * traditional and SEV-ES guests.
3020 	 */
3021 
3022 	/* XCR0 is restored on VMEXIT, save the current host value */
3023 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3024 
3025 	/* PKRU is restored on VMEXIT, save the current host value */
3026 	hostsa->pkru = read_pkru();
3027 
3028 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
3029 	hostsa->xss = host_xss;
3030 }
3031 
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)3032 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3033 {
3034 	struct vcpu_svm *svm = to_svm(vcpu);
3035 
3036 	/* First SIPI: Use the values as initially set by the VMM */
3037 	if (!svm->sev_es.received_first_sipi) {
3038 		svm->sev_es.received_first_sipi = true;
3039 		return;
3040 	}
3041 
3042 	/*
3043 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3044 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3045 	 * non-zero value.
3046 	 */
3047 	if (!svm->sev_es.ghcb)
3048 		return;
3049 
3050 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3051 }
3052