1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22
23 #include <asm/pkru.h>
24 #include <asm/trapnr.h>
25 #include <asm/fpu/xcr.h>
26 #include <asm/debugreg.h>
27
28 #include "mmu.h"
29 #include "x86.h"
30 #include "svm.h"
31 #include "svm_ops.h"
32 #include "cpuid.h"
33 #include "trace.h"
34
35 #ifndef CONFIG_KVM_AMD_SEV
36 /*
37 * When this config is not defined, SEV feature is not supported and APIs in
38 * this file are not used but this file still gets compiled into the KVM AMD
39 * module.
40 *
41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42 * misc_res_type {} defined in linux/misc_cgroup.h.
43 *
44 * Below macros allow compilation to succeed.
45 */
46 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48 #endif
49
50 #ifdef CONFIG_KVM_AMD_SEV
51 /* enable/disable SEV support */
52 static bool sev_enabled = true;
53 module_param_named(sev, sev_enabled, bool, 0444);
54
55 /* enable/disable SEV-ES support */
56 static bool sev_es_enabled = true;
57 module_param_named(sev_es, sev_es_enabled, bool, 0444);
58
59 /* enable/disable SEV-ES DebugSwap support */
60 static bool sev_es_debug_swap_enabled = true;
61 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
62 #else
63 #define sev_enabled false
64 #define sev_es_enabled false
65 #define sev_es_debug_swap_enabled false
66 #endif /* CONFIG_KVM_AMD_SEV */
67
68 static u8 sev_enc_bit;
69 static DECLARE_RWSEM(sev_deactivate_lock);
70 static DEFINE_MUTEX(sev_bitmap_lock);
71 unsigned int max_sev_asid;
72 static unsigned int min_sev_asid;
73 static unsigned long sev_me_mask;
74 static unsigned int nr_asids;
75 static unsigned long *sev_asid_bitmap;
76 static unsigned long *sev_reclaim_asid_bitmap;
77
78 struct enc_region {
79 struct list_head list;
80 unsigned long npages;
81 struct page **pages;
82 unsigned long uaddr;
83 unsigned long size;
84 };
85
86 /* Called with the sev_bitmap_lock held, or on shutdown */
sev_flush_asids(int min_asid,int max_asid)87 static int sev_flush_asids(int min_asid, int max_asid)
88 {
89 int ret, asid, error = 0;
90
91 /* Check if there are any ASIDs to reclaim before performing a flush */
92 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
93 if (asid > max_asid)
94 return -EBUSY;
95
96 /*
97 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
98 * so it must be guarded.
99 */
100 down_write(&sev_deactivate_lock);
101
102 wbinvd_on_all_cpus();
103 ret = sev_guest_df_flush(&error);
104
105 up_write(&sev_deactivate_lock);
106
107 if (ret)
108 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
109
110 return ret;
111 }
112
is_mirroring_enc_context(struct kvm * kvm)113 static inline bool is_mirroring_enc_context(struct kvm *kvm)
114 {
115 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
116 }
117
118 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(int min_asid,int max_asid)119 static bool __sev_recycle_asids(int min_asid, int max_asid)
120 {
121 if (sev_flush_asids(min_asid, max_asid))
122 return false;
123
124 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
125 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
126 nr_asids);
127 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
128
129 return true;
130 }
131
sev_misc_cg_try_charge(struct kvm_sev_info * sev)132 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
133 {
134 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
135 return misc_cg_try_charge(type, sev->misc_cg, 1);
136 }
137
sev_misc_cg_uncharge(struct kvm_sev_info * sev)138 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
139 {
140 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
141 misc_cg_uncharge(type, sev->misc_cg, 1);
142 }
143
sev_asid_new(struct kvm_sev_info * sev)144 static int sev_asid_new(struct kvm_sev_info *sev)
145 {
146 int asid, min_asid, max_asid, ret;
147 bool retry = true;
148
149 WARN_ON(sev->misc_cg);
150 sev->misc_cg = get_current_misc_cg();
151 ret = sev_misc_cg_try_charge(sev);
152 if (ret) {
153 put_misc_cg(sev->misc_cg);
154 sev->misc_cg = NULL;
155 return ret;
156 }
157
158 mutex_lock(&sev_bitmap_lock);
159
160 /*
161 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
162 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
163 */
164 min_asid = sev->es_active ? 1 : min_sev_asid;
165 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
166 again:
167 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
168 if (asid > max_asid) {
169 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
170 retry = false;
171 goto again;
172 }
173 mutex_unlock(&sev_bitmap_lock);
174 ret = -EBUSY;
175 goto e_uncharge;
176 }
177
178 __set_bit(asid, sev_asid_bitmap);
179
180 mutex_unlock(&sev_bitmap_lock);
181
182 return asid;
183 e_uncharge:
184 sev_misc_cg_uncharge(sev);
185 put_misc_cg(sev->misc_cg);
186 sev->misc_cg = NULL;
187 return ret;
188 }
189
sev_get_asid(struct kvm * kvm)190 static int sev_get_asid(struct kvm *kvm)
191 {
192 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
193
194 return sev->asid;
195 }
196
sev_asid_free(struct kvm_sev_info * sev)197 static void sev_asid_free(struct kvm_sev_info *sev)
198 {
199 struct svm_cpu_data *sd;
200 int cpu;
201
202 mutex_lock(&sev_bitmap_lock);
203
204 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
205
206 for_each_possible_cpu(cpu) {
207 sd = per_cpu_ptr(&svm_data, cpu);
208 sd->sev_vmcbs[sev->asid] = NULL;
209 }
210
211 mutex_unlock(&sev_bitmap_lock);
212
213 sev_misc_cg_uncharge(sev);
214 put_misc_cg(sev->misc_cg);
215 sev->misc_cg = NULL;
216 }
217
sev_decommission(unsigned int handle)218 static void sev_decommission(unsigned int handle)
219 {
220 struct sev_data_decommission decommission;
221
222 if (!handle)
223 return;
224
225 decommission.handle = handle;
226 sev_guest_decommission(&decommission, NULL);
227 }
228
sev_unbind_asid(struct kvm * kvm,unsigned int handle)229 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
230 {
231 struct sev_data_deactivate deactivate;
232
233 if (!handle)
234 return;
235
236 deactivate.handle = handle;
237
238 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
239 down_read(&sev_deactivate_lock);
240 sev_guest_deactivate(&deactivate, NULL);
241 up_read(&sev_deactivate_lock);
242
243 sev_decommission(handle);
244 }
245
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)246 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
247 {
248 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
249 int asid, ret;
250
251 if (kvm->created_vcpus)
252 return -EINVAL;
253
254 ret = -EBUSY;
255 if (unlikely(sev->active))
256 return ret;
257
258 sev->active = true;
259 sev->es_active = argp->id == KVM_SEV_ES_INIT;
260 asid = sev_asid_new(sev);
261 if (asid < 0)
262 goto e_no_asid;
263 sev->asid = asid;
264
265 ret = sev_platform_init(&argp->error);
266 if (ret)
267 goto e_free;
268
269 INIT_LIST_HEAD(&sev->regions_list);
270 INIT_LIST_HEAD(&sev->mirror_vms);
271
272 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
273
274 return 0;
275
276 e_free:
277 sev_asid_free(sev);
278 sev->asid = 0;
279 e_no_asid:
280 sev->es_active = false;
281 sev->active = false;
282 return ret;
283 }
284
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)285 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
286 {
287 struct sev_data_activate activate;
288 int asid = sev_get_asid(kvm);
289 int ret;
290
291 /* activate ASID on the given handle */
292 activate.handle = handle;
293 activate.asid = asid;
294 ret = sev_guest_activate(&activate, error);
295
296 return ret;
297 }
298
__sev_issue_cmd(int fd,int id,void * data,int * error)299 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
300 {
301 struct fd f;
302 int ret;
303
304 f = fdget(fd);
305 if (!f.file)
306 return -EBADF;
307
308 ret = sev_issue_cmd_external_user(f.file, id, data, error);
309
310 fdput(f);
311 return ret;
312 }
313
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)314 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
315 {
316 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
317
318 return __sev_issue_cmd(sev->fd, id, data, error);
319 }
320
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)321 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
322 {
323 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
324 struct sev_data_launch_start start;
325 struct kvm_sev_launch_start params;
326 void *dh_blob, *session_blob;
327 int *error = &argp->error;
328 int ret;
329
330 if (!sev_guest(kvm))
331 return -ENOTTY;
332
333 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
334 return -EFAULT;
335
336 memset(&start, 0, sizeof(start));
337
338 dh_blob = NULL;
339 if (params.dh_uaddr) {
340 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
341 if (IS_ERR(dh_blob))
342 return PTR_ERR(dh_blob);
343
344 start.dh_cert_address = __sme_set(__pa(dh_blob));
345 start.dh_cert_len = params.dh_len;
346 }
347
348 session_blob = NULL;
349 if (params.session_uaddr) {
350 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
351 if (IS_ERR(session_blob)) {
352 ret = PTR_ERR(session_blob);
353 goto e_free_dh;
354 }
355
356 start.session_address = __sme_set(__pa(session_blob));
357 start.session_len = params.session_len;
358 }
359
360 start.handle = params.handle;
361 start.policy = params.policy;
362
363 /* create memory encryption context */
364 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
365 if (ret)
366 goto e_free_session;
367
368 /* Bind ASID to this guest */
369 ret = sev_bind_asid(kvm, start.handle, error);
370 if (ret) {
371 sev_decommission(start.handle);
372 goto e_free_session;
373 }
374
375 /* return handle to userspace */
376 params.handle = start.handle;
377 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
378 sev_unbind_asid(kvm, start.handle);
379 ret = -EFAULT;
380 goto e_free_session;
381 }
382
383 sev->handle = start.handle;
384 sev->fd = argp->sev_fd;
385
386 e_free_session:
387 kfree(session_blob);
388 e_free_dh:
389 kfree(dh_blob);
390 return ret;
391 }
392
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)393 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
394 unsigned long ulen, unsigned long *n,
395 int write)
396 {
397 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
398 unsigned long npages, size;
399 int npinned;
400 unsigned long locked, lock_limit;
401 struct page **pages;
402 unsigned long first, last;
403 int ret;
404
405 lockdep_assert_held(&kvm->lock);
406
407 if (ulen == 0 || uaddr + ulen < uaddr)
408 return ERR_PTR(-EINVAL);
409
410 /* Calculate number of pages. */
411 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
412 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
413 npages = (last - first + 1);
414
415 locked = sev->pages_locked + npages;
416 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
417 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
418 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
419 return ERR_PTR(-ENOMEM);
420 }
421
422 if (WARN_ON_ONCE(npages > INT_MAX))
423 return ERR_PTR(-EINVAL);
424
425 /* Avoid using vmalloc for smaller buffers. */
426 size = npages * sizeof(struct page *);
427 if (size > PAGE_SIZE)
428 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
429 else
430 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
431
432 if (!pages)
433 return ERR_PTR(-ENOMEM);
434
435 /* Pin the user virtual address. */
436 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
437 if (npinned != npages) {
438 pr_err("SEV: Failure locking %lu pages.\n", npages);
439 ret = -ENOMEM;
440 goto err;
441 }
442
443 *n = npages;
444 sev->pages_locked = locked;
445
446 return pages;
447
448 err:
449 if (npinned > 0)
450 unpin_user_pages(pages, npinned);
451
452 kvfree(pages);
453 return ERR_PTR(ret);
454 }
455
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)456 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
457 unsigned long npages)
458 {
459 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
460
461 unpin_user_pages(pages, npages);
462 kvfree(pages);
463 sev->pages_locked -= npages;
464 }
465
sev_clflush_pages(struct page * pages[],unsigned long npages)466 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
467 {
468 uint8_t *page_virtual;
469 unsigned long i;
470
471 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
472 pages == NULL)
473 return;
474
475 for (i = 0; i < npages; i++) {
476 page_virtual = kmap_local_page(pages[i]);
477 clflush_cache_range(page_virtual, PAGE_SIZE);
478 kunmap_local(page_virtual);
479 cond_resched();
480 }
481 }
482
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)483 static unsigned long get_num_contig_pages(unsigned long idx,
484 struct page **inpages, unsigned long npages)
485 {
486 unsigned long paddr, next_paddr;
487 unsigned long i = idx + 1, pages = 1;
488
489 /* find the number of contiguous pages starting from idx */
490 paddr = __sme_page_pa(inpages[idx]);
491 while (i < npages) {
492 next_paddr = __sme_page_pa(inpages[i++]);
493 if ((paddr + PAGE_SIZE) == next_paddr) {
494 pages++;
495 paddr = next_paddr;
496 continue;
497 }
498 break;
499 }
500
501 return pages;
502 }
503
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)504 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
505 {
506 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
507 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
508 struct kvm_sev_launch_update_data params;
509 struct sev_data_launch_update_data data;
510 struct page **inpages;
511 int ret;
512
513 if (!sev_guest(kvm))
514 return -ENOTTY;
515
516 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
517 return -EFAULT;
518
519 vaddr = params.uaddr;
520 size = params.len;
521 vaddr_end = vaddr + size;
522
523 /* Lock the user memory. */
524 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
525 if (IS_ERR(inpages))
526 return PTR_ERR(inpages);
527
528 /*
529 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
530 * place; the cache may contain the data that was written unencrypted.
531 */
532 sev_clflush_pages(inpages, npages);
533
534 data.reserved = 0;
535 data.handle = sev->handle;
536
537 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
538 int offset, len;
539
540 /*
541 * If the user buffer is not page-aligned, calculate the offset
542 * within the page.
543 */
544 offset = vaddr & (PAGE_SIZE - 1);
545
546 /* Calculate the number of pages that can be encrypted in one go. */
547 pages = get_num_contig_pages(i, inpages, npages);
548
549 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
550
551 data.len = len;
552 data.address = __sme_page_pa(inpages[i]) + offset;
553 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
554 if (ret)
555 goto e_unpin;
556
557 size -= len;
558 next_vaddr = vaddr + len;
559 }
560
561 e_unpin:
562 /* content of memory is updated, mark pages dirty */
563 for (i = 0; i < npages; i++) {
564 set_page_dirty_lock(inpages[i]);
565 mark_page_accessed(inpages[i]);
566 }
567 /* unlock the user pages */
568 sev_unpin_memory(kvm, inpages, npages);
569 return ret;
570 }
571
sev_es_sync_vmsa(struct vcpu_svm * svm)572 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
573 {
574 struct sev_es_save_area *save = svm->sev_es.vmsa;
575
576 /* Check some debug related fields before encrypting the VMSA */
577 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
578 return -EINVAL;
579
580 /*
581 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
582 * the traditional VMSA that is part of the VMCB. Copy the
583 * traditional VMSA as it has been built so far (in prep
584 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
585 */
586 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
587
588 /* Sync registgers */
589 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
590 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
591 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
592 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
593 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
594 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
595 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
596 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
597 #ifdef CONFIG_X86_64
598 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
599 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
600 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
601 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
602 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
603 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
604 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
605 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
606 #endif
607 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
608
609 /* Sync some non-GPR registers before encrypting */
610 save->xcr0 = svm->vcpu.arch.xcr0;
611 save->pkru = svm->vcpu.arch.pkru;
612 save->xss = svm->vcpu.arch.ia32_xss;
613 save->dr6 = svm->vcpu.arch.dr6;
614
615 if (sev_es_debug_swap_enabled)
616 save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
617
618 pr_debug("Virtual Machine Save Area (VMSA):\n");
619 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
620
621 return 0;
622 }
623
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)624 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
625 int *error)
626 {
627 struct sev_data_launch_update_vmsa vmsa;
628 struct vcpu_svm *svm = to_svm(vcpu);
629 int ret;
630
631 if (vcpu->guest_debug) {
632 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
633 return -EINVAL;
634 }
635
636 /* Perform some pre-encryption checks against the VMSA */
637 ret = sev_es_sync_vmsa(svm);
638 if (ret)
639 return ret;
640
641 /*
642 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
643 * the VMSA memory content (i.e it will write the same memory region
644 * with the guest's key), so invalidate it first.
645 */
646 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
647
648 vmsa.reserved = 0;
649 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
650 vmsa.address = __sme_pa(svm->sev_es.vmsa);
651 vmsa.len = PAGE_SIZE;
652 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
653 if (ret)
654 return ret;
655
656 vcpu->arch.guest_state_protected = true;
657 return 0;
658 }
659
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)660 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
661 {
662 struct kvm_vcpu *vcpu;
663 unsigned long i;
664 int ret;
665
666 if (!sev_es_guest(kvm))
667 return -ENOTTY;
668
669 kvm_for_each_vcpu(i, vcpu, kvm) {
670 ret = mutex_lock_killable(&vcpu->mutex);
671 if (ret)
672 return ret;
673
674 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
675
676 mutex_unlock(&vcpu->mutex);
677 if (ret)
678 return ret;
679 }
680
681 return 0;
682 }
683
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)684 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
685 {
686 void __user *measure = (void __user *)(uintptr_t)argp->data;
687 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
688 struct sev_data_launch_measure data;
689 struct kvm_sev_launch_measure params;
690 void __user *p = NULL;
691 void *blob = NULL;
692 int ret;
693
694 if (!sev_guest(kvm))
695 return -ENOTTY;
696
697 if (copy_from_user(¶ms, measure, sizeof(params)))
698 return -EFAULT;
699
700 memset(&data, 0, sizeof(data));
701
702 /* User wants to query the blob length */
703 if (!params.len)
704 goto cmd;
705
706 p = (void __user *)(uintptr_t)params.uaddr;
707 if (p) {
708 if (params.len > SEV_FW_BLOB_MAX_SIZE)
709 return -EINVAL;
710
711 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
712 if (!blob)
713 return -ENOMEM;
714
715 data.address = __psp_pa(blob);
716 data.len = params.len;
717 }
718
719 cmd:
720 data.handle = sev->handle;
721 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
722
723 /*
724 * If we query the session length, FW responded with expected data.
725 */
726 if (!params.len)
727 goto done;
728
729 if (ret)
730 goto e_free_blob;
731
732 if (blob) {
733 if (copy_to_user(p, blob, params.len))
734 ret = -EFAULT;
735 }
736
737 done:
738 params.len = data.len;
739 if (copy_to_user(measure, ¶ms, sizeof(params)))
740 ret = -EFAULT;
741 e_free_blob:
742 kfree(blob);
743 return ret;
744 }
745
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)746 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
747 {
748 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
749 struct sev_data_launch_finish data;
750
751 if (!sev_guest(kvm))
752 return -ENOTTY;
753
754 data.handle = sev->handle;
755 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
756 }
757
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)758 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
759 {
760 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
761 struct kvm_sev_guest_status params;
762 struct sev_data_guest_status data;
763 int ret;
764
765 if (!sev_guest(kvm))
766 return -ENOTTY;
767
768 memset(&data, 0, sizeof(data));
769
770 data.handle = sev->handle;
771 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
772 if (ret)
773 return ret;
774
775 params.policy = data.policy;
776 params.state = data.state;
777 params.handle = data.handle;
778
779 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
780 ret = -EFAULT;
781
782 return ret;
783 }
784
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)785 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
786 unsigned long dst, int size,
787 int *error, bool enc)
788 {
789 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
790 struct sev_data_dbg data;
791
792 data.reserved = 0;
793 data.handle = sev->handle;
794 data.dst_addr = dst;
795 data.src_addr = src;
796 data.len = size;
797
798 return sev_issue_cmd(kvm,
799 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
800 &data, error);
801 }
802
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)803 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
804 unsigned long dst_paddr, int sz, int *err)
805 {
806 int offset;
807
808 /*
809 * Its safe to read more than we are asked, caller should ensure that
810 * destination has enough space.
811 */
812 offset = src_paddr & 15;
813 src_paddr = round_down(src_paddr, 16);
814 sz = round_up(sz + offset, 16);
815
816 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
817 }
818
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)819 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
820 void __user *dst_uaddr,
821 unsigned long dst_paddr,
822 int size, int *err)
823 {
824 struct page *tpage = NULL;
825 int ret, offset;
826
827 /* if inputs are not 16-byte then use intermediate buffer */
828 if (!IS_ALIGNED(dst_paddr, 16) ||
829 !IS_ALIGNED(paddr, 16) ||
830 !IS_ALIGNED(size, 16)) {
831 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
832 if (!tpage)
833 return -ENOMEM;
834
835 dst_paddr = __sme_page_pa(tpage);
836 }
837
838 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
839 if (ret)
840 goto e_free;
841
842 if (tpage) {
843 offset = paddr & 15;
844 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
845 ret = -EFAULT;
846 }
847
848 e_free:
849 if (tpage)
850 __free_page(tpage);
851
852 return ret;
853 }
854
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)855 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
856 void __user *vaddr,
857 unsigned long dst_paddr,
858 void __user *dst_vaddr,
859 int size, int *error)
860 {
861 struct page *src_tpage = NULL;
862 struct page *dst_tpage = NULL;
863 int ret, len = size;
864
865 /* If source buffer is not aligned then use an intermediate buffer */
866 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
867 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
868 if (!src_tpage)
869 return -ENOMEM;
870
871 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
872 __free_page(src_tpage);
873 return -EFAULT;
874 }
875
876 paddr = __sme_page_pa(src_tpage);
877 }
878
879 /*
880 * If destination buffer or length is not aligned then do read-modify-write:
881 * - decrypt destination in an intermediate buffer
882 * - copy the source buffer in an intermediate buffer
883 * - use the intermediate buffer as source buffer
884 */
885 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
886 int dst_offset;
887
888 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
889 if (!dst_tpage) {
890 ret = -ENOMEM;
891 goto e_free;
892 }
893
894 ret = __sev_dbg_decrypt(kvm, dst_paddr,
895 __sme_page_pa(dst_tpage), size, error);
896 if (ret)
897 goto e_free;
898
899 /*
900 * If source is kernel buffer then use memcpy() otherwise
901 * copy_from_user().
902 */
903 dst_offset = dst_paddr & 15;
904
905 if (src_tpage)
906 memcpy(page_address(dst_tpage) + dst_offset,
907 page_address(src_tpage), size);
908 else {
909 if (copy_from_user(page_address(dst_tpage) + dst_offset,
910 vaddr, size)) {
911 ret = -EFAULT;
912 goto e_free;
913 }
914 }
915
916 paddr = __sme_page_pa(dst_tpage);
917 dst_paddr = round_down(dst_paddr, 16);
918 len = round_up(size, 16);
919 }
920
921 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
922
923 e_free:
924 if (src_tpage)
925 __free_page(src_tpage);
926 if (dst_tpage)
927 __free_page(dst_tpage);
928 return ret;
929 }
930
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)931 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
932 {
933 unsigned long vaddr, vaddr_end, next_vaddr;
934 unsigned long dst_vaddr;
935 struct page **src_p, **dst_p;
936 struct kvm_sev_dbg debug;
937 unsigned long n;
938 unsigned int size;
939 int ret;
940
941 if (!sev_guest(kvm))
942 return -ENOTTY;
943
944 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
945 return -EFAULT;
946
947 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
948 return -EINVAL;
949 if (!debug.dst_uaddr)
950 return -EINVAL;
951
952 vaddr = debug.src_uaddr;
953 size = debug.len;
954 vaddr_end = vaddr + size;
955 dst_vaddr = debug.dst_uaddr;
956
957 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
958 int len, s_off, d_off;
959
960 /* lock userspace source and destination page */
961 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
962 if (IS_ERR(src_p))
963 return PTR_ERR(src_p);
964
965 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
966 if (IS_ERR(dst_p)) {
967 sev_unpin_memory(kvm, src_p, n);
968 return PTR_ERR(dst_p);
969 }
970
971 /*
972 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
973 * the pages; flush the destination too so that future accesses do not
974 * see stale data.
975 */
976 sev_clflush_pages(src_p, 1);
977 sev_clflush_pages(dst_p, 1);
978
979 /*
980 * Since user buffer may not be page aligned, calculate the
981 * offset within the page.
982 */
983 s_off = vaddr & ~PAGE_MASK;
984 d_off = dst_vaddr & ~PAGE_MASK;
985 len = min_t(size_t, (PAGE_SIZE - s_off), size);
986
987 if (dec)
988 ret = __sev_dbg_decrypt_user(kvm,
989 __sme_page_pa(src_p[0]) + s_off,
990 (void __user *)dst_vaddr,
991 __sme_page_pa(dst_p[0]) + d_off,
992 len, &argp->error);
993 else
994 ret = __sev_dbg_encrypt_user(kvm,
995 __sme_page_pa(src_p[0]) + s_off,
996 (void __user *)vaddr,
997 __sme_page_pa(dst_p[0]) + d_off,
998 (void __user *)dst_vaddr,
999 len, &argp->error);
1000
1001 sev_unpin_memory(kvm, src_p, n);
1002 sev_unpin_memory(kvm, dst_p, n);
1003
1004 if (ret)
1005 goto err;
1006
1007 next_vaddr = vaddr + len;
1008 dst_vaddr = dst_vaddr + len;
1009 size -= len;
1010 }
1011 err:
1012 return ret;
1013 }
1014
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1015 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1016 {
1017 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1018 struct sev_data_launch_secret data;
1019 struct kvm_sev_launch_secret params;
1020 struct page **pages;
1021 void *blob, *hdr;
1022 unsigned long n, i;
1023 int ret, offset;
1024
1025 if (!sev_guest(kvm))
1026 return -ENOTTY;
1027
1028 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1029 return -EFAULT;
1030
1031 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1032 if (IS_ERR(pages))
1033 return PTR_ERR(pages);
1034
1035 /*
1036 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1037 * place; the cache may contain the data that was written unencrypted.
1038 */
1039 sev_clflush_pages(pages, n);
1040
1041 /*
1042 * The secret must be copied into contiguous memory region, lets verify
1043 * that userspace memory pages are contiguous before we issue command.
1044 */
1045 if (get_num_contig_pages(0, pages, n) != n) {
1046 ret = -EINVAL;
1047 goto e_unpin_memory;
1048 }
1049
1050 memset(&data, 0, sizeof(data));
1051
1052 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1053 data.guest_address = __sme_page_pa(pages[0]) + offset;
1054 data.guest_len = params.guest_len;
1055
1056 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1057 if (IS_ERR(blob)) {
1058 ret = PTR_ERR(blob);
1059 goto e_unpin_memory;
1060 }
1061
1062 data.trans_address = __psp_pa(blob);
1063 data.trans_len = params.trans_len;
1064
1065 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1066 if (IS_ERR(hdr)) {
1067 ret = PTR_ERR(hdr);
1068 goto e_free_blob;
1069 }
1070 data.hdr_address = __psp_pa(hdr);
1071 data.hdr_len = params.hdr_len;
1072
1073 data.handle = sev->handle;
1074 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1075
1076 kfree(hdr);
1077
1078 e_free_blob:
1079 kfree(blob);
1080 e_unpin_memory:
1081 /* content of memory is updated, mark pages dirty */
1082 for (i = 0; i < n; i++) {
1083 set_page_dirty_lock(pages[i]);
1084 mark_page_accessed(pages[i]);
1085 }
1086 sev_unpin_memory(kvm, pages, n);
1087 return ret;
1088 }
1089
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1090 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1091 {
1092 void __user *report = (void __user *)(uintptr_t)argp->data;
1093 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1094 struct sev_data_attestation_report data;
1095 struct kvm_sev_attestation_report params;
1096 void __user *p;
1097 void *blob = NULL;
1098 int ret;
1099
1100 if (!sev_guest(kvm))
1101 return -ENOTTY;
1102
1103 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1104 return -EFAULT;
1105
1106 memset(&data, 0, sizeof(data));
1107
1108 /* User wants to query the blob length */
1109 if (!params.len)
1110 goto cmd;
1111
1112 p = (void __user *)(uintptr_t)params.uaddr;
1113 if (p) {
1114 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1115 return -EINVAL;
1116
1117 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1118 if (!blob)
1119 return -ENOMEM;
1120
1121 data.address = __psp_pa(blob);
1122 data.len = params.len;
1123 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1124 }
1125 cmd:
1126 data.handle = sev->handle;
1127 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1128 /*
1129 * If we query the session length, FW responded with expected data.
1130 */
1131 if (!params.len)
1132 goto done;
1133
1134 if (ret)
1135 goto e_free_blob;
1136
1137 if (blob) {
1138 if (copy_to_user(p, blob, params.len))
1139 ret = -EFAULT;
1140 }
1141
1142 done:
1143 params.len = data.len;
1144 if (copy_to_user(report, ¶ms, sizeof(params)))
1145 ret = -EFAULT;
1146 e_free_blob:
1147 kfree(blob);
1148 return ret;
1149 }
1150
1151 /* Userspace wants to query session length. */
1152 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1153 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1154 struct kvm_sev_send_start *params)
1155 {
1156 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1157 struct sev_data_send_start data;
1158 int ret;
1159
1160 memset(&data, 0, sizeof(data));
1161 data.handle = sev->handle;
1162 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1163
1164 params->session_len = data.session_len;
1165 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1166 sizeof(struct kvm_sev_send_start)))
1167 ret = -EFAULT;
1168
1169 return ret;
1170 }
1171
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1172 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1173 {
1174 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1175 struct sev_data_send_start data;
1176 struct kvm_sev_send_start params;
1177 void *amd_certs, *session_data;
1178 void *pdh_cert, *plat_certs;
1179 int ret;
1180
1181 if (!sev_guest(kvm))
1182 return -ENOTTY;
1183
1184 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1185 sizeof(struct kvm_sev_send_start)))
1186 return -EFAULT;
1187
1188 /* if session_len is zero, userspace wants to query the session length */
1189 if (!params.session_len)
1190 return __sev_send_start_query_session_length(kvm, argp,
1191 ¶ms);
1192
1193 /* some sanity checks */
1194 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1195 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1196 return -EINVAL;
1197
1198 /* allocate the memory to hold the session data blob */
1199 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1200 if (!session_data)
1201 return -ENOMEM;
1202
1203 /* copy the certificate blobs from userspace */
1204 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1205 params.pdh_cert_len);
1206 if (IS_ERR(pdh_cert)) {
1207 ret = PTR_ERR(pdh_cert);
1208 goto e_free_session;
1209 }
1210
1211 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1212 params.plat_certs_len);
1213 if (IS_ERR(plat_certs)) {
1214 ret = PTR_ERR(plat_certs);
1215 goto e_free_pdh;
1216 }
1217
1218 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1219 params.amd_certs_len);
1220 if (IS_ERR(amd_certs)) {
1221 ret = PTR_ERR(amd_certs);
1222 goto e_free_plat_cert;
1223 }
1224
1225 /* populate the FW SEND_START field with system physical address */
1226 memset(&data, 0, sizeof(data));
1227 data.pdh_cert_address = __psp_pa(pdh_cert);
1228 data.pdh_cert_len = params.pdh_cert_len;
1229 data.plat_certs_address = __psp_pa(plat_certs);
1230 data.plat_certs_len = params.plat_certs_len;
1231 data.amd_certs_address = __psp_pa(amd_certs);
1232 data.amd_certs_len = params.amd_certs_len;
1233 data.session_address = __psp_pa(session_data);
1234 data.session_len = params.session_len;
1235 data.handle = sev->handle;
1236
1237 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1238
1239 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1240 session_data, params.session_len)) {
1241 ret = -EFAULT;
1242 goto e_free_amd_cert;
1243 }
1244
1245 params.policy = data.policy;
1246 params.session_len = data.session_len;
1247 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms,
1248 sizeof(struct kvm_sev_send_start)))
1249 ret = -EFAULT;
1250
1251 e_free_amd_cert:
1252 kfree(amd_certs);
1253 e_free_plat_cert:
1254 kfree(plat_certs);
1255 e_free_pdh:
1256 kfree(pdh_cert);
1257 e_free_session:
1258 kfree(session_data);
1259 return ret;
1260 }
1261
1262 /* Userspace wants to query either header or trans length. */
1263 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1264 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1265 struct kvm_sev_send_update_data *params)
1266 {
1267 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1268 struct sev_data_send_update_data data;
1269 int ret;
1270
1271 memset(&data, 0, sizeof(data));
1272 data.handle = sev->handle;
1273 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1274
1275 params->hdr_len = data.hdr_len;
1276 params->trans_len = data.trans_len;
1277
1278 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1279 sizeof(struct kvm_sev_send_update_data)))
1280 ret = -EFAULT;
1281
1282 return ret;
1283 }
1284
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1285 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1286 {
1287 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1288 struct sev_data_send_update_data data;
1289 struct kvm_sev_send_update_data params;
1290 void *hdr, *trans_data;
1291 struct page **guest_page;
1292 unsigned long n;
1293 int ret, offset;
1294
1295 if (!sev_guest(kvm))
1296 return -ENOTTY;
1297
1298 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1299 sizeof(struct kvm_sev_send_update_data)))
1300 return -EFAULT;
1301
1302 /* userspace wants to query either header or trans length */
1303 if (!params.trans_len || !params.hdr_len)
1304 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1305
1306 if (!params.trans_uaddr || !params.guest_uaddr ||
1307 !params.guest_len || !params.hdr_uaddr)
1308 return -EINVAL;
1309
1310 /* Check if we are crossing the page boundary */
1311 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1312 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1313 return -EINVAL;
1314
1315 /* Pin guest memory */
1316 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1317 PAGE_SIZE, &n, 0);
1318 if (IS_ERR(guest_page))
1319 return PTR_ERR(guest_page);
1320
1321 /* allocate memory for header and transport buffer */
1322 ret = -ENOMEM;
1323 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1324 if (!hdr)
1325 goto e_unpin;
1326
1327 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1328 if (!trans_data)
1329 goto e_free_hdr;
1330
1331 memset(&data, 0, sizeof(data));
1332 data.hdr_address = __psp_pa(hdr);
1333 data.hdr_len = params.hdr_len;
1334 data.trans_address = __psp_pa(trans_data);
1335 data.trans_len = params.trans_len;
1336
1337 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1338 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1339 data.guest_address |= sev_me_mask;
1340 data.guest_len = params.guest_len;
1341 data.handle = sev->handle;
1342
1343 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1344
1345 if (ret)
1346 goto e_free_trans_data;
1347
1348 /* copy transport buffer to user space */
1349 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1350 trans_data, params.trans_len)) {
1351 ret = -EFAULT;
1352 goto e_free_trans_data;
1353 }
1354
1355 /* Copy packet header to userspace. */
1356 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1357 params.hdr_len))
1358 ret = -EFAULT;
1359
1360 e_free_trans_data:
1361 kfree(trans_data);
1362 e_free_hdr:
1363 kfree(hdr);
1364 e_unpin:
1365 sev_unpin_memory(kvm, guest_page, n);
1366
1367 return ret;
1368 }
1369
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1370 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1371 {
1372 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1373 struct sev_data_send_finish data;
1374
1375 if (!sev_guest(kvm))
1376 return -ENOTTY;
1377
1378 data.handle = sev->handle;
1379 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1380 }
1381
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1382 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1383 {
1384 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1385 struct sev_data_send_cancel data;
1386
1387 if (!sev_guest(kvm))
1388 return -ENOTTY;
1389
1390 data.handle = sev->handle;
1391 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1392 }
1393
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1394 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1395 {
1396 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1397 struct sev_data_receive_start start;
1398 struct kvm_sev_receive_start params;
1399 int *error = &argp->error;
1400 void *session_data;
1401 void *pdh_data;
1402 int ret;
1403
1404 if (!sev_guest(kvm))
1405 return -ENOTTY;
1406
1407 /* Get parameter from the userspace */
1408 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1409 sizeof(struct kvm_sev_receive_start)))
1410 return -EFAULT;
1411
1412 /* some sanity checks */
1413 if (!params.pdh_uaddr || !params.pdh_len ||
1414 !params.session_uaddr || !params.session_len)
1415 return -EINVAL;
1416
1417 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1418 if (IS_ERR(pdh_data))
1419 return PTR_ERR(pdh_data);
1420
1421 session_data = psp_copy_user_blob(params.session_uaddr,
1422 params.session_len);
1423 if (IS_ERR(session_data)) {
1424 ret = PTR_ERR(session_data);
1425 goto e_free_pdh;
1426 }
1427
1428 memset(&start, 0, sizeof(start));
1429 start.handle = params.handle;
1430 start.policy = params.policy;
1431 start.pdh_cert_address = __psp_pa(pdh_data);
1432 start.pdh_cert_len = params.pdh_len;
1433 start.session_address = __psp_pa(session_data);
1434 start.session_len = params.session_len;
1435
1436 /* create memory encryption context */
1437 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1438 error);
1439 if (ret)
1440 goto e_free_session;
1441
1442 /* Bind ASID to this guest */
1443 ret = sev_bind_asid(kvm, start.handle, error);
1444 if (ret) {
1445 sev_decommission(start.handle);
1446 goto e_free_session;
1447 }
1448
1449 params.handle = start.handle;
1450 if (copy_to_user((void __user *)(uintptr_t)argp->data,
1451 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1452 ret = -EFAULT;
1453 sev_unbind_asid(kvm, start.handle);
1454 goto e_free_session;
1455 }
1456
1457 sev->handle = start.handle;
1458 sev->fd = argp->sev_fd;
1459
1460 e_free_session:
1461 kfree(session_data);
1462 e_free_pdh:
1463 kfree(pdh_data);
1464
1465 return ret;
1466 }
1467
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1468 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1469 {
1470 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1471 struct kvm_sev_receive_update_data params;
1472 struct sev_data_receive_update_data data;
1473 void *hdr = NULL, *trans = NULL;
1474 struct page **guest_page;
1475 unsigned long n;
1476 int ret, offset;
1477
1478 if (!sev_guest(kvm))
1479 return -EINVAL;
1480
1481 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1482 sizeof(struct kvm_sev_receive_update_data)))
1483 return -EFAULT;
1484
1485 if (!params.hdr_uaddr || !params.hdr_len ||
1486 !params.guest_uaddr || !params.guest_len ||
1487 !params.trans_uaddr || !params.trans_len)
1488 return -EINVAL;
1489
1490 /* Check if we are crossing the page boundary */
1491 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1492 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1493 return -EINVAL;
1494
1495 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1496 if (IS_ERR(hdr))
1497 return PTR_ERR(hdr);
1498
1499 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1500 if (IS_ERR(trans)) {
1501 ret = PTR_ERR(trans);
1502 goto e_free_hdr;
1503 }
1504
1505 memset(&data, 0, sizeof(data));
1506 data.hdr_address = __psp_pa(hdr);
1507 data.hdr_len = params.hdr_len;
1508 data.trans_address = __psp_pa(trans);
1509 data.trans_len = params.trans_len;
1510
1511 /* Pin guest memory */
1512 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1513 PAGE_SIZE, &n, 1);
1514 if (IS_ERR(guest_page)) {
1515 ret = PTR_ERR(guest_page);
1516 goto e_free_trans;
1517 }
1518
1519 /*
1520 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1521 * encrypts the written data with the guest's key, and the cache may
1522 * contain dirty, unencrypted data.
1523 */
1524 sev_clflush_pages(guest_page, n);
1525
1526 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1527 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1528 data.guest_address |= sev_me_mask;
1529 data.guest_len = params.guest_len;
1530 data.handle = sev->handle;
1531
1532 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1533 &argp->error);
1534
1535 sev_unpin_memory(kvm, guest_page, n);
1536
1537 e_free_trans:
1538 kfree(trans);
1539 e_free_hdr:
1540 kfree(hdr);
1541
1542 return ret;
1543 }
1544
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1545 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1546 {
1547 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1548 struct sev_data_receive_finish data;
1549
1550 if (!sev_guest(kvm))
1551 return -ENOTTY;
1552
1553 data.handle = sev->handle;
1554 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1555 }
1556
is_cmd_allowed_from_mirror(u32 cmd_id)1557 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1558 {
1559 /*
1560 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1561 * active mirror VMs. Also allow the debugging and status commands.
1562 */
1563 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1564 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1565 cmd_id == KVM_SEV_DBG_ENCRYPT)
1566 return true;
1567
1568 return false;
1569 }
1570
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1571 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1572 {
1573 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1574 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1575 int r = -EBUSY;
1576
1577 if (dst_kvm == src_kvm)
1578 return -EINVAL;
1579
1580 /*
1581 * Bail if these VMs are already involved in a migration to avoid
1582 * deadlock between two VMs trying to migrate to/from each other.
1583 */
1584 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1585 return -EBUSY;
1586
1587 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1588 goto release_dst;
1589
1590 r = -EINTR;
1591 if (mutex_lock_killable(&dst_kvm->lock))
1592 goto release_src;
1593 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1594 goto unlock_dst;
1595 return 0;
1596
1597 unlock_dst:
1598 mutex_unlock(&dst_kvm->lock);
1599 release_src:
1600 atomic_set_release(&src_sev->migration_in_progress, 0);
1601 release_dst:
1602 atomic_set_release(&dst_sev->migration_in_progress, 0);
1603 return r;
1604 }
1605
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1606 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1607 {
1608 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1609 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1610
1611 mutex_unlock(&dst_kvm->lock);
1612 mutex_unlock(&src_kvm->lock);
1613 atomic_set_release(&dst_sev->migration_in_progress, 0);
1614 atomic_set_release(&src_sev->migration_in_progress, 0);
1615 }
1616
1617 /* vCPU mutex subclasses. */
1618 enum sev_migration_role {
1619 SEV_MIGRATION_SOURCE = 0,
1620 SEV_MIGRATION_TARGET,
1621 SEV_NR_MIGRATION_ROLES,
1622 };
1623
sev_lock_vcpus_for_migration(struct kvm * kvm,enum sev_migration_role role)1624 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1625 enum sev_migration_role role)
1626 {
1627 struct kvm_vcpu *vcpu;
1628 unsigned long i, j;
1629
1630 kvm_for_each_vcpu(i, vcpu, kvm) {
1631 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1632 goto out_unlock;
1633
1634 #ifdef CONFIG_PROVE_LOCKING
1635 if (!i)
1636 /*
1637 * Reset the role to one that avoids colliding with
1638 * the role used for the first vcpu mutex.
1639 */
1640 role = SEV_NR_MIGRATION_ROLES;
1641 else
1642 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1643 #endif
1644 }
1645
1646 return 0;
1647
1648 out_unlock:
1649
1650 kvm_for_each_vcpu(j, vcpu, kvm) {
1651 if (i == j)
1652 break;
1653
1654 #ifdef CONFIG_PROVE_LOCKING
1655 if (j)
1656 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1657 #endif
1658
1659 mutex_unlock(&vcpu->mutex);
1660 }
1661 return -EINTR;
1662 }
1663
sev_unlock_vcpus_for_migration(struct kvm * kvm)1664 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1665 {
1666 struct kvm_vcpu *vcpu;
1667 unsigned long i;
1668 bool first = true;
1669
1670 kvm_for_each_vcpu(i, vcpu, kvm) {
1671 if (first)
1672 first = false;
1673 else
1674 mutex_acquire(&vcpu->mutex.dep_map,
1675 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1676
1677 mutex_unlock(&vcpu->mutex);
1678 }
1679 }
1680
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1681 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1682 {
1683 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1684 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1685 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1686 struct vcpu_svm *dst_svm, *src_svm;
1687 struct kvm_sev_info *mirror;
1688 unsigned long i;
1689
1690 dst->active = true;
1691 dst->asid = src->asid;
1692 dst->handle = src->handle;
1693 dst->pages_locked = src->pages_locked;
1694 dst->enc_context_owner = src->enc_context_owner;
1695 dst->es_active = src->es_active;
1696
1697 src->asid = 0;
1698 src->active = false;
1699 src->handle = 0;
1700 src->pages_locked = 0;
1701 src->enc_context_owner = NULL;
1702 src->es_active = false;
1703
1704 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1705
1706 /*
1707 * If this VM has mirrors, "transfer" each mirror's refcount of the
1708 * source to the destination (this KVM). The caller holds a reference
1709 * to the source, so there's no danger of use-after-free.
1710 */
1711 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1712 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1713 kvm_get_kvm(dst_kvm);
1714 kvm_put_kvm(src_kvm);
1715 mirror->enc_context_owner = dst_kvm;
1716 }
1717
1718 /*
1719 * If this VM is a mirror, remove the old mirror from the owners list
1720 * and add the new mirror to the list.
1721 */
1722 if (is_mirroring_enc_context(dst_kvm)) {
1723 struct kvm_sev_info *owner_sev_info =
1724 &to_kvm_svm(dst->enc_context_owner)->sev_info;
1725
1726 list_del(&src->mirror_entry);
1727 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1728 }
1729
1730 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1731 dst_svm = to_svm(dst_vcpu);
1732
1733 sev_init_vmcb(dst_svm);
1734
1735 if (!dst->es_active)
1736 continue;
1737
1738 /*
1739 * Note, the source is not required to have the same number of
1740 * vCPUs as the destination when migrating a vanilla SEV VM.
1741 */
1742 src_vcpu = kvm_get_vcpu(src_kvm, i);
1743 src_svm = to_svm(src_vcpu);
1744
1745 /*
1746 * Transfer VMSA and GHCB state to the destination. Nullify and
1747 * clear source fields as appropriate, the state now belongs to
1748 * the destination.
1749 */
1750 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1751 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1752 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1753 dst_vcpu->arch.guest_state_protected = true;
1754
1755 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1756 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1757 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1758 src_vcpu->arch.guest_state_protected = false;
1759 }
1760 }
1761
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)1762 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1763 {
1764 struct kvm_vcpu *src_vcpu;
1765 unsigned long i;
1766
1767 if (!sev_es_guest(src))
1768 return 0;
1769
1770 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1771 return -EINVAL;
1772
1773 kvm_for_each_vcpu(i, src_vcpu, src) {
1774 if (!src_vcpu->arch.guest_state_protected)
1775 return -EINVAL;
1776 }
1777
1778 return 0;
1779 }
1780
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)1781 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1782 {
1783 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1784 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1785 struct fd f = fdget(source_fd);
1786 struct kvm *source_kvm;
1787 bool charged = false;
1788 int ret;
1789
1790 if (!f.file)
1791 return -EBADF;
1792
1793 if (!file_is_kvm(f.file)) {
1794 ret = -EBADF;
1795 goto out_fput;
1796 }
1797
1798 source_kvm = f.file->private_data;
1799 ret = sev_lock_two_vms(kvm, source_kvm);
1800 if (ret)
1801 goto out_fput;
1802
1803 if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1804 ret = -EINVAL;
1805 goto out_unlock;
1806 }
1807
1808 src_sev = &to_kvm_svm(source_kvm)->sev_info;
1809
1810 dst_sev->misc_cg = get_current_misc_cg();
1811 cg_cleanup_sev = dst_sev;
1812 if (dst_sev->misc_cg != src_sev->misc_cg) {
1813 ret = sev_misc_cg_try_charge(dst_sev);
1814 if (ret)
1815 goto out_dst_cgroup;
1816 charged = true;
1817 }
1818
1819 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1820 if (ret)
1821 goto out_dst_cgroup;
1822 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1823 if (ret)
1824 goto out_dst_vcpu;
1825
1826 ret = sev_check_source_vcpus(kvm, source_kvm);
1827 if (ret)
1828 goto out_source_vcpu;
1829
1830 sev_migrate_from(kvm, source_kvm);
1831 kvm_vm_dead(source_kvm);
1832 cg_cleanup_sev = src_sev;
1833 ret = 0;
1834
1835 out_source_vcpu:
1836 sev_unlock_vcpus_for_migration(source_kvm);
1837 out_dst_vcpu:
1838 sev_unlock_vcpus_for_migration(kvm);
1839 out_dst_cgroup:
1840 /* Operates on the source on success, on the destination on failure. */
1841 if (charged)
1842 sev_misc_cg_uncharge(cg_cleanup_sev);
1843 put_misc_cg(cg_cleanup_sev->misc_cg);
1844 cg_cleanup_sev->misc_cg = NULL;
1845 out_unlock:
1846 sev_unlock_two_vms(kvm, source_kvm);
1847 out_fput:
1848 fdput(f);
1849 return ret;
1850 }
1851
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)1852 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1853 {
1854 struct kvm_sev_cmd sev_cmd;
1855 int r;
1856
1857 if (!sev_enabled)
1858 return -ENOTTY;
1859
1860 if (!argp)
1861 return 0;
1862
1863 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1864 return -EFAULT;
1865
1866 mutex_lock(&kvm->lock);
1867
1868 /* Only the enc_context_owner handles some memory enc operations. */
1869 if (is_mirroring_enc_context(kvm) &&
1870 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1871 r = -EINVAL;
1872 goto out;
1873 }
1874
1875 switch (sev_cmd.id) {
1876 case KVM_SEV_ES_INIT:
1877 if (!sev_es_enabled) {
1878 r = -ENOTTY;
1879 goto out;
1880 }
1881 fallthrough;
1882 case KVM_SEV_INIT:
1883 r = sev_guest_init(kvm, &sev_cmd);
1884 break;
1885 case KVM_SEV_LAUNCH_START:
1886 r = sev_launch_start(kvm, &sev_cmd);
1887 break;
1888 case KVM_SEV_LAUNCH_UPDATE_DATA:
1889 r = sev_launch_update_data(kvm, &sev_cmd);
1890 break;
1891 case KVM_SEV_LAUNCH_UPDATE_VMSA:
1892 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1893 break;
1894 case KVM_SEV_LAUNCH_MEASURE:
1895 r = sev_launch_measure(kvm, &sev_cmd);
1896 break;
1897 case KVM_SEV_LAUNCH_FINISH:
1898 r = sev_launch_finish(kvm, &sev_cmd);
1899 break;
1900 case KVM_SEV_GUEST_STATUS:
1901 r = sev_guest_status(kvm, &sev_cmd);
1902 break;
1903 case KVM_SEV_DBG_DECRYPT:
1904 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1905 break;
1906 case KVM_SEV_DBG_ENCRYPT:
1907 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1908 break;
1909 case KVM_SEV_LAUNCH_SECRET:
1910 r = sev_launch_secret(kvm, &sev_cmd);
1911 break;
1912 case KVM_SEV_GET_ATTESTATION_REPORT:
1913 r = sev_get_attestation_report(kvm, &sev_cmd);
1914 break;
1915 case KVM_SEV_SEND_START:
1916 r = sev_send_start(kvm, &sev_cmd);
1917 break;
1918 case KVM_SEV_SEND_UPDATE_DATA:
1919 r = sev_send_update_data(kvm, &sev_cmd);
1920 break;
1921 case KVM_SEV_SEND_FINISH:
1922 r = sev_send_finish(kvm, &sev_cmd);
1923 break;
1924 case KVM_SEV_SEND_CANCEL:
1925 r = sev_send_cancel(kvm, &sev_cmd);
1926 break;
1927 case KVM_SEV_RECEIVE_START:
1928 r = sev_receive_start(kvm, &sev_cmd);
1929 break;
1930 case KVM_SEV_RECEIVE_UPDATE_DATA:
1931 r = sev_receive_update_data(kvm, &sev_cmd);
1932 break;
1933 case KVM_SEV_RECEIVE_FINISH:
1934 r = sev_receive_finish(kvm, &sev_cmd);
1935 break;
1936 default:
1937 r = -EINVAL;
1938 goto out;
1939 }
1940
1941 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1942 r = -EFAULT;
1943
1944 out:
1945 mutex_unlock(&kvm->lock);
1946 return r;
1947 }
1948
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)1949 int sev_mem_enc_register_region(struct kvm *kvm,
1950 struct kvm_enc_region *range)
1951 {
1952 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1953 struct enc_region *region;
1954 int ret = 0;
1955
1956 if (!sev_guest(kvm))
1957 return -ENOTTY;
1958
1959 /* If kvm is mirroring encryption context it isn't responsible for it */
1960 if (is_mirroring_enc_context(kvm))
1961 return -EINVAL;
1962
1963 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1964 return -EINVAL;
1965
1966 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1967 if (!region)
1968 return -ENOMEM;
1969
1970 mutex_lock(&kvm->lock);
1971 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
1972 if (IS_ERR(region->pages)) {
1973 ret = PTR_ERR(region->pages);
1974 mutex_unlock(&kvm->lock);
1975 goto e_free;
1976 }
1977
1978 region->uaddr = range->addr;
1979 region->size = range->size;
1980
1981 list_add_tail(®ion->list, &sev->regions_list);
1982 mutex_unlock(&kvm->lock);
1983
1984 /*
1985 * The guest may change the memory encryption attribute from C=0 -> C=1
1986 * or vice versa for this memory range. Lets make sure caches are
1987 * flushed to ensure that guest data gets written into memory with
1988 * correct C-bit.
1989 */
1990 sev_clflush_pages(region->pages, region->npages);
1991
1992 return ret;
1993
1994 e_free:
1995 kfree(region);
1996 return ret;
1997 }
1998
1999 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2000 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2001 {
2002 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2003 struct list_head *head = &sev->regions_list;
2004 struct enc_region *i;
2005
2006 list_for_each_entry(i, head, list) {
2007 if (i->uaddr == range->addr &&
2008 i->size == range->size)
2009 return i;
2010 }
2011
2012 return NULL;
2013 }
2014
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2015 static void __unregister_enc_region_locked(struct kvm *kvm,
2016 struct enc_region *region)
2017 {
2018 sev_unpin_memory(kvm, region->pages, region->npages);
2019 list_del(®ion->list);
2020 kfree(region);
2021 }
2022
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2023 int sev_mem_enc_unregister_region(struct kvm *kvm,
2024 struct kvm_enc_region *range)
2025 {
2026 struct enc_region *region;
2027 int ret;
2028
2029 /* If kvm is mirroring encryption context it isn't responsible for it */
2030 if (is_mirroring_enc_context(kvm))
2031 return -EINVAL;
2032
2033 mutex_lock(&kvm->lock);
2034
2035 if (!sev_guest(kvm)) {
2036 ret = -ENOTTY;
2037 goto failed;
2038 }
2039
2040 region = find_enc_region(kvm, range);
2041 if (!region) {
2042 ret = -EINVAL;
2043 goto failed;
2044 }
2045
2046 /*
2047 * Ensure that all guest tagged cache entries are flushed before
2048 * releasing the pages back to the system for use. CLFLUSH will
2049 * not do this, so issue a WBINVD.
2050 */
2051 wbinvd_on_all_cpus();
2052
2053 __unregister_enc_region_locked(kvm, region);
2054
2055 mutex_unlock(&kvm->lock);
2056 return 0;
2057
2058 failed:
2059 mutex_unlock(&kvm->lock);
2060 return ret;
2061 }
2062
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2063 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2064 {
2065 struct fd f = fdget(source_fd);
2066 struct kvm *source_kvm;
2067 struct kvm_sev_info *source_sev, *mirror_sev;
2068 int ret;
2069
2070 if (!f.file)
2071 return -EBADF;
2072
2073 if (!file_is_kvm(f.file)) {
2074 ret = -EBADF;
2075 goto e_source_fput;
2076 }
2077
2078 source_kvm = f.file->private_data;
2079 ret = sev_lock_two_vms(kvm, source_kvm);
2080 if (ret)
2081 goto e_source_fput;
2082
2083 /*
2084 * Mirrors of mirrors should work, but let's not get silly. Also
2085 * disallow out-of-band SEV/SEV-ES init if the target is already an
2086 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2087 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2088 */
2089 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2090 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2091 ret = -EINVAL;
2092 goto e_unlock;
2093 }
2094
2095 /*
2096 * The mirror kvm holds an enc_context_owner ref so its asid can't
2097 * disappear until we're done with it
2098 */
2099 source_sev = &to_kvm_svm(source_kvm)->sev_info;
2100 kvm_get_kvm(source_kvm);
2101 mirror_sev = &to_kvm_svm(kvm)->sev_info;
2102 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2103
2104 /* Set enc_context_owner and copy its encryption context over */
2105 mirror_sev->enc_context_owner = source_kvm;
2106 mirror_sev->active = true;
2107 mirror_sev->asid = source_sev->asid;
2108 mirror_sev->fd = source_sev->fd;
2109 mirror_sev->es_active = source_sev->es_active;
2110 mirror_sev->handle = source_sev->handle;
2111 INIT_LIST_HEAD(&mirror_sev->regions_list);
2112 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2113 ret = 0;
2114
2115 /*
2116 * Do not copy ap_jump_table. Since the mirror does not share the same
2117 * KVM contexts as the original, and they may have different
2118 * memory-views.
2119 */
2120
2121 e_unlock:
2122 sev_unlock_two_vms(kvm, source_kvm);
2123 e_source_fput:
2124 fdput(f);
2125 return ret;
2126 }
2127
sev_vm_destroy(struct kvm * kvm)2128 void sev_vm_destroy(struct kvm *kvm)
2129 {
2130 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2131 struct list_head *head = &sev->regions_list;
2132 struct list_head *pos, *q;
2133
2134 if (!sev_guest(kvm))
2135 return;
2136
2137 WARN_ON(!list_empty(&sev->mirror_vms));
2138
2139 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2140 if (is_mirroring_enc_context(kvm)) {
2141 struct kvm *owner_kvm = sev->enc_context_owner;
2142
2143 mutex_lock(&owner_kvm->lock);
2144 list_del(&sev->mirror_entry);
2145 mutex_unlock(&owner_kvm->lock);
2146 kvm_put_kvm(owner_kvm);
2147 return;
2148 }
2149
2150 /*
2151 * Ensure that all guest tagged cache entries are flushed before
2152 * releasing the pages back to the system for use. CLFLUSH will
2153 * not do this, so issue a WBINVD.
2154 */
2155 wbinvd_on_all_cpus();
2156
2157 /*
2158 * if userspace was terminated before unregistering the memory regions
2159 * then lets unpin all the registered memory.
2160 */
2161 if (!list_empty(head)) {
2162 list_for_each_safe(pos, q, head) {
2163 __unregister_enc_region_locked(kvm,
2164 list_entry(pos, struct enc_region, list));
2165 cond_resched();
2166 }
2167 }
2168
2169 sev_unbind_asid(kvm, sev->handle);
2170 sev_asid_free(sev);
2171 }
2172
sev_set_cpu_caps(void)2173 void __init sev_set_cpu_caps(void)
2174 {
2175 if (!sev_enabled)
2176 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2177 if (!sev_es_enabled)
2178 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2179 }
2180
sev_hardware_setup(void)2181 void __init sev_hardware_setup(void)
2182 {
2183 #ifdef CONFIG_KVM_AMD_SEV
2184 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2185 bool sev_es_supported = false;
2186 bool sev_supported = false;
2187
2188 if (!sev_enabled || !npt_enabled || !nrips)
2189 goto out;
2190
2191 /*
2192 * SEV must obviously be supported in hardware. Sanity check that the
2193 * CPU supports decode assists, which is mandatory for SEV guests to
2194 * support instruction emulation.
2195 */
2196 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2197 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2198 goto out;
2199
2200 /* Retrieve SEV CPUID information */
2201 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2202
2203 /* Set encryption bit location for SEV-ES guests */
2204 sev_enc_bit = ebx & 0x3f;
2205
2206 /* Maximum number of encrypted guests supported simultaneously */
2207 max_sev_asid = ecx;
2208 if (!max_sev_asid)
2209 goto out;
2210
2211 /* Minimum ASID value that should be used for SEV guest */
2212 min_sev_asid = edx;
2213 sev_me_mask = 1UL << (ebx & 0x3f);
2214
2215 /*
2216 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2217 * even though it's never used, so that the bitmap is indexed by the
2218 * actual ASID.
2219 */
2220 nr_asids = max_sev_asid + 1;
2221 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2222 if (!sev_asid_bitmap)
2223 goto out;
2224
2225 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2226 if (!sev_reclaim_asid_bitmap) {
2227 bitmap_free(sev_asid_bitmap);
2228 sev_asid_bitmap = NULL;
2229 goto out;
2230 }
2231
2232 sev_asid_count = max_sev_asid - min_sev_asid + 1;
2233 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2234 sev_supported = true;
2235
2236 /* SEV-ES support requested? */
2237 if (!sev_es_enabled)
2238 goto out;
2239
2240 /*
2241 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2242 * instruction stream, i.e. can't emulate in response to a #NPF and
2243 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2244 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2245 */
2246 if (!enable_mmio_caching)
2247 goto out;
2248
2249 /* Does the CPU support SEV-ES? */
2250 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2251 goto out;
2252
2253 /* Has the system been allocated ASIDs for SEV-ES? */
2254 if (min_sev_asid == 1)
2255 goto out;
2256
2257 sev_es_asid_count = min_sev_asid - 1;
2258 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2259 sev_es_supported = true;
2260
2261 out:
2262 if (boot_cpu_has(X86_FEATURE_SEV))
2263 pr_info("SEV %s (ASIDs %u - %u)\n",
2264 sev_supported ? "enabled" : "disabled",
2265 min_sev_asid, max_sev_asid);
2266 if (boot_cpu_has(X86_FEATURE_SEV_ES))
2267 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2268 sev_es_supported ? "enabled" : "disabled",
2269 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2270
2271 sev_enabled = sev_supported;
2272 sev_es_enabled = sev_es_supported;
2273 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2274 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2275 sev_es_debug_swap_enabled = false;
2276 #endif
2277 }
2278
sev_hardware_unsetup(void)2279 void sev_hardware_unsetup(void)
2280 {
2281 if (!sev_enabled)
2282 return;
2283
2284 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2285 sev_flush_asids(1, max_sev_asid);
2286
2287 bitmap_free(sev_asid_bitmap);
2288 bitmap_free(sev_reclaim_asid_bitmap);
2289
2290 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2291 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2292 }
2293
sev_cpu_init(struct svm_cpu_data * sd)2294 int sev_cpu_init(struct svm_cpu_data *sd)
2295 {
2296 if (!sev_enabled)
2297 return 0;
2298
2299 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2300 if (!sd->sev_vmcbs)
2301 return -ENOMEM;
2302
2303 return 0;
2304 }
2305
2306 /*
2307 * Pages used by hardware to hold guest encrypted state must be flushed before
2308 * returning them to the system.
2309 */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)2310 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2311 {
2312 int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2313
2314 /*
2315 * Note! The address must be a kernel address, as regular page walk
2316 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2317 * address is non-deterministic and unsafe. This function deliberately
2318 * takes a pointer to deter passing in a user address.
2319 */
2320 unsigned long addr = (unsigned long)va;
2321
2322 /*
2323 * If CPU enforced cache coherency for encrypted mappings of the
2324 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2325 * flush is still needed in order to work properly with DMA devices.
2326 */
2327 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2328 clflush_cache_range(va, PAGE_SIZE);
2329 return;
2330 }
2331
2332 /*
2333 * VM Page Flush takes a host virtual address and a guest ASID. Fall
2334 * back to WBINVD if this faults so as not to make any problems worse
2335 * by leaving stale encrypted data in the cache.
2336 */
2337 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2338 goto do_wbinvd;
2339
2340 return;
2341
2342 do_wbinvd:
2343 wbinvd_on_all_cpus();
2344 }
2345
sev_guest_memory_reclaimed(struct kvm * kvm)2346 void sev_guest_memory_reclaimed(struct kvm *kvm)
2347 {
2348 if (!sev_guest(kvm))
2349 return;
2350
2351 wbinvd_on_all_cpus();
2352 }
2353
sev_free_vcpu(struct kvm_vcpu * vcpu)2354 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2355 {
2356 struct vcpu_svm *svm;
2357
2358 if (!sev_es_guest(vcpu->kvm))
2359 return;
2360
2361 svm = to_svm(vcpu);
2362
2363 if (vcpu->arch.guest_state_protected)
2364 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2365
2366 __free_page(virt_to_page(svm->sev_es.vmsa));
2367
2368 if (svm->sev_es.ghcb_sa_free)
2369 kvfree(svm->sev_es.ghcb_sa);
2370 }
2371
dump_ghcb(struct vcpu_svm * svm)2372 static void dump_ghcb(struct vcpu_svm *svm)
2373 {
2374 struct ghcb *ghcb = svm->sev_es.ghcb;
2375 unsigned int nbits;
2376
2377 /* Re-use the dump_invalid_vmcb module parameter */
2378 if (!dump_invalid_vmcb) {
2379 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2380 return;
2381 }
2382
2383 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2384
2385 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2386 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2387 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2388 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2389 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2390 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2391 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2392 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2393 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2394 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2395 }
2396
sev_es_sync_to_ghcb(struct vcpu_svm * svm)2397 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2398 {
2399 struct kvm_vcpu *vcpu = &svm->vcpu;
2400 struct ghcb *ghcb = svm->sev_es.ghcb;
2401
2402 /*
2403 * The GHCB protocol so far allows for the following data
2404 * to be returned:
2405 * GPRs RAX, RBX, RCX, RDX
2406 *
2407 * Copy their values, even if they may not have been written during the
2408 * VM-Exit. It's the guest's responsibility to not consume random data.
2409 */
2410 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2411 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2412 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2413 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2414 }
2415
sev_es_sync_from_ghcb(struct vcpu_svm * svm)2416 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2417 {
2418 struct vmcb_control_area *control = &svm->vmcb->control;
2419 struct kvm_vcpu *vcpu = &svm->vcpu;
2420 struct ghcb *ghcb = svm->sev_es.ghcb;
2421 u64 exit_code;
2422
2423 /*
2424 * The GHCB protocol so far allows for the following data
2425 * to be supplied:
2426 * GPRs RAX, RBX, RCX, RDX
2427 * XCR0
2428 * CPL
2429 *
2430 * VMMCALL allows the guest to provide extra registers. KVM also
2431 * expects RSI for hypercalls, so include that, too.
2432 *
2433 * Copy their values to the appropriate location if supplied.
2434 */
2435 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2436
2437 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2438 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2439
2440 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2441 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2442 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2443 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2444 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2445
2446 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2447
2448 if (kvm_ghcb_xcr0_is_valid(svm)) {
2449 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2450 kvm_update_cpuid_runtime(vcpu);
2451 }
2452
2453 /* Copy the GHCB exit information into the VMCB fields */
2454 exit_code = ghcb_get_sw_exit_code(ghcb);
2455 control->exit_code = lower_32_bits(exit_code);
2456 control->exit_code_hi = upper_32_bits(exit_code);
2457 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2458 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2459 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2460
2461 /* Clear the valid entries fields */
2462 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2463 }
2464
kvm_ghcb_get_sw_exit_code(struct vmcb_control_area * control)2465 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2466 {
2467 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2468 }
2469
sev_es_validate_vmgexit(struct vcpu_svm * svm)2470 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2471 {
2472 struct vmcb_control_area *control = &svm->vmcb->control;
2473 struct kvm_vcpu *vcpu = &svm->vcpu;
2474 u64 exit_code;
2475 u64 reason;
2476
2477 /*
2478 * Retrieve the exit code now even though it may not be marked valid
2479 * as it could help with debugging.
2480 */
2481 exit_code = kvm_ghcb_get_sw_exit_code(control);
2482
2483 /* Only GHCB Usage code 0 is supported */
2484 if (svm->sev_es.ghcb->ghcb_usage) {
2485 reason = GHCB_ERR_INVALID_USAGE;
2486 goto vmgexit_err;
2487 }
2488
2489 reason = GHCB_ERR_MISSING_INPUT;
2490
2491 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2492 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2493 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2494 goto vmgexit_err;
2495
2496 switch (exit_code) {
2497 case SVM_EXIT_READ_DR7:
2498 break;
2499 case SVM_EXIT_WRITE_DR7:
2500 if (!kvm_ghcb_rax_is_valid(svm))
2501 goto vmgexit_err;
2502 break;
2503 case SVM_EXIT_RDTSC:
2504 break;
2505 case SVM_EXIT_RDPMC:
2506 if (!kvm_ghcb_rcx_is_valid(svm))
2507 goto vmgexit_err;
2508 break;
2509 case SVM_EXIT_CPUID:
2510 if (!kvm_ghcb_rax_is_valid(svm) ||
2511 !kvm_ghcb_rcx_is_valid(svm))
2512 goto vmgexit_err;
2513 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2514 if (!kvm_ghcb_xcr0_is_valid(svm))
2515 goto vmgexit_err;
2516 break;
2517 case SVM_EXIT_INVD:
2518 break;
2519 case SVM_EXIT_IOIO:
2520 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2521 if (!kvm_ghcb_sw_scratch_is_valid(svm))
2522 goto vmgexit_err;
2523 } else {
2524 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2525 if (!kvm_ghcb_rax_is_valid(svm))
2526 goto vmgexit_err;
2527 }
2528 break;
2529 case SVM_EXIT_MSR:
2530 if (!kvm_ghcb_rcx_is_valid(svm))
2531 goto vmgexit_err;
2532 if (control->exit_info_1) {
2533 if (!kvm_ghcb_rax_is_valid(svm) ||
2534 !kvm_ghcb_rdx_is_valid(svm))
2535 goto vmgexit_err;
2536 }
2537 break;
2538 case SVM_EXIT_VMMCALL:
2539 if (!kvm_ghcb_rax_is_valid(svm) ||
2540 !kvm_ghcb_cpl_is_valid(svm))
2541 goto vmgexit_err;
2542 break;
2543 case SVM_EXIT_RDTSCP:
2544 break;
2545 case SVM_EXIT_WBINVD:
2546 break;
2547 case SVM_EXIT_MONITOR:
2548 if (!kvm_ghcb_rax_is_valid(svm) ||
2549 !kvm_ghcb_rcx_is_valid(svm) ||
2550 !kvm_ghcb_rdx_is_valid(svm))
2551 goto vmgexit_err;
2552 break;
2553 case SVM_EXIT_MWAIT:
2554 if (!kvm_ghcb_rax_is_valid(svm) ||
2555 !kvm_ghcb_rcx_is_valid(svm))
2556 goto vmgexit_err;
2557 break;
2558 case SVM_VMGEXIT_MMIO_READ:
2559 case SVM_VMGEXIT_MMIO_WRITE:
2560 if (!kvm_ghcb_sw_scratch_is_valid(svm))
2561 goto vmgexit_err;
2562 break;
2563 case SVM_VMGEXIT_NMI_COMPLETE:
2564 case SVM_VMGEXIT_AP_HLT_LOOP:
2565 case SVM_VMGEXIT_AP_JUMP_TABLE:
2566 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2567 break;
2568 default:
2569 reason = GHCB_ERR_INVALID_EVENT;
2570 goto vmgexit_err;
2571 }
2572
2573 return 0;
2574
2575 vmgexit_err:
2576 if (reason == GHCB_ERR_INVALID_USAGE) {
2577 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2578 svm->sev_es.ghcb->ghcb_usage);
2579 } else if (reason == GHCB_ERR_INVALID_EVENT) {
2580 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2581 exit_code);
2582 } else {
2583 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2584 exit_code);
2585 dump_ghcb(svm);
2586 }
2587
2588 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2589 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
2590
2591 /* Resume the guest to "return" the error code. */
2592 return 1;
2593 }
2594
sev_es_unmap_ghcb(struct vcpu_svm * svm)2595 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2596 {
2597 if (!svm->sev_es.ghcb)
2598 return;
2599
2600 if (svm->sev_es.ghcb_sa_free) {
2601 /*
2602 * The scratch area lives outside the GHCB, so there is a
2603 * buffer that, depending on the operation performed, may
2604 * need to be synced, then freed.
2605 */
2606 if (svm->sev_es.ghcb_sa_sync) {
2607 kvm_write_guest(svm->vcpu.kvm,
2608 svm->sev_es.sw_scratch,
2609 svm->sev_es.ghcb_sa,
2610 svm->sev_es.ghcb_sa_len);
2611 svm->sev_es.ghcb_sa_sync = false;
2612 }
2613
2614 kvfree(svm->sev_es.ghcb_sa);
2615 svm->sev_es.ghcb_sa = NULL;
2616 svm->sev_es.ghcb_sa_free = false;
2617 }
2618
2619 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2620
2621 sev_es_sync_to_ghcb(svm);
2622
2623 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2624 svm->sev_es.ghcb = NULL;
2625 }
2626
pre_sev_run(struct vcpu_svm * svm,int cpu)2627 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2628 {
2629 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2630 int asid = sev_get_asid(svm->vcpu.kvm);
2631
2632 /* Assign the asid allocated with this SEV guest */
2633 svm->asid = asid;
2634
2635 /*
2636 * Flush guest TLB:
2637 *
2638 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2639 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2640 */
2641 if (sd->sev_vmcbs[asid] == svm->vmcb &&
2642 svm->vcpu.arch.last_vmentry_cpu == cpu)
2643 return;
2644
2645 sd->sev_vmcbs[asid] = svm->vmcb;
2646 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2647 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2648 }
2649
2650 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)2651 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2652 {
2653 struct vmcb_control_area *control = &svm->vmcb->control;
2654 u64 ghcb_scratch_beg, ghcb_scratch_end;
2655 u64 scratch_gpa_beg, scratch_gpa_end;
2656 void *scratch_va;
2657
2658 scratch_gpa_beg = svm->sev_es.sw_scratch;
2659 if (!scratch_gpa_beg) {
2660 pr_err("vmgexit: scratch gpa not provided\n");
2661 goto e_scratch;
2662 }
2663
2664 scratch_gpa_end = scratch_gpa_beg + len;
2665 if (scratch_gpa_end < scratch_gpa_beg) {
2666 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2667 len, scratch_gpa_beg);
2668 goto e_scratch;
2669 }
2670
2671 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2672 /* Scratch area begins within GHCB */
2673 ghcb_scratch_beg = control->ghcb_gpa +
2674 offsetof(struct ghcb, shared_buffer);
2675 ghcb_scratch_end = control->ghcb_gpa +
2676 offsetof(struct ghcb, reserved_0xff0);
2677
2678 /*
2679 * If the scratch area begins within the GHCB, it must be
2680 * completely contained in the GHCB shared buffer area.
2681 */
2682 if (scratch_gpa_beg < ghcb_scratch_beg ||
2683 scratch_gpa_end > ghcb_scratch_end) {
2684 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2685 scratch_gpa_beg, scratch_gpa_end);
2686 goto e_scratch;
2687 }
2688
2689 scratch_va = (void *)svm->sev_es.ghcb;
2690 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2691 } else {
2692 /*
2693 * The guest memory must be read into a kernel buffer, so
2694 * limit the size
2695 */
2696 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2697 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2698 len, GHCB_SCRATCH_AREA_LIMIT);
2699 goto e_scratch;
2700 }
2701 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2702 if (!scratch_va)
2703 return -ENOMEM;
2704
2705 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2706 /* Unable to copy scratch area from guest */
2707 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2708
2709 kvfree(scratch_va);
2710 return -EFAULT;
2711 }
2712
2713 /*
2714 * The scratch area is outside the GHCB. The operation will
2715 * dictate whether the buffer needs to be synced before running
2716 * the vCPU next time (i.e. a read was requested so the data
2717 * must be written back to the guest memory).
2718 */
2719 svm->sev_es.ghcb_sa_sync = sync;
2720 svm->sev_es.ghcb_sa_free = true;
2721 }
2722
2723 svm->sev_es.ghcb_sa = scratch_va;
2724 svm->sev_es.ghcb_sa_len = len;
2725
2726 return 0;
2727
2728 e_scratch:
2729 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2730 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2731
2732 return 1;
2733 }
2734
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)2735 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2736 unsigned int pos)
2737 {
2738 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2739 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2740 }
2741
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)2742 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2743 {
2744 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2745 }
2746
set_ghcb_msr(struct vcpu_svm * svm,u64 value)2747 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2748 {
2749 svm->vmcb->control.ghcb_gpa = value;
2750 }
2751
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)2752 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2753 {
2754 struct vmcb_control_area *control = &svm->vmcb->control;
2755 struct kvm_vcpu *vcpu = &svm->vcpu;
2756 u64 ghcb_info;
2757 int ret = 1;
2758
2759 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2760
2761 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2762 control->ghcb_gpa);
2763
2764 switch (ghcb_info) {
2765 case GHCB_MSR_SEV_INFO_REQ:
2766 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2767 GHCB_VERSION_MIN,
2768 sev_enc_bit));
2769 break;
2770 case GHCB_MSR_CPUID_REQ: {
2771 u64 cpuid_fn, cpuid_reg, cpuid_value;
2772
2773 cpuid_fn = get_ghcb_msr_bits(svm,
2774 GHCB_MSR_CPUID_FUNC_MASK,
2775 GHCB_MSR_CPUID_FUNC_POS);
2776
2777 /* Initialize the registers needed by the CPUID intercept */
2778 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2779 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2780
2781 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2782 if (!ret) {
2783 /* Error, keep GHCB MSR value as-is */
2784 break;
2785 }
2786
2787 cpuid_reg = get_ghcb_msr_bits(svm,
2788 GHCB_MSR_CPUID_REG_MASK,
2789 GHCB_MSR_CPUID_REG_POS);
2790 if (cpuid_reg == 0)
2791 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2792 else if (cpuid_reg == 1)
2793 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2794 else if (cpuid_reg == 2)
2795 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2796 else
2797 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2798
2799 set_ghcb_msr_bits(svm, cpuid_value,
2800 GHCB_MSR_CPUID_VALUE_MASK,
2801 GHCB_MSR_CPUID_VALUE_POS);
2802
2803 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2804 GHCB_MSR_INFO_MASK,
2805 GHCB_MSR_INFO_POS);
2806 break;
2807 }
2808 case GHCB_MSR_TERM_REQ: {
2809 u64 reason_set, reason_code;
2810
2811 reason_set = get_ghcb_msr_bits(svm,
2812 GHCB_MSR_TERM_REASON_SET_MASK,
2813 GHCB_MSR_TERM_REASON_SET_POS);
2814 reason_code = get_ghcb_msr_bits(svm,
2815 GHCB_MSR_TERM_REASON_MASK,
2816 GHCB_MSR_TERM_REASON_POS);
2817 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2818 reason_set, reason_code);
2819
2820 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2821 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2822 vcpu->run->system_event.ndata = 1;
2823 vcpu->run->system_event.data[0] = control->ghcb_gpa;
2824
2825 return 0;
2826 }
2827 default:
2828 /* Error, keep GHCB MSR value as-is */
2829 break;
2830 }
2831
2832 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2833 control->ghcb_gpa, ret);
2834
2835 return ret;
2836 }
2837
sev_handle_vmgexit(struct kvm_vcpu * vcpu)2838 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2839 {
2840 struct vcpu_svm *svm = to_svm(vcpu);
2841 struct vmcb_control_area *control = &svm->vmcb->control;
2842 u64 ghcb_gpa, exit_code;
2843 int ret;
2844
2845 /* Validate the GHCB */
2846 ghcb_gpa = control->ghcb_gpa;
2847 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2848 return sev_handle_vmgexit_msr_protocol(svm);
2849
2850 if (!ghcb_gpa) {
2851 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2852
2853 /* Without a GHCB, just return right back to the guest */
2854 return 1;
2855 }
2856
2857 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2858 /* Unable to map GHCB from guest */
2859 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2860 ghcb_gpa);
2861
2862 /* Without a GHCB, just return right back to the guest */
2863 return 1;
2864 }
2865
2866 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2867
2868 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
2869
2870 sev_es_sync_from_ghcb(svm);
2871 ret = sev_es_validate_vmgexit(svm);
2872 if (ret)
2873 return ret;
2874
2875 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
2876 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
2877
2878 exit_code = kvm_ghcb_get_sw_exit_code(control);
2879 switch (exit_code) {
2880 case SVM_VMGEXIT_MMIO_READ:
2881 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2882 if (ret)
2883 break;
2884
2885 ret = kvm_sev_es_mmio_read(vcpu,
2886 control->exit_info_1,
2887 control->exit_info_2,
2888 svm->sev_es.ghcb_sa);
2889 break;
2890 case SVM_VMGEXIT_MMIO_WRITE:
2891 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2892 if (ret)
2893 break;
2894
2895 ret = kvm_sev_es_mmio_write(vcpu,
2896 control->exit_info_1,
2897 control->exit_info_2,
2898 svm->sev_es.ghcb_sa);
2899 break;
2900 case SVM_VMGEXIT_NMI_COMPLETE:
2901 ++vcpu->stat.nmi_window_exits;
2902 svm->nmi_masked = false;
2903 kvm_make_request(KVM_REQ_EVENT, vcpu);
2904 ret = 1;
2905 break;
2906 case SVM_VMGEXIT_AP_HLT_LOOP:
2907 ret = kvm_emulate_ap_reset_hold(vcpu);
2908 break;
2909 case SVM_VMGEXIT_AP_JUMP_TABLE: {
2910 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2911
2912 switch (control->exit_info_1) {
2913 case 0:
2914 /* Set AP jump table address */
2915 sev->ap_jump_table = control->exit_info_2;
2916 break;
2917 case 1:
2918 /* Get AP jump table address */
2919 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
2920 break;
2921 default:
2922 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2923 control->exit_info_1);
2924 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2925 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
2926 }
2927
2928 ret = 1;
2929 break;
2930 }
2931 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2932 vcpu_unimpl(vcpu,
2933 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2934 control->exit_info_1, control->exit_info_2);
2935 ret = -EINVAL;
2936 break;
2937 default:
2938 ret = svm_invoke_exit_handler(vcpu, exit_code);
2939 }
2940
2941 return ret;
2942 }
2943
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)2944 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2945 {
2946 int count;
2947 int bytes;
2948 int r;
2949
2950 if (svm->vmcb->control.exit_info_2 > INT_MAX)
2951 return -EINVAL;
2952
2953 count = svm->vmcb->control.exit_info_2;
2954 if (unlikely(check_mul_overflow(count, size, &bytes)))
2955 return -EINVAL;
2956
2957 r = setup_vmgexit_scratch(svm, in, bytes);
2958 if (r)
2959 return r;
2960
2961 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2962 count, in);
2963 }
2964
sev_es_vcpu_after_set_cpuid(struct vcpu_svm * svm)2965 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2966 {
2967 struct kvm_vcpu *vcpu = &svm->vcpu;
2968
2969 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2970 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2971 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2972
2973 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
2974 }
2975 }
2976
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)2977 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2978 {
2979 struct kvm_vcpu *vcpu = &svm->vcpu;
2980 struct kvm_cpuid_entry2 *best;
2981
2982 /* For sev guests, the memory encryption bit is not reserved in CR3. */
2983 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
2984 if (best)
2985 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
2986
2987 if (sev_es_guest(svm->vcpu.kvm))
2988 sev_es_vcpu_after_set_cpuid(svm);
2989 }
2990
sev_es_init_vmcb(struct vcpu_svm * svm)2991 static void sev_es_init_vmcb(struct vcpu_svm *svm)
2992 {
2993 struct vmcb *vmcb = svm->vmcb01.ptr;
2994 struct kvm_vcpu *vcpu = &svm->vcpu;
2995
2996 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2997 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2998
2999 /*
3000 * An SEV-ES guest requires a VMSA area that is a separate from the
3001 * VMCB page. Do not include the encryption mask on the VMSA physical
3002 * address since hardware will access it using the guest key. Note,
3003 * the VMSA will be NULL if this vCPU is the destination for intrahost
3004 * migration, and will be copied later.
3005 */
3006 if (svm->sev_es.vmsa)
3007 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3008
3009 /* Can't intercept CR register access, HV can't modify CR registers */
3010 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3011 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3012 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3013 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3014 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3015 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3016
3017 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3018
3019 /* Track EFER/CR register changes */
3020 svm_set_intercept(svm, TRAP_EFER_WRITE);
3021 svm_set_intercept(svm, TRAP_CR0_WRITE);
3022 svm_set_intercept(svm, TRAP_CR4_WRITE);
3023 svm_set_intercept(svm, TRAP_CR8_WRITE);
3024
3025 vmcb->control.intercepts[INTERCEPT_DR] = 0;
3026 if (!sev_es_debug_swap_enabled) {
3027 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3028 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3029 recalc_intercepts(svm);
3030 } else {
3031 /*
3032 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
3033 * allow debugging SEV-ES guests, and enables DebugSwap iff
3034 * NO_NESTED_DATA_BP is supported, so there's no reason to
3035 * intercept #DB when DebugSwap is enabled. For simplicity
3036 * with respect to guest debug, intercept #DB for other VMs
3037 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3038 * guest can't DoS the CPU with infinite #DB vectoring.
3039 */
3040 clr_exception_intercept(svm, DB_VECTOR);
3041 }
3042
3043 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
3044 svm_clr_intercept(svm, INTERCEPT_XSETBV);
3045
3046 /* Clear intercepts on selected MSRs */
3047 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3048 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3049 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
3050 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
3051 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
3052 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
3053 }
3054
sev_init_vmcb(struct vcpu_svm * svm)3055 void sev_init_vmcb(struct vcpu_svm *svm)
3056 {
3057 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3058 clr_exception_intercept(svm, UD_VECTOR);
3059
3060 /*
3061 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3062 * KVM can't decrypt guest memory to decode the faulting instruction.
3063 */
3064 clr_exception_intercept(svm, GP_VECTOR);
3065
3066 if (sev_es_guest(svm->vcpu.kvm))
3067 sev_es_init_vmcb(svm);
3068 }
3069
sev_es_vcpu_reset(struct vcpu_svm * svm)3070 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3071 {
3072 /*
3073 * Set the GHCB MSR value as per the GHCB specification when emulating
3074 * vCPU RESET for an SEV-ES guest.
3075 */
3076 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3077 GHCB_VERSION_MIN,
3078 sev_enc_bit));
3079 }
3080
sev_es_prepare_switch_to_guest(struct sev_es_save_area * hostsa)3081 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3082 {
3083 /*
3084 * All host state for SEV-ES guests is categorized into three swap types
3085 * based on how it is handled by hardware during a world switch:
3086 *
3087 * A: VMRUN: Host state saved in host save area
3088 * VMEXIT: Host state loaded from host save area
3089 *
3090 * B: VMRUN: Host state _NOT_ saved in host save area
3091 * VMEXIT: Host state loaded from host save area
3092 *
3093 * C: VMRUN: Host state _NOT_ saved in host save area
3094 * VMEXIT: Host state initialized to default(reset) values
3095 *
3096 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3097 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3098 * by common SVM code).
3099 */
3100 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3101 hostsa->pkru = read_pkru();
3102 hostsa->xss = host_xss;
3103
3104 /*
3105 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3106 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3107 * saves and loads debug registers (Type-A).
3108 */
3109 if (sev_es_debug_swap_enabled) {
3110 hostsa->dr0 = native_get_debugreg(0);
3111 hostsa->dr1 = native_get_debugreg(1);
3112 hostsa->dr2 = native_get_debugreg(2);
3113 hostsa->dr3 = native_get_debugreg(3);
3114 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3115 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3116 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3117 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3118 }
3119 }
3120
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)3121 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3122 {
3123 struct vcpu_svm *svm = to_svm(vcpu);
3124
3125 /* First SIPI: Use the values as initially set by the VMM */
3126 if (!svm->sev_es.received_first_sipi) {
3127 svm->sev_es.received_first_sipi = true;
3128 return;
3129 }
3130
3131 /*
3132 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3133 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3134 * non-zero value.
3135 */
3136 if (!svm->sev_es.ghcb)
3137 return;
3138
3139 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3140 }
3141