1 // SPDX-License-Identifier: GPL-2.0
2 /* time.c: UltraSparc timer and TOD clock support.
3 *
4 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 *
7 * Based largely on code which is:
8 *
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10 */
11
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/rtc/m48t59.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/clockchips.h>
34 #include <linux/clocksource.h>
35 #include <linux/platform_device.h>
36 #include <linux/ftrace.h>
37
38 #include <asm/oplib.h>
39 #include <asm/timer.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/prom.h>
43 #include <asm/starfire.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/cpudata.h>
47 #include <linux/uaccess.h>
48 #include <asm/irq_regs.h>
49 #include <asm/cacheflush.h>
50
51 #include "entry.h"
52 #include "kernel.h"
53
54 DEFINE_SPINLOCK(rtc_lock);
55
56 #ifdef CONFIG_SMP
profile_pc(struct pt_regs * regs)57 unsigned long profile_pc(struct pt_regs *regs)
58 {
59 unsigned long pc = instruction_pointer(regs);
60
61 if (in_lock_functions(pc))
62 return regs->u_regs[UREG_RETPC];
63 return pc;
64 }
65 EXPORT_SYMBOL(profile_pc);
66 #endif
67
tick_disable_protection(void)68 static void tick_disable_protection(void)
69 {
70 /* Set things up so user can access tick register for profiling
71 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
72 * read back of %tick after writing it.
73 */
74 __asm__ __volatile__(
75 " ba,pt %%xcc, 1f\n"
76 " nop\n"
77 " .align 64\n"
78 "1: rd %%tick, %%g2\n"
79 " add %%g2, 6, %%g2\n"
80 " andn %%g2, %0, %%g2\n"
81 " wrpr %%g2, 0, %%tick\n"
82 " rdpr %%tick, %%g0"
83 : /* no outputs */
84 : "r" (TICK_PRIV_BIT)
85 : "g2");
86 }
87
tick_disable_irq(void)88 static void tick_disable_irq(void)
89 {
90 __asm__ __volatile__(
91 " ba,pt %%xcc, 1f\n"
92 " nop\n"
93 " .align 64\n"
94 "1: wr %0, 0x0, %%tick_cmpr\n"
95 " rd %%tick_cmpr, %%g0"
96 : /* no outputs */
97 : "r" (TICKCMP_IRQ_BIT));
98 }
99
tick_init_tick(void)100 static void tick_init_tick(void)
101 {
102 tick_disable_protection();
103 tick_disable_irq();
104 }
105
tick_get_tick(void)106 static unsigned long long tick_get_tick(void)
107 {
108 unsigned long ret;
109
110 __asm__ __volatile__("rd %%tick, %0\n\t"
111 "mov %0, %0"
112 : "=r" (ret));
113
114 return ret & ~TICK_PRIV_BIT;
115 }
116
tick_add_compare(unsigned long adj)117 static int tick_add_compare(unsigned long adj)
118 {
119 unsigned long orig_tick, new_tick, new_compare;
120
121 __asm__ __volatile__("rd %%tick, %0"
122 : "=r" (orig_tick));
123
124 orig_tick &= ~TICKCMP_IRQ_BIT;
125
126 /* Workaround for Spitfire Errata (#54 I think??), I discovered
127 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
128 * number 103640.
129 *
130 * On Blackbird writes to %tick_cmpr can fail, the
131 * workaround seems to be to execute the wr instruction
132 * at the start of an I-cache line, and perform a dummy
133 * read back from %tick_cmpr right after writing to it. -DaveM
134 */
135 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
136 " add %1, %2, %0\n\t"
137 ".align 64\n"
138 "1:\n\t"
139 "wr %0, 0, %%tick_cmpr\n\t"
140 "rd %%tick_cmpr, %%g0\n\t"
141 : "=r" (new_compare)
142 : "r" (orig_tick), "r" (adj));
143
144 __asm__ __volatile__("rd %%tick, %0"
145 : "=r" (new_tick));
146 new_tick &= ~TICKCMP_IRQ_BIT;
147
148 return ((long)(new_tick - (orig_tick+adj))) > 0L;
149 }
150
tick_add_tick(unsigned long adj)151 static unsigned long tick_add_tick(unsigned long adj)
152 {
153 unsigned long new_tick;
154
155 /* Also need to handle Blackbird bug here too. */
156 __asm__ __volatile__("rd %%tick, %0\n\t"
157 "add %0, %1, %0\n\t"
158 "wrpr %0, 0, %%tick\n\t"
159 : "=&r" (new_tick)
160 : "r" (adj));
161
162 return new_tick;
163 }
164
165 /* Searches for cpu clock frequency with given cpuid in OpenBoot tree */
cpuid_to_freq(phandle node,int cpuid)166 static unsigned long cpuid_to_freq(phandle node, int cpuid)
167 {
168 bool is_cpu_node = false;
169 unsigned long freq = 0;
170 char type[128];
171
172 if (!node)
173 return freq;
174
175 if (prom_getproperty(node, "device_type", type, sizeof(type)) != -1)
176 is_cpu_node = (strcmp(type, "cpu") == 0);
177
178 /* try upa-portid then cpuid to get cpuid, see prom_64.c */
179 if (is_cpu_node && (prom_getint(node, "upa-portid") == cpuid ||
180 prom_getint(node, "cpuid") == cpuid))
181 freq = prom_getintdefault(node, "clock-frequency", 0);
182 if (!freq)
183 freq = cpuid_to_freq(prom_getchild(node), cpuid);
184 if (!freq)
185 freq = cpuid_to_freq(prom_getsibling(node), cpuid);
186
187 return freq;
188 }
189
tick_get_frequency(void)190 static unsigned long tick_get_frequency(void)
191 {
192 return cpuid_to_freq(prom_root_node, hard_smp_processor_id());
193 }
194
195 static struct sparc64_tick_ops tick_operations __cacheline_aligned = {
196 .name = "tick",
197 .init_tick = tick_init_tick,
198 .disable_irq = tick_disable_irq,
199 .get_tick = tick_get_tick,
200 .add_tick = tick_add_tick,
201 .add_compare = tick_add_compare,
202 .get_frequency = tick_get_frequency,
203 .softint_mask = 1UL << 0,
204 };
205
206 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
207 EXPORT_SYMBOL(tick_ops);
208
stick_disable_irq(void)209 static void stick_disable_irq(void)
210 {
211 __asm__ __volatile__(
212 "wr %0, 0x0, %%asr25"
213 : /* no outputs */
214 : "r" (TICKCMP_IRQ_BIT));
215 }
216
stick_init_tick(void)217 static void stick_init_tick(void)
218 {
219 /* Writes to the %tick and %stick register are not
220 * allowed on sun4v. The Hypervisor controls that
221 * bit, per-strand.
222 */
223 if (tlb_type != hypervisor) {
224 tick_disable_protection();
225 tick_disable_irq();
226
227 /* Let the user get at STICK too. */
228 __asm__ __volatile__(
229 " rd %%asr24, %%g2\n"
230 " andn %%g2, %0, %%g2\n"
231 " wr %%g2, 0, %%asr24"
232 : /* no outputs */
233 : "r" (TICK_PRIV_BIT)
234 : "g1", "g2");
235 }
236
237 stick_disable_irq();
238 }
239
stick_get_tick(void)240 static unsigned long long stick_get_tick(void)
241 {
242 unsigned long ret;
243
244 __asm__ __volatile__("rd %%asr24, %0"
245 : "=r" (ret));
246
247 return ret & ~TICK_PRIV_BIT;
248 }
249
stick_add_tick(unsigned long adj)250 static unsigned long stick_add_tick(unsigned long adj)
251 {
252 unsigned long new_tick;
253
254 __asm__ __volatile__("rd %%asr24, %0\n\t"
255 "add %0, %1, %0\n\t"
256 "wr %0, 0, %%asr24\n\t"
257 : "=&r" (new_tick)
258 : "r" (adj));
259
260 return new_tick;
261 }
262
stick_add_compare(unsigned long adj)263 static int stick_add_compare(unsigned long adj)
264 {
265 unsigned long orig_tick, new_tick;
266
267 __asm__ __volatile__("rd %%asr24, %0"
268 : "=r" (orig_tick));
269 orig_tick &= ~TICKCMP_IRQ_BIT;
270
271 __asm__ __volatile__("wr %0, 0, %%asr25"
272 : /* no outputs */
273 : "r" (orig_tick + adj));
274
275 __asm__ __volatile__("rd %%asr24, %0"
276 : "=r" (new_tick));
277 new_tick &= ~TICKCMP_IRQ_BIT;
278
279 return ((long)(new_tick - (orig_tick+adj))) > 0L;
280 }
281
stick_get_frequency(void)282 static unsigned long stick_get_frequency(void)
283 {
284 return prom_getintdefault(prom_root_node, "stick-frequency", 0);
285 }
286
287 static struct sparc64_tick_ops stick_operations __read_mostly = {
288 .name = "stick",
289 .init_tick = stick_init_tick,
290 .disable_irq = stick_disable_irq,
291 .get_tick = stick_get_tick,
292 .add_tick = stick_add_tick,
293 .add_compare = stick_add_compare,
294 .get_frequency = stick_get_frequency,
295 .softint_mask = 1UL << 16,
296 };
297
298 /* On Hummingbird the STICK/STICK_CMPR register is implemented
299 * in I/O space. There are two 64-bit registers each, the
300 * first holds the low 32-bits of the value and the second holds
301 * the high 32-bits.
302 *
303 * Since STICK is constantly updating, we have to access it carefully.
304 *
305 * The sequence we use to read is:
306 * 1) read high
307 * 2) read low
308 * 3) read high again, if it rolled re-read both low and high again.
309 *
310 * Writing STICK safely is also tricky:
311 * 1) write low to zero
312 * 2) write high
313 * 3) write low
314 */
__hbird_read_stick(void)315 static unsigned long __hbird_read_stick(void)
316 {
317 unsigned long ret, tmp1, tmp2, tmp3;
318 unsigned long addr = HBIRD_STICK_ADDR+8;
319
320 __asm__ __volatile__("ldxa [%1] %5, %2\n"
321 "1:\n\t"
322 "sub %1, 0x8, %1\n\t"
323 "ldxa [%1] %5, %3\n\t"
324 "add %1, 0x8, %1\n\t"
325 "ldxa [%1] %5, %4\n\t"
326 "cmp %4, %2\n\t"
327 "bne,a,pn %%xcc, 1b\n\t"
328 " mov %4, %2\n\t"
329 "sllx %4, 32, %4\n\t"
330 "or %3, %4, %0\n\t"
331 : "=&r" (ret), "=&r" (addr),
332 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
333 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
334
335 return ret;
336 }
337
__hbird_write_stick(unsigned long val)338 static void __hbird_write_stick(unsigned long val)
339 {
340 unsigned long low = (val & 0xffffffffUL);
341 unsigned long high = (val >> 32UL);
342 unsigned long addr = HBIRD_STICK_ADDR;
343
344 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
345 "add %0, 0x8, %0\n\t"
346 "stxa %3, [%0] %4\n\t"
347 "sub %0, 0x8, %0\n\t"
348 "stxa %2, [%0] %4"
349 : "=&r" (addr)
350 : "0" (addr), "r" (low), "r" (high),
351 "i" (ASI_PHYS_BYPASS_EC_E));
352 }
353
__hbird_write_compare(unsigned long val)354 static void __hbird_write_compare(unsigned long val)
355 {
356 unsigned long low = (val & 0xffffffffUL);
357 unsigned long high = (val >> 32UL);
358 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
359
360 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
361 "sub %0, 0x8, %0\n\t"
362 "stxa %2, [%0] %4"
363 : "=&r" (addr)
364 : "0" (addr), "r" (low), "r" (high),
365 "i" (ASI_PHYS_BYPASS_EC_E));
366 }
367
hbtick_disable_irq(void)368 static void hbtick_disable_irq(void)
369 {
370 __hbird_write_compare(TICKCMP_IRQ_BIT);
371 }
372
hbtick_init_tick(void)373 static void hbtick_init_tick(void)
374 {
375 tick_disable_protection();
376
377 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
378 * XXX into actually sending STICK interrupts. I think because
379 * XXX of how we store %tick_cmpr in head.S this somehow resets the
380 * XXX {TICK + STICK} interrupt mux. -DaveM
381 */
382 __hbird_write_stick(__hbird_read_stick());
383
384 hbtick_disable_irq();
385 }
386
hbtick_get_tick(void)387 static unsigned long long hbtick_get_tick(void)
388 {
389 return __hbird_read_stick() & ~TICK_PRIV_BIT;
390 }
391
hbtick_add_tick(unsigned long adj)392 static unsigned long hbtick_add_tick(unsigned long adj)
393 {
394 unsigned long val;
395
396 val = __hbird_read_stick() + adj;
397 __hbird_write_stick(val);
398
399 return val;
400 }
401
hbtick_add_compare(unsigned long adj)402 static int hbtick_add_compare(unsigned long adj)
403 {
404 unsigned long val = __hbird_read_stick();
405 unsigned long val2;
406
407 val &= ~TICKCMP_IRQ_BIT;
408 val += adj;
409 __hbird_write_compare(val);
410
411 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
412
413 return ((long)(val2 - val)) > 0L;
414 }
415
hbtick_get_frequency(void)416 static unsigned long hbtick_get_frequency(void)
417 {
418 return prom_getintdefault(prom_root_node, "stick-frequency", 0);
419 }
420
421 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
422 .name = "hbtick",
423 .init_tick = hbtick_init_tick,
424 .disable_irq = hbtick_disable_irq,
425 .get_tick = hbtick_get_tick,
426 .add_tick = hbtick_add_tick,
427 .add_compare = hbtick_add_compare,
428 .get_frequency = hbtick_get_frequency,
429 .softint_mask = 1UL << 0,
430 };
431
432 unsigned long cmos_regs;
433 EXPORT_SYMBOL(cmos_regs);
434
435 static struct resource rtc_cmos_resource;
436
437 static struct platform_device rtc_cmos_device = {
438 .name = "rtc_cmos",
439 .id = -1,
440 .resource = &rtc_cmos_resource,
441 .num_resources = 1,
442 };
443
rtc_probe(struct platform_device * op)444 static int rtc_probe(struct platform_device *op)
445 {
446 struct resource *r;
447
448 printk(KERN_INFO "%pOF: RTC regs at 0x%llx\n",
449 op->dev.of_node, op->resource[0].start);
450
451 /* The CMOS RTC driver only accepts IORESOURCE_IO, so cons
452 * up a fake resource so that the probe works for all cases.
453 * When the RTC is behind an ISA bus it will have IORESOURCE_IO
454 * already, whereas when it's behind EBUS is will be IORESOURCE_MEM.
455 */
456
457 r = &rtc_cmos_resource;
458 r->flags = IORESOURCE_IO;
459 r->name = op->resource[0].name;
460 r->start = op->resource[0].start;
461 r->end = op->resource[0].end;
462
463 cmos_regs = op->resource[0].start;
464 return platform_device_register(&rtc_cmos_device);
465 }
466
467 static const struct of_device_id rtc_match[] = {
468 {
469 .name = "rtc",
470 .compatible = "m5819",
471 },
472 {
473 .name = "rtc",
474 .compatible = "isa-m5819p",
475 },
476 {
477 .name = "rtc",
478 .compatible = "isa-m5823p",
479 },
480 {
481 .name = "rtc",
482 .compatible = "ds1287",
483 },
484 {},
485 };
486
487 static struct platform_driver rtc_driver = {
488 .probe = rtc_probe,
489 .driver = {
490 .name = "rtc",
491 .of_match_table = rtc_match,
492 },
493 };
494
495 static struct platform_device rtc_bq4802_device = {
496 .name = "rtc-bq4802",
497 .id = -1,
498 .num_resources = 1,
499 };
500
bq4802_probe(struct platform_device * op)501 static int bq4802_probe(struct platform_device *op)
502 {
503
504 printk(KERN_INFO "%pOF: BQ4802 regs at 0x%llx\n",
505 op->dev.of_node, op->resource[0].start);
506
507 rtc_bq4802_device.resource = &op->resource[0];
508 return platform_device_register(&rtc_bq4802_device);
509 }
510
511 static const struct of_device_id bq4802_match[] = {
512 {
513 .name = "rtc",
514 .compatible = "bq4802",
515 },
516 {},
517 };
518
519 static struct platform_driver bq4802_driver = {
520 .probe = bq4802_probe,
521 .driver = {
522 .name = "bq4802",
523 .of_match_table = bq4802_match,
524 },
525 };
526
mostek_read_byte(struct device * dev,u32 ofs)527 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
528 {
529 struct platform_device *pdev = to_platform_device(dev);
530 void __iomem *regs = (void __iomem *) pdev->resource[0].start;
531
532 return readb(regs + ofs);
533 }
534
mostek_write_byte(struct device * dev,u32 ofs,u8 val)535 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
536 {
537 struct platform_device *pdev = to_platform_device(dev);
538 void __iomem *regs = (void __iomem *) pdev->resource[0].start;
539
540 writeb(val, regs + ofs);
541 }
542
543 static struct m48t59_plat_data m48t59_data = {
544 .read_byte = mostek_read_byte,
545 .write_byte = mostek_write_byte,
546 };
547
548 static struct platform_device m48t59_rtc = {
549 .name = "rtc-m48t59",
550 .id = 0,
551 .num_resources = 1,
552 .dev = {
553 .platform_data = &m48t59_data,
554 },
555 };
556
mostek_probe(struct platform_device * op)557 static int mostek_probe(struct platform_device *op)
558 {
559 struct device_node *dp = op->dev.of_node;
560
561 /* On an Enterprise system there can be multiple mostek clocks.
562 * We should only match the one that is on the central FHC bus.
563 */
564 if (of_node_name_eq(dp->parent, "fhc") &&
565 !of_node_name_eq(dp->parent->parent, "central"))
566 return -ENODEV;
567
568 printk(KERN_INFO "%pOF: Mostek regs at 0x%llx\n",
569 dp, op->resource[0].start);
570
571 m48t59_rtc.resource = &op->resource[0];
572 return platform_device_register(&m48t59_rtc);
573 }
574
575 static const struct of_device_id mostek_match[] = {
576 {
577 .name = "eeprom",
578 },
579 {},
580 };
581
582 static struct platform_driver mostek_driver = {
583 .probe = mostek_probe,
584 .driver = {
585 .name = "mostek",
586 .of_match_table = mostek_match,
587 },
588 };
589
590 static struct platform_device rtc_sun4v_device = {
591 .name = "rtc-sun4v",
592 .id = -1,
593 };
594
595 static struct platform_device rtc_starfire_device = {
596 .name = "rtc-starfire",
597 .id = -1,
598 };
599
clock_init(void)600 static int __init clock_init(void)
601 {
602 if (this_is_starfire)
603 return platform_device_register(&rtc_starfire_device);
604
605 if (tlb_type == hypervisor)
606 return platform_device_register(&rtc_sun4v_device);
607
608 (void) platform_driver_register(&rtc_driver);
609 (void) platform_driver_register(&mostek_driver);
610 (void) platform_driver_register(&bq4802_driver);
611
612 return 0;
613 }
614
615 /* Must be after subsys_initcall() so that busses are probed. Must
616 * be before device_initcall() because things like the RTC driver
617 * need to see the clock registers.
618 */
619 fs_initcall(clock_init);
620
621 /* Return true if this is Hummingbird, aka Ultra-IIe */
is_hummingbird(void)622 static bool is_hummingbird(void)
623 {
624 unsigned long ver, manuf, impl;
625
626 __asm__ __volatile__ ("rdpr %%ver, %0"
627 : "=&r" (ver));
628 manuf = ((ver >> 48) & 0xffff);
629 impl = ((ver >> 32) & 0xffff);
630
631 return (manuf == 0x17 && impl == 0x13);
632 }
633
634 struct freq_table {
635 unsigned long clock_tick_ref;
636 unsigned int ref_freq;
637 };
638 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
639
sparc64_get_clock_tick(unsigned int cpu)640 unsigned long sparc64_get_clock_tick(unsigned int cpu)
641 {
642 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
643
644 if (ft->clock_tick_ref)
645 return ft->clock_tick_ref;
646 return cpu_data(cpu).clock_tick;
647 }
648 EXPORT_SYMBOL(sparc64_get_clock_tick);
649
650 #ifdef CONFIG_CPU_FREQ
651
sparc64_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)652 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
653 void *data)
654 {
655 struct cpufreq_freqs *freq = data;
656 unsigned int cpu;
657 struct freq_table *ft;
658
659 for_each_cpu(cpu, freq->policy->cpus) {
660 ft = &per_cpu(sparc64_freq_table, cpu);
661
662 if (!ft->ref_freq) {
663 ft->ref_freq = freq->old;
664 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
665 }
666
667 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
668 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
669 cpu_data(cpu).clock_tick =
670 cpufreq_scale(ft->clock_tick_ref, ft->ref_freq,
671 freq->new);
672 }
673 }
674
675 return 0;
676 }
677
678 static struct notifier_block sparc64_cpufreq_notifier_block = {
679 .notifier_call = sparc64_cpufreq_notifier
680 };
681
register_sparc64_cpufreq_notifier(void)682 static int __init register_sparc64_cpufreq_notifier(void)
683 {
684
685 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
686 CPUFREQ_TRANSITION_NOTIFIER);
687 return 0;
688 }
689
690 core_initcall(register_sparc64_cpufreq_notifier);
691
692 #endif /* CONFIG_CPU_FREQ */
693
sparc64_next_event(unsigned long delta,struct clock_event_device * evt)694 static int sparc64_next_event(unsigned long delta,
695 struct clock_event_device *evt)
696 {
697 return tick_operations.add_compare(delta) ? -ETIME : 0;
698 }
699
sparc64_timer_shutdown(struct clock_event_device * evt)700 static int sparc64_timer_shutdown(struct clock_event_device *evt)
701 {
702 tick_operations.disable_irq();
703 return 0;
704 }
705
706 static struct clock_event_device sparc64_clockevent = {
707 .features = CLOCK_EVT_FEAT_ONESHOT,
708 .set_state_shutdown = sparc64_timer_shutdown,
709 .set_next_event = sparc64_next_event,
710 .rating = 100,
711 .shift = 30,
712 .irq = -1,
713 };
714 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
715
timer_interrupt(int irq,struct pt_regs * regs)716 void __irq_entry timer_interrupt(int irq, struct pt_regs *regs)
717 {
718 struct pt_regs *old_regs = set_irq_regs(regs);
719 unsigned long tick_mask = tick_operations.softint_mask;
720 int cpu = smp_processor_id();
721 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
722
723 clear_softint(tick_mask);
724
725 irq_enter();
726
727 local_cpu_data().irq0_irqs++;
728 kstat_incr_irq_this_cpu(0);
729
730 if (unlikely(!evt->event_handler)) {
731 printk(KERN_WARNING
732 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
733 } else
734 evt->event_handler(evt);
735
736 irq_exit();
737
738 set_irq_regs(old_regs);
739 }
740
setup_sparc64_timer(void)741 void setup_sparc64_timer(void)
742 {
743 struct clock_event_device *sevt;
744 unsigned long pstate;
745
746 /* Guarantee that the following sequences execute
747 * uninterrupted.
748 */
749 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
750 "wrpr %0, %1, %%pstate"
751 : "=r" (pstate)
752 : "i" (PSTATE_IE));
753
754 tick_operations.init_tick();
755
756 /* Restore PSTATE_IE. */
757 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
758 : /* no outputs */
759 : "r" (pstate));
760
761 sevt = this_cpu_ptr(&sparc64_events);
762
763 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
764 sevt->cpumask = cpumask_of(smp_processor_id());
765
766 clockevents_register_device(sevt);
767 }
768
769 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
770
771 static struct clocksource clocksource_tick = {
772 .rating = 100,
773 .mask = CLOCKSOURCE_MASK(64),
774 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
775 };
776
777 static unsigned long tb_ticks_per_usec __read_mostly;
778
__delay(unsigned long loops)779 void __delay(unsigned long loops)
780 {
781 unsigned long bclock = get_tick();
782
783 while ((get_tick() - bclock) < loops)
784 ;
785 }
786 EXPORT_SYMBOL(__delay);
787
udelay(unsigned long usecs)788 void udelay(unsigned long usecs)
789 {
790 __delay(tb_ticks_per_usec * usecs);
791 }
792 EXPORT_SYMBOL(udelay);
793
clocksource_tick_read(struct clocksource * cs)794 static u64 clocksource_tick_read(struct clocksource *cs)
795 {
796 return get_tick();
797 }
798
get_tick_patch(void)799 static void __init get_tick_patch(void)
800 {
801 unsigned int *addr, *instr, i;
802 struct get_tick_patch *p;
803
804 if (tlb_type == spitfire && is_hummingbird())
805 return;
806
807 for (p = &__get_tick_patch; p < &__get_tick_patch_end; p++) {
808 instr = (tlb_type == spitfire) ? p->tick : p->stick;
809 addr = (unsigned int *)(unsigned long)p->addr;
810 for (i = 0; i < GET_TICK_NINSTR; i++) {
811 addr[i] = instr[i];
812 /* ensure that address is modified before flush */
813 wmb();
814 flushi(&addr[i]);
815 }
816 }
817 }
818
init_tick_ops(struct sparc64_tick_ops * ops)819 static void __init init_tick_ops(struct sparc64_tick_ops *ops)
820 {
821 unsigned long freq, quotient, tick;
822
823 freq = ops->get_frequency();
824 quotient = clocksource_hz2mult(freq, SPARC64_NSEC_PER_CYC_SHIFT);
825 tick = ops->get_tick();
826
827 ops->offset = (tick * quotient) >> SPARC64_NSEC_PER_CYC_SHIFT;
828 ops->ticks_per_nsec_quotient = quotient;
829 ops->frequency = freq;
830 tick_operations = *ops;
831 get_tick_patch();
832 }
833
time_init_early(void)834 void __init time_init_early(void)
835 {
836 if (tlb_type == spitfire) {
837 if (is_hummingbird()) {
838 init_tick_ops(&hbtick_operations);
839 clocksource_tick.archdata.vclock_mode = VCLOCK_NONE;
840 } else {
841 init_tick_ops(&tick_operations);
842 clocksource_tick.archdata.vclock_mode = VCLOCK_TICK;
843 }
844 } else {
845 init_tick_ops(&stick_operations);
846 clocksource_tick.archdata.vclock_mode = VCLOCK_STICK;
847 }
848 }
849
time_init(void)850 void __init time_init(void)
851 {
852 unsigned long freq;
853
854 freq = tick_operations.frequency;
855 tb_ticks_per_usec = freq / USEC_PER_SEC;
856
857 clocksource_tick.name = tick_operations.name;
858 clocksource_tick.read = clocksource_tick_read;
859
860 clocksource_register_hz(&clocksource_tick, freq);
861 printk("clocksource: mult[%x] shift[%d]\n",
862 clocksource_tick.mult, clocksource_tick.shift);
863
864 sparc64_clockevent.name = tick_operations.name;
865 clockevents_calc_mult_shift(&sparc64_clockevent, freq, 4);
866
867 sparc64_clockevent.max_delta_ns =
868 clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent);
869 sparc64_clockevent.max_delta_ticks = 0x7fffffffffffffffUL;
870 sparc64_clockevent.min_delta_ns =
871 clockevent_delta2ns(0xF, &sparc64_clockevent);
872 sparc64_clockevent.min_delta_ticks = 0xF;
873
874 printk("clockevent: mult[%x] shift[%d]\n",
875 sparc64_clockevent.mult, sparc64_clockevent.shift);
876
877 setup_sparc64_timer();
878 }
879
sched_clock(void)880 unsigned long long sched_clock(void)
881 {
882 unsigned long quotient = tick_operations.ticks_per_nsec_quotient;
883 unsigned long offset = tick_operations.offset;
884
885 /* Use barrier so the compiler emits the loads first and overlaps load
886 * latency with reading tick, because reading %tick/%stick is a
887 * post-sync instruction that will flush and restart subsequent
888 * instructions after it commits.
889 */
890 barrier();
891
892 return ((get_tick() * quotient) >> SPARC64_NSEC_PER_CYC_SHIFT) - offset;
893 }
894
read_current_timer(unsigned long * timer_val)895 int read_current_timer(unsigned long *timer_val)
896 {
897 *timer_val = get_tick();
898 return 0;
899 }
900