1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/uaccess.h>
21 #include <hv/drv_pcie_rc_intf.h>
22 #include <arch/spr_def.h>
23 #include <asm/traps.h>
24 
25 /* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */
26 #define IS_HW_CLEARED 1
27 
28 /*
29  * The set of interrupts we enable for arch_local_irq_enable().
30  * This is initialized to have just a single interrupt that the kernel
31  * doesn't actually use as a sentinel.  During kernel init,
32  * interrupts are added as the kernel gets prepared to support them.
33  * NOTE: we could probably initialize them all statically up front.
34  */
35 DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) =
36   INITIAL_INTERRUPTS_ENABLED;
37 EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask);
38 
39 /* Define per-tile device interrupt statistics state. */
40 DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp;
41 EXPORT_PER_CPU_SYMBOL(irq_stat);
42 
43 /*
44  * Define per-tile irq disable mask; the hardware/HV only has a single
45  * mask that we use to implement both masking and disabling.
46  */
47 static DEFINE_PER_CPU(unsigned long, irq_disable_mask)
48 	____cacheline_internodealigned_in_smp;
49 
50 /*
51  * Per-tile IRQ nesting depth.  Used to make sure we enable newly
52  * enabled IRQs before exiting the outermost interrupt.
53  */
54 static DEFINE_PER_CPU(int, irq_depth);
55 
56 /* State for allocating IRQs on Gx. */
57 #if CHIP_HAS_IPI()
58 static unsigned long available_irqs = ~(1UL << IRQ_RESCHEDULE);
59 static DEFINE_SPINLOCK(available_irqs_lock);
60 #endif
61 
62 #if CHIP_HAS_IPI()
63 /* Use SPRs to manipulate device interrupts. */
64 #define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_K, irq_mask)
65 #define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_K, irq_mask)
66 #define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_K, irq_mask)
67 #else
68 /* Use HV to manipulate device interrupts. */
69 #define mask_irqs(irq_mask) hv_disable_intr(irq_mask)
70 #define unmask_irqs(irq_mask) hv_enable_intr(irq_mask)
71 #define clear_irqs(irq_mask) hv_clear_intr(irq_mask)
72 #endif
73 
74 /*
75  * The interrupt handling path, implemented in terms of HV interrupt
76  * emulation on TILE64 and TILEPro, and IPI hardware on TILE-Gx.
77  */
tile_dev_intr(struct pt_regs * regs,int intnum)78 void tile_dev_intr(struct pt_regs *regs, int intnum)
79 {
80 	int depth = __get_cpu_var(irq_depth)++;
81 	unsigned long original_irqs;
82 	unsigned long remaining_irqs;
83 	struct pt_regs *old_regs;
84 
85 #if CHIP_HAS_IPI()
86 	/*
87 	 * Pending interrupts are listed in an SPR.  We might be
88 	 * nested, so be sure to only handle irqs that weren't already
89 	 * masked by a previous interrupt.  Then, mask out the ones
90 	 * we're going to handle.
91 	 */
92 	unsigned long masked = __insn_mfspr(SPR_IPI_MASK_K);
93 	original_irqs = __insn_mfspr(SPR_IPI_EVENT_K) & ~masked;
94 	__insn_mtspr(SPR_IPI_MASK_SET_K, original_irqs);
95 #else
96 	/*
97 	 * Hypervisor performs the equivalent of the Gx code above and
98 	 * then puts the pending interrupt mask into a system save reg
99 	 * for us to find.
100 	 */
101 	original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_K_3);
102 #endif
103 	remaining_irqs = original_irqs;
104 
105 	/* Track time spent here in an interrupt context. */
106 	old_regs = set_irq_regs(regs);
107 	irq_enter();
108 
109 #ifdef CONFIG_DEBUG_STACKOVERFLOW
110 	/* Debugging check for stack overflow: less than 1/8th stack free? */
111 	{
112 		long sp = stack_pointer - (long) current_thread_info();
113 		if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
114 			pr_emerg("tile_dev_intr: "
115 			       "stack overflow: %ld\n",
116 			       sp - sizeof(struct thread_info));
117 			dump_stack();
118 		}
119 	}
120 #endif
121 	while (remaining_irqs) {
122 		unsigned long irq = __ffs(remaining_irqs);
123 		remaining_irqs &= ~(1UL << irq);
124 
125 		/* Count device irqs; Linux IPIs are counted elsewhere. */
126 		if (irq != IRQ_RESCHEDULE)
127 			__get_cpu_var(irq_stat).irq_dev_intr_count++;
128 
129 		generic_handle_irq(irq);
130 	}
131 
132 	/*
133 	 * If we weren't nested, turn on all enabled interrupts,
134 	 * including any that were reenabled during interrupt
135 	 * handling.
136 	 */
137 	if (depth == 0)
138 		unmask_irqs(~__get_cpu_var(irq_disable_mask));
139 
140 	__get_cpu_var(irq_depth)--;
141 
142 	/*
143 	 * Track time spent against the current process again and
144 	 * process any softirqs if they are waiting.
145 	 */
146 	irq_exit();
147 	set_irq_regs(old_regs);
148 }
149 
150 
151 /*
152  * Remove an irq from the disabled mask.  If we're in an interrupt
153  * context, defer enabling the HW interrupt until we leave.
154  */
enable_percpu_irq(unsigned int irq)155 void enable_percpu_irq(unsigned int irq)
156 {
157 	get_cpu_var(irq_disable_mask) &= ~(1UL << irq);
158 	if (__get_cpu_var(irq_depth) == 0)
159 		unmask_irqs(1UL << irq);
160 	put_cpu_var(irq_disable_mask);
161 }
162 EXPORT_SYMBOL(enable_percpu_irq);
163 
164 /*
165  * Add an irq to the disabled mask.  We disable the HW interrupt
166  * immediately so that there's no possibility of it firing.  If we're
167  * in an interrupt context, the return path is careful to avoid
168  * unmasking a newly disabled interrupt.
169  */
disable_percpu_irq(unsigned int irq)170 void disable_percpu_irq(unsigned int irq)
171 {
172 	get_cpu_var(irq_disable_mask) |= (1UL << irq);
173 	mask_irqs(1UL << irq);
174 	put_cpu_var(irq_disable_mask);
175 }
176 EXPORT_SYMBOL(disable_percpu_irq);
177 
178 /* Mask an interrupt. */
tile_irq_chip_mask(struct irq_data * d)179 static void tile_irq_chip_mask(struct irq_data *d)
180 {
181 	mask_irqs(1UL << d->irq);
182 }
183 
184 /* Unmask an interrupt. */
tile_irq_chip_unmask(struct irq_data * d)185 static void tile_irq_chip_unmask(struct irq_data *d)
186 {
187 	unmask_irqs(1UL << d->irq);
188 }
189 
190 /*
191  * Clear an interrupt before processing it so that any new assertions
192  * will trigger another irq.
193  */
tile_irq_chip_ack(struct irq_data * d)194 static void tile_irq_chip_ack(struct irq_data *d)
195 {
196 	if ((unsigned long)irq_data_get_irq_chip_data(d) != IS_HW_CLEARED)
197 		clear_irqs(1UL << d->irq);
198 }
199 
200 /*
201  * For per-cpu interrupts, we need to avoid unmasking any interrupts
202  * that we disabled via disable_percpu_irq().
203  */
tile_irq_chip_eoi(struct irq_data * d)204 static void tile_irq_chip_eoi(struct irq_data *d)
205 {
206 	if (!(__get_cpu_var(irq_disable_mask) & (1UL << d->irq)))
207 		unmask_irqs(1UL << d->irq);
208 }
209 
210 static struct irq_chip tile_irq_chip = {
211 	.name = "tile_irq_chip",
212 	.irq_ack = tile_irq_chip_ack,
213 	.irq_eoi = tile_irq_chip_eoi,
214 	.irq_mask = tile_irq_chip_mask,
215 	.irq_unmask = tile_irq_chip_unmask,
216 };
217 
init_IRQ(void)218 void __init init_IRQ(void)
219 {
220 	ipi_init();
221 }
222 
setup_irq_regs(void)223 void __cpuinit setup_irq_regs(void)
224 {
225 	/* Enable interrupt delivery. */
226 	unmask_irqs(~0UL);
227 #if CHIP_HAS_IPI()
228 	arch_local_irq_unmask(INT_IPI_K);
229 #endif
230 }
231 
tile_irq_activate(unsigned int irq,int tile_irq_type)232 void tile_irq_activate(unsigned int irq, int tile_irq_type)
233 {
234 	/*
235 	 * We use handle_level_irq() by default because the pending
236 	 * interrupt vector (whether modeled by the HV on TILE64 and
237 	 * TILEPro or implemented in hardware on TILE-Gx) has
238 	 * level-style semantics for each bit.  An interrupt fires
239 	 * whenever a bit is high, not just at edges.
240 	 */
241 	irq_flow_handler_t handle = handle_level_irq;
242 	if (tile_irq_type == TILE_IRQ_PERCPU)
243 		handle = handle_percpu_irq;
244 	irq_set_chip_and_handler(irq, &tile_irq_chip, handle);
245 
246 	/*
247 	 * Flag interrupts that are hardware-cleared so that ack()
248 	 * won't clear them.
249 	 */
250 	if (tile_irq_type == TILE_IRQ_HW_CLEAR)
251 		irq_set_chip_data(irq, (void *)IS_HW_CLEARED);
252 }
253 EXPORT_SYMBOL(tile_irq_activate);
254 
255 
ack_bad_irq(unsigned int irq)256 void ack_bad_irq(unsigned int irq)
257 {
258 	pr_err("unexpected IRQ trap at vector %02x\n", irq);
259 }
260 
261 /*
262  * Generic, controller-independent functions:
263  */
264 
265 #if CHIP_HAS_IPI()
create_irq(void)266 int create_irq(void)
267 {
268 	unsigned long flags;
269 	int result;
270 
271 	spin_lock_irqsave(&available_irqs_lock, flags);
272 	if (available_irqs == 0)
273 		result = -ENOMEM;
274 	else {
275 		result = __ffs(available_irqs);
276 		available_irqs &= ~(1UL << result);
277 		dynamic_irq_init(result);
278 	}
279 	spin_unlock_irqrestore(&available_irqs_lock, flags);
280 
281 	return result;
282 }
283 EXPORT_SYMBOL(create_irq);
284 
destroy_irq(unsigned int irq)285 void destroy_irq(unsigned int irq)
286 {
287 	unsigned long flags;
288 
289 	spin_lock_irqsave(&available_irqs_lock, flags);
290 	available_irqs |= (1UL << irq);
291 	dynamic_irq_cleanup(irq);
292 	spin_unlock_irqrestore(&available_irqs_lock, flags);
293 }
294 EXPORT_SYMBOL(destroy_irq);
295 #endif
296