1 /* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
2  *
3  * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
4  *
5  * Author       Karsten Keil
6  * Copyright    by Karsten Keil      <keil@isdn4linux.de>
7  *
8  * This software may be used and distributed according to the terms
9  * of the GNU General Public License, incorporated herein by reference.
10  *
11  * Thanks to AVM, Berlin for information
12  *
13  */
14 
15 #include <linux/init.h>
16 #include "hisax.h"
17 #include "isac.h"
18 #include "isdnl1.h"
19 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/isapnp.h>
22 #include <linux/interrupt.h>
23 
24 static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
25 
26 #define  AVM_FRITZ_PCI		1
27 #define  AVM_FRITZ_PNP		2
28 
29 #define  HDLC_FIFO		0x0
30 #define  HDLC_STATUS		0x4
31 
32 #define	 AVM_HDLC_1		0x00
33 #define	 AVM_HDLC_2		0x01
34 #define	 AVM_ISAC_FIFO		0x02
35 #define	 AVM_ISAC_REG_LOW	0x04
36 #define	 AVM_ISAC_REG_HIGH	0x06
37 
38 #define  AVM_STATUS0_IRQ_ISAC	0x01
39 #define  AVM_STATUS0_IRQ_HDLC	0x02
40 #define  AVM_STATUS0_IRQ_TIMER	0x04
41 #define  AVM_STATUS0_IRQ_MASK	0x07
42 
43 #define  AVM_STATUS0_RESET	0x01
44 #define  AVM_STATUS0_DIS_TIMER	0x02
45 #define  AVM_STATUS0_RES_TIMER	0x04
46 #define  AVM_STATUS0_ENA_IRQ	0x08
47 #define  AVM_STATUS0_TESTBIT	0x10
48 
49 #define  AVM_STATUS1_INT_SEL	0x0f
50 #define  AVM_STATUS1_ENA_IOM	0x80
51 
52 #define  HDLC_MODE_ITF_FLG	0x01
53 #define  HDLC_MODE_TRANS	0x02
54 #define  HDLC_MODE_CCR_7	0x04
55 #define  HDLC_MODE_CCR_16	0x08
56 #define  HDLC_MODE_TESTLOOP	0x80
57 
58 #define  HDLC_INT_XPR		0x80
59 #define  HDLC_INT_XDU		0x40
60 #define  HDLC_INT_RPR		0x20
61 #define  HDLC_INT_MASK		0xE0
62 
63 #define  HDLC_STAT_RME		0x01
64 #define  HDLC_STAT_RDO		0x10
65 #define  HDLC_STAT_CRCVFRRAB	0x0E
66 #define  HDLC_STAT_CRCVFR	0x06
67 #define  HDLC_STAT_RML_MASK	0x3f00
68 
69 #define  HDLC_CMD_XRS		0x80
70 #define  HDLC_CMD_XME		0x01
71 #define  HDLC_CMD_RRS		0x20
72 #define  HDLC_CMD_XML_MASK	0x3f00
73 
74 
75 /* Interface functions */
76 
77 static u_char
ReadISAC(struct IsdnCardState * cs,u_char offset)78 ReadISAC(struct IsdnCardState *cs, u_char offset)
79 {
80 	register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
81 	register u_char val;
82 
83 	outb(idx, cs->hw.avm.cfg_reg + 4);
84 	val = inb(cs->hw.avm.isac + (offset & 0xf));
85 	return (val);
86 }
87 
88 static void
WriteISAC(struct IsdnCardState * cs,u_char offset,u_char value)89 WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
90 {
91 	register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
92 
93 	outb(idx, cs->hw.avm.cfg_reg + 4);
94 	outb(value, cs->hw.avm.isac + (offset & 0xf));
95 }
96 
97 static void
ReadISACfifo(struct IsdnCardState * cs,u_char * data,int size)98 ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
99 {
100 	outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
101 	insb(cs->hw.avm.isac, data, size);
102 }
103 
104 static void
WriteISACfifo(struct IsdnCardState * cs,u_char * data,int size)105 WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
106 {
107 	outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
108 	outsb(cs->hw.avm.isac, data, size);
109 }
110 
111 static inline u_int
ReadHDLCPCI(struct IsdnCardState * cs,int chan,u_char offset)112 ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
113 {
114 	register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
115 	register u_int val;
116 
117 	outl(idx, cs->hw.avm.cfg_reg + 4);
118 	val = inl(cs->hw.avm.isac + offset);
119 	return (val);
120 }
121 
122 static inline void
WriteHDLCPCI(struct IsdnCardState * cs,int chan,u_char offset,u_int value)123 WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
124 {
125 	register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
126 
127 	outl(idx, cs->hw.avm.cfg_reg + 4);
128 	outl(value, cs->hw.avm.isac + offset);
129 }
130 
131 static inline u_char
ReadHDLCPnP(struct IsdnCardState * cs,int chan,u_char offset)132 ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
133 {
134 	register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
135 	register u_char val;
136 
137 	outb(idx, cs->hw.avm.cfg_reg + 4);
138 	val = inb(cs->hw.avm.isac + offset);
139 	return (val);
140 }
141 
142 static inline void
WriteHDLCPnP(struct IsdnCardState * cs,int chan,u_char offset,u_char value)143 WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
144 {
145 	register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
146 
147 	outb(idx, cs->hw.avm.cfg_reg + 4);
148 	outb(value, cs->hw.avm.isac + offset);
149 }
150 
151 static u_char
ReadHDLC_s(struct IsdnCardState * cs,int chan,u_char offset)152 ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
153 {
154 	return(0xff & ReadHDLCPCI(cs, chan, offset));
155 }
156 
157 static void
WriteHDLC_s(struct IsdnCardState * cs,int chan,u_char offset,u_char value)158 WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
159 {
160 	WriteHDLCPCI(cs, chan, offset, value);
161 }
162 
163 static inline
Sel_BCS(struct IsdnCardState * cs,int channel)164 struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
165 {
166 	if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
167 		return(&cs->bcs[0]);
168 	else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
169 		return(&cs->bcs[1]);
170 	else
171 		return(NULL);
172 }
173 
174 static void
write_ctrl(struct BCState * bcs,int which)175 write_ctrl(struct BCState *bcs, int which) {
176 
177 	if (bcs->cs->debug & L1_DEB_HSCX)
178 		debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
179 			'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
180 	if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
181 		WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
182 	} else {
183 		if (which & 4)
184 			WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
185 				bcs->hw.hdlc.ctrl.sr.mode);
186 		if (which & 2)
187 			WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
188 				bcs->hw.hdlc.ctrl.sr.xml);
189 		if (which & 1)
190 			WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
191 				bcs->hw.hdlc.ctrl.sr.cmd);
192 	}
193 }
194 
195 static void
modehdlc(struct BCState * bcs,int mode,int bc)196 modehdlc(struct BCState *bcs, int mode, int bc)
197 {
198 	struct IsdnCardState *cs = bcs->cs;
199 	int hdlc = bcs->channel;
200 
201 	if (cs->debug & L1_DEB_HSCX)
202 		debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
203 			'A' + hdlc, bcs->mode, mode, hdlc, bc);
204 	bcs->hw.hdlc.ctrl.ctrl = 0;
205 	switch (mode) {
206 		case (-1): /* used for init */
207 			bcs->mode = 1;
208 			bcs->channel = bc;
209 			bc = 0;
210 		case (L1_MODE_NULL):
211 			if (bcs->mode == L1_MODE_NULL)
212 				return;
213 			bcs->hw.hdlc.ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
214 			bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
215 			write_ctrl(bcs, 5);
216 			bcs->mode = L1_MODE_NULL;
217 			bcs->channel = bc;
218 			break;
219 		case (L1_MODE_TRANS):
220 			bcs->mode = mode;
221 			bcs->channel = bc;
222 			bcs->hw.hdlc.ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
223 			bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
224 			write_ctrl(bcs, 5);
225 			bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
226 			write_ctrl(bcs, 1);
227 			bcs->hw.hdlc.ctrl.sr.cmd = 0;
228 			schedule_event(bcs, B_XMTBUFREADY);
229 			break;
230 		case (L1_MODE_HDLC):
231 			bcs->mode = mode;
232 			bcs->channel = bc;
233 			bcs->hw.hdlc.ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
234 			bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
235 			write_ctrl(bcs, 5);
236 			bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
237 			write_ctrl(bcs, 1);
238 			bcs->hw.hdlc.ctrl.sr.cmd = 0;
239 			schedule_event(bcs, B_XMTBUFREADY);
240 			break;
241 	}
242 }
243 
244 static inline void
hdlc_empty_fifo(struct BCState * bcs,int count)245 hdlc_empty_fifo(struct BCState *bcs, int count)
246 {
247 	register u_int *ptr;
248 	u_char *p;
249 	u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
250 	int cnt=0;
251 	struct IsdnCardState *cs = bcs->cs;
252 
253 	if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
254 		debugl1(cs, "hdlc_empty_fifo %d", count);
255 	if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
256 		if (cs->debug & L1_DEB_WARN)
257 			debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
258 		return;
259 	}
260 	p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
261 	ptr = (u_int *)p;
262 	bcs->hw.hdlc.rcvidx += count;
263 	if (cs->subtyp == AVM_FRITZ_PCI) {
264 		outl(idx, cs->hw.avm.cfg_reg + 4);
265 		while (cnt < count) {
266 #ifdef __powerpc__
267 			*ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
268 #else
269 			*ptr++ = inl(cs->hw.avm.isac);
270 #endif /* __powerpc__ */
271 			cnt += 4;
272 		}
273 	} else {
274 		outb(idx, cs->hw.avm.cfg_reg + 4);
275 		while (cnt < count) {
276 			*p++ = inb(cs->hw.avm.isac);
277 			cnt++;
278 		}
279 	}
280 	if (cs->debug & L1_DEB_HSCX_FIFO) {
281 		char *t = bcs->blog;
282 
283 		if (cs->subtyp == AVM_FRITZ_PNP)
284 			p = (u_char *) ptr;
285 		t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
286 			     bcs->channel ? 'B' : 'A', count);
287 		QuickHex(t, p, count);
288 		debugl1(cs, bcs->blog);
289 	}
290 }
291 
292 static inline void
hdlc_fill_fifo(struct BCState * bcs)293 hdlc_fill_fifo(struct BCState *bcs)
294 {
295 	struct IsdnCardState *cs = bcs->cs;
296 	int count, cnt =0;
297 	int fifo_size = 32;
298 	u_char *p;
299 	u_int *ptr;
300 
301 	if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
302 		debugl1(cs, "hdlc_fill_fifo");
303 	if (!bcs->tx_skb)
304 		return;
305 	if (bcs->tx_skb->len <= 0)
306 		return;
307 
308 	bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
309 	if (bcs->tx_skb->len > fifo_size) {
310 		count = fifo_size;
311 	} else {
312 		count = bcs->tx_skb->len;
313 		if (bcs->mode != L1_MODE_TRANS)
314 			bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
315 	}
316 	if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
317 		debugl1(cs, "hdlc_fill_fifo %d/%u", count, bcs->tx_skb->len);
318 	p = bcs->tx_skb->data;
319 	ptr = (u_int *)p;
320 	skb_pull(bcs->tx_skb, count);
321 	bcs->tx_cnt -= count;
322 	bcs->hw.hdlc.count += count;
323 	bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
324 	write_ctrl(bcs, 3);  /* sets the correct index too */
325 	if (cs->subtyp == AVM_FRITZ_PCI) {
326 		while (cnt<count) {
327 #ifdef __powerpc__
328 			out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
329 #else
330 			outl(*ptr++, cs->hw.avm.isac);
331 #endif /* __powerpc__ */
332 			cnt += 4;
333 		}
334 	} else {
335 		while (cnt<count) {
336 			outb(*p++, cs->hw.avm.isac);
337 			cnt++;
338 		}
339 	}
340 	if (cs->debug & L1_DEB_HSCX_FIFO) {
341 		char *t = bcs->blog;
342 
343 		if (cs->subtyp == AVM_FRITZ_PNP)
344 			p = (u_char *) ptr;
345 		t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
346 			     bcs->channel ? 'B' : 'A', count);
347 		QuickHex(t, p, count);
348 		debugl1(cs, bcs->blog);
349 	}
350 }
351 
352 static void
HDLC_irq(struct BCState * bcs,u_int stat)353 HDLC_irq(struct BCState *bcs, u_int stat) {
354 	int len;
355 	struct sk_buff *skb;
356 
357 	if (bcs->cs->debug & L1_DEB_HSCX)
358 		debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
359 	if (stat & HDLC_INT_RPR) {
360 		if (stat & HDLC_STAT_RDO) {
361 			if (bcs->cs->debug & L1_DEB_HSCX)
362 				debugl1(bcs->cs, "RDO");
363 			else
364 				debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
365 			bcs->hw.hdlc.ctrl.sr.xml = 0;
366 			bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
367 			write_ctrl(bcs, 1);
368 			bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
369 			write_ctrl(bcs, 1);
370 			bcs->hw.hdlc.rcvidx = 0;
371 		} else {
372 			if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
373 				len = 32;
374 			hdlc_empty_fifo(bcs, len);
375 			if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
376 				if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
377 					(bcs->mode == L1_MODE_TRANS)) {
378 					if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
379 						printk(KERN_WARNING "HDLC: receive out of memory\n");
380 					else {
381 						memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
382 							bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
383 						skb_queue_tail(&bcs->rqueue, skb);
384 					}
385 					bcs->hw.hdlc.rcvidx = 0;
386 					schedule_event(bcs, B_RCVBUFREADY);
387 				} else {
388 					if (bcs->cs->debug & L1_DEB_HSCX)
389 						debugl1(bcs->cs, "invalid frame");
390 					else
391 						debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
392 					bcs->hw.hdlc.rcvidx = 0;
393 				}
394 			}
395 		}
396 	}
397 	if (stat & HDLC_INT_XDU) {
398 		/* Here we lost an TX interrupt, so
399 		 * restart transmitting the whole frame.
400 		 */
401 		if (bcs->tx_skb) {
402 			skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
403 			bcs->tx_cnt += bcs->hw.hdlc.count;
404 			bcs->hw.hdlc.count = 0;
405 			if (bcs->cs->debug & L1_DEB_WARN)
406 				debugl1(bcs->cs, "ch%d XDU", bcs->channel);
407 		} else if (bcs->cs->debug & L1_DEB_WARN)
408 			debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
409 		bcs->hw.hdlc.ctrl.sr.xml = 0;
410 		bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
411 		write_ctrl(bcs, 1);
412 		bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
413 		write_ctrl(bcs, 1);
414 		hdlc_fill_fifo(bcs);
415 	} else if (stat & HDLC_INT_XPR) {
416 		if (bcs->tx_skb) {
417 			if (bcs->tx_skb->len) {
418 				hdlc_fill_fifo(bcs);
419 				return;
420 			} else {
421 				if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
422 					(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
423 					u_long	flags;
424 					spin_lock_irqsave(&bcs->aclock, flags);
425 					bcs->ackcnt += bcs->hw.hdlc.count;
426 					spin_unlock_irqrestore(&bcs->aclock, flags);
427 					schedule_event(bcs, B_ACKPENDING);
428 				}
429 				dev_kfree_skb_irq(bcs->tx_skb);
430 				bcs->hw.hdlc.count = 0;
431 				bcs->tx_skb = NULL;
432 			}
433 		}
434 		if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
435 			bcs->hw.hdlc.count = 0;
436 			test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
437 			hdlc_fill_fifo(bcs);
438 		} else {
439 			test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
440 			schedule_event(bcs, B_XMTBUFREADY);
441 		}
442 	}
443 }
444 
445 static inline void
HDLC_irq_main(struct IsdnCardState * cs)446 HDLC_irq_main(struct IsdnCardState *cs)
447 {
448 	u_int stat;
449 	struct BCState *bcs;
450 
451 	if (cs->subtyp == AVM_FRITZ_PCI) {
452 		stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
453 	} else {
454 		stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
455 		if (stat & HDLC_INT_RPR)
456 			stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
457 	}
458 	if (stat & HDLC_INT_MASK) {
459 		if (!(bcs = Sel_BCS(cs, 0))) {
460 			if (cs->debug)
461 				debugl1(cs, "hdlc spurious channel 0 IRQ");
462 		} else
463 			HDLC_irq(bcs, stat);
464 	}
465 	if (cs->subtyp == AVM_FRITZ_PCI) {
466 		stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
467 	} else {
468 		stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
469 		if (stat & HDLC_INT_RPR)
470 			stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
471 	}
472 	if (stat & HDLC_INT_MASK) {
473 		if (!(bcs = Sel_BCS(cs, 1))) {
474 			if (cs->debug)
475 				debugl1(cs, "hdlc spurious channel 1 IRQ");
476 		} else
477 			HDLC_irq(bcs, stat);
478 	}
479 }
480 
481 static void
hdlc_l2l1(struct PStack * st,int pr,void * arg)482 hdlc_l2l1(struct PStack *st, int pr, void *arg)
483 {
484 	struct BCState *bcs = st->l1.bcs;
485 	struct sk_buff *skb = arg;
486 	u_long flags;
487 
488 	switch (pr) {
489 		case (PH_DATA | REQUEST):
490 			spin_lock_irqsave(&bcs->cs->lock, flags);
491 			if (bcs->tx_skb) {
492 				skb_queue_tail(&bcs->squeue, skb);
493 			} else {
494 				bcs->tx_skb = skb;
495 				test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
496 				bcs->hw.hdlc.count = 0;
497 				bcs->cs->BC_Send_Data(bcs);
498 			}
499 			spin_unlock_irqrestore(&bcs->cs->lock, flags);
500 			break;
501 		case (PH_PULL | INDICATION):
502 			spin_lock_irqsave(&bcs->cs->lock, flags);
503 			if (bcs->tx_skb) {
504 				printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
505 			} else {
506 				test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
507 				bcs->tx_skb = skb;
508 				bcs->hw.hdlc.count = 0;
509 				bcs->cs->BC_Send_Data(bcs);
510 			}
511 			spin_unlock_irqrestore(&bcs->cs->lock, flags);
512 			break;
513 		case (PH_PULL | REQUEST):
514 			if (!bcs->tx_skb) {
515 				test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
516 				st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
517 			} else
518 				test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
519 			break;
520 		case (PH_ACTIVATE | REQUEST):
521 			spin_lock_irqsave(&bcs->cs->lock, flags);
522 			test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
523 			modehdlc(bcs, st->l1.mode, st->l1.bc);
524 			spin_unlock_irqrestore(&bcs->cs->lock, flags);
525 			l1_msg_b(st, pr, arg);
526 			break;
527 		case (PH_DEACTIVATE | REQUEST):
528 			l1_msg_b(st, pr, arg);
529 			break;
530 		case (PH_DEACTIVATE | CONFIRM):
531 			spin_lock_irqsave(&bcs->cs->lock, flags);
532 			test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
533 			test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
534 			modehdlc(bcs, 0, st->l1.bc);
535 			spin_unlock_irqrestore(&bcs->cs->lock, flags);
536 			st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
537 			break;
538 	}
539 }
540 
541 static void
close_hdlcstate(struct BCState * bcs)542 close_hdlcstate(struct BCState *bcs)
543 {
544 	modehdlc(bcs, 0, 0);
545 	if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
546 		kfree(bcs->hw.hdlc.rcvbuf);
547 		bcs->hw.hdlc.rcvbuf = NULL;
548 		kfree(bcs->blog);
549 		bcs->blog = NULL;
550 		skb_queue_purge(&bcs->rqueue);
551 		skb_queue_purge(&bcs->squeue);
552 		if (bcs->tx_skb) {
553 			dev_kfree_skb_any(bcs->tx_skb);
554 			bcs->tx_skb = NULL;
555 			test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
556 		}
557 	}
558 }
559 
560 static int
open_hdlcstate(struct IsdnCardState * cs,struct BCState * bcs)561 open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
562 {
563 	if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
564 		if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
565 			printk(KERN_WARNING
566 			       "HiSax: No memory for hdlc.rcvbuf\n");
567 			return (1);
568 		}
569 		if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
570 			printk(KERN_WARNING
571 				"HiSax: No memory for bcs->blog\n");
572 			test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
573 			kfree(bcs->hw.hdlc.rcvbuf);
574 			bcs->hw.hdlc.rcvbuf = NULL;
575 			return (2);
576 		}
577 		skb_queue_head_init(&bcs->rqueue);
578 		skb_queue_head_init(&bcs->squeue);
579 	}
580 	bcs->tx_skb = NULL;
581 	test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
582 	bcs->event = 0;
583 	bcs->hw.hdlc.rcvidx = 0;
584 	bcs->tx_cnt = 0;
585 	return (0);
586 }
587 
588 static int
setstack_hdlc(struct PStack * st,struct BCState * bcs)589 setstack_hdlc(struct PStack *st, struct BCState *bcs)
590 {
591 	bcs->channel = st->l1.bc;
592 	if (open_hdlcstate(st->l1.hardware, bcs))
593 		return (-1);
594 	st->l1.bcs = bcs;
595 	st->l2.l2l1 = hdlc_l2l1;
596 	setstack_manager(st);
597 	bcs->st = st;
598 	setstack_l1_B(st);
599 	return (0);
600 }
601 
602 #if 0
603 void __init
604 clear_pending_hdlc_ints(struct IsdnCardState *cs)
605 {
606 	u_int val;
607 
608 	if (cs->subtyp == AVM_FRITZ_PCI) {
609 		val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
610 		debugl1(cs, "HDLC 1 STA %x", val);
611 		val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
612 		debugl1(cs, "HDLC 2 STA %x", val);
613 	} else {
614 		val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
615 		debugl1(cs, "HDLC 1 STA %x", val);
616 		val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
617 		debugl1(cs, "HDLC 1 RML %x", val);
618 		val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
619 		debugl1(cs, "HDLC 1 MODE %x", val);
620 		val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
621 		debugl1(cs, "HDLC 1 VIN %x", val);
622 		val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
623 		debugl1(cs, "HDLC 2 STA %x", val);
624 		val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
625 		debugl1(cs, "HDLC 2 RML %x", val);
626 		val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
627 		debugl1(cs, "HDLC 2 MODE %x", val);
628 		val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
629 		debugl1(cs, "HDLC 2 VIN %x", val);
630 	}
631 }
632 #endif  /*  0  */
633 
634 static void
inithdlc(struct IsdnCardState * cs)635 inithdlc(struct IsdnCardState *cs)
636 {
637 	cs->bcs[0].BC_SetStack = setstack_hdlc;
638 	cs->bcs[1].BC_SetStack = setstack_hdlc;
639 	cs->bcs[0].BC_Close = close_hdlcstate;
640 	cs->bcs[1].BC_Close = close_hdlcstate;
641 	modehdlc(cs->bcs, -1, 0);
642 	modehdlc(cs->bcs + 1, -1, 1);
643 }
644 
645 static irqreturn_t
avm_pcipnp_interrupt(int intno,void * dev_id)646 avm_pcipnp_interrupt(int intno, void *dev_id)
647 {
648 	struct IsdnCardState *cs = dev_id;
649 	u_long flags;
650 	u_char val;
651 	u_char sval;
652 
653 	spin_lock_irqsave(&cs->lock, flags);
654 	sval = inb(cs->hw.avm.cfg_reg + 2);
655 	if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
656 		/* possible a shared  IRQ reqest */
657 		spin_unlock_irqrestore(&cs->lock, flags);
658 		return IRQ_NONE;
659 	}
660 	if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
661 		val = ReadISAC(cs, ISAC_ISTA);
662 		isac_interrupt(cs, val);
663 	}
664 	if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
665 		HDLC_irq_main(cs);
666 	}
667 	WriteISAC(cs, ISAC_MASK, 0xFF);
668 	WriteISAC(cs, ISAC_MASK, 0x0);
669 	spin_unlock_irqrestore(&cs->lock, flags);
670 	return IRQ_HANDLED;
671 }
672 
673 static void
reset_avmpcipnp(struct IsdnCardState * cs)674 reset_avmpcipnp(struct IsdnCardState *cs)
675 {
676 	printk(KERN_INFO "AVM PCI/PnP: reset\n");
677 	outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
678 	mdelay(10);
679 	outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
680 	outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
681 	mdelay(10);
682 	printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
683 }
684 
685 static int
AVM_card_msg(struct IsdnCardState * cs,int mt,void * arg)686 AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
687 {
688 	u_long flags;
689 
690 	switch (mt) {
691 		case CARD_RESET:
692 			spin_lock_irqsave(&cs->lock, flags);
693 			reset_avmpcipnp(cs);
694 			spin_unlock_irqrestore(&cs->lock, flags);
695 			return(0);
696 		case CARD_RELEASE:
697 			outb(0, cs->hw.avm.cfg_reg + 2);
698 			release_region(cs->hw.avm.cfg_reg, 32);
699 			return(0);
700 		case CARD_INIT:
701 			spin_lock_irqsave(&cs->lock, flags);
702 			reset_avmpcipnp(cs);
703 			clear_pending_isac_ints(cs);
704 			initisac(cs);
705 			inithdlc(cs);
706 			outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
707 				cs->hw.avm.cfg_reg + 2);
708 			WriteISAC(cs, ISAC_MASK, 0);
709 			outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
710 				AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
711 			/* RESET Receiver and Transmitter */
712 			WriteISAC(cs, ISAC_CMDR, 0x41);
713 			spin_unlock_irqrestore(&cs->lock, flags);
714 			return(0);
715 		case CARD_TEST:
716 			return(0);
717 	}
718 	return(0);
719 }
720 
avm_setup_rest(struct IsdnCardState * cs)721 static int __devinit avm_setup_rest(struct IsdnCardState *cs)
722 {
723 	u_int val, ver;
724 
725 	cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
726 	if (!request_region(cs->hw.avm.cfg_reg, 32,
727 		(cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
728 		printk(KERN_WARNING
729 		       "HiSax: Fritz!PCI/PNP config port %x-%x already in use\n",
730 		       cs->hw.avm.cfg_reg,
731 		       cs->hw.avm.cfg_reg + 31);
732 		return (0);
733 	}
734 	switch (cs->subtyp) {
735 	  case AVM_FRITZ_PCI:
736 		val = inl(cs->hw.avm.cfg_reg);
737 		printk(KERN_INFO "AVM PCI: stat %#x\n", val);
738 		printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
739 			val & 0xff, (val>>8) & 0xff);
740 		cs->BC_Read_Reg = &ReadHDLC_s;
741 		cs->BC_Write_Reg = &WriteHDLC_s;
742 		break;
743 	  case AVM_FRITZ_PNP:
744 		val = inb(cs->hw.avm.cfg_reg);
745 		ver = inb(cs->hw.avm.cfg_reg + 1);
746 		printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
747 		cs->BC_Read_Reg = &ReadHDLCPnP;
748 		cs->BC_Write_Reg = &WriteHDLCPnP;
749 		break;
750 	  default:
751 	  	printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
752 	  	return(0);
753 	}
754 	printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
755 		(cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
756 		cs->irq, cs->hw.avm.cfg_reg);
757 
758 	setup_isac(cs);
759 	cs->readisac = &ReadISAC;
760 	cs->writeisac = &WriteISAC;
761 	cs->readisacfifo = &ReadISACfifo;
762 	cs->writeisacfifo = &WriteISACfifo;
763 	cs->BC_Send_Data = &hdlc_fill_fifo;
764 	cs->cardmsg = &AVM_card_msg;
765 	cs->irq_func = &avm_pcipnp_interrupt;
766 	cs->writeisac(cs, ISAC_MASK, 0xFF);
767 	ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
768 	return (1);
769 }
770 
771 #ifndef __ISAPNP__
772 
avm_pnp_setup(struct IsdnCardState * cs)773 static int __devinit avm_pnp_setup(struct IsdnCardState *cs)
774 {
775 	return(1);	/* no-op: success */
776 }
777 
778 #else
779 
780 static struct pnp_card *pnp_avm_c __devinitdata = NULL;
781 
avm_pnp_setup(struct IsdnCardState * cs)782 static int __devinit avm_pnp_setup(struct IsdnCardState *cs)
783 {
784 	struct pnp_dev *pnp_avm_d = NULL;
785 
786 	if (!isapnp_present())
787 		return(1);	/* no-op: success */
788 
789 	if ((pnp_avm_c = pnp_find_card(
790 		ISAPNP_VENDOR('A', 'V', 'M'),
791 		ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
792 		if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
793 			ISAPNP_VENDOR('A', 'V', 'M'),
794 			ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
795 			int err;
796 
797 			pnp_disable_dev(pnp_avm_d);
798 			err = pnp_activate_dev(pnp_avm_d);
799 			if (err<0) {
800 				printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
801 					__func__, err);
802 				return(0);
803 			}
804 			cs->hw.avm.cfg_reg =
805 				pnp_port_start(pnp_avm_d, 0);
806 			cs->irq = pnp_irq(pnp_avm_d, 0);
807 			if (!cs->irq) {
808 				printk(KERN_ERR "FritzPnP:No IRQ\n");
809 				return(0);
810 			}
811 			if (!cs->hw.avm.cfg_reg) {
812 				printk(KERN_ERR "FritzPnP:No IO address\n");
813 				return(0);
814 			}
815 			cs->subtyp = AVM_FRITZ_PNP;
816 
817 			return (2);	/* goto 'ready' label */
818 		}
819 	}
820 
821 	return (1);
822 }
823 
824 #endif /* __ISAPNP__ */
825 
826 #ifndef CONFIG_PCI
827 
avm_pci_setup(struct IsdnCardState * cs)828 static int __devinit avm_pci_setup(struct IsdnCardState *cs)
829 {
830 	return(1);	/* no-op: success */
831 }
832 
833 #else
834 
835 static struct pci_dev *dev_avm __devinitdata = NULL;
836 
avm_pci_setup(struct IsdnCardState * cs)837 static int __devinit avm_pci_setup(struct IsdnCardState *cs)
838 {
839 	if ((dev_avm = hisax_find_pci_device(PCI_VENDOR_ID_AVM,
840 		PCI_DEVICE_ID_AVM_A1, dev_avm))) {
841 
842 		if (pci_enable_device(dev_avm))
843 			return(0);
844 
845 		cs->irq = dev_avm->irq;
846 		if (!cs->irq) {
847 			printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
848 			return(0);
849 		}
850 
851 		cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
852 		if (!cs->hw.avm.cfg_reg) {
853 			printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
854 			return(0);
855 		}
856 
857 		cs->subtyp = AVM_FRITZ_PCI;
858 	} else {
859 		printk(KERN_WARNING "FritzPCI: No PCI card found\n");
860 		return(0);
861 	}
862 
863 	cs->irq_flags |= IRQF_SHARED;
864 
865 	return (1);
866 }
867 
868 #endif /* CONFIG_PCI */
869 
870 int __devinit
setup_avm_pcipnp(struct IsdnCard * card)871 setup_avm_pcipnp(struct IsdnCard *card)
872 {
873 	struct IsdnCardState *cs = card->cs;
874 	char tmp[64];
875 	int rc;
876 
877 	strcpy(tmp, avm_pci_rev);
878 	printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
879 
880 	if (cs->typ != ISDN_CTYPE_FRITZPCI)
881 		return (0);
882 
883 	if (card->para[1]) {
884 		/* old manual method */
885 		cs->hw.avm.cfg_reg = card->para[1];
886 		cs->irq = card->para[0];
887 		cs->subtyp = AVM_FRITZ_PNP;
888 		goto ready;
889 	}
890 
891 	rc = avm_pnp_setup(cs);
892 	if (rc < 1)
893 		return (0);
894 	if (rc == 2)
895 		goto ready;
896 
897 	rc = avm_pci_setup(cs);
898 	if (rc < 1)
899 		return (0);
900 
901 ready:
902 	return avm_setup_rest(cs);
903 }
904