1 use core::{
2 fmt::{self, Debug, Error, Formatter},
3 marker::PhantomData,
4 mem,
5 ops::Add,
6 sync::atomic::{compiler_fence, Ordering},
7 };
8
9 use crate::{
10 arch::{interrupt::ipi::send_ipi, MMArch},
11 exception::ipi::{IpiKind, IpiTarget},
12 kerror, kwarn,
13 };
14
15 use super::{
16 allocator::page_frame::FrameAllocator, syscall::ProtFlags, MemoryManagementArch, PageTableKind,
17 PhysAddr, VirtAddr,
18 };
19
20 #[derive(Debug)]
21 pub struct PageTable<Arch> {
22 /// 当前页表表示的虚拟地址空间的起始地址
23 base: VirtAddr,
24 /// 当前页表所在的物理地址
25 phys: PhysAddr,
26 /// 当前页表的层级(请注意,最顶级页表的level为[Arch::PAGE_LEVELS - 1])
27 level: usize,
28 phantom: PhantomData<Arch>,
29 }
30
31 #[allow(dead_code)]
32 impl<Arch: MemoryManagementArch> PageTable<Arch> {
new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self33 pub unsafe fn new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self {
34 Self {
35 base,
36 phys,
37 level,
38 phantom: PhantomData,
39 }
40 }
41
42 /// 获取顶级页表
43 ///
44 /// ## 参数
45 ///
46 /// - table_kind 页表类型
47 ///
48 /// ## 返回值
49 ///
50 /// 返回顶级页表
top_level_table(table_kind: PageTableKind) -> Self51 pub unsafe fn top_level_table(table_kind: PageTableKind) -> Self {
52 return Self::new(
53 VirtAddr::new(0),
54 Arch::table(table_kind),
55 Arch::PAGE_LEVELS - 1,
56 );
57 }
58
59 /// 获取当前页表的物理地址
60 #[inline(always)]
phys(&self) -> PhysAddr61 pub fn phys(&self) -> PhysAddr {
62 self.phys
63 }
64
65 /// 当前页表表示的虚拟地址空间的起始地址
66 #[inline(always)]
base(&self) -> VirtAddr67 pub fn base(&self) -> VirtAddr {
68 self.base
69 }
70
71 /// 获取当前页表的层级
72 #[inline(always)]
level(&self) -> usize73 pub fn level(&self) -> usize {
74 self.level
75 }
76
77 /// 获取当前页表自身所在的虚拟地址
78 #[inline(always)]
virt(&self) -> VirtAddr79 pub unsafe fn virt(&self) -> VirtAddr {
80 return Arch::phys_2_virt(self.phys).unwrap();
81 }
82
83 /// 获取第i个页表项所表示的虚拟内存空间的起始地址
entry_base(&self, i: usize) -> Option<VirtAddr>84 pub fn entry_base(&self, i: usize) -> Option<VirtAddr> {
85 if i < Arch::PAGE_ENTRY_NUM {
86 let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
87 return Some(self.base.add(i << shift));
88 } else {
89 return None;
90 }
91 }
92
93 /// 获取当前页表的第i个页表项所在的虚拟地址(注意与entry_base进行区分)
entry_virt(&self, i: usize) -> Option<VirtAddr>94 pub unsafe fn entry_virt(&self, i: usize) -> Option<VirtAddr> {
95 if i < Arch::PAGE_ENTRY_NUM {
96 return Some(self.virt().add(i * Arch::PAGE_ENTRY_SIZE));
97 } else {
98 return None;
99 }
100 }
101
102 /// 获取当前页表的第i个页表项
entry(&self, i: usize) -> Option<PageEntry<Arch>>103 pub unsafe fn entry(&self, i: usize) -> Option<PageEntry<Arch>> {
104 let entry_virt = self.entry_virt(i)?;
105 return Some(PageEntry::from_usize(Arch::read::<usize>(entry_virt)));
106 }
107
108 /// 设置当前页表的第i个页表项
set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()>109 pub unsafe fn set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()> {
110 let entry_virt = self.entry_virt(i)?;
111 Arch::write::<usize>(entry_virt, entry.data());
112 return Some(());
113 }
114
115 /// 判断当前页表的第i个页表项是否已经填写了值
116 ///
117 /// ## 参数
118 /// - Some(true) 如果已经填写了值
119 /// - Some(false) 如果未填写值
120 /// - None 如果i超出了页表项的范围
entry_mapped(&self, i: usize) -> Option<bool>121 pub fn entry_mapped(&self, i: usize) -> Option<bool> {
122 let etv = unsafe { self.entry_virt(i) }?;
123 if unsafe { Arch::read::<usize>(etv) } != 0 {
124 return Some(true);
125 } else {
126 return Some(false);
127 }
128 }
129
130 /// 根据虚拟地址,获取对应的页表项在页表中的下标
131 ///
132 /// ## 参数
133 ///
134 /// - addr: 虚拟地址
135 ///
136 /// ## 返回值
137 ///
138 /// 页表项在页表中的下标。如果addr不在当前页表所表示的虚拟地址空间中,则返回None
index_of(&self, addr: VirtAddr) -> Option<usize>139 pub unsafe fn index_of(&self, addr: VirtAddr) -> Option<usize> {
140 let addr = VirtAddr::new(addr.data() & Arch::PAGE_ADDRESS_MASK);
141 let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
142
143 let mask = (MMArch::PAGE_ENTRY_NUM << shift) - 1;
144 if addr < self.base || addr >= self.base.add(mask) {
145 return None;
146 } else {
147 return Some((addr.data() >> shift) & MMArch::PAGE_ENTRY_MASK);
148 }
149 }
150
151 /// 获取第i个页表项指向的下一级页表
next_level_table(&self, index: usize) -> Option<Self>152 pub unsafe fn next_level_table(&self, index: usize) -> Option<Self> {
153 if self.level == 0 {
154 return None;
155 }
156
157 // 返回下一级页表
158 return Some(PageTable::new(
159 self.entry_base(index)?,
160 self.entry(index)?.address().ok()?,
161 self.level - 1,
162 ));
163 }
164 }
165
166 /// 页表项
167 #[derive(Copy, Clone)]
168 pub struct PageEntry<Arch> {
169 data: usize,
170 phantom: PhantomData<Arch>,
171 }
172
173 impl<Arch> Debug for PageEntry<Arch> {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>174 fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
175 f.write_fmt(format_args!("PageEntry({:#x})", self.data))
176 }
177 }
178
179 impl<Arch: MemoryManagementArch> PageEntry<Arch> {
180 #[inline(always)]
new(paddr: PhysAddr, flags: PageFlags<Arch>) -> Self181 pub fn new(paddr: PhysAddr, flags: PageFlags<Arch>) -> Self {
182 Self {
183 data: MMArch::make_entry(paddr, flags.data()),
184 phantom: PhantomData,
185 }
186 }
187 #[inline(always)]
from_usize(data: usize) -> Self188 pub fn from_usize(data: usize) -> Self {
189 Self {
190 data,
191 phantom: PhantomData,
192 }
193 }
194
195 #[inline(always)]
data(&self) -> usize196 pub fn data(&self) -> usize {
197 self.data
198 }
199
200 /// 获取当前页表项指向的物理地址
201 ///
202 /// ## 返回值
203 ///
204 /// - Ok(PhysAddr) 如果当前页面存在于物理内存中, 返回物理地址
205 /// - Err(PhysAddr) 如果当前页表项不存在, 返回物理地址
206 #[inline(always)]
address(&self) -> Result<PhysAddr, PhysAddr>207 pub fn address(&self) -> Result<PhysAddr, PhysAddr> {
208 let paddr: PhysAddr = {
209 #[cfg(target_arch = "x86_64")]
210 {
211 PhysAddr::new(self.data & Arch::PAGE_ADDRESS_MASK)
212 }
213
214 #[cfg(target_arch = "riscv64")]
215 {
216 let ppn = ((self.data & (!((1 << 10) - 1))) >> 10) & ((1 << 54) - 1);
217 super::allocator::page_frame::PhysPageFrame::from_ppn(ppn).phys_address()
218 }
219 };
220
221 if self.present() {
222 Ok(paddr)
223 } else {
224 Err(paddr)
225 }
226 }
227
228 #[inline(always)]
flags(&self) -> PageFlags<Arch>229 pub fn flags(&self) -> PageFlags<Arch> {
230 unsafe { PageFlags::from_data(self.data & Arch::ENTRY_FLAGS_MASK) }
231 }
232
233 #[inline(always)]
set_flags(&mut self, flags: PageFlags<Arch>)234 pub fn set_flags(&mut self, flags: PageFlags<Arch>) {
235 self.data = (self.data & !Arch::ENTRY_FLAGS_MASK) | flags.data();
236 }
237
238 #[inline(always)]
present(&self) -> bool239 pub fn present(&self) -> bool {
240 return self.data & Arch::ENTRY_FLAG_PRESENT != 0;
241 }
242 }
243
244 /// 页表项的标志位
245 #[derive(Copy, Clone, Hash)]
246 pub struct PageFlags<Arch> {
247 data: usize,
248 phantom: PhantomData<Arch>,
249 }
250
251 #[allow(dead_code)]
252 impl<Arch: MemoryManagementArch> PageFlags<Arch> {
253 #[inline(always)]
new() -> Self254 pub fn new() -> Self {
255 let mut r = unsafe {
256 Self::from_data(
257 Arch::ENTRY_FLAG_DEFAULT_PAGE
258 | Arch::ENTRY_FLAG_READONLY
259 | Arch::ENTRY_FLAG_NO_EXEC,
260 )
261 };
262
263 #[cfg(target_arch = "x86_64")]
264 {
265 if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
266 r = r.set_execute(true);
267 }
268 }
269
270 return r;
271 }
272
273 /// 根据ProtFlags生成PageFlags
274 ///
275 /// ## 参数
276 ///
277 /// - prot_flags: 页的保护标志
278 /// - user: 用户空间是否可访问
from_prot_flags(prot_flags: ProtFlags, user: bool) -> PageFlags<Arch>279 pub fn from_prot_flags(prot_flags: ProtFlags, user: bool) -> PageFlags<Arch> {
280 let flags: PageFlags<Arch> = PageFlags::new()
281 .set_user(user)
282 .set_execute(prot_flags.contains(ProtFlags::PROT_EXEC))
283 .set_write(prot_flags.contains(ProtFlags::PROT_WRITE));
284
285 return flags;
286 }
287
288 #[inline(always)]
data(&self) -> usize289 pub fn data(&self) -> usize {
290 self.data
291 }
292
293 #[inline(always)]
from_data(data: usize) -> Self294 pub const unsafe fn from_data(data: usize) -> Self {
295 return Self {
296 data: data,
297 phantom: PhantomData,
298 };
299 }
300
301 /// 为新页表的页表项设置默认值
302 ///
303 /// 默认值为:
304 /// - present
305 /// - read only
306 /// - kernel space
307 /// - no exec
308 #[inline(always)]
new_page_table(user: bool) -> Self309 pub fn new_page_table(user: bool) -> Self {
310 return unsafe {
311 let r = {
312 #[cfg(target_arch = "x86_64")]
313 {
314 Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE | Arch::ENTRY_FLAG_READWRITE)
315 }
316
317 #[cfg(target_arch = "riscv64")]
318 {
319 // riscv64指向下一级页表的页表项,不应设置R/W/X权限位
320 Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE)
321 }
322 };
323 if user {
324 r.set_user(true)
325 } else {
326 r
327 }
328 };
329 }
330
331 /// 取得当前页表项的所有权,更新当前页表项的标志位,并返回更新后的页表项。
332 ///
333 /// ## 参数
334 /// - flag 要更新的标志位的值
335 /// - value 如果为true,那么将flag对应的位设置为1,否则设置为0
336 ///
337 /// ## 返回值
338 ///
339 /// 更新后的页表项
340 #[inline(always)]
341 #[must_use]
update_flags(mut self, flag: usize, value: bool) -> Self342 pub fn update_flags(mut self, flag: usize, value: bool) -> Self {
343 if value {
344 self.data |= flag;
345 } else {
346 self.data &= !flag;
347 }
348 return self;
349 }
350
351 /// 判断当前页表项是否存在指定的flag(只有全部flag都存在才返回true)
352 #[inline(always)]
has_flag(&self, flag: usize) -> bool353 pub fn has_flag(&self, flag: usize) -> bool {
354 return self.data & flag == flag;
355 }
356
357 #[inline(always)]
present(&self) -> bool358 pub fn present(&self) -> bool {
359 return self.has_flag(Arch::ENTRY_FLAG_PRESENT);
360 }
361
362 /// 设置当前页表项的权限
363 ///
364 /// @param value 如果为true,那么将当前页表项的权限设置为用户态可访问
365 #[must_use]
366 #[inline(always)]
set_user(self, value: bool) -> Self367 pub fn set_user(self, value: bool) -> Self {
368 return self.update_flags(Arch::ENTRY_FLAG_USER, value);
369 }
370
371 /// 用户态是否可以访问当前页表项
372 #[inline(always)]
has_user(&self) -> bool373 pub fn has_user(&self) -> bool {
374 return self.has_flag(Arch::ENTRY_FLAG_USER);
375 }
376
377 /// 设置当前页表项的可写性, 如果为true,那么将当前页表项的权限设置为可写, 否则设置为只读
378 ///
379 /// ## 返回值
380 ///
381 /// 更新后的页表项.
382 ///
383 /// **请注意,**本函数会取得当前页表项的所有权,因此返回的页表项不是原来的页表项
384 #[must_use]
385 #[inline(always)]
set_write(self, value: bool) -> Self386 pub fn set_write(self, value: bool) -> Self {
387 #[cfg(target_arch = "x86_64")]
388 {
389 // 有的架构同时具有可写和不可写的标志位,因此需要同时更新
390 return self
391 .update_flags(Arch::ENTRY_FLAG_READONLY, !value)
392 .update_flags(Arch::ENTRY_FLAG_READWRITE, value);
393 }
394
395 #[cfg(target_arch = "riscv64")]
396 {
397 if value {
398 return self.update_flags(Arch::ENTRY_FLAG_READWRITE, true);
399 } else {
400 return self.update_flags(Arch::ENTRY_FLAG_READONLY, true);
401 }
402 }
403 }
404
405 /// 当前页表项是否可写
406 #[inline(always)]
has_write(&self) -> bool407 pub fn has_write(&self) -> bool {
408 // 有的架构同时具有可写和不可写的标志位,因此需要同时判断
409 return self.data & (Arch::ENTRY_FLAG_READWRITE | Arch::ENTRY_FLAG_READONLY)
410 == Arch::ENTRY_FLAG_READWRITE;
411 }
412
413 /// 设置当前页表项的可执行性, 如果为true,那么将当前页表项的权限设置为可执行, 否则设置为不可执行
414 #[must_use]
415 #[inline(always)]
set_execute(self, mut value: bool) -> Self416 pub fn set_execute(self, mut value: bool) -> Self {
417 #[cfg(target_arch = "x86_64")]
418 {
419 // 如果xd位被保留,那么将可执行性设置为true
420 if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
421 value = true;
422 }
423 }
424
425 // 有的架构同时具有可执行和不可执行的标志位,因此需要同时更新
426 return self
427 .update_flags(Arch::ENTRY_FLAG_NO_EXEC, !value)
428 .update_flags(Arch::ENTRY_FLAG_EXEC, value);
429 }
430
431 /// 当前页表项是否可执行
432 #[inline(always)]
has_execute(&self) -> bool433 pub fn has_execute(&self) -> bool {
434 // 有的架构同时具有可执行和不可执行的标志位,因此需要同时判断
435 return self.data & (Arch::ENTRY_FLAG_EXEC | Arch::ENTRY_FLAG_NO_EXEC)
436 == Arch::ENTRY_FLAG_EXEC;
437 }
438
439 /// 设置当前页表项的缓存策略
440 ///
441 /// ## 参数
442 ///
443 /// - value: 如果为true,那么将当前页表项的缓存策略设置为不缓存。
444 #[inline(always)]
set_page_cache_disable(self, value: bool) -> Self445 pub fn set_page_cache_disable(self, value: bool) -> Self {
446 return self.update_flags(Arch::ENTRY_FLAG_CACHE_DISABLE, value);
447 }
448
449 /// 获取当前页表项的缓存策略
450 ///
451 /// ## 返回值
452 ///
453 /// 如果当前页表项的缓存策略为不缓存,那么返回true,否则返回false。
454 #[inline(always)]
has_page_cache_disable(&self) -> bool455 pub fn has_page_cache_disable(&self) -> bool {
456 return self.has_flag(Arch::ENTRY_FLAG_CACHE_DISABLE);
457 }
458
459 /// 设置当前页表项的写穿策略
460 ///
461 /// ## 参数
462 ///
463 /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
464 #[inline(always)]
set_page_write_through(self, value: bool) -> Self465 pub fn set_page_write_through(self, value: bool) -> Self {
466 return self.update_flags(Arch::ENTRY_FLAG_WRITE_THROUGH, value);
467 }
468
469 /// 获取当前页表项的写穿策略
470 ///
471 /// ## 返回值
472 ///
473 /// 如果当前页表项的写穿策略为写穿,那么返回true,否则返回false。
474 #[inline(always)]
has_page_write_through(&self) -> bool475 pub fn has_page_write_through(&self) -> bool {
476 return self.has_flag(Arch::ENTRY_FLAG_WRITE_THROUGH);
477 }
478
479 /// MMIO内存的页表项标志
480 #[inline(always)]
mmio_flags() -> Self481 pub fn mmio_flags() -> Self {
482 return Self::new()
483 .set_user(false)
484 .set_write(true)
485 .set_execute(true)
486 .set_page_cache_disable(true)
487 .set_page_write_through(true);
488 }
489 }
490
491 impl<Arch: MemoryManagementArch> fmt::Debug for PageFlags<Arch> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result492 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
493 f.debug_struct("PageFlags")
494 .field("bits", &format_args!("{:#0x}", self.data))
495 .field("present", &self.present())
496 .field("has_write", &self.has_write())
497 .field("has_execute", &self.has_execute())
498 .field("has_user", &self.has_user())
499 .finish()
500 }
501 }
502
503 /// 页表映射器
504 #[derive(Hash)]
505 pub struct PageMapper<Arch, F> {
506 /// 页表类型
507 table_kind: PageTableKind,
508 /// 根页表物理地址
509 table_paddr: PhysAddr,
510 /// 页分配器
511 frame_allocator: F,
512 phantom: PhantomData<fn() -> Arch>,
513 }
514
515 impl<Arch: MemoryManagementArch, F: FrameAllocator> PageMapper<Arch, F> {
516 /// 创建新的页面映射器
517 ///
518 /// ## 参数
519 /// - table_kind 页表类型
520 /// - table_paddr 根页表物理地址
521 /// - allocator 页分配器
522 ///
523 /// ## 返回值
524 ///
525 /// 页面映射器
new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self526 pub unsafe fn new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self {
527 return Self {
528 table_kind,
529 table_paddr,
530 frame_allocator: allocator,
531 phantom: PhantomData,
532 };
533 }
534
535 /// 创建页表,并为这个页表创建页面映射器
create(table_kind: PageTableKind, mut allocator: F) -> Option<Self>536 pub unsafe fn create(table_kind: PageTableKind, mut allocator: F) -> Option<Self> {
537 let table_paddr = allocator.allocate_one()?;
538 // 清空页表
539 let table_vaddr = Arch::phys_2_virt(table_paddr)?;
540 Arch::write_bytes(table_vaddr, 0, Arch::PAGE_SIZE);
541 return Some(Self::new(table_kind, table_paddr, allocator));
542 }
543
544 /// 获取当前页表的页面映射器
545 #[inline(always)]
current(table_kind: PageTableKind, allocator: F) -> Self546 pub unsafe fn current(table_kind: PageTableKind, allocator: F) -> Self {
547 let table_paddr = Arch::table(table_kind);
548 return Self::new(table_kind, table_paddr, allocator);
549 }
550
551 /// 判断当前页表分配器所属的页表是否是当前页表
552 #[inline(always)]
is_current(&self) -> bool553 pub fn is_current(&self) -> bool {
554 return unsafe { self.table().phys() == Arch::table(self.table_kind) };
555 }
556
557 /// 将当前页表分配器所属的页表设置为当前页表
558 #[inline(always)]
make_current(&self)559 pub unsafe fn make_current(&self) {
560 Arch::set_table(self.table_kind, self.table_paddr);
561 }
562
563 /// 获取当前页表分配器所属的根页表的结构体
564 #[inline(always)]
table(&self) -> PageTable<Arch>565 pub fn table(&self) -> PageTable<Arch> {
566 // 由于只能通过new方法创建PageMapper,因此这里假定table_paddr是有效的
567 return unsafe {
568 PageTable::new(VirtAddr::new(0), self.table_paddr, Arch::PAGE_LEVELS - 1)
569 };
570 }
571
572 /// 获取当前PageMapper所对应的页分配器实例的引用
573 #[inline(always)]
574 #[allow(dead_code)]
allocator_ref(&self) -> &F575 pub fn allocator_ref(&self) -> &F {
576 return &self.frame_allocator;
577 }
578
579 /// 获取当前PageMapper所对应的页分配器实例的可变引用
580 #[inline(always)]
allocator_mut(&mut self) -> &mut F581 pub fn allocator_mut(&mut self) -> &mut F {
582 return &mut self.frame_allocator;
583 }
584
585 /// 从当前PageMapper的页分配器中分配一个物理页,并将其映射到指定的虚拟地址
map( &mut self, virt: VirtAddr, flags: PageFlags<Arch>, ) -> Option<PageFlush<Arch>>586 pub unsafe fn map(
587 &mut self,
588 virt: VirtAddr,
589 flags: PageFlags<Arch>,
590 ) -> Option<PageFlush<Arch>> {
591 compiler_fence(Ordering::SeqCst);
592 let phys: PhysAddr = self.frame_allocator.allocate_one()?;
593 compiler_fence(Ordering::SeqCst);
594 return self.map_phys(virt, phys, flags);
595 }
596
597 /// 映射一个物理页到指定的虚拟地址
map_phys( &mut self, virt: VirtAddr, phys: PhysAddr, flags: PageFlags<Arch>, ) -> Option<PageFlush<Arch>>598 pub unsafe fn map_phys(
599 &mut self,
600 virt: VirtAddr,
601 phys: PhysAddr,
602 flags: PageFlags<Arch>,
603 ) -> Option<PageFlush<Arch>> {
604 // 验证虚拟地址和物理地址是否对齐
605 if !(virt.check_aligned(Arch::PAGE_SIZE) && phys.check_aligned(Arch::PAGE_SIZE)) {
606 kerror!(
607 "Try to map unaligned page: virt={:?}, phys={:?}",
608 virt,
609 phys
610 );
611 return None;
612 }
613
614 let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
615
616 // TODO: 验证flags是否合法
617
618 // 创建页表项
619 let entry = PageEntry::new(phys, flags);
620 let mut table = self.table();
621 loop {
622 let i = table.index_of(virt)?;
623 assert!(i < Arch::PAGE_ENTRY_NUM);
624 if table.level() == 0 {
625 // todo: 检查是否已经映射
626 // 现在不检查的原因是,刚刚启动系统时,内核会映射一些页。
627 if table.entry_mapped(i)? == true {
628 kwarn!("Page {:?} already mapped", virt);
629 }
630
631 compiler_fence(Ordering::SeqCst);
632
633 table.set_entry(i, entry);
634 compiler_fence(Ordering::SeqCst);
635 return Some(PageFlush::new(virt));
636 } else {
637 let next_table = table.next_level_table(i);
638 if let Some(next_table) = next_table {
639 table = next_table;
640 // kdebug!("Mapping {:?} to next level table...", virt);
641 } else {
642 // 分配下一级页表
643 let frame = self.frame_allocator.allocate_one()?;
644
645 // 清空这个页帧
646 MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
647
648 // 设置页表项的flags
649 let flags: PageFlags<Arch> =
650 PageFlags::new_page_table(virt.kind() == PageTableKind::User);
651
652 // kdebug!("Flags: {:?}", flags);
653
654 // 把新分配的页表映射到当前页表
655 table.set_entry(i, PageEntry::new(frame, flags));
656
657 // 获取新分配的页表
658 table = table.next_level_table(i)?;
659 }
660 }
661 }
662 }
663
664 /// 将物理地址映射到具有线性偏移量的虚拟地址
665 #[allow(dead_code)]
map_linearly( &mut self, phys: PhysAddr, flags: PageFlags<Arch>, ) -> Option<(VirtAddr, PageFlush<Arch>)>666 pub unsafe fn map_linearly(
667 &mut self,
668 phys: PhysAddr,
669 flags: PageFlags<Arch>,
670 ) -> Option<(VirtAddr, PageFlush<Arch>)> {
671 let virt: VirtAddr = Arch::phys_2_virt(phys)?;
672 return self.map_phys(virt, phys, flags).map(|flush| (virt, flush));
673 }
674
675 /// 修改虚拟地址的页表项的flags,并返回页表项刷新器
676 ///
677 /// 请注意,需要在修改完flags后,调用刷新器的flush方法,才能使修改生效
678 ///
679 /// ## 参数
680 /// - virt 虚拟地址
681 /// - flags 新的页表项的flags
682 ///
683 /// ## 返回值
684 ///
685 /// 如果修改成功,返回刷新器,否则返回None
remap( &mut self, virt: VirtAddr, flags: PageFlags<Arch>, ) -> Option<PageFlush<Arch>>686 pub unsafe fn remap(
687 &mut self,
688 virt: VirtAddr,
689 flags: PageFlags<Arch>,
690 ) -> Option<PageFlush<Arch>> {
691 return self
692 .visit(virt, |p1, i| {
693 let mut entry = p1.entry(i)?;
694 entry.set_flags(flags);
695 p1.set_entry(i, entry);
696 Some(PageFlush::new(virt))
697 })
698 .flatten();
699 }
700
701 /// 根据虚拟地址,查找页表,获取对应的物理地址和页表项的flags
702 ///
703 /// ## 参数
704 ///
705 /// - virt 虚拟地址
706 ///
707 /// ## 返回值
708 ///
709 /// 如果查找成功,返回物理地址和页表项的flags,否则返回None
translate(&self, virt: VirtAddr) -> Option<(PhysAddr, PageFlags<Arch>)>710 pub fn translate(&self, virt: VirtAddr) -> Option<(PhysAddr, PageFlags<Arch>)> {
711 let entry: PageEntry<Arch> = self.visit(virt, |p1, i| unsafe { p1.entry(i) })??;
712 let paddr = entry.address().ok()?;
713 let flags = entry.flags();
714 return Some((paddr, flags));
715 }
716
717 /// 取消虚拟地址的映射,释放页面,并返回页表项刷新器
718 ///
719 /// 请注意,需要在取消映射后,调用刷新器的flush方法,才能使修改生效
720 ///
721 /// ## 参数
722 ///
723 /// - virt 虚拟地址
724 /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
725 ///
726 /// ## 返回值
727 /// 如果取消成功,返回刷新器,否则返回None
728 #[allow(dead_code)]
unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>>729 pub unsafe fn unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>> {
730 let (paddr, _, flusher) = self.unmap_phys(virt, unmap_parents)?;
731 self.frame_allocator.free_one(paddr);
732 return Some(flusher);
733 }
734
735 /// 取消虚拟地址的映射,并返回物理地址和页表项的flags
736 ///
737 /// ## 参数
738 ///
739 /// - vaddr 虚拟地址
740 /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
741 ///
742 /// ## 返回值
743 ///
744 /// 如果取消成功,返回物理地址和页表项的flags,否则返回None
unmap_phys( &mut self, virt: VirtAddr, unmap_parents: bool, ) -> Option<(PhysAddr, PageFlags<Arch>, PageFlush<Arch>)>745 pub unsafe fn unmap_phys(
746 &mut self,
747 virt: VirtAddr,
748 unmap_parents: bool,
749 ) -> Option<(PhysAddr, PageFlags<Arch>, PageFlush<Arch>)> {
750 if !virt.check_aligned(Arch::PAGE_SIZE) {
751 kerror!("Try to unmap unaligned page: virt={:?}", virt);
752 return None;
753 }
754
755 let mut table = self.table();
756 return unmap_phys_inner(virt, &mut table, unmap_parents, self.allocator_mut())
757 .map(|(paddr, flags)| (paddr, flags, PageFlush::<Arch>::new(virt)));
758 }
759
760 /// 在页表中,访问虚拟地址对应的页表项,并调用传入的函数F
visit<T>( &self, virt: VirtAddr, f: impl FnOnce(&mut PageTable<Arch>, usize) -> T, ) -> Option<T>761 fn visit<T>(
762 &self,
763 virt: VirtAddr,
764 f: impl FnOnce(&mut PageTable<Arch>, usize) -> T,
765 ) -> Option<T> {
766 let mut table = self.table();
767 unsafe {
768 loop {
769 let i = table.index_of(virt)?;
770 if table.level() == 0 {
771 return Some(f(&mut table, i));
772 } else {
773 table = table.next_level_table(i)?;
774 }
775 }
776 }
777 }
778 }
779
780 /// 取消页面映射,返回被取消映射的页表项的:【物理地址】和【flags】
781 ///
782 /// ## 参数
783 ///
784 /// - vaddr 虚拟地址
785 /// - table 页表
786 /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
787 /// - allocator 页面分配器(如果页表从这个分配器分配,那么在取消映射时,也需要归还到这个分配器内)
788 ///
789 /// ## 返回值
790 ///
791 /// 如果取消成功,返回被取消映射的页表项的:【物理地址】和【flags】,否则返回None
unmap_phys_inner<Arch: MemoryManagementArch>( vaddr: VirtAddr, table: &PageTable<Arch>, unmap_parents: bool, allocator: &mut impl FrameAllocator, ) -> Option<(PhysAddr, PageFlags<Arch>)>792 unsafe fn unmap_phys_inner<Arch: MemoryManagementArch>(
793 vaddr: VirtAddr,
794 table: &PageTable<Arch>,
795 unmap_parents: bool,
796 allocator: &mut impl FrameAllocator,
797 ) -> Option<(PhysAddr, PageFlags<Arch>)> {
798 // 获取页表项的索引
799 let i = table.index_of(vaddr)?;
800
801 // 如果当前是最后一级页表,直接取消页面映射
802 if table.level() == 0 {
803 let entry = table.entry(i)?;
804 table.set_entry(i, PageEntry::from_usize(0));
805 return Some((entry.address().ok()?, entry.flags()));
806 }
807
808 let mut subtable = table.next_level_table(i)?;
809 // 递归地取消映射
810 let result = unmap_phys_inner(vaddr, &mut subtable, unmap_parents, allocator)?;
811
812 // TODO: This is a bad idea for architectures where the kernel mappings are done in the process tables,
813 // as these mappings may become out of sync
814 if unmap_parents {
815 // 如果子页表已经没有映射的页面了,就取消子页表的映射
816
817 // 检查子页表中是否还有映射的页面
818 let x = (0..Arch::PAGE_ENTRY_NUM)
819 .map(|k| subtable.entry(k).expect("invalid page entry"))
820 .any(|e| e.present());
821 if !x {
822 // 如果没有,就取消子页表的映射
823 table.set_entry(i, PageEntry::from_usize(0));
824 // 释放子页表
825 allocator.free_one(subtable.phys());
826 }
827 }
828
829 return Some(result);
830 }
831
832 impl<Arch, F: Debug> Debug for PageMapper<Arch, F> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result833 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
834 f.debug_struct("PageMapper")
835 .field("table_paddr", &self.table_paddr)
836 .field("frame_allocator", &self.frame_allocator)
837 .finish()
838 }
839 }
840
841 /// 页表刷新器的trait
842 pub trait Flusher<Arch: MemoryManagementArch> {
843 /// 取消对指定的page flusher的刷新
consume(&mut self, flush: PageFlush<Arch>)844 fn consume(&mut self, flush: PageFlush<Arch>);
845 }
846
847 /// 用于刷新某个虚拟地址的刷新器。这个刷新器一经产生,就必须调用flush()方法,
848 /// 否则会造成对页表的更改被忽略,这是不安全的
849 #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
850 pub struct PageFlush<Arch: MemoryManagementArch> {
851 virt: VirtAddr,
852 phantom: PhantomData<Arch>,
853 }
854
855 impl<Arch: MemoryManagementArch> PageFlush<Arch> {
new(virt: VirtAddr) -> Self856 pub fn new(virt: VirtAddr) -> Self {
857 return Self {
858 virt,
859 phantom: PhantomData,
860 };
861 }
862
flush(self)863 pub fn flush(self) {
864 unsafe { Arch::invalidate_page(self.virt) };
865 }
866
867 /// 忽略掉这个刷新器
ignore(self)868 pub unsafe fn ignore(self) {
869 mem::forget(self);
870 }
871 }
872
873 impl<Arch: MemoryManagementArch> Drop for PageFlush<Arch> {
drop(&mut self)874 fn drop(&mut self) {
875 unsafe {
876 MMArch::invalidate_page(self.virt);
877 }
878 }
879 }
880
881 /// 用于刷新整个页表的刷新器。这个刷新器一经产生,就必须调用flush()方法,
882 /// 否则会造成对页表的更改被忽略,这是不安全的
883 #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
884 pub struct PageFlushAll<Arch: MemoryManagementArch> {
885 phantom: PhantomData<fn() -> Arch>,
886 }
887
888 #[allow(dead_code)]
889 impl<Arch: MemoryManagementArch> PageFlushAll<Arch> {
new() -> Self890 pub fn new() -> Self {
891 return Self {
892 phantom: PhantomData,
893 };
894 }
895
flush(self)896 pub fn flush(self) {
897 unsafe { Arch::invalidate_all() };
898 }
899
900 /// 忽略掉这个刷新器
ignore(self)901 pub unsafe fn ignore(self) {
902 mem::forget(self);
903 }
904 }
905
906 impl<Arch: MemoryManagementArch> Flusher<Arch> for PageFlushAll<Arch> {
907 /// 为page flush all 实现consume,消除对单个页面的刷新。(刷新整个页表了就不需要刷新单个页面了)
consume(&mut self, flush: PageFlush<Arch>)908 fn consume(&mut self, flush: PageFlush<Arch>) {
909 unsafe { flush.ignore() };
910 }
911 }
912
913 impl<Arch: MemoryManagementArch, T: Flusher<Arch> + ?Sized> Flusher<Arch> for &mut T {
914 /// 允许一个flusher consume掉另一个flusher
consume(&mut self, flush: PageFlush<Arch>)915 fn consume(&mut self, flush: PageFlush<Arch>) {
916 <T as Flusher<Arch>>::consume(self, flush);
917 }
918 }
919
920 impl<Arch: MemoryManagementArch> Flusher<Arch> for () {
consume(&mut self, _flush: PageFlush<Arch>)921 fn consume(&mut self, _flush: PageFlush<Arch>) {}
922 }
923
924 impl<Arch: MemoryManagementArch> Drop for PageFlushAll<Arch> {
drop(&mut self)925 fn drop(&mut self) {
926 unsafe {
927 Arch::invalidate_all();
928 }
929 }
930 }
931
932 /// 未在当前CPU上激活的页表的刷新器
933 ///
934 /// 如果页表没有在当前cpu上激活,那么需要发送ipi到其他核心,尝试在其他核心上刷新页表
935 ///
936 /// TODO: 这个方式很暴力,也许把它改成在指定的核心上刷新页表会更好。(可以测试一下开销)
937 #[derive(Debug)]
938 pub struct InactiveFlusher;
939
940 impl InactiveFlusher {
new() -> Self941 pub fn new() -> Self {
942 return Self {};
943 }
944 }
945
946 impl Flusher<MMArch> for InactiveFlusher {
consume(&mut self, flush: PageFlush<MMArch>)947 fn consume(&mut self, flush: PageFlush<MMArch>) {
948 unsafe {
949 flush.ignore();
950 }
951 }
952 }
953
954 impl Drop for InactiveFlusher {
drop(&mut self)955 fn drop(&mut self) {
956 // 发送刷新页表的IPI
957 send_ipi(IpiKind::FlushTLB, IpiTarget::Other);
958 }
959 }
960
961 /// # 把一个地址向下对齐到页大小
round_down_to_page_size(addr: usize) -> usize962 pub fn round_down_to_page_size(addr: usize) -> usize {
963 addr & !(MMArch::PAGE_SIZE - 1)
964 }
965
966 /// # 把一个地址向上对齐到页大小
round_up_to_page_size(addr: usize) -> usize967 pub fn round_up_to_page_size(addr: usize) -> usize {
968 round_down_to_page_size(addr + MMArch::PAGE_SIZE - 1)
969 }
970