1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/mmu.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memremap.h>
21 #include <linux/memory.h>
22 #include <linux/fs.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/set_memory.h>
27 
28 #include <asm/barrier.h>
29 #include <asm/cputype.h>
30 #include <asm/fixmap.h>
31 #include <asm/kasan.h>
32 #include <asm/kernel-pgtable.h>
33 #include <asm/sections.h>
34 #include <asm/setup.h>
35 #include <linux/sizes.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 #include <asm/ptdump.h>
39 #include <asm/tlbflush.h>
40 #include <asm/pgalloc.h>
41 
42 #define NO_BLOCK_MAPPINGS	BIT(0)
43 #define NO_CONT_MAPPINGS	BIT(1)
44 #define NO_EXEC_MAPPINGS	BIT(2)	/* assumes FEAT_HPDS is not used */
45 
46 u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
47 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
48 
49 u64 __section(".mmuoff.data.write") vabits_actual;
50 EXPORT_SYMBOL(vabits_actual);
51 
52 u64 kimage_voffset __ro_after_init;
53 EXPORT_SYMBOL(kimage_voffset);
54 
55 /*
56  * Empty_zero_page is a special page that is used for zero-initialized data
57  * and COW.
58  */
59 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
60 EXPORT_SYMBOL(empty_zero_page);
61 
62 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
63 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
64 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
65 
66 static DEFINE_SPINLOCK(swapper_pgdir_lock);
67 static DEFINE_MUTEX(fixmap_lock);
68 
set_swapper_pgd(pgd_t * pgdp,pgd_t pgd)69 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
70 {
71 	pgd_t *fixmap_pgdp;
72 
73 	spin_lock(&swapper_pgdir_lock);
74 	fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
75 	WRITE_ONCE(*fixmap_pgdp, pgd);
76 	/*
77 	 * We need dsb(ishst) here to ensure the page-table-walker sees
78 	 * our new entry before set_p?d() returns. The fixmap's
79 	 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
80 	 */
81 	pgd_clear_fixmap();
82 	spin_unlock(&swapper_pgdir_lock);
83 }
84 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)85 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
86 			      unsigned long size, pgprot_t vma_prot)
87 {
88 	if (!pfn_is_map_memory(pfn))
89 		return pgprot_noncached(vma_prot);
90 	else if (file->f_flags & O_SYNC)
91 		return pgprot_writecombine(vma_prot);
92 	return vma_prot;
93 }
94 EXPORT_SYMBOL(phys_mem_access_prot);
95 
early_pgtable_alloc(int shift)96 static phys_addr_t __init early_pgtable_alloc(int shift)
97 {
98 	phys_addr_t phys;
99 	void *ptr;
100 
101 	phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
102 					 MEMBLOCK_ALLOC_NOLEAKTRACE);
103 	if (!phys)
104 		panic("Failed to allocate page table page\n");
105 
106 	/*
107 	 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
108 	 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
109 	 * any level of table.
110 	 */
111 	ptr = pte_set_fixmap(phys);
112 
113 	memset(ptr, 0, PAGE_SIZE);
114 
115 	/*
116 	 * Implicit barriers also ensure the zeroed page is visible to the page
117 	 * table walker
118 	 */
119 	pte_clear_fixmap();
120 
121 	return phys;
122 }
123 
pgattr_change_is_safe(u64 old,u64 new)124 static bool pgattr_change_is_safe(u64 old, u64 new)
125 {
126 	/*
127 	 * The following mapping attributes may be updated in live
128 	 * kernel mappings without the need for break-before-make.
129 	 */
130 	pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
131 
132 	/* creating or taking down mappings is always safe */
133 	if (old == 0 || new == 0)
134 		return true;
135 
136 	/* live contiguous mappings may not be manipulated at all */
137 	if ((old | new) & PTE_CONT)
138 		return false;
139 
140 	/* Transitioning from Non-Global to Global is unsafe */
141 	if (old & ~new & PTE_NG)
142 		return false;
143 
144 	/*
145 	 * Changing the memory type between Normal and Normal-Tagged is safe
146 	 * since Tagged is considered a permission attribute from the
147 	 * mismatched attribute aliases perspective.
148 	 */
149 	if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
150 	     (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
151 	    ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
152 	     (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
153 		mask |= PTE_ATTRINDX_MASK;
154 
155 	return ((old ^ new) & ~mask) == 0;
156 }
157 
init_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot)158 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
159 		     phys_addr_t phys, pgprot_t prot)
160 {
161 	pte_t *ptep;
162 
163 	ptep = pte_set_fixmap_offset(pmdp, addr);
164 	do {
165 		pte_t old_pte = READ_ONCE(*ptep);
166 
167 		set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
168 
169 		/*
170 		 * After the PTE entry has been populated once, we
171 		 * only allow updates to the permission attributes.
172 		 */
173 		BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
174 					      READ_ONCE(pte_val(*ptep))));
175 
176 		phys += PAGE_SIZE;
177 	} while (ptep++, addr += PAGE_SIZE, addr != end);
178 
179 	pte_clear_fixmap();
180 }
181 
alloc_init_cont_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)182 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
183 				unsigned long end, phys_addr_t phys,
184 				pgprot_t prot,
185 				phys_addr_t (*pgtable_alloc)(int),
186 				int flags)
187 {
188 	unsigned long next;
189 	pmd_t pmd = READ_ONCE(*pmdp);
190 
191 	BUG_ON(pmd_sect(pmd));
192 	if (pmd_none(pmd)) {
193 		pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
194 		phys_addr_t pte_phys;
195 
196 		if (flags & NO_EXEC_MAPPINGS)
197 			pmdval |= PMD_TABLE_PXN;
198 		BUG_ON(!pgtable_alloc);
199 		pte_phys = pgtable_alloc(PAGE_SHIFT);
200 		__pmd_populate(pmdp, pte_phys, pmdval);
201 		pmd = READ_ONCE(*pmdp);
202 	}
203 	BUG_ON(pmd_bad(pmd));
204 
205 	do {
206 		pgprot_t __prot = prot;
207 
208 		next = pte_cont_addr_end(addr, end);
209 
210 		/* use a contiguous mapping if the range is suitably aligned */
211 		if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
212 		    (flags & NO_CONT_MAPPINGS) == 0)
213 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
214 
215 		init_pte(pmdp, addr, next, phys, __prot);
216 
217 		phys += next - addr;
218 	} while (addr = next, addr != end);
219 }
220 
init_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)221 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
222 		     phys_addr_t phys, pgprot_t prot,
223 		     phys_addr_t (*pgtable_alloc)(int), int flags)
224 {
225 	unsigned long next;
226 	pmd_t *pmdp;
227 
228 	pmdp = pmd_set_fixmap_offset(pudp, addr);
229 	do {
230 		pmd_t old_pmd = READ_ONCE(*pmdp);
231 
232 		next = pmd_addr_end(addr, end);
233 
234 		/* try section mapping first */
235 		if (((addr | next | phys) & ~PMD_MASK) == 0 &&
236 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
237 			pmd_set_huge(pmdp, phys, prot);
238 
239 			/*
240 			 * After the PMD entry has been populated once, we
241 			 * only allow updates to the permission attributes.
242 			 */
243 			BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
244 						      READ_ONCE(pmd_val(*pmdp))));
245 		} else {
246 			alloc_init_cont_pte(pmdp, addr, next, phys, prot,
247 					    pgtable_alloc, flags);
248 
249 			BUG_ON(pmd_val(old_pmd) != 0 &&
250 			       pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
251 		}
252 		phys += next - addr;
253 	} while (pmdp++, addr = next, addr != end);
254 
255 	pmd_clear_fixmap();
256 }
257 
alloc_init_cont_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)258 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
259 				unsigned long end, phys_addr_t phys,
260 				pgprot_t prot,
261 				phys_addr_t (*pgtable_alloc)(int), int flags)
262 {
263 	unsigned long next;
264 	pud_t pud = READ_ONCE(*pudp);
265 
266 	/*
267 	 * Check for initial section mappings in the pgd/pud.
268 	 */
269 	BUG_ON(pud_sect(pud));
270 	if (pud_none(pud)) {
271 		pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
272 		phys_addr_t pmd_phys;
273 
274 		if (flags & NO_EXEC_MAPPINGS)
275 			pudval |= PUD_TABLE_PXN;
276 		BUG_ON(!pgtable_alloc);
277 		pmd_phys = pgtable_alloc(PMD_SHIFT);
278 		__pud_populate(pudp, pmd_phys, pudval);
279 		pud = READ_ONCE(*pudp);
280 	}
281 	BUG_ON(pud_bad(pud));
282 
283 	do {
284 		pgprot_t __prot = prot;
285 
286 		next = pmd_cont_addr_end(addr, end);
287 
288 		/* use a contiguous mapping if the range is suitably aligned */
289 		if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
290 		    (flags & NO_CONT_MAPPINGS) == 0)
291 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
292 
293 		init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
294 
295 		phys += next - addr;
296 	} while (addr = next, addr != end);
297 }
298 
alloc_init_pud(pgd_t * pgdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)299 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
300 			   phys_addr_t phys, pgprot_t prot,
301 			   phys_addr_t (*pgtable_alloc)(int),
302 			   int flags)
303 {
304 	unsigned long next;
305 	pud_t *pudp;
306 	p4d_t *p4dp = p4d_offset(pgdp, addr);
307 	p4d_t p4d = READ_ONCE(*p4dp);
308 
309 	if (p4d_none(p4d)) {
310 		p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
311 		phys_addr_t pud_phys;
312 
313 		if (flags & NO_EXEC_MAPPINGS)
314 			p4dval |= P4D_TABLE_PXN;
315 		BUG_ON(!pgtable_alloc);
316 		pud_phys = pgtable_alloc(PUD_SHIFT);
317 		__p4d_populate(p4dp, pud_phys, p4dval);
318 		p4d = READ_ONCE(*p4dp);
319 	}
320 	BUG_ON(p4d_bad(p4d));
321 
322 	/*
323 	 * No need for locking during early boot. And it doesn't work as
324 	 * expected with KASLR enabled.
325 	 */
326 	if (system_state != SYSTEM_BOOTING)
327 		mutex_lock(&fixmap_lock);
328 	pudp = pud_set_fixmap_offset(p4dp, addr);
329 	do {
330 		pud_t old_pud = READ_ONCE(*pudp);
331 
332 		next = pud_addr_end(addr, end);
333 
334 		/*
335 		 * For 4K granule only, attempt to put down a 1GB block
336 		 */
337 		if (pud_sect_supported() &&
338 		   ((addr | next | phys) & ~PUD_MASK) == 0 &&
339 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
340 			pud_set_huge(pudp, phys, prot);
341 
342 			/*
343 			 * After the PUD entry has been populated once, we
344 			 * only allow updates to the permission attributes.
345 			 */
346 			BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
347 						      READ_ONCE(pud_val(*pudp))));
348 		} else {
349 			alloc_init_cont_pmd(pudp, addr, next, phys, prot,
350 					    pgtable_alloc, flags);
351 
352 			BUG_ON(pud_val(old_pud) != 0 &&
353 			       pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
354 		}
355 		phys += next - addr;
356 	} while (pudp++, addr = next, addr != end);
357 
358 	pud_clear_fixmap();
359 	if (system_state != SYSTEM_BOOTING)
360 		mutex_unlock(&fixmap_lock);
361 }
362 
__create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)363 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
364 				 unsigned long virt, phys_addr_t size,
365 				 pgprot_t prot,
366 				 phys_addr_t (*pgtable_alloc)(int),
367 				 int flags)
368 {
369 	unsigned long addr, end, next;
370 	pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
371 
372 	/*
373 	 * If the virtual and physical address don't have the same offset
374 	 * within a page, we cannot map the region as the caller expects.
375 	 */
376 	if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
377 		return;
378 
379 	phys &= PAGE_MASK;
380 	addr = virt & PAGE_MASK;
381 	end = PAGE_ALIGN(virt + size);
382 
383 	do {
384 		next = pgd_addr_end(addr, end);
385 		alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
386 			       flags);
387 		phys += next - addr;
388 	} while (pgdp++, addr = next, addr != end);
389 }
390 
__pgd_pgtable_alloc(int shift)391 static phys_addr_t __pgd_pgtable_alloc(int shift)
392 {
393 	void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
394 	BUG_ON(!ptr);
395 
396 	/* Ensure the zeroed page is visible to the page table walker */
397 	dsb(ishst);
398 	return __pa(ptr);
399 }
400 
pgd_pgtable_alloc(int shift)401 static phys_addr_t pgd_pgtable_alloc(int shift)
402 {
403 	phys_addr_t pa = __pgd_pgtable_alloc(shift);
404 
405 	/*
406 	 * Call proper page table ctor in case later we need to
407 	 * call core mm functions like apply_to_page_range() on
408 	 * this pre-allocated page table.
409 	 *
410 	 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
411 	 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
412 	 */
413 	if (shift == PAGE_SHIFT)
414 		BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
415 	else if (shift == PMD_SHIFT)
416 		BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
417 
418 	return pa;
419 }
420 
421 /*
422  * This function can only be used to modify existing table entries,
423  * without allocating new levels of table. Note that this permits the
424  * creation of new section or page entries.
425  */
create_mapping_noalloc(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)426 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
427 				  phys_addr_t size, pgprot_t prot)
428 {
429 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
430 		pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
431 			&phys, virt);
432 		return;
433 	}
434 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
435 			     NO_CONT_MAPPINGS);
436 }
437 
create_pgd_mapping(struct mm_struct * mm,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,bool page_mappings_only)438 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
439 			       unsigned long virt, phys_addr_t size,
440 			       pgprot_t prot, bool page_mappings_only)
441 {
442 	int flags = 0;
443 
444 	BUG_ON(mm == &init_mm);
445 
446 	if (page_mappings_only)
447 		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
448 
449 	__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
450 			     pgd_pgtable_alloc, flags);
451 }
452 
update_mapping_prot(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)453 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
454 				phys_addr_t size, pgprot_t prot)
455 {
456 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
457 		pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
458 			&phys, virt);
459 		return;
460 	}
461 
462 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
463 			     NO_CONT_MAPPINGS);
464 
465 	/* flush the TLBs after updating live kernel mappings */
466 	flush_tlb_kernel_range(virt, virt + size);
467 }
468 
__map_memblock(pgd_t * pgdp,phys_addr_t start,phys_addr_t end,pgprot_t prot,int flags)469 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
470 				  phys_addr_t end, pgprot_t prot, int flags)
471 {
472 	__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
473 			     prot, early_pgtable_alloc, flags);
474 }
475 
mark_linear_text_alias_ro(void)476 void __init mark_linear_text_alias_ro(void)
477 {
478 	/*
479 	 * Remove the write permissions from the linear alias of .text/.rodata
480 	 */
481 	update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
482 			    (unsigned long)__init_begin - (unsigned long)_stext,
483 			    PAGE_KERNEL_RO);
484 }
485 
486 static bool crash_mem_map __initdata;
487 
enable_crash_mem_map(char * arg)488 static int __init enable_crash_mem_map(char *arg)
489 {
490 	/*
491 	 * Proper parameter parsing is done by reserve_crashkernel(). We only
492 	 * need to know if the linear map has to avoid block mappings so that
493 	 * the crashkernel reservations can be unmapped later.
494 	 */
495 	crash_mem_map = true;
496 
497 	return 0;
498 }
499 early_param("crashkernel", enable_crash_mem_map);
500 
map_mem(pgd_t * pgdp)501 static void __init map_mem(pgd_t *pgdp)
502 {
503 	static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
504 	phys_addr_t kernel_start = __pa_symbol(_stext);
505 	phys_addr_t kernel_end = __pa_symbol(__init_begin);
506 	phys_addr_t start, end;
507 	int flags = NO_EXEC_MAPPINGS;
508 	u64 i;
509 
510 	/*
511 	 * Setting hierarchical PXNTable attributes on table entries covering
512 	 * the linear region is only possible if it is guaranteed that no table
513 	 * entries at any level are being shared between the linear region and
514 	 * the vmalloc region. Check whether this is true for the PGD level, in
515 	 * which case it is guaranteed to be true for all other levels as well.
516 	 */
517 	BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
518 
519 	if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
520 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
521 
522 	/*
523 	 * Take care not to create a writable alias for the
524 	 * read-only text and rodata sections of the kernel image.
525 	 * So temporarily mark them as NOMAP to skip mappings in
526 	 * the following for-loop
527 	 */
528 	memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
529 
530 #ifdef CONFIG_KEXEC_CORE
531 	if (crash_mem_map) {
532 		if (IS_ENABLED(CONFIG_ZONE_DMA) ||
533 		    IS_ENABLED(CONFIG_ZONE_DMA32))
534 			flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
535 		else if (crashk_res.end)
536 			memblock_mark_nomap(crashk_res.start,
537 			    resource_size(&crashk_res));
538 	}
539 #endif
540 
541 	/* map all the memory banks */
542 	for_each_mem_range(i, &start, &end) {
543 		if (start >= end)
544 			break;
545 		/*
546 		 * The linear map must allow allocation tags reading/writing
547 		 * if MTE is present. Otherwise, it has the same attributes as
548 		 * PAGE_KERNEL.
549 		 */
550 		__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
551 			       flags);
552 	}
553 
554 	/*
555 	 * Map the linear alias of the [_stext, __init_begin) interval
556 	 * as non-executable now, and remove the write permission in
557 	 * mark_linear_text_alias_ro() below (which will be called after
558 	 * alternative patching has completed). This makes the contents
559 	 * of the region accessible to subsystems such as hibernate,
560 	 * but protects it from inadvertent modification or execution.
561 	 * Note that contiguous mappings cannot be remapped in this way,
562 	 * so we should avoid them here.
563 	 */
564 	__map_memblock(pgdp, kernel_start, kernel_end,
565 		       PAGE_KERNEL, NO_CONT_MAPPINGS);
566 	memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
567 
568 	/*
569 	 * Use page-level mappings here so that we can shrink the region
570 	 * in page granularity and put back unused memory to buddy system
571 	 * through /sys/kernel/kexec_crash_size interface.
572 	 */
573 #ifdef CONFIG_KEXEC_CORE
574 	if (crash_mem_map &&
575 	    !IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32)) {
576 		if (crashk_res.end) {
577 			__map_memblock(pgdp, crashk_res.start,
578 				       crashk_res.end + 1,
579 				       PAGE_KERNEL,
580 				       NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
581 			memblock_clear_nomap(crashk_res.start,
582 					     resource_size(&crashk_res));
583 		}
584 	}
585 #endif
586 }
587 
mark_rodata_ro(void)588 void mark_rodata_ro(void)
589 {
590 	unsigned long section_size;
591 
592 	/*
593 	 * mark .rodata as read only. Use __init_begin rather than __end_rodata
594 	 * to cover NOTES and EXCEPTION_TABLE.
595 	 */
596 	section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
597 	update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
598 			    section_size, PAGE_KERNEL_RO);
599 
600 	debug_checkwx();
601 }
602 
map_kernel_segment(pgd_t * pgdp,void * va_start,void * va_end,pgprot_t prot,struct vm_struct * vma,int flags,unsigned long vm_flags)603 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
604 				      pgprot_t prot, struct vm_struct *vma,
605 				      int flags, unsigned long vm_flags)
606 {
607 	phys_addr_t pa_start = __pa_symbol(va_start);
608 	unsigned long size = va_end - va_start;
609 
610 	BUG_ON(!PAGE_ALIGNED(pa_start));
611 	BUG_ON(!PAGE_ALIGNED(size));
612 
613 	__create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
614 			     early_pgtable_alloc, flags);
615 
616 	if (!(vm_flags & VM_NO_GUARD))
617 		size += PAGE_SIZE;
618 
619 	vma->addr	= va_start;
620 	vma->phys_addr	= pa_start;
621 	vma->size	= size;
622 	vma->flags	= VM_MAP | vm_flags;
623 	vma->caller	= __builtin_return_address(0);
624 
625 	vm_area_add_early(vma);
626 }
627 
628 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
map_entry_trampoline(void)629 static int __init map_entry_trampoline(void)
630 {
631 	int i;
632 
633 	pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
634 	phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
635 
636 	/* The trampoline is always mapped and can therefore be global */
637 	pgprot_val(prot) &= ~PTE_NG;
638 
639 	/* Map only the text into the trampoline page table */
640 	memset(tramp_pg_dir, 0, PGD_SIZE);
641 	__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
642 			     entry_tramp_text_size(), prot,
643 			     __pgd_pgtable_alloc, NO_BLOCK_MAPPINGS);
644 
645 	/* Map both the text and data into the kernel page table */
646 	for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
647 		__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
648 			     pa_start + i * PAGE_SIZE, prot);
649 
650 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
651 		extern char __entry_tramp_data_start[];
652 
653 		__set_fixmap(FIX_ENTRY_TRAMP_DATA,
654 			     __pa_symbol(__entry_tramp_data_start),
655 			     PAGE_KERNEL_RO);
656 	}
657 
658 	return 0;
659 }
660 core_initcall(map_entry_trampoline);
661 #endif
662 
663 /*
664  * Open coded check for BTI, only for use to determine configuration
665  * for early mappings for before the cpufeature code has run.
666  */
arm64_early_this_cpu_has_bti(void)667 static bool arm64_early_this_cpu_has_bti(void)
668 {
669 	u64 pfr1;
670 
671 	if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
672 		return false;
673 
674 	pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
675 	return cpuid_feature_extract_unsigned_field(pfr1,
676 						    ID_AA64PFR1_BT_SHIFT);
677 }
678 
679 /*
680  * Create fine-grained mappings for the kernel.
681  */
map_kernel(pgd_t * pgdp)682 static void __init map_kernel(pgd_t *pgdp)
683 {
684 	static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
685 				vmlinux_initdata, vmlinux_data;
686 
687 	/*
688 	 * External debuggers may need to write directly to the text
689 	 * mapping to install SW breakpoints. Allow this (only) when
690 	 * explicitly requested with rodata=off.
691 	 */
692 	pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
693 
694 	/*
695 	 * If we have a CPU that supports BTI and a kernel built for
696 	 * BTI then mark the kernel executable text as guarded pages
697 	 * now so we don't have to rewrite the page tables later.
698 	 */
699 	if (arm64_early_this_cpu_has_bti())
700 		text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
701 
702 	/*
703 	 * Only rodata will be remapped with different permissions later on,
704 	 * all other segments are allowed to use contiguous mappings.
705 	 */
706 	map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
707 			   VM_NO_GUARD);
708 	map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
709 			   &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
710 	map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
711 			   &vmlinux_inittext, 0, VM_NO_GUARD);
712 	map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
713 			   &vmlinux_initdata, 0, VM_NO_GUARD);
714 	map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
715 
716 	if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
717 		/*
718 		 * The fixmap falls in a separate pgd to the kernel, and doesn't
719 		 * live in the carveout for the swapper_pg_dir. We can simply
720 		 * re-use the existing dir for the fixmap.
721 		 */
722 		set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
723 			READ_ONCE(*pgd_offset_k(FIXADDR_START)));
724 	} else if (CONFIG_PGTABLE_LEVELS > 3) {
725 		pgd_t *bm_pgdp;
726 		p4d_t *bm_p4dp;
727 		pud_t *bm_pudp;
728 		/*
729 		 * The fixmap shares its top level pgd entry with the kernel
730 		 * mapping. This can really only occur when we are running
731 		 * with 16k/4 levels, so we can simply reuse the pud level
732 		 * entry instead.
733 		 */
734 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
735 		bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
736 		bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
737 		bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
738 		pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
739 		pud_clear_fixmap();
740 	} else {
741 		BUG();
742 	}
743 
744 	kasan_copy_shadow(pgdp);
745 }
746 
paging_init(void)747 void __init paging_init(void)
748 {
749 	pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
750 
751 	map_kernel(pgdp);
752 	map_mem(pgdp);
753 
754 	pgd_clear_fixmap();
755 
756 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
757 	init_mm.pgd = swapper_pg_dir;
758 
759 	memblock_phys_free(__pa_symbol(init_pg_dir),
760 			   __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
761 
762 	memblock_allow_resize();
763 }
764 
765 /*
766  * Check whether a kernel address is valid (derived from arch/x86/).
767  */
kern_addr_valid(unsigned long addr)768 int kern_addr_valid(unsigned long addr)
769 {
770 	pgd_t *pgdp;
771 	p4d_t *p4dp;
772 	pud_t *pudp, pud;
773 	pmd_t *pmdp, pmd;
774 	pte_t *ptep, pte;
775 
776 	addr = arch_kasan_reset_tag(addr);
777 	if ((((long)addr) >> VA_BITS) != -1UL)
778 		return 0;
779 
780 	pgdp = pgd_offset_k(addr);
781 	if (pgd_none(READ_ONCE(*pgdp)))
782 		return 0;
783 
784 	p4dp = p4d_offset(pgdp, addr);
785 	if (p4d_none(READ_ONCE(*p4dp)))
786 		return 0;
787 
788 	pudp = pud_offset(p4dp, addr);
789 	pud = READ_ONCE(*pudp);
790 	if (pud_none(pud))
791 		return 0;
792 
793 	if (pud_sect(pud))
794 		return pfn_valid(pud_pfn(pud));
795 
796 	pmdp = pmd_offset(pudp, addr);
797 	pmd = READ_ONCE(*pmdp);
798 	if (pmd_none(pmd))
799 		return 0;
800 
801 	if (pmd_sect(pmd))
802 		return pfn_valid(pmd_pfn(pmd));
803 
804 	ptep = pte_offset_kernel(pmdp, addr);
805 	pte = READ_ONCE(*ptep);
806 	if (pte_none(pte))
807 		return 0;
808 
809 	return pfn_valid(pte_pfn(pte));
810 }
811 
812 #ifdef CONFIG_MEMORY_HOTPLUG
free_hotplug_page_range(struct page * page,size_t size,struct vmem_altmap * altmap)813 static void free_hotplug_page_range(struct page *page, size_t size,
814 				    struct vmem_altmap *altmap)
815 {
816 	if (altmap) {
817 		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
818 	} else {
819 		WARN_ON(PageReserved(page));
820 		free_pages((unsigned long)page_address(page), get_order(size));
821 	}
822 }
823 
free_hotplug_pgtable_page(struct page * page)824 static void free_hotplug_pgtable_page(struct page *page)
825 {
826 	free_hotplug_page_range(page, PAGE_SIZE, NULL);
827 }
828 
pgtable_range_aligned(unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling,unsigned long mask)829 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
830 				  unsigned long floor, unsigned long ceiling,
831 				  unsigned long mask)
832 {
833 	start &= mask;
834 	if (start < floor)
835 		return false;
836 
837 	if (ceiling) {
838 		ceiling &= mask;
839 		if (!ceiling)
840 			return false;
841 	}
842 
843 	if (end - 1 > ceiling - 1)
844 		return false;
845 	return true;
846 }
847 
unmap_hotplug_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)848 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
849 				    unsigned long end, bool free_mapped,
850 				    struct vmem_altmap *altmap)
851 {
852 	pte_t *ptep, pte;
853 
854 	do {
855 		ptep = pte_offset_kernel(pmdp, addr);
856 		pte = READ_ONCE(*ptep);
857 		if (pte_none(pte))
858 			continue;
859 
860 		WARN_ON(!pte_present(pte));
861 		pte_clear(&init_mm, addr, ptep);
862 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
863 		if (free_mapped)
864 			free_hotplug_page_range(pte_page(pte),
865 						PAGE_SIZE, altmap);
866 	} while (addr += PAGE_SIZE, addr < end);
867 }
868 
unmap_hotplug_pmd_range(pud_t * pudp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)869 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
870 				    unsigned long end, bool free_mapped,
871 				    struct vmem_altmap *altmap)
872 {
873 	unsigned long next;
874 	pmd_t *pmdp, pmd;
875 
876 	do {
877 		next = pmd_addr_end(addr, end);
878 		pmdp = pmd_offset(pudp, addr);
879 		pmd = READ_ONCE(*pmdp);
880 		if (pmd_none(pmd))
881 			continue;
882 
883 		WARN_ON(!pmd_present(pmd));
884 		if (pmd_sect(pmd)) {
885 			pmd_clear(pmdp);
886 
887 			/*
888 			 * One TLBI should be sufficient here as the PMD_SIZE
889 			 * range is mapped with a single block entry.
890 			 */
891 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
892 			if (free_mapped)
893 				free_hotplug_page_range(pmd_page(pmd),
894 							PMD_SIZE, altmap);
895 			continue;
896 		}
897 		WARN_ON(!pmd_table(pmd));
898 		unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
899 	} while (addr = next, addr < end);
900 }
901 
unmap_hotplug_pud_range(p4d_t * p4dp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)902 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
903 				    unsigned long end, bool free_mapped,
904 				    struct vmem_altmap *altmap)
905 {
906 	unsigned long next;
907 	pud_t *pudp, pud;
908 
909 	do {
910 		next = pud_addr_end(addr, end);
911 		pudp = pud_offset(p4dp, addr);
912 		pud = READ_ONCE(*pudp);
913 		if (pud_none(pud))
914 			continue;
915 
916 		WARN_ON(!pud_present(pud));
917 		if (pud_sect(pud)) {
918 			pud_clear(pudp);
919 
920 			/*
921 			 * One TLBI should be sufficient here as the PUD_SIZE
922 			 * range is mapped with a single block entry.
923 			 */
924 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
925 			if (free_mapped)
926 				free_hotplug_page_range(pud_page(pud),
927 							PUD_SIZE, altmap);
928 			continue;
929 		}
930 		WARN_ON(!pud_table(pud));
931 		unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
932 	} while (addr = next, addr < end);
933 }
934 
unmap_hotplug_p4d_range(pgd_t * pgdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)935 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
936 				    unsigned long end, bool free_mapped,
937 				    struct vmem_altmap *altmap)
938 {
939 	unsigned long next;
940 	p4d_t *p4dp, p4d;
941 
942 	do {
943 		next = p4d_addr_end(addr, end);
944 		p4dp = p4d_offset(pgdp, addr);
945 		p4d = READ_ONCE(*p4dp);
946 		if (p4d_none(p4d))
947 			continue;
948 
949 		WARN_ON(!p4d_present(p4d));
950 		unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
951 	} while (addr = next, addr < end);
952 }
953 
unmap_hotplug_range(unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)954 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
955 				bool free_mapped, struct vmem_altmap *altmap)
956 {
957 	unsigned long next;
958 	pgd_t *pgdp, pgd;
959 
960 	/*
961 	 * altmap can only be used as vmemmap mapping backing memory.
962 	 * In case the backing memory itself is not being freed, then
963 	 * altmap is irrelevant. Warn about this inconsistency when
964 	 * encountered.
965 	 */
966 	WARN_ON(!free_mapped && altmap);
967 
968 	do {
969 		next = pgd_addr_end(addr, end);
970 		pgdp = pgd_offset_k(addr);
971 		pgd = READ_ONCE(*pgdp);
972 		if (pgd_none(pgd))
973 			continue;
974 
975 		WARN_ON(!pgd_present(pgd));
976 		unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
977 	} while (addr = next, addr < end);
978 }
979 
free_empty_pte_table(pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)980 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
981 				 unsigned long end, unsigned long floor,
982 				 unsigned long ceiling)
983 {
984 	pte_t *ptep, pte;
985 	unsigned long i, start = addr;
986 
987 	do {
988 		ptep = pte_offset_kernel(pmdp, addr);
989 		pte = READ_ONCE(*ptep);
990 
991 		/*
992 		 * This is just a sanity check here which verifies that
993 		 * pte clearing has been done by earlier unmap loops.
994 		 */
995 		WARN_ON(!pte_none(pte));
996 	} while (addr += PAGE_SIZE, addr < end);
997 
998 	if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
999 		return;
1000 
1001 	/*
1002 	 * Check whether we can free the pte page if the rest of the
1003 	 * entries are empty. Overlap with other regions have been
1004 	 * handled by the floor/ceiling check.
1005 	 */
1006 	ptep = pte_offset_kernel(pmdp, 0UL);
1007 	for (i = 0; i < PTRS_PER_PTE; i++) {
1008 		if (!pte_none(READ_ONCE(ptep[i])))
1009 			return;
1010 	}
1011 
1012 	pmd_clear(pmdp);
1013 	__flush_tlb_kernel_pgtable(start);
1014 	free_hotplug_pgtable_page(virt_to_page(ptep));
1015 }
1016 
free_empty_pmd_table(pud_t * pudp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1017 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1018 				 unsigned long end, unsigned long floor,
1019 				 unsigned long ceiling)
1020 {
1021 	pmd_t *pmdp, pmd;
1022 	unsigned long i, next, start = addr;
1023 
1024 	do {
1025 		next = pmd_addr_end(addr, end);
1026 		pmdp = pmd_offset(pudp, addr);
1027 		pmd = READ_ONCE(*pmdp);
1028 		if (pmd_none(pmd))
1029 			continue;
1030 
1031 		WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1032 		free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1033 	} while (addr = next, addr < end);
1034 
1035 	if (CONFIG_PGTABLE_LEVELS <= 2)
1036 		return;
1037 
1038 	if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1039 		return;
1040 
1041 	/*
1042 	 * Check whether we can free the pmd page if the rest of the
1043 	 * entries are empty. Overlap with other regions have been
1044 	 * handled by the floor/ceiling check.
1045 	 */
1046 	pmdp = pmd_offset(pudp, 0UL);
1047 	for (i = 0; i < PTRS_PER_PMD; i++) {
1048 		if (!pmd_none(READ_ONCE(pmdp[i])))
1049 			return;
1050 	}
1051 
1052 	pud_clear(pudp);
1053 	__flush_tlb_kernel_pgtable(start);
1054 	free_hotplug_pgtable_page(virt_to_page(pmdp));
1055 }
1056 
free_empty_pud_table(p4d_t * p4dp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1057 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1058 				 unsigned long end, unsigned long floor,
1059 				 unsigned long ceiling)
1060 {
1061 	pud_t *pudp, pud;
1062 	unsigned long i, next, start = addr;
1063 
1064 	do {
1065 		next = pud_addr_end(addr, end);
1066 		pudp = pud_offset(p4dp, addr);
1067 		pud = READ_ONCE(*pudp);
1068 		if (pud_none(pud))
1069 			continue;
1070 
1071 		WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1072 		free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1073 	} while (addr = next, addr < end);
1074 
1075 	if (CONFIG_PGTABLE_LEVELS <= 3)
1076 		return;
1077 
1078 	if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1079 		return;
1080 
1081 	/*
1082 	 * Check whether we can free the pud page if the rest of the
1083 	 * entries are empty. Overlap with other regions have been
1084 	 * handled by the floor/ceiling check.
1085 	 */
1086 	pudp = pud_offset(p4dp, 0UL);
1087 	for (i = 0; i < PTRS_PER_PUD; i++) {
1088 		if (!pud_none(READ_ONCE(pudp[i])))
1089 			return;
1090 	}
1091 
1092 	p4d_clear(p4dp);
1093 	__flush_tlb_kernel_pgtable(start);
1094 	free_hotplug_pgtable_page(virt_to_page(pudp));
1095 }
1096 
free_empty_p4d_table(pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1097 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1098 				 unsigned long end, unsigned long floor,
1099 				 unsigned long ceiling)
1100 {
1101 	unsigned long next;
1102 	p4d_t *p4dp, p4d;
1103 
1104 	do {
1105 		next = p4d_addr_end(addr, end);
1106 		p4dp = p4d_offset(pgdp, addr);
1107 		p4d = READ_ONCE(*p4dp);
1108 		if (p4d_none(p4d))
1109 			continue;
1110 
1111 		WARN_ON(!p4d_present(p4d));
1112 		free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1113 	} while (addr = next, addr < end);
1114 }
1115 
free_empty_tables(unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1116 static void free_empty_tables(unsigned long addr, unsigned long end,
1117 			      unsigned long floor, unsigned long ceiling)
1118 {
1119 	unsigned long next;
1120 	pgd_t *pgdp, pgd;
1121 
1122 	do {
1123 		next = pgd_addr_end(addr, end);
1124 		pgdp = pgd_offset_k(addr);
1125 		pgd = READ_ONCE(*pgdp);
1126 		if (pgd_none(pgd))
1127 			continue;
1128 
1129 		WARN_ON(!pgd_present(pgd));
1130 		free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1131 	} while (addr = next, addr < end);
1132 }
1133 #endif
1134 
1135 #if !ARM64_KERNEL_USES_PMD_MAPS
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1136 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1137 		struct vmem_altmap *altmap)
1138 {
1139 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1140 	return vmemmap_populate_basepages(start, end, node, altmap);
1141 }
1142 #else	/* !ARM64_KERNEL_USES_PMD_MAPS */
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1143 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1144 		struct vmem_altmap *altmap)
1145 {
1146 	unsigned long addr = start;
1147 	unsigned long next;
1148 	pgd_t *pgdp;
1149 	p4d_t *p4dp;
1150 	pud_t *pudp;
1151 	pmd_t *pmdp;
1152 
1153 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1154 	do {
1155 		next = pmd_addr_end(addr, end);
1156 
1157 		pgdp = vmemmap_pgd_populate(addr, node);
1158 		if (!pgdp)
1159 			return -ENOMEM;
1160 
1161 		p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1162 		if (!p4dp)
1163 			return -ENOMEM;
1164 
1165 		pudp = vmemmap_pud_populate(p4dp, addr, node);
1166 		if (!pudp)
1167 			return -ENOMEM;
1168 
1169 		pmdp = pmd_offset(pudp, addr);
1170 		if (pmd_none(READ_ONCE(*pmdp))) {
1171 			void *p = NULL;
1172 
1173 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1174 			if (!p) {
1175 				if (vmemmap_populate_basepages(addr, next, node, altmap))
1176 					return -ENOMEM;
1177 				continue;
1178 			}
1179 
1180 			pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1181 		} else
1182 			vmemmap_verify((pte_t *)pmdp, node, addr, next);
1183 	} while (addr = next, addr != end);
1184 
1185 	return 0;
1186 }
1187 #endif	/* !ARM64_KERNEL_USES_PMD_MAPS */
1188 
1189 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1190 void vmemmap_free(unsigned long start, unsigned long end,
1191 		struct vmem_altmap *altmap)
1192 {
1193 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1194 
1195 	unmap_hotplug_range(start, end, true, altmap);
1196 	free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1197 }
1198 #endif /* CONFIG_MEMORY_HOTPLUG */
1199 
fixmap_pud(unsigned long addr)1200 static inline pud_t *fixmap_pud(unsigned long addr)
1201 {
1202 	pgd_t *pgdp = pgd_offset_k(addr);
1203 	p4d_t *p4dp = p4d_offset(pgdp, addr);
1204 	p4d_t p4d = READ_ONCE(*p4dp);
1205 
1206 	BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1207 
1208 	return pud_offset_kimg(p4dp, addr);
1209 }
1210 
fixmap_pmd(unsigned long addr)1211 static inline pmd_t *fixmap_pmd(unsigned long addr)
1212 {
1213 	pud_t *pudp = fixmap_pud(addr);
1214 	pud_t pud = READ_ONCE(*pudp);
1215 
1216 	BUG_ON(pud_none(pud) || pud_bad(pud));
1217 
1218 	return pmd_offset_kimg(pudp, addr);
1219 }
1220 
fixmap_pte(unsigned long addr)1221 static inline pte_t *fixmap_pte(unsigned long addr)
1222 {
1223 	return &bm_pte[pte_index(addr)];
1224 }
1225 
1226 /*
1227  * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1228  * directly on kernel symbols (bm_p*d). This function is called too early to use
1229  * lm_alias so __p*d_populate functions must be used to populate with the
1230  * physical address from __pa_symbol.
1231  */
early_fixmap_init(void)1232 void __init early_fixmap_init(void)
1233 {
1234 	pgd_t *pgdp;
1235 	p4d_t *p4dp, p4d;
1236 	pud_t *pudp;
1237 	pmd_t *pmdp;
1238 	unsigned long addr = FIXADDR_START;
1239 
1240 	pgdp = pgd_offset_k(addr);
1241 	p4dp = p4d_offset(pgdp, addr);
1242 	p4d = READ_ONCE(*p4dp);
1243 	if (CONFIG_PGTABLE_LEVELS > 3 &&
1244 	    !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1245 		/*
1246 		 * We only end up here if the kernel mapping and the fixmap
1247 		 * share the top level pgd entry, which should only happen on
1248 		 * 16k/4 levels configurations.
1249 		 */
1250 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1251 		pudp = pud_offset_kimg(p4dp, addr);
1252 	} else {
1253 		if (p4d_none(p4d))
1254 			__p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
1255 		pudp = fixmap_pud(addr);
1256 	}
1257 	if (pud_none(READ_ONCE(*pudp)))
1258 		__pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
1259 	pmdp = fixmap_pmd(addr);
1260 	__pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1261 
1262 	/*
1263 	 * The boot-ioremap range spans multiple pmds, for which
1264 	 * we are not prepared:
1265 	 */
1266 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1267 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1268 
1269 	if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1270 	     || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1271 		WARN_ON(1);
1272 		pr_warn("pmdp %p != %p, %p\n",
1273 			pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1274 			fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1275 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1276 			fix_to_virt(FIX_BTMAP_BEGIN));
1277 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1278 			fix_to_virt(FIX_BTMAP_END));
1279 
1280 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1281 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1282 	}
1283 }
1284 
1285 /*
1286  * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1287  * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1288  */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)1289 void __set_fixmap(enum fixed_addresses idx,
1290 			       phys_addr_t phys, pgprot_t flags)
1291 {
1292 	unsigned long addr = __fix_to_virt(idx);
1293 	pte_t *ptep;
1294 
1295 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1296 
1297 	ptep = fixmap_pte(addr);
1298 
1299 	if (pgprot_val(flags)) {
1300 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1301 	} else {
1302 		pte_clear(&init_mm, addr, ptep);
1303 		flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1304 	}
1305 }
1306 
fixmap_remap_fdt(phys_addr_t dt_phys,int * size,pgprot_t prot)1307 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1308 {
1309 	const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1310 	int offset;
1311 	void *dt_virt;
1312 
1313 	/*
1314 	 * Check whether the physical FDT address is set and meets the minimum
1315 	 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1316 	 * at least 8 bytes so that we can always access the magic and size
1317 	 * fields of the FDT header after mapping the first chunk, double check
1318 	 * here if that is indeed the case.
1319 	 */
1320 	BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1321 	if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1322 		return NULL;
1323 
1324 	/*
1325 	 * Make sure that the FDT region can be mapped without the need to
1326 	 * allocate additional translation table pages, so that it is safe
1327 	 * to call create_mapping_noalloc() this early.
1328 	 *
1329 	 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1330 	 * be in the same PMD as the rest of the fixmap.
1331 	 * On 4k pages, we'll use section mappings for the FDT so we only
1332 	 * have to be in the same PUD.
1333 	 */
1334 	BUILD_BUG_ON(dt_virt_base % SZ_2M);
1335 
1336 	BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1337 		     __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1338 
1339 	offset = dt_phys % SWAPPER_BLOCK_SIZE;
1340 	dt_virt = (void *)dt_virt_base + offset;
1341 
1342 	/* map the first chunk so we can read the size from the header */
1343 	create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1344 			dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1345 
1346 	if (fdt_magic(dt_virt) != FDT_MAGIC)
1347 		return NULL;
1348 
1349 	*size = fdt_totalsize(dt_virt);
1350 	if (*size > MAX_FDT_SIZE)
1351 		return NULL;
1352 
1353 	if (offset + *size > SWAPPER_BLOCK_SIZE)
1354 		create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1355 			       round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1356 
1357 	return dt_virt;
1358 }
1359 
pud_set_huge(pud_t * pudp,phys_addr_t phys,pgprot_t prot)1360 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1361 {
1362 	pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1363 
1364 	/* Only allow permission changes for now */
1365 	if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1366 				   pud_val(new_pud)))
1367 		return 0;
1368 
1369 	VM_BUG_ON(phys & ~PUD_MASK);
1370 	set_pud(pudp, new_pud);
1371 	return 1;
1372 }
1373 
pmd_set_huge(pmd_t * pmdp,phys_addr_t phys,pgprot_t prot)1374 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1375 {
1376 	pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1377 
1378 	/* Only allow permission changes for now */
1379 	if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1380 				   pmd_val(new_pmd)))
1381 		return 0;
1382 
1383 	VM_BUG_ON(phys & ~PMD_MASK);
1384 	set_pmd(pmdp, new_pmd);
1385 	return 1;
1386 }
1387 
pud_clear_huge(pud_t * pudp)1388 int pud_clear_huge(pud_t *pudp)
1389 {
1390 	if (!pud_sect(READ_ONCE(*pudp)))
1391 		return 0;
1392 	pud_clear(pudp);
1393 	return 1;
1394 }
1395 
pmd_clear_huge(pmd_t * pmdp)1396 int pmd_clear_huge(pmd_t *pmdp)
1397 {
1398 	if (!pmd_sect(READ_ONCE(*pmdp)))
1399 		return 0;
1400 	pmd_clear(pmdp);
1401 	return 1;
1402 }
1403 
pmd_free_pte_page(pmd_t * pmdp,unsigned long addr)1404 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1405 {
1406 	pte_t *table;
1407 	pmd_t pmd;
1408 
1409 	pmd = READ_ONCE(*pmdp);
1410 
1411 	if (!pmd_table(pmd)) {
1412 		VM_WARN_ON(1);
1413 		return 1;
1414 	}
1415 
1416 	table = pte_offset_kernel(pmdp, addr);
1417 	pmd_clear(pmdp);
1418 	__flush_tlb_kernel_pgtable(addr);
1419 	pte_free_kernel(NULL, table);
1420 	return 1;
1421 }
1422 
pud_free_pmd_page(pud_t * pudp,unsigned long addr)1423 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1424 {
1425 	pmd_t *table;
1426 	pmd_t *pmdp;
1427 	pud_t pud;
1428 	unsigned long next, end;
1429 
1430 	pud = READ_ONCE(*pudp);
1431 
1432 	if (!pud_table(pud)) {
1433 		VM_WARN_ON(1);
1434 		return 1;
1435 	}
1436 
1437 	table = pmd_offset(pudp, addr);
1438 	pmdp = table;
1439 	next = addr;
1440 	end = addr + PUD_SIZE;
1441 	do {
1442 		pmd_free_pte_page(pmdp, next);
1443 	} while (pmdp++, next += PMD_SIZE, next != end);
1444 
1445 	pud_clear(pudp);
1446 	__flush_tlb_kernel_pgtable(addr);
1447 	pmd_free(NULL, table);
1448 	return 1;
1449 }
1450 
1451 #ifdef CONFIG_MEMORY_HOTPLUG
__remove_pgd_mapping(pgd_t * pgdir,unsigned long start,u64 size)1452 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1453 {
1454 	unsigned long end = start + size;
1455 
1456 	WARN_ON(pgdir != init_mm.pgd);
1457 	WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1458 
1459 	unmap_hotplug_range(start, end, false, NULL);
1460 	free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1461 }
1462 
arch_get_mappable_range(void)1463 struct range arch_get_mappable_range(void)
1464 {
1465 	struct range mhp_range;
1466 	u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1467 	u64 end_linear_pa = __pa(PAGE_END - 1);
1468 
1469 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1470 		/*
1471 		 * Check for a wrap, it is possible because of randomized linear
1472 		 * mapping the start physical address is actually bigger than
1473 		 * the end physical address. In this case set start to zero
1474 		 * because [0, end_linear_pa] range must still be able to cover
1475 		 * all addressable physical addresses.
1476 		 */
1477 		if (start_linear_pa > end_linear_pa)
1478 			start_linear_pa = 0;
1479 	}
1480 
1481 	WARN_ON(start_linear_pa > end_linear_pa);
1482 
1483 	/*
1484 	 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1485 	 * accommodating both its ends but excluding PAGE_END. Max physical
1486 	 * range which can be mapped inside this linear mapping range, must
1487 	 * also be derived from its end points.
1488 	 */
1489 	mhp_range.start = start_linear_pa;
1490 	mhp_range.end =  end_linear_pa;
1491 
1492 	return mhp_range;
1493 }
1494 
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1495 int arch_add_memory(int nid, u64 start, u64 size,
1496 		    struct mhp_params *params)
1497 {
1498 	int ret, flags = NO_EXEC_MAPPINGS;
1499 
1500 	VM_BUG_ON(!mhp_range_allowed(start, size, true));
1501 
1502 	/*
1503 	 * KFENCE requires linear map to be mapped at page granularity, so that
1504 	 * it is possible to protect/unprotect single pages in the KFENCE pool.
1505 	 */
1506 	if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
1507 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1508 
1509 	__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1510 			     size, params->pgprot, __pgd_pgtable_alloc,
1511 			     flags);
1512 
1513 	memblock_clear_nomap(start, size);
1514 
1515 	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1516 			   params);
1517 	if (ret)
1518 		__remove_pgd_mapping(swapper_pg_dir,
1519 				     __phys_to_virt(start), size);
1520 	else {
1521 		max_pfn = PFN_UP(start + size);
1522 		max_low_pfn = max_pfn;
1523 	}
1524 
1525 	return ret;
1526 }
1527 
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1528 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1529 {
1530 	unsigned long start_pfn = start >> PAGE_SHIFT;
1531 	unsigned long nr_pages = size >> PAGE_SHIFT;
1532 
1533 	__remove_pages(start_pfn, nr_pages, altmap);
1534 	__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1535 }
1536 
1537 /*
1538  * This memory hotplug notifier helps prevent boot memory from being
1539  * inadvertently removed as it blocks pfn range offlining process in
1540  * __offline_pages(). Hence this prevents both offlining as well as
1541  * removal process for boot memory which is initially always online.
1542  * In future if and when boot memory could be removed, this notifier
1543  * should be dropped and free_hotplug_page_range() should handle any
1544  * reserved pages allocated during boot.
1545  */
prevent_bootmem_remove_notifier(struct notifier_block * nb,unsigned long action,void * data)1546 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1547 					   unsigned long action, void *data)
1548 {
1549 	struct mem_section *ms;
1550 	struct memory_notify *arg = data;
1551 	unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1552 	unsigned long pfn = arg->start_pfn;
1553 
1554 	if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1555 		return NOTIFY_OK;
1556 
1557 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1558 		unsigned long start = PFN_PHYS(pfn);
1559 		unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1560 
1561 		ms = __pfn_to_section(pfn);
1562 		if (!early_section(ms))
1563 			continue;
1564 
1565 		if (action == MEM_GOING_OFFLINE) {
1566 			/*
1567 			 * Boot memory removal is not supported. Prevent
1568 			 * it via blocking any attempted offline request
1569 			 * for the boot memory and just report it.
1570 			 */
1571 			pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1572 			return NOTIFY_BAD;
1573 		} else if (action == MEM_OFFLINE) {
1574 			/*
1575 			 * This should have never happened. Boot memory
1576 			 * offlining should have been prevented by this
1577 			 * very notifier. Probably some memory removal
1578 			 * procedure might have changed which would then
1579 			 * require further debug.
1580 			 */
1581 			pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1582 
1583 			/*
1584 			 * Core memory hotplug does not process a return
1585 			 * code from the notifier for MEM_OFFLINE events.
1586 			 * The error condition has been reported. Return
1587 			 * from here as if ignored.
1588 			 */
1589 			return NOTIFY_DONE;
1590 		}
1591 	}
1592 	return NOTIFY_OK;
1593 }
1594 
1595 static struct notifier_block prevent_bootmem_remove_nb = {
1596 	.notifier_call = prevent_bootmem_remove_notifier,
1597 };
1598 
1599 /*
1600  * This ensures that boot memory sections on the platform are online
1601  * from early boot. Memory sections could not be prevented from being
1602  * offlined, unless for some reason they are not online to begin with.
1603  * This helps validate the basic assumption on which the above memory
1604  * event notifier works to prevent boot memory section offlining and
1605  * its possible removal.
1606  */
validate_bootmem_online(void)1607 static void validate_bootmem_online(void)
1608 {
1609 	phys_addr_t start, end, addr;
1610 	struct mem_section *ms;
1611 	u64 i;
1612 
1613 	/*
1614 	 * Scanning across all memblock might be expensive
1615 	 * on some big memory systems. Hence enable this
1616 	 * validation only with DEBUG_VM.
1617 	 */
1618 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
1619 		return;
1620 
1621 	for_each_mem_range(i, &start, &end) {
1622 		for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1623 			ms = __pfn_to_section(PHYS_PFN(addr));
1624 
1625 			/*
1626 			 * All memory ranges in the system at this point
1627 			 * should have been marked as early sections.
1628 			 */
1629 			WARN_ON(!early_section(ms));
1630 
1631 			/*
1632 			 * Memory notifier mechanism here to prevent boot
1633 			 * memory offlining depends on the fact that each
1634 			 * early section memory on the system is initially
1635 			 * online. Otherwise a given memory section which
1636 			 * is already offline will be overlooked and can
1637 			 * be removed completely. Call out such sections.
1638 			 */
1639 			if (!online_section(ms))
1640 				pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1641 					addr, addr + (1UL << PA_SECTION_SHIFT));
1642 		}
1643 	}
1644 }
1645 
prevent_bootmem_remove_init(void)1646 static int __init prevent_bootmem_remove_init(void)
1647 {
1648 	int ret = 0;
1649 
1650 	if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1651 		return ret;
1652 
1653 	validate_bootmem_online();
1654 	ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1655 	if (ret)
1656 		pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1657 
1658 	return ret;
1659 }
1660 early_initcall(prevent_bootmem_remove_init);
1661 #endif
1662