1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50
51 #include <trace/events/xen.h>
52
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
59 #include <asm/e820.h>
60 #include <asm/linkage.h>
61 #include <asm/page.h>
62 #include <asm/init.h>
63 #include <asm/pat.h>
64 #include <asm/smp.h>
65
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
68
69 #include <xen/xen.h>
70 #include <xen/page.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
76
77 #include "multicalls.h"
78 #include "mmu.h"
79 #include "debugfs.h"
80
81 /*
82 * Protects atomic reservation decrease/increase against concurrent increases.
83 * Also protects non-atomic updates of current_pages and balloon lists.
84 */
85 DEFINE_SPINLOCK(xen_reservation_lock);
86
87 /*
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
91 */
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
99
100 /*
101 * Note about cr3 (pagetable base) values:
102 *
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
108 *
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
113 */
114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
116
117
118 /*
119 * Just beyond the highest usermode address. STACK_TOP_MAX has a
120 * redzone above it, so round it up to a PGD boundary.
121 */
122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
123
arbitrary_virt_to_mfn(void * vaddr)124 unsigned long arbitrary_virt_to_mfn(void *vaddr)
125 {
126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
127
128 return PFN_DOWN(maddr.maddr);
129 }
130
arbitrary_virt_to_machine(void * vaddr)131 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
132 {
133 unsigned long address = (unsigned long)vaddr;
134 unsigned int level;
135 pte_t *pte;
136 unsigned offset;
137
138 /*
139 * if the PFN is in the linear mapped vaddr range, we can just use
140 * the (quick) virt_to_machine() p2m lookup
141 */
142 if (virt_addr_valid(vaddr))
143 return virt_to_machine(vaddr);
144
145 /* otherwise we have to do a (slower) full page-table walk */
146
147 pte = lookup_address(address, &level);
148 BUG_ON(pte == NULL);
149 offset = address & ~PAGE_MASK;
150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
151 }
152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
153
make_lowmem_page_readonly(void * vaddr)154 void make_lowmem_page_readonly(void *vaddr)
155 {
156 pte_t *pte, ptev;
157 unsigned long address = (unsigned long)vaddr;
158 unsigned int level;
159
160 pte = lookup_address(address, &level);
161 if (pte == NULL)
162 return; /* vaddr missing */
163
164 ptev = pte_wrprotect(*pte);
165
166 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
167 BUG();
168 }
169
make_lowmem_page_readwrite(void * vaddr)170 void make_lowmem_page_readwrite(void *vaddr)
171 {
172 pte_t *pte, ptev;
173 unsigned long address = (unsigned long)vaddr;
174 unsigned int level;
175
176 pte = lookup_address(address, &level);
177 if (pte == NULL)
178 return; /* vaddr missing */
179
180 ptev = pte_mkwrite(*pte);
181
182 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
183 BUG();
184 }
185
186
xen_page_pinned(void * ptr)187 static bool xen_page_pinned(void *ptr)
188 {
189 struct page *page = virt_to_page(ptr);
190
191 return PagePinned(page);
192 }
193
xen_set_domain_pte(pte_t * ptep,pte_t pteval,unsigned domid)194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
195 {
196 struct multicall_space mcs;
197 struct mmu_update *u;
198
199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
200
201 mcs = xen_mc_entry(sizeof(*u));
202 u = mcs.args;
203
204 /* ptep might be kmapped when using 32-bit HIGHPTE */
205 u->ptr = virt_to_machine(ptep).maddr;
206 u->val = pte_val_ma(pteval);
207
208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
209
210 xen_mc_issue(PARAVIRT_LAZY_MMU);
211 }
212 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
213
xen_extend_mmu_update(const struct mmu_update * update)214 static void xen_extend_mmu_update(const struct mmu_update *update)
215 {
216 struct multicall_space mcs;
217 struct mmu_update *u;
218
219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
220
221 if (mcs.mc != NULL) {
222 mcs.mc->args[1]++;
223 } else {
224 mcs = __xen_mc_entry(sizeof(*u));
225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
226 }
227
228 u = mcs.args;
229 *u = *update;
230 }
231
xen_extend_mmuext_op(const struct mmuext_op * op)232 static void xen_extend_mmuext_op(const struct mmuext_op *op)
233 {
234 struct multicall_space mcs;
235 struct mmuext_op *u;
236
237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
238
239 if (mcs.mc != NULL) {
240 mcs.mc->args[1]++;
241 } else {
242 mcs = __xen_mc_entry(sizeof(*u));
243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
244 }
245
246 u = mcs.args;
247 *u = *op;
248 }
249
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
251 {
252 struct mmu_update u;
253
254 preempt_disable();
255
256 xen_mc_batch();
257
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 u.val = pmd_val_ma(val);
261 xen_extend_mmu_update(&u);
262
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
264
265 preempt_enable();
266 }
267
xen_set_pmd(pmd_t * ptr,pmd_t val)268 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
269 {
270 trace_xen_mmu_set_pmd(ptr, val);
271
272 /* If page is not pinned, we can just update the entry
273 directly */
274 if (!xen_page_pinned(ptr)) {
275 *ptr = val;
276 return;
277 }
278
279 xen_set_pmd_hyper(ptr, val);
280 }
281
282 /*
283 * Associate a virtual page frame with a given physical page frame
284 * and protection flags for that frame.
285 */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
287 {
288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
289 }
290
xen_batched_set_pte(pte_t * ptep,pte_t pteval)291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
292 {
293 struct mmu_update u;
294
295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
296 return false;
297
298 xen_mc_batch();
299
300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
301 u.val = pte_val_ma(pteval);
302 xen_extend_mmu_update(&u);
303
304 xen_mc_issue(PARAVIRT_LAZY_MMU);
305
306 return true;
307 }
308
__xen_set_pte(pte_t * ptep,pte_t pteval)309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
310 {
311 if (!xen_batched_set_pte(ptep, pteval))
312 native_set_pte(ptep, pteval);
313 }
314
xen_set_pte(pte_t * ptep,pte_t pteval)315 static void xen_set_pte(pte_t *ptep, pte_t pteval)
316 {
317 trace_xen_mmu_set_pte(ptep, pteval);
318 __xen_set_pte(ptep, pteval);
319 }
320
xen_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 pte_t *ptep, pte_t pteval)
323 {
324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
325 __xen_set_pte(ptep, pteval);
326 }
327
xen_ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
329 unsigned long addr, pte_t *ptep)
330 {
331 /* Just return the pte as-is. We preserve the bits on commit */
332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
333 return *ptep;
334 }
335
xen_ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pte)
338 {
339 struct mmu_update u;
340
341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
342 xen_mc_batch();
343
344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345 u.val = pte_val_ma(pte);
346 xen_extend_mmu_update(&u);
347
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
349 }
350
351 /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)352 static pteval_t pte_mfn_to_pfn(pteval_t val)
353 {
354 if (val & _PAGE_PRESENT) {
355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 unsigned long pfn = mfn_to_pfn(mfn);
357
358 pteval_t flags = val & PTE_FLAGS_MASK;
359 if (unlikely(pfn == ~0))
360 val = flags & ~_PAGE_PRESENT;
361 else
362 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
363 }
364
365 return val;
366 }
367
pte_pfn_to_mfn(pteval_t val)368 static pteval_t pte_pfn_to_mfn(pteval_t val)
369 {
370 if (val & _PAGE_PRESENT) {
371 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 pteval_t flags = val & PTE_FLAGS_MASK;
373 unsigned long mfn;
374
375 if (!xen_feature(XENFEAT_auto_translated_physmap))
376 mfn = get_phys_to_machine(pfn);
377 else
378 mfn = pfn;
379 /*
380 * If there's no mfn for the pfn, then just create an
381 * empty non-present pte. Unfortunately this loses
382 * information about the original pfn, so
383 * pte_mfn_to_pfn is asymmetric.
384 */
385 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
386 mfn = 0;
387 flags = 0;
388 } else {
389 /*
390 * Paramount to do this test _after_ the
391 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
392 * IDENTITY_FRAME_BIT resolves to true.
393 */
394 mfn &= ~FOREIGN_FRAME_BIT;
395 if (mfn & IDENTITY_FRAME_BIT) {
396 mfn &= ~IDENTITY_FRAME_BIT;
397 flags |= _PAGE_IOMAP;
398 }
399 }
400 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
401 }
402
403 return val;
404 }
405
iomap_pte(pteval_t val)406 static pteval_t iomap_pte(pteval_t val)
407 {
408 if (val & _PAGE_PRESENT) {
409 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
410 pteval_t flags = val & PTE_FLAGS_MASK;
411
412 /* We assume the pte frame number is a MFN, so
413 just use it as-is. */
414 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
415 }
416
417 return val;
418 }
419
xen_pte_val(pte_t pte)420 static pteval_t xen_pte_val(pte_t pte)
421 {
422 pteval_t pteval = pte.pte;
423 #if 0
424 /* If this is a WC pte, convert back from Xen WC to Linux WC */
425 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
426 WARN_ON(!pat_enabled);
427 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
428 }
429 #endif
430 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
431 return pteval;
432
433 return pte_mfn_to_pfn(pteval);
434 }
435 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
436
xen_pgd_val(pgd_t pgd)437 static pgdval_t xen_pgd_val(pgd_t pgd)
438 {
439 return pte_mfn_to_pfn(pgd.pgd);
440 }
441 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
442
443 /*
444 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
445 * are reserved for now, to correspond to the Intel-reserved PAT
446 * types.
447 *
448 * We expect Linux's PAT set as follows:
449 *
450 * Idx PTE flags Linux Xen Default
451 * 0 WB WB WB
452 * 1 PWT WC WT WT
453 * 2 PCD UC- UC- UC-
454 * 3 PCD PWT UC UC UC
455 * 4 PAT WB WC WB
456 * 5 PAT PWT WC WP WT
457 * 6 PAT PCD UC- UC UC-
458 * 7 PAT PCD PWT UC UC UC
459 */
460
xen_set_pat(u64 pat)461 void xen_set_pat(u64 pat)
462 {
463 /* We expect Linux to use a PAT setting of
464 * UC UC- WC WB (ignoring the PAT flag) */
465 WARN_ON(pat != 0x0007010600070106ull);
466 }
467
xen_make_pte(pteval_t pte)468 static pte_t xen_make_pte(pteval_t pte)
469 {
470 phys_addr_t addr = (pte & PTE_PFN_MASK);
471 #if 0
472 /* If Linux is trying to set a WC pte, then map to the Xen WC.
473 * If _PAGE_PAT is set, then it probably means it is really
474 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
475 * things work out OK...
476 *
477 * (We should never see kernel mappings with _PAGE_PSE set,
478 * but we could see hugetlbfs mappings, I think.).
479 */
480 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
481 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
482 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
483 }
484 #endif
485 /*
486 * Unprivileged domains are allowed to do IOMAPpings for
487 * PCI passthrough, but not map ISA space. The ISA
488 * mappings are just dummy local mappings to keep other
489 * parts of the kernel happy.
490 */
491 if (unlikely(pte & _PAGE_IOMAP) &&
492 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
493 pte = iomap_pte(pte);
494 } else {
495 pte &= ~_PAGE_IOMAP;
496 pte = pte_pfn_to_mfn(pte);
497 }
498
499 return native_make_pte(pte);
500 }
501 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
502
xen_make_pgd(pgdval_t pgd)503 static pgd_t xen_make_pgd(pgdval_t pgd)
504 {
505 pgd = pte_pfn_to_mfn(pgd);
506 return native_make_pgd(pgd);
507 }
508 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
509
xen_pmd_val(pmd_t pmd)510 static pmdval_t xen_pmd_val(pmd_t pmd)
511 {
512 return pte_mfn_to_pfn(pmd.pmd);
513 }
514 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
515
xen_set_pud_hyper(pud_t * ptr,pud_t val)516 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
517 {
518 struct mmu_update u;
519
520 preempt_disable();
521
522 xen_mc_batch();
523
524 /* ptr may be ioremapped for 64-bit pagetable setup */
525 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
526 u.val = pud_val_ma(val);
527 xen_extend_mmu_update(&u);
528
529 xen_mc_issue(PARAVIRT_LAZY_MMU);
530
531 preempt_enable();
532 }
533
xen_set_pud(pud_t * ptr,pud_t val)534 static void xen_set_pud(pud_t *ptr, pud_t val)
535 {
536 trace_xen_mmu_set_pud(ptr, val);
537
538 /* If page is not pinned, we can just update the entry
539 directly */
540 if (!xen_page_pinned(ptr)) {
541 *ptr = val;
542 return;
543 }
544
545 xen_set_pud_hyper(ptr, val);
546 }
547
548 #ifdef CONFIG_X86_PAE
xen_set_pte_atomic(pte_t * ptep,pte_t pte)549 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
550 {
551 trace_xen_mmu_set_pte_atomic(ptep, pte);
552 set_64bit((u64 *)ptep, native_pte_val(pte));
553 }
554
xen_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)555 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
556 {
557 trace_xen_mmu_pte_clear(mm, addr, ptep);
558 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
559 native_pte_clear(mm, addr, ptep);
560 }
561
xen_pmd_clear(pmd_t * pmdp)562 static void xen_pmd_clear(pmd_t *pmdp)
563 {
564 trace_xen_mmu_pmd_clear(pmdp);
565 set_pmd(pmdp, __pmd(0));
566 }
567 #endif /* CONFIG_X86_PAE */
568
xen_make_pmd(pmdval_t pmd)569 static pmd_t xen_make_pmd(pmdval_t pmd)
570 {
571 pmd = pte_pfn_to_mfn(pmd);
572 return native_make_pmd(pmd);
573 }
574 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
575
576 #if PAGETABLE_LEVELS == 4
xen_pud_val(pud_t pud)577 static pudval_t xen_pud_val(pud_t pud)
578 {
579 return pte_mfn_to_pfn(pud.pud);
580 }
581 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
582
xen_make_pud(pudval_t pud)583 static pud_t xen_make_pud(pudval_t pud)
584 {
585 pud = pte_pfn_to_mfn(pud);
586
587 return native_make_pud(pud);
588 }
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
590
xen_get_user_pgd(pgd_t * pgd)591 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
592 {
593 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
594 unsigned offset = pgd - pgd_page;
595 pgd_t *user_ptr = NULL;
596
597 if (offset < pgd_index(USER_LIMIT)) {
598 struct page *page = virt_to_page(pgd_page);
599 user_ptr = (pgd_t *)page->private;
600 if (user_ptr)
601 user_ptr += offset;
602 }
603
604 return user_ptr;
605 }
606
__xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)607 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
608 {
609 struct mmu_update u;
610
611 u.ptr = virt_to_machine(ptr).maddr;
612 u.val = pgd_val_ma(val);
613 xen_extend_mmu_update(&u);
614 }
615
616 /*
617 * Raw hypercall-based set_pgd, intended for in early boot before
618 * there's a page structure. This implies:
619 * 1. The only existing pagetable is the kernel's
620 * 2. It is always pinned
621 * 3. It has no user pagetable attached to it
622 */
xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)623 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
624 {
625 preempt_disable();
626
627 xen_mc_batch();
628
629 __xen_set_pgd_hyper(ptr, val);
630
631 xen_mc_issue(PARAVIRT_LAZY_MMU);
632
633 preempt_enable();
634 }
635
xen_set_pgd(pgd_t * ptr,pgd_t val)636 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
637 {
638 pgd_t *user_ptr = xen_get_user_pgd(ptr);
639
640 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
641
642 /* If page is not pinned, we can just update the entry
643 directly */
644 if (!xen_page_pinned(ptr)) {
645 *ptr = val;
646 if (user_ptr) {
647 WARN_ON(xen_page_pinned(user_ptr));
648 *user_ptr = val;
649 }
650 return;
651 }
652
653 /* If it's pinned, then we can at least batch the kernel and
654 user updates together. */
655 xen_mc_batch();
656
657 __xen_set_pgd_hyper(ptr, val);
658 if (user_ptr)
659 __xen_set_pgd_hyper(user_ptr, val);
660
661 xen_mc_issue(PARAVIRT_LAZY_MMU);
662 }
663 #endif /* PAGETABLE_LEVELS == 4 */
664
665 /*
666 * (Yet another) pagetable walker. This one is intended for pinning a
667 * pagetable. This means that it walks a pagetable and calls the
668 * callback function on each page it finds making up the page table,
669 * at every level. It walks the entire pagetable, but it only bothers
670 * pinning pte pages which are below limit. In the normal case this
671 * will be STACK_TOP_MAX, but at boot we need to pin up to
672 * FIXADDR_TOP.
673 *
674 * For 32-bit the important bit is that we don't pin beyond there,
675 * because then we start getting into Xen's ptes.
676 *
677 * For 64-bit, we must skip the Xen hole in the middle of the address
678 * space, just after the big x86-64 virtual hole.
679 */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)680 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
681 int (*func)(struct mm_struct *mm, struct page *,
682 enum pt_level),
683 unsigned long limit)
684 {
685 int flush = 0;
686 unsigned hole_low, hole_high;
687 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
688 unsigned pgdidx, pudidx, pmdidx;
689
690 /* The limit is the last byte to be touched */
691 limit--;
692 BUG_ON(limit >= FIXADDR_TOP);
693
694 if (xen_feature(XENFEAT_auto_translated_physmap))
695 return 0;
696
697 /*
698 * 64-bit has a great big hole in the middle of the address
699 * space, which contains the Xen mappings. On 32-bit these
700 * will end up making a zero-sized hole and so is a no-op.
701 */
702 hole_low = pgd_index(USER_LIMIT);
703 hole_high = pgd_index(PAGE_OFFSET);
704
705 pgdidx_limit = pgd_index(limit);
706 #if PTRS_PER_PUD > 1
707 pudidx_limit = pud_index(limit);
708 #else
709 pudidx_limit = 0;
710 #endif
711 #if PTRS_PER_PMD > 1
712 pmdidx_limit = pmd_index(limit);
713 #else
714 pmdidx_limit = 0;
715 #endif
716
717 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
718 pud_t *pud;
719
720 if (pgdidx >= hole_low && pgdidx < hole_high)
721 continue;
722
723 if (!pgd_val(pgd[pgdidx]))
724 continue;
725
726 pud = pud_offset(&pgd[pgdidx], 0);
727
728 if (PTRS_PER_PUD > 1) /* not folded */
729 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
730
731 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
732 pmd_t *pmd;
733
734 if (pgdidx == pgdidx_limit &&
735 pudidx > pudidx_limit)
736 goto out;
737
738 if (pud_none(pud[pudidx]))
739 continue;
740
741 pmd = pmd_offset(&pud[pudidx], 0);
742
743 if (PTRS_PER_PMD > 1) /* not folded */
744 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
745
746 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
747 struct page *pte;
748
749 if (pgdidx == pgdidx_limit &&
750 pudidx == pudidx_limit &&
751 pmdidx > pmdidx_limit)
752 goto out;
753
754 if (pmd_none(pmd[pmdidx]))
755 continue;
756
757 pte = pmd_page(pmd[pmdidx]);
758 flush |= (*func)(mm, pte, PT_PTE);
759 }
760 }
761 }
762
763 out:
764 /* Do the top level last, so that the callbacks can use it as
765 a cue to do final things like tlb flushes. */
766 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
767
768 return flush;
769 }
770
xen_pgd_walk(struct mm_struct * mm,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)771 static int xen_pgd_walk(struct mm_struct *mm,
772 int (*func)(struct mm_struct *mm, struct page *,
773 enum pt_level),
774 unsigned long limit)
775 {
776 return __xen_pgd_walk(mm, mm->pgd, func, limit);
777 }
778
779 /* If we're using split pte locks, then take the page's lock and
780 return a pointer to it. Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)781 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
782 {
783 spinlock_t *ptl = NULL;
784
785 #if USE_SPLIT_PTLOCKS
786 ptl = __pte_lockptr(page);
787 spin_lock_nest_lock(ptl, &mm->page_table_lock);
788 #endif
789
790 return ptl;
791 }
792
xen_pte_unlock(void * v)793 static void xen_pte_unlock(void *v)
794 {
795 spinlock_t *ptl = v;
796 spin_unlock(ptl);
797 }
798
xen_do_pin(unsigned level,unsigned long pfn)799 static void xen_do_pin(unsigned level, unsigned long pfn)
800 {
801 struct mmuext_op op;
802
803 op.cmd = level;
804 op.arg1.mfn = pfn_to_mfn(pfn);
805
806 xen_extend_mmuext_op(&op);
807 }
808
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)809 static int xen_pin_page(struct mm_struct *mm, struct page *page,
810 enum pt_level level)
811 {
812 unsigned pgfl = TestSetPagePinned(page);
813 int flush;
814
815 if (pgfl)
816 flush = 0; /* already pinned */
817 else if (PageHighMem(page))
818 /* kmaps need flushing if we found an unpinned
819 highpage */
820 flush = 1;
821 else {
822 void *pt = lowmem_page_address(page);
823 unsigned long pfn = page_to_pfn(page);
824 struct multicall_space mcs = __xen_mc_entry(0);
825 spinlock_t *ptl;
826
827 flush = 0;
828
829 /*
830 * We need to hold the pagetable lock between the time
831 * we make the pagetable RO and when we actually pin
832 * it. If we don't, then other users may come in and
833 * attempt to update the pagetable by writing it,
834 * which will fail because the memory is RO but not
835 * pinned, so Xen won't do the trap'n'emulate.
836 *
837 * If we're using split pte locks, we can't hold the
838 * entire pagetable's worth of locks during the
839 * traverse, because we may wrap the preempt count (8
840 * bits). The solution is to mark RO and pin each PTE
841 * page while holding the lock. This means the number
842 * of locks we end up holding is never more than a
843 * batch size (~32 entries, at present).
844 *
845 * If we're not using split pte locks, we needn't pin
846 * the PTE pages independently, because we're
847 * protected by the overall pagetable lock.
848 */
849 ptl = NULL;
850 if (level == PT_PTE)
851 ptl = xen_pte_lock(page, mm);
852
853 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
854 pfn_pte(pfn, PAGE_KERNEL_RO),
855 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
856
857 if (ptl) {
858 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
859
860 /* Queue a deferred unlock for when this batch
861 is completed. */
862 xen_mc_callback(xen_pte_unlock, ptl);
863 }
864 }
865
866 return flush;
867 }
868
869 /* This is called just after a mm has been created, but it has not
870 been used yet. We need to make sure that its pagetable is all
871 read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)872 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
873 {
874 trace_xen_mmu_pgd_pin(mm, pgd);
875
876 xen_mc_batch();
877
878 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
879 /* re-enable interrupts for flushing */
880 xen_mc_issue(0);
881
882 kmap_flush_unused();
883
884 xen_mc_batch();
885 }
886
887 #ifdef CONFIG_X86_64
888 {
889 pgd_t *user_pgd = xen_get_user_pgd(pgd);
890
891 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
892
893 if (user_pgd) {
894 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
895 xen_do_pin(MMUEXT_PIN_L4_TABLE,
896 PFN_DOWN(__pa(user_pgd)));
897 }
898 }
899 #else /* CONFIG_X86_32 */
900 #ifdef CONFIG_X86_PAE
901 /* Need to make sure unshared kernel PMD is pinnable */
902 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
903 PT_PMD);
904 #endif
905 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
906 #endif /* CONFIG_X86_64 */
907 xen_mc_issue(0);
908 }
909
xen_pgd_pin(struct mm_struct * mm)910 static void xen_pgd_pin(struct mm_struct *mm)
911 {
912 __xen_pgd_pin(mm, mm->pgd);
913 }
914
915 /*
916 * On save, we need to pin all pagetables to make sure they get their
917 * mfns turned into pfns. Search the list for any unpinned pgds and pin
918 * them (unpinned pgds are not currently in use, probably because the
919 * process is under construction or destruction).
920 *
921 * Expected to be called in stop_machine() ("equivalent to taking
922 * every spinlock in the system"), so the locking doesn't really
923 * matter all that much.
924 */
xen_mm_pin_all(void)925 void xen_mm_pin_all(void)
926 {
927 struct page *page;
928
929 spin_lock(&pgd_lock);
930
931 list_for_each_entry(page, &pgd_list, lru) {
932 if (!PagePinned(page)) {
933 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
934 SetPageSavePinned(page);
935 }
936 }
937
938 spin_unlock(&pgd_lock);
939 }
940
941 /*
942 * The init_mm pagetable is really pinned as soon as its created, but
943 * that's before we have page structures to store the bits. So do all
944 * the book-keeping now.
945 */
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)946 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
947 enum pt_level level)
948 {
949 SetPagePinned(page);
950 return 0;
951 }
952
xen_mark_init_mm_pinned(void)953 static void __init xen_mark_init_mm_pinned(void)
954 {
955 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
956 }
957
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)958 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
959 enum pt_level level)
960 {
961 unsigned pgfl = TestClearPagePinned(page);
962
963 if (pgfl && !PageHighMem(page)) {
964 void *pt = lowmem_page_address(page);
965 unsigned long pfn = page_to_pfn(page);
966 spinlock_t *ptl = NULL;
967 struct multicall_space mcs;
968
969 /*
970 * Do the converse to pin_page. If we're using split
971 * pte locks, we must be holding the lock for while
972 * the pte page is unpinned but still RO to prevent
973 * concurrent updates from seeing it in this
974 * partially-pinned state.
975 */
976 if (level == PT_PTE) {
977 ptl = xen_pte_lock(page, mm);
978
979 if (ptl)
980 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
981 }
982
983 mcs = __xen_mc_entry(0);
984
985 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
986 pfn_pte(pfn, PAGE_KERNEL),
987 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
988
989 if (ptl) {
990 /* unlock when batch completed */
991 xen_mc_callback(xen_pte_unlock, ptl);
992 }
993 }
994
995 return 0; /* never need to flush on unpin */
996 }
997
998 /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)999 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1000 {
1001 trace_xen_mmu_pgd_unpin(mm, pgd);
1002
1003 xen_mc_batch();
1004
1005 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1006
1007 #ifdef CONFIG_X86_64
1008 {
1009 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1010
1011 if (user_pgd) {
1012 xen_do_pin(MMUEXT_UNPIN_TABLE,
1013 PFN_DOWN(__pa(user_pgd)));
1014 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1015 }
1016 }
1017 #endif
1018
1019 #ifdef CONFIG_X86_PAE
1020 /* Need to make sure unshared kernel PMD is unpinned */
1021 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1022 PT_PMD);
1023 #endif
1024
1025 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1026
1027 xen_mc_issue(0);
1028 }
1029
xen_pgd_unpin(struct mm_struct * mm)1030 static void xen_pgd_unpin(struct mm_struct *mm)
1031 {
1032 __xen_pgd_unpin(mm, mm->pgd);
1033 }
1034
1035 /*
1036 * On resume, undo any pinning done at save, so that the rest of the
1037 * kernel doesn't see any unexpected pinned pagetables.
1038 */
xen_mm_unpin_all(void)1039 void xen_mm_unpin_all(void)
1040 {
1041 struct page *page;
1042
1043 spin_lock(&pgd_lock);
1044
1045 list_for_each_entry(page, &pgd_list, lru) {
1046 if (PageSavePinned(page)) {
1047 BUG_ON(!PagePinned(page));
1048 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1049 ClearPageSavePinned(page);
1050 }
1051 }
1052
1053 spin_unlock(&pgd_lock);
1054 }
1055
xen_activate_mm(struct mm_struct * prev,struct mm_struct * next)1056 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1057 {
1058 spin_lock(&next->page_table_lock);
1059 xen_pgd_pin(next);
1060 spin_unlock(&next->page_table_lock);
1061 }
1062
xen_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)1063 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1064 {
1065 spin_lock(&mm->page_table_lock);
1066 xen_pgd_pin(mm);
1067 spin_unlock(&mm->page_table_lock);
1068 }
1069
1070
1071 #ifdef CONFIG_SMP
1072 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1073 we need to repoint it somewhere else before we can unpin it. */
drop_other_mm_ref(void * info)1074 static void drop_other_mm_ref(void *info)
1075 {
1076 struct mm_struct *mm = info;
1077 struct mm_struct *active_mm;
1078
1079 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1080
1081 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1082 leave_mm(smp_processor_id());
1083
1084 /* If this cpu still has a stale cr3 reference, then make sure
1085 it has been flushed. */
1086 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1087 load_cr3(swapper_pg_dir);
1088 }
1089
xen_drop_mm_ref(struct mm_struct * mm)1090 static void xen_drop_mm_ref(struct mm_struct *mm)
1091 {
1092 cpumask_var_t mask;
1093 unsigned cpu;
1094
1095 if (current->active_mm == mm) {
1096 if (current->mm == mm)
1097 load_cr3(swapper_pg_dir);
1098 else
1099 leave_mm(smp_processor_id());
1100 }
1101
1102 /* Get the "official" set of cpus referring to our pagetable. */
1103 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1104 for_each_online_cpu(cpu) {
1105 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1106 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1107 continue;
1108 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1109 }
1110 return;
1111 }
1112 cpumask_copy(mask, mm_cpumask(mm));
1113
1114 /* It's possible that a vcpu may have a stale reference to our
1115 cr3, because its in lazy mode, and it hasn't yet flushed
1116 its set of pending hypercalls yet. In this case, we can
1117 look at its actual current cr3 value, and force it to flush
1118 if needed. */
1119 for_each_online_cpu(cpu) {
1120 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1121 cpumask_set_cpu(cpu, mask);
1122 }
1123
1124 if (!cpumask_empty(mask))
1125 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1126 free_cpumask_var(mask);
1127 }
1128 #else
xen_drop_mm_ref(struct mm_struct * mm)1129 static void xen_drop_mm_ref(struct mm_struct *mm)
1130 {
1131 if (current->active_mm == mm)
1132 load_cr3(swapper_pg_dir);
1133 }
1134 #endif
1135
1136 /*
1137 * While a process runs, Xen pins its pagetables, which means that the
1138 * hypervisor forces it to be read-only, and it controls all updates
1139 * to it. This means that all pagetable updates have to go via the
1140 * hypervisor, which is moderately expensive.
1141 *
1142 * Since we're pulling the pagetable down, we switch to use init_mm,
1143 * unpin old process pagetable and mark it all read-write, which
1144 * allows further operations on it to be simple memory accesses.
1145 *
1146 * The only subtle point is that another CPU may be still using the
1147 * pagetable because of lazy tlb flushing. This means we need need to
1148 * switch all CPUs off this pagetable before we can unpin it.
1149 */
xen_exit_mmap(struct mm_struct * mm)1150 static void xen_exit_mmap(struct mm_struct *mm)
1151 {
1152 get_cpu(); /* make sure we don't move around */
1153 xen_drop_mm_ref(mm);
1154 put_cpu();
1155
1156 spin_lock(&mm->page_table_lock);
1157
1158 /* pgd may not be pinned in the error exit path of execve */
1159 if (xen_page_pinned(mm->pgd))
1160 xen_pgd_unpin(mm);
1161
1162 spin_unlock(&mm->page_table_lock);
1163 }
1164
xen_pagetable_setup_start(pgd_t * base)1165 static void __init xen_pagetable_setup_start(pgd_t *base)
1166 {
1167 }
1168
xen_mapping_pagetable_reserve(u64 start,u64 end)1169 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1170 {
1171 /* reserve the range used */
1172 native_pagetable_reserve(start, end);
1173
1174 /* set as RW the rest */
1175 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1176 PFN_PHYS(pgt_buf_top));
1177 while (end < PFN_PHYS(pgt_buf_top)) {
1178 make_lowmem_page_readwrite(__va(end));
1179 end += PAGE_SIZE;
1180 }
1181 }
1182
1183 static void xen_post_allocator_init(void);
1184
xen_pagetable_setup_done(pgd_t * base)1185 static void __init xen_pagetable_setup_done(pgd_t *base)
1186 {
1187 xen_setup_shared_info();
1188 xen_post_allocator_init();
1189 }
1190
xen_write_cr2(unsigned long cr2)1191 static void xen_write_cr2(unsigned long cr2)
1192 {
1193 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1194 }
1195
xen_read_cr2(void)1196 static unsigned long xen_read_cr2(void)
1197 {
1198 return this_cpu_read(xen_vcpu)->arch.cr2;
1199 }
1200
xen_read_cr2_direct(void)1201 unsigned long xen_read_cr2_direct(void)
1202 {
1203 return this_cpu_read(xen_vcpu_info.arch.cr2);
1204 }
1205
xen_flush_tlb_all(void)1206 void xen_flush_tlb_all(void)
1207 {
1208 struct mmuext_op *op;
1209 struct multicall_space mcs;
1210
1211 trace_xen_mmu_flush_tlb_all(0);
1212
1213 preempt_disable();
1214
1215 mcs = xen_mc_entry(sizeof(*op));
1216
1217 op = mcs.args;
1218 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1219 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1220
1221 xen_mc_issue(PARAVIRT_LAZY_MMU);
1222
1223 preempt_enable();
1224 }
xen_flush_tlb(void)1225 static void xen_flush_tlb(void)
1226 {
1227 struct mmuext_op *op;
1228 struct multicall_space mcs;
1229
1230 trace_xen_mmu_flush_tlb(0);
1231
1232 preempt_disable();
1233
1234 mcs = xen_mc_entry(sizeof(*op));
1235
1236 op = mcs.args;
1237 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1238 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1239
1240 xen_mc_issue(PARAVIRT_LAZY_MMU);
1241
1242 preempt_enable();
1243 }
1244
xen_flush_tlb_single(unsigned long addr)1245 static void xen_flush_tlb_single(unsigned long addr)
1246 {
1247 struct mmuext_op *op;
1248 struct multicall_space mcs;
1249
1250 trace_xen_mmu_flush_tlb_single(addr);
1251
1252 preempt_disable();
1253
1254 mcs = xen_mc_entry(sizeof(*op));
1255 op = mcs.args;
1256 op->cmd = MMUEXT_INVLPG_LOCAL;
1257 op->arg1.linear_addr = addr & PAGE_MASK;
1258 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1259
1260 xen_mc_issue(PARAVIRT_LAZY_MMU);
1261
1262 preempt_enable();
1263 }
1264
xen_flush_tlb_others(const struct cpumask * cpus,struct mm_struct * mm,unsigned long va)1265 static void xen_flush_tlb_others(const struct cpumask *cpus,
1266 struct mm_struct *mm, unsigned long va)
1267 {
1268 struct {
1269 struct mmuext_op op;
1270 #ifdef CONFIG_SMP
1271 DECLARE_BITMAP(mask, num_processors);
1272 #else
1273 DECLARE_BITMAP(mask, NR_CPUS);
1274 #endif
1275 } *args;
1276 struct multicall_space mcs;
1277
1278 trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1279
1280 if (cpumask_empty(cpus))
1281 return; /* nothing to do */
1282
1283 mcs = xen_mc_entry(sizeof(*args));
1284 args = mcs.args;
1285 args->op.arg2.vcpumask = to_cpumask(args->mask);
1286
1287 /* Remove us, and any offline CPUS. */
1288 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1289 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1290
1291 if (va == TLB_FLUSH_ALL) {
1292 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1293 } else {
1294 args->op.cmd = MMUEXT_INVLPG_MULTI;
1295 args->op.arg1.linear_addr = va;
1296 }
1297
1298 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1299
1300 xen_mc_issue(PARAVIRT_LAZY_MMU);
1301 }
1302
xen_read_cr3(void)1303 static unsigned long xen_read_cr3(void)
1304 {
1305 return this_cpu_read(xen_cr3);
1306 }
1307
set_current_cr3(void * v)1308 static void set_current_cr3(void *v)
1309 {
1310 this_cpu_write(xen_current_cr3, (unsigned long)v);
1311 }
1312
__xen_write_cr3(bool kernel,unsigned long cr3)1313 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1314 {
1315 struct mmuext_op op;
1316 unsigned long mfn;
1317
1318 trace_xen_mmu_write_cr3(kernel, cr3);
1319
1320 if (cr3)
1321 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1322 else
1323 mfn = 0;
1324
1325 WARN_ON(mfn == 0 && kernel);
1326
1327 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1328 op.arg1.mfn = mfn;
1329
1330 xen_extend_mmuext_op(&op);
1331
1332 if (kernel) {
1333 this_cpu_write(xen_cr3, cr3);
1334
1335 /* Update xen_current_cr3 once the batch has actually
1336 been submitted. */
1337 xen_mc_callback(set_current_cr3, (void *)cr3);
1338 }
1339 }
1340
xen_write_cr3(unsigned long cr3)1341 static void xen_write_cr3(unsigned long cr3)
1342 {
1343 BUG_ON(preemptible());
1344
1345 xen_mc_batch(); /* disables interrupts */
1346
1347 /* Update while interrupts are disabled, so its atomic with
1348 respect to ipis */
1349 this_cpu_write(xen_cr3, cr3);
1350
1351 __xen_write_cr3(true, cr3);
1352
1353 #ifdef CONFIG_X86_64
1354 {
1355 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1356 if (user_pgd)
1357 __xen_write_cr3(false, __pa(user_pgd));
1358 else
1359 __xen_write_cr3(false, 0);
1360 }
1361 #endif
1362
1363 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1364 }
1365
xen_pgd_alloc(struct mm_struct * mm)1366 static int xen_pgd_alloc(struct mm_struct *mm)
1367 {
1368 pgd_t *pgd = mm->pgd;
1369 int ret = 0;
1370
1371 BUG_ON(PagePinned(virt_to_page(pgd)));
1372
1373 #ifdef CONFIG_X86_64
1374 {
1375 struct page *page = virt_to_page(pgd);
1376 pgd_t *user_pgd;
1377
1378 BUG_ON(page->private != 0);
1379
1380 ret = -ENOMEM;
1381
1382 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1383 page->private = (unsigned long)user_pgd;
1384
1385 if (user_pgd != NULL) {
1386 user_pgd[pgd_index(VSYSCALL_START)] =
1387 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1388 ret = 0;
1389 }
1390
1391 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1392 }
1393 #endif
1394
1395 return ret;
1396 }
1397
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1398 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1399 {
1400 #ifdef CONFIG_X86_64
1401 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1402
1403 if (user_pgd)
1404 free_page((unsigned long)user_pgd);
1405 #endif
1406 }
1407
1408 #ifdef CONFIG_X86_32
mask_rw_pte(pte_t * ptep,pte_t pte)1409 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1410 {
1411 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1412 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1413 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1414 pte_val_ma(pte));
1415
1416 return pte;
1417 }
1418 #else /* CONFIG_X86_64 */
mask_rw_pte(pte_t * ptep,pte_t pte)1419 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1420 {
1421 unsigned long pfn = pte_pfn(pte);
1422
1423 /*
1424 * If the new pfn is within the range of the newly allocated
1425 * kernel pagetable, and it isn't being mapped into an
1426 * early_ioremap fixmap slot as a freshly allocated page, make sure
1427 * it is RO.
1428 */
1429 if (((!is_early_ioremap_ptep(ptep) &&
1430 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1431 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1432 pte = pte_wrprotect(pte);
1433
1434 return pte;
1435 }
1436 #endif /* CONFIG_X86_64 */
1437
1438 /* Init-time set_pte while constructing initial pagetables, which
1439 doesn't allow RO pagetable pages to be remapped RW */
xen_set_pte_init(pte_t * ptep,pte_t pte)1440 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1441 {
1442 pte = mask_rw_pte(ptep, pte);
1443
1444 xen_set_pte(ptep, pte);
1445 }
1446
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1447 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1448 {
1449 struct mmuext_op op;
1450 op.cmd = cmd;
1451 op.arg1.mfn = pfn_to_mfn(pfn);
1452 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1453 BUG();
1454 }
1455
1456 /* Early in boot, while setting up the initial pagetable, assume
1457 everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1458 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1459 {
1460 #ifdef CONFIG_FLATMEM
1461 BUG_ON(mem_map); /* should only be used early */
1462 #endif
1463 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1464 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1465 }
1466
1467 /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1468 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1469 {
1470 #ifdef CONFIG_FLATMEM
1471 BUG_ON(mem_map); /* should only be used early */
1472 #endif
1473 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1474 }
1475
1476 /* Early release_pte assumes that all pts are pinned, since there's
1477 only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1478 static void __init xen_release_pte_init(unsigned long pfn)
1479 {
1480 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1481 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1482 }
1483
xen_release_pmd_init(unsigned long pfn)1484 static void __init xen_release_pmd_init(unsigned long pfn)
1485 {
1486 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1487 }
1488
__pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1489 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1490 {
1491 struct multicall_space mcs;
1492 struct mmuext_op *op;
1493
1494 mcs = __xen_mc_entry(sizeof(*op));
1495 op = mcs.args;
1496 op->cmd = cmd;
1497 op->arg1.mfn = pfn_to_mfn(pfn);
1498
1499 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1500 }
1501
__set_pfn_prot(unsigned long pfn,pgprot_t prot)1502 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1503 {
1504 struct multicall_space mcs;
1505 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1506
1507 mcs = __xen_mc_entry(0);
1508 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1509 pfn_pte(pfn, prot), 0);
1510 }
1511
1512 /* This needs to make sure the new pte page is pinned iff its being
1513 attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1514 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1515 unsigned level)
1516 {
1517 bool pinned = PagePinned(virt_to_page(mm->pgd));
1518
1519 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1520
1521 if (pinned) {
1522 struct page *page = pfn_to_page(pfn);
1523
1524 SetPagePinned(page);
1525
1526 if (!PageHighMem(page)) {
1527 xen_mc_batch();
1528
1529 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1530
1531 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1532 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1533
1534 xen_mc_issue(PARAVIRT_LAZY_MMU);
1535 } else {
1536 /* make sure there are no stray mappings of
1537 this page */
1538 kmap_flush_unused();
1539 }
1540 }
1541 }
1542
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1543 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1544 {
1545 xen_alloc_ptpage(mm, pfn, PT_PTE);
1546 }
1547
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1548 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1549 {
1550 xen_alloc_ptpage(mm, pfn, PT_PMD);
1551 }
1552
1553 /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1554 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1555 {
1556 struct page *page = pfn_to_page(pfn);
1557 bool pinned = PagePinned(page);
1558
1559 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1560
1561 if (pinned) {
1562 if (!PageHighMem(page)) {
1563 xen_mc_batch();
1564
1565 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1566 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1567
1568 __set_pfn_prot(pfn, PAGE_KERNEL);
1569
1570 xen_mc_issue(PARAVIRT_LAZY_MMU);
1571 }
1572 ClearPagePinned(page);
1573 }
1574 }
1575
xen_release_pte(unsigned long pfn)1576 static void xen_release_pte(unsigned long pfn)
1577 {
1578 xen_release_ptpage(pfn, PT_PTE);
1579 }
1580
xen_release_pmd(unsigned long pfn)1581 static void xen_release_pmd(unsigned long pfn)
1582 {
1583 xen_release_ptpage(pfn, PT_PMD);
1584 }
1585
1586 #if PAGETABLE_LEVELS == 4
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1587 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1588 {
1589 xen_alloc_ptpage(mm, pfn, PT_PUD);
1590 }
1591
xen_release_pud(unsigned long pfn)1592 static void xen_release_pud(unsigned long pfn)
1593 {
1594 xen_release_ptpage(pfn, PT_PUD);
1595 }
1596 #endif
1597
xen_reserve_top(void)1598 void __init xen_reserve_top(void)
1599 {
1600 #ifdef CONFIG_X86_32
1601 unsigned long top = HYPERVISOR_VIRT_START;
1602 struct xen_platform_parameters pp;
1603
1604 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1605 top = pp.virt_start;
1606
1607 reserve_top_address(-top);
1608 #endif /* CONFIG_X86_32 */
1609 }
1610
1611 /*
1612 * Like __va(), but returns address in the kernel mapping (which is
1613 * all we have until the physical memory mapping has been set up.
1614 */
__ka(phys_addr_t paddr)1615 static void *__ka(phys_addr_t paddr)
1616 {
1617 #ifdef CONFIG_X86_64
1618 return (void *)(paddr + __START_KERNEL_map);
1619 #else
1620 return __va(paddr);
1621 #endif
1622 }
1623
1624 /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1625 static unsigned long m2p(phys_addr_t maddr)
1626 {
1627 phys_addr_t paddr;
1628
1629 maddr &= PTE_PFN_MASK;
1630 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1631
1632 return paddr;
1633 }
1634
1635 /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1636 static void *m2v(phys_addr_t maddr)
1637 {
1638 return __ka(m2p(maddr));
1639 }
1640
1641 /* Set the page permissions on an identity-mapped pages */
set_page_prot(void * addr,pgprot_t prot)1642 static void set_page_prot(void *addr, pgprot_t prot)
1643 {
1644 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1645 pte_t pte = pfn_pte(pfn, prot);
1646
1647 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1648 BUG();
1649 }
1650
xen_map_identity_early(pmd_t * pmd,unsigned long max_pfn)1651 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1652 {
1653 unsigned pmdidx, pteidx;
1654 unsigned ident_pte;
1655 unsigned long pfn;
1656
1657 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1658 PAGE_SIZE);
1659
1660 ident_pte = 0;
1661 pfn = 0;
1662 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1663 pte_t *pte_page;
1664
1665 /* Reuse or allocate a page of ptes */
1666 if (pmd_present(pmd[pmdidx]))
1667 pte_page = m2v(pmd[pmdidx].pmd);
1668 else {
1669 /* Check for free pte pages */
1670 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1671 break;
1672
1673 pte_page = &level1_ident_pgt[ident_pte];
1674 ident_pte += PTRS_PER_PTE;
1675
1676 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1677 }
1678
1679 /* Install mappings */
1680 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1681 pte_t pte;
1682
1683 #ifdef CONFIG_X86_32
1684 if (pfn > max_pfn_mapped)
1685 max_pfn_mapped = pfn;
1686 #endif
1687
1688 if (!pte_none(pte_page[pteidx]))
1689 continue;
1690
1691 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1692 pte_page[pteidx] = pte;
1693 }
1694 }
1695
1696 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1697 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1698
1699 set_page_prot(pmd, PAGE_KERNEL_RO);
1700 }
1701
xen_setup_machphys_mapping(void)1702 void __init xen_setup_machphys_mapping(void)
1703 {
1704 struct xen_machphys_mapping mapping;
1705
1706 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1707 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1708 machine_to_phys_nr = mapping.max_mfn + 1;
1709 } else {
1710 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1711 }
1712 #ifdef CONFIG_X86_32
1713 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1714 < machine_to_phys_mapping);
1715 #endif
1716 }
1717
1718 #ifdef CONFIG_X86_64
convert_pfn_mfn(void * v)1719 static void convert_pfn_mfn(void *v)
1720 {
1721 pte_t *pte = v;
1722 int i;
1723
1724 /* All levels are converted the same way, so just treat them
1725 as ptes. */
1726 for (i = 0; i < PTRS_PER_PTE; i++)
1727 pte[i] = xen_make_pte(pte[i].pte);
1728 }
1729
1730 /*
1731 * Set up the initial kernel pagetable.
1732 *
1733 * We can construct this by grafting the Xen provided pagetable into
1734 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1735 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1736 * means that only the kernel has a physical mapping to start with -
1737 * but that's enough to get __va working. We need to fill in the rest
1738 * of the physical mapping once some sort of allocator has been set
1739 * up.
1740 */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1741 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1742 unsigned long max_pfn)
1743 {
1744 pud_t *l3;
1745 pmd_t *l2;
1746
1747 /* max_pfn_mapped is the last pfn mapped in the initial memory
1748 * mappings. Considering that on Xen after the kernel mappings we
1749 * have the mappings of some pages that don't exist in pfn space, we
1750 * set max_pfn_mapped to the last real pfn mapped. */
1751 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1752
1753 /* Zap identity mapping */
1754 init_level4_pgt[0] = __pgd(0);
1755
1756 /* Pre-constructed entries are in pfn, so convert to mfn */
1757 convert_pfn_mfn(init_level4_pgt);
1758 convert_pfn_mfn(level3_ident_pgt);
1759 convert_pfn_mfn(level3_kernel_pgt);
1760
1761 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1762 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1763
1764 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1765 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1766
1767 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1768 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1769 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1770
1771 /* Set up identity map */
1772 xen_map_identity_early(level2_ident_pgt, max_pfn);
1773
1774 /* Make pagetable pieces RO */
1775 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1776 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1777 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1778 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1779 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1780 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1781
1782 /* Pin down new L4 */
1783 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1784 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1785
1786 /* Unpin Xen-provided one */
1787 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1788
1789 /* Switch over */
1790 pgd = init_level4_pgt;
1791
1792 /*
1793 * At this stage there can be no user pgd, and no page
1794 * structure to attach it to, so make sure we just set kernel
1795 * pgd.
1796 */
1797 xen_mc_batch();
1798 __xen_write_cr3(true, __pa(pgd));
1799 xen_mc_issue(PARAVIRT_LAZY_CPU);
1800
1801 memblock_reserve(__pa(xen_start_info->pt_base),
1802 xen_start_info->nr_pt_frames * PAGE_SIZE);
1803
1804 return pgd;
1805 }
1806 #else /* !CONFIG_X86_64 */
1807 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1808 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1809
xen_write_cr3_init(unsigned long cr3)1810 static void __init xen_write_cr3_init(unsigned long cr3)
1811 {
1812 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1813
1814 BUG_ON(read_cr3() != __pa(initial_page_table));
1815 BUG_ON(cr3 != __pa(swapper_pg_dir));
1816
1817 /*
1818 * We are switching to swapper_pg_dir for the first time (from
1819 * initial_page_table) and therefore need to mark that page
1820 * read-only and then pin it.
1821 *
1822 * Xen disallows sharing of kernel PMDs for PAE
1823 * guests. Therefore we must copy the kernel PMD from
1824 * initial_page_table into a new kernel PMD to be used in
1825 * swapper_pg_dir.
1826 */
1827 swapper_kernel_pmd =
1828 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1829 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1830 sizeof(pmd_t) * PTRS_PER_PMD);
1831 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1832 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1833 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1834
1835 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1836 xen_write_cr3(cr3);
1837 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1838
1839 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1840 PFN_DOWN(__pa(initial_page_table)));
1841 set_page_prot(initial_page_table, PAGE_KERNEL);
1842 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1843
1844 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1845 }
1846
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1847 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1848 unsigned long max_pfn)
1849 {
1850 pmd_t *kernel_pmd;
1851
1852 initial_kernel_pmd =
1853 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1854
1855 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1856 xen_start_info->nr_pt_frames * PAGE_SIZE +
1857 512*1024);
1858
1859 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1860 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1861
1862 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1863
1864 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1865 initial_page_table[KERNEL_PGD_BOUNDARY] =
1866 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1867
1868 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1869 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1870 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1871
1872 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1873
1874 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1875 PFN_DOWN(__pa(initial_page_table)));
1876 xen_write_cr3(__pa(initial_page_table));
1877
1878 memblock_reserve(__pa(xen_start_info->pt_base),
1879 xen_start_info->nr_pt_frames * PAGE_SIZE);
1880
1881 return initial_page_table;
1882 }
1883 #endif /* CONFIG_X86_64 */
1884
1885 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1886 static unsigned char fake_ioapic_mapping[PAGE_SIZE] __page_aligned_bss;
1887
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)1888 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1889 {
1890 pte_t pte;
1891
1892 phys >>= PAGE_SHIFT;
1893
1894 switch (idx) {
1895 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1896 #ifdef CONFIG_X86_F00F_BUG
1897 case FIX_F00F_IDT:
1898 #endif
1899 #ifdef CONFIG_X86_32
1900 case FIX_WP_TEST:
1901 case FIX_VDSO:
1902 # ifdef CONFIG_HIGHMEM
1903 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1904 # endif
1905 #else
1906 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1907 case VVAR_PAGE:
1908 #endif
1909 case FIX_TEXT_POKE0:
1910 case FIX_TEXT_POKE1:
1911 /* All local page mappings */
1912 pte = pfn_pte(phys, prot);
1913 break;
1914
1915 #ifdef CONFIG_X86_LOCAL_APIC
1916 case FIX_APIC_BASE: /* maps dummy local APIC */
1917 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1918 break;
1919 #endif
1920
1921 #ifdef CONFIG_X86_IO_APIC
1922 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1923 /*
1924 * We just don't map the IO APIC - all access is via
1925 * hypercalls. Keep the address in the pte for reference.
1926 */
1927 pte = pfn_pte(PFN_DOWN(__pa(fake_ioapic_mapping)), PAGE_KERNEL);
1928 break;
1929 #endif
1930
1931 case FIX_PARAVIRT_BOOTMAP:
1932 /* This is an MFN, but it isn't an IO mapping from the
1933 IO domain */
1934 pte = mfn_pte(phys, prot);
1935 break;
1936
1937 default:
1938 /* By default, set_fixmap is used for hardware mappings */
1939 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1940 break;
1941 }
1942
1943 __native_set_fixmap(idx, pte);
1944
1945 #ifdef CONFIG_X86_64
1946 /* Replicate changes to map the vsyscall page into the user
1947 pagetable vsyscall mapping. */
1948 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1949 idx == VVAR_PAGE) {
1950 unsigned long vaddr = __fix_to_virt(idx);
1951 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1952 }
1953 #endif
1954 }
1955
xen_ident_map_ISA(void)1956 void __init xen_ident_map_ISA(void)
1957 {
1958 unsigned long pa;
1959
1960 /*
1961 * If we're dom0, then linear map the ISA machine addresses into
1962 * the kernel's address space.
1963 */
1964 if (!xen_initial_domain())
1965 return;
1966
1967 xen_raw_printk("Xen: setup ISA identity maps\n");
1968
1969 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1970 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1971
1972 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1973 BUG();
1974 }
1975
1976 xen_flush_tlb();
1977 }
1978
xen_post_allocator_init(void)1979 static void __init xen_post_allocator_init(void)
1980 {
1981 pv_mmu_ops.set_pte = xen_set_pte;
1982 pv_mmu_ops.set_pmd = xen_set_pmd;
1983 pv_mmu_ops.set_pud = xen_set_pud;
1984 #if PAGETABLE_LEVELS == 4
1985 pv_mmu_ops.set_pgd = xen_set_pgd;
1986 #endif
1987
1988 /* This will work as long as patching hasn't happened yet
1989 (which it hasn't) */
1990 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1991 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1992 pv_mmu_ops.release_pte = xen_release_pte;
1993 pv_mmu_ops.release_pmd = xen_release_pmd;
1994 #if PAGETABLE_LEVELS == 4
1995 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1996 pv_mmu_ops.release_pud = xen_release_pud;
1997 #endif
1998
1999 #ifdef CONFIG_X86_64
2000 SetPagePinned(virt_to_page(level3_user_vsyscall));
2001 #endif
2002 xen_mark_init_mm_pinned();
2003 }
2004
xen_leave_lazy_mmu(void)2005 static void xen_leave_lazy_mmu(void)
2006 {
2007 preempt_disable();
2008 xen_mc_flush();
2009 paravirt_leave_lazy_mmu();
2010 preempt_enable();
2011 }
2012
2013 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2014 .read_cr2 = xen_read_cr2,
2015 .write_cr2 = xen_write_cr2,
2016
2017 .read_cr3 = xen_read_cr3,
2018 #ifdef CONFIG_X86_32
2019 .write_cr3 = xen_write_cr3_init,
2020 #else
2021 .write_cr3 = xen_write_cr3,
2022 #endif
2023
2024 .flush_tlb_user = xen_flush_tlb,
2025 .flush_tlb_kernel = xen_flush_tlb,
2026 .flush_tlb_single = xen_flush_tlb_single,
2027 .flush_tlb_others = xen_flush_tlb_others,
2028
2029 .pte_update = paravirt_nop,
2030 .pte_update_defer = paravirt_nop,
2031
2032 .pgd_alloc = xen_pgd_alloc,
2033 .pgd_free = xen_pgd_free,
2034
2035 .alloc_pte = xen_alloc_pte_init,
2036 .release_pte = xen_release_pte_init,
2037 .alloc_pmd = xen_alloc_pmd_init,
2038 .release_pmd = xen_release_pmd_init,
2039
2040 .set_pte = xen_set_pte_init,
2041 .set_pte_at = xen_set_pte_at,
2042 .set_pmd = xen_set_pmd_hyper,
2043
2044 .ptep_modify_prot_start = __ptep_modify_prot_start,
2045 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2046
2047 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2048 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2049
2050 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2051 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2052
2053 #ifdef CONFIG_X86_PAE
2054 .set_pte_atomic = xen_set_pte_atomic,
2055 .pte_clear = xen_pte_clear,
2056 .pmd_clear = xen_pmd_clear,
2057 #endif /* CONFIG_X86_PAE */
2058 .set_pud = xen_set_pud_hyper,
2059
2060 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2061 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2062
2063 #if PAGETABLE_LEVELS == 4
2064 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2065 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2066 .set_pgd = xen_set_pgd_hyper,
2067
2068 .alloc_pud = xen_alloc_pmd_init,
2069 .release_pud = xen_release_pmd_init,
2070 #endif /* PAGETABLE_LEVELS == 4 */
2071
2072 .activate_mm = xen_activate_mm,
2073 .dup_mmap = xen_dup_mmap,
2074 .exit_mmap = xen_exit_mmap,
2075
2076 .lazy_mode = {
2077 .enter = paravirt_enter_lazy_mmu,
2078 .leave = xen_leave_lazy_mmu,
2079 .flush = paravirt_flush_lazy_mmu,
2080 },
2081
2082 .set_fixmap = xen_set_fixmap,
2083 };
2084
xen_init_mmu_ops(void)2085 void __init xen_init_mmu_ops(void)
2086 {
2087 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2088 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2089 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2090 pv_mmu_ops = xen_mmu_ops;
2091
2092 memset(dummy_mapping, 0xff, PAGE_SIZE);
2093 memset(fake_ioapic_mapping, 0xfd, PAGE_SIZE);
2094 }
2095
2096 /* Protected by xen_reservation_lock. */
2097 #define MAX_CONTIG_ORDER 9 /* 2MB */
2098 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2099
2100 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2101 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2102 unsigned long *in_frames,
2103 unsigned long *out_frames)
2104 {
2105 int i;
2106 struct multicall_space mcs;
2107
2108 xen_mc_batch();
2109 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2110 mcs = __xen_mc_entry(0);
2111
2112 if (in_frames)
2113 in_frames[i] = virt_to_mfn(vaddr);
2114
2115 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2116 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2117
2118 if (out_frames)
2119 out_frames[i] = virt_to_pfn(vaddr);
2120 }
2121 xen_mc_issue(0);
2122 }
2123
2124 /*
2125 * Update the pfn-to-mfn mappings for a virtual address range, either to
2126 * point to an array of mfns, or contiguously from a single starting
2127 * mfn.
2128 */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2129 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2130 unsigned long *mfns,
2131 unsigned long first_mfn)
2132 {
2133 unsigned i, limit;
2134 unsigned long mfn;
2135
2136 xen_mc_batch();
2137
2138 limit = 1u << order;
2139 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2140 struct multicall_space mcs;
2141 unsigned flags;
2142
2143 mcs = __xen_mc_entry(0);
2144 if (mfns)
2145 mfn = mfns[i];
2146 else
2147 mfn = first_mfn + i;
2148
2149 if (i < (limit - 1))
2150 flags = 0;
2151 else {
2152 if (order == 0)
2153 flags = UVMF_INVLPG | UVMF_ALL;
2154 else
2155 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2156 }
2157
2158 MULTI_update_va_mapping(mcs.mc, vaddr,
2159 mfn_pte(mfn, PAGE_KERNEL), flags);
2160
2161 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2162 }
2163
2164 xen_mc_issue(0);
2165 }
2166
2167 /*
2168 * Perform the hypercall to exchange a region of our pfns to point to
2169 * memory with the required contiguous alignment. Takes the pfns as
2170 * input, and populates mfns as output.
2171 *
2172 * Returns a success code indicating whether the hypervisor was able to
2173 * satisfy the request or not.
2174 */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2175 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2176 unsigned long *pfns_in,
2177 unsigned long extents_out,
2178 unsigned int order_out,
2179 unsigned long *mfns_out,
2180 unsigned int address_bits)
2181 {
2182 long rc;
2183 int success;
2184
2185 struct xen_memory_exchange exchange = {
2186 .in = {
2187 .nr_extents = extents_in,
2188 .extent_order = order_in,
2189 .extent_start = pfns_in,
2190 .domid = DOMID_SELF
2191 },
2192 .out = {
2193 .nr_extents = extents_out,
2194 .extent_order = order_out,
2195 .extent_start = mfns_out,
2196 .address_bits = address_bits,
2197 .domid = DOMID_SELF
2198 }
2199 };
2200
2201 BUG_ON(extents_in << order_in != extents_out << order_out);
2202
2203 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2204 success = (exchange.nr_exchanged == extents_in);
2205
2206 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2207 BUG_ON(success && (rc != 0));
2208
2209 return success;
2210 }
2211
xen_create_contiguous_region(unsigned long vstart,unsigned int order,unsigned int address_bits)2212 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2213 unsigned int address_bits)
2214 {
2215 unsigned long *in_frames = discontig_frames, out_frame;
2216 unsigned long flags;
2217 int success;
2218
2219 /*
2220 * Currently an auto-translated guest will not perform I/O, nor will
2221 * it require PAE page directories below 4GB. Therefore any calls to
2222 * this function are redundant and can be ignored.
2223 */
2224
2225 if (xen_feature(XENFEAT_auto_translated_physmap))
2226 return 0;
2227
2228 if (unlikely(order > MAX_CONTIG_ORDER))
2229 return -ENOMEM;
2230
2231 memset((void *) vstart, 0, PAGE_SIZE << order);
2232
2233 spin_lock_irqsave(&xen_reservation_lock, flags);
2234
2235 /* 1. Zap current PTEs, remembering MFNs. */
2236 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2237
2238 /* 2. Get a new contiguous memory extent. */
2239 out_frame = virt_to_pfn(vstart);
2240 success = xen_exchange_memory(1UL << order, 0, in_frames,
2241 1, order, &out_frame,
2242 address_bits);
2243
2244 /* 3. Map the new extent in place of old pages. */
2245 if (success)
2246 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2247 else
2248 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2249
2250 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2251
2252 return success ? 0 : -ENOMEM;
2253 }
2254 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2255
xen_destroy_contiguous_region(unsigned long vstart,unsigned int order)2256 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2257 {
2258 unsigned long *out_frames = discontig_frames, in_frame;
2259 unsigned long flags;
2260 int success;
2261
2262 if (xen_feature(XENFEAT_auto_translated_physmap))
2263 return;
2264
2265 if (unlikely(order > MAX_CONTIG_ORDER))
2266 return;
2267
2268 memset((void *) vstart, 0, PAGE_SIZE << order);
2269
2270 spin_lock_irqsave(&xen_reservation_lock, flags);
2271
2272 /* 1. Find start MFN of contiguous extent. */
2273 in_frame = virt_to_mfn(vstart);
2274
2275 /* 2. Zap current PTEs. */
2276 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2277
2278 /* 3. Do the exchange for non-contiguous MFNs. */
2279 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2280 0, out_frames, 0);
2281
2282 /* 4. Map new pages in place of old pages. */
2283 if (success)
2284 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2285 else
2286 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2287
2288 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2289 }
2290 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2291
2292 #ifdef CONFIG_XEN_PVHVM
xen_hvm_exit_mmap(struct mm_struct * mm)2293 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2294 {
2295 struct xen_hvm_pagetable_dying a;
2296 int rc;
2297
2298 a.domid = DOMID_SELF;
2299 a.gpa = __pa(mm->pgd);
2300 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2301 WARN_ON_ONCE(rc < 0);
2302 }
2303
is_pagetable_dying_supported(void)2304 static int is_pagetable_dying_supported(void)
2305 {
2306 struct xen_hvm_pagetable_dying a;
2307 int rc = 0;
2308
2309 a.domid = DOMID_SELF;
2310 a.gpa = 0x00;
2311 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2312 if (rc < 0) {
2313 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2314 return 0;
2315 }
2316 return 1;
2317 }
2318
xen_hvm_init_mmu_ops(void)2319 void __init xen_hvm_init_mmu_ops(void)
2320 {
2321 if (is_pagetable_dying_supported())
2322 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2323 }
2324 #endif
2325
2326 #define REMAP_BATCH_SIZE 16
2327
2328 struct remap_data {
2329 unsigned long mfn;
2330 pgprot_t prot;
2331 struct mmu_update *mmu_update;
2332 };
2333
remap_area_mfn_pte_fn(pte_t * ptep,pgtable_t token,unsigned long addr,void * data)2334 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2335 unsigned long addr, void *data)
2336 {
2337 struct remap_data *rmd = data;
2338 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2339
2340 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2341 rmd->mmu_update->val = pte_val_ma(pte);
2342 rmd->mmu_update++;
2343
2344 return 0;
2345 }
2346
xen_remap_domain_mfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long mfn,int nr,pgprot_t prot,unsigned domid)2347 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2348 unsigned long addr,
2349 unsigned long mfn, int nr,
2350 pgprot_t prot, unsigned domid)
2351 {
2352 struct remap_data rmd;
2353 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2354 int batch;
2355 unsigned long range;
2356 int err = 0;
2357
2358 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2359
2360 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2361 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2362
2363 rmd.mfn = mfn;
2364 rmd.prot = prot;
2365
2366 while (nr) {
2367 batch = min(REMAP_BATCH_SIZE, nr);
2368 range = (unsigned long)batch << PAGE_SHIFT;
2369
2370 rmd.mmu_update = mmu_update;
2371 err = apply_to_page_range(vma->vm_mm, addr, range,
2372 remap_area_mfn_pte_fn, &rmd);
2373 if (err)
2374 goto out;
2375
2376 err = -EFAULT;
2377 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2378 goto out;
2379
2380 nr -= batch;
2381 addr += range;
2382 }
2383
2384 err = 0;
2385 out:
2386
2387 xen_flush_tlb_all();
2388
2389 return err;
2390 }
2391 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2392