1 /*---------------------------------------------------------------------------+
2  |  errors.c                                                                 |
3  |                                                                           |
4  |  The error handling functions for wm-FPU-emu                              |
5  |                                                                           |
6  | Copyright (C) 1992,1993,1994,1996                                         |
7  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
8  |                  E-mail   billm@jacobi.maths.monash.edu.au                |
9  |                                                                           |
10  |                                                                           |
11  +---------------------------------------------------------------------------*/
12 
13 /*---------------------------------------------------------------------------+
14  | Note:                                                                     |
15  |    The file contains code which accesses user memory.                     |
16  |    Emulator static data may change when user memory is accessed, due to   |
17  |    other processes using the emulator while swapping is in progress.      |
18  +---------------------------------------------------------------------------*/
19 
20 #include <linux/signal.h>
21 
22 #include <asm/uaccess.h>
23 
24 #include "fpu_emu.h"
25 #include "fpu_system.h"
26 #include "exception.h"
27 #include "status_w.h"
28 #include "control_w.h"
29 #include "reg_constant.h"
30 #include "version.h"
31 
32 /* */
33 #undef PRINT_MESSAGES
34 /* */
35 
36 
Un_impl(void)37 void Un_impl(void)
38 {
39   u_char byte1, FPU_modrm;
40   unsigned long address = FPU_ORIG_EIP;
41 
42   RE_ENTRANT_CHECK_OFF;
43   /* No need to verify_area(), we have previously fetched these bytes. */
44   printk("Unimplemented FPU Opcode at eip=%p : ", (void *) address);
45   if ( FPU_CS == __USER_CS )
46     {
47       while ( 1 )
48 	{
49 	  FPU_get_user(byte1, (u_char *) address);
50 	  if ( (byte1 & 0xf8) == 0xd8 ) break;
51 	  printk("[%02x]", byte1);
52 	  address++;
53 	}
54       printk("%02x ", byte1);
55       FPU_get_user(FPU_modrm, 1 + (u_char *) address);
56 
57       if (FPU_modrm >= 0300)
58 	printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7);
59       else
60 	printk("/%d\n", (FPU_modrm >> 3) & 7);
61     }
62   else
63     {
64       printk("cs selector = %04x\n", FPU_CS);
65     }
66 
67   RE_ENTRANT_CHECK_ON;
68 
69   EXCEPTION(EX_Invalid);
70 
71 }
72 
73 
74 /*
75    Called for opcodes which are illegal and which are known to result in a
76    SIGILL with a real 80486.
77    */
FPU_illegal(void)78 void FPU_illegal(void)
79 {
80   math_abort(FPU_info,SIGILL);
81 }
82 
83 
84 
FPU_printall(void)85 void FPU_printall(void)
86 {
87   int i;
88   static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty",
89                               "DeNorm", "Inf", "NaN" };
90   u_char byte1, FPU_modrm;
91   unsigned long address = FPU_ORIG_EIP;
92 
93   RE_ENTRANT_CHECK_OFF;
94   /* No need to verify_area(), we have previously fetched these bytes. */
95   printk("At %p:", (void *) address);
96   if ( FPU_CS == __USER_CS )
97     {
98 #define MAX_PRINTED_BYTES 20
99       for ( i = 0; i < MAX_PRINTED_BYTES; i++ )
100 	{
101 	  FPU_get_user(byte1, (u_char *) address);
102 	  if ( (byte1 & 0xf8) == 0xd8 )
103 	    {
104 	      printk(" %02x", byte1);
105 	      break;
106 	    }
107 	  printk(" [%02x]", byte1);
108 	  address++;
109 	}
110       if ( i == MAX_PRINTED_BYTES )
111 	printk(" [more..]\n");
112       else
113 	{
114 	  FPU_get_user(FPU_modrm, 1 + (u_char *) address);
115 
116 	  if (FPU_modrm >= 0300)
117 	    printk(" %02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7);
118 	  else
119 	    printk(" /%d, mod=%d rm=%d\n",
120 		   (FPU_modrm >> 3) & 7, (FPU_modrm >> 6) & 3, FPU_modrm & 7);
121 	}
122     }
123   else
124     {
125       printk("%04x\n", FPU_CS);
126     }
127 
128   partial_status = status_word();
129 
130 #ifdef DEBUGGING
131 if ( partial_status & SW_Backward )    printk("SW: backward compatibility\n");
132 if ( partial_status & SW_C3 )          printk("SW: condition bit 3\n");
133 if ( partial_status & SW_C2 )          printk("SW: condition bit 2\n");
134 if ( partial_status & SW_C1 )          printk("SW: condition bit 1\n");
135 if ( partial_status & SW_C0 )          printk("SW: condition bit 0\n");
136 if ( partial_status & SW_Summary )     printk("SW: exception summary\n");
137 if ( partial_status & SW_Stack_Fault ) printk("SW: stack fault\n");
138 if ( partial_status & SW_Precision )   printk("SW: loss of precision\n");
139 if ( partial_status & SW_Underflow )   printk("SW: underflow\n");
140 if ( partial_status & SW_Overflow )    printk("SW: overflow\n");
141 if ( partial_status & SW_Zero_Div )    printk("SW: divide by zero\n");
142 if ( partial_status & SW_Denorm_Op )   printk("SW: denormalized operand\n");
143 if ( partial_status & SW_Invalid )     printk("SW: invalid operation\n");
144 #endif /* DEBUGGING */
145 
146   printk(" SW: b=%d st=%ld es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n",
147 	 partial_status & 0x8000 ? 1 : 0,   /* busy */
148 	 (partial_status & 0x3800) >> 11,   /* stack top pointer */
149 	 partial_status & 0x80 ? 1 : 0,     /* Error summary status */
150 	 partial_status & 0x40 ? 1 : 0,     /* Stack flag */
151 	 partial_status & SW_C3?1:0, partial_status & SW_C2?1:0, /* cc */
152 	 partial_status & SW_C1?1:0, partial_status & SW_C0?1:0, /* cc */
153 	 partial_status & SW_Precision?1:0, partial_status & SW_Underflow?1:0,
154 	 partial_status & SW_Overflow?1:0, partial_status & SW_Zero_Div?1:0,
155 	 partial_status & SW_Denorm_Op?1:0, partial_status & SW_Invalid?1:0);
156 
157 printk(" CW: ic=%d rc=%ld%ld pc=%ld%ld iem=%d     ef=%d%d%d%d%d%d\n",
158 	 control_word & 0x1000 ? 1 : 0,
159 	 (control_word & 0x800) >> 11, (control_word & 0x400) >> 10,
160 	 (control_word & 0x200) >> 9, (control_word & 0x100) >> 8,
161 	 control_word & 0x80 ? 1 : 0,
162 	 control_word & SW_Precision?1:0, control_word & SW_Underflow?1:0,
163 	 control_word & SW_Overflow?1:0, control_word & SW_Zero_Div?1:0,
164 	 control_word & SW_Denorm_Op?1:0, control_word & SW_Invalid?1:0);
165 
166   for ( i = 0; i < 8; i++ )
167     {
168       FPU_REG *r = &st(i);
169       u_char tagi = FPU_gettagi(i);
170       switch (tagi)
171 	{
172 	case TAG_Empty:
173 	  continue;
174 	  break;
175 	case TAG_Zero:
176 	case TAG_Special:
177 	  tagi = FPU_Special(r);
178 	case TAG_Valid:
179 	  printk("st(%d)  %c .%04lx %04lx %04lx %04lx e%+-6d ", i,
180 		 getsign(r) ? '-' : '+',
181 		 (long)(r->sigh >> 16),
182 		 (long)(r->sigh & 0xFFFF),
183 		 (long)(r->sigl >> 16),
184 		 (long)(r->sigl & 0xFFFF),
185 		 exponent(r) - EXP_BIAS + 1);
186 	  break;
187 	default:
188 	  printk("Whoops! Error in errors.c: tag%d is %d ", i, tagi);
189 	  continue;
190 	  break;
191 	}
192       printk("%s\n", tag_desc[(int) (unsigned) tagi]);
193     }
194 
195   RE_ENTRANT_CHECK_ON;
196 
197 }
198 
199 static struct {
200   int type;
201   const char *name;
202 } exception_names[] = {
203   { EX_StackOver, "stack overflow" },
204   { EX_StackUnder, "stack underflow" },
205   { EX_Precision, "loss of precision" },
206   { EX_Underflow, "underflow" },
207   { EX_Overflow, "overflow" },
208   { EX_ZeroDiv, "divide by zero" },
209   { EX_Denormal, "denormalized operand" },
210   { EX_Invalid, "invalid operation" },
211   { EX_INTERNAL, "INTERNAL BUG in "FPU_VERSION },
212   { 0, NULL }
213 };
214 
215 /*
216  EX_INTERNAL is always given with a code which indicates where the
217  error was detected.
218 
219  Internal error types:
220        0x14   in fpu_etc.c
221        0x1nn  in a *.c file:
222               0x101  in reg_add_sub.c
223               0x102  in reg_mul.c
224               0x104  in poly_atan.c
225               0x105  in reg_mul.c
226               0x107  in fpu_trig.c
227 	      0x108  in reg_compare.c
228 	      0x109  in reg_compare.c
229 	      0x110  in reg_add_sub.c
230 	      0x111  in fpe_entry.c
231 	      0x112  in fpu_trig.c
232 	      0x113  in errors.c
233 	      0x115  in fpu_trig.c
234 	      0x116  in fpu_trig.c
235 	      0x117  in fpu_trig.c
236 	      0x118  in fpu_trig.c
237 	      0x119  in fpu_trig.c
238 	      0x120  in poly_atan.c
239 	      0x121  in reg_compare.c
240 	      0x122  in reg_compare.c
241 	      0x123  in reg_compare.c
242 	      0x125  in fpu_trig.c
243 	      0x126  in fpu_entry.c
244 	      0x127  in poly_2xm1.c
245 	      0x128  in fpu_entry.c
246 	      0x129  in fpu_entry.c
247 	      0x130  in get_address.c
248 	      0x131  in get_address.c
249 	      0x132  in get_address.c
250 	      0x133  in get_address.c
251 	      0x140  in load_store.c
252 	      0x141  in load_store.c
253               0x150  in poly_sin.c
254               0x151  in poly_sin.c
255 	      0x160  in reg_ld_str.c
256 	      0x161  in reg_ld_str.c
257 	      0x162  in reg_ld_str.c
258 	      0x163  in reg_ld_str.c
259 	      0x164  in reg_ld_str.c
260 	      0x170  in fpu_tags.c
261 	      0x171  in fpu_tags.c
262 	      0x172  in fpu_tags.c
263 	      0x180  in reg_convert.c
264        0x2nn  in an *.S file:
265               0x201  in reg_u_add.S
266               0x202  in reg_u_div.S
267               0x203  in reg_u_div.S
268               0x204  in reg_u_div.S
269               0x205  in reg_u_mul.S
270               0x206  in reg_u_sub.S
271               0x207  in wm_sqrt.S
272 	      0x208  in reg_div.S
273               0x209  in reg_u_sub.S
274               0x210  in reg_u_sub.S
275               0x211  in reg_u_sub.S
276               0x212  in reg_u_sub.S
277 	      0x213  in wm_sqrt.S
278 	      0x214  in wm_sqrt.S
279 	      0x215  in wm_sqrt.S
280 	      0x220  in reg_norm.S
281 	      0x221  in reg_norm.S
282 	      0x230  in reg_round.S
283 	      0x231  in reg_round.S
284 	      0x232  in reg_round.S
285 	      0x233  in reg_round.S
286 	      0x234  in reg_round.S
287 	      0x235  in reg_round.S
288 	      0x236  in reg_round.S
289 	      0x240  in div_Xsig.S
290 	      0x241  in div_Xsig.S
291 	      0x242  in div_Xsig.S
292  */
293 
FPU_exception(int n)294 void FPU_exception(int n)
295 {
296   int i, int_type;
297 
298   int_type = 0;         /* Needed only to stop compiler warnings */
299   if ( n & EX_INTERNAL )
300     {
301       int_type = n - EX_INTERNAL;
302       n = EX_INTERNAL;
303       /* Set lots of exception bits! */
304       partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward);
305     }
306   else
307     {
308       /* Extract only the bits which we use to set the status word */
309       n &= (SW_Exc_Mask);
310       /* Set the corresponding exception bit */
311       partial_status |= n;
312       /* Set summary bits iff exception isn't masked */
313       if ( partial_status & ~control_word & CW_Exceptions )
314 	partial_status |= (SW_Summary | SW_Backward);
315       if ( n & (SW_Stack_Fault | EX_Precision) )
316 	{
317 	  if ( !(n & SW_C1) )
318 	    /* This bit distinguishes over- from underflow for a stack fault,
319 	       and roundup from round-down for precision loss. */
320 	    partial_status &= ~SW_C1;
321 	}
322     }
323 
324   RE_ENTRANT_CHECK_OFF;
325   if ( (~control_word & n & CW_Exceptions) || (n == EX_INTERNAL) )
326     {
327 #ifdef PRINT_MESSAGES
328       /* My message from the sponsor */
329       printk(FPU_VERSION" "__DATE__" (C) W. Metzenthen.\n");
330 #endif /* PRINT_MESSAGES */
331 
332       /* Get a name string for error reporting */
333       for (i=0; exception_names[i].type; i++)
334 	if ( (exception_names[i].type & n) == exception_names[i].type )
335 	  break;
336 
337       if (exception_names[i].type)
338 	{
339 #ifdef PRINT_MESSAGES
340 	  printk("FP Exception: %s!\n", exception_names[i].name);
341 #endif /* PRINT_MESSAGES */
342 	}
343       else
344 	printk("FPU emulator: Unknown Exception: 0x%04x!\n", n);
345 
346       if ( n == EX_INTERNAL )
347 	{
348 	  printk("FPU emulator: Internal error type 0x%04x\n", int_type);
349 	  FPU_printall();
350 	}
351 #ifdef PRINT_MESSAGES
352       else
353 	FPU_printall();
354 #endif /* PRINT_MESSAGES */
355 
356       /*
357        * The 80486 generates an interrupt on the next non-control FPU
358        * instruction. So we need some means of flagging it.
359        * We use the ES (Error Summary) bit for this.
360        */
361     }
362   RE_ENTRANT_CHECK_ON;
363 
364 #ifdef __DEBUG__
365   math_abort(FPU_info,SIGFPE);
366 #endif /* __DEBUG__ */
367 
368 }
369 
370 
371 /* Real operation attempted on a NaN. */
372 /* Returns < 0 if the exception is unmasked */
real_1op_NaN(FPU_REG * a)373 int real_1op_NaN(FPU_REG *a)
374 {
375   int signalling, isNaN;
376 
377   isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000);
378 
379   /* The default result for the case of two "equal" NaNs (signs may
380      differ) is chosen to reproduce 80486 behaviour */
381   signalling = isNaN && !(a->sigh & 0x40000000);
382 
383   if ( !signalling )
384     {
385       if ( !isNaN )  /* pseudo-NaN, or other unsupported? */
386 	{
387 	  if ( control_word & CW_Invalid )
388 	    {
389 	      /* Masked response */
390 	      reg_copy(&CONST_QNaN, a);
391 	    }
392 	  EXCEPTION(EX_Invalid);
393 	  return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
394 	}
395       return TAG_Special;
396     }
397 
398   if ( control_word & CW_Invalid )
399     {
400       /* The masked response */
401       if ( !(a->sigh & 0x80000000) )  /* pseudo-NaN ? */
402 	{
403 	  reg_copy(&CONST_QNaN, a);
404 	}
405       /* ensure a Quiet NaN */
406       a->sigh |= 0x40000000;
407     }
408 
409   EXCEPTION(EX_Invalid);
410 
411   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
412 }
413 
414 
415 /* Real operation attempted on two operands, one a NaN. */
416 /* Returns < 0 if the exception is unmasked */
real_2op_NaN(FPU_REG const * b,u_char tagb,int deststnr,FPU_REG const * defaultNaN)417 int real_2op_NaN(FPU_REG const *b, u_char tagb,
418 		 int deststnr,
419 		 FPU_REG const *defaultNaN)
420 {
421   FPU_REG *dest = &st(deststnr);
422   FPU_REG const *a = dest;
423   u_char taga = FPU_gettagi(deststnr);
424   FPU_REG const *x;
425   int signalling, unsupported;
426 
427   if ( taga == TAG_Special )
428     taga = FPU_Special(a);
429   if ( tagb == TAG_Special )
430     tagb = FPU_Special(b);
431 
432   /* TW_NaN is also used for unsupported data types. */
433   unsupported = ((taga == TW_NaN)
434 		 && !((exponent(a) == EXP_OVER) && (a->sigh & 0x80000000)))
435     || ((tagb == TW_NaN)
436 	&& !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000)));
437   if ( unsupported )
438     {
439       if ( control_word & CW_Invalid )
440 	{
441 	  /* Masked response */
442 	  FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
443 	}
444       EXCEPTION(EX_Invalid);
445       return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
446     }
447 
448   if (taga == TW_NaN)
449     {
450       x = a;
451       if (tagb == TW_NaN)
452 	{
453 	  signalling = !(a->sigh & b->sigh & 0x40000000);
454 	  if ( significand(b) > significand(a) )
455 	    x = b;
456 	  else if ( significand(b) == significand(a) )
457 	    {
458 	      /* The default result for the case of two "equal" NaNs (signs may
459 		 differ) is chosen to reproduce 80486 behaviour */
460 	      x = defaultNaN;
461 	    }
462 	}
463       else
464 	{
465 	  /* return the quiet version of the NaN in a */
466 	  signalling = !(a->sigh & 0x40000000);
467 	}
468     }
469   else
470 #ifdef PARANOID
471     if (tagb == TW_NaN)
472 #endif /* PARANOID */
473     {
474       signalling = !(b->sigh & 0x40000000);
475       x = b;
476     }
477 #ifdef PARANOID
478   else
479     {
480       signalling = 0;
481       EXCEPTION(EX_INTERNAL|0x113);
482       x = &CONST_QNaN;
483     }
484 #endif /* PARANOID */
485 
486   if ( (!signalling) || (control_word & CW_Invalid) )
487     {
488       if ( ! x )
489 	x = b;
490 
491       if ( !(x->sigh & 0x80000000) )  /* pseudo-NaN ? */
492 	x = &CONST_QNaN;
493 
494       FPU_copy_to_regi(x, TAG_Special, deststnr);
495 
496       if ( !signalling )
497 	return TAG_Special;
498 
499       /* ensure a Quiet NaN */
500       dest->sigh |= 0x40000000;
501     }
502 
503   EXCEPTION(EX_Invalid);
504 
505   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
506 }
507 
508 
509 /* Invalid arith operation on Valid registers */
510 /* Returns < 0 if the exception is unmasked */
arith_invalid(int deststnr)511 asmlinkage int arith_invalid(int deststnr)
512 {
513 
514   EXCEPTION(EX_Invalid);
515 
516   if ( control_word & CW_Invalid )
517     {
518       /* The masked response */
519       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
520     }
521 
522   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid;
523 
524 }
525 
526 
527 /* Divide a finite number by zero */
FPU_divide_by_zero(int deststnr,u_char sign)528 asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign)
529 {
530   FPU_REG *dest = &st(deststnr);
531   int tag = TAG_Valid;
532 
533   if ( control_word & CW_ZeroDiv )
534     {
535       /* The masked response */
536       FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr);
537       setsign(dest, sign);
538       tag = TAG_Special;
539     }
540 
541   EXCEPTION(EX_ZeroDiv);
542 
543   return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag;
544 
545 }
546 
547 
548 /* This may be called often, so keep it lean */
set_precision_flag(int flags)549 int set_precision_flag(int flags)
550 {
551   if ( control_word & CW_Precision )
552     {
553       partial_status &= ~(SW_C1 & flags);
554       partial_status |= flags;   /* The masked response */
555       return 0;
556     }
557   else
558     {
559       EXCEPTION(flags);
560       return 1;
561     }
562 }
563 
564 
565 /* This may be called often, so keep it lean */
set_precision_flag_up(void)566 asmlinkage void set_precision_flag_up(void)
567 {
568   if ( control_word & CW_Precision )
569     partial_status |= (SW_Precision | SW_C1);   /* The masked response */
570   else
571     EXCEPTION(EX_Precision | SW_C1);
572 }
573 
574 
575 /* This may be called often, so keep it lean */
set_precision_flag_down(void)576 asmlinkage void set_precision_flag_down(void)
577 {
578   if ( control_word & CW_Precision )
579     {   /* The masked response */
580       partial_status &= ~SW_C1;
581       partial_status |= SW_Precision;
582     }
583   else
584     EXCEPTION(EX_Precision);
585 }
586 
587 
denormal_operand(void)588 asmlinkage int denormal_operand(void)
589 {
590   if ( control_word & CW_Denormal )
591     {   /* The masked response */
592       partial_status |= SW_Denorm_Op;
593       return TAG_Special;
594     }
595   else
596     {
597       EXCEPTION(EX_Denormal);
598       return TAG_Special | FPU_Exception;
599     }
600 }
601 
602 
arith_overflow(FPU_REG * dest)603 asmlinkage int arith_overflow(FPU_REG *dest)
604 {
605   int tag = TAG_Valid;
606 
607   if ( control_word & CW_Overflow )
608     {
609       /* The masked response */
610 /* ###### The response here depends upon the rounding mode */
611       reg_copy(&CONST_INF, dest);
612       tag = TAG_Special;
613     }
614   else
615     {
616       /* Subtract the magic number from the exponent */
617       addexponent(dest, (-3 * (1 << 13)));
618     }
619 
620   EXCEPTION(EX_Overflow);
621   if ( control_word & CW_Overflow )
622     {
623       /* The overflow exception is masked. */
624       /* By definition, precision is lost.
625 	 The roundup bit (C1) is also set because we have
626 	 "rounded" upwards to Infinity. */
627       EXCEPTION(EX_Precision | SW_C1);
628       return tag;
629     }
630 
631   return tag;
632 
633 }
634 
635 
arith_underflow(FPU_REG * dest)636 asmlinkage int arith_underflow(FPU_REG *dest)
637 {
638   int tag = TAG_Valid;
639 
640   if ( control_word & CW_Underflow )
641     {
642       /* The masked response */
643       if ( exponent16(dest) <= EXP_UNDER - 63 )
644 	{
645 	  reg_copy(&CONST_Z, dest);
646 	  partial_status &= ~SW_C1;       /* Round down. */
647 	  tag = TAG_Zero;
648 	}
649       else
650 	{
651 	  stdexp(dest);
652 	}
653     }
654   else
655     {
656       /* Add the magic number to the exponent. */
657       addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias);
658     }
659 
660   EXCEPTION(EX_Underflow);
661   if ( control_word & CW_Underflow )
662     {
663       /* The underflow exception is masked. */
664       EXCEPTION(EX_Precision);
665       return tag;
666     }
667 
668   return tag;
669 
670 }
671 
672 
FPU_stack_overflow(void)673 void FPU_stack_overflow(void)
674 {
675 
676  if ( control_word & CW_Invalid )
677     {
678       /* The masked response */
679       top--;
680       FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
681     }
682 
683   EXCEPTION(EX_StackOver);
684 
685   return;
686 
687 }
688 
689 
FPU_stack_underflow(void)690 void FPU_stack_underflow(void)
691 {
692 
693  if ( control_word & CW_Invalid )
694     {
695       /* The masked response */
696       FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
697     }
698 
699   EXCEPTION(EX_StackUnder);
700 
701   return;
702 
703 }
704 
705 
FPU_stack_underflow_i(int i)706 void FPU_stack_underflow_i(int i)
707 {
708 
709  if ( control_word & CW_Invalid )
710     {
711       /* The masked response */
712       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
713     }
714 
715   EXCEPTION(EX_StackUnder);
716 
717   return;
718 
719 }
720 
721 
FPU_stack_underflow_pop(int i)722 void FPU_stack_underflow_pop(int i)
723 {
724 
725  if ( control_word & CW_Invalid )
726     {
727       /* The masked response */
728       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
729       FPU_pop();
730     }
731 
732   EXCEPTION(EX_StackUnder);
733 
734   return;
735 
736 }
737 
738