1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42 #define MAX_PAUSE max(HZ/5, 1)
43
44 /*
45 * Try to keep balance_dirty_pages() call intervals higher than this many pages
46 * by raising pause time to max_pause when falls below it.
47 */
48 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
49
50 /*
51 * Estimate write bandwidth at 200ms intervals.
52 */
53 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
54
55 #define RATELIMIT_CALC_SHIFT 10
56
57 /*
58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59 * will look to see if it needs to force writeback or throttling.
60 */
61 static long ratelimit_pages = 32;
62
63 /* The following parameters are exported via /proc/sys/vm */
64
65 /*
66 * Start background writeback (via writeback threads) at this percentage
67 */
68 int dirty_background_ratio = 10;
69
70 /*
71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72 * dirty_background_ratio * the amount of dirtyable memory
73 */
74 unsigned long dirty_background_bytes;
75
76 /*
77 * free highmem will not be subtracted from the total free memory
78 * for calculating free ratios if vm_highmem_is_dirtyable is true
79 */
80 int vm_highmem_is_dirtyable;
81
82 /*
83 * The generator of dirty data starts writeback at this percentage
84 */
85 int vm_dirty_ratio = 20;
86
87 /*
88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89 * vm_dirty_ratio * the amount of dirtyable memory
90 */
91 unsigned long vm_dirty_bytes;
92
93 /*
94 * The interval between `kupdate'-style writebacks
95 */
96 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
97
98 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
99
100 /*
101 * The longest time for which data is allowed to remain dirty
102 */
103 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
104
105 /*
106 * Flag that makes the machine dump writes/reads and block dirtyings.
107 */
108 int block_dump;
109
110 /*
111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112 * a full sync is triggered after this time elapses without any disk activity.
113 */
114 int laptop_mode;
115
116 EXPORT_SYMBOL(laptop_mode);
117
118 /* End of sysctl-exported parameters */
119
120 unsigned long global_dirty_limit;
121
122 /*
123 * Scale the writeback cache size proportional to the relative writeout speeds.
124 *
125 * We do this by keeping a floating proportion between BDIs, based on page
126 * writeback completions [end_page_writeback()]. Those devices that write out
127 * pages fastest will get the larger share, while the slower will get a smaller
128 * share.
129 *
130 * We use page writeout completions because we are interested in getting rid of
131 * dirty pages. Having them written out is the primary goal.
132 *
133 * We introduce a concept of time, a period over which we measure these events,
134 * because demand can/will vary over time. The length of this period itself is
135 * measured in page writeback completions.
136 *
137 */
138 static struct prop_descriptor vm_completions;
139
140 /*
141 * Work out the current dirty-memory clamping and background writeout
142 * thresholds.
143 *
144 * The main aim here is to lower them aggressively if there is a lot of mapped
145 * memory around. To avoid stressing page reclaim with lots of unreclaimable
146 * pages. It is better to clamp down on writers than to start swapping, and
147 * performing lots of scanning.
148 *
149 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
150 *
151 * We don't permit the clamping level to fall below 5% - that is getting rather
152 * excessive.
153 *
154 * We make sure that the background writeout level is below the adjusted
155 * clamping level.
156 */
157
158 /*
159 * In a memory zone, there is a certain amount of pages we consider
160 * available for the page cache, which is essentially the number of
161 * free and reclaimable pages, minus some zone reserves to protect
162 * lowmem and the ability to uphold the zone's watermarks without
163 * requiring writeback.
164 *
165 * This number of dirtyable pages is the base value of which the
166 * user-configurable dirty ratio is the effictive number of pages that
167 * are allowed to be actually dirtied. Per individual zone, or
168 * globally by using the sum of dirtyable pages over all zones.
169 *
170 * Because the user is allowed to specify the dirty limit globally as
171 * absolute number of bytes, calculating the per-zone dirty limit can
172 * require translating the configured limit into a percentage of
173 * global dirtyable memory first.
174 */
175
highmem_dirtyable_memory(unsigned long total)176 static unsigned long highmem_dirtyable_memory(unsigned long total)
177 {
178 #ifdef CONFIG_HIGHMEM
179 int node;
180 unsigned long x = 0;
181
182 for_each_node_state(node, N_HIGH_MEMORY) {
183 struct zone *z =
184 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
185
186 x += zone_page_state(z, NR_FREE_PAGES) +
187 zone_reclaimable_pages(z) - z->dirty_balance_reserve;
188 }
189 /*
190 * Unreclaimable memory (kernel memory or anonymous memory
191 * without swap) can bring down the dirtyable pages below
192 * the zone's dirty balance reserve and the above calculation
193 * will underflow. However we still want to add in nodes
194 * which are below threshold (negative values) to get a more
195 * accurate calculation but make sure that the total never
196 * underflows.
197 */
198 if ((long)x < 0)
199 x = 0;
200
201 /*
202 * Make sure that the number of highmem pages is never larger
203 * than the number of the total dirtyable memory. This can only
204 * occur in very strange VM situations but we want to make sure
205 * that this does not occur.
206 */
207 return min(x, total);
208 #else
209 return 0;
210 #endif
211 }
212
213 /**
214 * global_dirtyable_memory - number of globally dirtyable pages
215 *
216 * Returns the global number of pages potentially available for dirty
217 * page cache. This is the base value for the global dirty limits.
218 */
global_dirtyable_memory(void)219 unsigned long global_dirtyable_memory(void)
220 {
221 unsigned long x;
222
223 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
224 x -= min(x, dirty_balance_reserve);
225
226 if (!vm_highmem_is_dirtyable)
227 x -= highmem_dirtyable_memory(x);
228
229 return x + 1; /* Ensure that we never return 0 */
230 }
231
232 /*
233 * global_dirty_limits - background-writeback and dirty-throttling thresholds
234 *
235 * Calculate the dirty thresholds based on sysctl parameters
236 * - vm.dirty_background_ratio or vm.dirty_background_bytes
237 * - vm.dirty_ratio or vm.dirty_bytes
238 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
239 * real-time tasks.
240 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)241 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
242 {
243 unsigned long background;
244 unsigned long dirty;
245 unsigned long uninitialized_var(available_memory);
246 struct task_struct *tsk;
247
248 if (!vm_dirty_bytes || !dirty_background_bytes)
249 available_memory = global_dirtyable_memory();
250
251 if (vm_dirty_bytes)
252 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
253 else
254 dirty = (vm_dirty_ratio * available_memory) / 100;
255
256 if (dirty_background_bytes)
257 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
258 else
259 background = (dirty_background_ratio * available_memory) / 100;
260
261 if (background >= dirty)
262 background = dirty / 2;
263 tsk = current;
264 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
265 background += background / 4;
266 dirty += dirty / 4;
267 }
268 *pbackground = background;
269 *pdirty = dirty;
270 trace_global_dirty_state(background, dirty);
271 }
272
273 /**
274 * zone_dirtyable_memory - number of dirtyable pages in a zone
275 * @zone: the zone
276 *
277 * Returns the zone's number of pages potentially available for dirty
278 * page cache. This is the base value for the per-zone dirty limits.
279 */
zone_dirtyable_memory(struct zone * zone)280 static unsigned long zone_dirtyable_memory(struct zone *zone)
281 {
282 /*
283 * The effective global number of dirtyable pages may exclude
284 * highmem as a big-picture measure to keep the ratio between
285 * dirty memory and lowmem reasonable.
286 *
287 * But this function is purely about the individual zone and a
288 * highmem zone can hold its share of dirty pages, so we don't
289 * care about vm_highmem_is_dirtyable here.
290 */
291 unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
292 zone_reclaimable_pages(zone);
293
294 /* don't allow this to underflow */
295 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
296 return nr_pages;
297 }
298
299 /**
300 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
301 * @zone: the zone
302 *
303 * Returns the maximum number of dirty pages allowed in a zone, based
304 * on the zone's dirtyable memory.
305 */
zone_dirty_limit(struct zone * zone)306 static unsigned long zone_dirty_limit(struct zone *zone)
307 {
308 unsigned long zone_memory = zone_dirtyable_memory(zone);
309 struct task_struct *tsk = current;
310 unsigned long dirty;
311
312 if (vm_dirty_bytes)
313 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
314 zone_memory / global_dirtyable_memory();
315 else
316 dirty = vm_dirty_ratio * zone_memory / 100;
317
318 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
319 dirty += dirty / 4;
320
321 return dirty;
322 }
323
324 /**
325 * zone_dirty_ok - tells whether a zone is within its dirty limits
326 * @zone: the zone to check
327 *
328 * Returns %true when the dirty pages in @zone are within the zone's
329 * dirty limit, %false if the limit is exceeded.
330 */
zone_dirty_ok(struct zone * zone)331 bool zone_dirty_ok(struct zone *zone)
332 {
333 unsigned long limit = zone_dirty_limit(zone);
334
335 return zone_page_state(zone, NR_FILE_DIRTY) +
336 zone_page_state(zone, NR_UNSTABLE_NFS) +
337 zone_page_state(zone, NR_WRITEBACK) <= limit;
338 }
339
340 /*
341 * couple the period to the dirty_ratio:
342 *
343 * period/2 ~ roundup_pow_of_two(dirty limit)
344 */
calc_period_shift(void)345 static int calc_period_shift(void)
346 {
347 unsigned long dirty_total;
348
349 if (vm_dirty_bytes)
350 dirty_total = vm_dirty_bytes / PAGE_SIZE;
351 else
352 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
353 100;
354 return 2 + ilog2(dirty_total - 1);
355 }
356
357 /*
358 * update the period when the dirty threshold changes.
359 */
update_completion_period(void)360 static void update_completion_period(void)
361 {
362 int shift = calc_period_shift();
363 prop_change_shift(&vm_completions, shift);
364
365 writeback_set_ratelimit();
366 }
367
dirty_background_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)368 int dirty_background_ratio_handler(struct ctl_table *table, int write,
369 void __user *buffer, size_t *lenp,
370 loff_t *ppos)
371 {
372 int ret;
373
374 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
375 if (ret == 0 && write)
376 dirty_background_bytes = 0;
377 return ret;
378 }
379
dirty_background_bytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)380 int dirty_background_bytes_handler(struct ctl_table *table, int write,
381 void __user *buffer, size_t *lenp,
382 loff_t *ppos)
383 {
384 int ret;
385
386 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
387 if (ret == 0 && write)
388 dirty_background_ratio = 0;
389 return ret;
390 }
391
dirty_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)392 int dirty_ratio_handler(struct ctl_table *table, int write,
393 void __user *buffer, size_t *lenp,
394 loff_t *ppos)
395 {
396 int old_ratio = vm_dirty_ratio;
397 int ret;
398
399 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
400 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
401 update_completion_period();
402 vm_dirty_bytes = 0;
403 }
404 return ret;
405 }
406
dirty_bytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)407 int dirty_bytes_handler(struct ctl_table *table, int write,
408 void __user *buffer, size_t *lenp,
409 loff_t *ppos)
410 {
411 unsigned long old_bytes = vm_dirty_bytes;
412 int ret;
413
414 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
415 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
416 update_completion_period();
417 vm_dirty_ratio = 0;
418 }
419 return ret;
420 }
421
422 /*
423 * Increment the BDI's writeout completion count and the global writeout
424 * completion count. Called from test_clear_page_writeback().
425 */
__bdi_writeout_inc(struct backing_dev_info * bdi)426 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
427 {
428 __inc_bdi_stat(bdi, BDI_WRITTEN);
429 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
430 bdi->max_prop_frac);
431 }
432
bdi_writeout_inc(struct backing_dev_info * bdi)433 void bdi_writeout_inc(struct backing_dev_info *bdi)
434 {
435 unsigned long flags;
436
437 local_irq_save(flags);
438 __bdi_writeout_inc(bdi);
439 local_irq_restore(flags);
440 }
441 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
442
443 /*
444 * Obtain an accurate fraction of the BDI's portion.
445 */
bdi_writeout_fraction(struct backing_dev_info * bdi,long * numerator,long * denominator)446 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
447 long *numerator, long *denominator)
448 {
449 prop_fraction_percpu(&vm_completions, &bdi->completions,
450 numerator, denominator);
451 }
452
453 /*
454 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
455 * registered backing devices, which, for obvious reasons, can not
456 * exceed 100%.
457 */
458 static unsigned int bdi_min_ratio;
459
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)460 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
461 {
462 int ret = 0;
463
464 spin_lock_bh(&bdi_lock);
465 if (min_ratio > bdi->max_ratio) {
466 ret = -EINVAL;
467 } else {
468 min_ratio -= bdi->min_ratio;
469 if (bdi_min_ratio + min_ratio < 100) {
470 bdi_min_ratio += min_ratio;
471 bdi->min_ratio += min_ratio;
472 } else {
473 ret = -EINVAL;
474 }
475 }
476 spin_unlock_bh(&bdi_lock);
477
478 return ret;
479 }
480
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned max_ratio)481 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
482 {
483 int ret = 0;
484
485 if (max_ratio > 100)
486 return -EINVAL;
487
488 spin_lock_bh(&bdi_lock);
489 if (bdi->min_ratio > max_ratio) {
490 ret = -EINVAL;
491 } else {
492 bdi->max_ratio = max_ratio;
493 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
494 }
495 spin_unlock_bh(&bdi_lock);
496
497 return ret;
498 }
499 EXPORT_SYMBOL(bdi_set_max_ratio);
500
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)501 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
502 unsigned long bg_thresh)
503 {
504 return (thresh + bg_thresh) / 2;
505 }
506
hard_dirty_limit(unsigned long thresh)507 static unsigned long hard_dirty_limit(unsigned long thresh)
508 {
509 return max(thresh, global_dirty_limit);
510 }
511
512 /**
513 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
514 * @bdi: the backing_dev_info to query
515 * @dirty: global dirty limit in pages
516 *
517 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
518 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
519 *
520 * Note that balance_dirty_pages() will only seriously take it as a hard limit
521 * when sleeping max_pause per page is not enough to keep the dirty pages under
522 * control. For example, when the device is completely stalled due to some error
523 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
524 * In the other normal situations, it acts more gently by throttling the tasks
525 * more (rather than completely block them) when the bdi dirty pages go high.
526 *
527 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
528 * - starving fast devices
529 * - piling up dirty pages (that will take long time to sync) on slow devices
530 *
531 * The bdi's share of dirty limit will be adapting to its throughput and
532 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
533 */
bdi_dirty_limit(struct backing_dev_info * bdi,unsigned long dirty)534 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
535 {
536 u64 bdi_dirty;
537 long numerator, denominator;
538
539 /*
540 * Calculate this BDI's share of the dirty ratio.
541 */
542 bdi_writeout_fraction(bdi, &numerator, &denominator);
543
544 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
545 bdi_dirty *= numerator;
546 do_div(bdi_dirty, denominator);
547
548 bdi_dirty += (dirty * bdi->min_ratio) / 100;
549 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
550 bdi_dirty = dirty * bdi->max_ratio / 100;
551
552 return bdi_dirty;
553 }
554
555 /*
556 * Dirty position control.
557 *
558 * (o) global/bdi setpoints
559 *
560 * We want the dirty pages be balanced around the global/bdi setpoints.
561 * When the number of dirty pages is higher/lower than the setpoint, the
562 * dirty position control ratio (and hence task dirty ratelimit) will be
563 * decreased/increased to bring the dirty pages back to the setpoint.
564 *
565 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
566 *
567 * if (dirty < setpoint) scale up pos_ratio
568 * if (dirty > setpoint) scale down pos_ratio
569 *
570 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
571 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
572 *
573 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
574 *
575 * (o) global control line
576 *
577 * ^ pos_ratio
578 * |
579 * | |<===== global dirty control scope ======>|
580 * 2.0 .............*
581 * | .*
582 * | . *
583 * | . *
584 * | . *
585 * | . *
586 * | . *
587 * 1.0 ................................*
588 * | . . *
589 * | . . *
590 * | . . *
591 * | . . *
592 * | . . *
593 * 0 +------------.------------------.----------------------*------------->
594 * freerun^ setpoint^ limit^ dirty pages
595 *
596 * (o) bdi control line
597 *
598 * ^ pos_ratio
599 * |
600 * | *
601 * | *
602 * | *
603 * | *
604 * | * |<=========== span ============>|
605 * 1.0 .......................*
606 * | . *
607 * | . *
608 * | . *
609 * | . *
610 * | . *
611 * | . *
612 * | . *
613 * | . *
614 * | . *
615 * | . *
616 * | . *
617 * 1/4 ...............................................* * * * * * * * * * * *
618 * | . .
619 * | . .
620 * | . .
621 * 0 +----------------------.-------------------------------.------------->
622 * bdi_setpoint^ x_intercept^
623 *
624 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
625 * be smoothly throttled down to normal if it starts high in situations like
626 * - start writing to a slow SD card and a fast disk at the same time. The SD
627 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
628 * - the bdi dirty thresh drops quickly due to change of JBOD workload
629 */
bdi_position_ratio(struct backing_dev_info * bdi,unsigned long thresh,unsigned long bg_thresh,unsigned long dirty,unsigned long bdi_thresh,unsigned long bdi_dirty)630 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
631 unsigned long thresh,
632 unsigned long bg_thresh,
633 unsigned long dirty,
634 unsigned long bdi_thresh,
635 unsigned long bdi_dirty)
636 {
637 unsigned long write_bw = bdi->avg_write_bandwidth;
638 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
639 unsigned long limit = hard_dirty_limit(thresh);
640 unsigned long x_intercept;
641 unsigned long setpoint; /* dirty pages' target balance point */
642 unsigned long bdi_setpoint;
643 unsigned long span;
644 long long pos_ratio; /* for scaling up/down the rate limit */
645 long x;
646
647 if (unlikely(dirty >= limit))
648 return 0;
649
650 /*
651 * global setpoint
652 *
653 * setpoint - dirty 3
654 * f(dirty) := 1.0 + (----------------)
655 * limit - setpoint
656 *
657 * it's a 3rd order polynomial that subjects to
658 *
659 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
660 * (2) f(setpoint) = 1.0 => the balance point
661 * (3) f(limit) = 0 => the hard limit
662 * (4) df/dx <= 0 => negative feedback control
663 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
664 * => fast response on large errors; small oscillation near setpoint
665 */
666 setpoint = (freerun + limit) / 2;
667 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
668 limit - setpoint + 1);
669 pos_ratio = x;
670 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
671 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
672 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
673
674 /*
675 * We have computed basic pos_ratio above based on global situation. If
676 * the bdi is over/under its share of dirty pages, we want to scale
677 * pos_ratio further down/up. That is done by the following mechanism.
678 */
679
680 /*
681 * bdi setpoint
682 *
683 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
684 *
685 * x_intercept - bdi_dirty
686 * := --------------------------
687 * x_intercept - bdi_setpoint
688 *
689 * The main bdi control line is a linear function that subjects to
690 *
691 * (1) f(bdi_setpoint) = 1.0
692 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
693 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
694 *
695 * For single bdi case, the dirty pages are observed to fluctuate
696 * regularly within range
697 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
698 * for various filesystems, where (2) can yield in a reasonable 12.5%
699 * fluctuation range for pos_ratio.
700 *
701 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
702 * own size, so move the slope over accordingly and choose a slope that
703 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
704 */
705 if (unlikely(bdi_thresh > thresh))
706 bdi_thresh = thresh;
707 /*
708 * It's very possible that bdi_thresh is close to 0 not because the
709 * device is slow, but that it has remained inactive for long time.
710 * Honour such devices a reasonable good (hopefully IO efficient)
711 * threshold, so that the occasional writes won't be blocked and active
712 * writes can rampup the threshold quickly.
713 */
714 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
715 /*
716 * scale global setpoint to bdi's:
717 * bdi_setpoint = setpoint * bdi_thresh / thresh
718 */
719 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
720 bdi_setpoint = setpoint * (u64)x >> 16;
721 /*
722 * Use span=(8*write_bw) in single bdi case as indicated by
723 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
724 *
725 * bdi_thresh thresh - bdi_thresh
726 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
727 * thresh thresh
728 */
729 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
730 x_intercept = bdi_setpoint + span;
731
732 if (bdi_dirty < x_intercept - span / 4) {
733 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
734 x_intercept - bdi_setpoint + 1);
735 } else
736 pos_ratio /= 4;
737
738 /*
739 * bdi reserve area, safeguard against dirty pool underrun and disk idle
740 * It may push the desired control point of global dirty pages higher
741 * than setpoint.
742 */
743 x_intercept = bdi_thresh / 2;
744 if (bdi_dirty < x_intercept) {
745 if (bdi_dirty > x_intercept / 8)
746 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
747 else
748 pos_ratio *= 8;
749 }
750
751 return pos_ratio;
752 }
753
bdi_update_write_bandwidth(struct backing_dev_info * bdi,unsigned long elapsed,unsigned long written)754 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
755 unsigned long elapsed,
756 unsigned long written)
757 {
758 const unsigned long period = roundup_pow_of_two(3 * HZ);
759 unsigned long avg = bdi->avg_write_bandwidth;
760 unsigned long old = bdi->write_bandwidth;
761 u64 bw;
762
763 /*
764 * bw = written * HZ / elapsed
765 *
766 * bw * elapsed + write_bandwidth * (period - elapsed)
767 * write_bandwidth = ---------------------------------------------------
768 * period
769 */
770 bw = written - bdi->written_stamp;
771 bw *= HZ;
772 if (unlikely(elapsed > period)) {
773 do_div(bw, elapsed);
774 avg = bw;
775 goto out;
776 }
777 bw += (u64)bdi->write_bandwidth * (period - elapsed);
778 bw >>= ilog2(period);
779
780 /*
781 * one more level of smoothing, for filtering out sudden spikes
782 */
783 if (avg > old && old >= (unsigned long)bw)
784 avg -= (avg - old) >> 3;
785
786 if (avg < old && old <= (unsigned long)bw)
787 avg += (old - avg) >> 3;
788
789 out:
790 bdi->write_bandwidth = bw;
791 bdi->avg_write_bandwidth = avg;
792 }
793
794 /*
795 * The global dirtyable memory and dirty threshold could be suddenly knocked
796 * down by a large amount (eg. on the startup of KVM in a swapless system).
797 * This may throw the system into deep dirty exceeded state and throttle
798 * heavy/light dirtiers alike. To retain good responsiveness, maintain
799 * global_dirty_limit for tracking slowly down to the knocked down dirty
800 * threshold.
801 */
update_dirty_limit(unsigned long thresh,unsigned long dirty)802 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
803 {
804 unsigned long limit = global_dirty_limit;
805
806 /*
807 * Follow up in one step.
808 */
809 if (limit < thresh) {
810 limit = thresh;
811 goto update;
812 }
813
814 /*
815 * Follow down slowly. Use the higher one as the target, because thresh
816 * may drop below dirty. This is exactly the reason to introduce
817 * global_dirty_limit which is guaranteed to lie above the dirty pages.
818 */
819 thresh = max(thresh, dirty);
820 if (limit > thresh) {
821 limit -= (limit - thresh) >> 5;
822 goto update;
823 }
824 return;
825 update:
826 global_dirty_limit = limit;
827 }
828
global_update_bandwidth(unsigned long thresh,unsigned long dirty,unsigned long now)829 static void global_update_bandwidth(unsigned long thresh,
830 unsigned long dirty,
831 unsigned long now)
832 {
833 static DEFINE_SPINLOCK(dirty_lock);
834 static unsigned long update_time;
835
836 /*
837 * check locklessly first to optimize away locking for the most time
838 */
839 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
840 return;
841
842 spin_lock(&dirty_lock);
843 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
844 update_dirty_limit(thresh, dirty);
845 update_time = now;
846 }
847 spin_unlock(&dirty_lock);
848 }
849
850 /*
851 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
852 *
853 * Normal bdi tasks will be curbed at or below it in long term.
854 * Obviously it should be around (write_bw / N) when there are N dd tasks.
855 */
bdi_update_dirty_ratelimit(struct backing_dev_info * bdi,unsigned long thresh,unsigned long bg_thresh,unsigned long dirty,unsigned long bdi_thresh,unsigned long bdi_dirty,unsigned long dirtied,unsigned long elapsed)856 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
857 unsigned long thresh,
858 unsigned long bg_thresh,
859 unsigned long dirty,
860 unsigned long bdi_thresh,
861 unsigned long bdi_dirty,
862 unsigned long dirtied,
863 unsigned long elapsed)
864 {
865 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
866 unsigned long limit = hard_dirty_limit(thresh);
867 unsigned long setpoint = (freerun + limit) / 2;
868 unsigned long write_bw = bdi->avg_write_bandwidth;
869 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
870 unsigned long dirty_rate;
871 unsigned long task_ratelimit;
872 unsigned long balanced_dirty_ratelimit;
873 unsigned long pos_ratio;
874 unsigned long step;
875 unsigned long x;
876
877 /*
878 * The dirty rate will match the writeout rate in long term, except
879 * when dirty pages are truncated by userspace or re-dirtied by FS.
880 */
881 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
882
883 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
884 bdi_thresh, bdi_dirty);
885 /*
886 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
887 */
888 task_ratelimit = (u64)dirty_ratelimit *
889 pos_ratio >> RATELIMIT_CALC_SHIFT;
890 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
891
892 /*
893 * A linear estimation of the "balanced" throttle rate. The theory is,
894 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
895 * dirty_rate will be measured to be (N * task_ratelimit). So the below
896 * formula will yield the balanced rate limit (write_bw / N).
897 *
898 * Note that the expanded form is not a pure rate feedback:
899 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
900 * but also takes pos_ratio into account:
901 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
902 *
903 * (1) is not realistic because pos_ratio also takes part in balancing
904 * the dirty rate. Consider the state
905 * pos_ratio = 0.5 (3)
906 * rate = 2 * (write_bw / N) (4)
907 * If (1) is used, it will stuck in that state! Because each dd will
908 * be throttled at
909 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
910 * yielding
911 * dirty_rate = N * task_ratelimit = write_bw (6)
912 * put (6) into (1) we get
913 * rate_(i+1) = rate_(i) (7)
914 *
915 * So we end up using (2) to always keep
916 * rate_(i+1) ~= (write_bw / N) (8)
917 * regardless of the value of pos_ratio. As long as (8) is satisfied,
918 * pos_ratio is able to drive itself to 1.0, which is not only where
919 * the dirty count meet the setpoint, but also where the slope of
920 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
921 */
922 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
923 dirty_rate | 1);
924 /*
925 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
926 */
927 if (unlikely(balanced_dirty_ratelimit > write_bw))
928 balanced_dirty_ratelimit = write_bw;
929
930 /*
931 * We could safely do this and return immediately:
932 *
933 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
934 *
935 * However to get a more stable dirty_ratelimit, the below elaborated
936 * code makes use of task_ratelimit to filter out sigular points and
937 * limit the step size.
938 *
939 * The below code essentially only uses the relative value of
940 *
941 * task_ratelimit - dirty_ratelimit
942 * = (pos_ratio - 1) * dirty_ratelimit
943 *
944 * which reflects the direction and size of dirty position error.
945 */
946
947 /*
948 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
949 * task_ratelimit is on the same side of dirty_ratelimit, too.
950 * For example, when
951 * - dirty_ratelimit > balanced_dirty_ratelimit
952 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
953 * lowering dirty_ratelimit will help meet both the position and rate
954 * control targets. Otherwise, don't update dirty_ratelimit if it will
955 * only help meet the rate target. After all, what the users ultimately
956 * feel and care are stable dirty rate and small position error.
957 *
958 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
959 * and filter out the sigular points of balanced_dirty_ratelimit. Which
960 * keeps jumping around randomly and can even leap far away at times
961 * due to the small 200ms estimation period of dirty_rate (we want to
962 * keep that period small to reduce time lags).
963 */
964 step = 0;
965 if (dirty < setpoint) {
966 x = min(bdi->balanced_dirty_ratelimit,
967 min(balanced_dirty_ratelimit, task_ratelimit));
968 if (dirty_ratelimit < x)
969 step = x - dirty_ratelimit;
970 } else {
971 x = max(bdi->balanced_dirty_ratelimit,
972 max(balanced_dirty_ratelimit, task_ratelimit));
973 if (dirty_ratelimit > x)
974 step = dirty_ratelimit - x;
975 }
976
977 /*
978 * Don't pursue 100% rate matching. It's impossible since the balanced
979 * rate itself is constantly fluctuating. So decrease the track speed
980 * when it gets close to the target. Helps eliminate pointless tremors.
981 */
982 step >>= dirty_ratelimit / (2 * step + 1);
983 /*
984 * Limit the tracking speed to avoid overshooting.
985 */
986 step = (step + 7) / 8;
987
988 if (dirty_ratelimit < balanced_dirty_ratelimit)
989 dirty_ratelimit += step;
990 else
991 dirty_ratelimit -= step;
992
993 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
994 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
995
996 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
997 }
998
__bdi_update_bandwidth(struct backing_dev_info * bdi,unsigned long thresh,unsigned long bg_thresh,unsigned long dirty,unsigned long bdi_thresh,unsigned long bdi_dirty,unsigned long start_time)999 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1000 unsigned long thresh,
1001 unsigned long bg_thresh,
1002 unsigned long dirty,
1003 unsigned long bdi_thresh,
1004 unsigned long bdi_dirty,
1005 unsigned long start_time)
1006 {
1007 unsigned long now = jiffies;
1008 unsigned long elapsed = now - bdi->bw_time_stamp;
1009 unsigned long dirtied;
1010 unsigned long written;
1011
1012 /*
1013 * rate-limit, only update once every 200ms.
1014 */
1015 if (elapsed < BANDWIDTH_INTERVAL)
1016 return;
1017
1018 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1019 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1020
1021 /*
1022 * Skip quiet periods when disk bandwidth is under-utilized.
1023 * (at least 1s idle time between two flusher runs)
1024 */
1025 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1026 goto snapshot;
1027
1028 if (thresh) {
1029 global_update_bandwidth(thresh, dirty, now);
1030 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1031 bdi_thresh, bdi_dirty,
1032 dirtied, elapsed);
1033 }
1034 bdi_update_write_bandwidth(bdi, elapsed, written);
1035
1036 snapshot:
1037 bdi->dirtied_stamp = dirtied;
1038 bdi->written_stamp = written;
1039 bdi->bw_time_stamp = now;
1040 }
1041
bdi_update_bandwidth(struct backing_dev_info * bdi,unsigned long thresh,unsigned long bg_thresh,unsigned long dirty,unsigned long bdi_thresh,unsigned long bdi_dirty,unsigned long start_time)1042 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1043 unsigned long thresh,
1044 unsigned long bg_thresh,
1045 unsigned long dirty,
1046 unsigned long bdi_thresh,
1047 unsigned long bdi_dirty,
1048 unsigned long start_time)
1049 {
1050 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1051 return;
1052 spin_lock(&bdi->wb.list_lock);
1053 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1054 bdi_thresh, bdi_dirty, start_time);
1055 spin_unlock(&bdi->wb.list_lock);
1056 }
1057
1058 /*
1059 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1060 * will look to see if it needs to start dirty throttling.
1061 *
1062 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1063 * global_page_state() too often. So scale it near-sqrt to the safety margin
1064 * (the number of pages we may dirty without exceeding the dirty limits).
1065 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1066 static unsigned long dirty_poll_interval(unsigned long dirty,
1067 unsigned long thresh)
1068 {
1069 if (thresh > dirty)
1070 return 1UL << (ilog2(thresh - dirty) >> 1);
1071
1072 return 1;
1073 }
1074
bdi_max_pause(struct backing_dev_info * bdi,unsigned long bdi_dirty)1075 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1076 unsigned long bdi_dirty)
1077 {
1078 unsigned long bw = bdi->avg_write_bandwidth;
1079 unsigned long t;
1080
1081 /*
1082 * Limit pause time for small memory systems. If sleeping for too long
1083 * time, a small pool of dirty/writeback pages may go empty and disk go
1084 * idle.
1085 *
1086 * 8 serves as the safety ratio.
1087 */
1088 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1089 t++;
1090
1091 return min_t(unsigned long, t, MAX_PAUSE);
1092 }
1093
bdi_min_pause(struct backing_dev_info * bdi,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1094 static long bdi_min_pause(struct backing_dev_info *bdi,
1095 long max_pause,
1096 unsigned long task_ratelimit,
1097 unsigned long dirty_ratelimit,
1098 int *nr_dirtied_pause)
1099 {
1100 long hi = ilog2(bdi->avg_write_bandwidth);
1101 long lo = ilog2(bdi->dirty_ratelimit);
1102 long t; /* target pause */
1103 long pause; /* estimated next pause */
1104 int pages; /* target nr_dirtied_pause */
1105
1106 /* target for 10ms pause on 1-dd case */
1107 t = max(1, HZ / 100);
1108
1109 /*
1110 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1111 * overheads.
1112 *
1113 * (N * 10ms) on 2^N concurrent tasks.
1114 */
1115 if (hi > lo)
1116 t += (hi - lo) * (10 * HZ) / 1024;
1117
1118 /*
1119 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1120 * on the much more stable dirty_ratelimit. However the next pause time
1121 * will be computed based on task_ratelimit and the two rate limits may
1122 * depart considerably at some time. Especially if task_ratelimit goes
1123 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1124 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1125 * result task_ratelimit won't be executed faithfully, which could
1126 * eventually bring down dirty_ratelimit.
1127 *
1128 * We apply two rules to fix it up:
1129 * 1) try to estimate the next pause time and if necessary, use a lower
1130 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1131 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1132 * 2) limit the target pause time to max_pause/2, so that the normal
1133 * small fluctuations of task_ratelimit won't trigger rule (1) and
1134 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1135 */
1136 t = min(t, 1 + max_pause / 2);
1137 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1138
1139 /*
1140 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1141 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1142 * When the 16 consecutive reads are often interrupted by some dirty
1143 * throttling pause during the async writes, cfq will go into idles
1144 * (deadline is fine). So push nr_dirtied_pause as high as possible
1145 * until reaches DIRTY_POLL_THRESH=32 pages.
1146 */
1147 if (pages < DIRTY_POLL_THRESH) {
1148 t = max_pause;
1149 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1150 if (pages > DIRTY_POLL_THRESH) {
1151 pages = DIRTY_POLL_THRESH;
1152 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1153 }
1154 }
1155
1156 pause = HZ * pages / (task_ratelimit + 1);
1157 if (pause > max_pause) {
1158 t = max_pause;
1159 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1160 }
1161
1162 *nr_dirtied_pause = pages;
1163 /*
1164 * The minimal pause time will normally be half the target pause time.
1165 */
1166 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1167 }
1168
1169 /*
1170 * balance_dirty_pages() must be called by processes which are generating dirty
1171 * data. It looks at the number of dirty pages in the machine and will force
1172 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1173 * If we're over `background_thresh' then the writeback threads are woken to
1174 * perform some writeout.
1175 */
balance_dirty_pages(struct address_space * mapping,unsigned long pages_dirtied)1176 static void balance_dirty_pages(struct address_space *mapping,
1177 unsigned long pages_dirtied)
1178 {
1179 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1180 unsigned long bdi_reclaimable;
1181 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1182 unsigned long bdi_dirty;
1183 unsigned long freerun;
1184 unsigned long background_thresh;
1185 unsigned long dirty_thresh;
1186 unsigned long bdi_thresh;
1187 long period;
1188 long pause;
1189 long max_pause;
1190 long min_pause;
1191 int nr_dirtied_pause;
1192 bool dirty_exceeded = false;
1193 unsigned long task_ratelimit;
1194 unsigned long dirty_ratelimit;
1195 unsigned long pos_ratio;
1196 struct backing_dev_info *bdi = mapping->backing_dev_info;
1197 unsigned long start_time = jiffies;
1198
1199 for (;;) {
1200 unsigned long now = jiffies;
1201
1202 /*
1203 * Unstable writes are a feature of certain networked
1204 * filesystems (i.e. NFS) in which data may have been
1205 * written to the server's write cache, but has not yet
1206 * been flushed to permanent storage.
1207 */
1208 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1209 global_page_state(NR_UNSTABLE_NFS);
1210 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1211
1212 global_dirty_limits(&background_thresh, &dirty_thresh);
1213
1214 /*
1215 * Throttle it only when the background writeback cannot
1216 * catch-up. This avoids (excessively) small writeouts
1217 * when the bdi limits are ramping up.
1218 */
1219 freerun = dirty_freerun_ceiling(dirty_thresh,
1220 background_thresh);
1221 if (nr_dirty <= freerun) {
1222 current->dirty_paused_when = now;
1223 current->nr_dirtied = 0;
1224 current->nr_dirtied_pause =
1225 dirty_poll_interval(nr_dirty, dirty_thresh);
1226 break;
1227 }
1228
1229 if (unlikely(!writeback_in_progress(bdi)))
1230 bdi_start_background_writeback(bdi);
1231
1232 /*
1233 * bdi_thresh is not treated as some limiting factor as
1234 * dirty_thresh, due to reasons
1235 * - in JBOD setup, bdi_thresh can fluctuate a lot
1236 * - in a system with HDD and USB key, the USB key may somehow
1237 * go into state (bdi_dirty >> bdi_thresh) either because
1238 * bdi_dirty starts high, or because bdi_thresh drops low.
1239 * In this case we don't want to hard throttle the USB key
1240 * dirtiers for 100 seconds until bdi_dirty drops under
1241 * bdi_thresh. Instead the auxiliary bdi control line in
1242 * bdi_position_ratio() will let the dirtier task progress
1243 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1244 */
1245 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1246
1247 /*
1248 * In order to avoid the stacked BDI deadlock we need
1249 * to ensure we accurately count the 'dirty' pages when
1250 * the threshold is low.
1251 *
1252 * Otherwise it would be possible to get thresh+n pages
1253 * reported dirty, even though there are thresh-m pages
1254 * actually dirty; with m+n sitting in the percpu
1255 * deltas.
1256 */
1257 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1258 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1259 bdi_dirty = bdi_reclaimable +
1260 bdi_stat_sum(bdi, BDI_WRITEBACK);
1261 } else {
1262 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1263 bdi_dirty = bdi_reclaimable +
1264 bdi_stat(bdi, BDI_WRITEBACK);
1265 }
1266
1267 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1268 (nr_dirty > dirty_thresh);
1269 if (dirty_exceeded && !bdi->dirty_exceeded)
1270 bdi->dirty_exceeded = 1;
1271
1272 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1273 nr_dirty, bdi_thresh, bdi_dirty,
1274 start_time);
1275
1276 dirty_ratelimit = bdi->dirty_ratelimit;
1277 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1278 background_thresh, nr_dirty,
1279 bdi_thresh, bdi_dirty);
1280 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1281 RATELIMIT_CALC_SHIFT;
1282 max_pause = bdi_max_pause(bdi, bdi_dirty);
1283 min_pause = bdi_min_pause(bdi, max_pause,
1284 task_ratelimit, dirty_ratelimit,
1285 &nr_dirtied_pause);
1286
1287 if (unlikely(task_ratelimit == 0)) {
1288 period = max_pause;
1289 pause = max_pause;
1290 goto pause;
1291 }
1292 period = HZ * pages_dirtied / task_ratelimit;
1293 pause = period;
1294 if (current->dirty_paused_when)
1295 pause -= now - current->dirty_paused_when;
1296 /*
1297 * For less than 1s think time (ext3/4 may block the dirtier
1298 * for up to 800ms from time to time on 1-HDD; so does xfs,
1299 * however at much less frequency), try to compensate it in
1300 * future periods by updating the virtual time; otherwise just
1301 * do a reset, as it may be a light dirtier.
1302 */
1303 if (pause < min_pause) {
1304 trace_balance_dirty_pages(bdi,
1305 dirty_thresh,
1306 background_thresh,
1307 nr_dirty,
1308 bdi_thresh,
1309 bdi_dirty,
1310 dirty_ratelimit,
1311 task_ratelimit,
1312 pages_dirtied,
1313 period,
1314 min(pause, 0L),
1315 start_time);
1316 if (pause < -HZ) {
1317 current->dirty_paused_when = now;
1318 current->nr_dirtied = 0;
1319 } else if (period) {
1320 current->dirty_paused_when += period;
1321 current->nr_dirtied = 0;
1322 } else if (current->nr_dirtied_pause <= pages_dirtied)
1323 current->nr_dirtied_pause += pages_dirtied;
1324 break;
1325 }
1326 if (unlikely(pause > max_pause)) {
1327 /* for occasional dropped task_ratelimit */
1328 now += min(pause - max_pause, max_pause);
1329 pause = max_pause;
1330 }
1331
1332 pause:
1333 trace_balance_dirty_pages(bdi,
1334 dirty_thresh,
1335 background_thresh,
1336 nr_dirty,
1337 bdi_thresh,
1338 bdi_dirty,
1339 dirty_ratelimit,
1340 task_ratelimit,
1341 pages_dirtied,
1342 period,
1343 pause,
1344 start_time);
1345 __set_current_state(TASK_KILLABLE);
1346 io_schedule_timeout(pause);
1347
1348 current->dirty_paused_when = now + pause;
1349 current->nr_dirtied = 0;
1350 current->nr_dirtied_pause = nr_dirtied_pause;
1351
1352 /*
1353 * This is typically equal to (nr_dirty < dirty_thresh) and can
1354 * also keep "1000+ dd on a slow USB stick" under control.
1355 */
1356 if (task_ratelimit)
1357 break;
1358
1359 /*
1360 * In the case of an unresponding NFS server and the NFS dirty
1361 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1362 * to go through, so that tasks on them still remain responsive.
1363 *
1364 * In theory 1 page is enough to keep the comsumer-producer
1365 * pipe going: the flusher cleans 1 page => the task dirties 1
1366 * more page. However bdi_dirty has accounting errors. So use
1367 * the larger and more IO friendly bdi_stat_error.
1368 */
1369 if (bdi_dirty <= bdi_stat_error(bdi))
1370 break;
1371
1372 if (fatal_signal_pending(current))
1373 break;
1374 }
1375
1376 if (!dirty_exceeded && bdi->dirty_exceeded)
1377 bdi->dirty_exceeded = 0;
1378
1379 if (writeback_in_progress(bdi))
1380 return;
1381
1382 /*
1383 * In laptop mode, we wait until hitting the higher threshold before
1384 * starting background writeout, and then write out all the way down
1385 * to the lower threshold. So slow writers cause minimal disk activity.
1386 *
1387 * In normal mode, we start background writeout at the lower
1388 * background_thresh, to keep the amount of dirty memory low.
1389 */
1390 if (laptop_mode)
1391 return;
1392
1393 if (nr_reclaimable > background_thresh)
1394 bdi_start_background_writeback(bdi);
1395 }
1396
set_page_dirty_balance(struct page * page,int page_mkwrite)1397 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1398 {
1399 if (set_page_dirty(page) || page_mkwrite) {
1400 struct address_space *mapping = page_mapping(page);
1401
1402 if (mapping)
1403 balance_dirty_pages_ratelimited(mapping);
1404 }
1405 }
1406
1407 static DEFINE_PER_CPU(int, bdp_ratelimits);
1408
1409 /*
1410 * Normal tasks are throttled by
1411 * loop {
1412 * dirty tsk->nr_dirtied_pause pages;
1413 * take a snap in balance_dirty_pages();
1414 * }
1415 * However there is a worst case. If every task exit immediately when dirtied
1416 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1417 * called to throttle the page dirties. The solution is to save the not yet
1418 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1419 * randomly into the running tasks. This works well for the above worst case,
1420 * as the new task will pick up and accumulate the old task's leaked dirty
1421 * count and eventually get throttled.
1422 */
1423 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1424
1425 /**
1426 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1427 * @mapping: address_space which was dirtied
1428 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1429 *
1430 * Processes which are dirtying memory should call in here once for each page
1431 * which was newly dirtied. The function will periodically check the system's
1432 * dirty state and will initiate writeback if needed.
1433 *
1434 * On really big machines, get_writeback_state is expensive, so try to avoid
1435 * calling it too often (ratelimiting). But once we're over the dirty memory
1436 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1437 * from overshooting the limit by (ratelimit_pages) each.
1438 */
balance_dirty_pages_ratelimited_nr(struct address_space * mapping,unsigned long nr_pages_dirtied)1439 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1440 unsigned long nr_pages_dirtied)
1441 {
1442 struct backing_dev_info *bdi = mapping->backing_dev_info;
1443 int ratelimit;
1444 int *p;
1445
1446 if (!bdi_cap_account_dirty(bdi))
1447 return;
1448
1449 ratelimit = current->nr_dirtied_pause;
1450 if (bdi->dirty_exceeded)
1451 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1452
1453 preempt_disable();
1454 /*
1455 * This prevents one CPU to accumulate too many dirtied pages without
1456 * calling into balance_dirty_pages(), which can happen when there are
1457 * 1000+ tasks, all of them start dirtying pages at exactly the same
1458 * time, hence all honoured too large initial task->nr_dirtied_pause.
1459 */
1460 p = &__get_cpu_var(bdp_ratelimits);
1461 if (unlikely(current->nr_dirtied >= ratelimit))
1462 *p = 0;
1463 else if (unlikely(*p >= ratelimit_pages)) {
1464 *p = 0;
1465 ratelimit = 0;
1466 }
1467 /*
1468 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1469 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1470 * the dirty throttling and livelock other long-run dirtiers.
1471 */
1472 p = &__get_cpu_var(dirty_throttle_leaks);
1473 if (*p > 0 && current->nr_dirtied < ratelimit) {
1474 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1475 *p -= nr_pages_dirtied;
1476 current->nr_dirtied += nr_pages_dirtied;
1477 }
1478 preempt_enable();
1479
1480 if (unlikely(current->nr_dirtied >= ratelimit))
1481 balance_dirty_pages(mapping, current->nr_dirtied);
1482 }
1483 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1484
throttle_vm_writeout(gfp_t gfp_mask)1485 void throttle_vm_writeout(gfp_t gfp_mask)
1486 {
1487 unsigned long background_thresh;
1488 unsigned long dirty_thresh;
1489
1490 for ( ; ; ) {
1491 global_dirty_limits(&background_thresh, &dirty_thresh);
1492 dirty_thresh = hard_dirty_limit(dirty_thresh);
1493
1494 /*
1495 * Boost the allowable dirty threshold a bit for page
1496 * allocators so they don't get DoS'ed by heavy writers
1497 */
1498 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1499
1500 if (global_page_state(NR_UNSTABLE_NFS) +
1501 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1502 break;
1503 congestion_wait(BLK_RW_ASYNC, HZ/10);
1504
1505 /*
1506 * The caller might hold locks which can prevent IO completion
1507 * or progress in the filesystem. So we cannot just sit here
1508 * waiting for IO to complete.
1509 */
1510 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1511 break;
1512 }
1513 }
1514
1515 /*
1516 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1517 */
dirty_writeback_centisecs_handler(ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1518 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1519 void __user *buffer, size_t *length, loff_t *ppos)
1520 {
1521 proc_dointvec(table, write, buffer, length, ppos);
1522 bdi_arm_supers_timer();
1523 return 0;
1524 }
1525
1526 #ifdef CONFIG_BLOCK
laptop_mode_timer_fn(unsigned long data)1527 void laptop_mode_timer_fn(unsigned long data)
1528 {
1529 struct request_queue *q = (struct request_queue *)data;
1530 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1531 global_page_state(NR_UNSTABLE_NFS);
1532
1533 /*
1534 * We want to write everything out, not just down to the dirty
1535 * threshold
1536 */
1537 if (bdi_has_dirty_io(&q->backing_dev_info))
1538 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1539 WB_REASON_LAPTOP_TIMER);
1540 }
1541
1542 /*
1543 * We've spun up the disk and we're in laptop mode: schedule writeback
1544 * of all dirty data a few seconds from now. If the flush is already scheduled
1545 * then push it back - the user is still using the disk.
1546 */
laptop_io_completion(struct backing_dev_info * info)1547 void laptop_io_completion(struct backing_dev_info *info)
1548 {
1549 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1550 }
1551
1552 /*
1553 * We're in laptop mode and we've just synced. The sync's writes will have
1554 * caused another writeback to be scheduled by laptop_io_completion.
1555 * Nothing needs to be written back anymore, so we unschedule the writeback.
1556 */
laptop_sync_completion(void)1557 void laptop_sync_completion(void)
1558 {
1559 struct backing_dev_info *bdi;
1560
1561 rcu_read_lock();
1562
1563 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1564 del_timer(&bdi->laptop_mode_wb_timer);
1565
1566 rcu_read_unlock();
1567 }
1568 #endif
1569
1570 /*
1571 * If ratelimit_pages is too high then we can get into dirty-data overload
1572 * if a large number of processes all perform writes at the same time.
1573 * If it is too low then SMP machines will call the (expensive)
1574 * get_writeback_state too often.
1575 *
1576 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1577 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1578 * thresholds.
1579 */
1580
writeback_set_ratelimit(void)1581 void writeback_set_ratelimit(void)
1582 {
1583 unsigned long background_thresh;
1584 unsigned long dirty_thresh;
1585 global_dirty_limits(&background_thresh, &dirty_thresh);
1586 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1587 if (ratelimit_pages < 16)
1588 ratelimit_pages = 16;
1589 }
1590
1591 static int __cpuinit
ratelimit_handler(struct notifier_block * self,unsigned long u,void * v)1592 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1593 {
1594 writeback_set_ratelimit();
1595 return NOTIFY_DONE;
1596 }
1597
1598 static struct notifier_block __cpuinitdata ratelimit_nb = {
1599 .notifier_call = ratelimit_handler,
1600 .next = NULL,
1601 };
1602
1603 /*
1604 * Called early on to tune the page writeback dirty limits.
1605 *
1606 * We used to scale dirty pages according to how total memory
1607 * related to pages that could be allocated for buffers (by
1608 * comparing nr_free_buffer_pages() to vm_total_pages.
1609 *
1610 * However, that was when we used "dirty_ratio" to scale with
1611 * all memory, and we don't do that any more. "dirty_ratio"
1612 * is now applied to total non-HIGHPAGE memory (by subtracting
1613 * totalhigh_pages from vm_total_pages), and as such we can't
1614 * get into the old insane situation any more where we had
1615 * large amounts of dirty pages compared to a small amount of
1616 * non-HIGHMEM memory.
1617 *
1618 * But we might still want to scale the dirty_ratio by how
1619 * much memory the box has..
1620 */
page_writeback_init(void)1621 void __init page_writeback_init(void)
1622 {
1623 int shift;
1624
1625 writeback_set_ratelimit();
1626 register_cpu_notifier(&ratelimit_nb);
1627
1628 shift = calc_period_shift();
1629 prop_descriptor_init(&vm_completions, shift);
1630 }
1631
1632 /**
1633 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1634 * @mapping: address space structure to write
1635 * @start: starting page index
1636 * @end: ending page index (inclusive)
1637 *
1638 * This function scans the page range from @start to @end (inclusive) and tags
1639 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1640 * that write_cache_pages (or whoever calls this function) will then use
1641 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1642 * used to avoid livelocking of writeback by a process steadily creating new
1643 * dirty pages in the file (thus it is important for this function to be quick
1644 * so that it can tag pages faster than a dirtying process can create them).
1645 */
1646 /*
1647 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1648 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)1649 void tag_pages_for_writeback(struct address_space *mapping,
1650 pgoff_t start, pgoff_t end)
1651 {
1652 #define WRITEBACK_TAG_BATCH 4096
1653 unsigned long tagged;
1654
1655 do {
1656 spin_lock_irq(&mapping->tree_lock);
1657 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1658 &start, end, WRITEBACK_TAG_BATCH,
1659 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1660 spin_unlock_irq(&mapping->tree_lock);
1661 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1662 cond_resched();
1663 /* We check 'start' to handle wrapping when end == ~0UL */
1664 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1665 }
1666 EXPORT_SYMBOL(tag_pages_for_writeback);
1667
1668 /**
1669 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1670 * @mapping: address space structure to write
1671 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1672 * @writepage: function called for each page
1673 * @data: data passed to writepage function
1674 *
1675 * If a page is already under I/O, write_cache_pages() skips it, even
1676 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1677 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1678 * and msync() need to guarantee that all the data which was dirty at the time
1679 * the call was made get new I/O started against them. If wbc->sync_mode is
1680 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1681 * existing IO to complete.
1682 *
1683 * To avoid livelocks (when other process dirties new pages), we first tag
1684 * pages which should be written back with TOWRITE tag and only then start
1685 * writing them. For data-integrity sync we have to be careful so that we do
1686 * not miss some pages (e.g., because some other process has cleared TOWRITE
1687 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1688 * by the process clearing the DIRTY tag (and submitting the page for IO).
1689 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)1690 int write_cache_pages(struct address_space *mapping,
1691 struct writeback_control *wbc, writepage_t writepage,
1692 void *data)
1693 {
1694 int ret = 0;
1695 int done = 0;
1696 struct pagevec pvec;
1697 int nr_pages;
1698 pgoff_t uninitialized_var(writeback_index);
1699 pgoff_t index;
1700 pgoff_t end; /* Inclusive */
1701 pgoff_t done_index;
1702 int cycled;
1703 int range_whole = 0;
1704 int tag;
1705
1706 pagevec_init(&pvec, 0);
1707 if (wbc->range_cyclic) {
1708 writeback_index = mapping->writeback_index; /* prev offset */
1709 index = writeback_index;
1710 if (index == 0)
1711 cycled = 1;
1712 else
1713 cycled = 0;
1714 end = -1;
1715 } else {
1716 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1717 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1718 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1719 range_whole = 1;
1720 cycled = 1; /* ignore range_cyclic tests */
1721 }
1722 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1723 tag = PAGECACHE_TAG_TOWRITE;
1724 else
1725 tag = PAGECACHE_TAG_DIRTY;
1726 retry:
1727 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1728 tag_pages_for_writeback(mapping, index, end);
1729 done_index = index;
1730 while (!done && (index <= end)) {
1731 int i;
1732
1733 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1734 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1735 if (nr_pages == 0)
1736 break;
1737
1738 for (i = 0; i < nr_pages; i++) {
1739 struct page *page = pvec.pages[i];
1740
1741 /*
1742 * At this point, the page may be truncated or
1743 * invalidated (changing page->mapping to NULL), or
1744 * even swizzled back from swapper_space to tmpfs file
1745 * mapping. However, page->index will not change
1746 * because we have a reference on the page.
1747 */
1748 if (page->index > end) {
1749 /*
1750 * can't be range_cyclic (1st pass) because
1751 * end == -1 in that case.
1752 */
1753 done = 1;
1754 break;
1755 }
1756
1757 done_index = page->index;
1758
1759 lock_page(page);
1760
1761 /*
1762 * Page truncated or invalidated. We can freely skip it
1763 * then, even for data integrity operations: the page
1764 * has disappeared concurrently, so there could be no
1765 * real expectation of this data interity operation
1766 * even if there is now a new, dirty page at the same
1767 * pagecache address.
1768 */
1769 if (unlikely(page->mapping != mapping)) {
1770 continue_unlock:
1771 unlock_page(page);
1772 continue;
1773 }
1774
1775 if (!PageDirty(page)) {
1776 /* someone wrote it for us */
1777 goto continue_unlock;
1778 }
1779
1780 if (PageWriteback(page)) {
1781 if (wbc->sync_mode != WB_SYNC_NONE)
1782 wait_on_page_writeback(page);
1783 else
1784 goto continue_unlock;
1785 }
1786
1787 BUG_ON(PageWriteback(page));
1788 if (!clear_page_dirty_for_io(page))
1789 goto continue_unlock;
1790
1791 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1792 ret = (*writepage)(page, wbc, data);
1793 if (unlikely(ret)) {
1794 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1795 unlock_page(page);
1796 ret = 0;
1797 } else {
1798 /*
1799 * done_index is set past this page,
1800 * so media errors will not choke
1801 * background writeout for the entire
1802 * file. This has consequences for
1803 * range_cyclic semantics (ie. it may
1804 * not be suitable for data integrity
1805 * writeout).
1806 */
1807 done_index = page->index + 1;
1808 done = 1;
1809 break;
1810 }
1811 }
1812
1813 /*
1814 * We stop writing back only if we are not doing
1815 * integrity sync. In case of integrity sync we have to
1816 * keep going until we have written all the pages
1817 * we tagged for writeback prior to entering this loop.
1818 */
1819 if (--wbc->nr_to_write <= 0 &&
1820 wbc->sync_mode == WB_SYNC_NONE) {
1821 done = 1;
1822 break;
1823 }
1824 }
1825 pagevec_release(&pvec);
1826 cond_resched();
1827 }
1828 if (!cycled && !done) {
1829 /*
1830 * range_cyclic:
1831 * We hit the last page and there is more work to be done: wrap
1832 * back to the start of the file
1833 */
1834 cycled = 1;
1835 index = 0;
1836 end = writeback_index - 1;
1837 goto retry;
1838 }
1839 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1840 mapping->writeback_index = done_index;
1841
1842 return ret;
1843 }
1844 EXPORT_SYMBOL(write_cache_pages);
1845
1846 /*
1847 * Function used by generic_writepages to call the real writepage
1848 * function and set the mapping flags on error
1849 */
__writepage(struct page * page,struct writeback_control * wbc,void * data)1850 static int __writepage(struct page *page, struct writeback_control *wbc,
1851 void *data)
1852 {
1853 struct address_space *mapping = data;
1854 int ret = mapping->a_ops->writepage(page, wbc);
1855 mapping_set_error(mapping, ret);
1856 return ret;
1857 }
1858
1859 /**
1860 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1861 * @mapping: address space structure to write
1862 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1863 *
1864 * This is a library function, which implements the writepages()
1865 * address_space_operation.
1866 */
generic_writepages(struct address_space * mapping,struct writeback_control * wbc)1867 int generic_writepages(struct address_space *mapping,
1868 struct writeback_control *wbc)
1869 {
1870 struct blk_plug plug;
1871 int ret;
1872
1873 /* deal with chardevs and other special file */
1874 if (!mapping->a_ops->writepage)
1875 return 0;
1876
1877 blk_start_plug(&plug);
1878 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1879 blk_finish_plug(&plug);
1880 return ret;
1881 }
1882
1883 EXPORT_SYMBOL(generic_writepages);
1884
do_writepages(struct address_space * mapping,struct writeback_control * wbc)1885 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1886 {
1887 int ret;
1888
1889 if (wbc->nr_to_write <= 0)
1890 return 0;
1891 if (mapping->a_ops->writepages)
1892 ret = mapping->a_ops->writepages(mapping, wbc);
1893 else
1894 ret = generic_writepages(mapping, wbc);
1895 return ret;
1896 }
1897
1898 /**
1899 * write_one_page - write out a single page and optionally wait on I/O
1900 * @page: the page to write
1901 * @wait: if true, wait on writeout
1902 *
1903 * The page must be locked by the caller and will be unlocked upon return.
1904 *
1905 * write_one_page() returns a negative error code if I/O failed.
1906 */
write_one_page(struct page * page,int wait)1907 int write_one_page(struct page *page, int wait)
1908 {
1909 struct address_space *mapping = page->mapping;
1910 int ret = 0;
1911 struct writeback_control wbc = {
1912 .sync_mode = WB_SYNC_ALL,
1913 .nr_to_write = 1,
1914 };
1915
1916 BUG_ON(!PageLocked(page));
1917
1918 if (wait)
1919 wait_on_page_writeback(page);
1920
1921 if (clear_page_dirty_for_io(page)) {
1922 page_cache_get(page);
1923 ret = mapping->a_ops->writepage(page, &wbc);
1924 if (ret == 0 && wait) {
1925 wait_on_page_writeback(page);
1926 if (PageError(page))
1927 ret = -EIO;
1928 }
1929 page_cache_release(page);
1930 } else {
1931 unlock_page(page);
1932 }
1933 return ret;
1934 }
1935 EXPORT_SYMBOL(write_one_page);
1936
1937 /*
1938 * For address_spaces which do not use buffers nor write back.
1939 */
__set_page_dirty_no_writeback(struct page * page)1940 int __set_page_dirty_no_writeback(struct page *page)
1941 {
1942 if (!PageDirty(page))
1943 return !TestSetPageDirty(page);
1944 return 0;
1945 }
1946
1947 /*
1948 * Helper function for set_page_dirty family.
1949 * NOTE: This relies on being atomic wrt interrupts.
1950 */
account_page_dirtied(struct page * page,struct address_space * mapping)1951 void account_page_dirtied(struct page *page, struct address_space *mapping)
1952 {
1953 if (mapping_cap_account_dirty(mapping)) {
1954 __inc_zone_page_state(page, NR_FILE_DIRTY);
1955 __inc_zone_page_state(page, NR_DIRTIED);
1956 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1957 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1958 task_io_account_write(PAGE_CACHE_SIZE);
1959 current->nr_dirtied++;
1960 this_cpu_inc(bdp_ratelimits);
1961 }
1962 }
1963 EXPORT_SYMBOL(account_page_dirtied);
1964
1965 /*
1966 * Helper function for set_page_writeback family.
1967 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1968 * wrt interrupts.
1969 */
account_page_writeback(struct page * page)1970 void account_page_writeback(struct page *page)
1971 {
1972 inc_zone_page_state(page, NR_WRITEBACK);
1973 }
1974 EXPORT_SYMBOL(account_page_writeback);
1975
1976 /*
1977 * For address_spaces which do not use buffers. Just tag the page as dirty in
1978 * its radix tree.
1979 *
1980 * This is also used when a single buffer is being dirtied: we want to set the
1981 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1982 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1983 *
1984 * Most callers have locked the page, which pins the address_space in memory.
1985 * But zap_pte_range() does not lock the page, however in that case the
1986 * mapping is pinned by the vma's ->vm_file reference.
1987 *
1988 * We take care to handle the case where the page was truncated from the
1989 * mapping by re-checking page_mapping() inside tree_lock.
1990 */
__set_page_dirty_nobuffers(struct page * page)1991 int __set_page_dirty_nobuffers(struct page *page)
1992 {
1993 if (!TestSetPageDirty(page)) {
1994 struct address_space *mapping = page_mapping(page);
1995 struct address_space *mapping2;
1996 unsigned long flags;
1997
1998 if (!mapping)
1999 return 1;
2000
2001 spin_lock_irqsave(&mapping->tree_lock, flags);
2002 mapping2 = page_mapping(page);
2003 if (mapping2) { /* Race with truncate? */
2004 BUG_ON(mapping2 != mapping);
2005 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2006 account_page_dirtied(page, mapping);
2007 radix_tree_tag_set(&mapping->page_tree,
2008 page_index(page), PAGECACHE_TAG_DIRTY);
2009 }
2010 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2011 if (mapping->host) {
2012 /* !PageAnon && !swapper_space */
2013 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2014 }
2015 return 1;
2016 }
2017 return 0;
2018 }
2019 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2020
2021 /*
2022 * Call this whenever redirtying a page, to de-account the dirty counters
2023 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2024 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2025 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2026 * control.
2027 */
account_page_redirty(struct page * page)2028 void account_page_redirty(struct page *page)
2029 {
2030 struct address_space *mapping = page->mapping;
2031 if (mapping && mapping_cap_account_dirty(mapping)) {
2032 current->nr_dirtied--;
2033 dec_zone_page_state(page, NR_DIRTIED);
2034 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2035 }
2036 }
2037 EXPORT_SYMBOL(account_page_redirty);
2038
2039 /*
2040 * When a writepage implementation decides that it doesn't want to write this
2041 * page for some reason, it should redirty the locked page via
2042 * redirty_page_for_writepage() and it should then unlock the page and return 0
2043 */
redirty_page_for_writepage(struct writeback_control * wbc,struct page * page)2044 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2045 {
2046 wbc->pages_skipped++;
2047 account_page_redirty(page);
2048 return __set_page_dirty_nobuffers(page);
2049 }
2050 EXPORT_SYMBOL(redirty_page_for_writepage);
2051
2052 /*
2053 * Dirty a page.
2054 *
2055 * For pages with a mapping this should be done under the page lock
2056 * for the benefit of asynchronous memory errors who prefer a consistent
2057 * dirty state. This rule can be broken in some special cases,
2058 * but should be better not to.
2059 *
2060 * If the mapping doesn't provide a set_page_dirty a_op, then
2061 * just fall through and assume that it wants buffer_heads.
2062 */
set_page_dirty(struct page * page)2063 int set_page_dirty(struct page *page)
2064 {
2065 struct address_space *mapping = page_mapping(page);
2066
2067 if (likely(mapping)) {
2068 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2069 /*
2070 * readahead/lru_deactivate_page could remain
2071 * PG_readahead/PG_reclaim due to race with end_page_writeback
2072 * About readahead, if the page is written, the flags would be
2073 * reset. So no problem.
2074 * About lru_deactivate_page, if the page is redirty, the flag
2075 * will be reset. So no problem. but if the page is used by readahead
2076 * it will confuse readahead and make it restart the size rampup
2077 * process. But it's a trivial problem.
2078 */
2079 ClearPageReclaim(page);
2080 #ifdef CONFIG_BLOCK
2081 if (!spd)
2082 spd = __set_page_dirty_buffers;
2083 #endif
2084 return (*spd)(page);
2085 }
2086 if (!PageDirty(page)) {
2087 if (!TestSetPageDirty(page))
2088 return 1;
2089 }
2090 return 0;
2091 }
2092 EXPORT_SYMBOL(set_page_dirty);
2093
2094 /*
2095 * set_page_dirty() is racy if the caller has no reference against
2096 * page->mapping->host, and if the page is unlocked. This is because another
2097 * CPU could truncate the page off the mapping and then free the mapping.
2098 *
2099 * Usually, the page _is_ locked, or the caller is a user-space process which
2100 * holds a reference on the inode by having an open file.
2101 *
2102 * In other cases, the page should be locked before running set_page_dirty().
2103 */
set_page_dirty_lock(struct page * page)2104 int set_page_dirty_lock(struct page *page)
2105 {
2106 int ret;
2107
2108 lock_page(page);
2109 ret = set_page_dirty(page);
2110 unlock_page(page);
2111 return ret;
2112 }
2113 EXPORT_SYMBOL(set_page_dirty_lock);
2114
2115 /*
2116 * Clear a page's dirty flag, while caring for dirty memory accounting.
2117 * Returns true if the page was previously dirty.
2118 *
2119 * This is for preparing to put the page under writeout. We leave the page
2120 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2121 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2122 * implementation will run either set_page_writeback() or set_page_dirty(),
2123 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2124 * back into sync.
2125 *
2126 * This incoherency between the page's dirty flag and radix-tree tag is
2127 * unfortunate, but it only exists while the page is locked.
2128 */
clear_page_dirty_for_io(struct page * page)2129 int clear_page_dirty_for_io(struct page *page)
2130 {
2131 struct address_space *mapping = page_mapping(page);
2132
2133 BUG_ON(!PageLocked(page));
2134
2135 if (mapping && mapping_cap_account_dirty(mapping)) {
2136 /*
2137 * Yes, Virginia, this is indeed insane.
2138 *
2139 * We use this sequence to make sure that
2140 * (a) we account for dirty stats properly
2141 * (b) we tell the low-level filesystem to
2142 * mark the whole page dirty if it was
2143 * dirty in a pagetable. Only to then
2144 * (c) clean the page again and return 1 to
2145 * cause the writeback.
2146 *
2147 * This way we avoid all nasty races with the
2148 * dirty bit in multiple places and clearing
2149 * them concurrently from different threads.
2150 *
2151 * Note! Normally the "set_page_dirty(page)"
2152 * has no effect on the actual dirty bit - since
2153 * that will already usually be set. But we
2154 * need the side effects, and it can help us
2155 * avoid races.
2156 *
2157 * We basically use the page "master dirty bit"
2158 * as a serialization point for all the different
2159 * threads doing their things.
2160 */
2161 if (page_mkclean(page))
2162 set_page_dirty(page);
2163 /*
2164 * We carefully synchronise fault handlers against
2165 * installing a dirty pte and marking the page dirty
2166 * at this point. We do this by having them hold the
2167 * page lock at some point after installing their
2168 * pte, but before marking the page dirty.
2169 * Pages are always locked coming in here, so we get
2170 * the desired exclusion. See mm/memory.c:do_wp_page()
2171 * for more comments.
2172 */
2173 if (TestClearPageDirty(page)) {
2174 dec_zone_page_state(page, NR_FILE_DIRTY);
2175 dec_bdi_stat(mapping->backing_dev_info,
2176 BDI_RECLAIMABLE);
2177 return 1;
2178 }
2179 return 0;
2180 }
2181 return TestClearPageDirty(page);
2182 }
2183 EXPORT_SYMBOL(clear_page_dirty_for_io);
2184
test_clear_page_writeback(struct page * page)2185 int test_clear_page_writeback(struct page *page)
2186 {
2187 struct address_space *mapping = page_mapping(page);
2188 int ret;
2189
2190 if (mapping) {
2191 struct backing_dev_info *bdi = mapping->backing_dev_info;
2192 unsigned long flags;
2193
2194 spin_lock_irqsave(&mapping->tree_lock, flags);
2195 ret = TestClearPageWriteback(page);
2196 if (ret) {
2197 radix_tree_tag_clear(&mapping->page_tree,
2198 page_index(page),
2199 PAGECACHE_TAG_WRITEBACK);
2200 if (bdi_cap_account_writeback(bdi)) {
2201 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2202 __bdi_writeout_inc(bdi);
2203 }
2204 }
2205 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2206 } else {
2207 ret = TestClearPageWriteback(page);
2208 }
2209 if (ret) {
2210 dec_zone_page_state(page, NR_WRITEBACK);
2211 inc_zone_page_state(page, NR_WRITTEN);
2212 }
2213 return ret;
2214 }
2215
test_set_page_writeback(struct page * page)2216 int test_set_page_writeback(struct page *page)
2217 {
2218 struct address_space *mapping = page_mapping(page);
2219 int ret;
2220
2221 if (mapping) {
2222 struct backing_dev_info *bdi = mapping->backing_dev_info;
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&mapping->tree_lock, flags);
2226 ret = TestSetPageWriteback(page);
2227 if (!ret) {
2228 radix_tree_tag_set(&mapping->page_tree,
2229 page_index(page),
2230 PAGECACHE_TAG_WRITEBACK);
2231 if (bdi_cap_account_writeback(bdi))
2232 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2233 }
2234 if (!PageDirty(page))
2235 radix_tree_tag_clear(&mapping->page_tree,
2236 page_index(page),
2237 PAGECACHE_TAG_DIRTY);
2238 radix_tree_tag_clear(&mapping->page_tree,
2239 page_index(page),
2240 PAGECACHE_TAG_TOWRITE);
2241 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2242 } else {
2243 ret = TestSetPageWriteback(page);
2244 }
2245 if (!ret)
2246 account_page_writeback(page);
2247 return ret;
2248
2249 }
2250 EXPORT_SYMBOL(test_set_page_writeback);
2251
2252 /*
2253 * Return true if any of the pages in the mapping are marked with the
2254 * passed tag.
2255 */
mapping_tagged(struct address_space * mapping,int tag)2256 int mapping_tagged(struct address_space *mapping, int tag)
2257 {
2258 return radix_tree_tagged(&mapping->page_tree, tag);
2259 }
2260 EXPORT_SYMBOL(mapping_tagged);
2261