1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32 	unsigned long	*vaddr;
33 	pgprot_t	mask_set;
34 	pgprot_t	mask_clr;
35 	int		numpages;
36 	int		flags;
37 	unsigned long	pfn;
38 	unsigned	force_split : 1;
39 	int		curpage;
40 	struct page	**pages;
41 };
42 
43 /*
44  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46  * entries change the page attribute in parallel to some other cpu
47  * splitting a large page entry along with changing the attribute.
48  */
49 static DEFINE_SPINLOCK(cpa_lock);
50 
51 #define CPA_FLUSHTLB 1
52 #define CPA_ARRAY 2
53 #define CPA_PAGES_ARRAY 4
54 
55 #ifdef CONFIG_PROC_FS
56 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57 
update_page_count(int level,unsigned long pages)58 void update_page_count(int level, unsigned long pages)
59 {
60 	/* Protect against CPA */
61 	spin_lock(&pgd_lock);
62 	direct_pages_count[level] += pages;
63 	spin_unlock(&pgd_lock);
64 }
65 
split_page_count(int level)66 static void split_page_count(int level)
67 {
68 	direct_pages_count[level]--;
69 	direct_pages_count[level - 1] += PTRS_PER_PTE;
70 }
71 
arch_report_meminfo(struct seq_file * m)72 void arch_report_meminfo(struct seq_file *m)
73 {
74 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
75 			direct_pages_count[PG_LEVEL_4K] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
78 			direct_pages_count[PG_LEVEL_2M] << 11);
79 #else
80 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
81 			direct_pages_count[PG_LEVEL_2M] << 12);
82 #endif
83 #ifdef CONFIG_X86_64
84 	if (direct_gbpages)
85 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
86 			direct_pages_count[PG_LEVEL_1G] << 20);
87 #endif
88 }
89 #else
split_page_count(int level)90 static inline void split_page_count(int level) { }
91 #endif
92 
93 #ifdef CONFIG_X86_64
94 
highmap_start_pfn(void)95 static inline unsigned long highmap_start_pfn(void)
96 {
97 	return __pa(_text) >> PAGE_SHIFT;
98 }
99 
highmap_end_pfn(void)100 static inline unsigned long highmap_end_pfn(void)
101 {
102 	return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104 
105 #endif
106 
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112 
113 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116 	return addr >= start && addr < end;
117 }
118 
119 /*
120  * Flushing functions
121  */
122 
123 /**
124  * clflush_cache_range - flush a cache range with clflush
125  * @addr:	virtual start address
126  * @size:	number of bytes to flush
127  *
128  * clflush is an unordered instruction which needs fencing with mfence
129  * to avoid ordering issues.
130  */
clflush_cache_range(void * vaddr,unsigned int size)131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133 	void *vend = vaddr + size - 1;
134 
135 	mb();
136 
137 	for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138 		clflush(vaddr);
139 	/*
140 	 * Flush any possible final partial cacheline:
141 	 */
142 	clflush(vend);
143 
144 	mb();
145 }
146 EXPORT_SYMBOL_GPL(clflush_cache_range);
147 
__cpa_flush_all(void * arg)148 static void __cpa_flush_all(void *arg)
149 {
150 	unsigned long cache = (unsigned long)arg;
151 
152 	/*
153 	 * Flush all to work around Errata in early athlons regarding
154 	 * large page flushing.
155 	 */
156 	__flush_tlb_all();
157 
158 	if (cache && boot_cpu_data.x86 >= 4)
159 		wbinvd();
160 }
161 
cpa_flush_all(unsigned long cache)162 static void cpa_flush_all(unsigned long cache)
163 {
164 	BUG_ON(irqs_disabled());
165 
166 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168 
__cpa_flush_range(void * arg)169 static void __cpa_flush_range(void *arg)
170 {
171 	/*
172 	 * We could optimize that further and do individual per page
173 	 * tlb invalidates for a low number of pages. Caveat: we must
174 	 * flush the high aliases on 64bit as well.
175 	 */
176 	__flush_tlb_all();
177 }
178 
cpa_flush_range(unsigned long start,int numpages,int cache)179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181 	unsigned int i, level;
182 	unsigned long addr;
183 
184 	BUG_ON(irqs_disabled());
185 	WARN_ON(PAGE_ALIGN(start) != start);
186 
187 	on_each_cpu(__cpa_flush_range, NULL, 1);
188 
189 	if (!cache)
190 		return;
191 
192 	/*
193 	 * We only need to flush on one CPU,
194 	 * clflush is a MESI-coherent instruction that
195 	 * will cause all other CPUs to flush the same
196 	 * cachelines:
197 	 */
198 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 		pte_t *pte = lookup_address(addr, &level);
200 
201 		/*
202 		 * Only flush present addresses:
203 		 */
204 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205 			clflush_cache_range((void *) addr, PAGE_SIZE);
206 	}
207 }
208 
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 			    int in_flags, struct page **pages)
211 {
212 	unsigned int i, level;
213 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214 
215 	BUG_ON(irqs_disabled());
216 
217 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218 
219 	if (!cache || do_wbinvd)
220 		return;
221 
222 	/*
223 	 * We only need to flush on one CPU,
224 	 * clflush is a MESI-coherent instruction that
225 	 * will cause all other CPUs to flush the same
226 	 * cachelines:
227 	 */
228 	for (i = 0; i < numpages; i++) {
229 		unsigned long addr;
230 		pte_t *pte;
231 
232 		if (in_flags & CPA_PAGES_ARRAY)
233 			addr = (unsigned long)page_address(pages[i]);
234 		else
235 			addr = start[i];
236 
237 		pte = lookup_address(addr, &level);
238 
239 		/*
240 		 * Only flush present addresses:
241 		 */
242 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243 			clflush_cache_range((void *)addr, PAGE_SIZE);
244 	}
245 }
246 
247 /*
248  * Certain areas of memory on x86 require very specific protection flags,
249  * for example the BIOS area or kernel text. Callers don't always get this
250  * right (again, ioremap() on BIOS memory is not uncommon) so this function
251  * checks and fixes these known static required protection bits.
252  */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 				   unsigned long pfn)
255 {
256 	pgprot_t forbidden = __pgprot(0);
257 
258 	/*
259 	 * The BIOS area between 640k and 1Mb needs to be executable for
260 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 	 */
262 #ifdef CONFIG_PCI_BIOS
263 	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264 		pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266 
267 	/*
268 	 * The kernel text needs to be executable for obvious reasons
269 	 * Does not cover __inittext since that is gone later on. On
270 	 * 64bit we do not enforce !NX on the low mapping
271 	 */
272 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
273 		pgprot_val(forbidden) |= _PAGE_NX;
274 
275 	/*
276 	 * The .rodata section needs to be read-only. Using the pfn
277 	 * catches all aliases.
278 	 */
279 	if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
280 		   __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
281 		pgprot_val(forbidden) |= _PAGE_RW;
282 
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284 	/*
285 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 	 * kernel text mappings for the large page aligned text, rodata sections
287 	 * will be always read-only. For the kernel identity mappings covering
288 	 * the holes caused by this alignment can be anything that user asks.
289 	 *
290 	 * This will preserve the large page mappings for kernel text/data
291 	 * at no extra cost.
292 	 */
293 	if (kernel_set_to_readonly &&
294 	    within(address, (unsigned long)_text,
295 		   (unsigned long)__end_rodata_hpage_align)) {
296 		unsigned int level;
297 
298 		/*
299 		 * Don't enforce the !RW mapping for the kernel text mapping,
300 		 * if the current mapping is already using small page mapping.
301 		 * No need to work hard to preserve large page mappings in this
302 		 * case.
303 		 *
304 		 * This also fixes the Linux Xen paravirt guest boot failure
305 		 * (because of unexpected read-only mappings for kernel identity
306 		 * mappings). In this paravirt guest case, the kernel text
307 		 * mapping and the kernel identity mapping share the same
308 		 * page-table pages. Thus we can't really use different
309 		 * protections for the kernel text and identity mappings. Also,
310 		 * these shared mappings are made of small page mappings.
311 		 * Thus this don't enforce !RW mapping for small page kernel
312 		 * text mapping logic will help Linux Xen parvirt guest boot
313 		 * as well.
314 		 */
315 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316 			pgprot_val(forbidden) |= _PAGE_RW;
317 	}
318 #endif
319 
320 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321 
322 	return prot;
323 }
324 
325 /*
326  * Lookup the page table entry for a virtual address. Return a pointer
327  * to the entry and the level of the mapping.
328  *
329  * Note: We return pud and pmd either when the entry is marked large
330  * or when the present bit is not set. Otherwise we would return a
331  * pointer to a nonexisting mapping.
332  */
lookup_address(unsigned long address,unsigned int * level)333 pte_t *lookup_address(unsigned long address, unsigned int *level)
334 {
335 	pgd_t *pgd = pgd_offset_k(address);
336 	pud_t *pud;
337 	pmd_t *pmd;
338 
339 	*level = PG_LEVEL_NONE;
340 
341 	if (pgd_none(*pgd))
342 		return NULL;
343 
344 	pud = pud_offset(pgd, address);
345 	if (pud_none(*pud))
346 		return NULL;
347 
348 	*level = PG_LEVEL_1G;
349 	if (pud_large(*pud) || !pud_present(*pud))
350 		return (pte_t *)pud;
351 
352 	pmd = pmd_offset(pud, address);
353 	if (pmd_none(*pmd))
354 		return NULL;
355 
356 	*level = PG_LEVEL_2M;
357 	if (pmd_large(*pmd) || !pmd_present(*pmd))
358 		return (pte_t *)pmd;
359 
360 	*level = PG_LEVEL_4K;
361 
362 	return pte_offset_kernel(pmd, address);
363 }
364 EXPORT_SYMBOL_GPL(lookup_address);
365 
366 /*
367  * Set the new pmd in all the pgds we know about:
368  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)369 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
370 {
371 	/* change init_mm */
372 	set_pte_atomic(kpte, pte);
373 #ifdef CONFIG_X86_32
374 	if (!SHARED_KERNEL_PMD) {
375 		struct page *page;
376 
377 		list_for_each_entry(page, &pgd_list, lru) {
378 			pgd_t *pgd;
379 			pud_t *pud;
380 			pmd_t *pmd;
381 
382 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
383 			pud = pud_offset(pgd, address);
384 			pmd = pmd_offset(pud, address);
385 			set_pte_atomic((pte_t *)pmd, pte);
386 		}
387 	}
388 #endif
389 }
390 
391 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)392 try_preserve_large_page(pte_t *kpte, unsigned long address,
393 			struct cpa_data *cpa)
394 {
395 	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
396 	pte_t new_pte, old_pte, *tmp;
397 	pgprot_t old_prot, new_prot, req_prot;
398 	int i, do_split = 1;
399 	unsigned int level;
400 
401 	if (cpa->force_split)
402 		return 1;
403 
404 	spin_lock(&pgd_lock);
405 	/*
406 	 * Check for races, another CPU might have split this page
407 	 * up already:
408 	 */
409 	tmp = lookup_address(address, &level);
410 	if (tmp != kpte)
411 		goto out_unlock;
412 
413 	switch (level) {
414 	case PG_LEVEL_2M:
415 		psize = PMD_PAGE_SIZE;
416 		pmask = PMD_PAGE_MASK;
417 		break;
418 #ifdef CONFIG_X86_64
419 	case PG_LEVEL_1G:
420 		psize = PUD_PAGE_SIZE;
421 		pmask = PUD_PAGE_MASK;
422 		break;
423 #endif
424 	default:
425 		do_split = -EINVAL;
426 		goto out_unlock;
427 	}
428 
429 	/*
430 	 * Calculate the number of pages, which fit into this large
431 	 * page starting at address:
432 	 */
433 	nextpage_addr = (address + psize) & pmask;
434 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
435 	if (numpages < cpa->numpages)
436 		cpa->numpages = numpages;
437 
438 	/*
439 	 * We are safe now. Check whether the new pgprot is the same:
440 	 */
441 	old_pte = *kpte;
442 	old_prot = new_prot = req_prot = pte_pgprot(old_pte);
443 
444 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
445 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
446 
447 	/*
448 	 * old_pte points to the large page base address. So we need
449 	 * to add the offset of the virtual address:
450 	 */
451 	pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
452 	cpa->pfn = pfn;
453 
454 	new_prot = static_protections(req_prot, address, pfn);
455 
456 	/*
457 	 * We need to check the full range, whether
458 	 * static_protection() requires a different pgprot for one of
459 	 * the pages in the range we try to preserve:
460 	 */
461 	addr = address & pmask;
462 	pfn = pte_pfn(old_pte);
463 	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
464 		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
465 
466 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
467 			goto out_unlock;
468 	}
469 
470 	/*
471 	 * If there are no changes, return. maxpages has been updated
472 	 * above:
473 	 */
474 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
475 		do_split = 0;
476 		goto out_unlock;
477 	}
478 
479 	/*
480 	 * We need to change the attributes. Check, whether we can
481 	 * change the large page in one go. We request a split, when
482 	 * the address is not aligned and the number of pages is
483 	 * smaller than the number of pages in the large page. Note
484 	 * that we limited the number of possible pages already to
485 	 * the number of pages in the large page.
486 	 */
487 	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
488 		/*
489 		 * The address is aligned and the number of pages
490 		 * covers the full page.
491 		 */
492 		new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
493 		__set_pmd_pte(kpte, address, new_pte);
494 		cpa->flags |= CPA_FLUSHTLB;
495 		do_split = 0;
496 	}
497 
498 out_unlock:
499 	spin_unlock(&pgd_lock);
500 
501 	return do_split;
502 }
503 
split_large_page(pte_t * kpte,unsigned long address)504 static int split_large_page(pte_t *kpte, unsigned long address)
505 {
506 	unsigned long pfn, pfninc = 1;
507 	unsigned int i, level;
508 	pte_t *pbase, *tmp;
509 	pgprot_t ref_prot;
510 	struct page *base;
511 
512 	if (!debug_pagealloc)
513 		spin_unlock(&cpa_lock);
514 	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
515 	if (!debug_pagealloc)
516 		spin_lock(&cpa_lock);
517 	if (!base)
518 		return -ENOMEM;
519 
520 	spin_lock(&pgd_lock);
521 	/*
522 	 * Check for races, another CPU might have split this page
523 	 * up for us already:
524 	 */
525 	tmp = lookup_address(address, &level);
526 	if (tmp != kpte)
527 		goto out_unlock;
528 
529 	pbase = (pte_t *)page_address(base);
530 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
531 	ref_prot = pte_pgprot(pte_clrhuge(*kpte));
532 	/*
533 	 * If we ever want to utilize the PAT bit, we need to
534 	 * update this function to make sure it's converted from
535 	 * bit 12 to bit 7 when we cross from the 2MB level to
536 	 * the 4K level:
537 	 */
538 	WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
539 
540 #ifdef CONFIG_X86_64
541 	if (level == PG_LEVEL_1G) {
542 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
543 		pgprot_val(ref_prot) |= _PAGE_PSE;
544 	}
545 #endif
546 
547 	/*
548 	 * Get the target pfn from the original entry:
549 	 */
550 	pfn = pte_pfn(*kpte);
551 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
552 		set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
553 
554 	if (address >= (unsigned long)__va(0) &&
555 		address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
556 		split_page_count(level);
557 
558 #ifdef CONFIG_X86_64
559 	if (address >= (unsigned long)__va(1UL<<32) &&
560 		address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
561 		split_page_count(level);
562 #endif
563 
564 	/*
565 	 * Install the new, split up pagetable.
566 	 *
567 	 * We use the standard kernel pagetable protections for the new
568 	 * pagetable protections, the actual ptes set above control the
569 	 * primary protection behavior:
570 	 */
571 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
572 
573 	/*
574 	 * Intel Atom errata AAH41 workaround.
575 	 *
576 	 * The real fix should be in hw or in a microcode update, but
577 	 * we also probabilistically try to reduce the window of having
578 	 * a large TLB mixed with 4K TLBs while instruction fetches are
579 	 * going on.
580 	 */
581 	__flush_tlb_all();
582 
583 	base = NULL;
584 
585 out_unlock:
586 	/*
587 	 * If we dropped out via the lookup_address check under
588 	 * pgd_lock then stick the page back into the pool:
589 	 */
590 	if (base)
591 		__free_page(base);
592 	spin_unlock(&pgd_lock);
593 
594 	return 0;
595 }
596 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)597 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
598 			       int primary)
599 {
600 	/*
601 	 * Ignore all non primary paths.
602 	 */
603 	if (!primary)
604 		return 0;
605 
606 	/*
607 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
608 	 * to have holes.
609 	 * Also set numpages to '1' indicating that we processed cpa req for
610 	 * one virtual address page and its pfn. TBD: numpages can be set based
611 	 * on the initial value and the level returned by lookup_address().
612 	 */
613 	if (within(vaddr, PAGE_OFFSET,
614 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
615 		cpa->numpages = 1;
616 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
617 		return 0;
618 	} else {
619 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
620 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
621 			*cpa->vaddr);
622 
623 		return -EFAULT;
624 	}
625 }
626 
__change_page_attr(struct cpa_data * cpa,int primary)627 static int __change_page_attr(struct cpa_data *cpa, int primary)
628 {
629 	unsigned long address;
630 	int do_split, err;
631 	unsigned int level;
632 	pte_t *kpte, old_pte;
633 
634 	if (cpa->flags & CPA_PAGES_ARRAY) {
635 		struct page *page = cpa->pages[cpa->curpage];
636 		if (unlikely(PageHighMem(page)))
637 			return 0;
638 		address = (unsigned long)page_address(page);
639 	} else if (cpa->flags & CPA_ARRAY)
640 		address = cpa->vaddr[cpa->curpage];
641 	else
642 		address = *cpa->vaddr;
643 repeat:
644 	kpte = lookup_address(address, &level);
645 	if (!kpte)
646 		return __cpa_process_fault(cpa, address, primary);
647 
648 	old_pte = *kpte;
649 	if (!pte_val(old_pte))
650 		return __cpa_process_fault(cpa, address, primary);
651 
652 	if (level == PG_LEVEL_4K) {
653 		pte_t new_pte;
654 		pgprot_t new_prot = pte_pgprot(old_pte);
655 		unsigned long pfn = pte_pfn(old_pte);
656 
657 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
658 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
659 
660 		new_prot = static_protections(new_prot, address, pfn);
661 
662 		/*
663 		 * We need to keep the pfn from the existing PTE,
664 		 * after all we're only going to change it's attributes
665 		 * not the memory it points to
666 		 */
667 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
668 		cpa->pfn = pfn;
669 		/*
670 		 * Do we really change anything ?
671 		 */
672 		if (pte_val(old_pte) != pte_val(new_pte)) {
673 			set_pte_atomic(kpte, new_pte);
674 			cpa->flags |= CPA_FLUSHTLB;
675 		}
676 		cpa->numpages = 1;
677 		return 0;
678 	}
679 
680 	/*
681 	 * Check, whether we can keep the large page intact
682 	 * and just change the pte:
683 	 */
684 	do_split = try_preserve_large_page(kpte, address, cpa);
685 	/*
686 	 * When the range fits into the existing large page,
687 	 * return. cp->numpages and cpa->tlbflush have been updated in
688 	 * try_large_page:
689 	 */
690 	if (do_split <= 0)
691 		return do_split;
692 
693 	/*
694 	 * We have to split the large page:
695 	 */
696 	err = split_large_page(kpte, address);
697 	if (!err) {
698 		/*
699 	 	 * Do a global flush tlb after splitting the large page
700 	 	 * and before we do the actual change page attribute in the PTE.
701 	 	 *
702 	 	 * With out this, we violate the TLB application note, that says
703 	 	 * "The TLBs may contain both ordinary and large-page
704 		 *  translations for a 4-KByte range of linear addresses. This
705 		 *  may occur if software modifies the paging structures so that
706 		 *  the page size used for the address range changes. If the two
707 		 *  translations differ with respect to page frame or attributes
708 		 *  (e.g., permissions), processor behavior is undefined and may
709 		 *  be implementation-specific."
710 	 	 *
711 	 	 * We do this global tlb flush inside the cpa_lock, so that we
712 		 * don't allow any other cpu, with stale tlb entries change the
713 		 * page attribute in parallel, that also falls into the
714 		 * just split large page entry.
715 	 	 */
716 		flush_tlb_all();
717 		goto repeat;
718 	}
719 
720 	return err;
721 }
722 
723 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
724 
cpa_process_alias(struct cpa_data * cpa)725 static int cpa_process_alias(struct cpa_data *cpa)
726 {
727 	struct cpa_data alias_cpa;
728 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
729 	unsigned long vaddr;
730 	int ret;
731 
732 	if (cpa->pfn >= max_pfn_mapped)
733 		return 0;
734 
735 #ifdef CONFIG_X86_64
736 	if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
737 		return 0;
738 #endif
739 	/*
740 	 * No need to redo, when the primary call touched the direct
741 	 * mapping already:
742 	 */
743 	if (cpa->flags & CPA_PAGES_ARRAY) {
744 		struct page *page = cpa->pages[cpa->curpage];
745 		if (unlikely(PageHighMem(page)))
746 			return 0;
747 		vaddr = (unsigned long)page_address(page);
748 	} else if (cpa->flags & CPA_ARRAY)
749 		vaddr = cpa->vaddr[cpa->curpage];
750 	else
751 		vaddr = *cpa->vaddr;
752 
753 	if (!(within(vaddr, PAGE_OFFSET,
754 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
755 
756 		alias_cpa = *cpa;
757 		alias_cpa.vaddr = &laddr;
758 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
759 
760 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
761 		if (ret)
762 			return ret;
763 	}
764 
765 #ifdef CONFIG_X86_64
766 	/*
767 	 * If the primary call didn't touch the high mapping already
768 	 * and the physical address is inside the kernel map, we need
769 	 * to touch the high mapped kernel as well:
770 	 */
771 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
772 	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
773 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
774 					       __START_KERNEL_map - phys_base;
775 		alias_cpa = *cpa;
776 		alias_cpa.vaddr = &temp_cpa_vaddr;
777 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
778 
779 		/*
780 		 * The high mapping range is imprecise, so ignore the
781 		 * return value.
782 		 */
783 		__change_page_attr_set_clr(&alias_cpa, 0);
784 	}
785 #endif
786 
787 	return 0;
788 }
789 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)790 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
791 {
792 	int ret, numpages = cpa->numpages;
793 
794 	while (numpages) {
795 		/*
796 		 * Store the remaining nr of pages for the large page
797 		 * preservation check.
798 		 */
799 		cpa->numpages = numpages;
800 		/* for array changes, we can't use large page */
801 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
802 			cpa->numpages = 1;
803 
804 		if (!debug_pagealloc)
805 			spin_lock(&cpa_lock);
806 		ret = __change_page_attr(cpa, checkalias);
807 		if (!debug_pagealloc)
808 			spin_unlock(&cpa_lock);
809 		if (ret)
810 			return ret;
811 
812 		if (checkalias) {
813 			ret = cpa_process_alias(cpa);
814 			if (ret)
815 				return ret;
816 		}
817 
818 		/*
819 		 * Adjust the number of pages with the result of the
820 		 * CPA operation. Either a large page has been
821 		 * preserved or a single page update happened.
822 		 */
823 		BUG_ON(cpa->numpages > numpages);
824 		numpages -= cpa->numpages;
825 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
826 			cpa->curpage++;
827 		else
828 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
829 
830 	}
831 	return 0;
832 }
833 
cache_attr(pgprot_t attr)834 static inline int cache_attr(pgprot_t attr)
835 {
836 	return pgprot_val(attr) &
837 		(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
838 }
839 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)840 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
841 				    pgprot_t mask_set, pgprot_t mask_clr,
842 				    int force_split, int in_flag,
843 				    struct page **pages)
844 {
845 	struct cpa_data cpa;
846 	int ret, cache, checkalias;
847 	unsigned long baddr = 0;
848 
849 	/*
850 	 * Check, if we are requested to change a not supported
851 	 * feature:
852 	 */
853 	mask_set = canon_pgprot(mask_set);
854 	mask_clr = canon_pgprot(mask_clr);
855 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
856 		return 0;
857 
858 	/* Ensure we are PAGE_SIZE aligned */
859 	if (in_flag & CPA_ARRAY) {
860 		int i;
861 		for (i = 0; i < numpages; i++) {
862 			if (addr[i] & ~PAGE_MASK) {
863 				addr[i] &= PAGE_MASK;
864 				WARN_ON_ONCE(1);
865 			}
866 		}
867 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
868 		/*
869 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
870 		 * No need to cehck in that case
871 		 */
872 		if (*addr & ~PAGE_MASK) {
873 			*addr &= PAGE_MASK;
874 			/*
875 			 * People should not be passing in unaligned addresses:
876 			 */
877 			WARN_ON_ONCE(1);
878 		}
879 		/*
880 		 * Save address for cache flush. *addr is modified in the call
881 		 * to __change_page_attr_set_clr() below.
882 		 */
883 		baddr = *addr;
884 	}
885 
886 	/* Must avoid aliasing mappings in the highmem code */
887 	kmap_flush_unused();
888 
889 	vm_unmap_aliases();
890 
891 	cpa.vaddr = addr;
892 	cpa.pages = pages;
893 	cpa.numpages = numpages;
894 	cpa.mask_set = mask_set;
895 	cpa.mask_clr = mask_clr;
896 	cpa.flags = 0;
897 	cpa.curpage = 0;
898 	cpa.force_split = force_split;
899 
900 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
901 		cpa.flags |= in_flag;
902 
903 	/* No alias checking for _NX bit modifications */
904 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
905 
906 	ret = __change_page_attr_set_clr(&cpa, checkalias);
907 
908 	/*
909 	 * Check whether we really changed something:
910 	 */
911 	if (!(cpa.flags & CPA_FLUSHTLB))
912 		goto out;
913 
914 	/*
915 	 * No need to flush, when we did not set any of the caching
916 	 * attributes:
917 	 */
918 	cache = cache_attr(mask_set);
919 
920 	/*
921 	 * On success we use clflush, when the CPU supports it to
922 	 * avoid the wbindv. If the CPU does not support it and in the
923 	 * error case we fall back to cpa_flush_all (which uses
924 	 * wbindv):
925 	 */
926 	if (!ret && cpu_has_clflush) {
927 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
928 			cpa_flush_array(addr, numpages, cache,
929 					cpa.flags, pages);
930 		} else
931 			cpa_flush_range(baddr, numpages, cache);
932 	} else
933 		cpa_flush_all(cache);
934 
935 out:
936 	return ret;
937 }
938 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)939 static inline int change_page_attr_set(unsigned long *addr, int numpages,
940 				       pgprot_t mask, int array)
941 {
942 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
943 		(array ? CPA_ARRAY : 0), NULL);
944 }
945 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)946 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
947 					 pgprot_t mask, int array)
948 {
949 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
950 		(array ? CPA_ARRAY : 0), NULL);
951 }
952 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)953 static inline int cpa_set_pages_array(struct page **pages, int numpages,
954 				       pgprot_t mask)
955 {
956 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
957 		CPA_PAGES_ARRAY, pages);
958 }
959 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)960 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
961 					 pgprot_t mask)
962 {
963 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
964 		CPA_PAGES_ARRAY, pages);
965 }
966 
_set_memory_uc(unsigned long addr,int numpages)967 int _set_memory_uc(unsigned long addr, int numpages)
968 {
969 	/*
970 	 * for now UC MINUS. see comments in ioremap_nocache()
971 	 */
972 	return change_page_attr_set(&addr, numpages,
973 				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
974 }
975 
set_memory_uc(unsigned long addr,int numpages)976 int set_memory_uc(unsigned long addr, int numpages)
977 {
978 	int ret;
979 
980 	/*
981 	 * for now UC MINUS. see comments in ioremap_nocache()
982 	 */
983 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
984 			    _PAGE_CACHE_UC_MINUS, NULL);
985 	if (ret)
986 		goto out_err;
987 
988 	ret = _set_memory_uc(addr, numpages);
989 	if (ret)
990 		goto out_free;
991 
992 	return 0;
993 
994 out_free:
995 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
996 out_err:
997 	return ret;
998 }
999 EXPORT_SYMBOL(set_memory_uc);
1000 
_set_memory_array(unsigned long * addr,int addrinarray,unsigned long new_type)1001 static int _set_memory_array(unsigned long *addr, int addrinarray,
1002 		unsigned long new_type)
1003 {
1004 	int i, j;
1005 	int ret;
1006 
1007 	/*
1008 	 * for now UC MINUS. see comments in ioremap_nocache()
1009 	 */
1010 	for (i = 0; i < addrinarray; i++) {
1011 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1012 					new_type, NULL);
1013 		if (ret)
1014 			goto out_free;
1015 	}
1016 
1017 	ret = change_page_attr_set(addr, addrinarray,
1018 				    __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1019 
1020 	if (!ret && new_type == _PAGE_CACHE_WC)
1021 		ret = change_page_attr_set_clr(addr, addrinarray,
1022 					       __pgprot(_PAGE_CACHE_WC),
1023 					       __pgprot(_PAGE_CACHE_MASK),
1024 					       0, CPA_ARRAY, NULL);
1025 	if (ret)
1026 		goto out_free;
1027 
1028 	return 0;
1029 
1030 out_free:
1031 	for (j = 0; j < i; j++)
1032 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1033 
1034 	return ret;
1035 }
1036 
set_memory_array_uc(unsigned long * addr,int addrinarray)1037 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1038 {
1039 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1040 }
1041 EXPORT_SYMBOL(set_memory_array_uc);
1042 
set_memory_array_wc(unsigned long * addr,int addrinarray)1043 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1044 {
1045 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1046 }
1047 EXPORT_SYMBOL(set_memory_array_wc);
1048 
_set_memory_wc(unsigned long addr,int numpages)1049 int _set_memory_wc(unsigned long addr, int numpages)
1050 {
1051 	int ret;
1052 	unsigned long addr_copy = addr;
1053 
1054 	ret = change_page_attr_set(&addr, numpages,
1055 				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1056 	if (!ret) {
1057 		ret = change_page_attr_set_clr(&addr_copy, numpages,
1058 					       __pgprot(_PAGE_CACHE_WC),
1059 					       __pgprot(_PAGE_CACHE_MASK),
1060 					       0, 0, NULL);
1061 	}
1062 	return ret;
1063 }
1064 
set_memory_wc(unsigned long addr,int numpages)1065 int set_memory_wc(unsigned long addr, int numpages)
1066 {
1067 	int ret;
1068 
1069 	if (!pat_enabled)
1070 		return set_memory_uc(addr, numpages);
1071 
1072 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1073 		_PAGE_CACHE_WC, NULL);
1074 	if (ret)
1075 		goto out_err;
1076 
1077 	ret = _set_memory_wc(addr, numpages);
1078 	if (ret)
1079 		goto out_free;
1080 
1081 	return 0;
1082 
1083 out_free:
1084 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1085 out_err:
1086 	return ret;
1087 }
1088 EXPORT_SYMBOL(set_memory_wc);
1089 
_set_memory_wb(unsigned long addr,int numpages)1090 int _set_memory_wb(unsigned long addr, int numpages)
1091 {
1092 	return change_page_attr_clear(&addr, numpages,
1093 				      __pgprot(_PAGE_CACHE_MASK), 0);
1094 }
1095 
set_memory_wb(unsigned long addr,int numpages)1096 int set_memory_wb(unsigned long addr, int numpages)
1097 {
1098 	int ret;
1099 
1100 	ret = _set_memory_wb(addr, numpages);
1101 	if (ret)
1102 		return ret;
1103 
1104 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1105 	return 0;
1106 }
1107 EXPORT_SYMBOL(set_memory_wb);
1108 
set_memory_array_wb(unsigned long * addr,int addrinarray)1109 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1110 {
1111 	int i;
1112 	int ret;
1113 
1114 	ret = change_page_attr_clear(addr, addrinarray,
1115 				      __pgprot(_PAGE_CACHE_MASK), 1);
1116 	if (ret)
1117 		return ret;
1118 
1119 	for (i = 0; i < addrinarray; i++)
1120 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1121 
1122 	return 0;
1123 }
1124 EXPORT_SYMBOL(set_memory_array_wb);
1125 
set_memory_x(unsigned long addr,int numpages)1126 int set_memory_x(unsigned long addr, int numpages)
1127 {
1128 	if (!(__supported_pte_mask & _PAGE_NX))
1129 		return 0;
1130 
1131 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1132 }
1133 EXPORT_SYMBOL(set_memory_x);
1134 
set_memory_nx(unsigned long addr,int numpages)1135 int set_memory_nx(unsigned long addr, int numpages)
1136 {
1137 	if (!(__supported_pte_mask & _PAGE_NX))
1138 		return 0;
1139 
1140 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1141 }
1142 EXPORT_SYMBOL(set_memory_nx);
1143 
set_memory_ro(unsigned long addr,int numpages)1144 int set_memory_ro(unsigned long addr, int numpages)
1145 {
1146 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1147 }
1148 EXPORT_SYMBOL_GPL(set_memory_ro);
1149 
set_memory_rw(unsigned long addr,int numpages)1150 int set_memory_rw(unsigned long addr, int numpages)
1151 {
1152 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1153 }
1154 EXPORT_SYMBOL_GPL(set_memory_rw);
1155 
set_memory_np(unsigned long addr,int numpages)1156 int set_memory_np(unsigned long addr, int numpages)
1157 {
1158 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1159 }
1160 
set_memory_4k(unsigned long addr,int numpages)1161 int set_memory_4k(unsigned long addr, int numpages)
1162 {
1163 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1164 					__pgprot(0), 1, 0, NULL);
1165 }
1166 
set_pages_uc(struct page * page,int numpages)1167 int set_pages_uc(struct page *page, int numpages)
1168 {
1169 	unsigned long addr = (unsigned long)page_address(page);
1170 
1171 	return set_memory_uc(addr, numpages);
1172 }
1173 EXPORT_SYMBOL(set_pages_uc);
1174 
_set_pages_array(struct page ** pages,int addrinarray,unsigned long new_type)1175 static int _set_pages_array(struct page **pages, int addrinarray,
1176 		unsigned long new_type)
1177 {
1178 	unsigned long start;
1179 	unsigned long end;
1180 	int i;
1181 	int free_idx;
1182 	int ret;
1183 
1184 	for (i = 0; i < addrinarray; i++) {
1185 		if (PageHighMem(pages[i]))
1186 			continue;
1187 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1188 		end = start + PAGE_SIZE;
1189 		if (reserve_memtype(start, end, new_type, NULL))
1190 			goto err_out;
1191 	}
1192 
1193 	ret = cpa_set_pages_array(pages, addrinarray,
1194 			__pgprot(_PAGE_CACHE_UC_MINUS));
1195 	if (!ret && new_type == _PAGE_CACHE_WC)
1196 		ret = change_page_attr_set_clr(NULL, addrinarray,
1197 					       __pgprot(_PAGE_CACHE_WC),
1198 					       __pgprot(_PAGE_CACHE_MASK),
1199 					       0, CPA_PAGES_ARRAY, pages);
1200 	if (ret)
1201 		goto err_out;
1202 	return 0; /* Success */
1203 err_out:
1204 	free_idx = i;
1205 	for (i = 0; i < free_idx; i++) {
1206 		if (PageHighMem(pages[i]))
1207 			continue;
1208 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1209 		end = start + PAGE_SIZE;
1210 		free_memtype(start, end);
1211 	}
1212 	return -EINVAL;
1213 }
1214 
set_pages_array_uc(struct page ** pages,int addrinarray)1215 int set_pages_array_uc(struct page **pages, int addrinarray)
1216 {
1217 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1218 }
1219 EXPORT_SYMBOL(set_pages_array_uc);
1220 
set_pages_array_wc(struct page ** pages,int addrinarray)1221 int set_pages_array_wc(struct page **pages, int addrinarray)
1222 {
1223 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1224 }
1225 EXPORT_SYMBOL(set_pages_array_wc);
1226 
set_pages_wb(struct page * page,int numpages)1227 int set_pages_wb(struct page *page, int numpages)
1228 {
1229 	unsigned long addr = (unsigned long)page_address(page);
1230 
1231 	return set_memory_wb(addr, numpages);
1232 }
1233 EXPORT_SYMBOL(set_pages_wb);
1234 
set_pages_array_wb(struct page ** pages,int addrinarray)1235 int set_pages_array_wb(struct page **pages, int addrinarray)
1236 {
1237 	int retval;
1238 	unsigned long start;
1239 	unsigned long end;
1240 	int i;
1241 
1242 	retval = cpa_clear_pages_array(pages, addrinarray,
1243 			__pgprot(_PAGE_CACHE_MASK));
1244 	if (retval)
1245 		return retval;
1246 
1247 	for (i = 0; i < addrinarray; i++) {
1248 		if (PageHighMem(pages[i]))
1249 			continue;
1250 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1251 		end = start + PAGE_SIZE;
1252 		free_memtype(start, end);
1253 	}
1254 
1255 	return 0;
1256 }
1257 EXPORT_SYMBOL(set_pages_array_wb);
1258 
set_pages_x(struct page * page,int numpages)1259 int set_pages_x(struct page *page, int numpages)
1260 {
1261 	unsigned long addr = (unsigned long)page_address(page);
1262 
1263 	return set_memory_x(addr, numpages);
1264 }
1265 EXPORT_SYMBOL(set_pages_x);
1266 
set_pages_nx(struct page * page,int numpages)1267 int set_pages_nx(struct page *page, int numpages)
1268 {
1269 	unsigned long addr = (unsigned long)page_address(page);
1270 
1271 	return set_memory_nx(addr, numpages);
1272 }
1273 EXPORT_SYMBOL(set_pages_nx);
1274 
set_pages_ro(struct page * page,int numpages)1275 int set_pages_ro(struct page *page, int numpages)
1276 {
1277 	unsigned long addr = (unsigned long)page_address(page);
1278 
1279 	return set_memory_ro(addr, numpages);
1280 }
1281 
set_pages_rw(struct page * page,int numpages)1282 int set_pages_rw(struct page *page, int numpages)
1283 {
1284 	unsigned long addr = (unsigned long)page_address(page);
1285 
1286 	return set_memory_rw(addr, numpages);
1287 }
1288 
1289 #ifdef CONFIG_DEBUG_PAGEALLOC
1290 
__set_pages_p(struct page * page,int numpages)1291 static int __set_pages_p(struct page *page, int numpages)
1292 {
1293 	unsigned long tempaddr = (unsigned long) page_address(page);
1294 	struct cpa_data cpa = { .vaddr = &tempaddr,
1295 				.numpages = numpages,
1296 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1297 				.mask_clr = __pgprot(0),
1298 				.flags = 0};
1299 
1300 	/*
1301 	 * No alias checking needed for setting present flag. otherwise,
1302 	 * we may need to break large pages for 64-bit kernel text
1303 	 * mappings (this adds to complexity if we want to do this from
1304 	 * atomic context especially). Let's keep it simple!
1305 	 */
1306 	return __change_page_attr_set_clr(&cpa, 0);
1307 }
1308 
__set_pages_np(struct page * page,int numpages)1309 static int __set_pages_np(struct page *page, int numpages)
1310 {
1311 	unsigned long tempaddr = (unsigned long) page_address(page);
1312 	struct cpa_data cpa = { .vaddr = &tempaddr,
1313 				.numpages = numpages,
1314 				.mask_set = __pgprot(0),
1315 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1316 				.flags = 0};
1317 
1318 	/*
1319 	 * No alias checking needed for setting not present flag. otherwise,
1320 	 * we may need to break large pages for 64-bit kernel text
1321 	 * mappings (this adds to complexity if we want to do this from
1322 	 * atomic context especially). Let's keep it simple!
1323 	 */
1324 	return __change_page_attr_set_clr(&cpa, 0);
1325 }
1326 
kernel_map_pages(struct page * page,int numpages,int enable)1327 void kernel_map_pages(struct page *page, int numpages, int enable)
1328 {
1329 	if (PageHighMem(page))
1330 		return;
1331 	if (!enable) {
1332 		debug_check_no_locks_freed(page_address(page),
1333 					   numpages * PAGE_SIZE);
1334 	}
1335 
1336 	/*
1337 	 * The return value is ignored as the calls cannot fail.
1338 	 * Large pages for identity mappings are not used at boot time
1339 	 * and hence no memory allocations during large page split.
1340 	 */
1341 	if (enable)
1342 		__set_pages_p(page, numpages);
1343 	else
1344 		__set_pages_np(page, numpages);
1345 
1346 	/*
1347 	 * We should perform an IPI and flush all tlbs,
1348 	 * but that can deadlock->flush only current cpu:
1349 	 */
1350 	__flush_tlb_all();
1351 }
1352 
1353 #ifdef CONFIG_HIBERNATION
1354 
kernel_page_present(struct page * page)1355 bool kernel_page_present(struct page *page)
1356 {
1357 	unsigned int level;
1358 	pte_t *pte;
1359 
1360 	if (PageHighMem(page))
1361 		return false;
1362 
1363 	pte = lookup_address((unsigned long)page_address(page), &level);
1364 	return (pte_val(*pte) & _PAGE_PRESENT);
1365 }
1366 
1367 #endif /* CONFIG_HIBERNATION */
1368 
1369 #endif /* CONFIG_DEBUG_PAGEALLOC */
1370 
1371 /*
1372  * The testcases use internal knowledge of the implementation that shouldn't
1373  * be exposed to the rest of the kernel. Include these directly here.
1374  */
1375 #ifdef CONFIG_CPA_DEBUG
1376 #include "pageattr-test.c"
1377 #endif
1378