1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 struct core_name {
70 	char *corename;
71 	int used, size;
72 };
73 static atomic_t call_count = ATOMIC_INIT(1);
74 
75 /* The maximal length of core_pattern is also specified in sysctl.c */
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
__register_binfmt(struct linux_binfmt * fmt,int insert)80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	if (!fmt)
83 		return -EINVAL;
84 	write_lock(&binfmt_lock);
85 	insert ? list_add(&fmt->lh, &formats) :
86 		 list_add_tail(&fmt->lh, &formats);
87 	write_unlock(&binfmt_lock);
88 	return 0;
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
unregister_binfmt(struct linux_binfmt * fmt)93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
put_binfmt(struct linux_binfmt * fmt)102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 /*
108  * Note that a shared library must be both readable and executable due to
109  * security reasons.
110  *
111  * Also note that we take the address to load from from the file itself.
112  */
SYSCALL_DEFINE1(uselib,const char __user *,library)113 SYSCALL_DEFINE1(uselib, const char __user *, library)
114 {
115 	struct file *file;
116 	char *tmp = getname(library);
117 	int error = PTR_ERR(tmp);
118 	static const struct open_flags uselib_flags = {
119 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121 		.intent = LOOKUP_OPEN
122 	};
123 
124 	if (IS_ERR(tmp))
125 		goto out;
126 
127 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128 	putname(tmp);
129 	error = PTR_ERR(file);
130 	if (IS_ERR(file))
131 		goto out;
132 
133 	error = -EINVAL;
134 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135 		goto exit;
136 
137 	error = -EACCES;
138 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139 		goto exit;
140 
141 	fsnotify_open(file);
142 
143 	error = -ENOEXEC;
144 	if(file->f_op) {
145 		struct linux_binfmt * fmt;
146 
147 		read_lock(&binfmt_lock);
148 		list_for_each_entry(fmt, &formats, lh) {
149 			if (!fmt->load_shlib)
150 				continue;
151 			if (!try_module_get(fmt->module))
152 				continue;
153 			read_unlock(&binfmt_lock);
154 			error = fmt->load_shlib(file);
155 			read_lock(&binfmt_lock);
156 			put_binfmt(fmt);
157 			if (error != -ENOEXEC)
158 				break;
159 		}
160 		read_unlock(&binfmt_lock);
161 	}
162 exit:
163 	fput(file);
164 out:
165   	return error;
166 }
167 
168 #ifdef CONFIG_MMU
169 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)170 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 	struct mm_struct *mm = current->mm;
173 	long diff = (long)(pages - bprm->vma_pages);
174 
175 	if (!mm || !diff)
176 		return;
177 
178 	bprm->vma_pages = pages;
179 
180 #ifdef SPLIT_RSS_COUNTING
181 	add_mm_counter(mm, MM_ANONPAGES, diff);
182 #else
183 	spin_lock(&mm->page_table_lock);
184 	add_mm_counter(mm, MM_ANONPAGES, diff);
185 	spin_unlock(&mm->page_table_lock);
186 #endif
187 }
188 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)189 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 
195 #ifdef CONFIG_STACK_GROWSUP
196 	if (write) {
197 		ret = expand_stack_downwards(bprm->vma, pos);
198 		if (ret < 0)
199 			return NULL;
200 	}
201 #endif
202 	ret = get_user_pages(current, bprm->mm, pos,
203 			1, write, 1, &page, NULL);
204 	if (ret <= 0)
205 		return NULL;
206 
207 	if (write) {
208 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 		struct rlimit *rlim;
210 
211 		acct_arg_size(bprm, size / PAGE_SIZE);
212 
213 		/*
214 		 * We've historically supported up to 32 pages (ARG_MAX)
215 		 * of argument strings even with small stacks
216 		 */
217 		if (size <= ARG_MAX)
218 			return page;
219 
220 		/*
221 		 * Limit to 1/4-th the stack size for the argv+env strings.
222 		 * This ensures that:
223 		 *  - the remaining binfmt code will not run out of stack space,
224 		 *  - the program will have a reasonable amount of stack left
225 		 *    to work from.
226 		 */
227 		rlim = current->signal->rlim;
228 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229 			put_page(page);
230 			return NULL;
231 		}
232 	}
233 
234 	return page;
235 }
236 
put_arg_page(struct page * page)237 static void put_arg_page(struct page *page)
238 {
239 	put_page(page);
240 }
241 
free_arg_page(struct linux_binprm * bprm,int i)242 static void free_arg_page(struct linux_binprm *bprm, int i)
243 {
244 }
245 
free_arg_pages(struct linux_binprm * bprm)246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 		struct page *page)
252 {
253 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255 
__bprm_mm_init(struct linux_binprm * bprm)256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 	int err;
259 	struct vm_area_struct *vma = NULL;
260 	struct mm_struct *mm = bprm->mm;
261 
262 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 	if (!vma)
264 		return -ENOMEM;
265 
266 	down_write(&mm->mmap_sem);
267 	vma->vm_mm = mm;
268 
269 	/*
270 	 * Place the stack at the largest stack address the architecture
271 	 * supports. Later, we'll move this to an appropriate place. We don't
272 	 * use STACK_TOP because that can depend on attributes which aren't
273 	 * configured yet.
274 	 */
275 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 	vma->vm_end = STACK_TOP_MAX;
277 	vma->vm_start = vma->vm_end - PAGE_SIZE;
278 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 	INIT_LIST_HEAD(&vma->anon_vma_chain);
281 
282 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
283 	if (err)
284 		goto err;
285 
286 	err = insert_vm_struct(mm, vma);
287 	if (err)
288 		goto err;
289 
290 	mm->stack_vm = mm->total_vm = 1;
291 	up_write(&mm->mmap_sem);
292 	bprm->p = vma->vm_end - sizeof(void *);
293 	return 0;
294 err:
295 	up_write(&mm->mmap_sem);
296 	bprm->vma = NULL;
297 	kmem_cache_free(vm_area_cachep, vma);
298 	return err;
299 }
300 
valid_arg_len(struct linux_binprm * bprm,long len)301 static bool valid_arg_len(struct linux_binprm *bprm, long len)
302 {
303 	return len <= MAX_ARG_STRLEN;
304 }
305 
306 #else
307 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)308 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
309 {
310 }
311 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)312 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 		int write)
314 {
315 	struct page *page;
316 
317 	page = bprm->page[pos / PAGE_SIZE];
318 	if (!page && write) {
319 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
320 		if (!page)
321 			return NULL;
322 		bprm->page[pos / PAGE_SIZE] = page;
323 	}
324 
325 	return page;
326 }
327 
put_arg_page(struct page * page)328 static void put_arg_page(struct page *page)
329 {
330 }
331 
free_arg_page(struct linux_binprm * bprm,int i)332 static void free_arg_page(struct linux_binprm *bprm, int i)
333 {
334 	if (bprm->page[i]) {
335 		__free_page(bprm->page[i]);
336 		bprm->page[i] = NULL;
337 	}
338 }
339 
free_arg_pages(struct linux_binprm * bprm)340 static void free_arg_pages(struct linux_binprm *bprm)
341 {
342 	int i;
343 
344 	for (i = 0; i < MAX_ARG_PAGES; i++)
345 		free_arg_page(bprm, i);
346 }
347 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)348 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 		struct page *page)
350 {
351 }
352 
__bprm_mm_init(struct linux_binprm * bprm)353 static int __bprm_mm_init(struct linux_binprm *bprm)
354 {
355 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
356 	return 0;
357 }
358 
valid_arg_len(struct linux_binprm * bprm,long len)359 static bool valid_arg_len(struct linux_binprm *bprm, long len)
360 {
361 	return len <= bprm->p;
362 }
363 
364 #endif /* CONFIG_MMU */
365 
366 /*
367  * Create a new mm_struct and populate it with a temporary stack
368  * vm_area_struct.  We don't have enough context at this point to set the stack
369  * flags, permissions, and offset, so we use temporary values.  We'll update
370  * them later in setup_arg_pages().
371  */
bprm_mm_init(struct linux_binprm * bprm)372 int bprm_mm_init(struct linux_binprm *bprm)
373 {
374 	int err;
375 	struct mm_struct *mm = NULL;
376 
377 	bprm->mm = mm = mm_alloc();
378 	err = -ENOMEM;
379 	if (!mm)
380 		goto err;
381 
382 	err = init_new_context(current, mm);
383 	if (err)
384 		goto err;
385 
386 	err = __bprm_mm_init(bprm);
387 	if (err)
388 		goto err;
389 
390 	return 0;
391 
392 err:
393 	if (mm) {
394 		bprm->mm = NULL;
395 		mmdrop(mm);
396 	}
397 
398 	return err;
399 }
400 
401 /*
402  * count() counts the number of strings in array ARGV.
403  */
count(const char __user * const __user * argv,int max)404 static int count(const char __user * const __user * argv, int max)
405 {
406 	int i = 0;
407 
408 	if (argv != NULL) {
409 		for (;;) {
410 			const char __user * p;
411 
412 			if (get_user(p, argv))
413 				return -EFAULT;
414 			if (!p)
415 				break;
416 			argv++;
417 			if (i++ >= max)
418 				return -E2BIG;
419 
420 			if (fatal_signal_pending(current))
421 				return -ERESTARTNOHAND;
422 			cond_resched();
423 		}
424 	}
425 	return i;
426 }
427 
428 /*
429  * 'copy_strings()' copies argument/environment strings from the old
430  * processes's memory to the new process's stack.  The call to get_user_pages()
431  * ensures the destination page is created and not swapped out.
432  */
copy_strings(int argc,const char __user * const __user * argv,struct linux_binprm * bprm)433 static int copy_strings(int argc, const char __user *const __user *argv,
434 			struct linux_binprm *bprm)
435 {
436 	struct page *kmapped_page = NULL;
437 	char *kaddr = NULL;
438 	unsigned long kpos = 0;
439 	int ret;
440 
441 	while (argc-- > 0) {
442 		const char __user *str;
443 		int len;
444 		unsigned long pos;
445 
446 		if (get_user(str, argv+argc) ||
447 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
448 			ret = -EFAULT;
449 			goto out;
450 		}
451 
452 		if (!valid_arg_len(bprm, len)) {
453 			ret = -E2BIG;
454 			goto out;
455 		}
456 
457 		/* We're going to work our way backwords. */
458 		pos = bprm->p;
459 		str += len;
460 		bprm->p -= len;
461 
462 		while (len > 0) {
463 			int offset, bytes_to_copy;
464 
465 			if (fatal_signal_pending(current)) {
466 				ret = -ERESTARTNOHAND;
467 				goto out;
468 			}
469 			cond_resched();
470 
471 			offset = pos % PAGE_SIZE;
472 			if (offset == 0)
473 				offset = PAGE_SIZE;
474 
475 			bytes_to_copy = offset;
476 			if (bytes_to_copy > len)
477 				bytes_to_copy = len;
478 
479 			offset -= bytes_to_copy;
480 			pos -= bytes_to_copy;
481 			str -= bytes_to_copy;
482 			len -= bytes_to_copy;
483 
484 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
485 				struct page *page;
486 
487 				page = get_arg_page(bprm, pos, 1);
488 				if (!page) {
489 					ret = -E2BIG;
490 					goto out;
491 				}
492 
493 				if (kmapped_page) {
494 					flush_kernel_dcache_page(kmapped_page);
495 					kunmap(kmapped_page);
496 					put_arg_page(kmapped_page);
497 				}
498 				kmapped_page = page;
499 				kaddr = kmap(kmapped_page);
500 				kpos = pos & PAGE_MASK;
501 				flush_arg_page(bprm, kpos, kmapped_page);
502 			}
503 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
504 				ret = -EFAULT;
505 				goto out;
506 			}
507 		}
508 	}
509 	ret = 0;
510 out:
511 	if (kmapped_page) {
512 		flush_kernel_dcache_page(kmapped_page);
513 		kunmap(kmapped_page);
514 		put_arg_page(kmapped_page);
515 	}
516 	return ret;
517 }
518 
519 /*
520  * Like copy_strings, but get argv and its values from kernel memory.
521  */
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)522 int copy_strings_kernel(int argc, const char *const *argv,
523 			struct linux_binprm *bprm)
524 {
525 	int r;
526 	mm_segment_t oldfs = get_fs();
527 	set_fs(KERNEL_DS);
528 	r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
529 	set_fs(oldfs);
530 	return r;
531 }
532 EXPORT_SYMBOL(copy_strings_kernel);
533 
534 #ifdef CONFIG_MMU
535 
536 /*
537  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
538  * the binfmt code determines where the new stack should reside, we shift it to
539  * its final location.  The process proceeds as follows:
540  *
541  * 1) Use shift to calculate the new vma endpoints.
542  * 2) Extend vma to cover both the old and new ranges.  This ensures the
543  *    arguments passed to subsequent functions are consistent.
544  * 3) Move vma's page tables to the new range.
545  * 4) Free up any cleared pgd range.
546  * 5) Shrink the vma to cover only the new range.
547  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)548 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
549 {
550 	struct mm_struct *mm = vma->vm_mm;
551 	unsigned long old_start = vma->vm_start;
552 	unsigned long old_end = vma->vm_end;
553 	unsigned long length = old_end - old_start;
554 	unsigned long new_start = old_start - shift;
555 	unsigned long new_end = old_end - shift;
556 	struct mmu_gather *tlb;
557 
558 	BUG_ON(new_start > new_end);
559 
560 	/*
561 	 * ensure there are no vmas between where we want to go
562 	 * and where we are
563 	 */
564 	if (vma != find_vma(mm, new_start))
565 		return -EFAULT;
566 
567 	/*
568 	 * cover the whole range: [new_start, old_end)
569 	 */
570 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
571 		return -ENOMEM;
572 
573 	/*
574 	 * move the page tables downwards, on failure we rely on
575 	 * process cleanup to remove whatever mess we made.
576 	 */
577 	if (length != move_page_tables(vma, old_start,
578 				       vma, new_start, length))
579 		return -ENOMEM;
580 
581 	lru_add_drain();
582 	tlb = tlb_gather_mmu(mm, 0);
583 	if (new_end > old_start) {
584 		/*
585 		 * when the old and new regions overlap clear from new_end.
586 		 */
587 		free_pgd_range(tlb, new_end, old_end, new_end,
588 			vma->vm_next ? vma->vm_next->vm_start : 0);
589 	} else {
590 		/*
591 		 * otherwise, clean from old_start; this is done to not touch
592 		 * the address space in [new_end, old_start) some architectures
593 		 * have constraints on va-space that make this illegal (IA64) -
594 		 * for the others its just a little faster.
595 		 */
596 		free_pgd_range(tlb, old_start, old_end, new_end,
597 			vma->vm_next ? vma->vm_next->vm_start : 0);
598 	}
599 	tlb_finish_mmu(tlb, new_end, old_end);
600 
601 	/*
602 	 * Shrink the vma to just the new range.  Always succeeds.
603 	 */
604 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
605 
606 	return 0;
607 }
608 
609 /*
610  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
611  * the stack is optionally relocated, and some extra space is added.
612  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)613 int setup_arg_pages(struct linux_binprm *bprm,
614 		    unsigned long stack_top,
615 		    int executable_stack)
616 {
617 	unsigned long ret;
618 	unsigned long stack_shift;
619 	struct mm_struct *mm = current->mm;
620 	struct vm_area_struct *vma = bprm->vma;
621 	struct vm_area_struct *prev = NULL;
622 	unsigned long vm_flags;
623 	unsigned long stack_base;
624 	unsigned long stack_size;
625 	unsigned long stack_expand;
626 	unsigned long rlim_stack;
627 
628 #ifdef CONFIG_STACK_GROWSUP
629 	/* Limit stack size to 1GB */
630 	stack_base = rlimit_max(RLIMIT_STACK);
631 	if (stack_base > (1 << 30))
632 		stack_base = 1 << 30;
633 
634 	/* Make sure we didn't let the argument array grow too large. */
635 	if (vma->vm_end - vma->vm_start > stack_base)
636 		return -ENOMEM;
637 
638 	stack_base = PAGE_ALIGN(stack_top - stack_base);
639 
640 	stack_shift = vma->vm_start - stack_base;
641 	mm->arg_start = bprm->p - stack_shift;
642 	bprm->p = vma->vm_end - stack_shift;
643 #else
644 	stack_top = arch_align_stack(stack_top);
645 	stack_top = PAGE_ALIGN(stack_top);
646 
647 	if (unlikely(stack_top < mmap_min_addr) ||
648 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
649 		return -ENOMEM;
650 
651 	stack_shift = vma->vm_end - stack_top;
652 
653 	bprm->p -= stack_shift;
654 	mm->arg_start = bprm->p;
655 #endif
656 
657 	if (bprm->loader)
658 		bprm->loader -= stack_shift;
659 	bprm->exec -= stack_shift;
660 
661 	down_write(&mm->mmap_sem);
662 	vm_flags = VM_STACK_FLAGS;
663 
664 	/*
665 	 * Adjust stack execute permissions; explicitly enable for
666 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
667 	 * (arch default) otherwise.
668 	 */
669 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
670 		vm_flags |= VM_EXEC;
671 	else if (executable_stack == EXSTACK_DISABLE_X)
672 		vm_flags &= ~VM_EXEC;
673 	vm_flags |= mm->def_flags;
674 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
675 
676 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
677 			vm_flags);
678 	if (ret)
679 		goto out_unlock;
680 	BUG_ON(prev != vma);
681 
682 	/* Move stack pages down in memory. */
683 	if (stack_shift) {
684 		ret = shift_arg_pages(vma, stack_shift);
685 		if (ret)
686 			goto out_unlock;
687 	}
688 
689 	/* mprotect_fixup is overkill to remove the temporary stack flags */
690 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
691 
692 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
693 	stack_size = vma->vm_end - vma->vm_start;
694 	/*
695 	 * Align this down to a page boundary as expand_stack
696 	 * will align it up.
697 	 */
698 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
699 #ifdef CONFIG_STACK_GROWSUP
700 	if (stack_size + stack_expand > rlim_stack)
701 		stack_base = vma->vm_start + rlim_stack;
702 	else
703 		stack_base = vma->vm_end + stack_expand;
704 #else
705 	if (stack_size + stack_expand > rlim_stack)
706 		stack_base = vma->vm_end - rlim_stack;
707 	else
708 		stack_base = vma->vm_start - stack_expand;
709 #endif
710 	current->mm->start_stack = bprm->p;
711 	ret = expand_stack(vma, stack_base);
712 	if (ret)
713 		ret = -EFAULT;
714 
715 out_unlock:
716 	up_write(&mm->mmap_sem);
717 	return ret;
718 }
719 EXPORT_SYMBOL(setup_arg_pages);
720 
721 #endif /* CONFIG_MMU */
722 
open_exec(const char * name)723 struct file *open_exec(const char *name)
724 {
725 	struct file *file;
726 	int err;
727 	static const struct open_flags open_exec_flags = {
728 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
729 		.acc_mode = MAY_EXEC | MAY_OPEN,
730 		.intent = LOOKUP_OPEN
731 	};
732 
733 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
734 	if (IS_ERR(file))
735 		goto out;
736 
737 	err = -EACCES;
738 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
739 		goto exit;
740 
741 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
742 		goto exit;
743 
744 	fsnotify_open(file);
745 
746 	err = deny_write_access(file);
747 	if (err)
748 		goto exit;
749 
750 out:
751 	return file;
752 
753 exit:
754 	fput(file);
755 	return ERR_PTR(err);
756 }
757 EXPORT_SYMBOL(open_exec);
758 
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)759 int kernel_read(struct file *file, loff_t offset,
760 		char *addr, unsigned long count)
761 {
762 	mm_segment_t old_fs;
763 	loff_t pos = offset;
764 	int result;
765 
766 	old_fs = get_fs();
767 	set_fs(get_ds());
768 	/* The cast to a user pointer is valid due to the set_fs() */
769 	result = vfs_read(file, (void __user *)addr, count, &pos);
770 	set_fs(old_fs);
771 	return result;
772 }
773 
774 EXPORT_SYMBOL(kernel_read);
775 
exec_mmap(struct mm_struct * mm)776 static int exec_mmap(struct mm_struct *mm)
777 {
778 	struct task_struct *tsk;
779 	struct mm_struct * old_mm, *active_mm;
780 
781 	/* Notify parent that we're no longer interested in the old VM */
782 	tsk = current;
783 	old_mm = current->mm;
784 	sync_mm_rss(tsk, old_mm);
785 	mm_release(tsk, old_mm);
786 
787 	if (old_mm) {
788 		/*
789 		 * Make sure that if there is a core dump in progress
790 		 * for the old mm, we get out and die instead of going
791 		 * through with the exec.  We must hold mmap_sem around
792 		 * checking core_state and changing tsk->mm.
793 		 */
794 		down_read(&old_mm->mmap_sem);
795 		if (unlikely(old_mm->core_state)) {
796 			up_read(&old_mm->mmap_sem);
797 			return -EINTR;
798 		}
799 	}
800 	task_lock(tsk);
801 	active_mm = tsk->active_mm;
802 	tsk->mm = mm;
803 	tsk->active_mm = mm;
804 	activate_mm(active_mm, mm);
805 	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
806 		atomic_dec(&old_mm->oom_disable_count);
807 		atomic_inc(&tsk->mm->oom_disable_count);
808 	}
809 	task_unlock(tsk);
810 	arch_pick_mmap_layout(mm);
811 	if (old_mm) {
812 		up_read(&old_mm->mmap_sem);
813 		BUG_ON(active_mm != old_mm);
814 		mm_update_next_owner(old_mm);
815 		mmput(old_mm);
816 		return 0;
817 	}
818 	mmdrop(active_mm);
819 	return 0;
820 }
821 
822 /*
823  * This function makes sure the current process has its own signal table,
824  * so that flush_signal_handlers can later reset the handlers without
825  * disturbing other processes.  (Other processes might share the signal
826  * table via the CLONE_SIGHAND option to clone().)
827  */
de_thread(struct task_struct * tsk)828 static int de_thread(struct task_struct *tsk)
829 {
830 	struct signal_struct *sig = tsk->signal;
831 	struct sighand_struct *oldsighand = tsk->sighand;
832 	spinlock_t *lock = &oldsighand->siglock;
833 
834 	if (thread_group_empty(tsk))
835 		goto no_thread_group;
836 
837 	/*
838 	 * Kill all other threads in the thread group.
839 	 */
840 	spin_lock_irq(lock);
841 	if (signal_group_exit(sig)) {
842 		/*
843 		 * Another group action in progress, just
844 		 * return so that the signal is processed.
845 		 */
846 		spin_unlock_irq(lock);
847 		return -EAGAIN;
848 	}
849 
850 	sig->group_exit_task = tsk;
851 	sig->notify_count = zap_other_threads(tsk);
852 	if (!thread_group_leader(tsk))
853 		sig->notify_count--;
854 
855 	while (sig->notify_count) {
856 		__set_current_state(TASK_UNINTERRUPTIBLE);
857 		spin_unlock_irq(lock);
858 		schedule();
859 		spin_lock_irq(lock);
860 	}
861 	spin_unlock_irq(lock);
862 
863 	/*
864 	 * At this point all other threads have exited, all we have to
865 	 * do is to wait for the thread group leader to become inactive,
866 	 * and to assume its PID:
867 	 */
868 	if (!thread_group_leader(tsk)) {
869 		struct task_struct *leader = tsk->group_leader;
870 
871 		sig->notify_count = -1;	/* for exit_notify() */
872 		for (;;) {
873 			write_lock_irq(&tasklist_lock);
874 			if (likely(leader->exit_state))
875 				break;
876 			__set_current_state(TASK_UNINTERRUPTIBLE);
877 			write_unlock_irq(&tasklist_lock);
878 			schedule();
879 		}
880 
881 		/*
882 		 * The only record we have of the real-time age of a
883 		 * process, regardless of execs it's done, is start_time.
884 		 * All the past CPU time is accumulated in signal_struct
885 		 * from sister threads now dead.  But in this non-leader
886 		 * exec, nothing survives from the original leader thread,
887 		 * whose birth marks the true age of this process now.
888 		 * When we take on its identity by switching to its PID, we
889 		 * also take its birthdate (always earlier than our own).
890 		 */
891 		tsk->start_time = leader->start_time;
892 
893 		BUG_ON(!same_thread_group(leader, tsk));
894 		BUG_ON(has_group_leader_pid(tsk));
895 		/*
896 		 * An exec() starts a new thread group with the
897 		 * TGID of the previous thread group. Rehash the
898 		 * two threads with a switched PID, and release
899 		 * the former thread group leader:
900 		 */
901 
902 		/* Become a process group leader with the old leader's pid.
903 		 * The old leader becomes a thread of the this thread group.
904 		 * Note: The old leader also uses this pid until release_task
905 		 *       is called.  Odd but simple and correct.
906 		 */
907 		detach_pid(tsk, PIDTYPE_PID);
908 		tsk->pid = leader->pid;
909 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
910 		transfer_pid(leader, tsk, PIDTYPE_PGID);
911 		transfer_pid(leader, tsk, PIDTYPE_SID);
912 
913 		list_replace_rcu(&leader->tasks, &tsk->tasks);
914 		list_replace_init(&leader->sibling, &tsk->sibling);
915 
916 		tsk->group_leader = tsk;
917 		leader->group_leader = tsk;
918 
919 		tsk->exit_signal = SIGCHLD;
920 
921 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
922 		leader->exit_state = EXIT_DEAD;
923 		write_unlock_irq(&tasklist_lock);
924 
925 		release_task(leader);
926 	}
927 
928 	sig->group_exit_task = NULL;
929 	sig->notify_count = 0;
930 
931 no_thread_group:
932 	if (current->mm)
933 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
934 
935 	exit_itimers(sig);
936 	flush_itimer_signals();
937 
938 	if (atomic_read(&oldsighand->count) != 1) {
939 		struct sighand_struct *newsighand;
940 		/*
941 		 * This ->sighand is shared with the CLONE_SIGHAND
942 		 * but not CLONE_THREAD task, switch to the new one.
943 		 */
944 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
945 		if (!newsighand)
946 			return -ENOMEM;
947 
948 		atomic_set(&newsighand->count, 1);
949 		memcpy(newsighand->action, oldsighand->action,
950 		       sizeof(newsighand->action));
951 
952 		write_lock_irq(&tasklist_lock);
953 		spin_lock(&oldsighand->siglock);
954 		rcu_assign_pointer(tsk->sighand, newsighand);
955 		spin_unlock(&oldsighand->siglock);
956 		write_unlock_irq(&tasklist_lock);
957 
958 		__cleanup_sighand(oldsighand);
959 	}
960 
961 	BUG_ON(!thread_group_leader(tsk));
962 	return 0;
963 }
964 
965 /*
966  * These functions flushes out all traces of the currently running executable
967  * so that a new one can be started
968  */
flush_old_files(struct files_struct * files)969 static void flush_old_files(struct files_struct * files)
970 {
971 	long j = -1;
972 	struct fdtable *fdt;
973 
974 	spin_lock(&files->file_lock);
975 	for (;;) {
976 		unsigned long set, i;
977 
978 		j++;
979 		i = j * __NFDBITS;
980 		fdt = files_fdtable(files);
981 		if (i >= fdt->max_fds)
982 			break;
983 		set = fdt->close_on_exec->fds_bits[j];
984 		if (!set)
985 			continue;
986 		fdt->close_on_exec->fds_bits[j] = 0;
987 		spin_unlock(&files->file_lock);
988 		for ( ; set ; i++,set >>= 1) {
989 			if (set & 1) {
990 				sys_close(i);
991 			}
992 		}
993 		spin_lock(&files->file_lock);
994 
995 	}
996 	spin_unlock(&files->file_lock);
997 }
998 
get_task_comm(char * buf,struct task_struct * tsk)999 char *get_task_comm(char *buf, struct task_struct *tsk)
1000 {
1001 	/* buf must be at least sizeof(tsk->comm) in size */
1002 	task_lock(tsk);
1003 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1004 	task_unlock(tsk);
1005 	return buf;
1006 }
1007 
set_task_comm(struct task_struct * tsk,char * buf)1008 void set_task_comm(struct task_struct *tsk, char *buf)
1009 {
1010 	task_lock(tsk);
1011 
1012 	/*
1013 	 * Threads may access current->comm without holding
1014 	 * the task lock, so write the string carefully.
1015 	 * Readers without a lock may see incomplete new
1016 	 * names but are safe from non-terminating string reads.
1017 	 */
1018 	memset(tsk->comm, 0, TASK_COMM_LEN);
1019 	wmb();
1020 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1021 	task_unlock(tsk);
1022 	perf_event_comm(tsk);
1023 }
1024 
flush_old_exec(struct linux_binprm * bprm)1025 int flush_old_exec(struct linux_binprm * bprm)
1026 {
1027 	int retval;
1028 
1029 	/*
1030 	 * Make sure we have a private signal table and that
1031 	 * we are unassociated from the previous thread group.
1032 	 */
1033 	retval = de_thread(current);
1034 	if (retval)
1035 		goto out;
1036 
1037 	set_mm_exe_file(bprm->mm, bprm->file);
1038 
1039 	/*
1040 	 * Release all of the old mmap stuff
1041 	 */
1042 	acct_arg_size(bprm, 0);
1043 	retval = exec_mmap(bprm->mm);
1044 	if (retval)
1045 		goto out;
1046 
1047 	bprm->mm = NULL;		/* We're using it now */
1048 
1049 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1050 	flush_thread();
1051 	current->personality &= ~bprm->per_clear;
1052 
1053 	return 0;
1054 
1055 out:
1056 	return retval;
1057 }
1058 EXPORT_SYMBOL(flush_old_exec);
1059 
setup_new_exec(struct linux_binprm * bprm)1060 void setup_new_exec(struct linux_binprm * bprm)
1061 {
1062 	int i, ch;
1063 	const char *name;
1064 	char tcomm[sizeof(current->comm)];
1065 
1066 	arch_pick_mmap_layout(current->mm);
1067 
1068 	/* This is the point of no return */
1069 	current->sas_ss_sp = current->sas_ss_size = 0;
1070 
1071 	if (current_euid() == current_uid() && current_egid() == current_gid())
1072 		set_dumpable(current->mm, 1);
1073 	else
1074 		set_dumpable(current->mm, suid_dumpable);
1075 
1076 	name = bprm->filename;
1077 
1078 	/* Copies the binary name from after last slash */
1079 	for (i=0; (ch = *(name++)) != '\0';) {
1080 		if (ch == '/')
1081 			i = 0; /* overwrite what we wrote */
1082 		else
1083 			if (i < (sizeof(tcomm) - 1))
1084 				tcomm[i++] = ch;
1085 	}
1086 	tcomm[i] = '\0';
1087 	set_task_comm(current, tcomm);
1088 
1089 	/* Set the new mm task size. We have to do that late because it may
1090 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1091 	 * some architectures like powerpc
1092 	 */
1093 	current->mm->task_size = TASK_SIZE;
1094 
1095 	/* install the new credentials */
1096 	if (bprm->cred->uid != current_euid() ||
1097 	    bprm->cred->gid != current_egid()) {
1098 		current->pdeath_signal = 0;
1099 	} else if (file_permission(bprm->file, MAY_READ) ||
1100 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1101 		set_dumpable(current->mm, suid_dumpable);
1102 	}
1103 
1104 	/*
1105 	 * Flush performance counters when crossing a
1106 	 * security domain:
1107 	 */
1108 	if (!get_dumpable(current->mm))
1109 		perf_event_exit_task(current);
1110 
1111 	/* An exec changes our domain. We are no longer part of the thread
1112 	   group */
1113 
1114 	current->self_exec_id++;
1115 
1116 	flush_signal_handlers(current, 0);
1117 	flush_old_files(current->files);
1118 }
1119 EXPORT_SYMBOL(setup_new_exec);
1120 
1121 /*
1122  * Prepare credentials and lock ->cred_guard_mutex.
1123  * install_exec_creds() commits the new creds and drops the lock.
1124  * Or, if exec fails before, free_bprm() should release ->cred and
1125  * and unlock.
1126  */
prepare_bprm_creds(struct linux_binprm * bprm)1127 int prepare_bprm_creds(struct linux_binprm *bprm)
1128 {
1129 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1130 		return -ERESTARTNOINTR;
1131 
1132 	bprm->cred = prepare_exec_creds();
1133 	if (likely(bprm->cred))
1134 		return 0;
1135 
1136 	mutex_unlock(&current->signal->cred_guard_mutex);
1137 	return -ENOMEM;
1138 }
1139 
free_bprm(struct linux_binprm * bprm)1140 void free_bprm(struct linux_binprm *bprm)
1141 {
1142 	free_arg_pages(bprm);
1143 	if (bprm->cred) {
1144 		mutex_unlock(&current->signal->cred_guard_mutex);
1145 		abort_creds(bprm->cred);
1146 	}
1147 	kfree(bprm);
1148 }
1149 
1150 /*
1151  * install the new credentials for this executable
1152  */
install_exec_creds(struct linux_binprm * bprm)1153 void install_exec_creds(struct linux_binprm *bprm)
1154 {
1155 	security_bprm_committing_creds(bprm);
1156 
1157 	commit_creds(bprm->cred);
1158 	bprm->cred = NULL;
1159 	/*
1160 	 * cred_guard_mutex must be held at least to this point to prevent
1161 	 * ptrace_attach() from altering our determination of the task's
1162 	 * credentials; any time after this it may be unlocked.
1163 	 */
1164 	security_bprm_committed_creds(bprm);
1165 	mutex_unlock(&current->signal->cred_guard_mutex);
1166 }
1167 EXPORT_SYMBOL(install_exec_creds);
1168 
1169 /*
1170  * determine how safe it is to execute the proposed program
1171  * - the caller must hold ->cred_guard_mutex to protect against
1172  *   PTRACE_ATTACH
1173  */
check_unsafe_exec(struct linux_binprm * bprm)1174 int check_unsafe_exec(struct linux_binprm *bprm)
1175 {
1176 	struct task_struct *p = current, *t;
1177 	unsigned n_fs;
1178 	int res = 0;
1179 
1180 	bprm->unsafe = tracehook_unsafe_exec(p);
1181 
1182 	n_fs = 1;
1183 	spin_lock(&p->fs->lock);
1184 	rcu_read_lock();
1185 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1186 		if (t->fs == p->fs)
1187 			n_fs++;
1188 	}
1189 	rcu_read_unlock();
1190 
1191 	if (p->fs->users > n_fs) {
1192 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1193 	} else {
1194 		res = -EAGAIN;
1195 		if (!p->fs->in_exec) {
1196 			p->fs->in_exec = 1;
1197 			res = 1;
1198 		}
1199 	}
1200 	spin_unlock(&p->fs->lock);
1201 
1202 	return res;
1203 }
1204 
1205 /*
1206  * Fill the binprm structure from the inode.
1207  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1208  *
1209  * This may be called multiple times for binary chains (scripts for example).
1210  */
prepare_binprm(struct linux_binprm * bprm)1211 int prepare_binprm(struct linux_binprm *bprm)
1212 {
1213 	umode_t mode;
1214 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1215 	int retval;
1216 
1217 	mode = inode->i_mode;
1218 	if (bprm->file->f_op == NULL)
1219 		return -EACCES;
1220 
1221 	/* clear any previous set[ug]id data from a previous binary */
1222 	bprm->cred->euid = current_euid();
1223 	bprm->cred->egid = current_egid();
1224 
1225 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1226 		/* Set-uid? */
1227 		if (mode & S_ISUID) {
1228 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1229 			bprm->cred->euid = inode->i_uid;
1230 		}
1231 
1232 		/* Set-gid? */
1233 		/*
1234 		 * If setgid is set but no group execute bit then this
1235 		 * is a candidate for mandatory locking, not a setgid
1236 		 * executable.
1237 		 */
1238 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1239 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1240 			bprm->cred->egid = inode->i_gid;
1241 		}
1242 	}
1243 
1244 	/* fill in binprm security blob */
1245 	retval = security_bprm_set_creds(bprm);
1246 	if (retval)
1247 		return retval;
1248 	bprm->cred_prepared = 1;
1249 
1250 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1251 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1252 }
1253 
1254 EXPORT_SYMBOL(prepare_binprm);
1255 
1256 /*
1257  * Arguments are '\0' separated strings found at the location bprm->p
1258  * points to; chop off the first by relocating brpm->p to right after
1259  * the first '\0' encountered.
1260  */
remove_arg_zero(struct linux_binprm * bprm)1261 int remove_arg_zero(struct linux_binprm *bprm)
1262 {
1263 	int ret = 0;
1264 	unsigned long offset;
1265 	char *kaddr;
1266 	struct page *page;
1267 
1268 	if (!bprm->argc)
1269 		return 0;
1270 
1271 	do {
1272 		offset = bprm->p & ~PAGE_MASK;
1273 		page = get_arg_page(bprm, bprm->p, 0);
1274 		if (!page) {
1275 			ret = -EFAULT;
1276 			goto out;
1277 		}
1278 		kaddr = kmap_atomic(page, KM_USER0);
1279 
1280 		for (; offset < PAGE_SIZE && kaddr[offset];
1281 				offset++, bprm->p++)
1282 			;
1283 
1284 		kunmap_atomic(kaddr, KM_USER0);
1285 		put_arg_page(page);
1286 
1287 		if (offset == PAGE_SIZE)
1288 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1289 	} while (offset == PAGE_SIZE);
1290 
1291 	bprm->p++;
1292 	bprm->argc--;
1293 	ret = 0;
1294 
1295 out:
1296 	return ret;
1297 }
1298 EXPORT_SYMBOL(remove_arg_zero);
1299 
1300 /*
1301  * cycle the list of binary formats handler, until one recognizes the image
1302  */
search_binary_handler(struct linux_binprm * bprm,struct pt_regs * regs)1303 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1304 {
1305 	unsigned int depth = bprm->recursion_depth;
1306 	int try,retval;
1307 	struct linux_binfmt *fmt;
1308 
1309 	retval = security_bprm_check(bprm);
1310 	if (retval)
1311 		return retval;
1312 
1313 	/* kernel module loader fixup */
1314 	/* so we don't try to load run modprobe in kernel space. */
1315 	set_fs(USER_DS);
1316 
1317 	retval = audit_bprm(bprm);
1318 	if (retval)
1319 		return retval;
1320 
1321 	retval = -ENOENT;
1322 	for (try=0; try<2; try++) {
1323 		read_lock(&binfmt_lock);
1324 		list_for_each_entry(fmt, &formats, lh) {
1325 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1326 			if (!fn)
1327 				continue;
1328 			if (!try_module_get(fmt->module))
1329 				continue;
1330 			read_unlock(&binfmt_lock);
1331 			retval = fn(bprm, regs);
1332 			/*
1333 			 * Restore the depth counter to its starting value
1334 			 * in this call, so we don't have to rely on every
1335 			 * load_binary function to restore it on return.
1336 			 */
1337 			bprm->recursion_depth = depth;
1338 			if (retval >= 0) {
1339 				if (depth == 0)
1340 					tracehook_report_exec(fmt, bprm, regs);
1341 				put_binfmt(fmt);
1342 				allow_write_access(bprm->file);
1343 				if (bprm->file)
1344 					fput(bprm->file);
1345 				bprm->file = NULL;
1346 				current->did_exec = 1;
1347 				proc_exec_connector(current);
1348 				return retval;
1349 			}
1350 			read_lock(&binfmt_lock);
1351 			put_binfmt(fmt);
1352 			if (retval != -ENOEXEC || bprm->mm == NULL)
1353 				break;
1354 			if (!bprm->file) {
1355 				read_unlock(&binfmt_lock);
1356 				return retval;
1357 			}
1358 		}
1359 		read_unlock(&binfmt_lock);
1360 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1361 			break;
1362 #ifdef CONFIG_MODULES
1363 		} else {
1364 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1365 			if (printable(bprm->buf[0]) &&
1366 			    printable(bprm->buf[1]) &&
1367 			    printable(bprm->buf[2]) &&
1368 			    printable(bprm->buf[3]))
1369 				break; /* -ENOEXEC */
1370 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1371 #endif
1372 		}
1373 	}
1374 	return retval;
1375 }
1376 
1377 EXPORT_SYMBOL(search_binary_handler);
1378 
1379 /*
1380  * sys_execve() executes a new program.
1381  */
do_execve(const char * filename,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)1382 int do_execve(const char * filename,
1383 	const char __user *const __user *argv,
1384 	const char __user *const __user *envp,
1385 	struct pt_regs * regs)
1386 {
1387 	struct linux_binprm *bprm;
1388 	struct file *file;
1389 	struct files_struct *displaced;
1390 	bool clear_in_exec;
1391 	int retval;
1392 
1393 	retval = unshare_files(&displaced);
1394 	if (retval)
1395 		goto out_ret;
1396 
1397 	retval = -ENOMEM;
1398 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1399 	if (!bprm)
1400 		goto out_files;
1401 
1402 	retval = prepare_bprm_creds(bprm);
1403 	if (retval)
1404 		goto out_free;
1405 
1406 	retval = check_unsafe_exec(bprm);
1407 	if (retval < 0)
1408 		goto out_free;
1409 	clear_in_exec = retval;
1410 	current->in_execve = 1;
1411 
1412 	file = open_exec(filename);
1413 	retval = PTR_ERR(file);
1414 	if (IS_ERR(file))
1415 		goto out_unmark;
1416 
1417 	sched_exec();
1418 
1419 	bprm->file = file;
1420 	bprm->filename = filename;
1421 	bprm->interp = filename;
1422 
1423 	retval = bprm_mm_init(bprm);
1424 	if (retval)
1425 		goto out_file;
1426 
1427 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1428 	if ((retval = bprm->argc) < 0)
1429 		goto out;
1430 
1431 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1432 	if ((retval = bprm->envc) < 0)
1433 		goto out;
1434 
1435 	retval = prepare_binprm(bprm);
1436 	if (retval < 0)
1437 		goto out;
1438 
1439 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1440 	if (retval < 0)
1441 		goto out;
1442 
1443 	bprm->exec = bprm->p;
1444 	retval = copy_strings(bprm->envc, envp, bprm);
1445 	if (retval < 0)
1446 		goto out;
1447 
1448 	retval = copy_strings(bprm->argc, argv, bprm);
1449 	if (retval < 0)
1450 		goto out;
1451 
1452 	retval = search_binary_handler(bprm,regs);
1453 	if (retval < 0)
1454 		goto out;
1455 
1456 	/* execve succeeded */
1457 	current->fs->in_exec = 0;
1458 	current->in_execve = 0;
1459 	acct_update_integrals(current);
1460 	free_bprm(bprm);
1461 	if (displaced)
1462 		put_files_struct(displaced);
1463 	return retval;
1464 
1465 out:
1466 	if (bprm->mm) {
1467 		acct_arg_size(bprm, 0);
1468 		mmput(bprm->mm);
1469 	}
1470 
1471 out_file:
1472 	if (bprm->file) {
1473 		allow_write_access(bprm->file);
1474 		fput(bprm->file);
1475 	}
1476 
1477 out_unmark:
1478 	if (clear_in_exec)
1479 		current->fs->in_exec = 0;
1480 	current->in_execve = 0;
1481 
1482 out_free:
1483 	free_bprm(bprm);
1484 
1485 out_files:
1486 	if (displaced)
1487 		reset_files_struct(displaced);
1488 out_ret:
1489 	return retval;
1490 }
1491 
set_binfmt(struct linux_binfmt * new)1492 void set_binfmt(struct linux_binfmt *new)
1493 {
1494 	struct mm_struct *mm = current->mm;
1495 
1496 	if (mm->binfmt)
1497 		module_put(mm->binfmt->module);
1498 
1499 	mm->binfmt = new;
1500 	if (new)
1501 		__module_get(new->module);
1502 }
1503 
1504 EXPORT_SYMBOL(set_binfmt);
1505 
expand_corename(struct core_name * cn)1506 static int expand_corename(struct core_name *cn)
1507 {
1508 	char *old_corename = cn->corename;
1509 
1510 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1511 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1512 
1513 	if (!cn->corename) {
1514 		kfree(old_corename);
1515 		return -ENOMEM;
1516 	}
1517 
1518 	return 0;
1519 }
1520 
cn_printf(struct core_name * cn,const char * fmt,...)1521 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1522 {
1523 	char *cur;
1524 	int need;
1525 	int ret;
1526 	va_list arg;
1527 
1528 	va_start(arg, fmt);
1529 	need = vsnprintf(NULL, 0, fmt, arg);
1530 	va_end(arg);
1531 
1532 	if (likely(need < cn->size - cn->used - 1))
1533 		goto out_printf;
1534 
1535 	ret = expand_corename(cn);
1536 	if (ret)
1537 		goto expand_fail;
1538 
1539 out_printf:
1540 	cur = cn->corename + cn->used;
1541 	va_start(arg, fmt);
1542 	vsnprintf(cur, need + 1, fmt, arg);
1543 	va_end(arg);
1544 	cn->used += need;
1545 	return 0;
1546 
1547 expand_fail:
1548 	return ret;
1549 }
1550 
1551 /* format_corename will inspect the pattern parameter, and output a
1552  * name into corename, which must have space for at least
1553  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1554  */
format_corename(struct core_name * cn,long signr)1555 static int format_corename(struct core_name *cn, long signr)
1556 {
1557 	const struct cred *cred = current_cred();
1558 	const char *pat_ptr = core_pattern;
1559 	int ispipe = (*pat_ptr == '|');
1560 	int pid_in_pattern = 0;
1561 	int err = 0;
1562 
1563 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1564 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1565 	cn->used = 0;
1566 
1567 	if (!cn->corename)
1568 		return -ENOMEM;
1569 
1570 	/* Repeat as long as we have more pattern to process and more output
1571 	   space */
1572 	while (*pat_ptr) {
1573 		if (*pat_ptr != '%') {
1574 			if (*pat_ptr == 0)
1575 				goto out;
1576 			err = cn_printf(cn, "%c", *pat_ptr++);
1577 		} else {
1578 			switch (*++pat_ptr) {
1579 			/* single % at the end, drop that */
1580 			case 0:
1581 				goto out;
1582 			/* Double percent, output one percent */
1583 			case '%':
1584 				err = cn_printf(cn, "%c", '%');
1585 				break;
1586 			/* pid */
1587 			case 'p':
1588 				pid_in_pattern = 1;
1589 				err = cn_printf(cn, "%d",
1590 					      task_tgid_vnr(current));
1591 				break;
1592 			/* uid */
1593 			case 'u':
1594 				err = cn_printf(cn, "%d", cred->uid);
1595 				break;
1596 			/* gid */
1597 			case 'g':
1598 				err = cn_printf(cn, "%d", cred->gid);
1599 				break;
1600 			/* signal that caused the coredump */
1601 			case 's':
1602 				err = cn_printf(cn, "%ld", signr);
1603 				break;
1604 			/* UNIX time of coredump */
1605 			case 't': {
1606 				struct timeval tv;
1607 				do_gettimeofday(&tv);
1608 				err = cn_printf(cn, "%lu", tv.tv_sec);
1609 				break;
1610 			}
1611 			/* hostname */
1612 			case 'h':
1613 				down_read(&uts_sem);
1614 				err = cn_printf(cn, "%s",
1615 					      utsname()->nodename);
1616 				up_read(&uts_sem);
1617 				break;
1618 			/* executable */
1619 			case 'e':
1620 				err = cn_printf(cn, "%s", current->comm);
1621 				break;
1622 			/* core limit size */
1623 			case 'c':
1624 				err = cn_printf(cn, "%lu",
1625 					      rlimit(RLIMIT_CORE));
1626 				break;
1627 			default:
1628 				break;
1629 			}
1630 			++pat_ptr;
1631 		}
1632 
1633 		if (err)
1634 			return err;
1635 	}
1636 
1637 	/* Backward compatibility with core_uses_pid:
1638 	 *
1639 	 * If core_pattern does not include a %p (as is the default)
1640 	 * and core_uses_pid is set, then .%pid will be appended to
1641 	 * the filename. Do not do this for piped commands. */
1642 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1643 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1644 		if (err)
1645 			return err;
1646 	}
1647 out:
1648 	return ispipe;
1649 }
1650 
zap_process(struct task_struct * start,int exit_code)1651 static int zap_process(struct task_struct *start, int exit_code)
1652 {
1653 	struct task_struct *t;
1654 	int nr = 0;
1655 
1656 	start->signal->flags = SIGNAL_GROUP_EXIT;
1657 	start->signal->group_exit_code = exit_code;
1658 	start->signal->group_stop_count = 0;
1659 
1660 	t = start;
1661 	do {
1662 		if (t != current && t->mm) {
1663 			sigaddset(&t->pending.signal, SIGKILL);
1664 			signal_wake_up(t, 1);
1665 			nr++;
1666 		}
1667 	} while_each_thread(start, t);
1668 
1669 	return nr;
1670 }
1671 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)1672 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1673 				struct core_state *core_state, int exit_code)
1674 {
1675 	struct task_struct *g, *p;
1676 	unsigned long flags;
1677 	int nr = -EAGAIN;
1678 
1679 	spin_lock_irq(&tsk->sighand->siglock);
1680 	if (!signal_group_exit(tsk->signal)) {
1681 		mm->core_state = core_state;
1682 		nr = zap_process(tsk, exit_code);
1683 	}
1684 	spin_unlock_irq(&tsk->sighand->siglock);
1685 	if (unlikely(nr < 0))
1686 		return nr;
1687 
1688 	if (atomic_read(&mm->mm_users) == nr + 1)
1689 		goto done;
1690 	/*
1691 	 * We should find and kill all tasks which use this mm, and we should
1692 	 * count them correctly into ->nr_threads. We don't take tasklist
1693 	 * lock, but this is safe wrt:
1694 	 *
1695 	 * fork:
1696 	 *	None of sub-threads can fork after zap_process(leader). All
1697 	 *	processes which were created before this point should be
1698 	 *	visible to zap_threads() because copy_process() adds the new
1699 	 *	process to the tail of init_task.tasks list, and lock/unlock
1700 	 *	of ->siglock provides a memory barrier.
1701 	 *
1702 	 * do_exit:
1703 	 *	The caller holds mm->mmap_sem. This means that the task which
1704 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1705 	 *	its ->mm.
1706 	 *
1707 	 * de_thread:
1708 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1709 	 *	we must see either old or new leader, this does not matter.
1710 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1711 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1712 	 *	it can't fail.
1713 	 *
1714 	 *	Note also that "g" can be the old leader with ->mm == NULL
1715 	 *	and already unhashed and thus removed from ->thread_group.
1716 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1717 	 *	clear the ->next pointer, we will find the new leader via
1718 	 *	next_thread().
1719 	 */
1720 	rcu_read_lock();
1721 	for_each_process(g) {
1722 		if (g == tsk->group_leader)
1723 			continue;
1724 		if (g->flags & PF_KTHREAD)
1725 			continue;
1726 		p = g;
1727 		do {
1728 			if (p->mm) {
1729 				if (unlikely(p->mm == mm)) {
1730 					lock_task_sighand(p, &flags);
1731 					nr += zap_process(p, exit_code);
1732 					unlock_task_sighand(p, &flags);
1733 				}
1734 				break;
1735 			}
1736 		} while_each_thread(g, p);
1737 	}
1738 	rcu_read_unlock();
1739 done:
1740 	atomic_set(&core_state->nr_threads, nr);
1741 	return nr;
1742 }
1743 
coredump_wait(int exit_code,struct core_state * core_state)1744 static int coredump_wait(int exit_code, struct core_state *core_state)
1745 {
1746 	struct task_struct *tsk = current;
1747 	struct mm_struct *mm = tsk->mm;
1748 	struct completion *vfork_done;
1749 	int core_waiters = -EBUSY;
1750 
1751 	init_completion(&core_state->startup);
1752 	core_state->dumper.task = tsk;
1753 	core_state->dumper.next = NULL;
1754 
1755 	down_write(&mm->mmap_sem);
1756 	if (!mm->core_state)
1757 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1758 	up_write(&mm->mmap_sem);
1759 
1760 	if (unlikely(core_waiters < 0))
1761 		goto fail;
1762 
1763 	/*
1764 	 * Make sure nobody is waiting for us to release the VM,
1765 	 * otherwise we can deadlock when we wait on each other
1766 	 */
1767 	vfork_done = tsk->vfork_done;
1768 	if (vfork_done) {
1769 		tsk->vfork_done = NULL;
1770 		complete(vfork_done);
1771 	}
1772 
1773 	if (core_waiters)
1774 		wait_for_completion(&core_state->startup);
1775 fail:
1776 	return core_waiters;
1777 }
1778 
coredump_finish(struct mm_struct * mm)1779 static void coredump_finish(struct mm_struct *mm)
1780 {
1781 	struct core_thread *curr, *next;
1782 	struct task_struct *task;
1783 
1784 	next = mm->core_state->dumper.next;
1785 	while ((curr = next) != NULL) {
1786 		next = curr->next;
1787 		task = curr->task;
1788 		/*
1789 		 * see exit_mm(), curr->task must not see
1790 		 * ->task == NULL before we read ->next.
1791 		 */
1792 		smp_mb();
1793 		curr->task = NULL;
1794 		wake_up_process(task);
1795 	}
1796 
1797 	mm->core_state = NULL;
1798 }
1799 
1800 /*
1801  * set_dumpable converts traditional three-value dumpable to two flags and
1802  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1803  * these bits are not changed atomically.  So get_dumpable can observe the
1804  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1805  * return either old dumpable or new one by paying attention to the order of
1806  * modifying the bits.
1807  *
1808  * dumpable |   mm->flags (binary)
1809  * old  new | initial interim  final
1810  * ---------+-----------------------
1811  *  0    1  |   00      01      01
1812  *  0    2  |   00      10(*)   11
1813  *  1    0  |   01      00      00
1814  *  1    2  |   01      11      11
1815  *  2    0  |   11      10(*)   00
1816  *  2    1  |   11      11      01
1817  *
1818  * (*) get_dumpable regards interim value of 10 as 11.
1819  */
set_dumpable(struct mm_struct * mm,int value)1820 void set_dumpable(struct mm_struct *mm, int value)
1821 {
1822 	switch (value) {
1823 	case 0:
1824 		clear_bit(MMF_DUMPABLE, &mm->flags);
1825 		smp_wmb();
1826 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1827 		break;
1828 	case 1:
1829 		set_bit(MMF_DUMPABLE, &mm->flags);
1830 		smp_wmb();
1831 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1832 		break;
1833 	case 2:
1834 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1835 		smp_wmb();
1836 		set_bit(MMF_DUMPABLE, &mm->flags);
1837 		break;
1838 	}
1839 }
1840 
__get_dumpable(unsigned long mm_flags)1841 static int __get_dumpable(unsigned long mm_flags)
1842 {
1843 	int ret;
1844 
1845 	ret = mm_flags & MMF_DUMPABLE_MASK;
1846 	return (ret >= 2) ? 2 : ret;
1847 }
1848 
get_dumpable(struct mm_struct * mm)1849 int get_dumpable(struct mm_struct *mm)
1850 {
1851 	return __get_dumpable(mm->flags);
1852 }
1853 
wait_for_dump_helpers(struct file * file)1854 static void wait_for_dump_helpers(struct file *file)
1855 {
1856 	struct pipe_inode_info *pipe;
1857 
1858 	pipe = file->f_path.dentry->d_inode->i_pipe;
1859 
1860 	pipe_lock(pipe);
1861 	pipe->readers++;
1862 	pipe->writers--;
1863 
1864 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1865 		wake_up_interruptible_sync(&pipe->wait);
1866 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1867 		pipe_wait(pipe);
1868 	}
1869 
1870 	pipe->readers--;
1871 	pipe->writers++;
1872 	pipe_unlock(pipe);
1873 
1874 }
1875 
1876 
1877 /*
1878  * umh_pipe_setup
1879  * helper function to customize the process used
1880  * to collect the core in userspace.  Specifically
1881  * it sets up a pipe and installs it as fd 0 (stdin)
1882  * for the process.  Returns 0 on success, or
1883  * PTR_ERR on failure.
1884  * Note that it also sets the core limit to 1.  This
1885  * is a special value that we use to trap recursive
1886  * core dumps
1887  */
umh_pipe_setup(struct subprocess_info * info)1888 static int umh_pipe_setup(struct subprocess_info *info)
1889 {
1890 	struct file *rp, *wp;
1891 	struct fdtable *fdt;
1892 	struct coredump_params *cp = (struct coredump_params *)info->data;
1893 	struct files_struct *cf = current->files;
1894 
1895 	wp = create_write_pipe(0);
1896 	if (IS_ERR(wp))
1897 		return PTR_ERR(wp);
1898 
1899 	rp = create_read_pipe(wp, 0);
1900 	if (IS_ERR(rp)) {
1901 		free_write_pipe(wp);
1902 		return PTR_ERR(rp);
1903 	}
1904 
1905 	cp->file = wp;
1906 
1907 	sys_close(0);
1908 	fd_install(0, rp);
1909 	spin_lock(&cf->file_lock);
1910 	fdt = files_fdtable(cf);
1911 	FD_SET(0, fdt->open_fds);
1912 	FD_CLR(0, fdt->close_on_exec);
1913 	spin_unlock(&cf->file_lock);
1914 
1915 	/* and disallow core files too */
1916 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1917 
1918 	return 0;
1919 }
1920 
do_coredump(long signr,int exit_code,struct pt_regs * regs)1921 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1922 {
1923 	struct core_state core_state;
1924 	struct core_name cn;
1925 	struct mm_struct *mm = current->mm;
1926 	struct linux_binfmt * binfmt;
1927 	const struct cred *old_cred;
1928 	struct cred *cred;
1929 	int retval = 0;
1930 	int flag = 0;
1931 	int ispipe;
1932 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1933 	struct coredump_params cprm = {
1934 		.signr = signr,
1935 		.regs = regs,
1936 		.limit = rlimit(RLIMIT_CORE),
1937 		/*
1938 		 * We must use the same mm->flags while dumping core to avoid
1939 		 * inconsistency of bit flags, since this flag is not protected
1940 		 * by any locks.
1941 		 */
1942 		.mm_flags = mm->flags,
1943 	};
1944 
1945 	audit_core_dumps(signr);
1946 
1947 	binfmt = mm->binfmt;
1948 	if (!binfmt || !binfmt->core_dump)
1949 		goto fail;
1950 	if (!__get_dumpable(cprm.mm_flags))
1951 		goto fail;
1952 
1953 	cred = prepare_creds();
1954 	if (!cred)
1955 		goto fail;
1956 	/*
1957 	 *	We cannot trust fsuid as being the "true" uid of the
1958 	 *	process nor do we know its entire history. We only know it
1959 	 *	was tainted so we dump it as root in mode 2.
1960 	 */
1961 	if (__get_dumpable(cprm.mm_flags) == 2) {
1962 		/* Setuid core dump mode */
1963 		flag = O_EXCL;		/* Stop rewrite attacks */
1964 		cred->fsuid = 0;	/* Dump root private */
1965 	}
1966 
1967 	retval = coredump_wait(exit_code, &core_state);
1968 	if (retval < 0)
1969 		goto fail_creds;
1970 
1971 	old_cred = override_creds(cred);
1972 
1973 	/*
1974 	 * Clear any false indication of pending signals that might
1975 	 * be seen by the filesystem code called to write the core file.
1976 	 */
1977 	clear_thread_flag(TIF_SIGPENDING);
1978 
1979 	ispipe = format_corename(&cn, signr);
1980 
1981 	if (ispipe == -ENOMEM) {
1982 		printk(KERN_WARNING "format_corename failed\n");
1983 		printk(KERN_WARNING "Aborting core\n");
1984 		goto fail_corename;
1985 	}
1986 
1987  	if (ispipe) {
1988 		int dump_count;
1989 		char **helper_argv;
1990 
1991 		if (cprm.limit == 1) {
1992 			/*
1993 			 * Normally core limits are irrelevant to pipes, since
1994 			 * we're not writing to the file system, but we use
1995 			 * cprm.limit of 1 here as a speacial value. Any
1996 			 * non-1 limit gets set to RLIM_INFINITY below, but
1997 			 * a limit of 0 skips the dump.  This is a consistent
1998 			 * way to catch recursive crashes.  We can still crash
1999 			 * if the core_pattern binary sets RLIM_CORE =  !1
2000 			 * but it runs as root, and can do lots of stupid things
2001 			 * Note that we use task_tgid_vnr here to grab the pid
2002 			 * of the process group leader.  That way we get the
2003 			 * right pid if a thread in a multi-threaded
2004 			 * core_pattern process dies.
2005 			 */
2006 			printk(KERN_WARNING
2007 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2008 				task_tgid_vnr(current), current->comm);
2009 			printk(KERN_WARNING "Aborting core\n");
2010 			goto fail_unlock;
2011 		}
2012 		cprm.limit = RLIM_INFINITY;
2013 
2014 		dump_count = atomic_inc_return(&core_dump_count);
2015 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2016 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2017 			       task_tgid_vnr(current), current->comm);
2018 			printk(KERN_WARNING "Skipping core dump\n");
2019 			goto fail_dropcount;
2020 		}
2021 
2022 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2023 		if (!helper_argv) {
2024 			printk(KERN_WARNING "%s failed to allocate memory\n",
2025 			       __func__);
2026 			goto fail_dropcount;
2027 		}
2028 
2029 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2030 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2031 					NULL, &cprm);
2032 		argv_free(helper_argv);
2033 		if (retval) {
2034  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2035 			       cn.corename);
2036 			goto close_fail;
2037  		}
2038 	} else {
2039 		struct inode *inode;
2040 
2041 		if (cprm.limit < binfmt->min_coredump)
2042 			goto fail_unlock;
2043 
2044 		cprm.file = filp_open(cn.corename,
2045 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2046 				 0600);
2047 		if (IS_ERR(cprm.file))
2048 			goto fail_unlock;
2049 
2050 		inode = cprm.file->f_path.dentry->d_inode;
2051 		if (inode->i_nlink > 1)
2052 			goto close_fail;
2053 		if (d_unhashed(cprm.file->f_path.dentry))
2054 			goto close_fail;
2055 		/*
2056 		 * AK: actually i see no reason to not allow this for named
2057 		 * pipes etc, but keep the previous behaviour for now.
2058 		 */
2059 		if (!S_ISREG(inode->i_mode))
2060 			goto close_fail;
2061 		/*
2062 		 * Dont allow local users get cute and trick others to coredump
2063 		 * into their pre-created files.
2064 		 */
2065 		if (inode->i_uid != current_fsuid())
2066 			goto close_fail;
2067 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2068 			goto close_fail;
2069 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2070 			goto close_fail;
2071 	}
2072 
2073 	retval = binfmt->core_dump(&cprm);
2074 	if (retval)
2075 		current->signal->group_exit_code |= 0x80;
2076 
2077 	if (ispipe && core_pipe_limit)
2078 		wait_for_dump_helpers(cprm.file);
2079 close_fail:
2080 	if (cprm.file)
2081 		filp_close(cprm.file, NULL);
2082 fail_dropcount:
2083 	if (ispipe)
2084 		atomic_dec(&core_dump_count);
2085 fail_unlock:
2086 	kfree(cn.corename);
2087 fail_corename:
2088 	coredump_finish(mm);
2089 	revert_creds(old_cred);
2090 fail_creds:
2091 	put_cred(cred);
2092 fail:
2093 	return;
2094 }
2095 
2096 /*
2097  * Core dumping helper functions.  These are the only things you should
2098  * do on a core-file: use only these functions to write out all the
2099  * necessary info.
2100  */
dump_write(struct file * file,const void * addr,int nr)2101 int dump_write(struct file *file, const void *addr, int nr)
2102 {
2103 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2104 }
2105 EXPORT_SYMBOL(dump_write);
2106 
dump_seek(struct file * file,loff_t off)2107 int dump_seek(struct file *file, loff_t off)
2108 {
2109 	int ret = 1;
2110 
2111 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2112 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2113 			return 0;
2114 	} else {
2115 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2116 
2117 		if (!buf)
2118 			return 0;
2119 		while (off > 0) {
2120 			unsigned long n = off;
2121 
2122 			if (n > PAGE_SIZE)
2123 				n = PAGE_SIZE;
2124 			if (!dump_write(file, buf, n)) {
2125 				ret = 0;
2126 				break;
2127 			}
2128 			off -= n;
2129 		}
2130 		free_page((unsigned long)buf);
2131 	}
2132 	return ret;
2133 }
2134 EXPORT_SYMBOL(dump_seek);
2135