1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
70
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93
94 #include <asm/processor.h>
95
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
102 struct blk_plug;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(unsigned long ticks);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
proc_sched_show_task(struct task_struct * p,struct seq_file * m)160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
proc_sched_set_task(struct task_struct * p)163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
select_nohz_load_balancer(int stop_tick)278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
show_state(void)286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 void lockup_detector_init(void);
320 #else
touch_softlockup_watchdog(void)321 static inline void touch_softlockup_watchdog(void)
322 {
323 }
touch_softlockup_watchdog_sync(void)324 static inline void touch_softlockup_watchdog_sync(void)
325 {
326 }
touch_all_softlockup_watchdogs(void)327 static inline void touch_all_softlockup_watchdogs(void)
328 {
329 }
lockup_detector_init(void)330 static inline void lockup_detector_init(void)
331 {
332 }
333 #endif
334
335 #ifdef CONFIG_DETECT_HUNG_TASK
336 extern unsigned int sysctl_hung_task_panic;
337 extern unsigned long sysctl_hung_task_check_count;
338 extern unsigned long sysctl_hung_task_timeout_secs;
339 extern unsigned long sysctl_hung_task_warnings;
340 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
341 void __user *buffer,
342 size_t *lenp, loff_t *ppos);
343 #else
344 /* Avoid need for ifdefs elsewhere in the code */
345 enum { sysctl_hung_task_timeout_secs = 0 };
346 #endif
347
348 /* Attach to any functions which should be ignored in wchan output. */
349 #define __sched __attribute__((__section__(".sched.text")))
350
351 /* Linker adds these: start and end of __sched functions */
352 extern char __sched_text_start[], __sched_text_end[];
353
354 /* Is this address in the __sched functions? */
355 extern int in_sched_functions(unsigned long addr);
356
357 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
358 extern signed long schedule_timeout(signed long timeout);
359 extern signed long schedule_timeout_interruptible(signed long timeout);
360 extern signed long schedule_timeout_killable(signed long timeout);
361 extern signed long schedule_timeout_uninterruptible(signed long timeout);
362 asmlinkage void schedule(void);
363 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
364
365 struct nsproxy;
366 struct user_namespace;
367
368 /*
369 * Default maximum number of active map areas, this limits the number of vmas
370 * per mm struct. Users can overwrite this number by sysctl but there is a
371 * problem.
372 *
373 * When a program's coredump is generated as ELF format, a section is created
374 * per a vma. In ELF, the number of sections is represented in unsigned short.
375 * This means the number of sections should be smaller than 65535 at coredump.
376 * Because the kernel adds some informative sections to a image of program at
377 * generating coredump, we need some margin. The number of extra sections is
378 * 1-3 now and depends on arch. We use "5" as safe margin, here.
379 */
380 #define MAPCOUNT_ELF_CORE_MARGIN (5)
381 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
382
383 extern int sysctl_max_map_count;
384
385 #include <linux/aio.h>
386
387 #ifdef CONFIG_MMU
388 extern void arch_pick_mmap_layout(struct mm_struct *mm);
389 extern unsigned long
390 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
391 unsigned long, unsigned long);
392 extern unsigned long
393 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
394 unsigned long len, unsigned long pgoff,
395 unsigned long flags);
396 extern void arch_unmap_area(struct mm_struct *, unsigned long);
397 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
398 #else
arch_pick_mmap_layout(struct mm_struct * mm)399 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
400 #endif
401
402
403 extern void set_dumpable(struct mm_struct *mm, int value);
404 extern int get_dumpable(struct mm_struct *mm);
405
406 /* mm flags */
407 /* dumpable bits */
408 #define MMF_DUMPABLE 0 /* core dump is permitted */
409 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
410
411 #define MMF_DUMPABLE_BITS 2
412 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
413
414 /* coredump filter bits */
415 #define MMF_DUMP_ANON_PRIVATE 2
416 #define MMF_DUMP_ANON_SHARED 3
417 #define MMF_DUMP_MAPPED_PRIVATE 4
418 #define MMF_DUMP_MAPPED_SHARED 5
419 #define MMF_DUMP_ELF_HEADERS 6
420 #define MMF_DUMP_HUGETLB_PRIVATE 7
421 #define MMF_DUMP_HUGETLB_SHARED 8
422
423 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
424 #define MMF_DUMP_FILTER_BITS 7
425 #define MMF_DUMP_FILTER_MASK \
426 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
427 #define MMF_DUMP_FILTER_DEFAULT \
428 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
429 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
430
431 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
432 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
433 #else
434 # define MMF_DUMP_MASK_DEFAULT_ELF 0
435 #endif
436 /* leave room for more dump flags */
437 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
438 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
439
440 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
441
442 struct sighand_struct {
443 atomic_t count;
444 struct k_sigaction action[_NSIG];
445 spinlock_t siglock;
446 wait_queue_head_t signalfd_wqh;
447 };
448
449 struct pacct_struct {
450 int ac_flag;
451 long ac_exitcode;
452 unsigned long ac_mem;
453 cputime_t ac_utime, ac_stime;
454 unsigned long ac_minflt, ac_majflt;
455 };
456
457 struct cpu_itimer {
458 cputime_t expires;
459 cputime_t incr;
460 u32 error;
461 u32 incr_error;
462 };
463
464 /**
465 * struct task_cputime - collected CPU time counts
466 * @utime: time spent in user mode, in &cputime_t units
467 * @stime: time spent in kernel mode, in &cputime_t units
468 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
469 *
470 * This structure groups together three kinds of CPU time that are
471 * tracked for threads and thread groups. Most things considering
472 * CPU time want to group these counts together and treat all three
473 * of them in parallel.
474 */
475 struct task_cputime {
476 cputime_t utime;
477 cputime_t stime;
478 unsigned long long sum_exec_runtime;
479 };
480 /* Alternate field names when used to cache expirations. */
481 #define prof_exp stime
482 #define virt_exp utime
483 #define sched_exp sum_exec_runtime
484
485 #define INIT_CPUTIME \
486 (struct task_cputime) { \
487 .utime = cputime_zero, \
488 .stime = cputime_zero, \
489 .sum_exec_runtime = 0, \
490 }
491
492 /*
493 * Disable preemption until the scheduler is running.
494 * Reset by start_kernel()->sched_init()->init_idle().
495 *
496 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
497 * before the scheduler is active -- see should_resched().
498 */
499 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
500
501 /**
502 * struct thread_group_cputimer - thread group interval timer counts
503 * @cputime: thread group interval timers.
504 * @running: non-zero when there are timers running and
505 * @cputime receives updates.
506 * @lock: lock for fields in this struct.
507 *
508 * This structure contains the version of task_cputime, above, that is
509 * used for thread group CPU timer calculations.
510 */
511 struct thread_group_cputimer {
512 struct task_cputime cputime;
513 int running;
514 spinlock_t lock;
515 };
516
517 struct autogroup;
518
519 /*
520 * NOTE! "signal_struct" does not have its own
521 * locking, because a shared signal_struct always
522 * implies a shared sighand_struct, so locking
523 * sighand_struct is always a proper superset of
524 * the locking of signal_struct.
525 */
526 struct signal_struct {
527 atomic_t sigcnt;
528 atomic_t live;
529 int nr_threads;
530
531 wait_queue_head_t wait_chldexit; /* for wait4() */
532
533 /* current thread group signal load-balancing target: */
534 struct task_struct *curr_target;
535
536 /* shared signal handling: */
537 struct sigpending shared_pending;
538
539 /* thread group exit support */
540 int group_exit_code;
541 /* overloaded:
542 * - notify group_exit_task when ->count is equal to notify_count
543 * - everyone except group_exit_task is stopped during signal delivery
544 * of fatal signals, group_exit_task processes the signal.
545 */
546 int notify_count;
547 struct task_struct *group_exit_task;
548
549 /* thread group stop support, overloads group_exit_code too */
550 int group_stop_count;
551 unsigned int flags; /* see SIGNAL_* flags below */
552
553 /* POSIX.1b Interval Timers */
554 struct list_head posix_timers;
555
556 /* ITIMER_REAL timer for the process */
557 struct hrtimer real_timer;
558 struct pid *leader_pid;
559 ktime_t it_real_incr;
560
561 /*
562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
564 * values are defined to 0 and 1 respectively
565 */
566 struct cpu_itimer it[2];
567
568 /*
569 * Thread group totals for process CPU timers.
570 * See thread_group_cputimer(), et al, for details.
571 */
572 struct thread_group_cputimer cputimer;
573
574 /* Earliest-expiration cache. */
575 struct task_cputime cputime_expires;
576
577 struct list_head cpu_timers[3];
578
579 struct pid *tty_old_pgrp;
580
581 /* boolean value for session group leader */
582 int leader;
583
584 struct tty_struct *tty; /* NULL if no tty */
585
586 #ifdef CONFIG_SCHED_AUTOGROUP
587 struct autogroup *autogroup;
588 #endif
589 /*
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
594 */
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
599 cputime_t prev_utime, prev_stime;
600 #endif
601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
603 unsigned long inblock, oublock, cinblock, coublock;
604 unsigned long maxrss, cmaxrss;
605 struct task_io_accounting ioac;
606
607 /*
608 * Cumulative ns of schedule CPU time fo dead threads in the
609 * group, not including a zombie group leader, (This only differs
610 * from jiffies_to_ns(utime + stime) if sched_clock uses something
611 * other than jiffies.)
612 */
613 unsigned long long sum_sched_runtime;
614
615 /*
616 * We don't bother to synchronize most readers of this at all,
617 * because there is no reader checking a limit that actually needs
618 * to get both rlim_cur and rlim_max atomically, and either one
619 * alone is a single word that can safely be read normally.
620 * getrlimit/setrlimit use task_lock(current->group_leader) to
621 * protect this instead of the siglock, because they really
622 * have no need to disable irqs.
623 */
624 struct rlimit rlim[RLIM_NLIMITS];
625
626 #ifdef CONFIG_BSD_PROCESS_ACCT
627 struct pacct_struct pacct; /* per-process accounting information */
628 #endif
629 #ifdef CONFIG_TASKSTATS
630 struct taskstats *stats;
631 #endif
632 #ifdef CONFIG_AUDIT
633 unsigned audit_tty;
634 struct tty_audit_buf *tty_audit_buf;
635 #endif
636
637 int oom_adj; /* OOM kill score adjustment (bit shift) */
638 int oom_score_adj; /* OOM kill score adjustment */
639 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
640 * Only settable by CAP_SYS_RESOURCE. */
641
642 struct mutex cred_guard_mutex; /* guard against foreign influences on
643 * credential calculations
644 * (notably. ptrace) */
645 };
646
647 /* Context switch must be unlocked if interrupts are to be enabled */
648 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
649 # define __ARCH_WANT_UNLOCKED_CTXSW
650 #endif
651
652 /*
653 * Bits in flags field of signal_struct.
654 */
655 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
656 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
657 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
658 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
659 /*
660 * Pending notifications to parent.
661 */
662 #define SIGNAL_CLD_STOPPED 0x00000010
663 #define SIGNAL_CLD_CONTINUED 0x00000020
664 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
665
666 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
667
668 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)669 static inline int signal_group_exit(const struct signal_struct *sig)
670 {
671 return (sig->flags & SIGNAL_GROUP_EXIT) ||
672 (sig->group_exit_task != NULL);
673 }
674
675 /*
676 * Some day this will be a full-fledged user tracking system..
677 */
678 struct user_struct {
679 atomic_t __count; /* reference count */
680 atomic_t processes; /* How many processes does this user have? */
681 atomic_t files; /* How many open files does this user have? */
682 atomic_t sigpending; /* How many pending signals does this user have? */
683 #ifdef CONFIG_INOTIFY_USER
684 atomic_t inotify_watches; /* How many inotify watches does this user have? */
685 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
686 #endif
687 #ifdef CONFIG_FANOTIFY
688 atomic_t fanotify_listeners;
689 #endif
690 #ifdef CONFIG_EPOLL
691 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
692 #endif
693 #ifdef CONFIG_POSIX_MQUEUE
694 /* protected by mq_lock */
695 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
696 #endif
697 unsigned long locked_shm; /* How many pages of mlocked shm ? */
698
699 #ifdef CONFIG_KEYS
700 struct key *uid_keyring; /* UID specific keyring */
701 struct key *session_keyring; /* UID's default session keyring */
702 #endif
703
704 /* Hash table maintenance information */
705 struct hlist_node uidhash_node;
706 uid_t uid;
707 struct user_namespace *user_ns;
708
709 #ifdef CONFIG_PERF_EVENTS
710 atomic_long_t locked_vm;
711 #endif
712 };
713
714 extern int uids_sysfs_init(void);
715
716 extern struct user_struct *find_user(uid_t);
717
718 extern struct user_struct root_user;
719 #define INIT_USER (&root_user)
720
721
722 struct backing_dev_info;
723 struct reclaim_state;
724
725 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
726 struct sched_info {
727 /* cumulative counters */
728 unsigned long pcount; /* # of times run on this cpu */
729 unsigned long long run_delay; /* time spent waiting on a runqueue */
730
731 /* timestamps */
732 unsigned long long last_arrival,/* when we last ran on a cpu */
733 last_queued; /* when we were last queued to run */
734 #ifdef CONFIG_SCHEDSTATS
735 /* BKL stats */
736 unsigned int bkl_count;
737 #endif
738 };
739 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
740
741 #ifdef CONFIG_TASK_DELAY_ACCT
742 struct task_delay_info {
743 spinlock_t lock;
744 unsigned int flags; /* Private per-task flags */
745
746 /* For each stat XXX, add following, aligned appropriately
747 *
748 * struct timespec XXX_start, XXX_end;
749 * u64 XXX_delay;
750 * u32 XXX_count;
751 *
752 * Atomicity of updates to XXX_delay, XXX_count protected by
753 * single lock above (split into XXX_lock if contention is an issue).
754 */
755
756 /*
757 * XXX_count is incremented on every XXX operation, the delay
758 * associated with the operation is added to XXX_delay.
759 * XXX_delay contains the accumulated delay time in nanoseconds.
760 */
761 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
762 u64 blkio_delay; /* wait for sync block io completion */
763 u64 swapin_delay; /* wait for swapin block io completion */
764 u32 blkio_count; /* total count of the number of sync block */
765 /* io operations performed */
766 u32 swapin_count; /* total count of the number of swapin block */
767 /* io operations performed */
768
769 struct timespec freepages_start, freepages_end;
770 u64 freepages_delay; /* wait for memory reclaim */
771 u32 freepages_count; /* total count of memory reclaim */
772 };
773 #endif /* CONFIG_TASK_DELAY_ACCT */
774
sched_info_on(void)775 static inline int sched_info_on(void)
776 {
777 #ifdef CONFIG_SCHEDSTATS
778 return 1;
779 #elif defined(CONFIG_TASK_DELAY_ACCT)
780 extern int delayacct_on;
781 return delayacct_on;
782 #else
783 return 0;
784 #endif
785 }
786
787 enum cpu_idle_type {
788 CPU_IDLE,
789 CPU_NOT_IDLE,
790 CPU_NEWLY_IDLE,
791 CPU_MAX_IDLE_TYPES
792 };
793
794 /*
795 * sched-domains (multiprocessor balancing) declarations:
796 */
797
798 /*
799 * Increase resolution of nice-level calculations:
800 */
801 #define SCHED_LOAD_SHIFT 10
802 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
803
804 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
805
806 #ifdef CONFIG_SMP
807 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
808 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
809 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
810 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
811 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
812 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
813 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
814 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
815 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
816 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
817 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
818 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
819 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
820
821 enum powersavings_balance_level {
822 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
823 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
824 * first for long running threads
825 */
826 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
827 * cpu package for power savings
828 */
829 MAX_POWERSAVINGS_BALANCE_LEVELS
830 };
831
832 extern int sched_mc_power_savings, sched_smt_power_savings;
833
sd_balance_for_mc_power(void)834 static inline int sd_balance_for_mc_power(void)
835 {
836 if (sched_smt_power_savings)
837 return SD_POWERSAVINGS_BALANCE;
838
839 if (!sched_mc_power_savings)
840 return SD_PREFER_SIBLING;
841
842 return 0;
843 }
844
sd_balance_for_package_power(void)845 static inline int sd_balance_for_package_power(void)
846 {
847 if (sched_mc_power_savings | sched_smt_power_savings)
848 return SD_POWERSAVINGS_BALANCE;
849
850 return SD_PREFER_SIBLING;
851 }
852
853 extern int __weak arch_sd_sibiling_asym_packing(void);
854
855 /*
856 * Optimise SD flags for power savings:
857 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
858 * Keep default SD flags if sched_{smt,mc}_power_saving=0
859 */
860
sd_power_saving_flags(void)861 static inline int sd_power_saving_flags(void)
862 {
863 if (sched_mc_power_savings | sched_smt_power_savings)
864 return SD_BALANCE_NEWIDLE;
865
866 return 0;
867 }
868
869 struct sched_group {
870 struct sched_group *next; /* Must be a circular list */
871
872 /*
873 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
874 * single CPU.
875 */
876 unsigned int cpu_power, cpu_power_orig;
877 unsigned int group_weight;
878
879 /*
880 * The CPUs this group covers.
881 *
882 * NOTE: this field is variable length. (Allocated dynamically
883 * by attaching extra space to the end of the structure,
884 * depending on how many CPUs the kernel has booted up with)
885 *
886 * It is also be embedded into static data structures at build
887 * time. (See 'struct static_sched_group' in kernel/sched.c)
888 */
889 unsigned long cpumask[0];
890 };
891
sched_group_cpus(struct sched_group * sg)892 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
893 {
894 return to_cpumask(sg->cpumask);
895 }
896
897 enum sched_domain_level {
898 SD_LV_NONE = 0,
899 SD_LV_SIBLING,
900 SD_LV_MC,
901 SD_LV_BOOK,
902 SD_LV_CPU,
903 SD_LV_NODE,
904 SD_LV_ALLNODES,
905 SD_LV_MAX
906 };
907
908 struct sched_domain_attr {
909 int relax_domain_level;
910 };
911
912 #define SD_ATTR_INIT (struct sched_domain_attr) { \
913 .relax_domain_level = -1, \
914 }
915
916 struct sched_domain {
917 /* These fields must be setup */
918 struct sched_domain *parent; /* top domain must be null terminated */
919 struct sched_domain *child; /* bottom domain must be null terminated */
920 struct sched_group *groups; /* the balancing groups of the domain */
921 unsigned long min_interval; /* Minimum balance interval ms */
922 unsigned long max_interval; /* Maximum balance interval ms */
923 unsigned int busy_factor; /* less balancing by factor if busy */
924 unsigned int imbalance_pct; /* No balance until over watermark */
925 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
926 unsigned int busy_idx;
927 unsigned int idle_idx;
928 unsigned int newidle_idx;
929 unsigned int wake_idx;
930 unsigned int forkexec_idx;
931 unsigned int smt_gain;
932 int flags; /* See SD_* */
933 enum sched_domain_level level;
934
935 /* Runtime fields. */
936 unsigned long last_balance; /* init to jiffies. units in jiffies */
937 unsigned int balance_interval; /* initialise to 1. units in ms. */
938 unsigned int nr_balance_failed; /* initialise to 0 */
939
940 u64 last_update;
941
942 #ifdef CONFIG_SCHEDSTATS
943 /* load_balance() stats */
944 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
945 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
946 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
947 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
948 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
949 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
950 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
951 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
952
953 /* Active load balancing */
954 unsigned int alb_count;
955 unsigned int alb_failed;
956 unsigned int alb_pushed;
957
958 /* SD_BALANCE_EXEC stats */
959 unsigned int sbe_count;
960 unsigned int sbe_balanced;
961 unsigned int sbe_pushed;
962
963 /* SD_BALANCE_FORK stats */
964 unsigned int sbf_count;
965 unsigned int sbf_balanced;
966 unsigned int sbf_pushed;
967
968 /* try_to_wake_up() stats */
969 unsigned int ttwu_wake_remote;
970 unsigned int ttwu_move_affine;
971 unsigned int ttwu_move_balance;
972 #endif
973 #ifdef CONFIG_SCHED_DEBUG
974 char *name;
975 #endif
976
977 unsigned int span_weight;
978 /*
979 * Span of all CPUs in this domain.
980 *
981 * NOTE: this field is variable length. (Allocated dynamically
982 * by attaching extra space to the end of the structure,
983 * depending on how many CPUs the kernel has booted up with)
984 *
985 * It is also be embedded into static data structures at build
986 * time. (See 'struct static_sched_domain' in kernel/sched.c)
987 */
988 unsigned long span[0];
989 };
990
sched_domain_span(struct sched_domain * sd)991 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
992 {
993 return to_cpumask(sd->span);
994 }
995
996 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
997 struct sched_domain_attr *dattr_new);
998
999 /* Allocate an array of sched domains, for partition_sched_domains(). */
1000 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1001 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1002
1003 /* Test a flag in parent sched domain */
test_sd_parent(struct sched_domain * sd,int flag)1004 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1005 {
1006 if (sd->parent && (sd->parent->flags & flag))
1007 return 1;
1008
1009 return 0;
1010 }
1011
1012 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1013 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1014
1015 #else /* CONFIG_SMP */
1016
1017 struct sched_domain_attr;
1018
1019 static inline void
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1020 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1021 struct sched_domain_attr *dattr_new)
1022 {
1023 }
1024 #endif /* !CONFIG_SMP */
1025
1026
1027 struct io_context; /* See blkdev.h */
1028
1029
1030 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1031 extern void prefetch_stack(struct task_struct *t);
1032 #else
prefetch_stack(struct task_struct * t)1033 static inline void prefetch_stack(struct task_struct *t) { }
1034 #endif
1035
1036 struct audit_context; /* See audit.c */
1037 struct mempolicy;
1038 struct pipe_inode_info;
1039 struct uts_namespace;
1040
1041 struct rq;
1042 struct sched_domain;
1043
1044 /*
1045 * wake flags
1046 */
1047 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1048 #define WF_FORK 0x02 /* child wakeup after fork */
1049
1050 #define ENQUEUE_WAKEUP 1
1051 #define ENQUEUE_WAKING 2
1052 #define ENQUEUE_HEAD 4
1053
1054 #define DEQUEUE_SLEEP 1
1055
1056 struct sched_class {
1057 const struct sched_class *next;
1058
1059 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1060 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1061 void (*yield_task) (struct rq *rq);
1062 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1063
1064 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1065
1066 struct task_struct * (*pick_next_task) (struct rq *rq);
1067 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1068
1069 #ifdef CONFIG_SMP
1070 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1071 int sd_flag, int flags);
1072
1073 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1074 void (*post_schedule) (struct rq *this_rq);
1075 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1076 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1077
1078 void (*set_cpus_allowed)(struct task_struct *p,
1079 const struct cpumask *newmask);
1080
1081 void (*rq_online)(struct rq *rq);
1082 void (*rq_offline)(struct rq *rq);
1083 #endif
1084
1085 void (*set_curr_task) (struct rq *rq);
1086 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1087 void (*task_fork) (struct task_struct *p);
1088
1089 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1090 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1091 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1092 int oldprio);
1093
1094 unsigned int (*get_rr_interval) (struct rq *rq,
1095 struct task_struct *task);
1096
1097 #ifdef CONFIG_FAIR_GROUP_SCHED
1098 void (*task_move_group) (struct task_struct *p, int on_rq);
1099 #endif
1100 };
1101
1102 struct load_weight {
1103 unsigned long weight, inv_weight;
1104 };
1105
1106 #ifdef CONFIG_SCHEDSTATS
1107 struct sched_statistics {
1108 u64 wait_start;
1109 u64 wait_max;
1110 u64 wait_count;
1111 u64 wait_sum;
1112 u64 iowait_count;
1113 u64 iowait_sum;
1114
1115 u64 sleep_start;
1116 u64 sleep_max;
1117 s64 sum_sleep_runtime;
1118
1119 u64 block_start;
1120 u64 block_max;
1121 u64 exec_max;
1122 u64 slice_max;
1123
1124 u64 nr_migrations_cold;
1125 u64 nr_failed_migrations_affine;
1126 u64 nr_failed_migrations_running;
1127 u64 nr_failed_migrations_hot;
1128 u64 nr_forced_migrations;
1129
1130 u64 nr_wakeups;
1131 u64 nr_wakeups_sync;
1132 u64 nr_wakeups_migrate;
1133 u64 nr_wakeups_local;
1134 u64 nr_wakeups_remote;
1135 u64 nr_wakeups_affine;
1136 u64 nr_wakeups_affine_attempts;
1137 u64 nr_wakeups_passive;
1138 u64 nr_wakeups_idle;
1139 };
1140 #endif
1141
1142 struct sched_entity {
1143 struct load_weight load; /* for load-balancing */
1144 struct rb_node run_node;
1145 struct list_head group_node;
1146 unsigned int on_rq;
1147
1148 u64 exec_start;
1149 u64 sum_exec_runtime;
1150 u64 vruntime;
1151 u64 prev_sum_exec_runtime;
1152
1153 u64 nr_migrations;
1154
1155 #ifdef CONFIG_SCHEDSTATS
1156 struct sched_statistics statistics;
1157 #endif
1158
1159 #ifdef CONFIG_FAIR_GROUP_SCHED
1160 struct sched_entity *parent;
1161 /* rq on which this entity is (to be) queued: */
1162 struct cfs_rq *cfs_rq;
1163 /* rq "owned" by this entity/group: */
1164 struct cfs_rq *my_q;
1165 #endif
1166 };
1167
1168 struct sched_rt_entity {
1169 struct list_head run_list;
1170 unsigned long timeout;
1171 unsigned int time_slice;
1172 int nr_cpus_allowed;
1173
1174 struct sched_rt_entity *back;
1175 #ifdef CONFIG_RT_GROUP_SCHED
1176 struct sched_rt_entity *parent;
1177 /* rq on which this entity is (to be) queued: */
1178 struct rt_rq *rt_rq;
1179 /* rq "owned" by this entity/group: */
1180 struct rt_rq *my_q;
1181 #endif
1182 };
1183
1184 struct rcu_node;
1185
1186 enum perf_event_task_context {
1187 perf_invalid_context = -1,
1188 perf_hw_context = 0,
1189 perf_sw_context,
1190 perf_nr_task_contexts,
1191 };
1192
1193 struct task_struct {
1194 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1195 void *stack;
1196 atomic_t usage;
1197 unsigned int flags; /* per process flags, defined below */
1198 unsigned int ptrace;
1199
1200 int lock_depth; /* BKL lock depth */
1201
1202 #ifdef CONFIG_SMP
1203 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1204 int oncpu;
1205 #endif
1206 #endif
1207
1208 int prio, static_prio, normal_prio;
1209 unsigned int rt_priority;
1210 const struct sched_class *sched_class;
1211 struct sched_entity se;
1212 struct sched_rt_entity rt;
1213
1214 #ifdef CONFIG_PREEMPT_NOTIFIERS
1215 /* list of struct preempt_notifier: */
1216 struct hlist_head preempt_notifiers;
1217 #endif
1218
1219 /*
1220 * fpu_counter contains the number of consecutive context switches
1221 * that the FPU is used. If this is over a threshold, the lazy fpu
1222 * saving becomes unlazy to save the trap. This is an unsigned char
1223 * so that after 256 times the counter wraps and the behavior turns
1224 * lazy again; this to deal with bursty apps that only use FPU for
1225 * a short time
1226 */
1227 unsigned char fpu_counter;
1228 #ifdef CONFIG_BLK_DEV_IO_TRACE
1229 unsigned int btrace_seq;
1230 #endif
1231
1232 unsigned int policy;
1233 cpumask_t cpus_allowed;
1234
1235 #ifdef CONFIG_PREEMPT_RCU
1236 int rcu_read_lock_nesting;
1237 char rcu_read_unlock_special;
1238 struct list_head rcu_node_entry;
1239 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1240 #ifdef CONFIG_TREE_PREEMPT_RCU
1241 struct rcu_node *rcu_blocked_node;
1242 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1243 #ifdef CONFIG_RCU_BOOST
1244 struct rt_mutex *rcu_boost_mutex;
1245 #endif /* #ifdef CONFIG_RCU_BOOST */
1246
1247 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1248 struct sched_info sched_info;
1249 #endif
1250
1251 struct list_head tasks;
1252 #ifdef CONFIG_SMP
1253 struct plist_node pushable_tasks;
1254 #endif
1255
1256 struct mm_struct *mm, *active_mm;
1257 #ifdef CONFIG_COMPAT_BRK
1258 unsigned brk_randomized:1;
1259 #endif
1260 #if defined(SPLIT_RSS_COUNTING)
1261 struct task_rss_stat rss_stat;
1262 #endif
1263 /* task state */
1264 int exit_state;
1265 int exit_code, exit_signal;
1266 int pdeath_signal; /* The signal sent when the parent dies */
1267 /* ??? */
1268 unsigned int personality;
1269 unsigned did_exec:1;
1270 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1271 * execve */
1272 unsigned in_iowait:1;
1273
1274
1275 /* Revert to default priority/policy when forking */
1276 unsigned sched_reset_on_fork:1;
1277
1278 pid_t pid;
1279 pid_t tgid;
1280
1281 #ifdef CONFIG_CC_STACKPROTECTOR
1282 /* Canary value for the -fstack-protector gcc feature */
1283 unsigned long stack_canary;
1284 #endif
1285
1286 /*
1287 * pointers to (original) parent process, youngest child, younger sibling,
1288 * older sibling, respectively. (p->father can be replaced with
1289 * p->real_parent->pid)
1290 */
1291 struct task_struct *real_parent; /* real parent process */
1292 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1293 /*
1294 * children/sibling forms the list of my natural children
1295 */
1296 struct list_head children; /* list of my children */
1297 struct list_head sibling; /* linkage in my parent's children list */
1298 struct task_struct *group_leader; /* threadgroup leader */
1299
1300 /*
1301 * ptraced is the list of tasks this task is using ptrace on.
1302 * This includes both natural children and PTRACE_ATTACH targets.
1303 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1304 */
1305 struct list_head ptraced;
1306 struct list_head ptrace_entry;
1307
1308 /* PID/PID hash table linkage. */
1309 struct pid_link pids[PIDTYPE_MAX];
1310 struct list_head thread_group;
1311
1312 struct completion *vfork_done; /* for vfork() */
1313 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1314 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1315
1316 cputime_t utime, stime, utimescaled, stimescaled;
1317 cputime_t gtime;
1318 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1319 cputime_t prev_utime, prev_stime;
1320 #endif
1321 unsigned long nvcsw, nivcsw; /* context switch counts */
1322 struct timespec start_time; /* monotonic time */
1323 struct timespec real_start_time; /* boot based time */
1324 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1325 unsigned long min_flt, maj_flt;
1326
1327 struct task_cputime cputime_expires;
1328 struct list_head cpu_timers[3];
1329
1330 /* process credentials */
1331 const struct cred __rcu *real_cred; /* objective and real subjective task
1332 * credentials (COW) */
1333 const struct cred __rcu *cred; /* effective (overridable) subjective task
1334 * credentials (COW) */
1335 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1336
1337 char comm[TASK_COMM_LEN]; /* executable name excluding path
1338 - access with [gs]et_task_comm (which lock
1339 it with task_lock())
1340 - initialized normally by setup_new_exec */
1341 /* file system info */
1342 int link_count, total_link_count;
1343 #ifdef CONFIG_SYSVIPC
1344 /* ipc stuff */
1345 struct sysv_sem sysvsem;
1346 #endif
1347 #ifdef CONFIG_DETECT_HUNG_TASK
1348 /* hung task detection */
1349 unsigned long last_switch_count;
1350 #endif
1351 /* CPU-specific state of this task */
1352 struct thread_struct thread;
1353 /* filesystem information */
1354 struct fs_struct *fs;
1355 /* open file information */
1356 struct files_struct *files;
1357 /* namespaces */
1358 struct nsproxy *nsproxy;
1359 /* signal handlers */
1360 struct signal_struct *signal;
1361 struct sighand_struct *sighand;
1362
1363 sigset_t blocked, real_blocked;
1364 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1365 struct sigpending pending;
1366
1367 unsigned long sas_ss_sp;
1368 size_t sas_ss_size;
1369 int (*notifier)(void *priv);
1370 void *notifier_data;
1371 sigset_t *notifier_mask;
1372 struct audit_context *audit_context;
1373 #ifdef CONFIG_AUDITSYSCALL
1374 uid_t loginuid;
1375 unsigned int sessionid;
1376 #endif
1377 seccomp_t seccomp;
1378
1379 /* Thread group tracking */
1380 u32 parent_exec_id;
1381 u32 self_exec_id;
1382 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1383 * mempolicy */
1384 spinlock_t alloc_lock;
1385
1386 #ifdef CONFIG_GENERIC_HARDIRQS
1387 /* IRQ handler threads */
1388 struct irqaction *irqaction;
1389 #endif
1390
1391 /* Protection of the PI data structures: */
1392 raw_spinlock_t pi_lock;
1393
1394 #ifdef CONFIG_RT_MUTEXES
1395 /* PI waiters blocked on a rt_mutex held by this task */
1396 struct plist_head pi_waiters;
1397 /* Deadlock detection and priority inheritance handling */
1398 struct rt_mutex_waiter *pi_blocked_on;
1399 #endif
1400
1401 #ifdef CONFIG_DEBUG_MUTEXES
1402 /* mutex deadlock detection */
1403 struct mutex_waiter *blocked_on;
1404 #endif
1405 #ifdef CONFIG_TRACE_IRQFLAGS
1406 unsigned int irq_events;
1407 unsigned long hardirq_enable_ip;
1408 unsigned long hardirq_disable_ip;
1409 unsigned int hardirq_enable_event;
1410 unsigned int hardirq_disable_event;
1411 int hardirqs_enabled;
1412 int hardirq_context;
1413 unsigned long softirq_disable_ip;
1414 unsigned long softirq_enable_ip;
1415 unsigned int softirq_disable_event;
1416 unsigned int softirq_enable_event;
1417 int softirqs_enabled;
1418 int softirq_context;
1419 #endif
1420 #ifdef CONFIG_LOCKDEP
1421 # define MAX_LOCK_DEPTH 48UL
1422 u64 curr_chain_key;
1423 int lockdep_depth;
1424 unsigned int lockdep_recursion;
1425 struct held_lock held_locks[MAX_LOCK_DEPTH];
1426 gfp_t lockdep_reclaim_gfp;
1427 #endif
1428
1429 /* journalling filesystem info */
1430 void *journal_info;
1431
1432 /* stacked block device info */
1433 struct bio_list *bio_list;
1434
1435 #ifdef CONFIG_BLOCK
1436 /* stack plugging */
1437 struct blk_plug *plug;
1438 #endif
1439
1440 /* VM state */
1441 struct reclaim_state *reclaim_state;
1442
1443 struct backing_dev_info *backing_dev_info;
1444
1445 struct io_context *io_context;
1446
1447 unsigned long ptrace_message;
1448 siginfo_t *last_siginfo; /* For ptrace use. */
1449 struct task_io_accounting ioac;
1450 #if defined(CONFIG_TASK_XACCT)
1451 u64 acct_rss_mem1; /* accumulated rss usage */
1452 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1453 cputime_t acct_timexpd; /* stime + utime since last update */
1454 #endif
1455 #ifdef CONFIG_CPUSETS
1456 nodemask_t mems_allowed; /* Protected by alloc_lock */
1457 int mems_allowed_change_disable;
1458 int cpuset_mem_spread_rotor;
1459 int cpuset_slab_spread_rotor;
1460 #endif
1461 #ifdef CONFIG_CGROUPS
1462 /* Control Group info protected by css_set_lock */
1463 struct css_set __rcu *cgroups;
1464 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1465 struct list_head cg_list;
1466 #endif
1467 #ifdef CONFIG_FUTEX
1468 struct robust_list_head __user *robust_list;
1469 #ifdef CONFIG_COMPAT
1470 struct compat_robust_list_head __user *compat_robust_list;
1471 #endif
1472 struct list_head pi_state_list;
1473 struct futex_pi_state *pi_state_cache;
1474 #endif
1475 #ifdef CONFIG_PERF_EVENTS
1476 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1477 struct mutex perf_event_mutex;
1478 struct list_head perf_event_list;
1479 #endif
1480 #ifdef CONFIG_NUMA
1481 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1482 short il_next;
1483 short pref_node_fork;
1484 #endif
1485 atomic_t fs_excl; /* holding fs exclusive resources */
1486 struct rcu_head rcu;
1487
1488 /*
1489 * cache last used pipe for splice
1490 */
1491 struct pipe_inode_info *splice_pipe;
1492 #ifdef CONFIG_TASK_DELAY_ACCT
1493 struct task_delay_info *delays;
1494 #endif
1495 #ifdef CONFIG_FAULT_INJECTION
1496 int make_it_fail;
1497 #endif
1498 struct prop_local_single dirties;
1499 #ifdef CONFIG_LATENCYTOP
1500 int latency_record_count;
1501 struct latency_record latency_record[LT_SAVECOUNT];
1502 #endif
1503 /*
1504 * time slack values; these are used to round up poll() and
1505 * select() etc timeout values. These are in nanoseconds.
1506 */
1507 unsigned long timer_slack_ns;
1508 unsigned long default_timer_slack_ns;
1509
1510 struct list_head *scm_work_list;
1511 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1512 /* Index of current stored address in ret_stack */
1513 int curr_ret_stack;
1514 /* Stack of return addresses for return function tracing */
1515 struct ftrace_ret_stack *ret_stack;
1516 /* time stamp for last schedule */
1517 unsigned long long ftrace_timestamp;
1518 /*
1519 * Number of functions that haven't been traced
1520 * because of depth overrun.
1521 */
1522 atomic_t trace_overrun;
1523 /* Pause for the tracing */
1524 atomic_t tracing_graph_pause;
1525 #endif
1526 #ifdef CONFIG_TRACING
1527 /* state flags for use by tracers */
1528 unsigned long trace;
1529 /* bitmask of trace recursion */
1530 unsigned long trace_recursion;
1531 #endif /* CONFIG_TRACING */
1532 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1533 struct memcg_batch_info {
1534 int do_batch; /* incremented when batch uncharge started */
1535 struct mem_cgroup *memcg; /* target memcg of uncharge */
1536 unsigned long nr_pages; /* uncharged usage */
1537 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1538 } memcg_batch;
1539 #endif
1540 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1541 atomic_t ptrace_bp_refcnt;
1542 #endif
1543 };
1544
1545 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1546 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1547
1548 /*
1549 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1550 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1551 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1552 * values are inverted: lower p->prio value means higher priority.
1553 *
1554 * The MAX_USER_RT_PRIO value allows the actual maximum
1555 * RT priority to be separate from the value exported to
1556 * user-space. This allows kernel threads to set their
1557 * priority to a value higher than any user task. Note:
1558 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1559 */
1560
1561 #define MAX_USER_RT_PRIO 100
1562 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1563
1564 #define MAX_PRIO (MAX_RT_PRIO + 40)
1565 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1566
rt_prio(int prio)1567 static inline int rt_prio(int prio)
1568 {
1569 if (unlikely(prio < MAX_RT_PRIO))
1570 return 1;
1571 return 0;
1572 }
1573
rt_task(struct task_struct * p)1574 static inline int rt_task(struct task_struct *p)
1575 {
1576 return rt_prio(p->prio);
1577 }
1578
task_pid(struct task_struct * task)1579 static inline struct pid *task_pid(struct task_struct *task)
1580 {
1581 return task->pids[PIDTYPE_PID].pid;
1582 }
1583
task_tgid(struct task_struct * task)1584 static inline struct pid *task_tgid(struct task_struct *task)
1585 {
1586 return task->group_leader->pids[PIDTYPE_PID].pid;
1587 }
1588
1589 /*
1590 * Without tasklist or rcu lock it is not safe to dereference
1591 * the result of task_pgrp/task_session even if task == current,
1592 * we can race with another thread doing sys_setsid/sys_setpgid.
1593 */
task_pgrp(struct task_struct * task)1594 static inline struct pid *task_pgrp(struct task_struct *task)
1595 {
1596 return task->group_leader->pids[PIDTYPE_PGID].pid;
1597 }
1598
task_session(struct task_struct * task)1599 static inline struct pid *task_session(struct task_struct *task)
1600 {
1601 return task->group_leader->pids[PIDTYPE_SID].pid;
1602 }
1603
1604 struct pid_namespace;
1605
1606 /*
1607 * the helpers to get the task's different pids as they are seen
1608 * from various namespaces
1609 *
1610 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1611 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1612 * current.
1613 * task_xid_nr_ns() : id seen from the ns specified;
1614 *
1615 * set_task_vxid() : assigns a virtual id to a task;
1616 *
1617 * see also pid_nr() etc in include/linux/pid.h
1618 */
1619 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1620 struct pid_namespace *ns);
1621
task_pid_nr(struct task_struct * tsk)1622 static inline pid_t task_pid_nr(struct task_struct *tsk)
1623 {
1624 return tsk->pid;
1625 }
1626
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1627 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1628 struct pid_namespace *ns)
1629 {
1630 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1631 }
1632
task_pid_vnr(struct task_struct * tsk)1633 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1634 {
1635 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1636 }
1637
1638
task_tgid_nr(struct task_struct * tsk)1639 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1640 {
1641 return tsk->tgid;
1642 }
1643
1644 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1645
task_tgid_vnr(struct task_struct * tsk)1646 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1647 {
1648 return pid_vnr(task_tgid(tsk));
1649 }
1650
1651
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1652 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1653 struct pid_namespace *ns)
1654 {
1655 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1656 }
1657
task_pgrp_vnr(struct task_struct * tsk)1658 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1659 {
1660 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1661 }
1662
1663
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1664 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1665 struct pid_namespace *ns)
1666 {
1667 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1668 }
1669
task_session_vnr(struct task_struct * tsk)1670 static inline pid_t task_session_vnr(struct task_struct *tsk)
1671 {
1672 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1673 }
1674
1675 /* obsolete, do not use */
task_pgrp_nr(struct task_struct * tsk)1676 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1677 {
1678 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1679 }
1680
1681 /**
1682 * pid_alive - check that a task structure is not stale
1683 * @p: Task structure to be checked.
1684 *
1685 * Test if a process is not yet dead (at most zombie state)
1686 * If pid_alive fails, then pointers within the task structure
1687 * can be stale and must not be dereferenced.
1688 */
pid_alive(struct task_struct * p)1689 static inline int pid_alive(struct task_struct *p)
1690 {
1691 return p->pids[PIDTYPE_PID].pid != NULL;
1692 }
1693
1694 /**
1695 * is_global_init - check if a task structure is init
1696 * @tsk: Task structure to be checked.
1697 *
1698 * Check if a task structure is the first user space task the kernel created.
1699 */
is_global_init(struct task_struct * tsk)1700 static inline int is_global_init(struct task_struct *tsk)
1701 {
1702 return tsk->pid == 1;
1703 }
1704
1705 /*
1706 * is_container_init:
1707 * check whether in the task is init in its own pid namespace.
1708 */
1709 extern int is_container_init(struct task_struct *tsk);
1710
1711 extern struct pid *cad_pid;
1712
1713 extern void free_task(struct task_struct *tsk);
1714 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1715
1716 extern void __put_task_struct(struct task_struct *t);
1717
put_task_struct(struct task_struct * t)1718 static inline void put_task_struct(struct task_struct *t)
1719 {
1720 if (atomic_dec_and_test(&t->usage))
1721 __put_task_struct(t);
1722 }
1723
1724 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1725 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1726
1727 /*
1728 * Per process flags
1729 */
1730 #define PF_STARTING 0x00000002 /* being created */
1731 #define PF_EXITING 0x00000004 /* getting shut down */
1732 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1733 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1734 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1735 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1736 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1737 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1738 #define PF_DUMPCORE 0x00000200 /* dumped core */
1739 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1740 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1741 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1742 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1743 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1744 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1745 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1746 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1747 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1748 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1749 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1750 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1751 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1752 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1753 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1754 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1755 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1756 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1757 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1758 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1759 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1760
1761 /*
1762 * Only the _current_ task can read/write to tsk->flags, but other
1763 * tasks can access tsk->flags in readonly mode for example
1764 * with tsk_used_math (like during threaded core dumping).
1765 * There is however an exception to this rule during ptrace
1766 * or during fork: the ptracer task is allowed to write to the
1767 * child->flags of its traced child (same goes for fork, the parent
1768 * can write to the child->flags), because we're guaranteed the
1769 * child is not running and in turn not changing child->flags
1770 * at the same time the parent does it.
1771 */
1772 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1773 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1774 #define clear_used_math() clear_stopped_child_used_math(current)
1775 #define set_used_math() set_stopped_child_used_math(current)
1776 #define conditional_stopped_child_used_math(condition, child) \
1777 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1778 #define conditional_used_math(condition) \
1779 conditional_stopped_child_used_math(condition, current)
1780 #define copy_to_stopped_child_used_math(child) \
1781 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1782 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1783 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1784 #define used_math() tsk_used_math(current)
1785
1786 #ifdef CONFIG_PREEMPT_RCU
1787
1788 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1789 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1790 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1791
rcu_copy_process(struct task_struct * p)1792 static inline void rcu_copy_process(struct task_struct *p)
1793 {
1794 p->rcu_read_lock_nesting = 0;
1795 p->rcu_read_unlock_special = 0;
1796 #ifdef CONFIG_TREE_PREEMPT_RCU
1797 p->rcu_blocked_node = NULL;
1798 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1799 #ifdef CONFIG_RCU_BOOST
1800 p->rcu_boost_mutex = NULL;
1801 #endif /* #ifdef CONFIG_RCU_BOOST */
1802 INIT_LIST_HEAD(&p->rcu_node_entry);
1803 }
1804
1805 #else
1806
rcu_copy_process(struct task_struct * p)1807 static inline void rcu_copy_process(struct task_struct *p)
1808 {
1809 }
1810
1811 #endif
1812
1813 #ifdef CONFIG_SMP
1814 extern int set_cpus_allowed_ptr(struct task_struct *p,
1815 const struct cpumask *new_mask);
1816 #else
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1817 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1818 const struct cpumask *new_mask)
1819 {
1820 if (!cpumask_test_cpu(0, new_mask))
1821 return -EINVAL;
1822 return 0;
1823 }
1824 #endif
1825
1826 #ifndef CONFIG_CPUMASK_OFFSTACK
set_cpus_allowed(struct task_struct * p,cpumask_t new_mask)1827 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1828 {
1829 return set_cpus_allowed_ptr(p, &new_mask);
1830 }
1831 #endif
1832
1833 /*
1834 * Do not use outside of architecture code which knows its limitations.
1835 *
1836 * sched_clock() has no promise of monotonicity or bounded drift between
1837 * CPUs, use (which you should not) requires disabling IRQs.
1838 *
1839 * Please use one of the three interfaces below.
1840 */
1841 extern unsigned long long notrace sched_clock(void);
1842 /*
1843 * See the comment in kernel/sched_clock.c
1844 */
1845 extern u64 cpu_clock(int cpu);
1846 extern u64 local_clock(void);
1847 extern u64 sched_clock_cpu(int cpu);
1848
1849
1850 extern void sched_clock_init(void);
1851
1852 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_tick(void)1853 static inline void sched_clock_tick(void)
1854 {
1855 }
1856
sched_clock_idle_sleep_event(void)1857 static inline void sched_clock_idle_sleep_event(void)
1858 {
1859 }
1860
sched_clock_idle_wakeup_event(u64 delta_ns)1861 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1862 {
1863 }
1864 #else
1865 /*
1866 * Architectures can set this to 1 if they have specified
1867 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1868 * but then during bootup it turns out that sched_clock()
1869 * is reliable after all:
1870 */
1871 extern int sched_clock_stable;
1872
1873 extern void sched_clock_tick(void);
1874 extern void sched_clock_idle_sleep_event(void);
1875 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1876 #endif
1877
1878 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1879 /*
1880 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1881 * The reason for this explicit opt-in is not to have perf penalty with
1882 * slow sched_clocks.
1883 */
1884 extern void enable_sched_clock_irqtime(void);
1885 extern void disable_sched_clock_irqtime(void);
1886 #else
enable_sched_clock_irqtime(void)1887 static inline void enable_sched_clock_irqtime(void) {}
disable_sched_clock_irqtime(void)1888 static inline void disable_sched_clock_irqtime(void) {}
1889 #endif
1890
1891 extern unsigned long long
1892 task_sched_runtime(struct task_struct *task);
1893 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1894
1895 /* sched_exec is called by processes performing an exec */
1896 #ifdef CONFIG_SMP
1897 extern void sched_exec(void);
1898 #else
1899 #define sched_exec() {}
1900 #endif
1901
1902 extern void sched_clock_idle_sleep_event(void);
1903 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1904
1905 #ifdef CONFIG_HOTPLUG_CPU
1906 extern void idle_task_exit(void);
1907 #else
idle_task_exit(void)1908 static inline void idle_task_exit(void) {}
1909 #endif
1910
1911 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1912 extern void wake_up_idle_cpu(int cpu);
1913 #else
wake_up_idle_cpu(int cpu)1914 static inline void wake_up_idle_cpu(int cpu) { }
1915 #endif
1916
1917 extern unsigned int sysctl_sched_latency;
1918 extern unsigned int sysctl_sched_min_granularity;
1919 extern unsigned int sysctl_sched_wakeup_granularity;
1920 extern unsigned int sysctl_sched_child_runs_first;
1921
1922 enum sched_tunable_scaling {
1923 SCHED_TUNABLESCALING_NONE,
1924 SCHED_TUNABLESCALING_LOG,
1925 SCHED_TUNABLESCALING_LINEAR,
1926 SCHED_TUNABLESCALING_END,
1927 };
1928 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1929
1930 #ifdef CONFIG_SCHED_DEBUG
1931 extern unsigned int sysctl_sched_migration_cost;
1932 extern unsigned int sysctl_sched_nr_migrate;
1933 extern unsigned int sysctl_sched_time_avg;
1934 extern unsigned int sysctl_timer_migration;
1935 extern unsigned int sysctl_sched_shares_window;
1936
1937 int sched_proc_update_handler(struct ctl_table *table, int write,
1938 void __user *buffer, size_t *length,
1939 loff_t *ppos);
1940 #endif
1941 #ifdef CONFIG_SCHED_DEBUG
get_sysctl_timer_migration(void)1942 static inline unsigned int get_sysctl_timer_migration(void)
1943 {
1944 return sysctl_timer_migration;
1945 }
1946 #else
get_sysctl_timer_migration(void)1947 static inline unsigned int get_sysctl_timer_migration(void)
1948 {
1949 return 1;
1950 }
1951 #endif
1952 extern unsigned int sysctl_sched_rt_period;
1953 extern int sysctl_sched_rt_runtime;
1954
1955 int sched_rt_handler(struct ctl_table *table, int write,
1956 void __user *buffer, size_t *lenp,
1957 loff_t *ppos);
1958
1959 #ifdef CONFIG_SCHED_AUTOGROUP
1960 extern unsigned int sysctl_sched_autogroup_enabled;
1961
1962 extern void sched_autogroup_create_attach(struct task_struct *p);
1963 extern void sched_autogroup_detach(struct task_struct *p);
1964 extern void sched_autogroup_fork(struct signal_struct *sig);
1965 extern void sched_autogroup_exit(struct signal_struct *sig);
1966 #ifdef CONFIG_PROC_FS
1967 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1968 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
1969 #endif
1970 #else
sched_autogroup_create_attach(struct task_struct * p)1971 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
sched_autogroup_detach(struct task_struct * p)1972 static inline void sched_autogroup_detach(struct task_struct *p) { }
sched_autogroup_fork(struct signal_struct * sig)1973 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
sched_autogroup_exit(struct signal_struct * sig)1974 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1975 #endif
1976
1977 #ifdef CONFIG_RT_MUTEXES
1978 extern int rt_mutex_getprio(struct task_struct *p);
1979 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1980 extern void rt_mutex_adjust_pi(struct task_struct *p);
1981 #else
rt_mutex_getprio(struct task_struct * p)1982 static inline int rt_mutex_getprio(struct task_struct *p)
1983 {
1984 return p->normal_prio;
1985 }
1986 # define rt_mutex_adjust_pi(p) do { } while (0)
1987 #endif
1988
1989 extern bool yield_to(struct task_struct *p, bool preempt);
1990 extern void set_user_nice(struct task_struct *p, long nice);
1991 extern int task_prio(const struct task_struct *p);
1992 extern int task_nice(const struct task_struct *p);
1993 extern int can_nice(const struct task_struct *p, const int nice);
1994 extern int task_curr(const struct task_struct *p);
1995 extern int idle_cpu(int cpu);
1996 extern int sched_setscheduler(struct task_struct *, int,
1997 const struct sched_param *);
1998 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1999 const struct sched_param *);
2000 extern struct task_struct *idle_task(int cpu);
2001 extern struct task_struct *curr_task(int cpu);
2002 extern void set_curr_task(int cpu, struct task_struct *p);
2003
2004 void yield(void);
2005
2006 /*
2007 * The default (Linux) execution domain.
2008 */
2009 extern struct exec_domain default_exec_domain;
2010
2011 union thread_union {
2012 struct thread_info thread_info;
2013 unsigned long stack[THREAD_SIZE/sizeof(long)];
2014 };
2015
2016 #ifndef __HAVE_ARCH_KSTACK_END
kstack_end(void * addr)2017 static inline int kstack_end(void *addr)
2018 {
2019 /* Reliable end of stack detection:
2020 * Some APM bios versions misalign the stack
2021 */
2022 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2023 }
2024 #endif
2025
2026 extern union thread_union init_thread_union;
2027 extern struct task_struct init_task;
2028
2029 extern struct mm_struct init_mm;
2030
2031 extern struct pid_namespace init_pid_ns;
2032
2033 /*
2034 * find a task by one of its numerical ids
2035 *
2036 * find_task_by_pid_ns():
2037 * finds a task by its pid in the specified namespace
2038 * find_task_by_vpid():
2039 * finds a task by its virtual pid
2040 *
2041 * see also find_vpid() etc in include/linux/pid.h
2042 */
2043
2044 extern struct task_struct *find_task_by_vpid(pid_t nr);
2045 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2046 struct pid_namespace *ns);
2047
2048 extern void __set_special_pids(struct pid *pid);
2049
2050 /* per-UID process charging. */
2051 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
get_uid(struct user_struct * u)2052 static inline struct user_struct *get_uid(struct user_struct *u)
2053 {
2054 atomic_inc(&u->__count);
2055 return u;
2056 }
2057 extern void free_uid(struct user_struct *);
2058 extern void release_uids(struct user_namespace *ns);
2059
2060 #include <asm/current.h>
2061
2062 extern void xtime_update(unsigned long ticks);
2063
2064 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2065 extern int wake_up_process(struct task_struct *tsk);
2066 extern void wake_up_new_task(struct task_struct *tsk,
2067 unsigned long clone_flags);
2068 #ifdef CONFIG_SMP
2069 extern void kick_process(struct task_struct *tsk);
2070 #else
kick_process(struct task_struct * tsk)2071 static inline void kick_process(struct task_struct *tsk) { }
2072 #endif
2073 extern void sched_fork(struct task_struct *p, int clone_flags);
2074 extern void sched_dead(struct task_struct *p);
2075
2076 extern void proc_caches_init(void);
2077 extern void flush_signals(struct task_struct *);
2078 extern void __flush_signals(struct task_struct *);
2079 extern void ignore_signals(struct task_struct *);
2080 extern void flush_signal_handlers(struct task_struct *, int force_default);
2081 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2082
dequeue_signal_lock(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)2083 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2084 {
2085 unsigned long flags;
2086 int ret;
2087
2088 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2089 ret = dequeue_signal(tsk, mask, info);
2090 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2091
2092 return ret;
2093 }
2094
2095 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2096 sigset_t *mask);
2097 extern void unblock_all_signals(void);
2098 extern void release_task(struct task_struct * p);
2099 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2100 extern int force_sigsegv(int, struct task_struct *);
2101 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2102 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2103 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2104 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2105 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2106 extern int kill_pid(struct pid *pid, int sig, int priv);
2107 extern int kill_proc_info(int, struct siginfo *, pid_t);
2108 extern int do_notify_parent(struct task_struct *, int);
2109 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2110 extern void force_sig(int, struct task_struct *);
2111 extern int send_sig(int, struct task_struct *, int);
2112 extern int zap_other_threads(struct task_struct *p);
2113 extern struct sigqueue *sigqueue_alloc(void);
2114 extern void sigqueue_free(struct sigqueue *);
2115 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2116 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2117 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2118
kill_cad_pid(int sig,int priv)2119 static inline int kill_cad_pid(int sig, int priv)
2120 {
2121 return kill_pid(cad_pid, sig, priv);
2122 }
2123
2124 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2125 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2126 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2127 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2128
2129 /*
2130 * True if we are on the alternate signal stack.
2131 */
on_sig_stack(unsigned long sp)2132 static inline int on_sig_stack(unsigned long sp)
2133 {
2134 #ifdef CONFIG_STACK_GROWSUP
2135 return sp >= current->sas_ss_sp &&
2136 sp - current->sas_ss_sp < current->sas_ss_size;
2137 #else
2138 return sp > current->sas_ss_sp &&
2139 sp - current->sas_ss_sp <= current->sas_ss_size;
2140 #endif
2141 }
2142
sas_ss_flags(unsigned long sp)2143 static inline int sas_ss_flags(unsigned long sp)
2144 {
2145 return (current->sas_ss_size == 0 ? SS_DISABLE
2146 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2147 }
2148
2149 /*
2150 * Routines for handling mm_structs
2151 */
2152 extern struct mm_struct * mm_alloc(void);
2153
2154 /* mmdrop drops the mm and the page tables */
2155 extern void __mmdrop(struct mm_struct *);
mmdrop(struct mm_struct * mm)2156 static inline void mmdrop(struct mm_struct * mm)
2157 {
2158 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2159 __mmdrop(mm);
2160 }
2161
2162 /* mmput gets rid of the mappings and all user-space */
2163 extern void mmput(struct mm_struct *);
2164 /* Grab a reference to a task's mm, if it is not already going away */
2165 extern struct mm_struct *get_task_mm(struct task_struct *task);
2166 /* Remove the current tasks stale references to the old mm_struct */
2167 extern void mm_release(struct task_struct *, struct mm_struct *);
2168 /* Allocate a new mm structure and copy contents from tsk->mm */
2169 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2170
2171 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2172 struct task_struct *, struct pt_regs *);
2173 extern void flush_thread(void);
2174 extern void exit_thread(void);
2175
2176 extern void exit_files(struct task_struct *);
2177 extern void __cleanup_sighand(struct sighand_struct *);
2178
2179 extern void exit_itimers(struct signal_struct *);
2180 extern void flush_itimer_signals(void);
2181
2182 extern NORET_TYPE void do_group_exit(int);
2183
2184 extern void daemonize(const char *, ...);
2185 extern int allow_signal(int);
2186 extern int disallow_signal(int);
2187
2188 extern int do_execve(const char *,
2189 const char __user * const __user *,
2190 const char __user * const __user *, struct pt_regs *);
2191 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2192 struct task_struct *fork_idle(int);
2193
2194 extern void set_task_comm(struct task_struct *tsk, char *from);
2195 extern char *get_task_comm(char *to, struct task_struct *tsk);
2196
2197 #ifdef CONFIG_SMP
2198 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2199 #else
wait_task_inactive(struct task_struct * p,long match_state)2200 static inline unsigned long wait_task_inactive(struct task_struct *p,
2201 long match_state)
2202 {
2203 return 1;
2204 }
2205 #endif
2206
2207 #define next_task(p) \
2208 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2209
2210 #define for_each_process(p) \
2211 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2212
2213 extern bool current_is_single_threaded(void);
2214
2215 /*
2216 * Careful: do_each_thread/while_each_thread is a double loop so
2217 * 'break' will not work as expected - use goto instead.
2218 */
2219 #define do_each_thread(g, t) \
2220 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2221
2222 #define while_each_thread(g, t) \
2223 while ((t = next_thread(t)) != g)
2224
get_nr_threads(struct task_struct * tsk)2225 static inline int get_nr_threads(struct task_struct *tsk)
2226 {
2227 return tsk->signal->nr_threads;
2228 }
2229
2230 /* de_thread depends on thread_group_leader not being a pid based check */
2231 #define thread_group_leader(p) (p == p->group_leader)
2232
2233 /* Do to the insanities of de_thread it is possible for a process
2234 * to have the pid of the thread group leader without actually being
2235 * the thread group leader. For iteration through the pids in proc
2236 * all we care about is that we have a task with the appropriate
2237 * pid, we don't actually care if we have the right task.
2238 */
has_group_leader_pid(struct task_struct * p)2239 static inline int has_group_leader_pid(struct task_struct *p)
2240 {
2241 return p->pid == p->tgid;
2242 }
2243
2244 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)2245 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2246 {
2247 return p1->tgid == p2->tgid;
2248 }
2249
next_thread(const struct task_struct * p)2250 static inline struct task_struct *next_thread(const struct task_struct *p)
2251 {
2252 return list_entry_rcu(p->thread_group.next,
2253 struct task_struct, thread_group);
2254 }
2255
thread_group_empty(struct task_struct * p)2256 static inline int thread_group_empty(struct task_struct *p)
2257 {
2258 return list_empty(&p->thread_group);
2259 }
2260
2261 #define delay_group_leader(p) \
2262 (thread_group_leader(p) && !thread_group_empty(p))
2263
task_detached(struct task_struct * p)2264 static inline int task_detached(struct task_struct *p)
2265 {
2266 return p->exit_signal == -1;
2267 }
2268
2269 /*
2270 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2271 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2272 * pins the final release of task.io_context. Also protects ->cpuset and
2273 * ->cgroup.subsys[].
2274 *
2275 * Nests both inside and outside of read_lock(&tasklist_lock).
2276 * It must not be nested with write_lock_irq(&tasklist_lock),
2277 * neither inside nor outside.
2278 */
task_lock(struct task_struct * p)2279 static inline void task_lock(struct task_struct *p)
2280 {
2281 spin_lock(&p->alloc_lock);
2282 }
2283
task_unlock(struct task_struct * p)2284 static inline void task_unlock(struct task_struct *p)
2285 {
2286 spin_unlock(&p->alloc_lock);
2287 }
2288
2289 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2290 unsigned long *flags);
2291
2292 #define lock_task_sighand(tsk, flags) \
2293 ({ struct sighand_struct *__ss; \
2294 __cond_lock(&(tsk)->sighand->siglock, \
2295 (__ss = __lock_task_sighand(tsk, flags))); \
2296 __ss; \
2297 }) \
2298
unlock_task_sighand(struct task_struct * tsk,unsigned long * flags)2299 static inline void unlock_task_sighand(struct task_struct *tsk,
2300 unsigned long *flags)
2301 {
2302 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2303 }
2304
2305 #ifndef __HAVE_THREAD_FUNCTIONS
2306
2307 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2308 #define task_stack_page(task) ((task)->stack)
2309
setup_thread_stack(struct task_struct * p,struct task_struct * org)2310 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2311 {
2312 *task_thread_info(p) = *task_thread_info(org);
2313 task_thread_info(p)->task = p;
2314 }
2315
end_of_stack(struct task_struct * p)2316 static inline unsigned long *end_of_stack(struct task_struct *p)
2317 {
2318 return (unsigned long *)(task_thread_info(p) + 1);
2319 }
2320
2321 #endif
2322
object_is_on_stack(void * obj)2323 static inline int object_is_on_stack(void *obj)
2324 {
2325 void *stack = task_stack_page(current);
2326
2327 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2328 }
2329
2330 extern void thread_info_cache_init(void);
2331
2332 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)2333 static inline unsigned long stack_not_used(struct task_struct *p)
2334 {
2335 unsigned long *n = end_of_stack(p);
2336
2337 do { /* Skip over canary */
2338 n++;
2339 } while (!*n);
2340
2341 return (unsigned long)n - (unsigned long)end_of_stack(p);
2342 }
2343 #endif
2344
2345 /* set thread flags in other task's structures
2346 * - see asm/thread_info.h for TIF_xxxx flags available
2347 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2348 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2349 {
2350 set_ti_thread_flag(task_thread_info(tsk), flag);
2351 }
2352
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2353 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2354 {
2355 clear_ti_thread_flag(task_thread_info(tsk), flag);
2356 }
2357
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2358 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2359 {
2360 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2361 }
2362
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2363 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2364 {
2365 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2366 }
2367
test_tsk_thread_flag(struct task_struct * tsk,int flag)2368 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2369 {
2370 return test_ti_thread_flag(task_thread_info(tsk), flag);
2371 }
2372
set_tsk_need_resched(struct task_struct * tsk)2373 static inline void set_tsk_need_resched(struct task_struct *tsk)
2374 {
2375 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2376 }
2377
clear_tsk_need_resched(struct task_struct * tsk)2378 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2379 {
2380 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2381 }
2382
test_tsk_need_resched(struct task_struct * tsk)2383 static inline int test_tsk_need_resched(struct task_struct *tsk)
2384 {
2385 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2386 }
2387
restart_syscall(void)2388 static inline int restart_syscall(void)
2389 {
2390 set_tsk_thread_flag(current, TIF_SIGPENDING);
2391 return -ERESTARTNOINTR;
2392 }
2393
signal_pending(struct task_struct * p)2394 static inline int signal_pending(struct task_struct *p)
2395 {
2396 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2397 }
2398
__fatal_signal_pending(struct task_struct * p)2399 static inline int __fatal_signal_pending(struct task_struct *p)
2400 {
2401 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2402 }
2403
fatal_signal_pending(struct task_struct * p)2404 static inline int fatal_signal_pending(struct task_struct *p)
2405 {
2406 return signal_pending(p) && __fatal_signal_pending(p);
2407 }
2408
signal_pending_state(long state,struct task_struct * p)2409 static inline int signal_pending_state(long state, struct task_struct *p)
2410 {
2411 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2412 return 0;
2413 if (!signal_pending(p))
2414 return 0;
2415
2416 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2417 }
2418
need_resched(void)2419 static inline int need_resched(void)
2420 {
2421 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2422 }
2423
2424 /*
2425 * cond_resched() and cond_resched_lock(): latency reduction via
2426 * explicit rescheduling in places that are safe. The return
2427 * value indicates whether a reschedule was done in fact.
2428 * cond_resched_lock() will drop the spinlock before scheduling,
2429 * cond_resched_softirq() will enable bhs before scheduling.
2430 */
2431 extern int _cond_resched(void);
2432
2433 #define cond_resched() ({ \
2434 __might_sleep(__FILE__, __LINE__, 0); \
2435 _cond_resched(); \
2436 })
2437
2438 extern int __cond_resched_lock(spinlock_t *lock);
2439
2440 #ifdef CONFIG_PREEMPT
2441 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2442 #else
2443 #define PREEMPT_LOCK_OFFSET 0
2444 #endif
2445
2446 #define cond_resched_lock(lock) ({ \
2447 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2448 __cond_resched_lock(lock); \
2449 })
2450
2451 extern int __cond_resched_softirq(void);
2452
2453 #define cond_resched_softirq() ({ \
2454 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2455 __cond_resched_softirq(); \
2456 })
2457
2458 /*
2459 * Does a critical section need to be broken due to another
2460 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2461 * but a general need for low latency)
2462 */
spin_needbreak(spinlock_t * lock)2463 static inline int spin_needbreak(spinlock_t *lock)
2464 {
2465 #ifdef CONFIG_PREEMPT
2466 return spin_is_contended(lock);
2467 #else
2468 return 0;
2469 #endif
2470 }
2471
2472 /*
2473 * Thread group CPU time accounting.
2474 */
2475 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2476 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2477
thread_group_cputime_init(struct signal_struct * sig)2478 static inline void thread_group_cputime_init(struct signal_struct *sig)
2479 {
2480 spin_lock_init(&sig->cputimer.lock);
2481 }
2482
2483 /*
2484 * Reevaluate whether the task has signals pending delivery.
2485 * Wake the task if so.
2486 * This is required every time the blocked sigset_t changes.
2487 * callers must hold sighand->siglock.
2488 */
2489 extern void recalc_sigpending_and_wake(struct task_struct *t);
2490 extern void recalc_sigpending(void);
2491
2492 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2493
2494 /*
2495 * Wrappers for p->thread_info->cpu access. No-op on UP.
2496 */
2497 #ifdef CONFIG_SMP
2498
task_cpu(const struct task_struct * p)2499 static inline unsigned int task_cpu(const struct task_struct *p)
2500 {
2501 return task_thread_info(p)->cpu;
2502 }
2503
2504 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2505
2506 #else
2507
task_cpu(const struct task_struct * p)2508 static inline unsigned int task_cpu(const struct task_struct *p)
2509 {
2510 return 0;
2511 }
2512
set_task_cpu(struct task_struct * p,unsigned int cpu)2513 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2514 {
2515 }
2516
2517 #endif /* CONFIG_SMP */
2518
2519 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2520 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2521
2522 extern void normalize_rt_tasks(void);
2523
2524 #ifdef CONFIG_CGROUP_SCHED
2525
2526 extern struct task_group root_task_group;
2527
2528 extern struct task_group *sched_create_group(struct task_group *parent);
2529 extern void sched_destroy_group(struct task_group *tg);
2530 extern void sched_move_task(struct task_struct *tsk);
2531 #ifdef CONFIG_FAIR_GROUP_SCHED
2532 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2533 extern unsigned long sched_group_shares(struct task_group *tg);
2534 #endif
2535 #ifdef CONFIG_RT_GROUP_SCHED
2536 extern int sched_group_set_rt_runtime(struct task_group *tg,
2537 long rt_runtime_us);
2538 extern long sched_group_rt_runtime(struct task_group *tg);
2539 extern int sched_group_set_rt_period(struct task_group *tg,
2540 long rt_period_us);
2541 extern long sched_group_rt_period(struct task_group *tg);
2542 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2543 #endif
2544 #endif
2545
2546 extern int task_can_switch_user(struct user_struct *up,
2547 struct task_struct *tsk);
2548
2549 #ifdef CONFIG_TASK_XACCT
add_rchar(struct task_struct * tsk,ssize_t amt)2550 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2551 {
2552 tsk->ioac.rchar += amt;
2553 }
2554
add_wchar(struct task_struct * tsk,ssize_t amt)2555 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2556 {
2557 tsk->ioac.wchar += amt;
2558 }
2559
inc_syscr(struct task_struct * tsk)2560 static inline void inc_syscr(struct task_struct *tsk)
2561 {
2562 tsk->ioac.syscr++;
2563 }
2564
inc_syscw(struct task_struct * tsk)2565 static inline void inc_syscw(struct task_struct *tsk)
2566 {
2567 tsk->ioac.syscw++;
2568 }
2569 #else
add_rchar(struct task_struct * tsk,ssize_t amt)2570 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2571 {
2572 }
2573
add_wchar(struct task_struct * tsk,ssize_t amt)2574 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2575 {
2576 }
2577
inc_syscr(struct task_struct * tsk)2578 static inline void inc_syscr(struct task_struct *tsk)
2579 {
2580 }
2581
inc_syscw(struct task_struct * tsk)2582 static inline void inc_syscw(struct task_struct *tsk)
2583 {
2584 }
2585 #endif
2586
2587 #ifndef TASK_SIZE_OF
2588 #define TASK_SIZE_OF(tsk) TASK_SIZE
2589 #endif
2590
2591 #ifdef CONFIG_MM_OWNER
2592 extern void mm_update_next_owner(struct mm_struct *mm);
2593 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2594 #else
mm_update_next_owner(struct mm_struct * mm)2595 static inline void mm_update_next_owner(struct mm_struct *mm)
2596 {
2597 }
2598
mm_init_owner(struct mm_struct * mm,struct task_struct * p)2599 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2600 {
2601 }
2602 #endif /* CONFIG_MM_OWNER */
2603
task_rlimit(const struct task_struct * tsk,unsigned int limit)2604 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2605 unsigned int limit)
2606 {
2607 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2608 }
2609
task_rlimit_max(const struct task_struct * tsk,unsigned int limit)2610 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2611 unsigned int limit)
2612 {
2613 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2614 }
2615
rlimit(unsigned int limit)2616 static inline unsigned long rlimit(unsigned int limit)
2617 {
2618 return task_rlimit(current, limit);
2619 }
2620
rlimit_max(unsigned int limit)2621 static inline unsigned long rlimit_max(unsigned int limit)
2622 {
2623 return task_rlimit_max(current, limit);
2624 }
2625
2626 #endif /* __KERNEL__ */
2627
2628 #endif
2629