1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/kthread.h>
15 #include <linux/stop_machine.h>
16 #include <linux/mutex.h>
17 #include <linux/gfp.h>
18 
19 #ifdef CONFIG_SMP
20 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
21 static DEFINE_MUTEX(cpu_add_remove_lock);
22 
23 /*
24  * The following two API's must be used when attempting
25  * to serialize the updates to cpu_online_mask, cpu_present_mask.
26  */
cpu_maps_update_begin(void)27 void cpu_maps_update_begin(void)
28 {
29 	mutex_lock(&cpu_add_remove_lock);
30 }
31 
cpu_maps_update_done(void)32 void cpu_maps_update_done(void)
33 {
34 	mutex_unlock(&cpu_add_remove_lock);
35 }
36 
37 static RAW_NOTIFIER_HEAD(cpu_chain);
38 
39 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
40  * Should always be manipulated under cpu_add_remove_lock
41  */
42 static int cpu_hotplug_disabled;
43 
44 #ifdef CONFIG_HOTPLUG_CPU
45 
46 static struct {
47 	struct task_struct *active_writer;
48 	struct mutex lock; /* Synchronizes accesses to refcount, */
49 	/*
50 	 * Also blocks the new readers during
51 	 * an ongoing cpu hotplug operation.
52 	 */
53 	int refcount;
54 } cpu_hotplug = {
55 	.active_writer = NULL,
56 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
57 	.refcount = 0,
58 };
59 
get_online_cpus(void)60 void get_online_cpus(void)
61 {
62 	might_sleep();
63 	if (cpu_hotplug.active_writer == current)
64 		return;
65 	mutex_lock(&cpu_hotplug.lock);
66 	cpu_hotplug.refcount++;
67 	mutex_unlock(&cpu_hotplug.lock);
68 
69 }
70 EXPORT_SYMBOL_GPL(get_online_cpus);
71 
put_online_cpus(void)72 void put_online_cpus(void)
73 {
74 	if (cpu_hotplug.active_writer == current)
75 		return;
76 	mutex_lock(&cpu_hotplug.lock);
77 	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
78 		wake_up_process(cpu_hotplug.active_writer);
79 	mutex_unlock(&cpu_hotplug.lock);
80 
81 }
82 EXPORT_SYMBOL_GPL(put_online_cpus);
83 
84 /*
85  * This ensures that the hotplug operation can begin only when the
86  * refcount goes to zero.
87  *
88  * Note that during a cpu-hotplug operation, the new readers, if any,
89  * will be blocked by the cpu_hotplug.lock
90  *
91  * Since cpu_hotplug_begin() is always called after invoking
92  * cpu_maps_update_begin(), we can be sure that only one writer is active.
93  *
94  * Note that theoretically, there is a possibility of a livelock:
95  * - Refcount goes to zero, last reader wakes up the sleeping
96  *   writer.
97  * - Last reader unlocks the cpu_hotplug.lock.
98  * - A new reader arrives at this moment, bumps up the refcount.
99  * - The writer acquires the cpu_hotplug.lock finds the refcount
100  *   non zero and goes to sleep again.
101  *
102  * However, this is very difficult to achieve in practice since
103  * get_online_cpus() not an api which is called all that often.
104  *
105  */
cpu_hotplug_begin(void)106 static void cpu_hotplug_begin(void)
107 {
108 	cpu_hotplug.active_writer = current;
109 
110 	for (;;) {
111 		mutex_lock(&cpu_hotplug.lock);
112 		if (likely(!cpu_hotplug.refcount))
113 			break;
114 		__set_current_state(TASK_UNINTERRUPTIBLE);
115 		mutex_unlock(&cpu_hotplug.lock);
116 		schedule();
117 	}
118 }
119 
cpu_hotplug_done(void)120 static void cpu_hotplug_done(void)
121 {
122 	cpu_hotplug.active_writer = NULL;
123 	mutex_unlock(&cpu_hotplug.lock);
124 }
125 
126 #else /* #if CONFIG_HOTPLUG_CPU */
cpu_hotplug_begin(void)127 static void cpu_hotplug_begin(void) {}
cpu_hotplug_done(void)128 static void cpu_hotplug_done(void) {}
129 #endif	/* #else #if CONFIG_HOTPLUG_CPU */
130 
131 /* Need to know about CPUs going up/down? */
register_cpu_notifier(struct notifier_block * nb)132 int __ref register_cpu_notifier(struct notifier_block *nb)
133 {
134 	int ret;
135 	cpu_maps_update_begin();
136 	ret = raw_notifier_chain_register(&cpu_chain, nb);
137 	cpu_maps_update_done();
138 	return ret;
139 }
140 
__cpu_notify(unsigned long val,void * v,int nr_to_call,int * nr_calls)141 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
142 			int *nr_calls)
143 {
144 	int ret;
145 
146 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
147 					nr_calls);
148 
149 	return notifier_to_errno(ret);
150 }
151 
cpu_notify(unsigned long val,void * v)152 static int cpu_notify(unsigned long val, void *v)
153 {
154 	return __cpu_notify(val, v, -1, NULL);
155 }
156 
157 #ifdef CONFIG_HOTPLUG_CPU
158 
cpu_notify_nofail(unsigned long val,void * v)159 static void cpu_notify_nofail(unsigned long val, void *v)
160 {
161 	BUG_ON(cpu_notify(val, v));
162 }
163 EXPORT_SYMBOL(register_cpu_notifier);
164 
unregister_cpu_notifier(struct notifier_block * nb)165 void __ref unregister_cpu_notifier(struct notifier_block *nb)
166 {
167 	cpu_maps_update_begin();
168 	raw_notifier_chain_unregister(&cpu_chain, nb);
169 	cpu_maps_update_done();
170 }
171 EXPORT_SYMBOL(unregister_cpu_notifier);
172 
check_for_tasks(int cpu)173 static inline void check_for_tasks(int cpu)
174 {
175 	struct task_struct *p;
176 
177 	write_lock_irq(&tasklist_lock);
178 	for_each_process(p) {
179 		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
180 		    (!cputime_eq(p->utime, cputime_zero) ||
181 		     !cputime_eq(p->stime, cputime_zero)))
182 			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
183 				"(state = %ld, flags = %x)\n",
184 				p->comm, task_pid_nr(p), cpu,
185 				p->state, p->flags);
186 	}
187 	write_unlock_irq(&tasklist_lock);
188 }
189 
190 struct take_cpu_down_param {
191 	unsigned long mod;
192 	void *hcpu;
193 };
194 
195 /* Take this CPU down. */
take_cpu_down(void * _param)196 static int __ref take_cpu_down(void *_param)
197 {
198 	struct take_cpu_down_param *param = _param;
199 	int err;
200 
201 	/* Ensure this CPU doesn't handle any more interrupts. */
202 	err = __cpu_disable();
203 	if (err < 0)
204 		return err;
205 
206 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
207 	return 0;
208 }
209 
210 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen)211 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
212 {
213 	int err, nr_calls = 0;
214 	void *hcpu = (void *)(long)cpu;
215 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
216 	struct take_cpu_down_param tcd_param = {
217 		.mod = mod,
218 		.hcpu = hcpu,
219 	};
220 
221 	if (num_online_cpus() == 1)
222 		return -EBUSY;
223 
224 	if (!cpu_online(cpu))
225 		return -EINVAL;
226 
227 	cpu_hotplug_begin();
228 
229 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
230 	if (err) {
231 		nr_calls--;
232 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
233 		printk("%s: attempt to take down CPU %u failed\n",
234 				__func__, cpu);
235 		goto out_release;
236 	}
237 
238 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
239 	if (err) {
240 		/* CPU didn't die: tell everyone.  Can't complain. */
241 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
242 
243 		goto out_release;
244 	}
245 	BUG_ON(cpu_online(cpu));
246 
247 	/*
248 	 * The migration_call() CPU_DYING callback will have removed all
249 	 * runnable tasks from the cpu, there's only the idle task left now
250 	 * that the migration thread is done doing the stop_machine thing.
251 	 *
252 	 * Wait for the stop thread to go away.
253 	 */
254 	while (!idle_cpu(cpu))
255 		cpu_relax();
256 
257 	/* This actually kills the CPU. */
258 	__cpu_die(cpu);
259 
260 	/* CPU is completely dead: tell everyone.  Too late to complain. */
261 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
262 
263 	check_for_tasks(cpu);
264 
265 out_release:
266 	cpu_hotplug_done();
267 	if (!err)
268 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
269 	return err;
270 }
271 
cpu_down(unsigned int cpu)272 int __ref cpu_down(unsigned int cpu)
273 {
274 	int err;
275 
276 	cpu_maps_update_begin();
277 
278 	if (cpu_hotplug_disabled) {
279 		err = -EBUSY;
280 		goto out;
281 	}
282 
283 	err = _cpu_down(cpu, 0);
284 
285 out:
286 	cpu_maps_update_done();
287 	return err;
288 }
289 EXPORT_SYMBOL(cpu_down);
290 #endif /*CONFIG_HOTPLUG_CPU*/
291 
292 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen)293 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
294 {
295 	int ret, nr_calls = 0;
296 	void *hcpu = (void *)(long)cpu;
297 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
298 
299 	if (cpu_online(cpu) || !cpu_present(cpu))
300 		return -EINVAL;
301 
302 	cpu_hotplug_begin();
303 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
304 	if (ret) {
305 		nr_calls--;
306 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
307 				__func__, cpu);
308 		goto out_notify;
309 	}
310 
311 	/* Arch-specific enabling code. */
312 	ret = __cpu_up(cpu);
313 	if (ret != 0)
314 		goto out_notify;
315 	BUG_ON(!cpu_online(cpu));
316 
317 	/* Now call notifier in preparation. */
318 	cpu_notify(CPU_ONLINE | mod, hcpu);
319 
320 out_notify:
321 	if (ret != 0)
322 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
323 	cpu_hotplug_done();
324 
325 	return ret;
326 }
327 
cpu_up(unsigned int cpu)328 int __cpuinit cpu_up(unsigned int cpu)
329 {
330 	int err = 0;
331 
332 #ifdef	CONFIG_MEMORY_HOTPLUG
333 	int nid;
334 	pg_data_t	*pgdat;
335 #endif
336 
337 	if (!cpu_possible(cpu)) {
338 		printk(KERN_ERR "can't online cpu %d because it is not "
339 			"configured as may-hotadd at boot time\n", cpu);
340 #if defined(CONFIG_IA64)
341 		printk(KERN_ERR "please check additional_cpus= boot "
342 				"parameter\n");
343 #endif
344 		return -EINVAL;
345 	}
346 
347 #ifdef	CONFIG_MEMORY_HOTPLUG
348 	nid = cpu_to_node(cpu);
349 	if (!node_online(nid)) {
350 		err = mem_online_node(nid);
351 		if (err)
352 			return err;
353 	}
354 
355 	pgdat = NODE_DATA(nid);
356 	if (!pgdat) {
357 		printk(KERN_ERR
358 			"Can't online cpu %d due to NULL pgdat\n", cpu);
359 		return -ENOMEM;
360 	}
361 
362 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
363 		mutex_lock(&zonelists_mutex);
364 		build_all_zonelists(NULL);
365 		mutex_unlock(&zonelists_mutex);
366 	}
367 #endif
368 
369 	cpu_maps_update_begin();
370 
371 	if (cpu_hotplug_disabled) {
372 		err = -EBUSY;
373 		goto out;
374 	}
375 
376 	err = _cpu_up(cpu, 0);
377 
378 out:
379 	cpu_maps_update_done();
380 	return err;
381 }
382 
383 #ifdef CONFIG_PM_SLEEP_SMP
384 static cpumask_var_t frozen_cpus;
385 
arch_disable_nonboot_cpus_begin(void)386 void __weak arch_disable_nonboot_cpus_begin(void)
387 {
388 }
389 
arch_disable_nonboot_cpus_end(void)390 void __weak arch_disable_nonboot_cpus_end(void)
391 {
392 }
393 
disable_nonboot_cpus(void)394 int disable_nonboot_cpus(void)
395 {
396 	int cpu, first_cpu, error = 0;
397 
398 	cpu_maps_update_begin();
399 	first_cpu = cpumask_first(cpu_online_mask);
400 	/*
401 	 * We take down all of the non-boot CPUs in one shot to avoid races
402 	 * with the userspace trying to use the CPU hotplug at the same time
403 	 */
404 	cpumask_clear(frozen_cpus);
405 	arch_disable_nonboot_cpus_begin();
406 
407 	printk("Disabling non-boot CPUs ...\n");
408 	for_each_online_cpu(cpu) {
409 		if (cpu == first_cpu)
410 			continue;
411 		error = _cpu_down(cpu, 1);
412 		if (!error)
413 			cpumask_set_cpu(cpu, frozen_cpus);
414 		else {
415 			printk(KERN_ERR "Error taking CPU%d down: %d\n",
416 				cpu, error);
417 			break;
418 		}
419 	}
420 
421 	arch_disable_nonboot_cpus_end();
422 
423 	if (!error) {
424 		BUG_ON(num_online_cpus() > 1);
425 		/* Make sure the CPUs won't be enabled by someone else */
426 		cpu_hotplug_disabled = 1;
427 	} else {
428 		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
429 	}
430 	cpu_maps_update_done();
431 	return error;
432 }
433 
arch_enable_nonboot_cpus_begin(void)434 void __weak arch_enable_nonboot_cpus_begin(void)
435 {
436 }
437 
arch_enable_nonboot_cpus_end(void)438 void __weak arch_enable_nonboot_cpus_end(void)
439 {
440 }
441 
enable_nonboot_cpus(void)442 void __ref enable_nonboot_cpus(void)
443 {
444 	int cpu, error;
445 
446 	/* Allow everyone to use the CPU hotplug again */
447 	cpu_maps_update_begin();
448 	cpu_hotplug_disabled = 0;
449 	if (cpumask_empty(frozen_cpus))
450 		goto out;
451 
452 	printk(KERN_INFO "Enabling non-boot CPUs ...\n");
453 
454 	arch_enable_nonboot_cpus_begin();
455 
456 	for_each_cpu(cpu, frozen_cpus) {
457 		error = _cpu_up(cpu, 1);
458 		if (!error) {
459 			printk(KERN_INFO "CPU%d is up\n", cpu);
460 			continue;
461 		}
462 		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
463 	}
464 
465 	arch_enable_nonboot_cpus_end();
466 
467 	cpumask_clear(frozen_cpus);
468 out:
469 	cpu_maps_update_done();
470 }
471 
alloc_frozen_cpus(void)472 static int alloc_frozen_cpus(void)
473 {
474 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
475 		return -ENOMEM;
476 	return 0;
477 }
478 core_initcall(alloc_frozen_cpus);
479 #endif /* CONFIG_PM_SLEEP_SMP */
480 
481 /**
482  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
483  * @cpu: cpu that just started
484  *
485  * This function calls the cpu_chain notifiers with CPU_STARTING.
486  * It must be called by the arch code on the new cpu, before the new cpu
487  * enables interrupts and before the "boot" cpu returns from __cpu_up().
488  */
notify_cpu_starting(unsigned int cpu)489 void __cpuinit notify_cpu_starting(unsigned int cpu)
490 {
491 	unsigned long val = CPU_STARTING;
492 
493 #ifdef CONFIG_PM_SLEEP_SMP
494 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
495 		val = CPU_STARTING_FROZEN;
496 #endif /* CONFIG_PM_SLEEP_SMP */
497 	cpu_notify(val, (void *)(long)cpu);
498 }
499 
500 #endif /* CONFIG_SMP */
501 
502 /*
503  * cpu_bit_bitmap[] is a special, "compressed" data structure that
504  * represents all NR_CPUS bits binary values of 1<<nr.
505  *
506  * It is used by cpumask_of() to get a constant address to a CPU
507  * mask value that has a single bit set only.
508  */
509 
510 /* cpu_bit_bitmap[0] is empty - so we can back into it */
511 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
512 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
513 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
514 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
515 
516 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
517 
518 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
519 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
520 #if BITS_PER_LONG > 32
521 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
522 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
523 #endif
524 };
525 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
526 
527 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
528 EXPORT_SYMBOL(cpu_all_bits);
529 
530 #ifdef CONFIG_INIT_ALL_POSSIBLE
531 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
532 	= CPU_BITS_ALL;
533 #else
534 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
535 #endif
536 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
537 EXPORT_SYMBOL(cpu_possible_mask);
538 
539 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
540 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
541 EXPORT_SYMBOL(cpu_online_mask);
542 
543 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
544 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
545 EXPORT_SYMBOL(cpu_present_mask);
546 
547 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
548 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
549 EXPORT_SYMBOL(cpu_active_mask);
550 
set_cpu_possible(unsigned int cpu,bool possible)551 void set_cpu_possible(unsigned int cpu, bool possible)
552 {
553 	if (possible)
554 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
555 	else
556 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
557 }
558 
set_cpu_present(unsigned int cpu,bool present)559 void set_cpu_present(unsigned int cpu, bool present)
560 {
561 	if (present)
562 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
563 	else
564 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
565 }
566 
set_cpu_online(unsigned int cpu,bool online)567 void set_cpu_online(unsigned int cpu, bool online)
568 {
569 	if (online)
570 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
571 	else
572 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
573 }
574 
set_cpu_active(unsigned int cpu,bool active)575 void set_cpu_active(unsigned int cpu, bool active)
576 {
577 	if (active)
578 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
579 	else
580 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
581 }
582 
init_cpu_present(const struct cpumask * src)583 void init_cpu_present(const struct cpumask *src)
584 {
585 	cpumask_copy(to_cpumask(cpu_present_bits), src);
586 }
587 
init_cpu_possible(const struct cpumask * src)588 void init_cpu_possible(const struct cpumask *src)
589 {
590 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
591 }
592 
init_cpu_online(const struct cpumask * src)593 void init_cpu_online(const struct cpumask *src)
594 {
595 	cpumask_copy(to_cpumask(cpu_online_bits), src);
596 }
597