1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
5  *  Copyright (C) 2016 - 2020 Christoph Hellwig
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/kmod.h>
12 #include <linux/major.h>
13 #include <linux/device_cgroup.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/backing-dev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/writeback.h>
23 #include <linux/mount.h>
24 #include <linux/pseudo_fs.h>
25 #include <linux/uio.h>
26 #include <linux/namei.h>
27 #include <linux/part_stat.h>
28 #include <linux/uaccess.h>
29 #include "../fs/internal.h"
30 #include "blk.h"
31 
32 struct bdev_inode {
33 	struct block_device bdev;
34 	struct inode vfs_inode;
35 };
36 
BDEV_I(struct inode * inode)37 static inline struct bdev_inode *BDEV_I(struct inode *inode)
38 {
39 	return container_of(inode, struct bdev_inode, vfs_inode);
40 }
41 
I_BDEV(struct inode * inode)42 struct block_device *I_BDEV(struct inode *inode)
43 {
44 	return &BDEV_I(inode)->bdev;
45 }
46 EXPORT_SYMBOL(I_BDEV);
47 
bdev_write_inode(struct block_device * bdev)48 static void bdev_write_inode(struct block_device *bdev)
49 {
50 	struct inode *inode = bdev->bd_inode;
51 	int ret;
52 
53 	spin_lock(&inode->i_lock);
54 	while (inode->i_state & I_DIRTY) {
55 		spin_unlock(&inode->i_lock);
56 		ret = write_inode_now(inode, true);
57 		if (ret) {
58 			char name[BDEVNAME_SIZE];
59 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
60 					    "for block device %s (err=%d).\n",
61 					    bdevname(bdev, name), ret);
62 		}
63 		spin_lock(&inode->i_lock);
64 	}
65 	spin_unlock(&inode->i_lock);
66 }
67 
68 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)69 static void kill_bdev(struct block_device *bdev)
70 {
71 	struct address_space *mapping = bdev->bd_inode->i_mapping;
72 
73 	if (mapping_empty(mapping))
74 		return;
75 
76 	invalidate_bh_lrus();
77 	truncate_inode_pages(mapping, 0);
78 }
79 
80 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)81 void invalidate_bdev(struct block_device *bdev)
82 {
83 	struct address_space *mapping = bdev->bd_inode->i_mapping;
84 
85 	if (mapping->nrpages) {
86 		invalidate_bh_lrus();
87 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
88 		invalidate_mapping_pages(mapping, 0, -1);
89 	}
90 }
91 EXPORT_SYMBOL(invalidate_bdev);
92 
93 /*
94  * Drop all buffers & page cache for given bdev range. This function bails
95  * with error if bdev has other exclusive owner (such as filesystem).
96  */
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)97 int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
98 			loff_t lstart, loff_t lend)
99 {
100 	/*
101 	 * If we don't hold exclusive handle for the device, upgrade to it
102 	 * while we discard the buffer cache to avoid discarding buffers
103 	 * under live filesystem.
104 	 */
105 	if (!(mode & FMODE_EXCL)) {
106 		int err = bd_prepare_to_claim(bdev, truncate_bdev_range);
107 		if (err)
108 			goto invalidate;
109 	}
110 
111 	truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend);
112 	if (!(mode & FMODE_EXCL))
113 		bd_abort_claiming(bdev, truncate_bdev_range);
114 	return 0;
115 
116 invalidate:
117 	/*
118 	 * Someone else has handle exclusively open. Try invalidating instead.
119 	 * The 'end' argument is inclusive so the rounding is safe.
120 	 */
121 	return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
122 					     lstart >> PAGE_SHIFT,
123 					     lend >> PAGE_SHIFT);
124 }
125 
set_init_blocksize(struct block_device * bdev)126 static void set_init_blocksize(struct block_device *bdev)
127 {
128 	unsigned int bsize = bdev_logical_block_size(bdev);
129 	loff_t size = i_size_read(bdev->bd_inode);
130 
131 	while (bsize < PAGE_SIZE) {
132 		if (size & bsize)
133 			break;
134 		bsize <<= 1;
135 	}
136 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
137 }
138 
set_blocksize(struct block_device * bdev,int size)139 int set_blocksize(struct block_device *bdev, int size)
140 {
141 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
142 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
143 		return -EINVAL;
144 
145 	/* Size cannot be smaller than the size supported by the device */
146 	if (size < bdev_logical_block_size(bdev))
147 		return -EINVAL;
148 
149 	/* Don't change the size if it is same as current */
150 	if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
151 		sync_blockdev(bdev);
152 		bdev->bd_inode->i_blkbits = blksize_bits(size);
153 		kill_bdev(bdev);
154 	}
155 	return 0;
156 }
157 
158 EXPORT_SYMBOL(set_blocksize);
159 
sb_set_blocksize(struct super_block * sb,int size)160 int sb_set_blocksize(struct super_block *sb, int size)
161 {
162 	if (set_blocksize(sb->s_bdev, size))
163 		return 0;
164 	/* If we get here, we know size is power of two
165 	 * and it's value is between 512 and PAGE_SIZE */
166 	sb->s_blocksize = size;
167 	sb->s_blocksize_bits = blksize_bits(size);
168 	return sb->s_blocksize;
169 }
170 
171 EXPORT_SYMBOL(sb_set_blocksize);
172 
sb_min_blocksize(struct super_block * sb,int size)173 int sb_min_blocksize(struct super_block *sb, int size)
174 {
175 	int minsize = bdev_logical_block_size(sb->s_bdev);
176 	if (size < minsize)
177 		size = minsize;
178 	return sb_set_blocksize(sb, size);
179 }
180 
181 EXPORT_SYMBOL(sb_min_blocksize);
182 
sync_blockdev_nowait(struct block_device * bdev)183 int sync_blockdev_nowait(struct block_device *bdev)
184 {
185 	if (!bdev)
186 		return 0;
187 	return filemap_flush(bdev->bd_inode->i_mapping);
188 }
189 EXPORT_SYMBOL_GPL(sync_blockdev_nowait);
190 
191 /*
192  * Write out and wait upon all the dirty data associated with a block
193  * device via its mapping.  Does not take the superblock lock.
194  */
sync_blockdev(struct block_device * bdev)195 int sync_blockdev(struct block_device *bdev)
196 {
197 	if (!bdev)
198 		return 0;
199 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
200 }
201 EXPORT_SYMBOL(sync_blockdev);
202 
sync_blockdev_range(struct block_device * bdev,loff_t lstart,loff_t lend)203 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend)
204 {
205 	return filemap_write_and_wait_range(bdev->bd_inode->i_mapping,
206 			lstart, lend);
207 }
208 EXPORT_SYMBOL(sync_blockdev_range);
209 
210 /*
211  * Write out and wait upon all dirty data associated with this
212  * device.   Filesystem data as well as the underlying block
213  * device.  Takes the superblock lock.
214  */
fsync_bdev(struct block_device * bdev)215 int fsync_bdev(struct block_device *bdev)
216 {
217 	struct super_block *sb = get_super(bdev);
218 	if (sb) {
219 		int res = sync_filesystem(sb);
220 		drop_super(sb);
221 		return res;
222 	}
223 	return sync_blockdev(bdev);
224 }
225 EXPORT_SYMBOL(fsync_bdev);
226 
227 /**
228  * freeze_bdev  --  lock a filesystem and force it into a consistent state
229  * @bdev:	blockdevice to lock
230  *
231  * If a superblock is found on this device, we take the s_umount semaphore
232  * on it to make sure nobody unmounts until the snapshot creation is done.
233  * The reference counter (bd_fsfreeze_count) guarantees that only the last
234  * unfreeze process can unfreeze the frozen filesystem actually when multiple
235  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
236  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
237  * actually.
238  */
freeze_bdev(struct block_device * bdev)239 int freeze_bdev(struct block_device *bdev)
240 {
241 	struct super_block *sb;
242 	int error = 0;
243 
244 	mutex_lock(&bdev->bd_fsfreeze_mutex);
245 	if (++bdev->bd_fsfreeze_count > 1)
246 		goto done;
247 
248 	sb = get_active_super(bdev);
249 	if (!sb)
250 		goto sync;
251 	if (sb->s_op->freeze_super)
252 		error = sb->s_op->freeze_super(sb);
253 	else
254 		error = freeze_super(sb);
255 	deactivate_super(sb);
256 
257 	if (error) {
258 		bdev->bd_fsfreeze_count--;
259 		goto done;
260 	}
261 	bdev->bd_fsfreeze_sb = sb;
262 
263 sync:
264 	sync_blockdev(bdev);
265 done:
266 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
267 	return error;
268 }
269 EXPORT_SYMBOL(freeze_bdev);
270 
271 /**
272  * thaw_bdev  -- unlock filesystem
273  * @bdev:	blockdevice to unlock
274  *
275  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
276  */
thaw_bdev(struct block_device * bdev)277 int thaw_bdev(struct block_device *bdev)
278 {
279 	struct super_block *sb;
280 	int error = -EINVAL;
281 
282 	mutex_lock(&bdev->bd_fsfreeze_mutex);
283 	if (!bdev->bd_fsfreeze_count)
284 		goto out;
285 
286 	error = 0;
287 	if (--bdev->bd_fsfreeze_count > 0)
288 		goto out;
289 
290 	sb = bdev->bd_fsfreeze_sb;
291 	if (!sb)
292 		goto out;
293 
294 	if (sb->s_op->thaw_super)
295 		error = sb->s_op->thaw_super(sb);
296 	else
297 		error = thaw_super(sb);
298 	if (error)
299 		bdev->bd_fsfreeze_count++;
300 	else
301 		bdev->bd_fsfreeze_sb = NULL;
302 out:
303 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
304 	return error;
305 }
306 EXPORT_SYMBOL(thaw_bdev);
307 
308 /**
309  * bdev_read_page() - Start reading a page from a block device
310  * @bdev: The device to read the page from
311  * @sector: The offset on the device to read the page to (need not be aligned)
312  * @page: The page to read
313  *
314  * On entry, the page should be locked.  It will be unlocked when the page
315  * has been read.  If the block driver implements rw_page synchronously,
316  * that will be true on exit from this function, but it need not be.
317  *
318  * Errors returned by this function are usually "soft", eg out of memory, or
319  * queue full; callers should try a different route to read this page rather
320  * than propagate an error back up the stack.
321  *
322  * Return: negative errno if an error occurs, 0 if submission was successful.
323  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)324 int bdev_read_page(struct block_device *bdev, sector_t sector,
325 			struct page *page)
326 {
327 	const struct block_device_operations *ops = bdev->bd_disk->fops;
328 	int result = -EOPNOTSUPP;
329 
330 	if (!ops->rw_page || bdev_get_integrity(bdev))
331 		return result;
332 
333 	result = blk_queue_enter(bdev_get_queue(bdev), 0);
334 	if (result)
335 		return result;
336 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
337 			      REQ_OP_READ);
338 	blk_queue_exit(bdev_get_queue(bdev));
339 	return result;
340 }
341 
342 /**
343  * bdev_write_page() - Start writing a page to a block device
344  * @bdev: The device to write the page to
345  * @sector: The offset on the device to write the page to (need not be aligned)
346  * @page: The page to write
347  * @wbc: The writeback_control for the write
348  *
349  * On entry, the page should be locked and not currently under writeback.
350  * On exit, if the write started successfully, the page will be unlocked and
351  * under writeback.  If the write failed already (eg the driver failed to
352  * queue the page to the device), the page will still be locked.  If the
353  * caller is a ->writepage implementation, it will need to unlock the page.
354  *
355  * Errors returned by this function are usually "soft", eg out of memory, or
356  * queue full; callers should try a different route to write this page rather
357  * than propagate an error back up the stack.
358  *
359  * Return: negative errno if an error occurs, 0 if submission was successful.
360  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)361 int bdev_write_page(struct block_device *bdev, sector_t sector,
362 			struct page *page, struct writeback_control *wbc)
363 {
364 	int result;
365 	const struct block_device_operations *ops = bdev->bd_disk->fops;
366 
367 	if (!ops->rw_page || bdev_get_integrity(bdev))
368 		return -EOPNOTSUPP;
369 	result = blk_queue_enter(bdev_get_queue(bdev), 0);
370 	if (result)
371 		return result;
372 
373 	set_page_writeback(page);
374 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
375 			      REQ_OP_WRITE);
376 	if (result) {
377 		end_page_writeback(page);
378 	} else {
379 		clean_page_buffers(page);
380 		unlock_page(page);
381 	}
382 	blk_queue_exit(bdev_get_queue(bdev));
383 	return result;
384 }
385 
386 /*
387  * pseudo-fs
388  */
389 
390 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
391 static struct kmem_cache * bdev_cachep __read_mostly;
392 
bdev_alloc_inode(struct super_block * sb)393 static struct inode *bdev_alloc_inode(struct super_block *sb)
394 {
395 	struct bdev_inode *ei = alloc_inode_sb(sb, bdev_cachep, GFP_KERNEL);
396 
397 	if (!ei)
398 		return NULL;
399 	memset(&ei->bdev, 0, sizeof(ei->bdev));
400 	return &ei->vfs_inode;
401 }
402 
bdev_free_inode(struct inode * inode)403 static void bdev_free_inode(struct inode *inode)
404 {
405 	struct block_device *bdev = I_BDEV(inode);
406 
407 	free_percpu(bdev->bd_stats);
408 	kfree(bdev->bd_meta_info);
409 
410 	if (!bdev_is_partition(bdev)) {
411 		if (bdev->bd_disk && bdev->bd_disk->bdi)
412 			bdi_put(bdev->bd_disk->bdi);
413 		kfree(bdev->bd_disk);
414 	}
415 
416 	if (MAJOR(bdev->bd_dev) == BLOCK_EXT_MAJOR)
417 		blk_free_ext_minor(MINOR(bdev->bd_dev));
418 
419 	kmem_cache_free(bdev_cachep, BDEV_I(inode));
420 }
421 
init_once(void * data)422 static void init_once(void *data)
423 {
424 	struct bdev_inode *ei = data;
425 
426 	inode_init_once(&ei->vfs_inode);
427 }
428 
bdev_evict_inode(struct inode * inode)429 static void bdev_evict_inode(struct inode *inode)
430 {
431 	truncate_inode_pages_final(&inode->i_data);
432 	invalidate_inode_buffers(inode); /* is it needed here? */
433 	clear_inode(inode);
434 }
435 
436 static const struct super_operations bdev_sops = {
437 	.statfs = simple_statfs,
438 	.alloc_inode = bdev_alloc_inode,
439 	.free_inode = bdev_free_inode,
440 	.drop_inode = generic_delete_inode,
441 	.evict_inode = bdev_evict_inode,
442 };
443 
bd_init_fs_context(struct fs_context * fc)444 static int bd_init_fs_context(struct fs_context *fc)
445 {
446 	struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
447 	if (!ctx)
448 		return -ENOMEM;
449 	fc->s_iflags |= SB_I_CGROUPWB;
450 	ctx->ops = &bdev_sops;
451 	return 0;
452 }
453 
454 static struct file_system_type bd_type = {
455 	.name		= "bdev",
456 	.init_fs_context = bd_init_fs_context,
457 	.kill_sb	= kill_anon_super,
458 };
459 
460 struct super_block *blockdev_superblock __read_mostly;
461 EXPORT_SYMBOL_GPL(blockdev_superblock);
462 
bdev_cache_init(void)463 void __init bdev_cache_init(void)
464 {
465 	int err;
466 	static struct vfsmount *bd_mnt;
467 
468 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
469 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
470 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
471 			init_once);
472 	err = register_filesystem(&bd_type);
473 	if (err)
474 		panic("Cannot register bdev pseudo-fs");
475 	bd_mnt = kern_mount(&bd_type);
476 	if (IS_ERR(bd_mnt))
477 		panic("Cannot create bdev pseudo-fs");
478 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
479 }
480 
bdev_alloc(struct gendisk * disk,u8 partno)481 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno)
482 {
483 	struct block_device *bdev;
484 	struct inode *inode;
485 
486 	inode = new_inode(blockdev_superblock);
487 	if (!inode)
488 		return NULL;
489 	inode->i_mode = S_IFBLK;
490 	inode->i_rdev = 0;
491 	inode->i_data.a_ops = &def_blk_aops;
492 	mapping_set_gfp_mask(&inode->i_data, GFP_USER);
493 
494 	bdev = I_BDEV(inode);
495 	mutex_init(&bdev->bd_fsfreeze_mutex);
496 	spin_lock_init(&bdev->bd_size_lock);
497 	bdev->bd_partno = partno;
498 	bdev->bd_inode = inode;
499 	bdev->bd_queue = disk->queue;
500 	bdev->bd_stats = alloc_percpu(struct disk_stats);
501 	if (!bdev->bd_stats) {
502 		iput(inode);
503 		return NULL;
504 	}
505 	bdev->bd_disk = disk;
506 	return bdev;
507 }
508 
bdev_add(struct block_device * bdev,dev_t dev)509 void bdev_add(struct block_device *bdev, dev_t dev)
510 {
511 	bdev->bd_dev = dev;
512 	bdev->bd_inode->i_rdev = dev;
513 	bdev->bd_inode->i_ino = dev;
514 	insert_inode_hash(bdev->bd_inode);
515 }
516 
nr_blockdev_pages(void)517 long nr_blockdev_pages(void)
518 {
519 	struct inode *inode;
520 	long ret = 0;
521 
522 	spin_lock(&blockdev_superblock->s_inode_list_lock);
523 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
524 		ret += inode->i_mapping->nrpages;
525 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
526 
527 	return ret;
528 }
529 
530 /**
531  * bd_may_claim - test whether a block device can be claimed
532  * @bdev: block device of interest
533  * @whole: whole block device containing @bdev, may equal @bdev
534  * @holder: holder trying to claim @bdev
535  *
536  * Test whether @bdev can be claimed by @holder.
537  *
538  * CONTEXT:
539  * spin_lock(&bdev_lock).
540  *
541  * RETURNS:
542  * %true if @bdev can be claimed, %false otherwise.
543  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)544 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
545 			 void *holder)
546 {
547 	if (bdev->bd_holder == holder)
548 		return true;	 /* already a holder */
549 	else if (bdev->bd_holder != NULL)
550 		return false; 	 /* held by someone else */
551 	else if (whole == bdev)
552 		return true;  	 /* is a whole device which isn't held */
553 
554 	else if (whole->bd_holder == bd_may_claim)
555 		return true; 	 /* is a partition of a device that is being partitioned */
556 	else if (whole->bd_holder != NULL)
557 		return false;	 /* is a partition of a held device */
558 	else
559 		return true;	 /* is a partition of an un-held device */
560 }
561 
562 /**
563  * bd_prepare_to_claim - claim a block device
564  * @bdev: block device of interest
565  * @holder: holder trying to claim @bdev
566  *
567  * Claim @bdev.  This function fails if @bdev is already claimed by another
568  * holder and waits if another claiming is in progress. return, the caller
569  * has ownership of bd_claiming and bd_holder[s].
570  *
571  * RETURNS:
572  * 0 if @bdev can be claimed, -EBUSY otherwise.
573  */
bd_prepare_to_claim(struct block_device * bdev,void * holder)574 int bd_prepare_to_claim(struct block_device *bdev, void *holder)
575 {
576 	struct block_device *whole = bdev_whole(bdev);
577 
578 	if (WARN_ON_ONCE(!holder))
579 		return -EINVAL;
580 retry:
581 	spin_lock(&bdev_lock);
582 	/* if someone else claimed, fail */
583 	if (!bd_may_claim(bdev, whole, holder)) {
584 		spin_unlock(&bdev_lock);
585 		return -EBUSY;
586 	}
587 
588 	/* if claiming is already in progress, wait for it to finish */
589 	if (whole->bd_claiming) {
590 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
591 		DEFINE_WAIT(wait);
592 
593 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
594 		spin_unlock(&bdev_lock);
595 		schedule();
596 		finish_wait(wq, &wait);
597 		goto retry;
598 	}
599 
600 	/* yay, all mine */
601 	whole->bd_claiming = holder;
602 	spin_unlock(&bdev_lock);
603 	return 0;
604 }
605 EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
606 
bd_clear_claiming(struct block_device * whole,void * holder)607 static void bd_clear_claiming(struct block_device *whole, void *holder)
608 {
609 	lockdep_assert_held(&bdev_lock);
610 	/* tell others that we're done */
611 	BUG_ON(whole->bd_claiming != holder);
612 	whole->bd_claiming = NULL;
613 	wake_up_bit(&whole->bd_claiming, 0);
614 }
615 
616 /**
617  * bd_finish_claiming - finish claiming of a block device
618  * @bdev: block device of interest
619  * @holder: holder that has claimed @bdev
620  *
621  * Finish exclusive open of a block device. Mark the device as exlusively
622  * open by the holder and wake up all waiters for exclusive open to finish.
623  */
bd_finish_claiming(struct block_device * bdev,void * holder)624 static void bd_finish_claiming(struct block_device *bdev, void *holder)
625 {
626 	struct block_device *whole = bdev_whole(bdev);
627 
628 	spin_lock(&bdev_lock);
629 	BUG_ON(!bd_may_claim(bdev, whole, holder));
630 	/*
631 	 * Note that for a whole device bd_holders will be incremented twice,
632 	 * and bd_holder will be set to bd_may_claim before being set to holder
633 	 */
634 	whole->bd_holders++;
635 	whole->bd_holder = bd_may_claim;
636 	bdev->bd_holders++;
637 	bdev->bd_holder = holder;
638 	bd_clear_claiming(whole, holder);
639 	spin_unlock(&bdev_lock);
640 }
641 
642 /**
643  * bd_abort_claiming - abort claiming of a block device
644  * @bdev: block device of interest
645  * @holder: holder that has claimed @bdev
646  *
647  * Abort claiming of a block device when the exclusive open failed. This can be
648  * also used when exclusive open is not actually desired and we just needed
649  * to block other exclusive openers for a while.
650  */
bd_abort_claiming(struct block_device * bdev,void * holder)651 void bd_abort_claiming(struct block_device *bdev, void *holder)
652 {
653 	spin_lock(&bdev_lock);
654 	bd_clear_claiming(bdev_whole(bdev), holder);
655 	spin_unlock(&bdev_lock);
656 }
657 EXPORT_SYMBOL(bd_abort_claiming);
658 
blkdev_flush_mapping(struct block_device * bdev)659 static void blkdev_flush_mapping(struct block_device *bdev)
660 {
661 	WARN_ON_ONCE(bdev->bd_holders);
662 	sync_blockdev(bdev);
663 	kill_bdev(bdev);
664 	bdev_write_inode(bdev);
665 }
666 
blkdev_get_whole(struct block_device * bdev,fmode_t mode)667 static int blkdev_get_whole(struct block_device *bdev, fmode_t mode)
668 {
669 	struct gendisk *disk = bdev->bd_disk;
670 	int ret;
671 
672 	if (disk->fops->open) {
673 		ret = disk->fops->open(bdev, mode);
674 		if (ret) {
675 			/* avoid ghost partitions on a removed medium */
676 			if (ret == -ENOMEDIUM &&
677 			     test_bit(GD_NEED_PART_SCAN, &disk->state))
678 				bdev_disk_changed(disk, true);
679 			return ret;
680 		}
681 	}
682 
683 	if (!atomic_read(&bdev->bd_openers))
684 		set_init_blocksize(bdev);
685 	if (test_bit(GD_NEED_PART_SCAN, &disk->state))
686 		bdev_disk_changed(disk, false);
687 	atomic_inc(&bdev->bd_openers);
688 	return 0;
689 }
690 
blkdev_put_whole(struct block_device * bdev,fmode_t mode)691 static void blkdev_put_whole(struct block_device *bdev, fmode_t mode)
692 {
693 	if (atomic_dec_and_test(&bdev->bd_openers))
694 		blkdev_flush_mapping(bdev);
695 	if (bdev->bd_disk->fops->release)
696 		bdev->bd_disk->fops->release(bdev->bd_disk, mode);
697 }
698 
blkdev_get_part(struct block_device * part,fmode_t mode)699 static int blkdev_get_part(struct block_device *part, fmode_t mode)
700 {
701 	struct gendisk *disk = part->bd_disk;
702 	int ret;
703 
704 	if (atomic_read(&part->bd_openers))
705 		goto done;
706 
707 	ret = blkdev_get_whole(bdev_whole(part), mode);
708 	if (ret)
709 		return ret;
710 
711 	ret = -ENXIO;
712 	if (!bdev_nr_sectors(part))
713 		goto out_blkdev_put;
714 
715 	disk->open_partitions++;
716 	set_init_blocksize(part);
717 done:
718 	atomic_inc(&part->bd_openers);
719 	return 0;
720 
721 out_blkdev_put:
722 	blkdev_put_whole(bdev_whole(part), mode);
723 	return ret;
724 }
725 
blkdev_put_part(struct block_device * part,fmode_t mode)726 static void blkdev_put_part(struct block_device *part, fmode_t mode)
727 {
728 	struct block_device *whole = bdev_whole(part);
729 
730 	if (!atomic_dec_and_test(&part->bd_openers))
731 		return;
732 	blkdev_flush_mapping(part);
733 	whole->bd_disk->open_partitions--;
734 	blkdev_put_whole(whole, mode);
735 }
736 
blkdev_get_no_open(dev_t dev)737 struct block_device *blkdev_get_no_open(dev_t dev)
738 {
739 	struct block_device *bdev;
740 	struct inode *inode;
741 
742 	inode = ilookup(blockdev_superblock, dev);
743 	if (!inode && IS_ENABLED(CONFIG_BLOCK_LEGACY_AUTOLOAD)) {
744 		blk_request_module(dev);
745 		inode = ilookup(blockdev_superblock, dev);
746 		if (inode)
747 			pr_warn_ratelimited(
748 "block device autoloading is deprecated and will be removed.\n");
749 	}
750 	if (!inode)
751 		return NULL;
752 
753 	/* switch from the inode reference to a device mode one: */
754 	bdev = &BDEV_I(inode)->bdev;
755 	if (!kobject_get_unless_zero(&bdev->bd_device.kobj))
756 		bdev = NULL;
757 	iput(inode);
758 	return bdev;
759 }
760 
blkdev_put_no_open(struct block_device * bdev)761 void blkdev_put_no_open(struct block_device *bdev)
762 {
763 	put_device(&bdev->bd_device);
764 }
765 
766 /**
767  * blkdev_get_by_dev - open a block device by device number
768  * @dev: device number of block device to open
769  * @mode: FMODE_* mask
770  * @holder: exclusive holder identifier
771  *
772  * Open the block device described by device number @dev. If @mode includes
773  * %FMODE_EXCL, the block device is opened with exclusive access.  Specifying
774  * %FMODE_EXCL with a %NULL @holder is invalid.  Exclusive opens may nest for
775  * the same @holder.
776  *
777  * Use this interface ONLY if you really do not have anything better - i.e. when
778  * you are behind a truly sucky interface and all you are given is a device
779  * number.  Everything else should use blkdev_get_by_path().
780  *
781  * CONTEXT:
782  * Might sleep.
783  *
784  * RETURNS:
785  * Reference to the block_device on success, ERR_PTR(-errno) on failure.
786  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)787 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
788 {
789 	bool unblock_events = true;
790 	struct block_device *bdev;
791 	struct gendisk *disk;
792 	int ret;
793 
794 	ret = devcgroup_check_permission(DEVCG_DEV_BLOCK,
795 			MAJOR(dev), MINOR(dev),
796 			((mode & FMODE_READ) ? DEVCG_ACC_READ : 0) |
797 			((mode & FMODE_WRITE) ? DEVCG_ACC_WRITE : 0));
798 	if (ret)
799 		return ERR_PTR(ret);
800 
801 	bdev = blkdev_get_no_open(dev);
802 	if (!bdev)
803 		return ERR_PTR(-ENXIO);
804 	disk = bdev->bd_disk;
805 
806 	if (mode & FMODE_EXCL) {
807 		ret = bd_prepare_to_claim(bdev, holder);
808 		if (ret)
809 			goto put_blkdev;
810 	}
811 
812 	disk_block_events(disk);
813 
814 	mutex_lock(&disk->open_mutex);
815 	ret = -ENXIO;
816 	if (!disk_live(disk))
817 		goto abort_claiming;
818 	if (!try_module_get(disk->fops->owner))
819 		goto abort_claiming;
820 	if (bdev_is_partition(bdev))
821 		ret = blkdev_get_part(bdev, mode);
822 	else
823 		ret = blkdev_get_whole(bdev, mode);
824 	if (ret)
825 		goto put_module;
826 	if (mode & FMODE_EXCL) {
827 		bd_finish_claiming(bdev, holder);
828 
829 		/*
830 		 * Block event polling for write claims if requested.  Any write
831 		 * holder makes the write_holder state stick until all are
832 		 * released.  This is good enough and tracking individual
833 		 * writeable reference is too fragile given the way @mode is
834 		 * used in blkdev_get/put().
835 		 */
836 		if ((mode & FMODE_WRITE) && !bdev->bd_write_holder &&
837 		    (disk->event_flags & DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE)) {
838 			bdev->bd_write_holder = true;
839 			unblock_events = false;
840 		}
841 	}
842 	mutex_unlock(&disk->open_mutex);
843 
844 	if (unblock_events)
845 		disk_unblock_events(disk);
846 	return bdev;
847 put_module:
848 	module_put(disk->fops->owner);
849 abort_claiming:
850 	if (mode & FMODE_EXCL)
851 		bd_abort_claiming(bdev, holder);
852 	mutex_unlock(&disk->open_mutex);
853 	disk_unblock_events(disk);
854 put_blkdev:
855 	blkdev_put_no_open(bdev);
856 	return ERR_PTR(ret);
857 }
858 EXPORT_SYMBOL(blkdev_get_by_dev);
859 
860 /**
861  * blkdev_get_by_path - open a block device by name
862  * @path: path to the block device to open
863  * @mode: FMODE_* mask
864  * @holder: exclusive holder identifier
865  *
866  * Open the block device described by the device file at @path.  If @mode
867  * includes %FMODE_EXCL, the block device is opened with exclusive access.
868  * Specifying %FMODE_EXCL with a %NULL @holder is invalid.  Exclusive opens may
869  * nest for the same @holder.
870  *
871  * CONTEXT:
872  * Might sleep.
873  *
874  * RETURNS:
875  * Reference to the block_device on success, ERR_PTR(-errno) on failure.
876  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)877 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
878 					void *holder)
879 {
880 	struct block_device *bdev;
881 	dev_t dev;
882 	int error;
883 
884 	error = lookup_bdev(path, &dev);
885 	if (error)
886 		return ERR_PTR(error);
887 
888 	bdev = blkdev_get_by_dev(dev, mode, holder);
889 	if (!IS_ERR(bdev) && (mode & FMODE_WRITE) && bdev_read_only(bdev)) {
890 		blkdev_put(bdev, mode);
891 		return ERR_PTR(-EACCES);
892 	}
893 
894 	return bdev;
895 }
896 EXPORT_SYMBOL(blkdev_get_by_path);
897 
blkdev_put(struct block_device * bdev,fmode_t mode)898 void blkdev_put(struct block_device *bdev, fmode_t mode)
899 {
900 	struct gendisk *disk = bdev->bd_disk;
901 
902 	/*
903 	 * Sync early if it looks like we're the last one.  If someone else
904 	 * opens the block device between now and the decrement of bd_openers
905 	 * then we did a sync that we didn't need to, but that's not the end
906 	 * of the world and we want to avoid long (could be several minute)
907 	 * syncs while holding the mutex.
908 	 */
909 	if (atomic_read(&bdev->bd_openers) == 1)
910 		sync_blockdev(bdev);
911 
912 	mutex_lock(&disk->open_mutex);
913 	if (mode & FMODE_EXCL) {
914 		struct block_device *whole = bdev_whole(bdev);
915 		bool bdev_free;
916 
917 		/*
918 		 * Release a claim on the device.  The holder fields
919 		 * are protected with bdev_lock.  open_mutex is to
920 		 * synchronize disk_holder unlinking.
921 		 */
922 		spin_lock(&bdev_lock);
923 
924 		WARN_ON_ONCE(--bdev->bd_holders < 0);
925 		WARN_ON_ONCE(--whole->bd_holders < 0);
926 
927 		if ((bdev_free = !bdev->bd_holders))
928 			bdev->bd_holder = NULL;
929 		if (!whole->bd_holders)
930 			whole->bd_holder = NULL;
931 
932 		spin_unlock(&bdev_lock);
933 
934 		/*
935 		 * If this was the last claim, remove holder link and
936 		 * unblock evpoll if it was a write holder.
937 		 */
938 		if (bdev_free && bdev->bd_write_holder) {
939 			disk_unblock_events(disk);
940 			bdev->bd_write_holder = false;
941 		}
942 	}
943 
944 	/*
945 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
946 	 * event.  This is to ensure detection of media removal commanded
947 	 * from userland - e.g. eject(1).
948 	 */
949 	disk_flush_events(disk, DISK_EVENT_MEDIA_CHANGE);
950 
951 	if (bdev_is_partition(bdev))
952 		blkdev_put_part(bdev, mode);
953 	else
954 		blkdev_put_whole(bdev, mode);
955 	mutex_unlock(&disk->open_mutex);
956 
957 	module_put(disk->fops->owner);
958 	blkdev_put_no_open(bdev);
959 }
960 EXPORT_SYMBOL(blkdev_put);
961 
962 /**
963  * lookup_bdev() - Look up a struct block_device by name.
964  * @pathname: Name of the block device in the filesystem.
965  * @dev: Pointer to the block device's dev_t, if found.
966  *
967  * Lookup the block device's dev_t at @pathname in the current
968  * namespace if possible and return it in @dev.
969  *
970  * Context: May sleep.
971  * Return: 0 if succeeded, negative errno otherwise.
972  */
lookup_bdev(const char * pathname,dev_t * dev)973 int lookup_bdev(const char *pathname, dev_t *dev)
974 {
975 	struct inode *inode;
976 	struct path path;
977 	int error;
978 
979 	if (!pathname || !*pathname)
980 		return -EINVAL;
981 
982 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
983 	if (error)
984 		return error;
985 
986 	inode = d_backing_inode(path.dentry);
987 	error = -ENOTBLK;
988 	if (!S_ISBLK(inode->i_mode))
989 		goto out_path_put;
990 	error = -EACCES;
991 	if (!may_open_dev(&path))
992 		goto out_path_put;
993 
994 	*dev = inode->i_rdev;
995 	error = 0;
996 out_path_put:
997 	path_put(&path);
998 	return error;
999 }
1000 EXPORT_SYMBOL(lookup_bdev);
1001 
__invalidate_device(struct block_device * bdev,bool kill_dirty)1002 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1003 {
1004 	struct super_block *sb = get_super(bdev);
1005 	int res = 0;
1006 
1007 	if (sb) {
1008 		/*
1009 		 * no need to lock the super, get_super holds the
1010 		 * read mutex so the filesystem cannot go away
1011 		 * under us (->put_super runs with the write lock
1012 		 * hold).
1013 		 */
1014 		shrink_dcache_sb(sb);
1015 		res = invalidate_inodes(sb, kill_dirty);
1016 		drop_super(sb);
1017 	}
1018 	invalidate_bdev(bdev);
1019 	return res;
1020 }
1021 EXPORT_SYMBOL(__invalidate_device);
1022 
sync_bdevs(bool wait)1023 void sync_bdevs(bool wait)
1024 {
1025 	struct inode *inode, *old_inode = NULL;
1026 
1027 	spin_lock(&blockdev_superblock->s_inode_list_lock);
1028 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1029 		struct address_space *mapping = inode->i_mapping;
1030 		struct block_device *bdev;
1031 
1032 		spin_lock(&inode->i_lock);
1033 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1034 		    mapping->nrpages == 0) {
1035 			spin_unlock(&inode->i_lock);
1036 			continue;
1037 		}
1038 		__iget(inode);
1039 		spin_unlock(&inode->i_lock);
1040 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
1041 		/*
1042 		 * We hold a reference to 'inode' so it couldn't have been
1043 		 * removed from s_inodes list while we dropped the
1044 		 * s_inode_list_lock  We cannot iput the inode now as we can
1045 		 * be holding the last reference and we cannot iput it under
1046 		 * s_inode_list_lock. So we keep the reference and iput it
1047 		 * later.
1048 		 */
1049 		iput(old_inode);
1050 		old_inode = inode;
1051 		bdev = I_BDEV(inode);
1052 
1053 		mutex_lock(&bdev->bd_disk->open_mutex);
1054 		if (!atomic_read(&bdev->bd_openers)) {
1055 			; /* skip */
1056 		} else if (wait) {
1057 			/*
1058 			 * We keep the error status of individual mapping so
1059 			 * that applications can catch the writeback error using
1060 			 * fsync(2). See filemap_fdatawait_keep_errors() for
1061 			 * details.
1062 			 */
1063 			filemap_fdatawait_keep_errors(inode->i_mapping);
1064 		} else {
1065 			filemap_fdatawrite(inode->i_mapping);
1066 		}
1067 		mutex_unlock(&bdev->bd_disk->open_mutex);
1068 
1069 		spin_lock(&blockdev_superblock->s_inode_list_lock);
1070 	}
1071 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
1072 	iput(old_inode);
1073 }
1074