1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/io_uring.h>
66 #include <linux/syscall_user_dispatch.h>
67 #include <linux/coredump.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
__register_binfmt(struct linux_binfmt * fmt,int insert)85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
unregister_binfmt(struct linux_binfmt * fmt)95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
put_binfmt(struct linux_binfmt * fmt)104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
path_noexec(const struct path * path)109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from the file itself.
121  */
SYSCALL_DEFINE1(uselib,const char __user *,library)122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175   	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = FOLL_FORCE;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	mmap_read_lock(bprm->mm);
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	mmap_read_unlock(bprm->mm);
224 	if (ret <= 0)
225 		return NULL;
226 
227 	if (write)
228 		acct_arg_size(bprm, vma_pages(bprm->vma));
229 
230 	return page;
231 }
232 
put_arg_page(struct page * page)233 static void put_arg_page(struct page *page)
234 {
235 	put_page(page);
236 }
237 
free_arg_pages(struct linux_binprm * bprm)238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 		struct page *page)
244 {
245 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247 
__bprm_mm_init(struct linux_binprm * bprm)248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 	int err;
251 	struct vm_area_struct *vma = NULL;
252 	struct mm_struct *mm = bprm->mm;
253 
254 	bprm->vma = vma = vm_area_alloc(mm);
255 	if (!vma)
256 		return -ENOMEM;
257 	vma_set_anonymous(vma);
258 
259 	if (mmap_write_lock_killable(mm)) {
260 		err = -EINTR;
261 		goto err_free;
262 	}
263 
264 	/*
265 	 * Place the stack at the largest stack address the architecture
266 	 * supports. Later, we'll move this to an appropriate place. We don't
267 	 * use STACK_TOP because that can depend on attributes which aren't
268 	 * configured yet.
269 	 */
270 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 	vma->vm_end = STACK_TOP_MAX;
272 	vma->vm_start = vma->vm_end - PAGE_SIZE;
273 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275 
276 	err = insert_vm_struct(mm, vma);
277 	if (err)
278 		goto err;
279 
280 	mm->stack_vm = mm->total_vm = 1;
281 	mmap_write_unlock(mm);
282 	bprm->p = vma->vm_end - sizeof(void *);
283 	return 0;
284 err:
285 	mmap_write_unlock(mm);
286 err_free:
287 	bprm->vma = NULL;
288 	vm_area_free(vma);
289 	return err;
290 }
291 
valid_arg_len(struct linux_binprm * bprm,long len)292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294 	return len <= MAX_ARG_STRLEN;
295 }
296 
297 #else
298 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 		int write)
305 {
306 	struct page *page;
307 
308 	page = bprm->page[pos / PAGE_SIZE];
309 	if (!page && write) {
310 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 		if (!page)
312 			return NULL;
313 		bprm->page[pos / PAGE_SIZE] = page;
314 	}
315 
316 	return page;
317 }
318 
put_arg_page(struct page * page)319 static void put_arg_page(struct page *page)
320 {
321 }
322 
free_arg_page(struct linux_binprm * bprm,int i)323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325 	if (bprm->page[i]) {
326 		__free_page(bprm->page[i]);
327 		bprm->page[i] = NULL;
328 	}
329 }
330 
free_arg_pages(struct linux_binprm * bprm)331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333 	int i;
334 
335 	for (i = 0; i < MAX_ARG_PAGES; i++)
336 		free_arg_page(bprm, i);
337 }
338 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 		struct page *page)
341 {
342 }
343 
__bprm_mm_init(struct linux_binprm * bprm)344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 	return 0;
348 }
349 
valid_arg_len(struct linux_binprm * bprm,long len)350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352 	return len <= bprm->p;
353 }
354 
355 #endif /* CONFIG_MMU */
356 
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
bprm_mm_init(struct linux_binprm * bprm)363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365 	int err;
366 	struct mm_struct *mm = NULL;
367 
368 	bprm->mm = mm = mm_alloc();
369 	err = -ENOMEM;
370 	if (!mm)
371 		goto err;
372 
373 	/* Save current stack limit for all calculations made during exec. */
374 	task_lock(current->group_leader);
375 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 	task_unlock(current->group_leader);
377 
378 	err = __bprm_mm_init(bprm);
379 	if (err)
380 		goto err;
381 
382 	return 0;
383 
384 err:
385 	if (mm) {
386 		bprm->mm = NULL;
387 		mmdrop(mm);
388 	}
389 
390 	return err;
391 }
392 
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 	bool is_compat;
396 #endif
397 	union {
398 		const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 		const compat_uptr_t __user *compat;
401 #endif
402 	} ptr;
403 };
404 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 	const char __user *native;
408 
409 #ifdef CONFIG_COMPAT
410 	if (unlikely(argv.is_compat)) {
411 		compat_uptr_t compat;
412 
413 		if (get_user(compat, argv.ptr.compat + nr))
414 			return ERR_PTR(-EFAULT);
415 
416 		return compat_ptr(compat);
417 	}
418 #endif
419 
420 	if (get_user(native, argv.ptr.native + nr))
421 		return ERR_PTR(-EFAULT);
422 
423 	return native;
424 }
425 
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
count(struct user_arg_ptr argv,int max)429 static int count(struct user_arg_ptr argv, int max)
430 {
431 	int i = 0;
432 
433 	if (argv.ptr.native != NULL) {
434 		for (;;) {
435 			const char __user *p = get_user_arg_ptr(argv, i);
436 
437 			if (!p)
438 				break;
439 
440 			if (IS_ERR(p))
441 				return -EFAULT;
442 
443 			if (i >= max)
444 				return -E2BIG;
445 			++i;
446 
447 			if (fatal_signal_pending(current))
448 				return -ERESTARTNOHAND;
449 			cond_resched();
450 		}
451 	}
452 	return i;
453 }
454 
count_strings_kernel(const char * const * argv)455 static int count_strings_kernel(const char *const *argv)
456 {
457 	int i;
458 
459 	if (!argv)
460 		return 0;
461 
462 	for (i = 0; argv[i]; ++i) {
463 		if (i >= MAX_ARG_STRINGS)
464 			return -E2BIG;
465 		if (fatal_signal_pending(current))
466 			return -ERESTARTNOHAND;
467 		cond_resched();
468 	}
469 	return i;
470 }
471 
bprm_stack_limits(struct linux_binprm * bprm)472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474 	unsigned long limit, ptr_size;
475 
476 	/*
477 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 	 * (whichever is smaller) for the argv+env strings.
479 	 * This ensures that:
480 	 *  - the remaining binfmt code will not run out of stack space,
481 	 *  - the program will have a reasonable amount of stack left
482 	 *    to work from.
483 	 */
484 	limit = _STK_LIM / 4 * 3;
485 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 	/*
487 	 * We've historically supported up to 32 pages (ARG_MAX)
488 	 * of argument strings even with small stacks
489 	 */
490 	limit = max_t(unsigned long, limit, ARG_MAX);
491 	/*
492 	 * We must account for the size of all the argv and envp pointers to
493 	 * the argv and envp strings, since they will also take up space in
494 	 * the stack. They aren't stored until much later when we can't
495 	 * signal to the parent that the child has run out of stack space.
496 	 * Instead, calculate it here so it's possible to fail gracefully.
497 	 *
498 	 * In the case of argc = 0, make sure there is space for adding a
499 	 * empty string (which will bump argc to 1), to ensure confused
500 	 * userspace programs don't start processing from argv[1], thinking
501 	 * argc can never be 0, to keep them from walking envp by accident.
502 	 * See do_execveat_common().
503 	 */
504 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505 	if (limit <= ptr_size)
506 		return -E2BIG;
507 	limit -= ptr_size;
508 
509 	bprm->argmin = bprm->p - limit;
510 	return 0;
511 }
512 
513 /*
514  * 'copy_strings()' copies argument/environment strings from the old
515  * processes's memory to the new process's stack.  The call to get_user_pages()
516  * ensures the destination page is created and not swapped out.
517  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)518 static int copy_strings(int argc, struct user_arg_ptr argv,
519 			struct linux_binprm *bprm)
520 {
521 	struct page *kmapped_page = NULL;
522 	char *kaddr = NULL;
523 	unsigned long kpos = 0;
524 	int ret;
525 
526 	while (argc-- > 0) {
527 		const char __user *str;
528 		int len;
529 		unsigned long pos;
530 
531 		ret = -EFAULT;
532 		str = get_user_arg_ptr(argv, argc);
533 		if (IS_ERR(str))
534 			goto out;
535 
536 		len = strnlen_user(str, MAX_ARG_STRLEN);
537 		if (!len)
538 			goto out;
539 
540 		ret = -E2BIG;
541 		if (!valid_arg_len(bprm, len))
542 			goto out;
543 
544 		/* We're going to work our way backwards. */
545 		pos = bprm->p;
546 		str += len;
547 		bprm->p -= len;
548 #ifdef CONFIG_MMU
549 		if (bprm->p < bprm->argmin)
550 			goto out;
551 #endif
552 
553 		while (len > 0) {
554 			int offset, bytes_to_copy;
555 
556 			if (fatal_signal_pending(current)) {
557 				ret = -ERESTARTNOHAND;
558 				goto out;
559 			}
560 			cond_resched();
561 
562 			offset = pos % PAGE_SIZE;
563 			if (offset == 0)
564 				offset = PAGE_SIZE;
565 
566 			bytes_to_copy = offset;
567 			if (bytes_to_copy > len)
568 				bytes_to_copy = len;
569 
570 			offset -= bytes_to_copy;
571 			pos -= bytes_to_copy;
572 			str -= bytes_to_copy;
573 			len -= bytes_to_copy;
574 
575 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576 				struct page *page;
577 
578 				page = get_arg_page(bprm, pos, 1);
579 				if (!page) {
580 					ret = -E2BIG;
581 					goto out;
582 				}
583 
584 				if (kmapped_page) {
585 					flush_dcache_page(kmapped_page);
586 					kunmap(kmapped_page);
587 					put_arg_page(kmapped_page);
588 				}
589 				kmapped_page = page;
590 				kaddr = kmap(kmapped_page);
591 				kpos = pos & PAGE_MASK;
592 				flush_arg_page(bprm, kpos, kmapped_page);
593 			}
594 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595 				ret = -EFAULT;
596 				goto out;
597 			}
598 		}
599 	}
600 	ret = 0;
601 out:
602 	if (kmapped_page) {
603 		flush_dcache_page(kmapped_page);
604 		kunmap(kmapped_page);
605 		put_arg_page(kmapped_page);
606 	}
607 	return ret;
608 }
609 
610 /*
611  * Copy and argument/environment string from the kernel to the processes stack.
612  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614 {
615 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616 	unsigned long pos = bprm->p;
617 
618 	if (len == 0)
619 		return -EFAULT;
620 	if (!valid_arg_len(bprm, len))
621 		return -E2BIG;
622 
623 	/* We're going to work our way backwards. */
624 	arg += len;
625 	bprm->p -= len;
626 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627 		return -E2BIG;
628 
629 	while (len > 0) {
630 		unsigned int bytes_to_copy = min_t(unsigned int, len,
631 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
632 		struct page *page;
633 		char *kaddr;
634 
635 		pos -= bytes_to_copy;
636 		arg -= bytes_to_copy;
637 		len -= bytes_to_copy;
638 
639 		page = get_arg_page(bprm, pos, 1);
640 		if (!page)
641 			return -E2BIG;
642 		kaddr = kmap_atomic(page);
643 		flush_arg_page(bprm, pos & PAGE_MASK, page);
644 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
645 		flush_dcache_page(page);
646 		kunmap_atomic(kaddr);
647 		put_arg_page(page);
648 	}
649 
650 	return 0;
651 }
652 EXPORT_SYMBOL(copy_string_kernel);
653 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)654 static int copy_strings_kernel(int argc, const char *const *argv,
655 			       struct linux_binprm *bprm)
656 {
657 	while (argc-- > 0) {
658 		int ret = copy_string_kernel(argv[argc], bprm);
659 		if (ret < 0)
660 			return ret;
661 		if (fatal_signal_pending(current))
662 			return -ERESTARTNOHAND;
663 		cond_resched();
664 	}
665 	return 0;
666 }
667 
668 #ifdef CONFIG_MMU
669 
670 /*
671  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
672  * the binfmt code determines where the new stack should reside, we shift it to
673  * its final location.  The process proceeds as follows:
674  *
675  * 1) Use shift to calculate the new vma endpoints.
676  * 2) Extend vma to cover both the old and new ranges.  This ensures the
677  *    arguments passed to subsequent functions are consistent.
678  * 3) Move vma's page tables to the new range.
679  * 4) Free up any cleared pgd range.
680  * 5) Shrink the vma to cover only the new range.
681  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)682 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
683 {
684 	struct mm_struct *mm = vma->vm_mm;
685 	unsigned long old_start = vma->vm_start;
686 	unsigned long old_end = vma->vm_end;
687 	unsigned long length = old_end - old_start;
688 	unsigned long new_start = old_start - shift;
689 	unsigned long new_end = old_end - shift;
690 	struct mmu_gather tlb;
691 
692 	BUG_ON(new_start > new_end);
693 
694 	/*
695 	 * ensure there are no vmas between where we want to go
696 	 * and where we are
697 	 */
698 	if (vma != find_vma(mm, new_start))
699 		return -EFAULT;
700 
701 	/*
702 	 * cover the whole range: [new_start, old_end)
703 	 */
704 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
705 		return -ENOMEM;
706 
707 	/*
708 	 * move the page tables downwards, on failure we rely on
709 	 * process cleanup to remove whatever mess we made.
710 	 */
711 	if (length != move_page_tables(vma, old_start,
712 				       vma, new_start, length, false))
713 		return -ENOMEM;
714 
715 	lru_add_drain();
716 	tlb_gather_mmu(&tlb, mm);
717 	if (new_end > old_start) {
718 		/*
719 		 * when the old and new regions overlap clear from new_end.
720 		 */
721 		free_pgd_range(&tlb, new_end, old_end, new_end,
722 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
723 	} else {
724 		/*
725 		 * otherwise, clean from old_start; this is done to not touch
726 		 * the address space in [new_end, old_start) some architectures
727 		 * have constraints on va-space that make this illegal (IA64) -
728 		 * for the others its just a little faster.
729 		 */
730 		free_pgd_range(&tlb, old_start, old_end, new_end,
731 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
732 	}
733 	tlb_finish_mmu(&tlb);
734 
735 	/*
736 	 * Shrink the vma to just the new range.  Always succeeds.
737 	 */
738 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
739 
740 	return 0;
741 }
742 
743 /*
744  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745  * the stack is optionally relocated, and some extra space is added.
746  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)747 int setup_arg_pages(struct linux_binprm *bprm,
748 		    unsigned long stack_top,
749 		    int executable_stack)
750 {
751 	unsigned long ret;
752 	unsigned long stack_shift;
753 	struct mm_struct *mm = current->mm;
754 	struct vm_area_struct *vma = bprm->vma;
755 	struct vm_area_struct *prev = NULL;
756 	unsigned long vm_flags;
757 	unsigned long stack_base;
758 	unsigned long stack_size;
759 	unsigned long stack_expand;
760 	unsigned long rlim_stack;
761 	struct mmu_gather tlb;
762 
763 #ifdef CONFIG_STACK_GROWSUP
764 	/* Limit stack size */
765 	stack_base = bprm->rlim_stack.rlim_max;
766 
767 	stack_base = calc_max_stack_size(stack_base);
768 
769 	/* Add space for stack randomization. */
770 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
771 
772 	/* Make sure we didn't let the argument array grow too large. */
773 	if (vma->vm_end - vma->vm_start > stack_base)
774 		return -ENOMEM;
775 
776 	stack_base = PAGE_ALIGN(stack_top - stack_base);
777 
778 	stack_shift = vma->vm_start - stack_base;
779 	mm->arg_start = bprm->p - stack_shift;
780 	bprm->p = vma->vm_end - stack_shift;
781 #else
782 	stack_top = arch_align_stack(stack_top);
783 	stack_top = PAGE_ALIGN(stack_top);
784 
785 	if (unlikely(stack_top < mmap_min_addr) ||
786 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
787 		return -ENOMEM;
788 
789 	stack_shift = vma->vm_end - stack_top;
790 
791 	bprm->p -= stack_shift;
792 	mm->arg_start = bprm->p;
793 #endif
794 
795 	if (bprm->loader)
796 		bprm->loader -= stack_shift;
797 	bprm->exec -= stack_shift;
798 
799 	if (mmap_write_lock_killable(mm))
800 		return -EINTR;
801 
802 	vm_flags = VM_STACK_FLAGS;
803 
804 	/*
805 	 * Adjust stack execute permissions; explicitly enable for
806 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
807 	 * (arch default) otherwise.
808 	 */
809 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
810 		vm_flags |= VM_EXEC;
811 	else if (executable_stack == EXSTACK_DISABLE_X)
812 		vm_flags &= ~VM_EXEC;
813 	vm_flags |= mm->def_flags;
814 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
815 
816 	tlb_gather_mmu(&tlb, mm);
817 	ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
818 			vm_flags);
819 	tlb_finish_mmu(&tlb);
820 
821 	if (ret)
822 		goto out_unlock;
823 	BUG_ON(prev != vma);
824 
825 	if (unlikely(vm_flags & VM_EXEC)) {
826 		pr_warn_once("process '%pD4' started with executable stack\n",
827 			     bprm->file);
828 	}
829 
830 	/* Move stack pages down in memory. */
831 	if (stack_shift) {
832 		ret = shift_arg_pages(vma, stack_shift);
833 		if (ret)
834 			goto out_unlock;
835 	}
836 
837 	/* mprotect_fixup is overkill to remove the temporary stack flags */
838 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
839 
840 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
841 	stack_size = vma->vm_end - vma->vm_start;
842 	/*
843 	 * Align this down to a page boundary as expand_stack
844 	 * will align it up.
845 	 */
846 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
847 #ifdef CONFIG_STACK_GROWSUP
848 	if (stack_size + stack_expand > rlim_stack)
849 		stack_base = vma->vm_start + rlim_stack;
850 	else
851 		stack_base = vma->vm_end + stack_expand;
852 #else
853 	if (stack_size + stack_expand > rlim_stack)
854 		stack_base = vma->vm_end - rlim_stack;
855 	else
856 		stack_base = vma->vm_start - stack_expand;
857 #endif
858 	current->mm->start_stack = bprm->p;
859 	ret = expand_stack(vma, stack_base);
860 	if (ret)
861 		ret = -EFAULT;
862 
863 out_unlock:
864 	mmap_write_unlock(mm);
865 	return ret;
866 }
867 EXPORT_SYMBOL(setup_arg_pages);
868 
869 #else
870 
871 /*
872  * Transfer the program arguments and environment from the holding pages
873  * onto the stack. The provided stack pointer is adjusted accordingly.
874  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)875 int transfer_args_to_stack(struct linux_binprm *bprm,
876 			   unsigned long *sp_location)
877 {
878 	unsigned long index, stop, sp;
879 	int ret = 0;
880 
881 	stop = bprm->p >> PAGE_SHIFT;
882 	sp = *sp_location;
883 
884 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
885 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
886 		char *src = kmap(bprm->page[index]) + offset;
887 		sp -= PAGE_SIZE - offset;
888 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
889 			ret = -EFAULT;
890 		kunmap(bprm->page[index]);
891 		if (ret)
892 			goto out;
893 	}
894 
895 	*sp_location = sp;
896 
897 out:
898 	return ret;
899 }
900 EXPORT_SYMBOL(transfer_args_to_stack);
901 
902 #endif /* CONFIG_MMU */
903 
do_open_execat(int fd,struct filename * name,int flags)904 static struct file *do_open_execat(int fd, struct filename *name, int flags)
905 {
906 	struct file *file;
907 	int err;
908 	struct open_flags open_exec_flags = {
909 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
910 		.acc_mode = MAY_EXEC,
911 		.intent = LOOKUP_OPEN,
912 		.lookup_flags = LOOKUP_FOLLOW,
913 	};
914 
915 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
916 		return ERR_PTR(-EINVAL);
917 	if (flags & AT_SYMLINK_NOFOLLOW)
918 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
919 	if (flags & AT_EMPTY_PATH)
920 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
921 
922 	file = do_filp_open(fd, name, &open_exec_flags);
923 	if (IS_ERR(file))
924 		goto out;
925 
926 	/*
927 	 * may_open() has already checked for this, so it should be
928 	 * impossible to trip now. But we need to be extra cautious
929 	 * and check again at the very end too.
930 	 */
931 	err = -EACCES;
932 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
933 			 path_noexec(&file->f_path)))
934 		goto exit;
935 
936 	err = deny_write_access(file);
937 	if (err)
938 		goto exit;
939 
940 	if (name->name[0] != '\0')
941 		fsnotify_open(file);
942 
943 out:
944 	return file;
945 
946 exit:
947 	fput(file);
948 	return ERR_PTR(err);
949 }
950 
open_exec(const char * name)951 struct file *open_exec(const char *name)
952 {
953 	struct filename *filename = getname_kernel(name);
954 	struct file *f = ERR_CAST(filename);
955 
956 	if (!IS_ERR(filename)) {
957 		f = do_open_execat(AT_FDCWD, filename, 0);
958 		putname(filename);
959 	}
960 	return f;
961 }
962 EXPORT_SYMBOL(open_exec);
963 
964 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
965     defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)966 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
967 {
968 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
969 	if (res > 0)
970 		flush_icache_user_range(addr, addr + len);
971 	return res;
972 }
973 EXPORT_SYMBOL(read_code);
974 #endif
975 
976 /*
977  * Maps the mm_struct mm into the current task struct.
978  * On success, this function returns with exec_update_lock
979  * held for writing.
980  */
exec_mmap(struct mm_struct * mm)981 static int exec_mmap(struct mm_struct *mm)
982 {
983 	struct task_struct *tsk;
984 	struct mm_struct *old_mm, *active_mm;
985 	int ret;
986 
987 	/* Notify parent that we're no longer interested in the old VM */
988 	tsk = current;
989 	old_mm = current->mm;
990 	exec_mm_release(tsk, old_mm);
991 	if (old_mm)
992 		sync_mm_rss(old_mm);
993 
994 	ret = down_write_killable(&tsk->signal->exec_update_lock);
995 	if (ret)
996 		return ret;
997 
998 	if (old_mm) {
999 		/*
1000 		 * If there is a pending fatal signal perhaps a signal
1001 		 * whose default action is to create a coredump get
1002 		 * out and die instead of going through with the exec.
1003 		 */
1004 		ret = mmap_read_lock_killable(old_mm);
1005 		if (ret) {
1006 			up_write(&tsk->signal->exec_update_lock);
1007 			return ret;
1008 		}
1009 	}
1010 
1011 	task_lock(tsk);
1012 	membarrier_exec_mmap(mm);
1013 
1014 	local_irq_disable();
1015 	active_mm = tsk->active_mm;
1016 	tsk->active_mm = mm;
1017 	tsk->mm = mm;
1018 	/*
1019 	 * This prevents preemption while active_mm is being loaded and
1020 	 * it and mm are being updated, which could cause problems for
1021 	 * lazy tlb mm refcounting when these are updated by context
1022 	 * switches. Not all architectures can handle irqs off over
1023 	 * activate_mm yet.
1024 	 */
1025 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026 		local_irq_enable();
1027 	activate_mm(active_mm, mm);
1028 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029 		local_irq_enable();
1030 	tsk->mm->vmacache_seqnum = 0;
1031 	vmacache_flush(tsk);
1032 	task_unlock(tsk);
1033 	if (old_mm) {
1034 		mmap_read_unlock(old_mm);
1035 		BUG_ON(active_mm != old_mm);
1036 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1037 		mm_update_next_owner(old_mm);
1038 		mmput(old_mm);
1039 		return 0;
1040 	}
1041 	mmdrop(active_mm);
1042 	return 0;
1043 }
1044 
de_thread(struct task_struct * tsk)1045 static int de_thread(struct task_struct *tsk)
1046 {
1047 	struct signal_struct *sig = tsk->signal;
1048 	struct sighand_struct *oldsighand = tsk->sighand;
1049 	spinlock_t *lock = &oldsighand->siglock;
1050 
1051 	if (thread_group_empty(tsk))
1052 		goto no_thread_group;
1053 
1054 	/*
1055 	 * Kill all other threads in the thread group.
1056 	 */
1057 	spin_lock_irq(lock);
1058 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1059 		/*
1060 		 * Another group action in progress, just
1061 		 * return so that the signal is processed.
1062 		 */
1063 		spin_unlock_irq(lock);
1064 		return -EAGAIN;
1065 	}
1066 
1067 	sig->group_exec_task = tsk;
1068 	sig->notify_count = zap_other_threads(tsk);
1069 	if (!thread_group_leader(tsk))
1070 		sig->notify_count--;
1071 
1072 	while (sig->notify_count) {
1073 		__set_current_state(TASK_KILLABLE);
1074 		spin_unlock_irq(lock);
1075 		schedule();
1076 		if (__fatal_signal_pending(tsk))
1077 			goto killed;
1078 		spin_lock_irq(lock);
1079 	}
1080 	spin_unlock_irq(lock);
1081 
1082 	/*
1083 	 * At this point all other threads have exited, all we have to
1084 	 * do is to wait for the thread group leader to become inactive,
1085 	 * and to assume its PID:
1086 	 */
1087 	if (!thread_group_leader(tsk)) {
1088 		struct task_struct *leader = tsk->group_leader;
1089 
1090 		for (;;) {
1091 			cgroup_threadgroup_change_begin(tsk);
1092 			write_lock_irq(&tasklist_lock);
1093 			/*
1094 			 * Do this under tasklist_lock to ensure that
1095 			 * exit_notify() can't miss ->group_exec_task
1096 			 */
1097 			sig->notify_count = -1;
1098 			if (likely(leader->exit_state))
1099 				break;
1100 			__set_current_state(TASK_KILLABLE);
1101 			write_unlock_irq(&tasklist_lock);
1102 			cgroup_threadgroup_change_end(tsk);
1103 			schedule();
1104 			if (__fatal_signal_pending(tsk))
1105 				goto killed;
1106 		}
1107 
1108 		/*
1109 		 * The only record we have of the real-time age of a
1110 		 * process, regardless of execs it's done, is start_time.
1111 		 * All the past CPU time is accumulated in signal_struct
1112 		 * from sister threads now dead.  But in this non-leader
1113 		 * exec, nothing survives from the original leader thread,
1114 		 * whose birth marks the true age of this process now.
1115 		 * When we take on its identity by switching to its PID, we
1116 		 * also take its birthdate (always earlier than our own).
1117 		 */
1118 		tsk->start_time = leader->start_time;
1119 		tsk->start_boottime = leader->start_boottime;
1120 
1121 		BUG_ON(!same_thread_group(leader, tsk));
1122 		/*
1123 		 * An exec() starts a new thread group with the
1124 		 * TGID of the previous thread group. Rehash the
1125 		 * two threads with a switched PID, and release
1126 		 * the former thread group leader:
1127 		 */
1128 
1129 		/* Become a process group leader with the old leader's pid.
1130 		 * The old leader becomes a thread of the this thread group.
1131 		 */
1132 		exchange_tids(tsk, leader);
1133 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1134 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1135 		transfer_pid(leader, tsk, PIDTYPE_SID);
1136 
1137 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1138 		list_replace_init(&leader->sibling, &tsk->sibling);
1139 
1140 		tsk->group_leader = tsk;
1141 		leader->group_leader = tsk;
1142 
1143 		tsk->exit_signal = SIGCHLD;
1144 		leader->exit_signal = -1;
1145 
1146 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1147 		leader->exit_state = EXIT_DEAD;
1148 
1149 		/*
1150 		 * We are going to release_task()->ptrace_unlink() silently,
1151 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1152 		 * the tracer wont't block again waiting for this thread.
1153 		 */
1154 		if (unlikely(leader->ptrace))
1155 			__wake_up_parent(leader, leader->parent);
1156 		write_unlock_irq(&tasklist_lock);
1157 		cgroup_threadgroup_change_end(tsk);
1158 
1159 		release_task(leader);
1160 	}
1161 
1162 	sig->group_exec_task = NULL;
1163 	sig->notify_count = 0;
1164 
1165 no_thread_group:
1166 	/* we have changed execution domain */
1167 	tsk->exit_signal = SIGCHLD;
1168 
1169 	BUG_ON(!thread_group_leader(tsk));
1170 	return 0;
1171 
1172 killed:
1173 	/* protects against exit_notify() and __exit_signal() */
1174 	read_lock(&tasklist_lock);
1175 	sig->group_exec_task = NULL;
1176 	sig->notify_count = 0;
1177 	read_unlock(&tasklist_lock);
1178 	return -EAGAIN;
1179 }
1180 
1181 
1182 /*
1183  * This function makes sure the current process has its own signal table,
1184  * so that flush_signal_handlers can later reset the handlers without
1185  * disturbing other processes.  (Other processes might share the signal
1186  * table via the CLONE_SIGHAND option to clone().)
1187  */
unshare_sighand(struct task_struct * me)1188 static int unshare_sighand(struct task_struct *me)
1189 {
1190 	struct sighand_struct *oldsighand = me->sighand;
1191 
1192 	if (refcount_read(&oldsighand->count) != 1) {
1193 		struct sighand_struct *newsighand;
1194 		/*
1195 		 * This ->sighand is shared with the CLONE_SIGHAND
1196 		 * but not CLONE_THREAD task, switch to the new one.
1197 		 */
1198 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1199 		if (!newsighand)
1200 			return -ENOMEM;
1201 
1202 		refcount_set(&newsighand->count, 1);
1203 		memcpy(newsighand->action, oldsighand->action,
1204 		       sizeof(newsighand->action));
1205 
1206 		write_lock_irq(&tasklist_lock);
1207 		spin_lock(&oldsighand->siglock);
1208 		rcu_assign_pointer(me->sighand, newsighand);
1209 		spin_unlock(&oldsighand->siglock);
1210 		write_unlock_irq(&tasklist_lock);
1211 
1212 		__cleanup_sighand(oldsighand);
1213 	}
1214 	return 0;
1215 }
1216 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1217 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1218 {
1219 	task_lock(tsk);
1220 	/* Always NUL terminated and zero-padded */
1221 	strscpy_pad(buf, tsk->comm, buf_size);
1222 	task_unlock(tsk);
1223 	return buf;
1224 }
1225 EXPORT_SYMBOL_GPL(__get_task_comm);
1226 
1227 /*
1228  * These functions flushes out all traces of the currently running executable
1229  * so that a new one can be started
1230  */
1231 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1233 {
1234 	task_lock(tsk);
1235 	trace_task_rename(tsk, buf);
1236 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1237 	task_unlock(tsk);
1238 	perf_event_comm(tsk, exec);
1239 }
1240 
1241 /*
1242  * Calling this is the point of no return. None of the failures will be
1243  * seen by userspace since either the process is already taking a fatal
1244  * signal (via de_thread() or coredump), or will have SEGV raised
1245  * (after exec_mmap()) by search_binary_handler (see below).
1246  */
begin_new_exec(struct linux_binprm * bprm)1247 int begin_new_exec(struct linux_binprm * bprm)
1248 {
1249 	struct task_struct *me = current;
1250 	int retval;
1251 
1252 	/* Once we are committed compute the creds */
1253 	retval = bprm_creds_from_file(bprm);
1254 	if (retval)
1255 		return retval;
1256 
1257 	/*
1258 	 * Ensure all future errors are fatal.
1259 	 */
1260 	bprm->point_of_no_return = true;
1261 
1262 	/*
1263 	 * Make this the only thread in the thread group.
1264 	 */
1265 	retval = de_thread(me);
1266 	if (retval)
1267 		goto out;
1268 
1269 	/*
1270 	 * Cancel any io_uring activity across execve
1271 	 */
1272 	io_uring_task_cancel();
1273 
1274 	/* Ensure the files table is not shared. */
1275 	retval = unshare_files();
1276 	if (retval)
1277 		goto out;
1278 
1279 	/*
1280 	 * Must be called _before_ exec_mmap() as bprm->mm is
1281 	 * not visible until then. This also enables the update
1282 	 * to be lockless.
1283 	 */
1284 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1285 	if (retval)
1286 		goto out;
1287 
1288 	/* If the binary is not readable then enforce mm->dumpable=0 */
1289 	would_dump(bprm, bprm->file);
1290 	if (bprm->have_execfd)
1291 		would_dump(bprm, bprm->executable);
1292 
1293 	/*
1294 	 * Release all of the old mmap stuff
1295 	 */
1296 	acct_arg_size(bprm, 0);
1297 	retval = exec_mmap(bprm->mm);
1298 	if (retval)
1299 		goto out;
1300 
1301 	bprm->mm = NULL;
1302 
1303 #ifdef CONFIG_POSIX_TIMERS
1304 	spin_lock_irq(&me->sighand->siglock);
1305 	posix_cpu_timers_exit(me);
1306 	spin_unlock_irq(&me->sighand->siglock);
1307 	exit_itimers(me);
1308 	flush_itimer_signals();
1309 #endif
1310 
1311 	/*
1312 	 * Make the signal table private.
1313 	 */
1314 	retval = unshare_sighand(me);
1315 	if (retval)
1316 		goto out_unlock;
1317 
1318 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1319 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1320 	flush_thread();
1321 	me->personality &= ~bprm->per_clear;
1322 
1323 	clear_syscall_work_syscall_user_dispatch(me);
1324 
1325 	/*
1326 	 * We have to apply CLOEXEC before we change whether the process is
1327 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1328 	 * trying to access the should-be-closed file descriptors of a process
1329 	 * undergoing exec(2).
1330 	 */
1331 	do_close_on_exec(me->files);
1332 
1333 	if (bprm->secureexec) {
1334 		/* Make sure parent cannot signal privileged process. */
1335 		me->pdeath_signal = 0;
1336 
1337 		/*
1338 		 * For secureexec, reset the stack limit to sane default to
1339 		 * avoid bad behavior from the prior rlimits. This has to
1340 		 * happen before arch_pick_mmap_layout(), which examines
1341 		 * RLIMIT_STACK, but after the point of no return to avoid
1342 		 * needing to clean up the change on failure.
1343 		 */
1344 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1345 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1346 	}
1347 
1348 	me->sas_ss_sp = me->sas_ss_size = 0;
1349 
1350 	/*
1351 	 * Figure out dumpability. Note that this checking only of current
1352 	 * is wrong, but userspace depends on it. This should be testing
1353 	 * bprm->secureexec instead.
1354 	 */
1355 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1356 	    !(uid_eq(current_euid(), current_uid()) &&
1357 	      gid_eq(current_egid(), current_gid())))
1358 		set_dumpable(current->mm, suid_dumpable);
1359 	else
1360 		set_dumpable(current->mm, SUID_DUMP_USER);
1361 
1362 	perf_event_exec();
1363 	__set_task_comm(me, kbasename(bprm->filename), true);
1364 
1365 	/* An exec changes our domain. We are no longer part of the thread
1366 	   group */
1367 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1368 	flush_signal_handlers(me, 0);
1369 
1370 	retval = set_cred_ucounts(bprm->cred);
1371 	if (retval < 0)
1372 		goto out_unlock;
1373 
1374 	/*
1375 	 * install the new credentials for this executable
1376 	 */
1377 	security_bprm_committing_creds(bprm);
1378 
1379 	commit_creds(bprm->cred);
1380 	bprm->cred = NULL;
1381 
1382 	/*
1383 	 * Disable monitoring for regular users
1384 	 * when executing setuid binaries. Must
1385 	 * wait until new credentials are committed
1386 	 * by commit_creds() above
1387 	 */
1388 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1389 		perf_event_exit_task(me);
1390 	/*
1391 	 * cred_guard_mutex must be held at least to this point to prevent
1392 	 * ptrace_attach() from altering our determination of the task's
1393 	 * credentials; any time after this it may be unlocked.
1394 	 */
1395 	security_bprm_committed_creds(bprm);
1396 
1397 	/* Pass the opened binary to the interpreter. */
1398 	if (bprm->have_execfd) {
1399 		retval = get_unused_fd_flags(0);
1400 		if (retval < 0)
1401 			goto out_unlock;
1402 		fd_install(retval, bprm->executable);
1403 		bprm->executable = NULL;
1404 		bprm->execfd = retval;
1405 	}
1406 	return 0;
1407 
1408 out_unlock:
1409 	up_write(&me->signal->exec_update_lock);
1410 out:
1411 	return retval;
1412 }
1413 EXPORT_SYMBOL(begin_new_exec);
1414 
would_dump(struct linux_binprm * bprm,struct file * file)1415 void would_dump(struct linux_binprm *bprm, struct file *file)
1416 {
1417 	struct inode *inode = file_inode(file);
1418 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1419 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1420 		struct user_namespace *old, *user_ns;
1421 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1422 
1423 		/* Ensure mm->user_ns contains the executable */
1424 		user_ns = old = bprm->mm->user_ns;
1425 		while ((user_ns != &init_user_ns) &&
1426 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1427 			user_ns = user_ns->parent;
1428 
1429 		if (old != user_ns) {
1430 			bprm->mm->user_ns = get_user_ns(user_ns);
1431 			put_user_ns(old);
1432 		}
1433 	}
1434 }
1435 EXPORT_SYMBOL(would_dump);
1436 
setup_new_exec(struct linux_binprm * bprm)1437 void setup_new_exec(struct linux_binprm * bprm)
1438 {
1439 	/* Setup things that can depend upon the personality */
1440 	struct task_struct *me = current;
1441 
1442 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1443 
1444 	arch_setup_new_exec();
1445 
1446 	/* Set the new mm task size. We have to do that late because it may
1447 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1448 	 * some architectures like powerpc
1449 	 */
1450 	me->mm->task_size = TASK_SIZE;
1451 	up_write(&me->signal->exec_update_lock);
1452 	mutex_unlock(&me->signal->cred_guard_mutex);
1453 }
1454 EXPORT_SYMBOL(setup_new_exec);
1455 
1456 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1457 void finalize_exec(struct linux_binprm *bprm)
1458 {
1459 	/* Store any stack rlimit changes before starting thread. */
1460 	task_lock(current->group_leader);
1461 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1462 	task_unlock(current->group_leader);
1463 }
1464 EXPORT_SYMBOL(finalize_exec);
1465 
1466 /*
1467  * Prepare credentials and lock ->cred_guard_mutex.
1468  * setup_new_exec() commits the new creds and drops the lock.
1469  * Or, if exec fails before, free_bprm() should release ->cred
1470  * and unlock.
1471  */
prepare_bprm_creds(struct linux_binprm * bprm)1472 static int prepare_bprm_creds(struct linux_binprm *bprm)
1473 {
1474 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1475 		return -ERESTARTNOINTR;
1476 
1477 	bprm->cred = prepare_exec_creds();
1478 	if (likely(bprm->cred))
1479 		return 0;
1480 
1481 	mutex_unlock(&current->signal->cred_guard_mutex);
1482 	return -ENOMEM;
1483 }
1484 
free_bprm(struct linux_binprm * bprm)1485 static void free_bprm(struct linux_binprm *bprm)
1486 {
1487 	if (bprm->mm) {
1488 		acct_arg_size(bprm, 0);
1489 		mmput(bprm->mm);
1490 	}
1491 	free_arg_pages(bprm);
1492 	if (bprm->cred) {
1493 		mutex_unlock(&current->signal->cred_guard_mutex);
1494 		abort_creds(bprm->cred);
1495 	}
1496 	if (bprm->file) {
1497 		allow_write_access(bprm->file);
1498 		fput(bprm->file);
1499 	}
1500 	if (bprm->executable)
1501 		fput(bprm->executable);
1502 	/* If a binfmt changed the interp, free it. */
1503 	if (bprm->interp != bprm->filename)
1504 		kfree(bprm->interp);
1505 	kfree(bprm->fdpath);
1506 	kfree(bprm);
1507 }
1508 
alloc_bprm(int fd,struct filename * filename)1509 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1510 {
1511 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1512 	int retval = -ENOMEM;
1513 	if (!bprm)
1514 		goto out;
1515 
1516 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1517 		bprm->filename = filename->name;
1518 	} else {
1519 		if (filename->name[0] == '\0')
1520 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1521 		else
1522 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1523 						  fd, filename->name);
1524 		if (!bprm->fdpath)
1525 			goto out_free;
1526 
1527 		bprm->filename = bprm->fdpath;
1528 	}
1529 	bprm->interp = bprm->filename;
1530 
1531 	retval = bprm_mm_init(bprm);
1532 	if (retval)
1533 		goto out_free;
1534 	return bprm;
1535 
1536 out_free:
1537 	free_bprm(bprm);
1538 out:
1539 	return ERR_PTR(retval);
1540 }
1541 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1542 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1543 {
1544 	/* If a binfmt changed the interp, free it first. */
1545 	if (bprm->interp != bprm->filename)
1546 		kfree(bprm->interp);
1547 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1548 	if (!bprm->interp)
1549 		return -ENOMEM;
1550 	return 0;
1551 }
1552 EXPORT_SYMBOL(bprm_change_interp);
1553 
1554 /*
1555  * determine how safe it is to execute the proposed program
1556  * - the caller must hold ->cred_guard_mutex to protect against
1557  *   PTRACE_ATTACH or seccomp thread-sync
1558  */
check_unsafe_exec(struct linux_binprm * bprm)1559 static void check_unsafe_exec(struct linux_binprm *bprm)
1560 {
1561 	struct task_struct *p = current, *t;
1562 	unsigned n_fs;
1563 
1564 	if (p->ptrace)
1565 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1566 
1567 	/*
1568 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1569 	 * mess up.
1570 	 */
1571 	if (task_no_new_privs(current))
1572 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1573 
1574 	t = p;
1575 	n_fs = 1;
1576 	spin_lock(&p->fs->lock);
1577 	rcu_read_lock();
1578 	while_each_thread(p, t) {
1579 		if (t->fs == p->fs)
1580 			n_fs++;
1581 	}
1582 	rcu_read_unlock();
1583 
1584 	if (p->fs->users > n_fs)
1585 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1586 	else
1587 		p->fs->in_exec = 1;
1588 	spin_unlock(&p->fs->lock);
1589 }
1590 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1591 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1592 {
1593 	/* Handle suid and sgid on files */
1594 	struct user_namespace *mnt_userns;
1595 	struct inode *inode;
1596 	unsigned int mode;
1597 	kuid_t uid;
1598 	kgid_t gid;
1599 
1600 	if (!mnt_may_suid(file->f_path.mnt))
1601 		return;
1602 
1603 	if (task_no_new_privs(current))
1604 		return;
1605 
1606 	inode = file->f_path.dentry->d_inode;
1607 	mode = READ_ONCE(inode->i_mode);
1608 	if (!(mode & (S_ISUID|S_ISGID)))
1609 		return;
1610 
1611 	mnt_userns = file_mnt_user_ns(file);
1612 
1613 	/* Be careful if suid/sgid is set */
1614 	inode_lock(inode);
1615 
1616 	/* reload atomically mode/uid/gid now that lock held */
1617 	mode = inode->i_mode;
1618 	uid = i_uid_into_mnt(mnt_userns, inode);
1619 	gid = i_gid_into_mnt(mnt_userns, inode);
1620 	inode_unlock(inode);
1621 
1622 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1623 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1624 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1625 		return;
1626 
1627 	if (mode & S_ISUID) {
1628 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1629 		bprm->cred->euid = uid;
1630 	}
1631 
1632 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1633 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1634 		bprm->cred->egid = gid;
1635 	}
1636 }
1637 
1638 /*
1639  * Compute brpm->cred based upon the final binary.
1640  */
bprm_creds_from_file(struct linux_binprm * bprm)1641 static int bprm_creds_from_file(struct linux_binprm *bprm)
1642 {
1643 	/* Compute creds based on which file? */
1644 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1645 
1646 	bprm_fill_uid(bprm, file);
1647 	return security_bprm_creds_from_file(bprm, file);
1648 }
1649 
1650 /*
1651  * Fill the binprm structure from the inode.
1652  * Read the first BINPRM_BUF_SIZE bytes
1653  *
1654  * This may be called multiple times for binary chains (scripts for example).
1655  */
prepare_binprm(struct linux_binprm * bprm)1656 static int prepare_binprm(struct linux_binprm *bprm)
1657 {
1658 	loff_t pos = 0;
1659 
1660 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1661 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1662 }
1663 
1664 /*
1665  * Arguments are '\0' separated strings found at the location bprm->p
1666  * points to; chop off the first by relocating brpm->p to right after
1667  * the first '\0' encountered.
1668  */
remove_arg_zero(struct linux_binprm * bprm)1669 int remove_arg_zero(struct linux_binprm *bprm)
1670 {
1671 	int ret = 0;
1672 	unsigned long offset;
1673 	char *kaddr;
1674 	struct page *page;
1675 
1676 	if (!bprm->argc)
1677 		return 0;
1678 
1679 	do {
1680 		offset = bprm->p & ~PAGE_MASK;
1681 		page = get_arg_page(bprm, bprm->p, 0);
1682 		if (!page) {
1683 			ret = -EFAULT;
1684 			goto out;
1685 		}
1686 		kaddr = kmap_atomic(page);
1687 
1688 		for (; offset < PAGE_SIZE && kaddr[offset];
1689 				offset++, bprm->p++)
1690 			;
1691 
1692 		kunmap_atomic(kaddr);
1693 		put_arg_page(page);
1694 	} while (offset == PAGE_SIZE);
1695 
1696 	bprm->p++;
1697 	bprm->argc--;
1698 	ret = 0;
1699 
1700 out:
1701 	return ret;
1702 }
1703 EXPORT_SYMBOL(remove_arg_zero);
1704 
1705 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1706 /*
1707  * cycle the list of binary formats handler, until one recognizes the image
1708  */
search_binary_handler(struct linux_binprm * bprm)1709 static int search_binary_handler(struct linux_binprm *bprm)
1710 {
1711 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1712 	struct linux_binfmt *fmt;
1713 	int retval;
1714 
1715 	retval = prepare_binprm(bprm);
1716 	if (retval < 0)
1717 		return retval;
1718 
1719 	retval = security_bprm_check(bprm);
1720 	if (retval)
1721 		return retval;
1722 
1723 	retval = -ENOENT;
1724  retry:
1725 	read_lock(&binfmt_lock);
1726 	list_for_each_entry(fmt, &formats, lh) {
1727 		if (!try_module_get(fmt->module))
1728 			continue;
1729 		read_unlock(&binfmt_lock);
1730 
1731 		retval = fmt->load_binary(bprm);
1732 
1733 		read_lock(&binfmt_lock);
1734 		put_binfmt(fmt);
1735 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1736 			read_unlock(&binfmt_lock);
1737 			return retval;
1738 		}
1739 	}
1740 	read_unlock(&binfmt_lock);
1741 
1742 	if (need_retry) {
1743 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1744 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1745 			return retval;
1746 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1747 			return retval;
1748 		need_retry = false;
1749 		goto retry;
1750 	}
1751 
1752 	return retval;
1753 }
1754 
exec_binprm(struct linux_binprm * bprm)1755 static int exec_binprm(struct linux_binprm *bprm)
1756 {
1757 	pid_t old_pid, old_vpid;
1758 	int ret, depth;
1759 
1760 	/* Need to fetch pid before load_binary changes it */
1761 	old_pid = current->pid;
1762 	rcu_read_lock();
1763 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1764 	rcu_read_unlock();
1765 
1766 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1767 	for (depth = 0;; depth++) {
1768 		struct file *exec;
1769 		if (depth > 5)
1770 			return -ELOOP;
1771 
1772 		ret = search_binary_handler(bprm);
1773 		if (ret < 0)
1774 			return ret;
1775 		if (!bprm->interpreter)
1776 			break;
1777 
1778 		exec = bprm->file;
1779 		bprm->file = bprm->interpreter;
1780 		bprm->interpreter = NULL;
1781 
1782 		allow_write_access(exec);
1783 		if (unlikely(bprm->have_execfd)) {
1784 			if (bprm->executable) {
1785 				fput(exec);
1786 				return -ENOEXEC;
1787 			}
1788 			bprm->executable = exec;
1789 		} else
1790 			fput(exec);
1791 	}
1792 
1793 	audit_bprm(bprm);
1794 	trace_sched_process_exec(current, old_pid, bprm);
1795 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1796 	proc_exec_connector(current);
1797 	return 0;
1798 }
1799 
1800 /*
1801  * sys_execve() executes a new program.
1802  */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1803 static int bprm_execve(struct linux_binprm *bprm,
1804 		       int fd, struct filename *filename, int flags)
1805 {
1806 	struct file *file;
1807 	int retval;
1808 
1809 	retval = prepare_bprm_creds(bprm);
1810 	if (retval)
1811 		return retval;
1812 
1813 	check_unsafe_exec(bprm);
1814 	current->in_execve = 1;
1815 
1816 	file = do_open_execat(fd, filename, flags);
1817 	retval = PTR_ERR(file);
1818 	if (IS_ERR(file))
1819 		goto out_unmark;
1820 
1821 	sched_exec();
1822 
1823 	bprm->file = file;
1824 	/*
1825 	 * Record that a name derived from an O_CLOEXEC fd will be
1826 	 * inaccessible after exec.  This allows the code in exec to
1827 	 * choose to fail when the executable is not mmaped into the
1828 	 * interpreter and an open file descriptor is not passed to
1829 	 * the interpreter.  This makes for a better user experience
1830 	 * than having the interpreter start and then immediately fail
1831 	 * when it finds the executable is inaccessible.
1832 	 */
1833 	if (bprm->fdpath && get_close_on_exec(fd))
1834 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1835 
1836 	/* Set the unchanging part of bprm->cred */
1837 	retval = security_bprm_creds_for_exec(bprm);
1838 	if (retval)
1839 		goto out;
1840 
1841 	retval = exec_binprm(bprm);
1842 	if (retval < 0)
1843 		goto out;
1844 
1845 	/* execve succeeded */
1846 	current->fs->in_exec = 0;
1847 	current->in_execve = 0;
1848 	rseq_execve(current);
1849 	acct_update_integrals(current);
1850 	task_numa_free(current, false);
1851 	return retval;
1852 
1853 out:
1854 	/*
1855 	 * If past the point of no return ensure the code never
1856 	 * returns to the userspace process.  Use an existing fatal
1857 	 * signal if present otherwise terminate the process with
1858 	 * SIGSEGV.
1859 	 */
1860 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1861 		force_fatal_sig(SIGSEGV);
1862 
1863 out_unmark:
1864 	current->fs->in_exec = 0;
1865 	current->in_execve = 0;
1866 
1867 	return retval;
1868 }
1869 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1870 static int do_execveat_common(int fd, struct filename *filename,
1871 			      struct user_arg_ptr argv,
1872 			      struct user_arg_ptr envp,
1873 			      int flags)
1874 {
1875 	struct linux_binprm *bprm;
1876 	int retval;
1877 
1878 	if (IS_ERR(filename))
1879 		return PTR_ERR(filename);
1880 
1881 	/*
1882 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1883 	 * set*uid() to execve() because too many poorly written programs
1884 	 * don't check setuid() return code.  Here we additionally recheck
1885 	 * whether NPROC limit is still exceeded.
1886 	 */
1887 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1888 	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1889 		retval = -EAGAIN;
1890 		goto out_ret;
1891 	}
1892 
1893 	/* We're below the limit (still or again), so we don't want to make
1894 	 * further execve() calls fail. */
1895 	current->flags &= ~PF_NPROC_EXCEEDED;
1896 
1897 	bprm = alloc_bprm(fd, filename);
1898 	if (IS_ERR(bprm)) {
1899 		retval = PTR_ERR(bprm);
1900 		goto out_ret;
1901 	}
1902 
1903 	retval = count(argv, MAX_ARG_STRINGS);
1904 	if (retval == 0)
1905 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1906 			     current->comm, bprm->filename);
1907 	if (retval < 0)
1908 		goto out_free;
1909 	bprm->argc = retval;
1910 
1911 	retval = count(envp, MAX_ARG_STRINGS);
1912 	if (retval < 0)
1913 		goto out_free;
1914 	bprm->envc = retval;
1915 
1916 	retval = bprm_stack_limits(bprm);
1917 	if (retval < 0)
1918 		goto out_free;
1919 
1920 	retval = copy_string_kernel(bprm->filename, bprm);
1921 	if (retval < 0)
1922 		goto out_free;
1923 	bprm->exec = bprm->p;
1924 
1925 	retval = copy_strings(bprm->envc, envp, bprm);
1926 	if (retval < 0)
1927 		goto out_free;
1928 
1929 	retval = copy_strings(bprm->argc, argv, bprm);
1930 	if (retval < 0)
1931 		goto out_free;
1932 
1933 	/*
1934 	 * When argv is empty, add an empty string ("") as argv[0] to
1935 	 * ensure confused userspace programs that start processing
1936 	 * from argv[1] won't end up walking envp. See also
1937 	 * bprm_stack_limits().
1938 	 */
1939 	if (bprm->argc == 0) {
1940 		retval = copy_string_kernel("", bprm);
1941 		if (retval < 0)
1942 			goto out_free;
1943 		bprm->argc = 1;
1944 	}
1945 
1946 	retval = bprm_execve(bprm, fd, filename, flags);
1947 out_free:
1948 	free_bprm(bprm);
1949 
1950 out_ret:
1951 	putname(filename);
1952 	return retval;
1953 }
1954 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1955 int kernel_execve(const char *kernel_filename,
1956 		  const char *const *argv, const char *const *envp)
1957 {
1958 	struct filename *filename;
1959 	struct linux_binprm *bprm;
1960 	int fd = AT_FDCWD;
1961 	int retval;
1962 
1963 	/* It is non-sense for kernel threads to call execve */
1964 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1965 		return -EINVAL;
1966 
1967 	filename = getname_kernel(kernel_filename);
1968 	if (IS_ERR(filename))
1969 		return PTR_ERR(filename);
1970 
1971 	bprm = alloc_bprm(fd, filename);
1972 	if (IS_ERR(bprm)) {
1973 		retval = PTR_ERR(bprm);
1974 		goto out_ret;
1975 	}
1976 
1977 	retval = count_strings_kernel(argv);
1978 	if (WARN_ON_ONCE(retval == 0))
1979 		retval = -EINVAL;
1980 	if (retval < 0)
1981 		goto out_free;
1982 	bprm->argc = retval;
1983 
1984 	retval = count_strings_kernel(envp);
1985 	if (retval < 0)
1986 		goto out_free;
1987 	bprm->envc = retval;
1988 
1989 	retval = bprm_stack_limits(bprm);
1990 	if (retval < 0)
1991 		goto out_free;
1992 
1993 	retval = copy_string_kernel(bprm->filename, bprm);
1994 	if (retval < 0)
1995 		goto out_free;
1996 	bprm->exec = bprm->p;
1997 
1998 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1999 	if (retval < 0)
2000 		goto out_free;
2001 
2002 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2003 	if (retval < 0)
2004 		goto out_free;
2005 
2006 	retval = bprm_execve(bprm, fd, filename, 0);
2007 out_free:
2008 	free_bprm(bprm);
2009 out_ret:
2010 	putname(filename);
2011 	return retval;
2012 }
2013 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2014 static int do_execve(struct filename *filename,
2015 	const char __user *const __user *__argv,
2016 	const char __user *const __user *__envp)
2017 {
2018 	struct user_arg_ptr argv = { .ptr.native = __argv };
2019 	struct user_arg_ptr envp = { .ptr.native = __envp };
2020 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2021 }
2022 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2023 static int do_execveat(int fd, struct filename *filename,
2024 		const char __user *const __user *__argv,
2025 		const char __user *const __user *__envp,
2026 		int flags)
2027 {
2028 	struct user_arg_ptr argv = { .ptr.native = __argv };
2029 	struct user_arg_ptr envp = { .ptr.native = __envp };
2030 
2031 	return do_execveat_common(fd, filename, argv, envp, flags);
2032 }
2033 
2034 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2035 static int compat_do_execve(struct filename *filename,
2036 	const compat_uptr_t __user *__argv,
2037 	const compat_uptr_t __user *__envp)
2038 {
2039 	struct user_arg_ptr argv = {
2040 		.is_compat = true,
2041 		.ptr.compat = __argv,
2042 	};
2043 	struct user_arg_ptr envp = {
2044 		.is_compat = true,
2045 		.ptr.compat = __envp,
2046 	};
2047 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2048 }
2049 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2050 static int compat_do_execveat(int fd, struct filename *filename,
2051 			      const compat_uptr_t __user *__argv,
2052 			      const compat_uptr_t __user *__envp,
2053 			      int flags)
2054 {
2055 	struct user_arg_ptr argv = {
2056 		.is_compat = true,
2057 		.ptr.compat = __argv,
2058 	};
2059 	struct user_arg_ptr envp = {
2060 		.is_compat = true,
2061 		.ptr.compat = __envp,
2062 	};
2063 	return do_execveat_common(fd, filename, argv, envp, flags);
2064 }
2065 #endif
2066 
set_binfmt(struct linux_binfmt * new)2067 void set_binfmt(struct linux_binfmt *new)
2068 {
2069 	struct mm_struct *mm = current->mm;
2070 
2071 	if (mm->binfmt)
2072 		module_put(mm->binfmt->module);
2073 
2074 	mm->binfmt = new;
2075 	if (new)
2076 		__module_get(new->module);
2077 }
2078 EXPORT_SYMBOL(set_binfmt);
2079 
2080 /*
2081  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2082  */
set_dumpable(struct mm_struct * mm,int value)2083 void set_dumpable(struct mm_struct *mm, int value)
2084 {
2085 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2086 		return;
2087 
2088 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2089 }
2090 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2091 SYSCALL_DEFINE3(execve,
2092 		const char __user *, filename,
2093 		const char __user *const __user *, argv,
2094 		const char __user *const __user *, envp)
2095 {
2096 	return do_execve(getname(filename), argv, envp);
2097 }
2098 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2099 SYSCALL_DEFINE5(execveat,
2100 		int, fd, const char __user *, filename,
2101 		const char __user *const __user *, argv,
2102 		const char __user *const __user *, envp,
2103 		int, flags)
2104 {
2105 	return do_execveat(fd,
2106 			   getname_uflags(filename, flags),
2107 			   argv, envp, flags);
2108 }
2109 
2110 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2111 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2112 	const compat_uptr_t __user *, argv,
2113 	const compat_uptr_t __user *, envp)
2114 {
2115 	return compat_do_execve(getname(filename), argv, envp);
2116 }
2117 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2118 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2119 		       const char __user *, filename,
2120 		       const compat_uptr_t __user *, argv,
2121 		       const compat_uptr_t __user *, envp,
2122 		       int,  flags)
2123 {
2124 	return compat_do_execveat(fd,
2125 				  getname_uflags(filename, flags),
2126 				  argv, envp, flags);
2127 }
2128 #endif
2129 
2130 #ifdef CONFIG_SYSCTL
2131 
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2132 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2133 		void *buffer, size_t *lenp, loff_t *ppos)
2134 {
2135 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2136 
2137 	if (!error)
2138 		validate_coredump_safety();
2139 	return error;
2140 }
2141 
2142 static struct ctl_table fs_exec_sysctls[] = {
2143 	{
2144 		.procname	= "suid_dumpable",
2145 		.data		= &suid_dumpable,
2146 		.maxlen		= sizeof(int),
2147 		.mode		= 0644,
2148 		.proc_handler	= proc_dointvec_minmax_coredump,
2149 		.extra1		= SYSCTL_ZERO,
2150 		.extra2		= SYSCTL_TWO,
2151 	},
2152 	{ }
2153 };
2154 
init_fs_exec_sysctls(void)2155 static int __init init_fs_exec_sysctls(void)
2156 {
2157 	register_sysctl_init("fs", fs_exec_sysctls);
2158 	return 0;
2159 }
2160 
2161 fs_initcall(init_fs_exec_sysctls);
2162 #endif /* CONFIG_SYSCTL */
2163