1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33 
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h"	/* audit_signal_info() */
39 
40 /*
41  * SLAB caches for signal bits.
42  */
43 
44 static struct kmem_cache *sigqueue_cachep;
45 
46 int print_fatal_signals __read_mostly;
47 
sig_handler(struct task_struct * t,int sig)48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 	return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52 
sig_handler_ignored(void __user * handler,int sig)53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 	/* Is it explicitly or implicitly ignored? */
56 	return handler == SIG_IGN ||
57 		(handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59 
sig_task_ignored(struct task_struct * t,int sig,int from_ancestor_ns)60 static int sig_task_ignored(struct task_struct *t, int sig,
61 		int from_ancestor_ns)
62 {
63 	void __user *handler;
64 
65 	handler = sig_handler(t, sig);
66 
67 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 			handler == SIG_DFL && !from_ancestor_ns)
69 		return 1;
70 
71 	return sig_handler_ignored(handler, sig);
72 }
73 
sig_ignored(struct task_struct * t,int sig,int from_ancestor_ns)74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 	/*
77 	 * Blocked signals are never ignored, since the
78 	 * signal handler may change by the time it is
79 	 * unblocked.
80 	 */
81 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 		return 0;
83 
84 	if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 		return 0;
86 
87 	/*
88 	 * Tracers may want to know about even ignored signals.
89 	 */
90 	return !tracehook_consider_ignored_signal(t, sig);
91 }
92 
93 /*
94  * Re-calculate pending state from the set of locally pending
95  * signals, globally pending signals, and blocked signals.
96  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 	unsigned long ready;
100 	long i;
101 
102 	switch (_NSIG_WORDS) {
103 	default:
104 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 			ready |= signal->sig[i] &~ blocked->sig[i];
106 		break;
107 
108 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
109 		ready |= signal->sig[2] &~ blocked->sig[2];
110 		ready |= signal->sig[1] &~ blocked->sig[1];
111 		ready |= signal->sig[0] &~ blocked->sig[0];
112 		break;
113 
114 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
119 	}
120 	return ready !=	0;
121 }
122 
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124 
recalc_sigpending_tsk(struct task_struct * t)125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 	if (t->signal->group_stop_count > 0 ||
128 	    PENDING(&t->pending, &t->blocked) ||
129 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
130 		set_tsk_thread_flag(t, TIF_SIGPENDING);
131 		return 1;
132 	}
133 	/*
134 	 * We must never clear the flag in another thread, or in current
135 	 * when it's possible the current syscall is returning -ERESTART*.
136 	 * So we don't clear it here, and only callers who know they should do.
137 	 */
138 	return 0;
139 }
140 
141 /*
142  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143  * This is superfluous when called on current, the wakeup is a harmless no-op.
144  */
recalc_sigpending_and_wake(struct task_struct * t)145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 	if (recalc_sigpending_tsk(t))
148 		signal_wake_up(t, 0);
149 }
150 
recalc_sigpending(void)151 void recalc_sigpending(void)
152 {
153 	if (unlikely(tracehook_force_sigpending()))
154 		set_thread_flag(TIF_SIGPENDING);
155 	else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 		clear_thread_flag(TIF_SIGPENDING);
157 
158 }
159 
160 /* Given the mask, find the first available signal that should be serviced. */
161 
162 #define SYNCHRONOUS_MASK \
163 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
165 
next_signal(struct sigpending * pending,sigset_t * mask)166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 	unsigned long i, *s, *m, x;
169 	int sig = 0;
170 
171 	s = pending->signal.sig;
172 	m = mask->sig;
173 
174 	/*
175 	 * Handle the first word specially: it contains the
176 	 * synchronous signals that need to be dequeued first.
177 	 */
178 	x = *s &~ *m;
179 	if (x) {
180 		if (x & SYNCHRONOUS_MASK)
181 			x &= SYNCHRONOUS_MASK;
182 		sig = ffz(~x) + 1;
183 		return sig;
184 	}
185 
186 	switch (_NSIG_WORDS) {
187 	default:
188 		for (i = 1; i < _NSIG_WORDS; ++i) {
189 			x = *++s &~ *++m;
190 			if (!x)
191 				continue;
192 			sig = ffz(~x) + i*_NSIG_BPW + 1;
193 			break;
194 		}
195 		break;
196 
197 	case 2:
198 		x = s[1] &~ m[1];
199 		if (!x)
200 			break;
201 		sig = ffz(~x) + _NSIG_BPW + 1;
202 		break;
203 
204 	case 1:
205 		/* Nothing to do */
206 		break;
207 	}
208 
209 	return sig;
210 }
211 
print_dropped_signal(int sig)212 static inline void print_dropped_signal(int sig)
213 {
214 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215 
216 	if (!print_fatal_signals)
217 		return;
218 
219 	if (!__ratelimit(&ratelimit_state))
220 		return;
221 
222 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 				current->comm, current->pid, sig);
224 }
225 
226 /*
227  * allocate a new signal queue record
228  * - this may be called without locks if and only if t == current, otherwise an
229  *   appropriate lock must be held to stop the target task from exiting
230  */
231 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
233 {
234 	struct sigqueue *q = NULL;
235 	struct user_struct *user;
236 
237 	/*
238 	 * Protect access to @t credentials. This can go away when all
239 	 * callers hold rcu read lock.
240 	 */
241 	rcu_read_lock();
242 	user = get_uid(__task_cred(t)->user);
243 	atomic_inc(&user->sigpending);
244 	rcu_read_unlock();
245 
246 	if (override_rlimit ||
247 	    atomic_read(&user->sigpending) <=
248 			task_rlimit(t, RLIMIT_SIGPENDING)) {
249 		q = kmem_cache_alloc(sigqueue_cachep, flags);
250 	} else {
251 		print_dropped_signal(sig);
252 	}
253 
254 	if (unlikely(q == NULL)) {
255 		atomic_dec(&user->sigpending);
256 		free_uid(user);
257 	} else {
258 		INIT_LIST_HEAD(&q->list);
259 		q->flags = 0;
260 		q->user = user;
261 	}
262 
263 	return q;
264 }
265 
__sigqueue_free(struct sigqueue * q)266 static void __sigqueue_free(struct sigqueue *q)
267 {
268 	if (q->flags & SIGQUEUE_PREALLOC)
269 		return;
270 	atomic_dec(&q->user->sigpending);
271 	free_uid(q->user);
272 	kmem_cache_free(sigqueue_cachep, q);
273 }
274 
flush_sigqueue(struct sigpending * queue)275 void flush_sigqueue(struct sigpending *queue)
276 {
277 	struct sigqueue *q;
278 
279 	sigemptyset(&queue->signal);
280 	while (!list_empty(&queue->list)) {
281 		q = list_entry(queue->list.next, struct sigqueue , list);
282 		list_del_init(&q->list);
283 		__sigqueue_free(q);
284 	}
285 }
286 
287 /*
288  * Flush all pending signals for a task.
289  */
__flush_signals(struct task_struct * t)290 void __flush_signals(struct task_struct *t)
291 {
292 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 	flush_sigqueue(&t->pending);
294 	flush_sigqueue(&t->signal->shared_pending);
295 }
296 
flush_signals(struct task_struct * t)297 void flush_signals(struct task_struct *t)
298 {
299 	unsigned long flags;
300 
301 	spin_lock_irqsave(&t->sighand->siglock, flags);
302 	__flush_signals(t);
303 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
304 }
305 
__flush_itimer_signals(struct sigpending * pending)306 static void __flush_itimer_signals(struct sigpending *pending)
307 {
308 	sigset_t signal, retain;
309 	struct sigqueue *q, *n;
310 
311 	signal = pending->signal;
312 	sigemptyset(&retain);
313 
314 	list_for_each_entry_safe(q, n, &pending->list, list) {
315 		int sig = q->info.si_signo;
316 
317 		if (likely(q->info.si_code != SI_TIMER)) {
318 			sigaddset(&retain, sig);
319 		} else {
320 			sigdelset(&signal, sig);
321 			list_del_init(&q->list);
322 			__sigqueue_free(q);
323 		}
324 	}
325 
326 	sigorsets(&pending->signal, &signal, &retain);
327 }
328 
flush_itimer_signals(void)329 void flush_itimer_signals(void)
330 {
331 	struct task_struct *tsk = current;
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 	__flush_itimer_signals(&tsk->pending);
336 	__flush_itimer_signals(&tsk->signal->shared_pending);
337 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
338 }
339 
ignore_signals(struct task_struct * t)340 void ignore_signals(struct task_struct *t)
341 {
342 	int i;
343 
344 	for (i = 0; i < _NSIG; ++i)
345 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
346 
347 	flush_signals(t);
348 }
349 
350 /*
351  * Flush all handlers for a task.
352  */
353 
354 void
flush_signal_handlers(struct task_struct * t,int force_default)355 flush_signal_handlers(struct task_struct *t, int force_default)
356 {
357 	int i;
358 	struct k_sigaction *ka = &t->sighand->action[0];
359 	for (i = _NSIG ; i != 0 ; i--) {
360 		if (force_default || ka->sa.sa_handler != SIG_IGN)
361 			ka->sa.sa_handler = SIG_DFL;
362 		ka->sa.sa_flags = 0;
363 		sigemptyset(&ka->sa.sa_mask);
364 		ka++;
365 	}
366 }
367 
unhandled_signal(struct task_struct * tsk,int sig)368 int unhandled_signal(struct task_struct *tsk, int sig)
369 {
370 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 	if (is_global_init(tsk))
372 		return 1;
373 	if (handler != SIG_IGN && handler != SIG_DFL)
374 		return 0;
375 	return !tracehook_consider_fatal_signal(tsk, sig);
376 }
377 
378 /*
379  * Notify the system that a driver wants to block all signals for this
380  * process, and wants to be notified if any signals at all were to be
381  * sent/acted upon.  If the notifier routine returns non-zero, then the
382  * signal will be acted upon after all.  If the notifier routine returns 0,
383  * then then signal will be blocked.  Only one block per process is
384  * allowed.  priv is a pointer to private data that the notifier routine
385  * can use to determine if the signal should be blocked or not.
386  */
387 void
block_all_signals(int (* notifier)(void * priv),void * priv,sigset_t * mask)388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
389 {
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(&current->sighand->siglock, flags);
393 	current->notifier_mask = mask;
394 	current->notifier_data = priv;
395 	current->notifier = notifier;
396 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
397 }
398 
399 /* Notify the system that blocking has ended. */
400 
401 void
unblock_all_signals(void)402 unblock_all_signals(void)
403 {
404 	unsigned long flags;
405 
406 	spin_lock_irqsave(&current->sighand->siglock, flags);
407 	current->notifier = NULL;
408 	current->notifier_data = NULL;
409 	recalc_sigpending();
410 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
411 }
412 
collect_signal(int sig,struct sigpending * list,siginfo_t * info)413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
414 {
415 	struct sigqueue *q, *first = NULL;
416 
417 	/*
418 	 * Collect the siginfo appropriate to this signal.  Check if
419 	 * there is another siginfo for the same signal.
420 	*/
421 	list_for_each_entry(q, &list->list, list) {
422 		if (q->info.si_signo == sig) {
423 			if (first)
424 				goto still_pending;
425 			first = q;
426 		}
427 	}
428 
429 	sigdelset(&list->signal, sig);
430 
431 	if (first) {
432 still_pending:
433 		list_del_init(&first->list);
434 		copy_siginfo(info, &first->info);
435 		__sigqueue_free(first);
436 	} else {
437 		/*
438 		 * Ok, it wasn't in the queue.  This must be
439 		 * a fast-pathed signal or we must have been
440 		 * out of queue space.  So zero out the info.
441 		 */
442 		info->si_signo = sig;
443 		info->si_errno = 0;
444 		info->si_code = SI_USER;
445 		info->si_pid = 0;
446 		info->si_uid = 0;
447 	}
448 }
449 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info)450 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
451 			siginfo_t *info)
452 {
453 	int sig = next_signal(pending, mask);
454 
455 	if (sig) {
456 		if (current->notifier) {
457 			if (sigismember(current->notifier_mask, sig)) {
458 				if (!(current->notifier)(current->notifier_data)) {
459 					clear_thread_flag(TIF_SIGPENDING);
460 					return 0;
461 				}
462 			}
463 		}
464 
465 		collect_signal(sig, pending, info);
466 	}
467 
468 	return sig;
469 }
470 
471 /*
472  * Dequeue a signal and return the element to the caller, which is
473  * expected to free it.
474  *
475  * All callers have to hold the siglock.
476  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)477 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
478 {
479 	int signr;
480 
481 	/* We only dequeue private signals from ourselves, we don't let
482 	 * signalfd steal them
483 	 */
484 	signr = __dequeue_signal(&tsk->pending, mask, info);
485 	if (!signr) {
486 		signr = __dequeue_signal(&tsk->signal->shared_pending,
487 					 mask, info);
488 		/*
489 		 * itimer signal ?
490 		 *
491 		 * itimers are process shared and we restart periodic
492 		 * itimers in the signal delivery path to prevent DoS
493 		 * attacks in the high resolution timer case. This is
494 		 * compliant with the old way of self-restarting
495 		 * itimers, as the SIGALRM is a legacy signal and only
496 		 * queued once. Changing the restart behaviour to
497 		 * restart the timer in the signal dequeue path is
498 		 * reducing the timer noise on heavy loaded !highres
499 		 * systems too.
500 		 */
501 		if (unlikely(signr == SIGALRM)) {
502 			struct hrtimer *tmr = &tsk->signal->real_timer;
503 
504 			if (!hrtimer_is_queued(tmr) &&
505 			    tsk->signal->it_real_incr.tv64 != 0) {
506 				hrtimer_forward(tmr, tmr->base->get_time(),
507 						tsk->signal->it_real_incr);
508 				hrtimer_restart(tmr);
509 			}
510 		}
511 	}
512 
513 	recalc_sigpending();
514 	if (!signr)
515 		return 0;
516 
517 	if (unlikely(sig_kernel_stop(signr))) {
518 		/*
519 		 * Set a marker that we have dequeued a stop signal.  Our
520 		 * caller might release the siglock and then the pending
521 		 * stop signal it is about to process is no longer in the
522 		 * pending bitmasks, but must still be cleared by a SIGCONT
523 		 * (and overruled by a SIGKILL).  So those cases clear this
524 		 * shared flag after we've set it.  Note that this flag may
525 		 * remain set after the signal we return is ignored or
526 		 * handled.  That doesn't matter because its only purpose
527 		 * is to alert stop-signal processing code when another
528 		 * processor has come along and cleared the flag.
529 		 */
530 		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
531 	}
532 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
533 		/*
534 		 * Release the siglock to ensure proper locking order
535 		 * of timer locks outside of siglocks.  Note, we leave
536 		 * irqs disabled here, since the posix-timers code is
537 		 * about to disable them again anyway.
538 		 */
539 		spin_unlock(&tsk->sighand->siglock);
540 		do_schedule_next_timer(info);
541 		spin_lock(&tsk->sighand->siglock);
542 	}
543 	return signr;
544 }
545 
546 /*
547  * Tell a process that it has a new active signal..
548  *
549  * NOTE! we rely on the previous spin_lock to
550  * lock interrupts for us! We can only be called with
551  * "siglock" held, and the local interrupt must
552  * have been disabled when that got acquired!
553  *
554  * No need to set need_resched since signal event passing
555  * goes through ->blocked
556  */
signal_wake_up(struct task_struct * t,int resume)557 void signal_wake_up(struct task_struct *t, int resume)
558 {
559 	unsigned int mask;
560 
561 	set_tsk_thread_flag(t, TIF_SIGPENDING);
562 
563 	/*
564 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
565 	 * case. We don't check t->state here because there is a race with it
566 	 * executing another processor and just now entering stopped state.
567 	 * By using wake_up_state, we ensure the process will wake up and
568 	 * handle its death signal.
569 	 */
570 	mask = TASK_INTERRUPTIBLE;
571 	if (resume)
572 		mask |= TASK_WAKEKILL;
573 	if (!wake_up_state(t, mask))
574 		kick_process(t);
575 }
576 
577 /*
578  * Remove signals in mask from the pending set and queue.
579  * Returns 1 if any signals were found.
580  *
581  * All callers must be holding the siglock.
582  *
583  * This version takes a sigset mask and looks at all signals,
584  * not just those in the first mask word.
585  */
rm_from_queue_full(sigset_t * mask,struct sigpending * s)586 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
587 {
588 	struct sigqueue *q, *n;
589 	sigset_t m;
590 
591 	sigandsets(&m, mask, &s->signal);
592 	if (sigisemptyset(&m))
593 		return 0;
594 
595 	signandsets(&s->signal, &s->signal, mask);
596 	list_for_each_entry_safe(q, n, &s->list, list) {
597 		if (sigismember(mask, q->info.si_signo)) {
598 			list_del_init(&q->list);
599 			__sigqueue_free(q);
600 		}
601 	}
602 	return 1;
603 }
604 /*
605  * Remove signals in mask from the pending set and queue.
606  * Returns 1 if any signals were found.
607  *
608  * All callers must be holding the siglock.
609  */
rm_from_queue(unsigned long mask,struct sigpending * s)610 static int rm_from_queue(unsigned long mask, struct sigpending *s)
611 {
612 	struct sigqueue *q, *n;
613 
614 	if (!sigtestsetmask(&s->signal, mask))
615 		return 0;
616 
617 	sigdelsetmask(&s->signal, mask);
618 	list_for_each_entry_safe(q, n, &s->list, list) {
619 		if (q->info.si_signo < SIGRTMIN &&
620 		    (mask & sigmask(q->info.si_signo))) {
621 			list_del_init(&q->list);
622 			__sigqueue_free(q);
623 		}
624 	}
625 	return 1;
626 }
627 
is_si_special(const struct siginfo * info)628 static inline int is_si_special(const struct siginfo *info)
629 {
630 	return info <= SEND_SIG_FORCED;
631 }
632 
si_fromuser(const struct siginfo * info)633 static inline bool si_fromuser(const struct siginfo *info)
634 {
635 	return info == SEND_SIG_NOINFO ||
636 		(!is_si_special(info) && SI_FROMUSER(info));
637 }
638 
639 /*
640  * called with RCU read lock from check_kill_permission()
641  */
kill_ok_by_cred(struct task_struct * t)642 static int kill_ok_by_cred(struct task_struct *t)
643 {
644 	const struct cred *cred = current_cred();
645 	const struct cred *tcred = __task_cred(t);
646 
647 	if (cred->user->user_ns == tcred->user->user_ns &&
648 	    (cred->euid == tcred->suid ||
649 	     cred->euid == tcred->uid ||
650 	     cred->uid  == tcred->suid ||
651 	     cred->uid  == tcred->uid))
652 		return 1;
653 
654 	if (ns_capable(tcred->user->user_ns, CAP_KILL))
655 		return 1;
656 
657 	return 0;
658 }
659 
660 /*
661  * Bad permissions for sending the signal
662  * - the caller must hold the RCU read lock
663  */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)664 static int check_kill_permission(int sig, struct siginfo *info,
665 				 struct task_struct *t)
666 {
667 	struct pid *sid;
668 	int error;
669 
670 	if (!valid_signal(sig))
671 		return -EINVAL;
672 
673 	if (!si_fromuser(info))
674 		return 0;
675 
676 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
677 	if (error)
678 		return error;
679 
680 	if (!same_thread_group(current, t) &&
681 	    !kill_ok_by_cred(t)) {
682 		switch (sig) {
683 		case SIGCONT:
684 			sid = task_session(t);
685 			/*
686 			 * We don't return the error if sid == NULL. The
687 			 * task was unhashed, the caller must notice this.
688 			 */
689 			if (!sid || sid == task_session(current))
690 				break;
691 		default:
692 			return -EPERM;
693 		}
694 	}
695 
696 	return security_task_kill(t, info, sig, 0);
697 }
698 
699 /*
700  * Handle magic process-wide effects of stop/continue signals. Unlike
701  * the signal actions, these happen immediately at signal-generation
702  * time regardless of blocking, ignoring, or handling.  This does the
703  * actual continuing for SIGCONT, but not the actual stopping for stop
704  * signals. The process stop is done as a signal action for SIG_DFL.
705  *
706  * Returns true if the signal should be actually delivered, otherwise
707  * it should be dropped.
708  */
prepare_signal(int sig,struct task_struct * p,int from_ancestor_ns)709 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
710 {
711 	struct signal_struct *signal = p->signal;
712 	struct task_struct *t;
713 
714 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
715 		/*
716 		 * The process is in the middle of dying, nothing to do.
717 		 */
718 	} else if (sig_kernel_stop(sig)) {
719 		/*
720 		 * This is a stop signal.  Remove SIGCONT from all queues.
721 		 */
722 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
723 		t = p;
724 		do {
725 			rm_from_queue(sigmask(SIGCONT), &t->pending);
726 		} while_each_thread(p, t);
727 	} else if (sig == SIGCONT) {
728 		unsigned int why;
729 		/*
730 		 * Remove all stop signals from all queues,
731 		 * and wake all threads.
732 		 */
733 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
734 		t = p;
735 		do {
736 			unsigned int state;
737 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
738 			/*
739 			 * If there is a handler for SIGCONT, we must make
740 			 * sure that no thread returns to user mode before
741 			 * we post the signal, in case it was the only
742 			 * thread eligible to run the signal handler--then
743 			 * it must not do anything between resuming and
744 			 * running the handler.  With the TIF_SIGPENDING
745 			 * flag set, the thread will pause and acquire the
746 			 * siglock that we hold now and until we've queued
747 			 * the pending signal.
748 			 *
749 			 * Wake up the stopped thread _after_ setting
750 			 * TIF_SIGPENDING
751 			 */
752 			state = __TASK_STOPPED;
753 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
754 				set_tsk_thread_flag(t, TIF_SIGPENDING);
755 				state |= TASK_INTERRUPTIBLE;
756 			}
757 			wake_up_state(t, state);
758 		} while_each_thread(p, t);
759 
760 		/*
761 		 * Notify the parent with CLD_CONTINUED if we were stopped.
762 		 *
763 		 * If we were in the middle of a group stop, we pretend it
764 		 * was already finished, and then continued. Since SIGCHLD
765 		 * doesn't queue we report only CLD_STOPPED, as if the next
766 		 * CLD_CONTINUED was dropped.
767 		 */
768 		why = 0;
769 		if (signal->flags & SIGNAL_STOP_STOPPED)
770 			why |= SIGNAL_CLD_CONTINUED;
771 		else if (signal->group_stop_count)
772 			why |= SIGNAL_CLD_STOPPED;
773 
774 		if (why) {
775 			/*
776 			 * The first thread which returns from do_signal_stop()
777 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
778 			 * notify its parent. See get_signal_to_deliver().
779 			 */
780 			signal->flags = why | SIGNAL_STOP_CONTINUED;
781 			signal->group_stop_count = 0;
782 			signal->group_exit_code = 0;
783 		} else {
784 			/*
785 			 * We are not stopped, but there could be a stop
786 			 * signal in the middle of being processed after
787 			 * being removed from the queue.  Clear that too.
788 			 */
789 			signal->flags &= ~SIGNAL_STOP_DEQUEUED;
790 		}
791 	}
792 
793 	return !sig_ignored(p, sig, from_ancestor_ns);
794 }
795 
796 /*
797  * Test if P wants to take SIG.  After we've checked all threads with this,
798  * it's equivalent to finding no threads not blocking SIG.  Any threads not
799  * blocking SIG were ruled out because they are not running and already
800  * have pending signals.  Such threads will dequeue from the shared queue
801  * as soon as they're available, so putting the signal on the shared queue
802  * will be equivalent to sending it to one such thread.
803  */
wants_signal(int sig,struct task_struct * p)804 static inline int wants_signal(int sig, struct task_struct *p)
805 {
806 	if (sigismember(&p->blocked, sig))
807 		return 0;
808 	if (p->flags & PF_EXITING)
809 		return 0;
810 	if (sig == SIGKILL)
811 		return 1;
812 	if (task_is_stopped_or_traced(p))
813 		return 0;
814 	return task_curr(p) || !signal_pending(p);
815 }
816 
complete_signal(int sig,struct task_struct * p,int group)817 static void complete_signal(int sig, struct task_struct *p, int group)
818 {
819 	struct signal_struct *signal = p->signal;
820 	struct task_struct *t;
821 
822 	/*
823 	 * Now find a thread we can wake up to take the signal off the queue.
824 	 *
825 	 * If the main thread wants the signal, it gets first crack.
826 	 * Probably the least surprising to the average bear.
827 	 */
828 	if (wants_signal(sig, p))
829 		t = p;
830 	else if (!group || thread_group_empty(p))
831 		/*
832 		 * There is just one thread and it does not need to be woken.
833 		 * It will dequeue unblocked signals before it runs again.
834 		 */
835 		return;
836 	else {
837 		/*
838 		 * Otherwise try to find a suitable thread.
839 		 */
840 		t = signal->curr_target;
841 		while (!wants_signal(sig, t)) {
842 			t = next_thread(t);
843 			if (t == signal->curr_target)
844 				/*
845 				 * No thread needs to be woken.
846 				 * Any eligible threads will see
847 				 * the signal in the queue soon.
848 				 */
849 				return;
850 		}
851 		signal->curr_target = t;
852 	}
853 
854 	/*
855 	 * Found a killable thread.  If the signal will be fatal,
856 	 * then start taking the whole group down immediately.
857 	 */
858 	if (sig_fatal(p, sig) &&
859 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
860 	    !sigismember(&t->real_blocked, sig) &&
861 	    (sig == SIGKILL ||
862 	     !tracehook_consider_fatal_signal(t, sig))) {
863 		/*
864 		 * This signal will be fatal to the whole group.
865 		 */
866 		if (!sig_kernel_coredump(sig)) {
867 			/*
868 			 * Start a group exit and wake everybody up.
869 			 * This way we don't have other threads
870 			 * running and doing things after a slower
871 			 * thread has the fatal signal pending.
872 			 */
873 			signal->flags = SIGNAL_GROUP_EXIT;
874 			signal->group_exit_code = sig;
875 			signal->group_stop_count = 0;
876 			t = p;
877 			do {
878 				sigaddset(&t->pending.signal, SIGKILL);
879 				signal_wake_up(t, 1);
880 			} while_each_thread(p, t);
881 			return;
882 		}
883 	}
884 
885 	/*
886 	 * The signal is already in the shared-pending queue.
887 	 * Tell the chosen thread to wake up and dequeue it.
888 	 */
889 	signal_wake_up(t, sig == SIGKILL);
890 	return;
891 }
892 
legacy_queue(struct sigpending * signals,int sig)893 static inline int legacy_queue(struct sigpending *signals, int sig)
894 {
895 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
896 }
897 
__send_signal(int sig,struct siginfo * info,struct task_struct * t,int group,int from_ancestor_ns)898 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
899 			int group, int from_ancestor_ns)
900 {
901 	struct sigpending *pending;
902 	struct sigqueue *q;
903 	int override_rlimit;
904 
905 	trace_signal_generate(sig, info, t);
906 
907 	assert_spin_locked(&t->sighand->siglock);
908 
909 	if (!prepare_signal(sig, t, from_ancestor_ns))
910 		return 0;
911 
912 	pending = group ? &t->signal->shared_pending : &t->pending;
913 	/*
914 	 * Short-circuit ignored signals and support queuing
915 	 * exactly one non-rt signal, so that we can get more
916 	 * detailed information about the cause of the signal.
917 	 */
918 	if (legacy_queue(pending, sig))
919 		return 0;
920 	/*
921 	 * fast-pathed signals for kernel-internal things like SIGSTOP
922 	 * or SIGKILL.
923 	 */
924 	if (info == SEND_SIG_FORCED)
925 		goto out_set;
926 
927 	/*
928 	 * Real-time signals must be queued if sent by sigqueue, or
929 	 * some other real-time mechanism.  It is implementation
930 	 * defined whether kill() does so.  We attempt to do so, on
931 	 * the principle of least surprise, but since kill is not
932 	 * allowed to fail with EAGAIN when low on memory we just
933 	 * make sure at least one signal gets delivered and don't
934 	 * pass on the info struct.
935 	 */
936 	if (sig < SIGRTMIN)
937 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
938 	else
939 		override_rlimit = 0;
940 
941 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
942 		override_rlimit);
943 	if (q) {
944 		list_add_tail(&q->list, &pending->list);
945 		switch ((unsigned long) info) {
946 		case (unsigned long) SEND_SIG_NOINFO:
947 			q->info.si_signo = sig;
948 			q->info.si_errno = 0;
949 			q->info.si_code = SI_USER;
950 			q->info.si_pid = task_tgid_nr_ns(current,
951 							task_active_pid_ns(t));
952 			q->info.si_uid = current_uid();
953 			break;
954 		case (unsigned long) SEND_SIG_PRIV:
955 			q->info.si_signo = sig;
956 			q->info.si_errno = 0;
957 			q->info.si_code = SI_KERNEL;
958 			q->info.si_pid = 0;
959 			q->info.si_uid = 0;
960 			break;
961 		default:
962 			copy_siginfo(&q->info, info);
963 			if (from_ancestor_ns)
964 				q->info.si_pid = 0;
965 			break;
966 		}
967 	} else if (!is_si_special(info)) {
968 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
969 			/*
970 			 * Queue overflow, abort.  We may abort if the
971 			 * signal was rt and sent by user using something
972 			 * other than kill().
973 			 */
974 			trace_signal_overflow_fail(sig, group, info);
975 			return -EAGAIN;
976 		} else {
977 			/*
978 			 * This is a silent loss of information.  We still
979 			 * send the signal, but the *info bits are lost.
980 			 */
981 			trace_signal_lose_info(sig, group, info);
982 		}
983 	}
984 
985 out_set:
986 	signalfd_notify(t, sig);
987 	sigaddset(&pending->signal, sig);
988 	complete_signal(sig, t, group);
989 	return 0;
990 }
991 
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)992 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
993 			int group)
994 {
995 	int from_ancestor_ns = 0;
996 
997 #ifdef CONFIG_PID_NS
998 	from_ancestor_ns = si_fromuser(info) &&
999 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1000 #endif
1001 
1002 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1003 }
1004 
print_fatal_signal(struct pt_regs * regs,int signr)1005 static void print_fatal_signal(struct pt_regs *regs, int signr)
1006 {
1007 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1008 		current->comm, task_pid_nr(current), signr);
1009 
1010 #if defined(__i386__) && !defined(__arch_um__)
1011 	printk("code at %08lx: ", regs->ip);
1012 	{
1013 		int i;
1014 		for (i = 0; i < 16; i++) {
1015 			unsigned char insn;
1016 
1017 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1018 				break;
1019 			printk("%02x ", insn);
1020 		}
1021 	}
1022 #endif
1023 	printk("\n");
1024 	preempt_disable();
1025 	show_regs(regs);
1026 	preempt_enable();
1027 }
1028 
setup_print_fatal_signals(char * str)1029 static int __init setup_print_fatal_signals(char *str)
1030 {
1031 	get_option (&str, &print_fatal_signals);
1032 
1033 	return 1;
1034 }
1035 
1036 __setup("print-fatal-signals=", setup_print_fatal_signals);
1037 
1038 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1039 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1040 {
1041 	return send_signal(sig, info, p, 1);
1042 }
1043 
1044 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)1045 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1046 {
1047 	return send_signal(sig, info, t, 0);
1048 }
1049 
do_send_sig_info(int sig,struct siginfo * info,struct task_struct * p,bool group)1050 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1051 			bool group)
1052 {
1053 	unsigned long flags;
1054 	int ret = -ESRCH;
1055 
1056 	if (lock_task_sighand(p, &flags)) {
1057 		ret = send_signal(sig, info, p, group);
1058 		unlock_task_sighand(p, &flags);
1059 	}
1060 
1061 	return ret;
1062 }
1063 
1064 /*
1065  * Force a signal that the process can't ignore: if necessary
1066  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1067  *
1068  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1069  * since we do not want to have a signal handler that was blocked
1070  * be invoked when user space had explicitly blocked it.
1071  *
1072  * We don't want to have recursive SIGSEGV's etc, for example,
1073  * that is why we also clear SIGNAL_UNKILLABLE.
1074  */
1075 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)1076 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1077 {
1078 	unsigned long int flags;
1079 	int ret, blocked, ignored;
1080 	struct k_sigaction *action;
1081 
1082 	spin_lock_irqsave(&t->sighand->siglock, flags);
1083 	action = &t->sighand->action[sig-1];
1084 	ignored = action->sa.sa_handler == SIG_IGN;
1085 	blocked = sigismember(&t->blocked, sig);
1086 	if (blocked || ignored) {
1087 		action->sa.sa_handler = SIG_DFL;
1088 		if (blocked) {
1089 			sigdelset(&t->blocked, sig);
1090 			recalc_sigpending_and_wake(t);
1091 		}
1092 	}
1093 	if (action->sa.sa_handler == SIG_DFL)
1094 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1095 	ret = specific_send_sig_info(sig, info, t);
1096 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1097 
1098 	return ret;
1099 }
1100 
1101 /*
1102  * Nuke all other threads in the group.
1103  */
zap_other_threads(struct task_struct * p)1104 int zap_other_threads(struct task_struct *p)
1105 {
1106 	struct task_struct *t = p;
1107 	int count = 0;
1108 
1109 	p->signal->group_stop_count = 0;
1110 
1111 	while_each_thread(p, t) {
1112 		count++;
1113 
1114 		/* Don't bother with already dead threads */
1115 		if (t->exit_state)
1116 			continue;
1117 		sigaddset(&t->pending.signal, SIGKILL);
1118 		signal_wake_up(t, 1);
1119 	}
1120 
1121 	return count;
1122 }
1123 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1124 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1125 					   unsigned long *flags)
1126 {
1127 	struct sighand_struct *sighand;
1128 
1129 	rcu_read_lock();
1130 	for (;;) {
1131 		sighand = rcu_dereference(tsk->sighand);
1132 		if (unlikely(sighand == NULL))
1133 			break;
1134 
1135 		spin_lock_irqsave(&sighand->siglock, *flags);
1136 		if (likely(sighand == tsk->sighand))
1137 			break;
1138 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1139 	}
1140 	rcu_read_unlock();
1141 
1142 	return sighand;
1143 }
1144 
1145 /*
1146  * send signal info to all the members of a group
1147  */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1148 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1149 {
1150 	int ret;
1151 
1152 	rcu_read_lock();
1153 	ret = check_kill_permission(sig, info, p);
1154 	rcu_read_unlock();
1155 
1156 	if (!ret && sig)
1157 		ret = do_send_sig_info(sig, info, p, true);
1158 
1159 	return ret;
1160 }
1161 
1162 /*
1163  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1164  * control characters do (^C, ^Z etc)
1165  * - the caller must hold at least a readlock on tasklist_lock
1166  */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1167 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1168 {
1169 	struct task_struct *p = NULL;
1170 	int retval, success;
1171 
1172 	success = 0;
1173 	retval = -ESRCH;
1174 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1175 		int err = group_send_sig_info(sig, info, p);
1176 		success |= !err;
1177 		retval = err;
1178 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1179 	return success ? 0 : retval;
1180 }
1181 
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1182 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1183 {
1184 	int error = -ESRCH;
1185 	struct task_struct *p;
1186 
1187 	rcu_read_lock();
1188 retry:
1189 	p = pid_task(pid, PIDTYPE_PID);
1190 	if (p) {
1191 		error = group_send_sig_info(sig, info, p);
1192 		if (unlikely(error == -ESRCH))
1193 			/*
1194 			 * The task was unhashed in between, try again.
1195 			 * If it is dead, pid_task() will return NULL,
1196 			 * if we race with de_thread() it will find the
1197 			 * new leader.
1198 			 */
1199 			goto retry;
1200 	}
1201 	rcu_read_unlock();
1202 
1203 	return error;
1204 }
1205 
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1206 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1207 {
1208 	int error;
1209 	rcu_read_lock();
1210 	error = kill_pid_info(sig, info, find_vpid(pid));
1211 	rcu_read_unlock();
1212 	return error;
1213 }
1214 
1215 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_uid(int sig,struct siginfo * info,struct pid * pid,uid_t uid,uid_t euid,u32 secid)1216 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1217 		      uid_t uid, uid_t euid, u32 secid)
1218 {
1219 	int ret = -EINVAL;
1220 	struct task_struct *p;
1221 	const struct cred *pcred;
1222 	unsigned long flags;
1223 
1224 	if (!valid_signal(sig))
1225 		return ret;
1226 
1227 	rcu_read_lock();
1228 	p = pid_task(pid, PIDTYPE_PID);
1229 	if (!p) {
1230 		ret = -ESRCH;
1231 		goto out_unlock;
1232 	}
1233 	pcred = __task_cred(p);
1234 	if (si_fromuser(info) &&
1235 	    euid != pcred->suid && euid != pcred->uid &&
1236 	    uid  != pcred->suid && uid  != pcred->uid) {
1237 		ret = -EPERM;
1238 		goto out_unlock;
1239 	}
1240 	ret = security_task_kill(p, info, sig, secid);
1241 	if (ret)
1242 		goto out_unlock;
1243 
1244 	if (sig) {
1245 		if (lock_task_sighand(p, &flags)) {
1246 			ret = __send_signal(sig, info, p, 1, 0);
1247 			unlock_task_sighand(p, &flags);
1248 		} else
1249 			ret = -ESRCH;
1250 	}
1251 out_unlock:
1252 	rcu_read_unlock();
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1256 
1257 /*
1258  * kill_something_info() interprets pid in interesting ways just like kill(2).
1259  *
1260  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1261  * is probably wrong.  Should make it like BSD or SYSV.
1262  */
1263 
kill_something_info(int sig,struct siginfo * info,pid_t pid)1264 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1265 {
1266 	int ret;
1267 
1268 	if (pid > 0) {
1269 		rcu_read_lock();
1270 		ret = kill_pid_info(sig, info, find_vpid(pid));
1271 		rcu_read_unlock();
1272 		return ret;
1273 	}
1274 
1275 	read_lock(&tasklist_lock);
1276 	if (pid != -1) {
1277 		ret = __kill_pgrp_info(sig, info,
1278 				pid ? find_vpid(-pid) : task_pgrp(current));
1279 	} else {
1280 		int retval = 0, count = 0;
1281 		struct task_struct * p;
1282 
1283 		for_each_process(p) {
1284 			if (task_pid_vnr(p) > 1 &&
1285 					!same_thread_group(p, current)) {
1286 				int err = group_send_sig_info(sig, info, p);
1287 				++count;
1288 				if (err != -EPERM)
1289 					retval = err;
1290 			}
1291 		}
1292 		ret = count ? retval : -ESRCH;
1293 	}
1294 	read_unlock(&tasklist_lock);
1295 
1296 	return ret;
1297 }
1298 
1299 /*
1300  * These are for backward compatibility with the rest of the kernel source.
1301  */
1302 
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1303 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1304 {
1305 	/*
1306 	 * Make sure legacy kernel users don't send in bad values
1307 	 * (normal paths check this in check_kill_permission).
1308 	 */
1309 	if (!valid_signal(sig))
1310 		return -EINVAL;
1311 
1312 	return do_send_sig_info(sig, info, p, false);
1313 }
1314 
1315 #define __si_special(priv) \
1316 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1317 
1318 int
send_sig(int sig,struct task_struct * p,int priv)1319 send_sig(int sig, struct task_struct *p, int priv)
1320 {
1321 	return send_sig_info(sig, __si_special(priv), p);
1322 }
1323 
1324 void
force_sig(int sig,struct task_struct * p)1325 force_sig(int sig, struct task_struct *p)
1326 {
1327 	force_sig_info(sig, SEND_SIG_PRIV, p);
1328 }
1329 
1330 /*
1331  * When things go south during signal handling, we
1332  * will force a SIGSEGV. And if the signal that caused
1333  * the problem was already a SIGSEGV, we'll want to
1334  * make sure we don't even try to deliver the signal..
1335  */
1336 int
force_sigsegv(int sig,struct task_struct * p)1337 force_sigsegv(int sig, struct task_struct *p)
1338 {
1339 	if (sig == SIGSEGV) {
1340 		unsigned long flags;
1341 		spin_lock_irqsave(&p->sighand->siglock, flags);
1342 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1343 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1344 	}
1345 	force_sig(SIGSEGV, p);
1346 	return 0;
1347 }
1348 
kill_pgrp(struct pid * pid,int sig,int priv)1349 int kill_pgrp(struct pid *pid, int sig, int priv)
1350 {
1351 	int ret;
1352 
1353 	read_lock(&tasklist_lock);
1354 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1355 	read_unlock(&tasklist_lock);
1356 
1357 	return ret;
1358 }
1359 EXPORT_SYMBOL(kill_pgrp);
1360 
kill_pid(struct pid * pid,int sig,int priv)1361 int kill_pid(struct pid *pid, int sig, int priv)
1362 {
1363 	return kill_pid_info(sig, __si_special(priv), pid);
1364 }
1365 EXPORT_SYMBOL(kill_pid);
1366 
1367 /*
1368  * These functions support sending signals using preallocated sigqueue
1369  * structures.  This is needed "because realtime applications cannot
1370  * afford to lose notifications of asynchronous events, like timer
1371  * expirations or I/O completions".  In the case of POSIX Timers
1372  * we allocate the sigqueue structure from the timer_create.  If this
1373  * allocation fails we are able to report the failure to the application
1374  * with an EAGAIN error.
1375  */
sigqueue_alloc(void)1376 struct sigqueue *sigqueue_alloc(void)
1377 {
1378 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1379 
1380 	if (q)
1381 		q->flags |= SIGQUEUE_PREALLOC;
1382 
1383 	return q;
1384 }
1385 
sigqueue_free(struct sigqueue * q)1386 void sigqueue_free(struct sigqueue *q)
1387 {
1388 	unsigned long flags;
1389 	spinlock_t *lock = &current->sighand->siglock;
1390 
1391 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1392 	/*
1393 	 * We must hold ->siglock while testing q->list
1394 	 * to serialize with collect_signal() or with
1395 	 * __exit_signal()->flush_sigqueue().
1396 	 */
1397 	spin_lock_irqsave(lock, flags);
1398 	q->flags &= ~SIGQUEUE_PREALLOC;
1399 	/*
1400 	 * If it is queued it will be freed when dequeued,
1401 	 * like the "regular" sigqueue.
1402 	 */
1403 	if (!list_empty(&q->list))
1404 		q = NULL;
1405 	spin_unlock_irqrestore(lock, flags);
1406 
1407 	if (q)
1408 		__sigqueue_free(q);
1409 }
1410 
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1411 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1412 {
1413 	int sig = q->info.si_signo;
1414 	struct sigpending *pending;
1415 	unsigned long flags;
1416 	int ret;
1417 
1418 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1419 
1420 	ret = -1;
1421 	if (!likely(lock_task_sighand(t, &flags)))
1422 		goto ret;
1423 
1424 	ret = 1; /* the signal is ignored */
1425 	if (!prepare_signal(sig, t, 0))
1426 		goto out;
1427 
1428 	ret = 0;
1429 	if (unlikely(!list_empty(&q->list))) {
1430 		/*
1431 		 * If an SI_TIMER entry is already queue just increment
1432 		 * the overrun count.
1433 		 */
1434 		BUG_ON(q->info.si_code != SI_TIMER);
1435 		q->info.si_overrun++;
1436 		goto out;
1437 	}
1438 	q->info.si_overrun = 0;
1439 
1440 	signalfd_notify(t, sig);
1441 	pending = group ? &t->signal->shared_pending : &t->pending;
1442 	list_add_tail(&q->list, &pending->list);
1443 	sigaddset(&pending->signal, sig);
1444 	complete_signal(sig, t, group);
1445 out:
1446 	unlock_task_sighand(t, &flags);
1447 ret:
1448 	return ret;
1449 }
1450 
1451 /*
1452  * Let a parent know about the death of a child.
1453  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1454  *
1455  * Returns -1 if our parent ignored us and so we've switched to
1456  * self-reaping, or else @sig.
1457  */
do_notify_parent(struct task_struct * tsk,int sig)1458 int do_notify_parent(struct task_struct *tsk, int sig)
1459 {
1460 	struct siginfo info;
1461 	unsigned long flags;
1462 	struct sighand_struct *psig;
1463 	int ret = sig;
1464 
1465 	BUG_ON(sig == -1);
1466 
1467  	/* do_notify_parent_cldstop should have been called instead.  */
1468  	BUG_ON(task_is_stopped_or_traced(tsk));
1469 
1470 	BUG_ON(!task_ptrace(tsk) &&
1471 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1472 
1473 	info.si_signo = sig;
1474 	info.si_errno = 0;
1475 	/*
1476 	 * we are under tasklist_lock here so our parent is tied to
1477 	 * us and cannot exit and release its namespace.
1478 	 *
1479 	 * the only it can is to switch its nsproxy with sys_unshare,
1480 	 * bu uncharing pid namespaces is not allowed, so we'll always
1481 	 * see relevant namespace
1482 	 *
1483 	 * write_lock() currently calls preempt_disable() which is the
1484 	 * same as rcu_read_lock(), but according to Oleg, this is not
1485 	 * correct to rely on this
1486 	 */
1487 	rcu_read_lock();
1488 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1489 	info.si_uid = __task_cred(tsk)->uid;
1490 	rcu_read_unlock();
1491 
1492 	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1493 				tsk->signal->utime));
1494 	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1495 				tsk->signal->stime));
1496 
1497 	info.si_status = tsk->exit_code & 0x7f;
1498 	if (tsk->exit_code & 0x80)
1499 		info.si_code = CLD_DUMPED;
1500 	else if (tsk->exit_code & 0x7f)
1501 		info.si_code = CLD_KILLED;
1502 	else {
1503 		info.si_code = CLD_EXITED;
1504 		info.si_status = tsk->exit_code >> 8;
1505 	}
1506 
1507 	psig = tsk->parent->sighand;
1508 	spin_lock_irqsave(&psig->siglock, flags);
1509 	if (!task_ptrace(tsk) && sig == SIGCHLD &&
1510 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1511 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1512 		/*
1513 		 * We are exiting and our parent doesn't care.  POSIX.1
1514 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1515 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1516 		 * automatically and not left for our parent's wait4 call.
1517 		 * Rather than having the parent do it as a magic kind of
1518 		 * signal handler, we just set this to tell do_exit that we
1519 		 * can be cleaned up without becoming a zombie.  Note that
1520 		 * we still call __wake_up_parent in this case, because a
1521 		 * blocked sys_wait4 might now return -ECHILD.
1522 		 *
1523 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1524 		 * is implementation-defined: we do (if you don't want
1525 		 * it, just use SIG_IGN instead).
1526 		 */
1527 		ret = tsk->exit_signal = -1;
1528 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1529 			sig = -1;
1530 	}
1531 	if (valid_signal(sig) && sig > 0)
1532 		__group_send_sig_info(sig, &info, tsk->parent);
1533 	__wake_up_parent(tsk, tsk->parent);
1534 	spin_unlock_irqrestore(&psig->siglock, flags);
1535 
1536 	return ret;
1537 }
1538 
do_notify_parent_cldstop(struct task_struct * tsk,int why)1539 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1540 {
1541 	struct siginfo info;
1542 	unsigned long flags;
1543 	struct task_struct *parent;
1544 	struct sighand_struct *sighand;
1545 
1546 	if (task_ptrace(tsk))
1547 		parent = tsk->parent;
1548 	else {
1549 		tsk = tsk->group_leader;
1550 		parent = tsk->real_parent;
1551 	}
1552 
1553 	info.si_signo = SIGCHLD;
1554 	info.si_errno = 0;
1555 	/*
1556 	 * see comment in do_notify_parent() about the following 4 lines
1557 	 */
1558 	rcu_read_lock();
1559 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1560 	info.si_uid = __task_cred(tsk)->uid;
1561 	rcu_read_unlock();
1562 
1563 	info.si_utime = cputime_to_clock_t(tsk->utime);
1564 	info.si_stime = cputime_to_clock_t(tsk->stime);
1565 
1566  	info.si_code = why;
1567  	switch (why) {
1568  	case CLD_CONTINUED:
1569  		info.si_status = SIGCONT;
1570  		break;
1571  	case CLD_STOPPED:
1572  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1573  		break;
1574  	case CLD_TRAPPED:
1575  		info.si_status = tsk->exit_code & 0x7f;
1576  		break;
1577  	default:
1578  		BUG();
1579  	}
1580 
1581 	sighand = parent->sighand;
1582 	spin_lock_irqsave(&sighand->siglock, flags);
1583 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1584 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1585 		__group_send_sig_info(SIGCHLD, &info, parent);
1586 	/*
1587 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1588 	 */
1589 	__wake_up_parent(tsk, parent);
1590 	spin_unlock_irqrestore(&sighand->siglock, flags);
1591 }
1592 
may_ptrace_stop(void)1593 static inline int may_ptrace_stop(void)
1594 {
1595 	if (!likely(task_ptrace(current)))
1596 		return 0;
1597 	/*
1598 	 * Are we in the middle of do_coredump?
1599 	 * If so and our tracer is also part of the coredump stopping
1600 	 * is a deadlock situation, and pointless because our tracer
1601 	 * is dead so don't allow us to stop.
1602 	 * If SIGKILL was already sent before the caller unlocked
1603 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1604 	 * is safe to enter schedule().
1605 	 */
1606 	if (unlikely(current->mm->core_state) &&
1607 	    unlikely(current->mm == current->parent->mm))
1608 		return 0;
1609 
1610 	return 1;
1611 }
1612 
1613 /*
1614  * Return non-zero if there is a SIGKILL that should be waking us up.
1615  * Called with the siglock held.
1616  */
sigkill_pending(struct task_struct * tsk)1617 static int sigkill_pending(struct task_struct *tsk)
1618 {
1619 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1620 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1621 }
1622 
1623 /*
1624  * This must be called with current->sighand->siglock held.
1625  *
1626  * This should be the path for all ptrace stops.
1627  * We always set current->last_siginfo while stopped here.
1628  * That makes it a way to test a stopped process for
1629  * being ptrace-stopped vs being job-control-stopped.
1630  *
1631  * If we actually decide not to stop at all because the tracer
1632  * is gone, we keep current->exit_code unless clear_code.
1633  */
ptrace_stop(int exit_code,int clear_code,siginfo_t * info)1634 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1635 	__releases(&current->sighand->siglock)
1636 	__acquires(&current->sighand->siglock)
1637 {
1638 	if (arch_ptrace_stop_needed(exit_code, info)) {
1639 		/*
1640 		 * The arch code has something special to do before a
1641 		 * ptrace stop.  This is allowed to block, e.g. for faults
1642 		 * on user stack pages.  We can't keep the siglock while
1643 		 * calling arch_ptrace_stop, so we must release it now.
1644 		 * To preserve proper semantics, we must do this before
1645 		 * any signal bookkeeping like checking group_stop_count.
1646 		 * Meanwhile, a SIGKILL could come in before we retake the
1647 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1648 		 * So after regaining the lock, we must check for SIGKILL.
1649 		 */
1650 		spin_unlock_irq(&current->sighand->siglock);
1651 		arch_ptrace_stop(exit_code, info);
1652 		spin_lock_irq(&current->sighand->siglock);
1653 		if (sigkill_pending(current))
1654 			return;
1655 	}
1656 
1657 	/*
1658 	 * If there is a group stop in progress,
1659 	 * we must participate in the bookkeeping.
1660 	 */
1661 	if (current->signal->group_stop_count > 0)
1662 		--current->signal->group_stop_count;
1663 
1664 	current->last_siginfo = info;
1665 	current->exit_code = exit_code;
1666 
1667 	/* Let the debugger run.  */
1668 	__set_current_state(TASK_TRACED);
1669 	spin_unlock_irq(&current->sighand->siglock);
1670 	read_lock(&tasklist_lock);
1671 	if (may_ptrace_stop()) {
1672 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1673 		/*
1674 		 * Don't want to allow preemption here, because
1675 		 * sys_ptrace() needs this task to be inactive.
1676 		 *
1677 		 * XXX: implement read_unlock_no_resched().
1678 		 */
1679 		preempt_disable();
1680 		read_unlock(&tasklist_lock);
1681 		preempt_enable_no_resched();
1682 		schedule();
1683 	} else {
1684 		/*
1685 		 * By the time we got the lock, our tracer went away.
1686 		 * Don't drop the lock yet, another tracer may come.
1687 		 */
1688 		__set_current_state(TASK_RUNNING);
1689 		if (clear_code)
1690 			current->exit_code = 0;
1691 		read_unlock(&tasklist_lock);
1692 	}
1693 
1694 	/*
1695 	 * While in TASK_TRACED, we were considered "frozen enough".
1696 	 * Now that we woke up, it's crucial if we're supposed to be
1697 	 * frozen that we freeze now before running anything substantial.
1698 	 */
1699 	try_to_freeze();
1700 
1701 	/*
1702 	 * We are back.  Now reacquire the siglock before touching
1703 	 * last_siginfo, so that we are sure to have synchronized with
1704 	 * any signal-sending on another CPU that wants to examine it.
1705 	 */
1706 	spin_lock_irq(&current->sighand->siglock);
1707 	current->last_siginfo = NULL;
1708 
1709 	/*
1710 	 * Queued signals ignored us while we were stopped for tracing.
1711 	 * So check for any that we should take before resuming user mode.
1712 	 * This sets TIF_SIGPENDING, but never clears it.
1713 	 */
1714 	recalc_sigpending_tsk(current);
1715 }
1716 
ptrace_notify(int exit_code)1717 void ptrace_notify(int exit_code)
1718 {
1719 	siginfo_t info;
1720 
1721 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1722 
1723 	memset(&info, 0, sizeof info);
1724 	info.si_signo = SIGTRAP;
1725 	info.si_code = exit_code;
1726 	info.si_pid = task_pid_vnr(current);
1727 	info.si_uid = current_uid();
1728 
1729 	/* Let the debugger run.  */
1730 	spin_lock_irq(&current->sighand->siglock);
1731 	ptrace_stop(exit_code, 1, &info);
1732 	spin_unlock_irq(&current->sighand->siglock);
1733 }
1734 
1735 /*
1736  * This performs the stopping for SIGSTOP and other stop signals.
1737  * We have to stop all threads in the thread group.
1738  * Returns non-zero if we've actually stopped and released the siglock.
1739  * Returns zero if we didn't stop and still hold the siglock.
1740  */
do_signal_stop(int signr)1741 static int do_signal_stop(int signr)
1742 {
1743 	struct signal_struct *sig = current->signal;
1744 	int notify;
1745 
1746 	if (!sig->group_stop_count) {
1747 		struct task_struct *t;
1748 
1749 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1750 		    unlikely(signal_group_exit(sig)))
1751 			return 0;
1752 		/*
1753 		 * There is no group stop already in progress.
1754 		 * We must initiate one now.
1755 		 */
1756 		sig->group_exit_code = signr;
1757 
1758 		sig->group_stop_count = 1;
1759 		for (t = next_thread(current); t != current; t = next_thread(t))
1760 			/*
1761 			 * Setting state to TASK_STOPPED for a group
1762 			 * stop is always done with the siglock held,
1763 			 * so this check has no races.
1764 			 */
1765 			if (!(t->flags & PF_EXITING) &&
1766 			    !task_is_stopped_or_traced(t)) {
1767 				sig->group_stop_count++;
1768 				signal_wake_up(t, 0);
1769 			}
1770 	}
1771 	/*
1772 	 * If there are no other threads in the group, or if there is
1773 	 * a group stop in progress and we are the last to stop, report
1774 	 * to the parent.  When ptraced, every thread reports itself.
1775 	 */
1776 	notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1777 	notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1778 	/*
1779 	 * tracehook_notify_jctl() can drop and reacquire siglock, so
1780 	 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1781 	 * or SIGKILL comes in between ->group_stop_count == 0.
1782 	 */
1783 	if (sig->group_stop_count) {
1784 		if (!--sig->group_stop_count)
1785 			sig->flags = SIGNAL_STOP_STOPPED;
1786 		current->exit_code = sig->group_exit_code;
1787 		__set_current_state(TASK_STOPPED);
1788 	}
1789 	spin_unlock_irq(&current->sighand->siglock);
1790 
1791 	if (notify) {
1792 		read_lock(&tasklist_lock);
1793 		do_notify_parent_cldstop(current, notify);
1794 		read_unlock(&tasklist_lock);
1795 	}
1796 
1797 	/* Now we don't run again until woken by SIGCONT or SIGKILL */
1798 	do {
1799 		schedule();
1800 	} while (try_to_freeze());
1801 
1802 	tracehook_finish_jctl();
1803 	current->exit_code = 0;
1804 
1805 	return 1;
1806 }
1807 
ptrace_signal(int signr,siginfo_t * info,struct pt_regs * regs,void * cookie)1808 static int ptrace_signal(int signr, siginfo_t *info,
1809 			 struct pt_regs *regs, void *cookie)
1810 {
1811 	if (!task_ptrace(current))
1812 		return signr;
1813 
1814 	ptrace_signal_deliver(regs, cookie);
1815 
1816 	/* Let the debugger run.  */
1817 	ptrace_stop(signr, 0, info);
1818 
1819 	/* We're back.  Did the debugger cancel the sig?  */
1820 	signr = current->exit_code;
1821 	if (signr == 0)
1822 		return signr;
1823 
1824 	current->exit_code = 0;
1825 
1826 	/*
1827 	 * Update the siginfo structure if the signal has
1828 	 * changed.  If the debugger wanted something
1829 	 * specific in the siginfo structure then it should
1830 	 * have updated *info via PTRACE_SETSIGINFO.
1831 	 */
1832 	if (signr != info->si_signo) {
1833 		info->si_signo = signr;
1834 		info->si_errno = 0;
1835 		info->si_code = SI_USER;
1836 		info->si_pid = task_pid_vnr(current->parent);
1837 		info->si_uid = task_uid(current->parent);
1838 	}
1839 
1840 	/* If the (new) signal is now blocked, requeue it.  */
1841 	if (sigismember(&current->blocked, signr)) {
1842 		specific_send_sig_info(signr, info, current);
1843 		signr = 0;
1844 	}
1845 
1846 	return signr;
1847 }
1848 
get_signal_to_deliver(siginfo_t * info,struct k_sigaction * return_ka,struct pt_regs * regs,void * cookie)1849 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1850 			  struct pt_regs *regs, void *cookie)
1851 {
1852 	struct sighand_struct *sighand = current->sighand;
1853 	struct signal_struct *signal = current->signal;
1854 	int signr;
1855 
1856 relock:
1857 	/*
1858 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1859 	 * While in TASK_STOPPED, we were considered "frozen enough".
1860 	 * Now that we woke up, it's crucial if we're supposed to be
1861 	 * frozen that we freeze now before running anything substantial.
1862 	 */
1863 	try_to_freeze();
1864 
1865 	spin_lock_irq(&sighand->siglock);
1866 	/*
1867 	 * Every stopped thread goes here after wakeup. Check to see if
1868 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
1869 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1870 	 */
1871 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1872 		int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1873 				? CLD_CONTINUED : CLD_STOPPED;
1874 		signal->flags &= ~SIGNAL_CLD_MASK;
1875 
1876 		why = tracehook_notify_jctl(why, CLD_CONTINUED);
1877 		spin_unlock_irq(&sighand->siglock);
1878 
1879 		if (why) {
1880 			read_lock(&tasklist_lock);
1881 			do_notify_parent_cldstop(current->group_leader, why);
1882 			read_unlock(&tasklist_lock);
1883 		}
1884 		goto relock;
1885 	}
1886 
1887 	for (;;) {
1888 		struct k_sigaction *ka;
1889 		/*
1890 		 * Tracing can induce an artificial signal and choose sigaction.
1891 		 * The return value in @signr determines the default action,
1892 		 * but @info->si_signo is the signal number we will report.
1893 		 */
1894 		signr = tracehook_get_signal(current, regs, info, return_ka);
1895 		if (unlikely(signr < 0))
1896 			goto relock;
1897 		if (unlikely(signr != 0))
1898 			ka = return_ka;
1899 		else {
1900 			if (unlikely(signal->group_stop_count > 0) &&
1901 			    do_signal_stop(0))
1902 				goto relock;
1903 
1904 			signr = dequeue_signal(current, &current->blocked,
1905 					       info);
1906 
1907 			if (!signr)
1908 				break; /* will return 0 */
1909 
1910 			if (signr != SIGKILL) {
1911 				signr = ptrace_signal(signr, info,
1912 						      regs, cookie);
1913 				if (!signr)
1914 					continue;
1915 			}
1916 
1917 			ka = &sighand->action[signr-1];
1918 		}
1919 
1920 		/* Trace actually delivered signals. */
1921 		trace_signal_deliver(signr, info, ka);
1922 
1923 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1924 			continue;
1925 		if (ka->sa.sa_handler != SIG_DFL) {
1926 			/* Run the handler.  */
1927 			*return_ka = *ka;
1928 
1929 			if (ka->sa.sa_flags & SA_ONESHOT)
1930 				ka->sa.sa_handler = SIG_DFL;
1931 
1932 			break; /* will return non-zero "signr" value */
1933 		}
1934 
1935 		/*
1936 		 * Now we are doing the default action for this signal.
1937 		 */
1938 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1939 			continue;
1940 
1941 		/*
1942 		 * Global init gets no signals it doesn't want.
1943 		 * Container-init gets no signals it doesn't want from same
1944 		 * container.
1945 		 *
1946 		 * Note that if global/container-init sees a sig_kernel_only()
1947 		 * signal here, the signal must have been generated internally
1948 		 * or must have come from an ancestor namespace. In either
1949 		 * case, the signal cannot be dropped.
1950 		 */
1951 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1952 				!sig_kernel_only(signr))
1953 			continue;
1954 
1955 		if (sig_kernel_stop(signr)) {
1956 			/*
1957 			 * The default action is to stop all threads in
1958 			 * the thread group.  The job control signals
1959 			 * do nothing in an orphaned pgrp, but SIGSTOP
1960 			 * always works.  Note that siglock needs to be
1961 			 * dropped during the call to is_orphaned_pgrp()
1962 			 * because of lock ordering with tasklist_lock.
1963 			 * This allows an intervening SIGCONT to be posted.
1964 			 * We need to check for that and bail out if necessary.
1965 			 */
1966 			if (signr != SIGSTOP) {
1967 				spin_unlock_irq(&sighand->siglock);
1968 
1969 				/* signals can be posted during this window */
1970 
1971 				if (is_current_pgrp_orphaned())
1972 					goto relock;
1973 
1974 				spin_lock_irq(&sighand->siglock);
1975 			}
1976 
1977 			if (likely(do_signal_stop(info->si_signo))) {
1978 				/* It released the siglock.  */
1979 				goto relock;
1980 			}
1981 
1982 			/*
1983 			 * We didn't actually stop, due to a race
1984 			 * with SIGCONT or something like that.
1985 			 */
1986 			continue;
1987 		}
1988 
1989 		spin_unlock_irq(&sighand->siglock);
1990 
1991 		/*
1992 		 * Anything else is fatal, maybe with a core dump.
1993 		 */
1994 		current->flags |= PF_SIGNALED;
1995 
1996 		if (sig_kernel_coredump(signr)) {
1997 			if (print_fatal_signals)
1998 				print_fatal_signal(regs, info->si_signo);
1999 			/*
2000 			 * If it was able to dump core, this kills all
2001 			 * other threads in the group and synchronizes with
2002 			 * their demise.  If we lost the race with another
2003 			 * thread getting here, it set group_exit_code
2004 			 * first and our do_group_exit call below will use
2005 			 * that value and ignore the one we pass it.
2006 			 */
2007 			do_coredump(info->si_signo, info->si_signo, regs);
2008 		}
2009 
2010 		/*
2011 		 * Death signals, no core dump.
2012 		 */
2013 		do_group_exit(info->si_signo);
2014 		/* NOTREACHED */
2015 	}
2016 	spin_unlock_irq(&sighand->siglock);
2017 	return signr;
2018 }
2019 
exit_signals(struct task_struct * tsk)2020 void exit_signals(struct task_struct *tsk)
2021 {
2022 	int group_stop = 0;
2023 	struct task_struct *t;
2024 
2025 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2026 		tsk->flags |= PF_EXITING;
2027 		return;
2028 	}
2029 
2030 	spin_lock_irq(&tsk->sighand->siglock);
2031 	/*
2032 	 * From now this task is not visible for group-wide signals,
2033 	 * see wants_signal(), do_signal_stop().
2034 	 */
2035 	tsk->flags |= PF_EXITING;
2036 	if (!signal_pending(tsk))
2037 		goto out;
2038 
2039 	/*
2040 	 * It could be that __group_complete_signal() choose us to
2041 	 * notify about group-wide signal. Another thread should be
2042 	 * woken now to take the signal since we will not.
2043 	 */
2044 	for (t = tsk; (t = next_thread(t)) != tsk; )
2045 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
2046 			recalc_sigpending_and_wake(t);
2047 
2048 	if (unlikely(tsk->signal->group_stop_count) &&
2049 			!--tsk->signal->group_stop_count) {
2050 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
2051 		group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2052 	}
2053 out:
2054 	spin_unlock_irq(&tsk->sighand->siglock);
2055 
2056 	if (unlikely(group_stop)) {
2057 		read_lock(&tasklist_lock);
2058 		do_notify_parent_cldstop(tsk, group_stop);
2059 		read_unlock(&tasklist_lock);
2060 	}
2061 }
2062 
2063 EXPORT_SYMBOL(recalc_sigpending);
2064 EXPORT_SYMBOL_GPL(dequeue_signal);
2065 EXPORT_SYMBOL(flush_signals);
2066 EXPORT_SYMBOL(force_sig);
2067 EXPORT_SYMBOL(send_sig);
2068 EXPORT_SYMBOL(send_sig_info);
2069 EXPORT_SYMBOL(sigprocmask);
2070 EXPORT_SYMBOL(block_all_signals);
2071 EXPORT_SYMBOL(unblock_all_signals);
2072 
2073 
2074 /*
2075  * System call entry points.
2076  */
2077 
2078 /**
2079  *  sys_restart_syscall - restart a system call
2080  */
SYSCALL_DEFINE0(restart_syscall)2081 SYSCALL_DEFINE0(restart_syscall)
2082 {
2083 	struct restart_block *restart = &current_thread_info()->restart_block;
2084 	return restart->fn(restart);
2085 }
2086 
do_no_restart_syscall(struct restart_block * param)2087 long do_no_restart_syscall(struct restart_block *param)
2088 {
2089 	return -EINTR;
2090 }
2091 
2092 /*
2093  * We don't need to get the kernel lock - this is all local to this
2094  * particular thread.. (and that's good, because this is _heavily_
2095  * used by various programs)
2096  */
2097 
2098 /*
2099  * This is also useful for kernel threads that want to temporarily
2100  * (or permanently) block certain signals.
2101  *
2102  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2103  * interface happily blocks "unblockable" signals like SIGKILL
2104  * and friends.
2105  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2106 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2107 {
2108 	int error;
2109 
2110 	spin_lock_irq(&current->sighand->siglock);
2111 	if (oldset)
2112 		*oldset = current->blocked;
2113 
2114 	error = 0;
2115 	switch (how) {
2116 	case SIG_BLOCK:
2117 		sigorsets(&current->blocked, &current->blocked, set);
2118 		break;
2119 	case SIG_UNBLOCK:
2120 		signandsets(&current->blocked, &current->blocked, set);
2121 		break;
2122 	case SIG_SETMASK:
2123 		current->blocked = *set;
2124 		break;
2125 	default:
2126 		error = -EINVAL;
2127 	}
2128 	recalc_sigpending();
2129 	spin_unlock_irq(&current->sighand->siglock);
2130 
2131 	return error;
2132 }
2133 
2134 /**
2135  *  sys_rt_sigprocmask - change the list of currently blocked signals
2136  *  @how: whether to add, remove, or set signals
2137  *  @set: stores pending signals
2138  *  @oset: previous value of signal mask if non-null
2139  *  @sigsetsize: size of sigset_t type
2140  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,set,sigset_t __user *,oset,size_t,sigsetsize)2141 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2142 		sigset_t __user *, oset, size_t, sigsetsize)
2143 {
2144 	int error = -EINVAL;
2145 	sigset_t old_set, new_set;
2146 
2147 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2148 	if (sigsetsize != sizeof(sigset_t))
2149 		goto out;
2150 
2151 	if (set) {
2152 		error = -EFAULT;
2153 		if (copy_from_user(&new_set, set, sizeof(*set)))
2154 			goto out;
2155 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2156 
2157 		error = sigprocmask(how, &new_set, &old_set);
2158 		if (error)
2159 			goto out;
2160 		if (oset)
2161 			goto set_old;
2162 	} else if (oset) {
2163 		spin_lock_irq(&current->sighand->siglock);
2164 		old_set = current->blocked;
2165 		spin_unlock_irq(&current->sighand->siglock);
2166 
2167 	set_old:
2168 		error = -EFAULT;
2169 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2170 			goto out;
2171 	}
2172 	error = 0;
2173 out:
2174 	return error;
2175 }
2176 
do_sigpending(void __user * set,unsigned long sigsetsize)2177 long do_sigpending(void __user *set, unsigned long sigsetsize)
2178 {
2179 	long error = -EINVAL;
2180 	sigset_t pending;
2181 
2182 	if (sigsetsize > sizeof(sigset_t))
2183 		goto out;
2184 
2185 	spin_lock_irq(&current->sighand->siglock);
2186 	sigorsets(&pending, &current->pending.signal,
2187 		  &current->signal->shared_pending.signal);
2188 	spin_unlock_irq(&current->sighand->siglock);
2189 
2190 	/* Outside the lock because only this thread touches it.  */
2191 	sigandsets(&pending, &current->blocked, &pending);
2192 
2193 	error = -EFAULT;
2194 	if (!copy_to_user(set, &pending, sigsetsize))
2195 		error = 0;
2196 
2197 out:
2198 	return error;
2199 }
2200 
2201 /**
2202  *  sys_rt_sigpending - examine a pending signal that has been raised
2203  *			while blocked
2204  *  @set: stores pending signals
2205  *  @sigsetsize: size of sigset_t type or larger
2206  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,set,size_t,sigsetsize)2207 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2208 {
2209 	return do_sigpending(set, sigsetsize);
2210 }
2211 
2212 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2213 
copy_siginfo_to_user(siginfo_t __user * to,siginfo_t * from)2214 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2215 {
2216 	int err;
2217 
2218 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2219 		return -EFAULT;
2220 	if (from->si_code < 0)
2221 		return __copy_to_user(to, from, sizeof(siginfo_t))
2222 			? -EFAULT : 0;
2223 	/*
2224 	 * If you change siginfo_t structure, please be sure
2225 	 * this code is fixed accordingly.
2226 	 * Please remember to update the signalfd_copyinfo() function
2227 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2228 	 * It should never copy any pad contained in the structure
2229 	 * to avoid security leaks, but must copy the generic
2230 	 * 3 ints plus the relevant union member.
2231 	 */
2232 	err = __put_user(from->si_signo, &to->si_signo);
2233 	err |= __put_user(from->si_errno, &to->si_errno);
2234 	err |= __put_user((short)from->si_code, &to->si_code);
2235 	switch (from->si_code & __SI_MASK) {
2236 	case __SI_KILL:
2237 		err |= __put_user(from->si_pid, &to->si_pid);
2238 		err |= __put_user(from->si_uid, &to->si_uid);
2239 		break;
2240 	case __SI_TIMER:
2241 		 err |= __put_user(from->si_tid, &to->si_tid);
2242 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2243 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2244 		break;
2245 	case __SI_POLL:
2246 		err |= __put_user(from->si_band, &to->si_band);
2247 		err |= __put_user(from->si_fd, &to->si_fd);
2248 		break;
2249 	case __SI_FAULT:
2250 		err |= __put_user(from->si_addr, &to->si_addr);
2251 #ifdef __ARCH_SI_TRAPNO
2252 		err |= __put_user(from->si_trapno, &to->si_trapno);
2253 #endif
2254 #ifdef BUS_MCEERR_AO
2255 		/*
2256 		 * Other callers might not initialize the si_lsb field,
2257 		 * so check explicitly for the right codes here.
2258 		 */
2259 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2260 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2261 #endif
2262 		break;
2263 	case __SI_CHLD:
2264 		err |= __put_user(from->si_pid, &to->si_pid);
2265 		err |= __put_user(from->si_uid, &to->si_uid);
2266 		err |= __put_user(from->si_status, &to->si_status);
2267 		err |= __put_user(from->si_utime, &to->si_utime);
2268 		err |= __put_user(from->si_stime, &to->si_stime);
2269 		break;
2270 	case __SI_RT: /* This is not generated by the kernel as of now. */
2271 	case __SI_MESGQ: /* But this is */
2272 		err |= __put_user(from->si_pid, &to->si_pid);
2273 		err |= __put_user(from->si_uid, &to->si_uid);
2274 		err |= __put_user(from->si_ptr, &to->si_ptr);
2275 		break;
2276 	default: /* this is just in case for now ... */
2277 		err |= __put_user(from->si_pid, &to->si_pid);
2278 		err |= __put_user(from->si_uid, &to->si_uid);
2279 		break;
2280 	}
2281 	return err;
2282 }
2283 
2284 #endif
2285 
2286 /**
2287  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2288  *			in @uthese
2289  *  @uthese: queued signals to wait for
2290  *  @uinfo: if non-null, the signal's siginfo is returned here
2291  *  @uts: upper bound on process time suspension
2292  *  @sigsetsize: size of sigset_t type
2293  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2294 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2295 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2296 		size_t, sigsetsize)
2297 {
2298 	int ret, sig;
2299 	sigset_t these;
2300 	struct timespec ts;
2301 	siginfo_t info;
2302 	long timeout = 0;
2303 
2304 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2305 	if (sigsetsize != sizeof(sigset_t))
2306 		return -EINVAL;
2307 
2308 	if (copy_from_user(&these, uthese, sizeof(these)))
2309 		return -EFAULT;
2310 
2311 	/*
2312 	 * Invert the set of allowed signals to get those we
2313 	 * want to block.
2314 	 */
2315 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2316 	signotset(&these);
2317 
2318 	if (uts) {
2319 		if (copy_from_user(&ts, uts, sizeof(ts)))
2320 			return -EFAULT;
2321 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2322 		    || ts.tv_sec < 0)
2323 			return -EINVAL;
2324 	}
2325 
2326 	spin_lock_irq(&current->sighand->siglock);
2327 	sig = dequeue_signal(current, &these, &info);
2328 	if (!sig) {
2329 		timeout = MAX_SCHEDULE_TIMEOUT;
2330 		if (uts)
2331 			timeout = (timespec_to_jiffies(&ts)
2332 				   + (ts.tv_sec || ts.tv_nsec));
2333 
2334 		if (timeout) {
2335 			/*
2336 			 * None ready -- temporarily unblock those we're
2337 			 * interested while we are sleeping in so that we'll
2338 			 * be awakened when they arrive.
2339 			 */
2340 			current->real_blocked = current->blocked;
2341 			sigandsets(&current->blocked, &current->blocked, &these);
2342 			recalc_sigpending();
2343 			spin_unlock_irq(&current->sighand->siglock);
2344 
2345 			timeout = schedule_timeout_interruptible(timeout);
2346 
2347 			spin_lock_irq(&current->sighand->siglock);
2348 			sig = dequeue_signal(current, &these, &info);
2349 			current->blocked = current->real_blocked;
2350 			siginitset(&current->real_blocked, 0);
2351 			recalc_sigpending();
2352 		}
2353 	}
2354 	spin_unlock_irq(&current->sighand->siglock);
2355 
2356 	if (sig) {
2357 		ret = sig;
2358 		if (uinfo) {
2359 			if (copy_siginfo_to_user(uinfo, &info))
2360 				ret = -EFAULT;
2361 		}
2362 	} else {
2363 		ret = -EAGAIN;
2364 		if (timeout)
2365 			ret = -EINTR;
2366 	}
2367 
2368 	return ret;
2369 }
2370 
2371 /**
2372  *  sys_kill - send a signal to a process
2373  *  @pid: the PID of the process
2374  *  @sig: signal to be sent
2375  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)2376 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2377 {
2378 	struct siginfo info;
2379 
2380 	info.si_signo = sig;
2381 	info.si_errno = 0;
2382 	info.si_code = SI_USER;
2383 	info.si_pid = task_tgid_vnr(current);
2384 	info.si_uid = current_uid();
2385 
2386 	return kill_something_info(sig, &info, pid);
2387 }
2388 
2389 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct siginfo * info)2390 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2391 {
2392 	struct task_struct *p;
2393 	int error = -ESRCH;
2394 
2395 	rcu_read_lock();
2396 	p = find_task_by_vpid(pid);
2397 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2398 		error = check_kill_permission(sig, info, p);
2399 		/*
2400 		 * The null signal is a permissions and process existence
2401 		 * probe.  No signal is actually delivered.
2402 		 */
2403 		if (!error && sig) {
2404 			error = do_send_sig_info(sig, info, p, false);
2405 			/*
2406 			 * If lock_task_sighand() failed we pretend the task
2407 			 * dies after receiving the signal. The window is tiny,
2408 			 * and the signal is private anyway.
2409 			 */
2410 			if (unlikely(error == -ESRCH))
2411 				error = 0;
2412 		}
2413 	}
2414 	rcu_read_unlock();
2415 
2416 	return error;
2417 }
2418 
do_tkill(pid_t tgid,pid_t pid,int sig)2419 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2420 {
2421 	struct siginfo info;
2422 
2423 	info.si_signo = sig;
2424 	info.si_errno = 0;
2425 	info.si_code = SI_TKILL;
2426 	info.si_pid = task_tgid_vnr(current);
2427 	info.si_uid = current_uid();
2428 
2429 	return do_send_specific(tgid, pid, sig, &info);
2430 }
2431 
2432 /**
2433  *  sys_tgkill - send signal to one specific thread
2434  *  @tgid: the thread group ID of the thread
2435  *  @pid: the PID of the thread
2436  *  @sig: signal to be sent
2437  *
2438  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2439  *  exists but it's not belonging to the target process anymore. This
2440  *  method solves the problem of threads exiting and PIDs getting reused.
2441  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)2442 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2443 {
2444 	/* This is only valid for single tasks */
2445 	if (pid <= 0 || tgid <= 0)
2446 		return -EINVAL;
2447 
2448 	return do_tkill(tgid, pid, sig);
2449 }
2450 
2451 /**
2452  *  sys_tkill - send signal to one specific task
2453  *  @pid: the PID of the task
2454  *  @sig: signal to be sent
2455  *
2456  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2457  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)2458 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2459 {
2460 	/* This is only valid for single tasks */
2461 	if (pid <= 0)
2462 		return -EINVAL;
2463 
2464 	return do_tkill(0, pid, sig);
2465 }
2466 
2467 /**
2468  *  sys_rt_sigqueueinfo - send signal information to a signal
2469  *  @pid: the PID of the thread
2470  *  @sig: signal to be sent
2471  *  @uinfo: signal info to be sent
2472  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2473 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2474 		siginfo_t __user *, uinfo)
2475 {
2476 	siginfo_t info;
2477 
2478 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2479 		return -EFAULT;
2480 
2481 	/* Not even root can pretend to send signals from the kernel.
2482 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2483 	 */
2484 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2485 		/* We used to allow any < 0 si_code */
2486 		WARN_ON_ONCE(info.si_code < 0);
2487 		return -EPERM;
2488 	}
2489 	info.si_signo = sig;
2490 
2491 	/* POSIX.1b doesn't mention process groups.  */
2492 	return kill_proc_info(sig, &info, pid);
2493 }
2494 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,siginfo_t * info)2495 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2496 {
2497 	/* This is only valid for single tasks */
2498 	if (pid <= 0 || tgid <= 0)
2499 		return -EINVAL;
2500 
2501 	/* Not even root can pretend to send signals from the kernel.
2502 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2503 	 */
2504 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2505 		/* We used to allow any < 0 si_code */
2506 		WARN_ON_ONCE(info->si_code < 0);
2507 		return -EPERM;
2508 	}
2509 	info->si_signo = sig;
2510 
2511 	return do_send_specific(tgid, pid, sig, info);
2512 }
2513 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2514 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2515 		siginfo_t __user *, uinfo)
2516 {
2517 	siginfo_t info;
2518 
2519 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2520 		return -EFAULT;
2521 
2522 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2523 }
2524 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)2525 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2526 {
2527 	struct task_struct *t = current;
2528 	struct k_sigaction *k;
2529 	sigset_t mask;
2530 
2531 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2532 		return -EINVAL;
2533 
2534 	k = &t->sighand->action[sig-1];
2535 
2536 	spin_lock_irq(&current->sighand->siglock);
2537 	if (oact)
2538 		*oact = *k;
2539 
2540 	if (act) {
2541 		sigdelsetmask(&act->sa.sa_mask,
2542 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2543 		*k = *act;
2544 		/*
2545 		 * POSIX 3.3.1.3:
2546 		 *  "Setting a signal action to SIG_IGN for a signal that is
2547 		 *   pending shall cause the pending signal to be discarded,
2548 		 *   whether or not it is blocked."
2549 		 *
2550 		 *  "Setting a signal action to SIG_DFL for a signal that is
2551 		 *   pending and whose default action is to ignore the signal
2552 		 *   (for example, SIGCHLD), shall cause the pending signal to
2553 		 *   be discarded, whether or not it is blocked"
2554 		 */
2555 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2556 			sigemptyset(&mask);
2557 			sigaddset(&mask, sig);
2558 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2559 			do {
2560 				rm_from_queue_full(&mask, &t->pending);
2561 				t = next_thread(t);
2562 			} while (t != current);
2563 		}
2564 	}
2565 
2566 	spin_unlock_irq(&current->sighand->siglock);
2567 	return 0;
2568 }
2569 
2570 int
do_sigaltstack(const stack_t __user * uss,stack_t __user * uoss,unsigned long sp)2571 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2572 {
2573 	stack_t oss;
2574 	int error;
2575 
2576 	oss.ss_sp = (void __user *) current->sas_ss_sp;
2577 	oss.ss_size = current->sas_ss_size;
2578 	oss.ss_flags = sas_ss_flags(sp);
2579 
2580 	if (uss) {
2581 		void __user *ss_sp;
2582 		size_t ss_size;
2583 		int ss_flags;
2584 
2585 		error = -EFAULT;
2586 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2587 			goto out;
2588 		error = __get_user(ss_sp, &uss->ss_sp) |
2589 			__get_user(ss_flags, &uss->ss_flags) |
2590 			__get_user(ss_size, &uss->ss_size);
2591 		if (error)
2592 			goto out;
2593 
2594 		error = -EPERM;
2595 		if (on_sig_stack(sp))
2596 			goto out;
2597 
2598 		error = -EINVAL;
2599 		/*
2600 		 * Note - this code used to test ss_flags incorrectly:
2601 		 *  	  old code may have been written using ss_flags==0
2602 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2603 		 *	  way that worked) - this fix preserves that older
2604 		 *	  mechanism.
2605 		 */
2606 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2607 			goto out;
2608 
2609 		if (ss_flags == SS_DISABLE) {
2610 			ss_size = 0;
2611 			ss_sp = NULL;
2612 		} else {
2613 			error = -ENOMEM;
2614 			if (ss_size < MINSIGSTKSZ)
2615 				goto out;
2616 		}
2617 
2618 		current->sas_ss_sp = (unsigned long) ss_sp;
2619 		current->sas_ss_size = ss_size;
2620 	}
2621 
2622 	error = 0;
2623 	if (uoss) {
2624 		error = -EFAULT;
2625 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2626 			goto out;
2627 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2628 			__put_user(oss.ss_size, &uoss->ss_size) |
2629 			__put_user(oss.ss_flags, &uoss->ss_flags);
2630 	}
2631 
2632 out:
2633 	return error;
2634 }
2635 
2636 #ifdef __ARCH_WANT_SYS_SIGPENDING
2637 
2638 /**
2639  *  sys_sigpending - examine pending signals
2640  *  @set: where mask of pending signal is returned
2641  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)2642 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2643 {
2644 	return do_sigpending(set, sizeof(*set));
2645 }
2646 
2647 #endif
2648 
2649 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2650 /**
2651  *  sys_sigprocmask - examine and change blocked signals
2652  *  @how: whether to add, remove, or set signals
2653  *  @set: signals to add or remove (if non-null)
2654  *  @oset: previous value of signal mask if non-null
2655  *
2656  * Some platforms have their own version with special arguments;
2657  * others support only sys_rt_sigprocmask.
2658  */
2659 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,set,old_sigset_t __user *,oset)2660 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2661 		old_sigset_t __user *, oset)
2662 {
2663 	int error;
2664 	old_sigset_t old_set, new_set;
2665 
2666 	if (set) {
2667 		error = -EFAULT;
2668 		if (copy_from_user(&new_set, set, sizeof(*set)))
2669 			goto out;
2670 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2671 
2672 		spin_lock_irq(&current->sighand->siglock);
2673 		old_set = current->blocked.sig[0];
2674 
2675 		error = 0;
2676 		switch (how) {
2677 		default:
2678 			error = -EINVAL;
2679 			break;
2680 		case SIG_BLOCK:
2681 			sigaddsetmask(&current->blocked, new_set);
2682 			break;
2683 		case SIG_UNBLOCK:
2684 			sigdelsetmask(&current->blocked, new_set);
2685 			break;
2686 		case SIG_SETMASK:
2687 			current->blocked.sig[0] = new_set;
2688 			break;
2689 		}
2690 
2691 		recalc_sigpending();
2692 		spin_unlock_irq(&current->sighand->siglock);
2693 		if (error)
2694 			goto out;
2695 		if (oset)
2696 			goto set_old;
2697 	} else if (oset) {
2698 		old_set = current->blocked.sig[0];
2699 	set_old:
2700 		error = -EFAULT;
2701 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2702 			goto out;
2703 	}
2704 	error = 0;
2705 out:
2706 	return error;
2707 }
2708 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2709 
2710 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2711 /**
2712  *  sys_rt_sigaction - alter an action taken by a process
2713  *  @sig: signal to be sent
2714  *  @act: new sigaction
2715  *  @oact: used to save the previous sigaction
2716  *  @sigsetsize: size of sigset_t type
2717  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)2718 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2719 		const struct sigaction __user *, act,
2720 		struct sigaction __user *, oact,
2721 		size_t, sigsetsize)
2722 {
2723 	struct k_sigaction new_sa, old_sa;
2724 	int ret = -EINVAL;
2725 
2726 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2727 	if (sigsetsize != sizeof(sigset_t))
2728 		goto out;
2729 
2730 	if (act) {
2731 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2732 			return -EFAULT;
2733 	}
2734 
2735 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2736 
2737 	if (!ret && oact) {
2738 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2739 			return -EFAULT;
2740 	}
2741 out:
2742 	return ret;
2743 }
2744 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2745 
2746 #ifdef __ARCH_WANT_SYS_SGETMASK
2747 
2748 /*
2749  * For backwards compatibility.  Functionality superseded by sigprocmask.
2750  */
SYSCALL_DEFINE0(sgetmask)2751 SYSCALL_DEFINE0(sgetmask)
2752 {
2753 	/* SMP safe */
2754 	return current->blocked.sig[0];
2755 }
2756 
SYSCALL_DEFINE1(ssetmask,int,newmask)2757 SYSCALL_DEFINE1(ssetmask, int, newmask)
2758 {
2759 	int old;
2760 
2761 	spin_lock_irq(&current->sighand->siglock);
2762 	old = current->blocked.sig[0];
2763 
2764 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2765 						  sigmask(SIGSTOP)));
2766 	recalc_sigpending();
2767 	spin_unlock_irq(&current->sighand->siglock);
2768 
2769 	return old;
2770 }
2771 #endif /* __ARCH_WANT_SGETMASK */
2772 
2773 #ifdef __ARCH_WANT_SYS_SIGNAL
2774 /*
2775  * For backwards compatibility.  Functionality superseded by sigaction.
2776  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)2777 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2778 {
2779 	struct k_sigaction new_sa, old_sa;
2780 	int ret;
2781 
2782 	new_sa.sa.sa_handler = handler;
2783 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2784 	sigemptyset(&new_sa.sa.sa_mask);
2785 
2786 	ret = do_sigaction(sig, &new_sa, &old_sa);
2787 
2788 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2789 }
2790 #endif /* __ARCH_WANT_SYS_SIGNAL */
2791 
2792 #ifdef __ARCH_WANT_SYS_PAUSE
2793 
SYSCALL_DEFINE0(pause)2794 SYSCALL_DEFINE0(pause)
2795 {
2796 	current->state = TASK_INTERRUPTIBLE;
2797 	schedule();
2798 	return -ERESTARTNOHAND;
2799 }
2800 
2801 #endif
2802 
2803 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2804 /**
2805  *  sys_rt_sigsuspend - replace the signal mask for a value with the
2806  *	@unewset value until a signal is received
2807  *  @unewset: new signal mask value
2808  *  @sigsetsize: size of sigset_t type
2809  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)2810 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2811 {
2812 	sigset_t newset;
2813 
2814 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2815 	if (sigsetsize != sizeof(sigset_t))
2816 		return -EINVAL;
2817 
2818 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2819 		return -EFAULT;
2820 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2821 
2822 	spin_lock_irq(&current->sighand->siglock);
2823 	current->saved_sigmask = current->blocked;
2824 	current->blocked = newset;
2825 	recalc_sigpending();
2826 	spin_unlock_irq(&current->sighand->siglock);
2827 
2828 	current->state = TASK_INTERRUPTIBLE;
2829 	schedule();
2830 	set_restore_sigmask();
2831 	return -ERESTARTNOHAND;
2832 }
2833 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2834 
arch_vma_name(struct vm_area_struct * vma)2835 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2836 {
2837 	return NULL;
2838 }
2839 
signals_init(void)2840 void __init signals_init(void)
2841 {
2842 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2843 }
2844 
2845 #ifdef CONFIG_KGDB_KDB
2846 #include <linux/kdb.h>
2847 /*
2848  * kdb_send_sig_info - Allows kdb to send signals without exposing
2849  * signal internals.  This function checks if the required locks are
2850  * available before calling the main signal code, to avoid kdb
2851  * deadlocks.
2852  */
2853 void
kdb_send_sig_info(struct task_struct * t,struct siginfo * info)2854 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
2855 {
2856 	static struct task_struct *kdb_prev_t;
2857 	int sig, new_t;
2858 	if (!spin_trylock(&t->sighand->siglock)) {
2859 		kdb_printf("Can't do kill command now.\n"
2860 			   "The sigmask lock is held somewhere else in "
2861 			   "kernel, try again later\n");
2862 		return;
2863 	}
2864 	spin_unlock(&t->sighand->siglock);
2865 	new_t = kdb_prev_t != t;
2866 	kdb_prev_t = t;
2867 	if (t->state != TASK_RUNNING && new_t) {
2868 		kdb_printf("Process is not RUNNING, sending a signal from "
2869 			   "kdb risks deadlock\n"
2870 			   "on the run queue locks. "
2871 			   "The signal has _not_ been sent.\n"
2872 			   "Reissue the kill command if you want to risk "
2873 			   "the deadlock.\n");
2874 		return;
2875 	}
2876 	sig = info->si_signo;
2877 	if (send_sig_info(sig, info, t))
2878 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
2879 			   sig, t->pid);
2880 	else
2881 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
2882 }
2883 #endif	/* CONFIG_KGDB_KDB */
2884