1 /*
2 * linux/arch/x86-64/kernel/process.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 *
9 * X86-64 port
10 * Andi Kleen.
11 *
12 * $Id: process.c,v 1.77 2004/03/22 00:37:29 ak Exp $
13 */
14
15 /*
16 * This file handles the architecture-dependent parts of process handling..
17 */
18
19 #define __KERNEL_SYSCALLS__
20 #include <stdarg.h>
21
22 #include <linux/compiler.h>
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/stddef.h>
30 #include <linux/unistd.h>
31 #include <linux/ptrace.h>
32 #include <linux/slab.h>
33 #include <linux/vmalloc.h>
34 #include <linux/user.h>
35 #include <linux/a.out.h>
36 #include <linux/interrupt.h>
37 #include <linux/config.h>
38 #include <linux/delay.h>
39 #include <linux/reboot.h>
40 #include <linux/init.h>
41 #include <linux/ctype.h>
42 #include <linux/slab.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/pgtable.h>
46 #include <asm/system.h>
47 #include <asm/io.h>
48 #include <asm/ldt.h>
49 #include <asm/processor.h>
50 #include <asm/i387.h>
51 #include <asm/desc.h>
52 #include <asm/mmu_context.h>
53 #include <asm/pda.h>
54 #include <asm/prctl.h>
55 #include <asm/kdebug.h>
56 #include <asm/proto.h>
57 #include <asm/apic.h>
58
59 #include <linux/irq.h>
60
61 asmlinkage extern void ret_from_fork(void);
62
63 int hlt_counter;
64
65 /*
66 * Powermanagement idle function, if any..
67 */
68 void (*pm_idle)(void);
69
70 /*
71 * Power off function, if any
72 */
73 void (*pm_power_off)(void);
74
disable_hlt(void)75 void disable_hlt(void)
76 {
77 hlt_counter++;
78 }
79
enable_hlt(void)80 void enable_hlt(void)
81 {
82 hlt_counter--;
83 }
84
85 /*
86 * We use this if we don't have any better
87 * idle routine..
88 */
default_idle(void)89 static void default_idle(void)
90 {
91 if (!hlt_counter) {
92 __cli();
93 if (!current->need_resched)
94 safe_halt();
95 else
96 __sti();
97 }
98 }
99
100 /*
101 * On SMP it's slightly faster (but much more power-consuming!)
102 * to poll the ->need_resched flag instead of waiting for the
103 * cross-CPU IPI to arrive. Use this option with caution.
104 */
poll_idle(void)105 static void poll_idle (void)
106 {
107 int oldval;
108
109 __sti();
110
111 /*
112 * Deal with another CPU just having chosen a thread to
113 * run here:
114 */
115 oldval = xchg(¤t->need_resched, -1);
116
117 if (!oldval)
118 asm volatile(
119 "2:"
120 "cmpl $-1, %0;"
121 "rep; nop;"
122 "je 2b;"
123 : :"m" (current->need_resched));
124 }
125
126 /*
127 * The idle thread. There's no useful work to be
128 * done, so just try to conserve power and have a
129 * low exit latency (ie sit in a loop waiting for
130 * somebody to say that they'd like to reschedule)
131 */
cpu_idle(void)132 void cpu_idle (void)
133 {
134 /* endless idle loop with no priority at all */
135 init_idle();
136 current->nice = 20;
137 current->counter = -100;
138
139 while (1) {
140 void (*idle)(void) = pm_idle;
141 if (!idle)
142 idle = default_idle;
143 while (!current->need_resched)
144 idle();
145 schedule();
146 check_pgt_cache();
147 }
148 }
149
150 /*
151 * This is a kind of hybrid between poll and halt idle routines. This uses new
152 * Monitor/Mwait instructions on P4 processors with PNI. We Monitor
153 * need_resched and go to optimized wait state through Mwait.
154 * Whenever someone changes need_resched, we would be woken up from Mwait
155 * (without an IPI).
156 */
mwait_idle(void)157 static void mwait_idle (void)
158 {
159 int oldval;
160
161 __sti();
162 /* Setting need_resched to -1 skips sending IPI during idle resched */
163 oldval = xchg(¤t->need_resched, -1);
164 if (!oldval) {
165 do {
166 __monitor((void *)¤t->need_resched, 0, 0);
167 if (current->need_resched != -1)
168 break;
169 __mwait(0, 0);
170 } while (current->need_resched == -1);
171 }
172 }
173
select_idle_routine(struct cpuinfo_x86 * c)174 int __init select_idle_routine(struct cpuinfo_x86 *c)
175 {
176 if (cpu_has(c, X86_FEATURE_MWAIT)) {
177 printk("Monitor/Mwait feature present.\n");
178 /*
179 * Take care of system with asymmetric CPUs.
180 * Use, mwait_idle only if all cpus support it.
181 * If not, we fallback to default_idle()
182 */
183 if (!pm_idle) {
184 pm_idle = mwait_idle;
185 }
186 return 1;
187 }
188 return 1;
189 }
190
191
idle_setup(char * str)192 static int __init idle_setup (char *str)
193 {
194 if (!strncmp(str, "poll", 4)) {
195 printk("using polling idle threads.\n");
196 pm_idle = poll_idle;
197 } else if (!strncmp(str, "halt", 4)) {
198 printk("using halt in idle threads.\n");
199 pm_idle = default_idle;
200 }
201
202 return 1;
203 }
204
205 __setup("idle=", idle_setup);
206
207 static struct { long x; } no_idt[3];
208 static enum {
209 BOOT_BIOS = 'b',
210 BOOT_TRIPLE = 't',
211 BOOT_KBD = 'k',
212 } reboot_type = BOOT_KBD;
213 static int reboot_mode = 0;
214
215 /* reboot=b[ios] | t[riple] | k[bd] [, [w]arm | [c]old]
216 bios Use the CPU reboot vector for warm reset
217 warm Don't set the cold reboot flag
218 cold Set the cold reboto flag
219 triple Force a triple fault (init)
220 kbd Use the keyboard controller. cold reset (default)
221 */
reboot_setup(char * str)222 static int __init reboot_setup(char *str)
223 {
224 for (;;) {
225 switch (*str) {
226 case 'w':
227 reboot_mode = 0x1234;
228 break;
229
230 case 'c':
231 reboot_mode = 0;
232 break;
233
234 case 't':
235 case 'b':
236 case 'k':
237 reboot_type = *str;
238 break;
239 }
240 if((str = strchr(str,',')) != NULL)
241 str++;
242 else
243 break;
244 }
245 return 1;
246 }
247 __setup("reboot=", reboot_setup);
248
249 /* overwrites random kernel memory. Should not be kernel .text */
250 #define WARMBOOT_TRAMP 0x1000UL
251
reboot_warm(void)252 static void reboot_warm(void)
253 {
254 extern unsigned char warm_reboot[], warm_reboot_end[];
255 printk("warm reboot\n");
256
257 __cli();
258
259 /* restore identity mapping */
260 init_level4_pgt[0] = __pml4(__pa(level3_ident_pgt) | 7);
261 __flush_tlb_all();
262
263 memcpy(__va(WARMBOOT_TRAMP), warm_reboot, warm_reboot_end - warm_reboot);
264
265 asm volatile( " pushq $0\n" /* ss */
266 " pushq $0x2000\n" /* rsp */
267 " pushfq\n" /* eflags */
268 " pushq %[cs]\n"
269 " pushq %[target]\n"
270 " iretq" ::
271 [cs] "i" (__KERNEL_COMPAT32_CS),
272 [target] "b" (WARMBOOT_TRAMP));
273 }
274
kb_wait(void)275 static void kb_wait(void)
276 {
277 int i;
278
279 for (i=0; i<0x10000; i++)
280 if ((inb_p(0x64) & 0x02) == 0)
281 break;
282 }
283
284
285 #ifdef CONFIG_SMP
smp_halt(void)286 static void smp_halt(void)
287 {
288 int cpuid = safe_smp_processor_id();
289 static int first_entry = 1;
290
291 if (first_entry) {
292 first_entry = 0;
293 smp_call_function((void *)machine_restart, NULL, 1, 0);
294 }
295
296 smp_stop_cpu();
297
298 /* AP calling this. Just halt */
299 if (cpuid != boot_cpu_id) {
300 printk("CPU %d SMP halt\n", cpuid);
301 for (;;)
302 asm("hlt");
303 }
304
305 /* Wait for all other CPUs to have run smp_stop_cpu */
306 while (cpu_online_map)
307 rep_nop();
308 }
309 #endif
310
machine_restart(char * __unused)311 void machine_restart(char * __unused)
312 {
313 int i;
314
315 #if CONFIG_SMP
316 smp_halt();
317 #endif
318 __cli();
319
320 #ifndef CONFIG_SMP
321 disable_local_APIC();
322 #endif
323 disable_IO_APIC();
324
325 __sti();
326
327 /* Tell the BIOS if we want cold or warm reboot */
328 *((unsigned short *)__va(0x472)) = reboot_mode;
329
330 for (;;) {
331 /* Could also try the reset bit in the Hammer NB */
332 switch (reboot_type) {
333 case BOOT_BIOS:
334 reboot_warm();
335
336 case BOOT_KBD:
337 /* force cold reboot to reinit all hardware*/
338 for (i=0; i<100; i++) {
339 kb_wait();
340 udelay(50);
341 outb(0xfe,0x64); /* pulse reset low */
342 udelay(50);
343 }
344
345 case BOOT_TRIPLE:
346 /* force cold reboot to reinit all hardware*/
347 *((unsigned short *)__va(0x472)) = 0;
348
349 __asm__ __volatile__("lidt (%0)": :"r" (no_idt));
350 __asm__ __volatile__("int3");
351
352 reboot_type = BOOT_KBD;
353 break;
354 }
355 }
356 }
357
machine_halt(void)358 void machine_halt(void)
359 {
360 }
361
machine_power_off(void)362 void machine_power_off(void)
363 {
364 if (pm_power_off)
365 pm_power_off();
366 }
367
368 extern int printk_address(unsigned long);
369
370 /* Prints also some state that isn't saved in the pt_regs */
__show_regs(struct pt_regs * regs)371 void __show_regs(struct pt_regs * regs)
372 {
373 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
374 unsigned int fsindex,gsindex;
375 unsigned int ds,cs,es;
376
377 printk("\n");
378 printk("Pid: %d, comm: %.20s %s\n", current->pid, current->comm, print_tainted());
379 printk("RIP: %04lx:", regs->cs & 0xffff);
380 printk_address(regs->rip);
381 printk("\nRSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss, regs->rsp, regs->eflags);
382 printk("RAX: %016lx RBX: %016lx RCX: %016lx\n",
383 regs->rax, regs->rbx, regs->rcx);
384 printk("RDX: %016lx RSI: %016lx RDI: %016lx\n",
385 regs->rdx, regs->rsi, regs->rdi);
386 printk("RBP: %016lx R08: %016lx R09: %016lx\n",
387 regs->rbp, regs->r8, regs->r9);
388 printk("R10: %016lx R11: %016lx R12: %016lx\n",
389 regs->r10, regs->r11, regs->r12);
390 printk("R13: %016lx R14: %016lx R15: %016lx\n",
391 regs->r13, regs->r14, regs->r15);
392
393 asm("movl %%ds,%0" : "=r" (ds));
394 asm("movl %%cs,%0" : "=r" (cs));
395 asm("movl %%es,%0" : "=r" (es));
396 asm("movl %%fs,%0" : "=r" (fsindex));
397 asm("movl %%gs,%0" : "=r" (gsindex));
398
399 rdmsrl(MSR_FS_BASE, fs);
400 rdmsrl(MSR_GS_BASE, gs);
401 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
402
403 asm("movq %%cr0, %0": "=r" (cr0));
404 asm("movq %%cr2, %0": "=r" (cr2));
405 asm("movq %%cr3, %0": "=r" (cr3));
406 asm("movq %%cr4, %0": "=r" (cr4));
407
408 printk("FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
409 fs,fsindex,gs,gsindex,shadowgs);
410 printk("CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, es, cr0);
411 printk("CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, cr4);
412 }
413
show_regs(struct pt_regs * regs)414 void show_regs(struct pt_regs * regs)
415 {
416 __show_regs(regs);
417 show_trace(®s->rsp);
418 }
419
420 /*
421 * No need to lock the MM as we are the last user
422 */
release_segments(struct mm_struct * mm)423 void release_segments(struct mm_struct *mm)
424 {
425 void * ldt = mm->context.segments;
426
427 /*
428 * free the LDT
429 */
430 if (ldt) {
431 mm->context.segments = NULL;
432 clear_LDT();
433 vfree(ldt);
434 }
435 }
436
437 /*
438 * Free current thread data structures etc..
439 */
exit_thread(void)440 void exit_thread(void)
441 {
442 struct task_struct *me = current;
443 if (me->thread.io_bitmap_ptr) {
444 (init_tss + smp_processor_id())->io_map_base =
445 INVALID_IO_BITMAP_OFFSET;
446 kfree(me->thread.io_bitmap_ptr);
447 me->thread.io_bitmap_ptr = NULL;
448 }
449 }
450
flush_thread(void)451 void flush_thread(void)
452 {
453 struct task_struct *tsk = current;
454
455 memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
456 /*
457 * Forget coprocessor state..
458 */
459 clear_fpu(tsk);
460 tsk->used_math = 0;
461 }
462
release_thread(struct task_struct * dead_task)463 void release_thread(struct task_struct *dead_task)
464 {
465 if (dead_task->mm) {
466 void * ldt = dead_task->mm->context.segments;
467
468 // temporary debugging check
469 if (ldt) {
470 printk("WARNING: dead process %8s still has LDT? <%p>\n",
471 dead_task->comm, ldt);
472 BUG();
473 }
474 }
475 }
476
477 /*
478 * we do not have to muck with descriptors here, that is
479 * done in switch_mm() as needed.
480 */
copy_segments(struct task_struct * p,struct mm_struct * new_mm)481 void copy_segments(struct task_struct *p, struct mm_struct *new_mm)
482 {
483 struct mm_struct * old_mm;
484 void *old_ldt, *ldt;
485
486 ldt = NULL;
487 old_mm = current->mm;
488 if (old_mm && (old_ldt = old_mm->context.segments) != NULL) {
489 /*
490 * Completely new LDT, we initialize it from the parent:
491 */
492 ldt = vmalloc(LDT_ENTRIES*LDT_ENTRY_SIZE);
493 if (!ldt)
494 printk(KERN_WARNING "ldt allocation failed\n");
495 else
496 memcpy(ldt, old_ldt, LDT_ENTRIES*LDT_ENTRY_SIZE);
497 }
498 new_mm->context.segments = ldt;
499 new_mm->context.cpuvalid = 0UL;
500 return;
501 }
502
copy_thread(int nr,unsigned long clone_flags,unsigned long rsp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)503 int copy_thread(int nr, unsigned long clone_flags, unsigned long rsp,
504 unsigned long unused,
505 struct task_struct * p, struct pt_regs * regs)
506 {
507 struct pt_regs * childregs;
508 struct task_struct *me = current;
509
510 childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p)) - 1;
511
512 *childregs = *regs;
513
514 childregs->rax = 0;
515 childregs->rsp = rsp;
516 if (rsp == ~0) {
517 childregs->rsp = (unsigned long)childregs;
518 }
519
520 p->thread.rsp = (unsigned long) childregs;
521 p->thread.rsp0 = (unsigned long) (childregs+1);
522 p->thread.userrsp = current->thread.userrsp;
523
524 p->thread.rip = (unsigned long) ret_from_fork;
525
526 p->thread.fs = me->thread.fs;
527 p->thread.gs = me->thread.gs;
528
529 asm("mov %%gs,%0" : "=m" (p->thread.gsindex));
530 asm("mov %%fs,%0" : "=m" (p->thread.fsindex));
531 asm("mov %%es,%0" : "=m" (p->thread.es));
532 asm("mov %%ds,%0" : "=m" (p->thread.ds));
533
534 unlazy_fpu(current);
535 p->thread.i387 = current->thread.i387;
536
537 if (unlikely(me->thread.io_bitmap_ptr != NULL)) {
538 p->thread.io_bitmap_ptr = kmalloc((IO_BITMAP_SIZE+1)*4, GFP_KERNEL);
539 if (!p->thread.io_bitmap_ptr)
540 return -ENOMEM;
541 memcpy(p->thread.io_bitmap_ptr, me->thread.io_bitmap_ptr,
542 (IO_BITMAP_SIZE+1)*4);
543 }
544
545 return 0;
546 }
547
548 /*
549 * This special macro can be used to load a debugging register
550 */
551 #define loaddebug(thread,register) \
552 set_debug(thread->debugreg[register], register)
553
554 /*
555 * switch_to(x,y) should switch tasks from x to y.
556 *
557 * This could still be optimized:
558 * - fold all the options into a flag word and test it with a single test.
559 * - could test fs/gs bitsliced
560 */
__switch_to(struct task_struct * prev_p,struct task_struct * next_p)561 struct task_struct *__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
562 {
563 struct thread_struct *prev = &prev_p->thread,
564 *next = &next_p->thread;
565 struct tss_struct *tss = init_tss + smp_processor_id();
566
567 /*
568 * Reload rsp0, LDT and the page table pointer:
569 */
570 tss->rsp0 = next->rsp0;
571
572 /*
573 * Switch DS and ES.
574 */
575 asm volatile("mov %%es,%0" : "=m" (prev->es));
576 if (unlikely(next->es | prev->es))
577 loadsegment(es, next->es);
578
579 asm volatile ("mov %%ds,%0" : "=m" (prev->ds));
580 if (unlikely(next->ds | prev->ds))
581 loadsegment(ds, next->ds);
582
583 /*
584 * Must be after DS reload for AMD workaround.
585 */
586 unlazy_fpu(prev_p);
587
588 /*
589 * Switch FS and GS.
590 */
591 {
592 unsigned fsindex;
593 asm volatile("movl %%fs,%0" : "=r" (fsindex));
594 /* segment register != 0 always requires a reload.
595 also reload when it has changed.
596 when prev process used 64bit base always reload
597 to avoid an information leak. */
598 if (unlikely((fsindex | next->fsindex) || prev->fs)) {
599 loadsegment(fs, next->fsindex);
600 /* check if the user use a selector != 0
601 * if yes clear 64bit base, since overloaded base
602 * is allways mapped to the Null selector
603 */
604 if (fsindex)
605 prev->fs = 0;
606 }
607 /* when next process has a 64bit base use it */
608 if (next->fs)
609 wrmsrl(MSR_FS_BASE, next->fs);
610 prev->fsindex = fsindex;
611 }
612 {
613 unsigned gsindex;
614 asm volatile("movl %%gs,%0" : "=r" (gsindex));
615 if (unlikely((gsindex | next->gsindex) || prev->gs)) {
616 load_gs_index(next->gsindex);
617 if (gsindex)
618 prev->gs = 0;
619 }
620 if (next->gs)
621 wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
622 prev->gsindex = gsindex;
623 }
624
625 /*
626 * Switch the PDA context.
627 */
628 prev->userrsp = read_pda(oldrsp);
629 write_pda(oldrsp, next->userrsp);
630 write_pda(pcurrent, next_p);
631 write_pda(kernelstack, (unsigned long)next_p + THREAD_SIZE - PDA_STACKOFFSET);
632
633 /*
634 * Now maybe reload the debug registers
635 */
636 if (unlikely(next->debugreg[7])) {
637 loaddebug(next, 0);
638 loaddebug(next, 1);
639 loaddebug(next, 2);
640 loaddebug(next, 3);
641 /* no 4 and 5 */
642 loaddebug(next, 6);
643 loaddebug(next, 7);
644 }
645
646
647 /*
648 * Handle the IO bitmap
649 */
650 if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr)) {
651 if (next->io_bitmap_ptr) {
652 /*
653 * 4 cachelines copy ... not good, but not that
654 * bad either. Anyone got something better?
655 * This only affects processes which use ioperm().
656 * [Putting the TSSs into 4k-tlb mapped regions
657 * and playing VM tricks to switch the IO bitmap
658 * is not really acceptable.]
659 */
660 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
661 IO_BITMAP_SIZE*sizeof(u32));
662 tss->io_map_base = IO_BITMAP_OFFSET;
663 } else {
664 /*
665 * a bitmap offset pointing outside of the TSS limit
666 * causes a nicely controllable SIGSEGV if a process
667 * tries to use a port IO instruction. The first
668 * sys_ioperm() call sets up the bitmap properly.
669 */
670 tss->io_map_base = INVALID_IO_BITMAP_OFFSET;
671 }
672 }
673
674
675 return prev_p;
676 }
677
678 /*
679 * sys_execve() executes a new program.
680 */
681 asmlinkage
sys_execve(char * name,char ** argv,char ** envp,struct pt_regs regs)682 long sys_execve(char *name, char **argv,char **envp, struct pt_regs regs)
683 {
684 long error;
685 char * filename;
686
687 filename = getname(name);
688 error = PTR_ERR(filename);
689 if (IS_ERR(filename))
690 return error;
691 error = do_execve(filename, argv, envp, ®s);
692 if (error == 0)
693 current->ptrace &= ~PT_DTRACE;
694 putname(filename);
695 return error;
696 }
697
set_personality_64bit(void)698 void set_personality_64bit(void)
699 {
700 /* inherit personality from parent */
701
702 /* Make sure to be in 64bit mode */
703 current->thread.flags = 0;
704 }
705
sys_fork(struct pt_regs regs)706 asmlinkage long sys_fork(struct pt_regs regs)
707 {
708 return do_fork(SIGCHLD, regs.rsp, ®s, 0);
709 }
710
sys_clone(unsigned long clone_flags,unsigned long newsp,struct pt_regs regs)711 asmlinkage long sys_clone(unsigned long clone_flags, unsigned long newsp, struct pt_regs regs)
712 {
713 if (!newsp)
714 newsp = regs.rsp;
715 return do_fork(clone_flags, newsp, ®s, 0);
716 }
717
718 /*
719 * This is trivial, and on the face of it looks like it
720 * could equally well be done in user mode.
721 *
722 * Not so, for quite unobvious reasons - register pressure.
723 * In user mode vfork() cannot have a stack frame, and if
724 * done by calling the "clone()" system call directly, you
725 * do not have enough call-clobbered registers to hold all
726 * the information you need.
727 */
sys_vfork(struct pt_regs regs)728 asmlinkage long sys_vfork(struct pt_regs regs)
729 {
730 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.rsp, ®s, 0);
731 }
732
733 /*
734 * These bracket the sleeping functions..
735 */
736 extern void scheduling_functions_start_here(void);
737 extern void scheduling_functions_end_here(void);
738 #define first_sched ((unsigned long) scheduling_functions_start_here)
739 #define last_sched ((unsigned long) scheduling_functions_end_here)
740
get_wchan(struct task_struct * p)741 unsigned long get_wchan(struct task_struct *p)
742 {
743 u64 fp,rip;
744 int count = 0;
745
746 if (!p || p == current || p->state==TASK_RUNNING)
747 return 0;
748 if (p->thread.rsp < (u64)p || p->thread.rsp > (u64)p + THREAD_SIZE)
749 return 0;
750 fp = *(u64 *)(p->thread.rsp);
751 do {
752 if (fp < (unsigned long)p || fp > (unsigned long)p+THREAD_SIZE)
753 return 0;
754 rip = *(u64 *)(fp+8);
755 if (rip < first_sched || rip >= last_sched)
756 return rip;
757 fp = *(u64 *)fp;
758 } while (count++ < 16);
759 return 0;
760 }
761 #undef last_sched
762 #undef first_sched
763
sys_arch_prctl(int code,unsigned long addr)764 asmlinkage long sys_arch_prctl(int code, unsigned long addr)
765 {
766 int ret = 0;
767 unsigned long tmp;
768
769 switch (code) {
770 case ARCH_SET_GS:
771 if (addr >= TASK_SIZE)
772 return -EPERM;
773 asm volatile("movl %0,%%gs" :: "r" (0));
774 current->thread.gsindex = 0;
775 current->thread.gs = addr;
776 ret = checking_wrmsrl(MSR_KERNEL_GS_BASE, addr);
777 break;
778 case ARCH_SET_FS:
779 /* Not strictly needed for fs, but do it for symmetry
780 with gs. */
781 if (addr >= TASK_SIZE)
782 return -EPERM;
783 asm volatile("movl %0,%%fs" :: "r" (0));
784 current->thread.fsindex = 0;
785 current->thread.fs = addr;
786 ret = checking_wrmsrl(MSR_FS_BASE, addr);
787 break;
788
789 /* Returned value may not be correct when the user changed fs/gs */
790 case ARCH_GET_FS:
791 rdmsrl(MSR_FS_BASE, tmp);
792 ret = put_user(tmp, (unsigned long *)addr);
793 break;
794
795 case ARCH_GET_GS:
796 rdmsrl(MSR_KERNEL_GS_BASE, tmp);
797 ret = put_user(tmp, (unsigned long *)addr);
798 break;
799
800 default:
801 ret = -EINVAL;
802 break;
803 }
804 return ret;
805 }
806