1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 unsigned short seg_type)
31 {
32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34
35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39 #define IS_CURSEG(sbi, seg) \
40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49 #define IS_CURSEC(sbi, secno) \
50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
51 (sbi)->segs_per_sec) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
53 (sbi)->segs_per_sec) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
55 (sbi)->segs_per_sec) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
57 (sbi)->segs_per_sec) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
59 (sbi)->segs_per_sec) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
61 (sbi)->segs_per_sec) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
63 (sbi)->segs_per_sec) || \
64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
65 (sbi)->segs_per_sec))
66
67 #define MAIN_BLKADDR(sbi) \
68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi) \
71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi) ((sbi)->total_sections)
76
77 #define TOTAL_SEGS(sbi) \
78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
84 (sbi)->log_blocks_per_seg))
85
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89 #define NEXT_FREE_BLKADDR(sbi, curseg) \
90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98 #define GET_SEGNO(sbi, blk_addr) \
99 ((!__is_valid_data_blkaddr(blk_addr)) ? \
100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
101 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi) \
103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define GET_SEC_FROM_SEG(sbi, segno) \
105 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
106 #define GET_SEG_FROM_SEC(sbi, secno) \
107 ((secno) * (sbi)->segs_per_sec)
108 #define GET_ZONE_FROM_SEC(sbi, secno) \
109 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
110 #define GET_ZONE_FROM_SEG(sbi, segno) \
111 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
112
113 #define GET_SUM_BLOCK(sbi, segno) \
114 ((sbi)->sm_info->ssa_blkaddr + (segno))
115
116 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
117 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
118
119 #define SIT_ENTRY_OFFSET(sit_i, segno) \
120 ((segno) % (sit_i)->sents_per_block)
121 #define SIT_BLOCK_OFFSET(segno) \
122 ((segno) / SIT_ENTRY_PER_BLOCK)
123 #define START_SEGNO(segno) \
124 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
125 #define SIT_BLK_CNT(sbi) \
126 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
127 #define f2fs_bitmap_size(nr) \
128 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
129
130 #define SECTOR_FROM_BLOCK(blk_addr) \
131 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
132 #define SECTOR_TO_BLOCK(sectors) \
133 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
134
135 /*
136 * indicate a block allocation direction: RIGHT and LEFT.
137 * RIGHT means allocating new sections towards the end of volume.
138 * LEFT means the opposite direction.
139 */
140 enum {
141 ALLOC_RIGHT = 0,
142 ALLOC_LEFT
143 };
144
145 /*
146 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
147 * LFS writes data sequentially with cleaning operations.
148 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
149 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
150 * fragmented segment which has similar aging degree.
151 */
152 enum {
153 LFS = 0,
154 SSR,
155 AT_SSR,
156 };
157
158 /*
159 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
160 * GC_CB is based on cost-benefit algorithm.
161 * GC_GREEDY is based on greedy algorithm.
162 * GC_AT is based on age-threshold algorithm.
163 */
164 enum {
165 GC_CB = 0,
166 GC_GREEDY,
167 GC_AT,
168 ALLOC_NEXT,
169 FLUSH_DEVICE,
170 MAX_GC_POLICY,
171 };
172
173 /*
174 * BG_GC means the background cleaning job.
175 * FG_GC means the on-demand cleaning job.
176 */
177 enum {
178 BG_GC = 0,
179 FG_GC,
180 };
181
182 /* for a function parameter to select a victim segment */
183 struct victim_sel_policy {
184 int alloc_mode; /* LFS or SSR */
185 int gc_mode; /* GC_CB or GC_GREEDY */
186 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
187 unsigned int max_search; /*
188 * maximum # of segments/sections
189 * to search
190 */
191 unsigned int offset; /* last scanned bitmap offset */
192 unsigned int ofs_unit; /* bitmap search unit */
193 unsigned int min_cost; /* minimum cost */
194 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
195 unsigned int min_segno; /* segment # having min. cost */
196 unsigned long long age; /* mtime of GCed section*/
197 unsigned long long age_threshold;/* age threshold */
198 };
199
200 struct seg_entry {
201 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
202 unsigned int valid_blocks:10; /* # of valid blocks */
203 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
204 unsigned int padding:6; /* padding */
205 unsigned char *cur_valid_map; /* validity bitmap of blocks */
206 #ifdef CONFIG_F2FS_CHECK_FS
207 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
208 #endif
209 /*
210 * # of valid blocks and the validity bitmap stored in the last
211 * checkpoint pack. This information is used by the SSR mode.
212 */
213 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
214 unsigned char *discard_map;
215 unsigned long long mtime; /* modification time of the segment */
216 };
217
218 struct sec_entry {
219 unsigned int valid_blocks; /* # of valid blocks in a section */
220 };
221
222 struct segment_allocation {
223 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
224 };
225
226 #define MAX_SKIP_GC_COUNT 16
227
228 struct revoke_entry {
229 struct list_head list;
230 block_t old_addr; /* for revoking when fail to commit */
231 pgoff_t index;
232 };
233
234 struct sit_info {
235 const struct segment_allocation *s_ops;
236
237 block_t sit_base_addr; /* start block address of SIT area */
238 block_t sit_blocks; /* # of blocks used by SIT area */
239 block_t written_valid_blocks; /* # of valid blocks in main area */
240 char *bitmap; /* all bitmaps pointer */
241 char *sit_bitmap; /* SIT bitmap pointer */
242 #ifdef CONFIG_F2FS_CHECK_FS
243 char *sit_bitmap_mir; /* SIT bitmap mirror */
244
245 /* bitmap of segments to be ignored by GC in case of errors */
246 unsigned long *invalid_segmap;
247 #endif
248 unsigned int bitmap_size; /* SIT bitmap size */
249
250 unsigned long *tmp_map; /* bitmap for temporal use */
251 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
252 unsigned int dirty_sentries; /* # of dirty sentries */
253 unsigned int sents_per_block; /* # of SIT entries per block */
254 struct rw_semaphore sentry_lock; /* to protect SIT cache */
255 struct seg_entry *sentries; /* SIT segment-level cache */
256 struct sec_entry *sec_entries; /* SIT section-level cache */
257
258 /* for cost-benefit algorithm in cleaning procedure */
259 unsigned long long elapsed_time; /* elapsed time after mount */
260 unsigned long long mounted_time; /* mount time */
261 unsigned long long min_mtime; /* min. modification time */
262 unsigned long long max_mtime; /* max. modification time */
263 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
264 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
265
266 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
267 };
268
269 struct free_segmap_info {
270 unsigned int start_segno; /* start segment number logically */
271 unsigned int free_segments; /* # of free segments */
272 unsigned int free_sections; /* # of free sections */
273 spinlock_t segmap_lock; /* free segmap lock */
274 unsigned long *free_segmap; /* free segment bitmap */
275 unsigned long *free_secmap; /* free section bitmap */
276 };
277
278 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
279 enum dirty_type {
280 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
281 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
282 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
283 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
284 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
285 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
286 DIRTY, /* to count # of dirty segments */
287 PRE, /* to count # of entirely obsolete segments */
288 NR_DIRTY_TYPE
289 };
290
291 struct dirty_seglist_info {
292 const struct victim_selection *v_ops; /* victim selction operation */
293 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
294 unsigned long *dirty_secmap;
295 struct mutex seglist_lock; /* lock for segment bitmaps */
296 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
297 unsigned long *victim_secmap; /* background GC victims */
298 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
299 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
300 bool enable_pin_section; /* enable pinning section */
301 };
302
303 /* victim selection function for cleaning and SSR */
304 struct victim_selection {
305 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
306 int, int, char, unsigned long long);
307 };
308
309 /* for active log information */
310 struct curseg_info {
311 struct mutex curseg_mutex; /* lock for consistency */
312 struct f2fs_summary_block *sum_blk; /* cached summary block */
313 struct rw_semaphore journal_rwsem; /* protect journal area */
314 struct f2fs_journal *journal; /* cached journal info */
315 unsigned char alloc_type; /* current allocation type */
316 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
317 unsigned int segno; /* current segment number */
318 unsigned short next_blkoff; /* next block offset to write */
319 unsigned int zone; /* current zone number */
320 unsigned int next_segno; /* preallocated segment */
321 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
322 bool inited; /* indicate inmem log is inited */
323 };
324
325 struct sit_entry_set {
326 struct list_head set_list; /* link with all sit sets */
327 unsigned int start_segno; /* start segno of sits in set */
328 unsigned int entry_cnt; /* the # of sit entries in set */
329 };
330
331 /*
332 * inline functions
333 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)334 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
335 {
336 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
337 }
338
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)339 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
340 unsigned int segno)
341 {
342 struct sit_info *sit_i = SIT_I(sbi);
343 return &sit_i->sentries[segno];
344 }
345
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)346 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
347 unsigned int segno)
348 {
349 struct sit_info *sit_i = SIT_I(sbi);
350 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
351 }
352
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)353 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
354 unsigned int segno, bool use_section)
355 {
356 /*
357 * In order to get # of valid blocks in a section instantly from many
358 * segments, f2fs manages two counting structures separately.
359 */
360 if (use_section && __is_large_section(sbi))
361 return get_sec_entry(sbi, segno)->valid_blocks;
362 else
363 return get_seg_entry(sbi, segno)->valid_blocks;
364 }
365
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)366 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
367 unsigned int segno, bool use_section)
368 {
369 if (use_section && __is_large_section(sbi)) {
370 unsigned int start_segno = START_SEGNO(segno);
371 unsigned int blocks = 0;
372 int i;
373
374 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
375 struct seg_entry *se = get_seg_entry(sbi, start_segno);
376
377 blocks += se->ckpt_valid_blocks;
378 }
379 return blocks;
380 }
381 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
382 }
383
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)384 static inline void seg_info_from_raw_sit(struct seg_entry *se,
385 struct f2fs_sit_entry *rs)
386 {
387 se->valid_blocks = GET_SIT_VBLOCKS(rs);
388 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
389 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
390 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
391 #ifdef CONFIG_F2FS_CHECK_FS
392 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
393 #endif
394 se->type = GET_SIT_TYPE(rs);
395 se->mtime = le64_to_cpu(rs->mtime);
396 }
397
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)398 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
399 struct f2fs_sit_entry *rs)
400 {
401 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
402 se->valid_blocks;
403 rs->vblocks = cpu_to_le16(raw_vblocks);
404 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
405 rs->mtime = cpu_to_le64(se->mtime);
406 }
407
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)408 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
409 struct page *page, unsigned int start)
410 {
411 struct f2fs_sit_block *raw_sit;
412 struct seg_entry *se;
413 struct f2fs_sit_entry *rs;
414 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
415 (unsigned long)MAIN_SEGS(sbi));
416 int i;
417
418 raw_sit = (struct f2fs_sit_block *)page_address(page);
419 memset(raw_sit, 0, PAGE_SIZE);
420 for (i = 0; i < end - start; i++) {
421 rs = &raw_sit->entries[i];
422 se = get_seg_entry(sbi, start + i);
423 __seg_info_to_raw_sit(se, rs);
424 }
425 }
426
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)427 static inline void seg_info_to_raw_sit(struct seg_entry *se,
428 struct f2fs_sit_entry *rs)
429 {
430 __seg_info_to_raw_sit(se, rs);
431
432 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
433 se->ckpt_valid_blocks = se->valid_blocks;
434 }
435
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)436 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
437 unsigned int max, unsigned int segno)
438 {
439 unsigned int ret;
440 spin_lock(&free_i->segmap_lock);
441 ret = find_next_bit(free_i->free_segmap, max, segno);
442 spin_unlock(&free_i->segmap_lock);
443 return ret;
444 }
445
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)446 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
447 {
448 struct free_segmap_info *free_i = FREE_I(sbi);
449 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
450 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
451 unsigned int next;
452 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
453
454 spin_lock(&free_i->segmap_lock);
455 clear_bit(segno, free_i->free_segmap);
456 free_i->free_segments++;
457
458 next = find_next_bit(free_i->free_segmap,
459 start_segno + sbi->segs_per_sec, start_segno);
460 if (next >= start_segno + usable_segs) {
461 clear_bit(secno, free_i->free_secmap);
462 free_i->free_sections++;
463 }
464 spin_unlock(&free_i->segmap_lock);
465 }
466
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)467 static inline void __set_inuse(struct f2fs_sb_info *sbi,
468 unsigned int segno)
469 {
470 struct free_segmap_info *free_i = FREE_I(sbi);
471 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
472
473 set_bit(segno, free_i->free_segmap);
474 free_i->free_segments--;
475 if (!test_and_set_bit(secno, free_i->free_secmap))
476 free_i->free_sections--;
477 }
478
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)479 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
480 unsigned int segno, bool inmem)
481 {
482 struct free_segmap_info *free_i = FREE_I(sbi);
483 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
484 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
485 unsigned int next;
486 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
487
488 spin_lock(&free_i->segmap_lock);
489 if (test_and_clear_bit(segno, free_i->free_segmap)) {
490 free_i->free_segments++;
491
492 if (!inmem && IS_CURSEC(sbi, secno))
493 goto skip_free;
494 next = find_next_bit(free_i->free_segmap,
495 start_segno + sbi->segs_per_sec, start_segno);
496 if (next >= start_segno + usable_segs) {
497 if (test_and_clear_bit(secno, free_i->free_secmap))
498 free_i->free_sections++;
499 }
500 }
501 skip_free:
502 spin_unlock(&free_i->segmap_lock);
503 }
504
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)505 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
506 unsigned int segno)
507 {
508 struct free_segmap_info *free_i = FREE_I(sbi);
509 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
510
511 spin_lock(&free_i->segmap_lock);
512 if (!test_and_set_bit(segno, free_i->free_segmap)) {
513 free_i->free_segments--;
514 if (!test_and_set_bit(secno, free_i->free_secmap))
515 free_i->free_sections--;
516 }
517 spin_unlock(&free_i->segmap_lock);
518 }
519
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)520 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
521 void *dst_addr)
522 {
523 struct sit_info *sit_i = SIT_I(sbi);
524
525 #ifdef CONFIG_F2FS_CHECK_FS
526 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
527 sit_i->bitmap_size))
528 f2fs_bug_on(sbi, 1);
529 #endif
530 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
531 }
532
written_block_count(struct f2fs_sb_info * sbi)533 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
534 {
535 return SIT_I(sbi)->written_valid_blocks;
536 }
537
free_segments(struct f2fs_sb_info * sbi)538 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
539 {
540 return FREE_I(sbi)->free_segments;
541 }
542
reserved_segments(struct f2fs_sb_info * sbi)543 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
544 {
545 return SM_I(sbi)->reserved_segments +
546 SM_I(sbi)->additional_reserved_segments;
547 }
548
free_sections(struct f2fs_sb_info * sbi)549 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
550 {
551 return FREE_I(sbi)->free_sections;
552 }
553
prefree_segments(struct f2fs_sb_info * sbi)554 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
555 {
556 return DIRTY_I(sbi)->nr_dirty[PRE];
557 }
558
dirty_segments(struct f2fs_sb_info * sbi)559 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
560 {
561 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
562 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
563 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
564 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
565 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
566 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
567 }
568
overprovision_segments(struct f2fs_sb_info * sbi)569 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
570 {
571 return SM_I(sbi)->ovp_segments;
572 }
573
reserved_sections(struct f2fs_sb_info * sbi)574 static inline int reserved_sections(struct f2fs_sb_info *sbi)
575 {
576 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
577 }
578
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)579 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
580 unsigned int node_blocks, unsigned int dent_blocks)
581 {
582
583 unsigned int segno, left_blocks;
584 int i;
585
586 /* check current node segment */
587 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
588 segno = CURSEG_I(sbi, i)->segno;
589 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
590 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
591
592 if (node_blocks > left_blocks)
593 return false;
594 }
595
596 /* check current data segment */
597 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
598 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
599 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
600 if (dent_blocks > left_blocks)
601 return false;
602 return true;
603 }
604
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)605 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
606 int freed, int needed)
607 {
608 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
609 get_pages(sbi, F2FS_DIRTY_DENTS) +
610 get_pages(sbi, F2FS_DIRTY_IMETA);
611 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
612 unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
613 unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
614 unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
615 unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
616 unsigned int free, need_lower, need_upper;
617
618 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
619 return false;
620
621 free = free_sections(sbi) + freed;
622 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
623 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
624
625 if (free > need_upper)
626 return false;
627 else if (free <= need_lower)
628 return true;
629 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
630 }
631
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)632 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
633 {
634 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
635 return true;
636 if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
637 return true;
638 return false;
639 }
640
excess_prefree_segs(struct f2fs_sb_info * sbi)641 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
642 {
643 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
644 }
645
utilization(struct f2fs_sb_info * sbi)646 static inline int utilization(struct f2fs_sb_info *sbi)
647 {
648 return div_u64((u64)valid_user_blocks(sbi) * 100,
649 sbi->user_block_count);
650 }
651
652 /*
653 * Sometimes f2fs may be better to drop out-of-place update policy.
654 * And, users can control the policy through sysfs entries.
655 * There are five policies with triggering conditions as follows.
656 * F2FS_IPU_FORCE - all the time,
657 * F2FS_IPU_SSR - if SSR mode is activated,
658 * F2FS_IPU_UTIL - if FS utilization is over threashold,
659 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
660 * threashold,
661 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
662 * storages. IPU will be triggered only if the # of dirty
663 * pages over min_fsync_blocks. (=default option)
664 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
665 * F2FS_IPU_NOCACHE - disable IPU bio cache.
666 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
667 * FI_OPU_WRITE flag.
668 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
669 */
670 #define DEF_MIN_IPU_UTIL 70
671 #define DEF_MIN_FSYNC_BLOCKS 8
672 #define DEF_MIN_HOT_BLOCKS 16
673
674 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
675
676 enum {
677 F2FS_IPU_FORCE,
678 F2FS_IPU_SSR,
679 F2FS_IPU_UTIL,
680 F2FS_IPU_SSR_UTIL,
681 F2FS_IPU_FSYNC,
682 F2FS_IPU_ASYNC,
683 F2FS_IPU_NOCACHE,
684 F2FS_IPU_HONOR_OPU_WRITE,
685 };
686
curseg_segno(struct f2fs_sb_info * sbi,int type)687 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
688 int type)
689 {
690 struct curseg_info *curseg = CURSEG_I(sbi, type);
691 return curseg->segno;
692 }
693
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)694 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
695 int type)
696 {
697 struct curseg_info *curseg = CURSEG_I(sbi, type);
698 return curseg->alloc_type;
699 }
700
curseg_blkoff(struct f2fs_sb_info * sbi,int type)701 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
702 {
703 struct curseg_info *curseg = CURSEG_I(sbi, type);
704 return curseg->next_blkoff;
705 }
706
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)707 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
708 {
709 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
710 }
711
verify_fio_blkaddr(struct f2fs_io_info * fio)712 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
713 {
714 struct f2fs_sb_info *sbi = fio->sbi;
715
716 if (__is_valid_data_blkaddr(fio->old_blkaddr))
717 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
718 META_GENERIC : DATA_GENERIC);
719 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
720 META_GENERIC : DATA_GENERIC_ENHANCE);
721 }
722
723 /*
724 * Summary block is always treated as an invalid block
725 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)726 static inline int check_block_count(struct f2fs_sb_info *sbi,
727 int segno, struct f2fs_sit_entry *raw_sit)
728 {
729 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
730 int valid_blocks = 0;
731 int cur_pos = 0, next_pos;
732 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
733
734 /* check bitmap with valid block count */
735 do {
736 if (is_valid) {
737 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
738 usable_blks_per_seg,
739 cur_pos);
740 valid_blocks += next_pos - cur_pos;
741 } else
742 next_pos = find_next_bit_le(&raw_sit->valid_map,
743 usable_blks_per_seg,
744 cur_pos);
745 cur_pos = next_pos;
746 is_valid = !is_valid;
747 } while (cur_pos < usable_blks_per_seg);
748
749 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
750 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
751 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
752 set_sbi_flag(sbi, SBI_NEED_FSCK);
753 return -EFSCORRUPTED;
754 }
755
756 if (usable_blks_per_seg < sbi->blocks_per_seg)
757 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
758 sbi->blocks_per_seg,
759 usable_blks_per_seg) != sbi->blocks_per_seg);
760
761 /* check segment usage, and check boundary of a given segment number */
762 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
763 || segno > TOTAL_SEGS(sbi) - 1)) {
764 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
765 GET_SIT_VBLOCKS(raw_sit), segno);
766 set_sbi_flag(sbi, SBI_NEED_FSCK);
767 return -EFSCORRUPTED;
768 }
769 return 0;
770 }
771
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)772 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
773 unsigned int start)
774 {
775 struct sit_info *sit_i = SIT_I(sbi);
776 unsigned int offset = SIT_BLOCK_OFFSET(start);
777 block_t blk_addr = sit_i->sit_base_addr + offset;
778
779 check_seg_range(sbi, start);
780
781 #ifdef CONFIG_F2FS_CHECK_FS
782 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
783 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
784 f2fs_bug_on(sbi, 1);
785 #endif
786
787 /* calculate sit block address */
788 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
789 blk_addr += sit_i->sit_blocks;
790
791 return blk_addr;
792 }
793
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)794 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
795 pgoff_t block_addr)
796 {
797 struct sit_info *sit_i = SIT_I(sbi);
798 block_addr -= sit_i->sit_base_addr;
799 if (block_addr < sit_i->sit_blocks)
800 block_addr += sit_i->sit_blocks;
801 else
802 block_addr -= sit_i->sit_blocks;
803
804 return block_addr + sit_i->sit_base_addr;
805 }
806
set_to_next_sit(struct sit_info * sit_i,unsigned int start)807 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
808 {
809 unsigned int block_off = SIT_BLOCK_OFFSET(start);
810
811 f2fs_change_bit(block_off, sit_i->sit_bitmap);
812 #ifdef CONFIG_F2FS_CHECK_FS
813 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
814 #endif
815 }
816
get_mtime(struct f2fs_sb_info * sbi,bool base_time)817 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
818 bool base_time)
819 {
820 struct sit_info *sit_i = SIT_I(sbi);
821 time64_t diff, now = ktime_get_boottime_seconds();
822
823 if (now >= sit_i->mounted_time)
824 return sit_i->elapsed_time + now - sit_i->mounted_time;
825
826 /* system time is set to the past */
827 if (!base_time) {
828 diff = sit_i->mounted_time - now;
829 if (sit_i->elapsed_time >= diff)
830 return sit_i->elapsed_time - diff;
831 return 0;
832 }
833 return sit_i->elapsed_time;
834 }
835
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)836 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
837 unsigned int ofs_in_node, unsigned char version)
838 {
839 sum->nid = cpu_to_le32(nid);
840 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
841 sum->version = version;
842 }
843
start_sum_block(struct f2fs_sb_info * sbi)844 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
845 {
846 return __start_cp_addr(sbi) +
847 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
848 }
849
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)850 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
851 {
852 return __start_cp_addr(sbi) +
853 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
854 - (base + 1) + type;
855 }
856
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)857 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
858 {
859 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
860 return true;
861 return false;
862 }
863
864 /*
865 * It is very important to gather dirty pages and write at once, so that we can
866 * submit a big bio without interfering other data writes.
867 * By default, 512 pages for directory data,
868 * 512 pages (2MB) * 8 for nodes, and
869 * 256 pages * 8 for meta are set.
870 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)871 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
872 {
873 if (sbi->sb->s_bdi->wb.dirty_exceeded)
874 return 0;
875
876 if (type == DATA)
877 return sbi->blocks_per_seg;
878 else if (type == NODE)
879 return 8 * sbi->blocks_per_seg;
880 else if (type == META)
881 return 8 * BIO_MAX_VECS;
882 else
883 return 0;
884 }
885
886 /*
887 * When writing pages, it'd better align nr_to_write for segment size.
888 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)889 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
890 struct writeback_control *wbc)
891 {
892 long nr_to_write, desired;
893
894 if (wbc->sync_mode != WB_SYNC_NONE)
895 return 0;
896
897 nr_to_write = wbc->nr_to_write;
898 desired = BIO_MAX_VECS;
899 if (type == NODE)
900 desired <<= 1;
901
902 wbc->nr_to_write = desired;
903 return desired - nr_to_write;
904 }
905
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)906 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
907 {
908 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
909 bool wakeup = false;
910 int i;
911
912 if (force)
913 goto wake_up;
914
915 mutex_lock(&dcc->cmd_lock);
916 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
917 if (i + 1 < dcc->discard_granularity)
918 break;
919 if (!list_empty(&dcc->pend_list[i])) {
920 wakeup = true;
921 break;
922 }
923 }
924 mutex_unlock(&dcc->cmd_lock);
925 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
926 return;
927 wake_up:
928 dcc->discard_wake = 1;
929 wake_up_interruptible_all(&dcc->discard_wait_queue);
930 }
931