1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Scatterlist Cryptographic API.
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 *
9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10 * and Nettle, by Niels Möller.
11 */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 #include <linux/completion.h>
22
23 /*
24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
25 * arbitrary modules to be loaded. Loading from userspace may still need the
26 * unprefixed names, so retains those aliases as well.
27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
29 * expands twice on the same line. Instead, use a separate base name for the
30 * alias.
31 */
32 #define MODULE_ALIAS_CRYPTO(name) \
33 __MODULE_INFO(alias, alias_userspace, name); \
34 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
35
36 /*
37 * Algorithm masks and types.
38 */
39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
44 #define CRYPTO_ALG_TYPE_KPP 0x00000008
45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
52
53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
56
57 #define CRYPTO_ALG_LARVAL 0x00000010
58 #define CRYPTO_ALG_DEAD 0x00000020
59 #define CRYPTO_ALG_DYING 0x00000040
60 #define CRYPTO_ALG_ASYNC 0x00000080
61
62 /*
63 * Set if the algorithm (or an algorithm which it uses) requires another
64 * algorithm of the same type to handle corner cases.
65 */
66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
67
68 /*
69 * Set if the algorithm has passed automated run-time testing. Note that
70 * if there is no run-time testing for a given algorithm it is considered
71 * to have passed.
72 */
73
74 #define CRYPTO_ALG_TESTED 0x00000400
75
76 /*
77 * Set if the algorithm is an instance that is built from templates.
78 */
79 #define CRYPTO_ALG_INSTANCE 0x00000800
80
81 /* Set this bit if the algorithm provided is hardware accelerated but
82 * not available to userspace via instruction set or so.
83 */
84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
85
86 /*
87 * Mark a cipher as a service implementation only usable by another
88 * cipher and never by a normal user of the kernel crypto API
89 */
90 #define CRYPTO_ALG_INTERNAL 0x00002000
91
92 /*
93 * Set if the algorithm has a ->setkey() method but can be used without
94 * calling it first, i.e. there is a default key.
95 */
96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
97
98 /*
99 * Don't trigger module loading
100 */
101 #define CRYPTO_NOLOAD 0x00008000
102
103 /*
104 * The algorithm may allocate memory during request processing, i.e. during
105 * encryption, decryption, or hashing. Users can request an algorithm with this
106 * flag unset if they can't handle memory allocation failures.
107 *
108 * This flag is currently only implemented for algorithms of type "skcipher",
109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not
110 * have this flag set even if they allocate memory.
111 *
112 * In some edge cases, algorithms can allocate memory regardless of this flag.
113 * To avoid these cases, users must obey the following usage constraints:
114 * skcipher:
115 * - The IV buffer and all scatterlist elements must be aligned to the
116 * algorithm's alignmask.
117 * - If the data were to be divided into chunks of size
118 * crypto_skcipher_walksize() (with any remainder going at the end), no
119 * chunk can cross a page boundary or a scatterlist element boundary.
120 * aead:
121 * - The IV buffer and all scatterlist elements must be aligned to the
122 * algorithm's alignmask.
123 * - The first scatterlist element must contain all the associated data,
124 * and its pages must be !PageHighMem.
125 * - If the plaintext/ciphertext were to be divided into chunks of size
126 * crypto_aead_walksize() (with the remainder going at the end), no chunk
127 * can cross a page boundary or a scatterlist element boundary.
128 * ahash:
129 * - The result buffer must be aligned to the algorithm's alignmask.
130 * - crypto_ahash_finup() must not be used unless the algorithm implements
131 * ->finup() natively.
132 */
133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000
134
135 /*
136 * Mark an algorithm as a service implementation only usable by a
137 * template and never by a normal user of the kernel crypto API.
138 * This is intended to be used by algorithms that are themselves
139 * not FIPS-approved but may instead be used to implement parts of
140 * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)).
141 */
142 #define CRYPTO_ALG_FIPS_INTERNAL 0x00020000
143
144 /*
145 * Transform masks and values (for crt_flags).
146 */
147 #define CRYPTO_TFM_NEED_KEY 0x00000001
148
149 #define CRYPTO_TFM_REQ_MASK 0x000fff00
150 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
151 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
152 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
153
154 /*
155 * Miscellaneous stuff.
156 */
157 #define CRYPTO_MAX_ALG_NAME 128
158
159 /*
160 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
161 * declaration) is used to ensure that the crypto_tfm context structure is
162 * aligned correctly for the given architecture so that there are no alignment
163 * faults for C data types. On architectures that support non-cache coherent
164 * DMA, such as ARM or arm64, it also takes into account the minimal alignment
165 * that is required to ensure that the context struct member does not share any
166 * cachelines with the rest of the struct. This is needed to ensure that cache
167 * maintenance for non-coherent DMA (cache invalidation in particular) does not
168 * affect data that may be accessed by the CPU concurrently.
169 */
170 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
171
172 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
173
174 struct scatterlist;
175 struct crypto_async_request;
176 struct crypto_tfm;
177 struct crypto_type;
178
179 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
180
181 /**
182 * DOC: Block Cipher Context Data Structures
183 *
184 * These data structures define the operating context for each block cipher
185 * type.
186 */
187
188 struct crypto_async_request {
189 struct list_head list;
190 crypto_completion_t complete;
191 void *data;
192 struct crypto_tfm *tfm;
193
194 u32 flags;
195 };
196
197 /**
198 * DOC: Block Cipher Algorithm Definitions
199 *
200 * These data structures define modular crypto algorithm implementations,
201 * managed via crypto_register_alg() and crypto_unregister_alg().
202 */
203
204 /**
205 * struct cipher_alg - single-block symmetric ciphers definition
206 * @cia_min_keysize: Minimum key size supported by the transformation. This is
207 * the smallest key length supported by this transformation
208 * algorithm. This must be set to one of the pre-defined
209 * values as this is not hardware specific. Possible values
210 * for this field can be found via git grep "_MIN_KEY_SIZE"
211 * include/crypto/
212 * @cia_max_keysize: Maximum key size supported by the transformation. This is
213 * the largest key length supported by this transformation
214 * algorithm. This must be set to one of the pre-defined values
215 * as this is not hardware specific. Possible values for this
216 * field can be found via git grep "_MAX_KEY_SIZE"
217 * include/crypto/
218 * @cia_setkey: Set key for the transformation. This function is used to either
219 * program a supplied key into the hardware or store the key in the
220 * transformation context for programming it later. Note that this
221 * function does modify the transformation context. This function
222 * can be called multiple times during the existence of the
223 * transformation object, so one must make sure the key is properly
224 * reprogrammed into the hardware. This function is also
225 * responsible for checking the key length for validity.
226 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
227 * single block of data, which must be @cra_blocksize big. This
228 * always operates on a full @cra_blocksize and it is not possible
229 * to encrypt a block of smaller size. The supplied buffers must
230 * therefore also be at least of @cra_blocksize size. Both the
231 * input and output buffers are always aligned to @cra_alignmask.
232 * In case either of the input or output buffer supplied by user
233 * of the crypto API is not aligned to @cra_alignmask, the crypto
234 * API will re-align the buffers. The re-alignment means that a
235 * new buffer will be allocated, the data will be copied into the
236 * new buffer, then the processing will happen on the new buffer,
237 * then the data will be copied back into the original buffer and
238 * finally the new buffer will be freed. In case a software
239 * fallback was put in place in the @cra_init call, this function
240 * might need to use the fallback if the algorithm doesn't support
241 * all of the key sizes. In case the key was stored in
242 * transformation context, the key might need to be re-programmed
243 * into the hardware in this function. This function shall not
244 * modify the transformation context, as this function may be
245 * called in parallel with the same transformation object.
246 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
247 * @cia_encrypt, and the conditions are exactly the same.
248 *
249 * All fields are mandatory and must be filled.
250 */
251 struct cipher_alg {
252 unsigned int cia_min_keysize;
253 unsigned int cia_max_keysize;
254 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
255 unsigned int keylen);
256 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
257 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
258 };
259
260 /**
261 * struct compress_alg - compression/decompression algorithm
262 * @coa_compress: Compress a buffer of specified length, storing the resulting
263 * data in the specified buffer. Return the length of the
264 * compressed data in dlen.
265 * @coa_decompress: Decompress the source buffer, storing the uncompressed
266 * data in the specified buffer. The length of the data is
267 * returned in dlen.
268 *
269 * All fields are mandatory.
270 */
271 struct compress_alg {
272 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
273 unsigned int slen, u8 *dst, unsigned int *dlen);
274 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
275 unsigned int slen, u8 *dst, unsigned int *dlen);
276 };
277
278 #ifdef CONFIG_CRYPTO_STATS
279 /*
280 * struct crypto_istat_aead - statistics for AEAD algorithm
281 * @encrypt_cnt: number of encrypt requests
282 * @encrypt_tlen: total data size handled by encrypt requests
283 * @decrypt_cnt: number of decrypt requests
284 * @decrypt_tlen: total data size handled by decrypt requests
285 * @err_cnt: number of error for AEAD requests
286 */
287 struct crypto_istat_aead {
288 atomic64_t encrypt_cnt;
289 atomic64_t encrypt_tlen;
290 atomic64_t decrypt_cnt;
291 atomic64_t decrypt_tlen;
292 atomic64_t err_cnt;
293 };
294
295 /*
296 * struct crypto_istat_akcipher - statistics for akcipher algorithm
297 * @encrypt_cnt: number of encrypt requests
298 * @encrypt_tlen: total data size handled by encrypt requests
299 * @decrypt_cnt: number of decrypt requests
300 * @decrypt_tlen: total data size handled by decrypt requests
301 * @verify_cnt: number of verify operation
302 * @sign_cnt: number of sign requests
303 * @err_cnt: number of error for akcipher requests
304 */
305 struct crypto_istat_akcipher {
306 atomic64_t encrypt_cnt;
307 atomic64_t encrypt_tlen;
308 atomic64_t decrypt_cnt;
309 atomic64_t decrypt_tlen;
310 atomic64_t verify_cnt;
311 atomic64_t sign_cnt;
312 atomic64_t err_cnt;
313 };
314
315 /*
316 * struct crypto_istat_cipher - statistics for cipher algorithm
317 * @encrypt_cnt: number of encrypt requests
318 * @encrypt_tlen: total data size handled by encrypt requests
319 * @decrypt_cnt: number of decrypt requests
320 * @decrypt_tlen: total data size handled by decrypt requests
321 * @err_cnt: number of error for cipher requests
322 */
323 struct crypto_istat_cipher {
324 atomic64_t encrypt_cnt;
325 atomic64_t encrypt_tlen;
326 atomic64_t decrypt_cnt;
327 atomic64_t decrypt_tlen;
328 atomic64_t err_cnt;
329 };
330
331 /*
332 * struct crypto_istat_compress - statistics for compress algorithm
333 * @compress_cnt: number of compress requests
334 * @compress_tlen: total data size handled by compress requests
335 * @decompress_cnt: number of decompress requests
336 * @decompress_tlen: total data size handled by decompress requests
337 * @err_cnt: number of error for compress requests
338 */
339 struct crypto_istat_compress {
340 atomic64_t compress_cnt;
341 atomic64_t compress_tlen;
342 atomic64_t decompress_cnt;
343 atomic64_t decompress_tlen;
344 atomic64_t err_cnt;
345 };
346
347 /*
348 * struct crypto_istat_hash - statistics for has algorithm
349 * @hash_cnt: number of hash requests
350 * @hash_tlen: total data size hashed
351 * @err_cnt: number of error for hash requests
352 */
353 struct crypto_istat_hash {
354 atomic64_t hash_cnt;
355 atomic64_t hash_tlen;
356 atomic64_t err_cnt;
357 };
358
359 /*
360 * struct crypto_istat_kpp - statistics for KPP algorithm
361 * @setsecret_cnt: number of setsecrey operation
362 * @generate_public_key_cnt: number of generate_public_key operation
363 * @compute_shared_secret_cnt: number of compute_shared_secret operation
364 * @err_cnt: number of error for KPP requests
365 */
366 struct crypto_istat_kpp {
367 atomic64_t setsecret_cnt;
368 atomic64_t generate_public_key_cnt;
369 atomic64_t compute_shared_secret_cnt;
370 atomic64_t err_cnt;
371 };
372
373 /*
374 * struct crypto_istat_rng: statistics for RNG algorithm
375 * @generate_cnt: number of RNG generate requests
376 * @generate_tlen: total data size of generated data by the RNG
377 * @seed_cnt: number of times the RNG was seeded
378 * @err_cnt: number of error for RNG requests
379 */
380 struct crypto_istat_rng {
381 atomic64_t generate_cnt;
382 atomic64_t generate_tlen;
383 atomic64_t seed_cnt;
384 atomic64_t err_cnt;
385 };
386 #endif /* CONFIG_CRYPTO_STATS */
387
388 #define cra_cipher cra_u.cipher
389 #define cra_compress cra_u.compress
390
391 /**
392 * struct crypto_alg - definition of a cryptograpic cipher algorithm
393 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
394 * CRYPTO_ALG_* flags for the flags which go in here. Those are
395 * used for fine-tuning the description of the transformation
396 * algorithm.
397 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
398 * of the smallest possible unit which can be transformed with
399 * this algorithm. The users must respect this value.
400 * In case of HASH transformation, it is possible for a smaller
401 * block than @cra_blocksize to be passed to the crypto API for
402 * transformation, in case of any other transformation type, an
403 * error will be returned upon any attempt to transform smaller
404 * than @cra_blocksize chunks.
405 * @cra_ctxsize: Size of the operational context of the transformation. This
406 * value informs the kernel crypto API about the memory size
407 * needed to be allocated for the transformation context.
408 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
409 * buffer containing the input data for the algorithm must be
410 * aligned to this alignment mask. The data buffer for the
411 * output data must be aligned to this alignment mask. Note that
412 * the Crypto API will do the re-alignment in software, but
413 * only under special conditions and there is a performance hit.
414 * The re-alignment happens at these occasions for different
415 * @cra_u types: cipher -- For both input data and output data
416 * buffer; ahash -- For output hash destination buf; shash --
417 * For output hash destination buf.
418 * This is needed on hardware which is flawed by design and
419 * cannot pick data from arbitrary addresses.
420 * @cra_priority: Priority of this transformation implementation. In case
421 * multiple transformations with same @cra_name are available to
422 * the Crypto API, the kernel will use the one with highest
423 * @cra_priority.
424 * @cra_name: Generic name (usable by multiple implementations) of the
425 * transformation algorithm. This is the name of the transformation
426 * itself. This field is used by the kernel when looking up the
427 * providers of particular transformation.
428 * @cra_driver_name: Unique name of the transformation provider. This is the
429 * name of the provider of the transformation. This can be any
430 * arbitrary value, but in the usual case, this contains the
431 * name of the chip or provider and the name of the
432 * transformation algorithm.
433 * @cra_type: Type of the cryptographic transformation. This is a pointer to
434 * struct crypto_type, which implements callbacks common for all
435 * transformation types. There are multiple options, such as
436 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
437 * This field might be empty. In that case, there are no common
438 * callbacks. This is the case for: cipher, compress, shash.
439 * @cra_u: Callbacks implementing the transformation. This is a union of
440 * multiple structures. Depending on the type of transformation selected
441 * by @cra_type and @cra_flags above, the associated structure must be
442 * filled with callbacks. This field might be empty. This is the case
443 * for ahash, shash.
444 * @cra_init: Initialize the cryptographic transformation object. This function
445 * is used to initialize the cryptographic transformation object.
446 * This function is called only once at the instantiation time, right
447 * after the transformation context was allocated. In case the
448 * cryptographic hardware has some special requirements which need to
449 * be handled by software, this function shall check for the precise
450 * requirement of the transformation and put any software fallbacks
451 * in place.
452 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
453 * counterpart to @cra_init, used to remove various changes set in
454 * @cra_init.
455 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
456 * definition. See @struct @cipher_alg.
457 * @cra_u.compress: Union member which contains a (de)compression algorithm.
458 * See @struct @compress_alg.
459 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
460 * @cra_list: internally used
461 * @cra_users: internally used
462 * @cra_refcnt: internally used
463 * @cra_destroy: internally used
464 *
465 * @stats: union of all possible crypto_istat_xxx structures
466 * @stats.aead: statistics for AEAD algorithm
467 * @stats.akcipher: statistics for akcipher algorithm
468 * @stats.cipher: statistics for cipher algorithm
469 * @stats.compress: statistics for compress algorithm
470 * @stats.hash: statistics for hash algorithm
471 * @stats.rng: statistics for rng algorithm
472 * @stats.kpp: statistics for KPP algorithm
473 *
474 * The struct crypto_alg describes a generic Crypto API algorithm and is common
475 * for all of the transformations. Any variable not documented here shall not
476 * be used by a cipher implementation as it is internal to the Crypto API.
477 */
478 struct crypto_alg {
479 struct list_head cra_list;
480 struct list_head cra_users;
481
482 u32 cra_flags;
483 unsigned int cra_blocksize;
484 unsigned int cra_ctxsize;
485 unsigned int cra_alignmask;
486
487 int cra_priority;
488 refcount_t cra_refcnt;
489
490 char cra_name[CRYPTO_MAX_ALG_NAME];
491 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
492
493 const struct crypto_type *cra_type;
494
495 union {
496 struct cipher_alg cipher;
497 struct compress_alg compress;
498 } cra_u;
499
500 int (*cra_init)(struct crypto_tfm *tfm);
501 void (*cra_exit)(struct crypto_tfm *tfm);
502 void (*cra_destroy)(struct crypto_alg *alg);
503
504 struct module *cra_module;
505
506 #ifdef CONFIG_CRYPTO_STATS
507 union {
508 struct crypto_istat_aead aead;
509 struct crypto_istat_akcipher akcipher;
510 struct crypto_istat_cipher cipher;
511 struct crypto_istat_compress compress;
512 struct crypto_istat_hash hash;
513 struct crypto_istat_rng rng;
514 struct crypto_istat_kpp kpp;
515 } stats;
516 #endif /* CONFIG_CRYPTO_STATS */
517
518 } CRYPTO_MINALIGN_ATTR;
519
520 #ifdef CONFIG_CRYPTO_STATS
521 void crypto_stats_init(struct crypto_alg *alg);
522 void crypto_stats_get(struct crypto_alg *alg);
523 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
524 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
525 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
526 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
527 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
528 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
529 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
530 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
531 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
532 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
533 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
534 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
535 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
536 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
537 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
538 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
539 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
540 #else
crypto_stats_init(struct crypto_alg * alg)541 static inline void crypto_stats_init(struct crypto_alg *alg)
542 {}
crypto_stats_get(struct crypto_alg * alg)543 static inline void crypto_stats_get(struct crypto_alg *alg)
544 {}
crypto_stats_aead_encrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)545 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
546 {}
crypto_stats_aead_decrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)547 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
548 {}
crypto_stats_ahash_update(unsigned int nbytes,int ret,struct crypto_alg * alg)549 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
550 {}
crypto_stats_ahash_final(unsigned int nbytes,int ret,struct crypto_alg * alg)551 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
552 {}
crypto_stats_akcipher_encrypt(unsigned int src_len,int ret,struct crypto_alg * alg)553 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
554 {}
crypto_stats_akcipher_decrypt(unsigned int src_len,int ret,struct crypto_alg * alg)555 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
556 {}
crypto_stats_akcipher_sign(int ret,struct crypto_alg * alg)557 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
558 {}
crypto_stats_akcipher_verify(int ret,struct crypto_alg * alg)559 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
560 {}
crypto_stats_compress(unsigned int slen,int ret,struct crypto_alg * alg)561 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
562 {}
crypto_stats_decompress(unsigned int slen,int ret,struct crypto_alg * alg)563 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
564 {}
crypto_stats_kpp_set_secret(struct crypto_alg * alg,int ret)565 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
566 {}
crypto_stats_kpp_generate_public_key(struct crypto_alg * alg,int ret)567 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
568 {}
crypto_stats_kpp_compute_shared_secret(struct crypto_alg * alg,int ret)569 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
570 {}
crypto_stats_rng_seed(struct crypto_alg * alg,int ret)571 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
572 {}
crypto_stats_rng_generate(struct crypto_alg * alg,unsigned int dlen,int ret)573 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
574 {}
crypto_stats_skcipher_encrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)575 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
576 {}
crypto_stats_skcipher_decrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)577 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
578 {}
579 #endif
580 /*
581 * A helper struct for waiting for completion of async crypto ops
582 */
583 struct crypto_wait {
584 struct completion completion;
585 int err;
586 };
587
588 /*
589 * Macro for declaring a crypto op async wait object on stack
590 */
591 #define DECLARE_CRYPTO_WAIT(_wait) \
592 struct crypto_wait _wait = { \
593 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
594
595 /*
596 * Async ops completion helper functioons
597 */
598 void crypto_req_done(struct crypto_async_request *req, int err);
599
crypto_wait_req(int err,struct crypto_wait * wait)600 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
601 {
602 switch (err) {
603 case -EINPROGRESS:
604 case -EBUSY:
605 wait_for_completion(&wait->completion);
606 reinit_completion(&wait->completion);
607 err = wait->err;
608 break;
609 }
610
611 return err;
612 }
613
crypto_init_wait(struct crypto_wait * wait)614 static inline void crypto_init_wait(struct crypto_wait *wait)
615 {
616 init_completion(&wait->completion);
617 }
618
619 /*
620 * Algorithm registration interface.
621 */
622 int crypto_register_alg(struct crypto_alg *alg);
623 void crypto_unregister_alg(struct crypto_alg *alg);
624 int crypto_register_algs(struct crypto_alg *algs, int count);
625 void crypto_unregister_algs(struct crypto_alg *algs, int count);
626
627 /*
628 * Algorithm query interface.
629 */
630 int crypto_has_alg(const char *name, u32 type, u32 mask);
631
632 /*
633 * Transforms: user-instantiated objects which encapsulate algorithms
634 * and core processing logic. Managed via crypto_alloc_*() and
635 * crypto_free_*(), as well as the various helpers below.
636 */
637
638 struct crypto_tfm {
639
640 u32 crt_flags;
641
642 int node;
643
644 void (*exit)(struct crypto_tfm *tfm);
645
646 struct crypto_alg *__crt_alg;
647
648 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
649 };
650
651 struct crypto_comp {
652 struct crypto_tfm base;
653 };
654
655 /*
656 * Transform user interface.
657 */
658
659 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
660 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
661
crypto_free_tfm(struct crypto_tfm * tfm)662 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
663 {
664 return crypto_destroy_tfm(tfm, tfm);
665 }
666
667 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
668
669 /*
670 * Transform helpers which query the underlying algorithm.
671 */
crypto_tfm_alg_name(struct crypto_tfm * tfm)672 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
673 {
674 return tfm->__crt_alg->cra_name;
675 }
676
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)677 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
678 {
679 return tfm->__crt_alg->cra_driver_name;
680 }
681
crypto_tfm_alg_priority(struct crypto_tfm * tfm)682 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
683 {
684 return tfm->__crt_alg->cra_priority;
685 }
686
crypto_tfm_alg_type(struct crypto_tfm * tfm)687 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
688 {
689 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
690 }
691
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)692 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
693 {
694 return tfm->__crt_alg->cra_blocksize;
695 }
696
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)697 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
698 {
699 return tfm->__crt_alg->cra_alignmask;
700 }
701
crypto_tfm_get_flags(struct crypto_tfm * tfm)702 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
703 {
704 return tfm->crt_flags;
705 }
706
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)707 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
708 {
709 tfm->crt_flags |= flags;
710 }
711
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)712 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
713 {
714 tfm->crt_flags &= ~flags;
715 }
716
crypto_tfm_ctx(struct crypto_tfm * tfm)717 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
718 {
719 return tfm->__crt_ctx;
720 }
721
crypto_tfm_ctx_alignment(void)722 static inline unsigned int crypto_tfm_ctx_alignment(void)
723 {
724 struct crypto_tfm *tfm;
725 return __alignof__(tfm->__crt_ctx);
726 }
727
__crypto_comp_cast(struct crypto_tfm * tfm)728 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
729 {
730 return (struct crypto_comp *)tfm;
731 }
732
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)733 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
734 u32 type, u32 mask)
735 {
736 type &= ~CRYPTO_ALG_TYPE_MASK;
737 type |= CRYPTO_ALG_TYPE_COMPRESS;
738 mask |= CRYPTO_ALG_TYPE_MASK;
739
740 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
741 }
742
crypto_comp_tfm(struct crypto_comp * tfm)743 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
744 {
745 return &tfm->base;
746 }
747
crypto_free_comp(struct crypto_comp * tfm)748 static inline void crypto_free_comp(struct crypto_comp *tfm)
749 {
750 crypto_free_tfm(crypto_comp_tfm(tfm));
751 }
752
crypto_has_comp(const char * alg_name,u32 type,u32 mask)753 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
754 {
755 type &= ~CRYPTO_ALG_TYPE_MASK;
756 type |= CRYPTO_ALG_TYPE_COMPRESS;
757 mask |= CRYPTO_ALG_TYPE_MASK;
758
759 return crypto_has_alg(alg_name, type, mask);
760 }
761
crypto_comp_name(struct crypto_comp * tfm)762 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
763 {
764 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
765 }
766
767 int crypto_comp_compress(struct crypto_comp *tfm,
768 const u8 *src, unsigned int slen,
769 u8 *dst, unsigned int *dlen);
770
771 int crypto_comp_decompress(struct crypto_comp *tfm,
772 const u8 *src, unsigned int slen,
773 u8 *dst, unsigned int *dlen);
774
775 #endif /* _LINUX_CRYPTO_H */
776
777