1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70
71 struct convert_context_args {
72 struct selinux_state *state;
73 struct policydb *oldp;
74 struct policydb *newp;
75 };
76
77 struct selinux_policy_convert_data {
78 struct convert_context_args args;
79 struct sidtab_convert_params sidtab_params;
80 };
81
82 /* Forward declaration. */
83 static int context_struct_to_string(struct policydb *policydb,
84 struct context *context,
85 char **scontext,
86 u32 *scontext_len);
87
88 static int sidtab_entry_to_string(struct policydb *policydb,
89 struct sidtab *sidtab,
90 struct sidtab_entry *entry,
91 char **scontext,
92 u32 *scontext_len);
93
94 static void context_struct_compute_av(struct policydb *policydb,
95 struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
100
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)101 static int selinux_set_mapping(struct policydb *pol,
102 const struct security_class_mapping *map,
103 struct selinux_map *out_map)
104 {
105 u16 i, j;
106 unsigned k;
107 bool print_unknown_handle = false;
108
109 /* Find number of classes in the input mapping */
110 if (!map)
111 return -EINVAL;
112 i = 0;
113 while (map[i].name)
114 i++;
115
116 /* Allocate space for the class records, plus one for class zero */
117 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 if (!out_map->mapping)
119 return -ENOMEM;
120
121 /* Store the raw class and permission values */
122 j = 0;
123 while (map[j].name) {
124 const struct security_class_mapping *p_in = map + (j++);
125 struct selinux_mapping *p_out = out_map->mapping + j;
126
127 /* An empty class string skips ahead */
128 if (!strcmp(p_in->name, "")) {
129 p_out->num_perms = 0;
130 continue;
131 }
132
133 p_out->value = string_to_security_class(pol, p_in->name);
134 if (!p_out->value) {
135 pr_info("SELinux: Class %s not defined in policy.\n",
136 p_in->name);
137 if (pol->reject_unknown)
138 goto err;
139 p_out->num_perms = 0;
140 print_unknown_handle = true;
141 continue;
142 }
143
144 k = 0;
145 while (p_in->perms[k]) {
146 /* An empty permission string skips ahead */
147 if (!*p_in->perms[k]) {
148 k++;
149 continue;
150 }
151 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 p_in->perms[k]);
153 if (!p_out->perms[k]) {
154 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
155 p_in->perms[k], p_in->name);
156 if (pol->reject_unknown)
157 goto err;
158 print_unknown_handle = true;
159 }
160
161 k++;
162 }
163 p_out->num_perms = k;
164 }
165
166 if (print_unknown_handle)
167 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 pol->allow_unknown ? "allowed" : "denied");
169
170 out_map->size = i;
171 return 0;
172 err:
173 kfree(out_map->mapping);
174 out_map->mapping = NULL;
175 return -EINVAL;
176 }
177
178 /*
179 * Get real, policy values from mapped values
180 */
181
unmap_class(struct selinux_map * map,u16 tclass)182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 if (tclass < map->size)
185 return map->mapping[tclass].value;
186
187 return tclass;
188 }
189
190 /*
191 * Get kernel value for class from its policy value
192 */
map_class(struct selinux_map * map,u16 pol_value)193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 u16 i;
196
197 for (i = 1; i < map->size; i++) {
198 if (map->mapping[i].value == pol_value)
199 return i;
200 }
201
202 return SECCLASS_NULL;
203 }
204
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)205 static void map_decision(struct selinux_map *map,
206 u16 tclass, struct av_decision *avd,
207 int allow_unknown)
208 {
209 if (tclass < map->size) {
210 struct selinux_mapping *mapping = &map->mapping[tclass];
211 unsigned int i, n = mapping->num_perms;
212 u32 result;
213
214 for (i = 0, result = 0; i < n; i++) {
215 if (avd->allowed & mapping->perms[i])
216 result |= 1<<i;
217 if (allow_unknown && !mapping->perms[i])
218 result |= 1<<i;
219 }
220 avd->allowed = result;
221
222 for (i = 0, result = 0; i < n; i++)
223 if (avd->auditallow & mapping->perms[i])
224 result |= 1<<i;
225 avd->auditallow = result;
226
227 for (i = 0, result = 0; i < n; i++) {
228 if (avd->auditdeny & mapping->perms[i])
229 result |= 1<<i;
230 if (!allow_unknown && !mapping->perms[i])
231 result |= 1<<i;
232 }
233 /*
234 * In case the kernel has a bug and requests a permission
235 * between num_perms and the maximum permission number, we
236 * should audit that denial
237 */
238 for (; i < (sizeof(u32)*8); i++)
239 result |= 1<<i;
240 avd->auditdeny = result;
241 }
242 }
243
security_mls_enabled(struct selinux_state * state)244 int security_mls_enabled(struct selinux_state *state)
245 {
246 int mls_enabled;
247 struct selinux_policy *policy;
248
249 if (!selinux_initialized(state))
250 return 0;
251
252 rcu_read_lock();
253 policy = rcu_dereference(state->policy);
254 mls_enabled = policy->policydb.mls_enabled;
255 rcu_read_unlock();
256 return mls_enabled;
257 }
258
259 /*
260 * Return the boolean value of a constraint expression
261 * when it is applied to the specified source and target
262 * security contexts.
263 *
264 * xcontext is a special beast... It is used by the validatetrans rules
265 * only. For these rules, scontext is the context before the transition,
266 * tcontext is the context after the transition, and xcontext is the context
267 * of the process performing the transition. All other callers of
268 * constraint_expr_eval should pass in NULL for xcontext.
269 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)270 static int constraint_expr_eval(struct policydb *policydb,
271 struct context *scontext,
272 struct context *tcontext,
273 struct context *xcontext,
274 struct constraint_expr *cexpr)
275 {
276 u32 val1, val2;
277 struct context *c;
278 struct role_datum *r1, *r2;
279 struct mls_level *l1, *l2;
280 struct constraint_expr *e;
281 int s[CEXPR_MAXDEPTH];
282 int sp = -1;
283
284 for (e = cexpr; e; e = e->next) {
285 switch (e->expr_type) {
286 case CEXPR_NOT:
287 BUG_ON(sp < 0);
288 s[sp] = !s[sp];
289 break;
290 case CEXPR_AND:
291 BUG_ON(sp < 1);
292 sp--;
293 s[sp] &= s[sp + 1];
294 break;
295 case CEXPR_OR:
296 BUG_ON(sp < 1);
297 sp--;
298 s[sp] |= s[sp + 1];
299 break;
300 case CEXPR_ATTR:
301 if (sp == (CEXPR_MAXDEPTH - 1))
302 return 0;
303 switch (e->attr) {
304 case CEXPR_USER:
305 val1 = scontext->user;
306 val2 = tcontext->user;
307 break;
308 case CEXPR_TYPE:
309 val1 = scontext->type;
310 val2 = tcontext->type;
311 break;
312 case CEXPR_ROLE:
313 val1 = scontext->role;
314 val2 = tcontext->role;
315 r1 = policydb->role_val_to_struct[val1 - 1];
316 r2 = policydb->role_val_to_struct[val2 - 1];
317 switch (e->op) {
318 case CEXPR_DOM:
319 s[++sp] = ebitmap_get_bit(&r1->dominates,
320 val2 - 1);
321 continue;
322 case CEXPR_DOMBY:
323 s[++sp] = ebitmap_get_bit(&r2->dominates,
324 val1 - 1);
325 continue;
326 case CEXPR_INCOMP:
327 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 val2 - 1) &&
329 !ebitmap_get_bit(&r2->dominates,
330 val1 - 1));
331 continue;
332 default:
333 break;
334 }
335 break;
336 case CEXPR_L1L2:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(tcontext->range.level[0]);
339 goto mls_ops;
340 case CEXPR_L1H2:
341 l1 = &(scontext->range.level[0]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344 case CEXPR_H1L2:
345 l1 = &(scontext->range.level[1]);
346 l2 = &(tcontext->range.level[0]);
347 goto mls_ops;
348 case CEXPR_H1H2:
349 l1 = &(scontext->range.level[1]);
350 l2 = &(tcontext->range.level[1]);
351 goto mls_ops;
352 case CEXPR_L1H1:
353 l1 = &(scontext->range.level[0]);
354 l2 = &(scontext->range.level[1]);
355 goto mls_ops;
356 case CEXPR_L2H2:
357 l1 = &(tcontext->range.level[0]);
358 l2 = &(tcontext->range.level[1]);
359 goto mls_ops;
360 mls_ops:
361 switch (e->op) {
362 case CEXPR_EQ:
363 s[++sp] = mls_level_eq(l1, l2);
364 continue;
365 case CEXPR_NEQ:
366 s[++sp] = !mls_level_eq(l1, l2);
367 continue;
368 case CEXPR_DOM:
369 s[++sp] = mls_level_dom(l1, l2);
370 continue;
371 case CEXPR_DOMBY:
372 s[++sp] = mls_level_dom(l2, l1);
373 continue;
374 case CEXPR_INCOMP:
375 s[++sp] = mls_level_incomp(l2, l1);
376 continue;
377 default:
378 BUG();
379 return 0;
380 }
381 break;
382 default:
383 BUG();
384 return 0;
385 }
386
387 switch (e->op) {
388 case CEXPR_EQ:
389 s[++sp] = (val1 == val2);
390 break;
391 case CEXPR_NEQ:
392 s[++sp] = (val1 != val2);
393 break;
394 default:
395 BUG();
396 return 0;
397 }
398 break;
399 case CEXPR_NAMES:
400 if (sp == (CEXPR_MAXDEPTH-1))
401 return 0;
402 c = scontext;
403 if (e->attr & CEXPR_TARGET)
404 c = tcontext;
405 else if (e->attr & CEXPR_XTARGET) {
406 c = xcontext;
407 if (!c) {
408 BUG();
409 return 0;
410 }
411 }
412 if (e->attr & CEXPR_USER)
413 val1 = c->user;
414 else if (e->attr & CEXPR_ROLE)
415 val1 = c->role;
416 else if (e->attr & CEXPR_TYPE)
417 val1 = c->type;
418 else {
419 BUG();
420 return 0;
421 }
422
423 switch (e->op) {
424 case CEXPR_EQ:
425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 break;
427 case CEXPR_NEQ:
428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 break;
435 default:
436 BUG();
437 return 0;
438 }
439 }
440
441 BUG_ON(sp != 0);
442 return s[0];
443 }
444
445 /*
446 * security_dump_masked_av - dumps masked permissions during
447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 */
dump_masked_av_helper(void * k,void * d,void * args)449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451 struct perm_datum *pdatum = d;
452 char **permission_names = args;
453
454 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455
456 permission_names[pdatum->value - 1] = (char *)k;
457
458 return 0;
459 }
460
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)461 static void security_dump_masked_av(struct policydb *policydb,
462 struct context *scontext,
463 struct context *tcontext,
464 u16 tclass,
465 u32 permissions,
466 const char *reason)
467 {
468 struct common_datum *common_dat;
469 struct class_datum *tclass_dat;
470 struct audit_buffer *ab;
471 char *tclass_name;
472 char *scontext_name = NULL;
473 char *tcontext_name = NULL;
474 char *permission_names[32];
475 int index;
476 u32 length;
477 bool need_comma = false;
478
479 if (!permissions)
480 return;
481
482 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
483 tclass_dat = policydb->class_val_to_struct[tclass - 1];
484 common_dat = tclass_dat->comdatum;
485
486 /* init permission_names */
487 if (common_dat &&
488 hashtab_map(&common_dat->permissions.table,
489 dump_masked_av_helper, permission_names) < 0)
490 goto out;
491
492 if (hashtab_map(&tclass_dat->permissions.table,
493 dump_masked_av_helper, permission_names) < 0)
494 goto out;
495
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(policydb, scontext,
498 &scontext_name, &length) < 0)
499 goto out;
500
501 if (context_struct_to_string(policydb, tcontext,
502 &tcontext_name, &length) < 0)
503 goto out;
504
505 /* audit a message */
506 ab = audit_log_start(audit_context(),
507 GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 if (!ab)
509 goto out;
510
511 audit_log_format(ab, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason, scontext_name, tcontext_name, tclass_name);
514
515 for (index = 0; index < 32; index++) {
516 u32 mask = (1 << index);
517
518 if ((mask & permissions) == 0)
519 continue;
520
521 audit_log_format(ab, "%s%s",
522 need_comma ? "," : "",
523 permission_names[index]
524 ? permission_names[index] : "????");
525 need_comma = true;
526 }
527 audit_log_end(ab);
528 out:
529 /* release scontext/tcontext */
530 kfree(tcontext_name);
531 kfree(scontext_name);
532 }
533
534 /*
535 * security_boundary_permission - drops violated permissions
536 * on boundary constraint.
537 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)538 static void type_attribute_bounds_av(struct policydb *policydb,
539 struct context *scontext,
540 struct context *tcontext,
541 u16 tclass,
542 struct av_decision *avd)
543 {
544 struct context lo_scontext;
545 struct context lo_tcontext, *tcontextp = tcontext;
546 struct av_decision lo_avd;
547 struct type_datum *source;
548 struct type_datum *target;
549 u32 masked = 0;
550
551 source = policydb->type_val_to_struct[scontext->type - 1];
552 BUG_ON(!source);
553
554 if (!source->bounds)
555 return;
556
557 target = policydb->type_val_to_struct[tcontext->type - 1];
558 BUG_ON(!target);
559
560 memset(&lo_avd, 0, sizeof(lo_avd));
561
562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 lo_scontext.type = source->bounds;
564
565 if (target->bounds) {
566 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567 lo_tcontext.type = target->bounds;
568 tcontextp = &lo_tcontext;
569 }
570
571 context_struct_compute_av(policydb, &lo_scontext,
572 tcontextp,
573 tclass,
574 &lo_avd,
575 NULL);
576
577 masked = ~lo_avd.allowed & avd->allowed;
578
579 if (likely(!masked))
580 return; /* no masked permission */
581
582 /* mask violated permissions */
583 avd->allowed &= ~masked;
584
585 /* audit masked permissions */
586 security_dump_masked_av(policydb, scontext, tcontext,
587 tclass, masked, "bounds");
588 }
589
590 /*
591 * flag which drivers have permissions
592 * only looking for ioctl based extended permssions
593 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)594 void services_compute_xperms_drivers(
595 struct extended_perms *xperms,
596 struct avtab_node *node)
597 {
598 unsigned int i;
599
600 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
601 /* if one or more driver has all permissions allowed */
602 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
603 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
604 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
605 /* if allowing permissions within a driver */
606 security_xperm_set(xperms->drivers.p,
607 node->datum.u.xperms->driver);
608 }
609
610 xperms->len = 1;
611 }
612
613 /*
614 * Compute access vectors and extended permissions based on a context
615 * structure pair for the permissions in a particular class.
616 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)617 static void context_struct_compute_av(struct policydb *policydb,
618 struct context *scontext,
619 struct context *tcontext,
620 u16 tclass,
621 struct av_decision *avd,
622 struct extended_perms *xperms)
623 {
624 struct constraint_node *constraint;
625 struct role_allow *ra;
626 struct avtab_key avkey;
627 struct avtab_node *node;
628 struct class_datum *tclass_datum;
629 struct ebitmap *sattr, *tattr;
630 struct ebitmap_node *snode, *tnode;
631 unsigned int i, j;
632
633 avd->allowed = 0;
634 avd->auditallow = 0;
635 avd->auditdeny = 0xffffffff;
636 if (xperms) {
637 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
638 xperms->len = 0;
639 }
640
641 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
642 if (printk_ratelimit())
643 pr_warn("SELinux: Invalid class %hu\n", tclass);
644 return;
645 }
646
647 tclass_datum = policydb->class_val_to_struct[tclass - 1];
648
649 /*
650 * If a specific type enforcement rule was defined for
651 * this permission check, then use it.
652 */
653 avkey.target_class = tclass;
654 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
655 sattr = &policydb->type_attr_map_array[scontext->type - 1];
656 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
657 ebitmap_for_each_positive_bit(sattr, snode, i) {
658 ebitmap_for_each_positive_bit(tattr, tnode, j) {
659 avkey.source_type = i + 1;
660 avkey.target_type = j + 1;
661 for (node = avtab_search_node(&policydb->te_avtab,
662 &avkey);
663 node;
664 node = avtab_search_node_next(node, avkey.specified)) {
665 if (node->key.specified == AVTAB_ALLOWED)
666 avd->allowed |= node->datum.u.data;
667 else if (node->key.specified == AVTAB_AUDITALLOW)
668 avd->auditallow |= node->datum.u.data;
669 else if (node->key.specified == AVTAB_AUDITDENY)
670 avd->auditdeny &= node->datum.u.data;
671 else if (xperms && (node->key.specified & AVTAB_XPERMS))
672 services_compute_xperms_drivers(xperms, node);
673 }
674
675 /* Check conditional av table for additional permissions */
676 cond_compute_av(&policydb->te_cond_avtab, &avkey,
677 avd, xperms);
678
679 }
680 }
681
682 /*
683 * Remove any permissions prohibited by a constraint (this includes
684 * the MLS policy).
685 */
686 constraint = tclass_datum->constraints;
687 while (constraint) {
688 if ((constraint->permissions & (avd->allowed)) &&
689 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
690 constraint->expr)) {
691 avd->allowed &= ~(constraint->permissions);
692 }
693 constraint = constraint->next;
694 }
695
696 /*
697 * If checking process transition permission and the
698 * role is changing, then check the (current_role, new_role)
699 * pair.
700 */
701 if (tclass == policydb->process_class &&
702 (avd->allowed & policydb->process_trans_perms) &&
703 scontext->role != tcontext->role) {
704 for (ra = policydb->role_allow; ra; ra = ra->next) {
705 if (scontext->role == ra->role &&
706 tcontext->role == ra->new_role)
707 break;
708 }
709 if (!ra)
710 avd->allowed &= ~policydb->process_trans_perms;
711 }
712
713 /*
714 * If the given source and target types have boundary
715 * constraint, lazy checks have to mask any violated
716 * permission and notice it to userspace via audit.
717 */
718 type_attribute_bounds_av(policydb, scontext, tcontext,
719 tclass, avd);
720 }
721
security_validtrans_handle_fail(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)722 static int security_validtrans_handle_fail(struct selinux_state *state,
723 struct selinux_policy *policy,
724 struct sidtab_entry *oentry,
725 struct sidtab_entry *nentry,
726 struct sidtab_entry *tentry,
727 u16 tclass)
728 {
729 struct policydb *p = &policy->policydb;
730 struct sidtab *sidtab = policy->sidtab;
731 char *o = NULL, *n = NULL, *t = NULL;
732 u32 olen, nlen, tlen;
733
734 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
735 goto out;
736 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
737 goto out;
738 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
739 goto out;
740 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
741 "op=security_validate_transition seresult=denied"
742 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
743 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
744 out:
745 kfree(o);
746 kfree(n);
747 kfree(t);
748
749 if (!enforcing_enabled(state))
750 return 0;
751 return -EPERM;
752 }
753
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)754 static int security_compute_validatetrans(struct selinux_state *state,
755 u32 oldsid, u32 newsid, u32 tasksid,
756 u16 orig_tclass, bool user)
757 {
758 struct selinux_policy *policy;
759 struct policydb *policydb;
760 struct sidtab *sidtab;
761 struct sidtab_entry *oentry;
762 struct sidtab_entry *nentry;
763 struct sidtab_entry *tentry;
764 struct class_datum *tclass_datum;
765 struct constraint_node *constraint;
766 u16 tclass;
767 int rc = 0;
768
769
770 if (!selinux_initialized(state))
771 return 0;
772
773 rcu_read_lock();
774
775 policy = rcu_dereference(state->policy);
776 policydb = &policy->policydb;
777 sidtab = policy->sidtab;
778
779 if (!user)
780 tclass = unmap_class(&policy->map, orig_tclass);
781 else
782 tclass = orig_tclass;
783
784 if (!tclass || tclass > policydb->p_classes.nprim) {
785 rc = -EINVAL;
786 goto out;
787 }
788 tclass_datum = policydb->class_val_to_struct[tclass - 1];
789
790 oentry = sidtab_search_entry(sidtab, oldsid);
791 if (!oentry) {
792 pr_err("SELinux: %s: unrecognized SID %d\n",
793 __func__, oldsid);
794 rc = -EINVAL;
795 goto out;
796 }
797
798 nentry = sidtab_search_entry(sidtab, newsid);
799 if (!nentry) {
800 pr_err("SELinux: %s: unrecognized SID %d\n",
801 __func__, newsid);
802 rc = -EINVAL;
803 goto out;
804 }
805
806 tentry = sidtab_search_entry(sidtab, tasksid);
807 if (!tentry) {
808 pr_err("SELinux: %s: unrecognized SID %d\n",
809 __func__, tasksid);
810 rc = -EINVAL;
811 goto out;
812 }
813
814 constraint = tclass_datum->validatetrans;
815 while (constraint) {
816 if (!constraint_expr_eval(policydb, &oentry->context,
817 &nentry->context, &tentry->context,
818 constraint->expr)) {
819 if (user)
820 rc = -EPERM;
821 else
822 rc = security_validtrans_handle_fail(state,
823 policy,
824 oentry,
825 nentry,
826 tentry,
827 tclass);
828 goto out;
829 }
830 constraint = constraint->next;
831 }
832
833 out:
834 rcu_read_unlock();
835 return rc;
836 }
837
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)838 int security_validate_transition_user(struct selinux_state *state,
839 u32 oldsid, u32 newsid, u32 tasksid,
840 u16 tclass)
841 {
842 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
843 tclass, true);
844 }
845
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)846 int security_validate_transition(struct selinux_state *state,
847 u32 oldsid, u32 newsid, u32 tasksid,
848 u16 orig_tclass)
849 {
850 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
851 orig_tclass, false);
852 }
853
854 /*
855 * security_bounded_transition - check whether the given
856 * transition is directed to bounded, or not.
857 * It returns 0, if @newsid is bounded by @oldsid.
858 * Otherwise, it returns error code.
859 *
860 * @state: SELinux state
861 * @oldsid : current security identifier
862 * @newsid : destinated security identifier
863 */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)864 int security_bounded_transition(struct selinux_state *state,
865 u32 old_sid, u32 new_sid)
866 {
867 struct selinux_policy *policy;
868 struct policydb *policydb;
869 struct sidtab *sidtab;
870 struct sidtab_entry *old_entry, *new_entry;
871 struct type_datum *type;
872 int index;
873 int rc;
874
875 if (!selinux_initialized(state))
876 return 0;
877
878 rcu_read_lock();
879 policy = rcu_dereference(state->policy);
880 policydb = &policy->policydb;
881 sidtab = policy->sidtab;
882
883 rc = -EINVAL;
884 old_entry = sidtab_search_entry(sidtab, old_sid);
885 if (!old_entry) {
886 pr_err("SELinux: %s: unrecognized SID %u\n",
887 __func__, old_sid);
888 goto out;
889 }
890
891 rc = -EINVAL;
892 new_entry = sidtab_search_entry(sidtab, new_sid);
893 if (!new_entry) {
894 pr_err("SELinux: %s: unrecognized SID %u\n",
895 __func__, new_sid);
896 goto out;
897 }
898
899 rc = 0;
900 /* type/domain unchanged */
901 if (old_entry->context.type == new_entry->context.type)
902 goto out;
903
904 index = new_entry->context.type;
905 while (true) {
906 type = policydb->type_val_to_struct[index - 1];
907 BUG_ON(!type);
908
909 /* not bounded anymore */
910 rc = -EPERM;
911 if (!type->bounds)
912 break;
913
914 /* @newsid is bounded by @oldsid */
915 rc = 0;
916 if (type->bounds == old_entry->context.type)
917 break;
918
919 index = type->bounds;
920 }
921
922 if (rc) {
923 char *old_name = NULL;
924 char *new_name = NULL;
925 u32 length;
926
927 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
928 &old_name, &length) &&
929 !sidtab_entry_to_string(policydb, sidtab, new_entry,
930 &new_name, &length)) {
931 audit_log(audit_context(),
932 GFP_ATOMIC, AUDIT_SELINUX_ERR,
933 "op=security_bounded_transition "
934 "seresult=denied "
935 "oldcontext=%s newcontext=%s",
936 old_name, new_name);
937 }
938 kfree(new_name);
939 kfree(old_name);
940 }
941 out:
942 rcu_read_unlock();
943
944 return rc;
945 }
946
avd_init(struct selinux_policy * policy,struct av_decision * avd)947 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
948 {
949 avd->allowed = 0;
950 avd->auditallow = 0;
951 avd->auditdeny = 0xffffffff;
952 if (policy)
953 avd->seqno = policy->latest_granting;
954 else
955 avd->seqno = 0;
956 avd->flags = 0;
957 }
958
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)959 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
960 struct avtab_node *node)
961 {
962 unsigned int i;
963
964 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
965 if (xpermd->driver != node->datum.u.xperms->driver)
966 return;
967 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
968 if (!security_xperm_test(node->datum.u.xperms->perms.p,
969 xpermd->driver))
970 return;
971 } else {
972 BUG();
973 }
974
975 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
976 xpermd->used |= XPERMS_ALLOWED;
977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
978 memset(xpermd->allowed->p, 0xff,
979 sizeof(xpermd->allowed->p));
980 }
981 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
982 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
983 xpermd->allowed->p[i] |=
984 node->datum.u.xperms->perms.p[i];
985 }
986 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
987 xpermd->used |= XPERMS_AUDITALLOW;
988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
989 memset(xpermd->auditallow->p, 0xff,
990 sizeof(xpermd->auditallow->p));
991 }
992 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
993 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
994 xpermd->auditallow->p[i] |=
995 node->datum.u.xperms->perms.p[i];
996 }
997 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
998 xpermd->used |= XPERMS_DONTAUDIT;
999 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000 memset(xpermd->dontaudit->p, 0xff,
1001 sizeof(xpermd->dontaudit->p));
1002 }
1003 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005 xpermd->dontaudit->p[i] |=
1006 node->datum.u.xperms->perms.p[i];
1007 }
1008 } else {
1009 BUG();
1010 }
1011 }
1012
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1013 void security_compute_xperms_decision(struct selinux_state *state,
1014 u32 ssid,
1015 u32 tsid,
1016 u16 orig_tclass,
1017 u8 driver,
1018 struct extended_perms_decision *xpermd)
1019 {
1020 struct selinux_policy *policy;
1021 struct policydb *policydb;
1022 struct sidtab *sidtab;
1023 u16 tclass;
1024 struct context *scontext, *tcontext;
1025 struct avtab_key avkey;
1026 struct avtab_node *node;
1027 struct ebitmap *sattr, *tattr;
1028 struct ebitmap_node *snode, *tnode;
1029 unsigned int i, j;
1030
1031 xpermd->driver = driver;
1032 xpermd->used = 0;
1033 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1034 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1035 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1036
1037 rcu_read_lock();
1038 if (!selinux_initialized(state))
1039 goto allow;
1040
1041 policy = rcu_dereference(state->policy);
1042 policydb = &policy->policydb;
1043 sidtab = policy->sidtab;
1044
1045 scontext = sidtab_search(sidtab, ssid);
1046 if (!scontext) {
1047 pr_err("SELinux: %s: unrecognized SID %d\n",
1048 __func__, ssid);
1049 goto out;
1050 }
1051
1052 tcontext = sidtab_search(sidtab, tsid);
1053 if (!tcontext) {
1054 pr_err("SELinux: %s: unrecognized SID %d\n",
1055 __func__, tsid);
1056 goto out;
1057 }
1058
1059 tclass = unmap_class(&policy->map, orig_tclass);
1060 if (unlikely(orig_tclass && !tclass)) {
1061 if (policydb->allow_unknown)
1062 goto allow;
1063 goto out;
1064 }
1065
1066
1067 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1068 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1069 goto out;
1070 }
1071
1072 avkey.target_class = tclass;
1073 avkey.specified = AVTAB_XPERMS;
1074 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1075 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1076 ebitmap_for_each_positive_bit(sattr, snode, i) {
1077 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078 avkey.source_type = i + 1;
1079 avkey.target_type = j + 1;
1080 for (node = avtab_search_node(&policydb->te_avtab,
1081 &avkey);
1082 node;
1083 node = avtab_search_node_next(node, avkey.specified))
1084 services_compute_xperms_decision(xpermd, node);
1085
1086 cond_compute_xperms(&policydb->te_cond_avtab,
1087 &avkey, xpermd);
1088 }
1089 }
1090 out:
1091 rcu_read_unlock();
1092 return;
1093 allow:
1094 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095 goto out;
1096 }
1097
1098 /**
1099 * security_compute_av - Compute access vector decisions.
1100 * @state: SELinux state
1101 * @ssid: source security identifier
1102 * @tsid: target security identifier
1103 * @orig_tclass: target security class
1104 * @avd: access vector decisions
1105 * @xperms: extended permissions
1106 *
1107 * Compute a set of access vector decisions based on the
1108 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1109 */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1110 void security_compute_av(struct selinux_state *state,
1111 u32 ssid,
1112 u32 tsid,
1113 u16 orig_tclass,
1114 struct av_decision *avd,
1115 struct extended_perms *xperms)
1116 {
1117 struct selinux_policy *policy;
1118 struct policydb *policydb;
1119 struct sidtab *sidtab;
1120 u16 tclass;
1121 struct context *scontext = NULL, *tcontext = NULL;
1122
1123 rcu_read_lock();
1124 policy = rcu_dereference(state->policy);
1125 avd_init(policy, avd);
1126 xperms->len = 0;
1127 if (!selinux_initialized(state))
1128 goto allow;
1129
1130 policydb = &policy->policydb;
1131 sidtab = policy->sidtab;
1132
1133 scontext = sidtab_search(sidtab, ssid);
1134 if (!scontext) {
1135 pr_err("SELinux: %s: unrecognized SID %d\n",
1136 __func__, ssid);
1137 goto out;
1138 }
1139
1140 /* permissive domain? */
1141 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1142 avd->flags |= AVD_FLAGS_PERMISSIVE;
1143
1144 tcontext = sidtab_search(sidtab, tsid);
1145 if (!tcontext) {
1146 pr_err("SELinux: %s: unrecognized SID %d\n",
1147 __func__, tsid);
1148 goto out;
1149 }
1150
1151 tclass = unmap_class(&policy->map, orig_tclass);
1152 if (unlikely(orig_tclass && !tclass)) {
1153 if (policydb->allow_unknown)
1154 goto allow;
1155 goto out;
1156 }
1157 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1158 xperms);
1159 map_decision(&policy->map, orig_tclass, avd,
1160 policydb->allow_unknown);
1161 out:
1162 rcu_read_unlock();
1163 return;
1164 allow:
1165 avd->allowed = 0xffffffff;
1166 goto out;
1167 }
1168
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1169 void security_compute_av_user(struct selinux_state *state,
1170 u32 ssid,
1171 u32 tsid,
1172 u16 tclass,
1173 struct av_decision *avd)
1174 {
1175 struct selinux_policy *policy;
1176 struct policydb *policydb;
1177 struct sidtab *sidtab;
1178 struct context *scontext = NULL, *tcontext = NULL;
1179
1180 rcu_read_lock();
1181 policy = rcu_dereference(state->policy);
1182 avd_init(policy, avd);
1183 if (!selinux_initialized(state))
1184 goto allow;
1185
1186 policydb = &policy->policydb;
1187 sidtab = policy->sidtab;
1188
1189 scontext = sidtab_search(sidtab, ssid);
1190 if (!scontext) {
1191 pr_err("SELinux: %s: unrecognized SID %d\n",
1192 __func__, ssid);
1193 goto out;
1194 }
1195
1196 /* permissive domain? */
1197 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1198 avd->flags |= AVD_FLAGS_PERMISSIVE;
1199
1200 tcontext = sidtab_search(sidtab, tsid);
1201 if (!tcontext) {
1202 pr_err("SELinux: %s: unrecognized SID %d\n",
1203 __func__, tsid);
1204 goto out;
1205 }
1206
1207 if (unlikely(!tclass)) {
1208 if (policydb->allow_unknown)
1209 goto allow;
1210 goto out;
1211 }
1212
1213 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1214 NULL);
1215 out:
1216 rcu_read_unlock();
1217 return;
1218 allow:
1219 avd->allowed = 0xffffffff;
1220 goto out;
1221 }
1222
1223 /*
1224 * Write the security context string representation of
1225 * the context structure `context' into a dynamically
1226 * allocated string of the correct size. Set `*scontext'
1227 * to point to this string and set `*scontext_len' to
1228 * the length of the string.
1229 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1230 static int context_struct_to_string(struct policydb *p,
1231 struct context *context,
1232 char **scontext, u32 *scontext_len)
1233 {
1234 char *scontextp;
1235
1236 if (scontext)
1237 *scontext = NULL;
1238 *scontext_len = 0;
1239
1240 if (context->len) {
1241 *scontext_len = context->len;
1242 if (scontext) {
1243 *scontext = kstrdup(context->str, GFP_ATOMIC);
1244 if (!(*scontext))
1245 return -ENOMEM;
1246 }
1247 return 0;
1248 }
1249
1250 /* Compute the size of the context. */
1251 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1252 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1253 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1254 *scontext_len += mls_compute_context_len(p, context);
1255
1256 if (!scontext)
1257 return 0;
1258
1259 /* Allocate space for the context; caller must free this space. */
1260 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1261 if (!scontextp)
1262 return -ENOMEM;
1263 *scontext = scontextp;
1264
1265 /*
1266 * Copy the user name, role name and type name into the context.
1267 */
1268 scontextp += sprintf(scontextp, "%s:%s:%s",
1269 sym_name(p, SYM_USERS, context->user - 1),
1270 sym_name(p, SYM_ROLES, context->role - 1),
1271 sym_name(p, SYM_TYPES, context->type - 1));
1272
1273 mls_sid_to_context(p, context, &scontextp);
1274
1275 *scontextp = 0;
1276
1277 return 0;
1278 }
1279
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1280 static int sidtab_entry_to_string(struct policydb *p,
1281 struct sidtab *sidtab,
1282 struct sidtab_entry *entry,
1283 char **scontext, u32 *scontext_len)
1284 {
1285 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1286
1287 if (rc != -ENOENT)
1288 return rc;
1289
1290 rc = context_struct_to_string(p, &entry->context, scontext,
1291 scontext_len);
1292 if (!rc && scontext)
1293 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1294 return rc;
1295 }
1296
1297 #include "initial_sid_to_string.h"
1298
security_sidtab_hash_stats(struct selinux_state * state,char * page)1299 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1300 {
1301 struct selinux_policy *policy;
1302 int rc;
1303
1304 if (!selinux_initialized(state)) {
1305 pr_err("SELinux: %s: called before initial load_policy\n",
1306 __func__);
1307 return -EINVAL;
1308 }
1309
1310 rcu_read_lock();
1311 policy = rcu_dereference(state->policy);
1312 rc = sidtab_hash_stats(policy->sidtab, page);
1313 rcu_read_unlock();
1314
1315 return rc;
1316 }
1317
security_get_initial_sid_context(u32 sid)1318 const char *security_get_initial_sid_context(u32 sid)
1319 {
1320 if (unlikely(sid > SECINITSID_NUM))
1321 return NULL;
1322 return initial_sid_to_string[sid];
1323 }
1324
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1325 static int security_sid_to_context_core(struct selinux_state *state,
1326 u32 sid, char **scontext,
1327 u32 *scontext_len, int force,
1328 int only_invalid)
1329 {
1330 struct selinux_policy *policy;
1331 struct policydb *policydb;
1332 struct sidtab *sidtab;
1333 struct sidtab_entry *entry;
1334 int rc = 0;
1335
1336 if (scontext)
1337 *scontext = NULL;
1338 *scontext_len = 0;
1339
1340 if (!selinux_initialized(state)) {
1341 if (sid <= SECINITSID_NUM) {
1342 char *scontextp;
1343 const char *s = initial_sid_to_string[sid];
1344
1345 if (!s)
1346 return -EINVAL;
1347 *scontext_len = strlen(s) + 1;
1348 if (!scontext)
1349 return 0;
1350 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1351 if (!scontextp)
1352 return -ENOMEM;
1353 *scontext = scontextp;
1354 return 0;
1355 }
1356 pr_err("SELinux: %s: called before initial "
1357 "load_policy on unknown SID %d\n", __func__, sid);
1358 return -EINVAL;
1359 }
1360 rcu_read_lock();
1361 policy = rcu_dereference(state->policy);
1362 policydb = &policy->policydb;
1363 sidtab = policy->sidtab;
1364
1365 if (force)
1366 entry = sidtab_search_entry_force(sidtab, sid);
1367 else
1368 entry = sidtab_search_entry(sidtab, sid);
1369 if (!entry) {
1370 pr_err("SELinux: %s: unrecognized SID %d\n",
1371 __func__, sid);
1372 rc = -EINVAL;
1373 goto out_unlock;
1374 }
1375 if (only_invalid && !entry->context.len)
1376 goto out_unlock;
1377
1378 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1379 scontext_len);
1380
1381 out_unlock:
1382 rcu_read_unlock();
1383 return rc;
1384
1385 }
1386
1387 /**
1388 * security_sid_to_context - Obtain a context for a given SID.
1389 * @state: SELinux state
1390 * @sid: security identifier, SID
1391 * @scontext: security context
1392 * @scontext_len: length in bytes
1393 *
1394 * Write the string representation of the context associated with @sid
1395 * into a dynamically allocated string of the correct size. Set @scontext
1396 * to point to this string and set @scontext_len to the length of the string.
1397 */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1398 int security_sid_to_context(struct selinux_state *state,
1399 u32 sid, char **scontext, u32 *scontext_len)
1400 {
1401 return security_sid_to_context_core(state, sid, scontext,
1402 scontext_len, 0, 0);
1403 }
1404
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1405 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1406 char **scontext, u32 *scontext_len)
1407 {
1408 return security_sid_to_context_core(state, sid, scontext,
1409 scontext_len, 1, 0);
1410 }
1411
1412 /**
1413 * security_sid_to_context_inval - Obtain a context for a given SID if it
1414 * is invalid.
1415 * @state: SELinux state
1416 * @sid: security identifier, SID
1417 * @scontext: security context
1418 * @scontext_len: length in bytes
1419 *
1420 * Write the string representation of the context associated with @sid
1421 * into a dynamically allocated string of the correct size, but only if the
1422 * context is invalid in the current policy. Set @scontext to point to
1423 * this string (or NULL if the context is valid) and set @scontext_len to
1424 * the length of the string (or 0 if the context is valid).
1425 */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1426 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1427 char **scontext, u32 *scontext_len)
1428 {
1429 return security_sid_to_context_core(state, sid, scontext,
1430 scontext_len, 1, 1);
1431 }
1432
1433 /*
1434 * Caveat: Mutates scontext.
1435 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1436 static int string_to_context_struct(struct policydb *pol,
1437 struct sidtab *sidtabp,
1438 char *scontext,
1439 struct context *ctx,
1440 u32 def_sid)
1441 {
1442 struct role_datum *role;
1443 struct type_datum *typdatum;
1444 struct user_datum *usrdatum;
1445 char *scontextp, *p, oldc;
1446 int rc = 0;
1447
1448 context_init(ctx);
1449
1450 /* Parse the security context. */
1451
1452 rc = -EINVAL;
1453 scontextp = scontext;
1454
1455 /* Extract the user. */
1456 p = scontextp;
1457 while (*p && *p != ':')
1458 p++;
1459
1460 if (*p == 0)
1461 goto out;
1462
1463 *p++ = 0;
1464
1465 usrdatum = symtab_search(&pol->p_users, scontextp);
1466 if (!usrdatum)
1467 goto out;
1468
1469 ctx->user = usrdatum->value;
1470
1471 /* Extract role. */
1472 scontextp = p;
1473 while (*p && *p != ':')
1474 p++;
1475
1476 if (*p == 0)
1477 goto out;
1478
1479 *p++ = 0;
1480
1481 role = symtab_search(&pol->p_roles, scontextp);
1482 if (!role)
1483 goto out;
1484 ctx->role = role->value;
1485
1486 /* Extract type. */
1487 scontextp = p;
1488 while (*p && *p != ':')
1489 p++;
1490 oldc = *p;
1491 *p++ = 0;
1492
1493 typdatum = symtab_search(&pol->p_types, scontextp);
1494 if (!typdatum || typdatum->attribute)
1495 goto out;
1496
1497 ctx->type = typdatum->value;
1498
1499 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1500 if (rc)
1501 goto out;
1502
1503 /* Check the validity of the new context. */
1504 rc = -EINVAL;
1505 if (!policydb_context_isvalid(pol, ctx))
1506 goto out;
1507 rc = 0;
1508 out:
1509 if (rc)
1510 context_destroy(ctx);
1511 return rc;
1512 }
1513
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1514 static int security_context_to_sid_core(struct selinux_state *state,
1515 const char *scontext, u32 scontext_len,
1516 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1517 int force)
1518 {
1519 struct selinux_policy *policy;
1520 struct policydb *policydb;
1521 struct sidtab *sidtab;
1522 char *scontext2, *str = NULL;
1523 struct context context;
1524 int rc = 0;
1525
1526 /* An empty security context is never valid. */
1527 if (!scontext_len)
1528 return -EINVAL;
1529
1530 /* Copy the string to allow changes and ensure a NUL terminator */
1531 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1532 if (!scontext2)
1533 return -ENOMEM;
1534
1535 if (!selinux_initialized(state)) {
1536 int i;
1537
1538 for (i = 1; i < SECINITSID_NUM; i++) {
1539 const char *s = initial_sid_to_string[i];
1540
1541 if (s && !strcmp(s, scontext2)) {
1542 *sid = i;
1543 goto out;
1544 }
1545 }
1546 *sid = SECINITSID_KERNEL;
1547 goto out;
1548 }
1549 *sid = SECSID_NULL;
1550
1551 if (force) {
1552 /* Save another copy for storing in uninterpreted form */
1553 rc = -ENOMEM;
1554 str = kstrdup(scontext2, gfp_flags);
1555 if (!str)
1556 goto out;
1557 }
1558 retry:
1559 rcu_read_lock();
1560 policy = rcu_dereference(state->policy);
1561 policydb = &policy->policydb;
1562 sidtab = policy->sidtab;
1563 rc = string_to_context_struct(policydb, sidtab, scontext2,
1564 &context, def_sid);
1565 if (rc == -EINVAL && force) {
1566 context.str = str;
1567 context.len = strlen(str) + 1;
1568 str = NULL;
1569 } else if (rc)
1570 goto out_unlock;
1571 rc = sidtab_context_to_sid(sidtab, &context, sid);
1572 if (rc == -ESTALE) {
1573 rcu_read_unlock();
1574 if (context.str) {
1575 str = context.str;
1576 context.str = NULL;
1577 }
1578 context_destroy(&context);
1579 goto retry;
1580 }
1581 context_destroy(&context);
1582 out_unlock:
1583 rcu_read_unlock();
1584 out:
1585 kfree(scontext2);
1586 kfree(str);
1587 return rc;
1588 }
1589
1590 /**
1591 * security_context_to_sid - Obtain a SID for a given security context.
1592 * @state: SELinux state
1593 * @scontext: security context
1594 * @scontext_len: length in bytes
1595 * @sid: security identifier, SID
1596 * @gfp: context for the allocation
1597 *
1598 * Obtains a SID associated with the security context that
1599 * has the string representation specified by @scontext.
1600 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1601 * memory is available, or 0 on success.
1602 */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1603 int security_context_to_sid(struct selinux_state *state,
1604 const char *scontext, u32 scontext_len, u32 *sid,
1605 gfp_t gfp)
1606 {
1607 return security_context_to_sid_core(state, scontext, scontext_len,
1608 sid, SECSID_NULL, gfp, 0);
1609 }
1610
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1611 int security_context_str_to_sid(struct selinux_state *state,
1612 const char *scontext, u32 *sid, gfp_t gfp)
1613 {
1614 return security_context_to_sid(state, scontext, strlen(scontext),
1615 sid, gfp);
1616 }
1617
1618 /**
1619 * security_context_to_sid_default - Obtain a SID for a given security context,
1620 * falling back to specified default if needed.
1621 *
1622 * @state: SELinux state
1623 * @scontext: security context
1624 * @scontext_len: length in bytes
1625 * @sid: security identifier, SID
1626 * @def_sid: default SID to assign on error
1627 * @gfp_flags: the allocator get-free-page (GFP) flags
1628 *
1629 * Obtains a SID associated with the security context that
1630 * has the string representation specified by @scontext.
1631 * The default SID is passed to the MLS layer to be used to allow
1632 * kernel labeling of the MLS field if the MLS field is not present
1633 * (for upgrading to MLS without full relabel).
1634 * Implicitly forces adding of the context even if it cannot be mapped yet.
1635 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1636 * memory is available, or 0 on success.
1637 */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1638 int security_context_to_sid_default(struct selinux_state *state,
1639 const char *scontext, u32 scontext_len,
1640 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1641 {
1642 return security_context_to_sid_core(state, scontext, scontext_len,
1643 sid, def_sid, gfp_flags, 1);
1644 }
1645
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1646 int security_context_to_sid_force(struct selinux_state *state,
1647 const char *scontext, u32 scontext_len,
1648 u32 *sid)
1649 {
1650 return security_context_to_sid_core(state, scontext, scontext_len,
1651 sid, SECSID_NULL, GFP_KERNEL, 1);
1652 }
1653
compute_sid_handle_invalid_context(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1654 static int compute_sid_handle_invalid_context(
1655 struct selinux_state *state,
1656 struct selinux_policy *policy,
1657 struct sidtab_entry *sentry,
1658 struct sidtab_entry *tentry,
1659 u16 tclass,
1660 struct context *newcontext)
1661 {
1662 struct policydb *policydb = &policy->policydb;
1663 struct sidtab *sidtab = policy->sidtab;
1664 char *s = NULL, *t = NULL, *n = NULL;
1665 u32 slen, tlen, nlen;
1666 struct audit_buffer *ab;
1667
1668 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1669 goto out;
1670 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1671 goto out;
1672 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1673 goto out;
1674 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1675 if (!ab)
1676 goto out;
1677 audit_log_format(ab,
1678 "op=security_compute_sid invalid_context=");
1679 /* no need to record the NUL with untrusted strings */
1680 audit_log_n_untrustedstring(ab, n, nlen - 1);
1681 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1682 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1683 audit_log_end(ab);
1684 out:
1685 kfree(s);
1686 kfree(t);
1687 kfree(n);
1688 if (!enforcing_enabled(state))
1689 return 0;
1690 return -EACCES;
1691 }
1692
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1693 static void filename_compute_type(struct policydb *policydb,
1694 struct context *newcontext,
1695 u32 stype, u32 ttype, u16 tclass,
1696 const char *objname)
1697 {
1698 struct filename_trans_key ft;
1699 struct filename_trans_datum *datum;
1700
1701 /*
1702 * Most filename trans rules are going to live in specific directories
1703 * like /dev or /var/run. This bitmap will quickly skip rule searches
1704 * if the ttype does not contain any rules.
1705 */
1706 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1707 return;
1708
1709 ft.ttype = ttype;
1710 ft.tclass = tclass;
1711 ft.name = objname;
1712
1713 datum = policydb_filenametr_search(policydb, &ft);
1714 while (datum) {
1715 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1716 newcontext->type = datum->otype;
1717 return;
1718 }
1719 datum = datum->next;
1720 }
1721 }
1722
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1723 static int security_compute_sid(struct selinux_state *state,
1724 u32 ssid,
1725 u32 tsid,
1726 u16 orig_tclass,
1727 u32 specified,
1728 const char *objname,
1729 u32 *out_sid,
1730 bool kern)
1731 {
1732 struct selinux_policy *policy;
1733 struct policydb *policydb;
1734 struct sidtab *sidtab;
1735 struct class_datum *cladatum;
1736 struct context *scontext, *tcontext, newcontext;
1737 struct sidtab_entry *sentry, *tentry;
1738 struct avtab_key avkey;
1739 struct avtab_datum *avdatum;
1740 struct avtab_node *node;
1741 u16 tclass;
1742 int rc = 0;
1743 bool sock;
1744
1745 if (!selinux_initialized(state)) {
1746 switch (orig_tclass) {
1747 case SECCLASS_PROCESS: /* kernel value */
1748 *out_sid = ssid;
1749 break;
1750 default:
1751 *out_sid = tsid;
1752 break;
1753 }
1754 goto out;
1755 }
1756
1757 retry:
1758 cladatum = NULL;
1759 context_init(&newcontext);
1760
1761 rcu_read_lock();
1762
1763 policy = rcu_dereference(state->policy);
1764
1765 if (kern) {
1766 tclass = unmap_class(&policy->map, orig_tclass);
1767 sock = security_is_socket_class(orig_tclass);
1768 } else {
1769 tclass = orig_tclass;
1770 sock = security_is_socket_class(map_class(&policy->map,
1771 tclass));
1772 }
1773
1774 policydb = &policy->policydb;
1775 sidtab = policy->sidtab;
1776
1777 sentry = sidtab_search_entry(sidtab, ssid);
1778 if (!sentry) {
1779 pr_err("SELinux: %s: unrecognized SID %d\n",
1780 __func__, ssid);
1781 rc = -EINVAL;
1782 goto out_unlock;
1783 }
1784 tentry = sidtab_search_entry(sidtab, tsid);
1785 if (!tentry) {
1786 pr_err("SELinux: %s: unrecognized SID %d\n",
1787 __func__, tsid);
1788 rc = -EINVAL;
1789 goto out_unlock;
1790 }
1791
1792 scontext = &sentry->context;
1793 tcontext = &tentry->context;
1794
1795 if (tclass && tclass <= policydb->p_classes.nprim)
1796 cladatum = policydb->class_val_to_struct[tclass - 1];
1797
1798 /* Set the user identity. */
1799 switch (specified) {
1800 case AVTAB_TRANSITION:
1801 case AVTAB_CHANGE:
1802 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1803 newcontext.user = tcontext->user;
1804 } else {
1805 /* notice this gets both DEFAULT_SOURCE and unset */
1806 /* Use the process user identity. */
1807 newcontext.user = scontext->user;
1808 }
1809 break;
1810 case AVTAB_MEMBER:
1811 /* Use the related object owner. */
1812 newcontext.user = tcontext->user;
1813 break;
1814 }
1815
1816 /* Set the role to default values. */
1817 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1818 newcontext.role = scontext->role;
1819 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1820 newcontext.role = tcontext->role;
1821 } else {
1822 if ((tclass == policydb->process_class) || sock)
1823 newcontext.role = scontext->role;
1824 else
1825 newcontext.role = OBJECT_R_VAL;
1826 }
1827
1828 /* Set the type to default values. */
1829 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1830 newcontext.type = scontext->type;
1831 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1832 newcontext.type = tcontext->type;
1833 } else {
1834 if ((tclass == policydb->process_class) || sock) {
1835 /* Use the type of process. */
1836 newcontext.type = scontext->type;
1837 } else {
1838 /* Use the type of the related object. */
1839 newcontext.type = tcontext->type;
1840 }
1841 }
1842
1843 /* Look for a type transition/member/change rule. */
1844 avkey.source_type = scontext->type;
1845 avkey.target_type = tcontext->type;
1846 avkey.target_class = tclass;
1847 avkey.specified = specified;
1848 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1849
1850 /* If no permanent rule, also check for enabled conditional rules */
1851 if (!avdatum) {
1852 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1853 for (; node; node = avtab_search_node_next(node, specified)) {
1854 if (node->key.specified & AVTAB_ENABLED) {
1855 avdatum = &node->datum;
1856 break;
1857 }
1858 }
1859 }
1860
1861 if (avdatum) {
1862 /* Use the type from the type transition/member/change rule. */
1863 newcontext.type = avdatum->u.data;
1864 }
1865
1866 /* if we have a objname this is a file trans check so check those rules */
1867 if (objname)
1868 filename_compute_type(policydb, &newcontext, scontext->type,
1869 tcontext->type, tclass, objname);
1870
1871 /* Check for class-specific changes. */
1872 if (specified & AVTAB_TRANSITION) {
1873 /* Look for a role transition rule. */
1874 struct role_trans_datum *rtd;
1875 struct role_trans_key rtk = {
1876 .role = scontext->role,
1877 .type = tcontext->type,
1878 .tclass = tclass,
1879 };
1880
1881 rtd = policydb_roletr_search(policydb, &rtk);
1882 if (rtd)
1883 newcontext.role = rtd->new_role;
1884 }
1885
1886 /* Set the MLS attributes.
1887 This is done last because it may allocate memory. */
1888 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1889 &newcontext, sock);
1890 if (rc)
1891 goto out_unlock;
1892
1893 /* Check the validity of the context. */
1894 if (!policydb_context_isvalid(policydb, &newcontext)) {
1895 rc = compute_sid_handle_invalid_context(state, policy, sentry,
1896 tentry, tclass,
1897 &newcontext);
1898 if (rc)
1899 goto out_unlock;
1900 }
1901 /* Obtain the sid for the context. */
1902 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1903 if (rc == -ESTALE) {
1904 rcu_read_unlock();
1905 context_destroy(&newcontext);
1906 goto retry;
1907 }
1908 out_unlock:
1909 rcu_read_unlock();
1910 context_destroy(&newcontext);
1911 out:
1912 return rc;
1913 }
1914
1915 /**
1916 * security_transition_sid - Compute the SID for a new subject/object.
1917 * @state: SELinux state
1918 * @ssid: source security identifier
1919 * @tsid: target security identifier
1920 * @tclass: target security class
1921 * @qstr: object name
1922 * @out_sid: security identifier for new subject/object
1923 *
1924 * Compute a SID to use for labeling a new subject or object in the
1925 * class @tclass based on a SID pair (@ssid, @tsid).
1926 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1927 * if insufficient memory is available, or %0 if the new SID was
1928 * computed successfully.
1929 */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1930 int security_transition_sid(struct selinux_state *state,
1931 u32 ssid, u32 tsid, u16 tclass,
1932 const struct qstr *qstr, u32 *out_sid)
1933 {
1934 return security_compute_sid(state, ssid, tsid, tclass,
1935 AVTAB_TRANSITION,
1936 qstr ? qstr->name : NULL, out_sid, true);
1937 }
1938
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1939 int security_transition_sid_user(struct selinux_state *state,
1940 u32 ssid, u32 tsid, u16 tclass,
1941 const char *objname, u32 *out_sid)
1942 {
1943 return security_compute_sid(state, ssid, tsid, tclass,
1944 AVTAB_TRANSITION,
1945 objname, out_sid, false);
1946 }
1947
1948 /**
1949 * security_member_sid - Compute the SID for member selection.
1950 * @state: SELinux state
1951 * @ssid: source security identifier
1952 * @tsid: target security identifier
1953 * @tclass: target security class
1954 * @out_sid: security identifier for selected member
1955 *
1956 * Compute a SID to use when selecting a member of a polyinstantiated
1957 * object of class @tclass based on a SID pair (@ssid, @tsid).
1958 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1959 * if insufficient memory is available, or %0 if the SID was
1960 * computed successfully.
1961 */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1962 int security_member_sid(struct selinux_state *state,
1963 u32 ssid,
1964 u32 tsid,
1965 u16 tclass,
1966 u32 *out_sid)
1967 {
1968 return security_compute_sid(state, ssid, tsid, tclass,
1969 AVTAB_MEMBER, NULL,
1970 out_sid, false);
1971 }
1972
1973 /**
1974 * security_change_sid - Compute the SID for object relabeling.
1975 * @state: SELinux state
1976 * @ssid: source security identifier
1977 * @tsid: target security identifier
1978 * @tclass: target security class
1979 * @out_sid: security identifier for selected member
1980 *
1981 * Compute a SID to use for relabeling an object of class @tclass
1982 * based on a SID pair (@ssid, @tsid).
1983 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1984 * if insufficient memory is available, or %0 if the SID was
1985 * computed successfully.
1986 */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1987 int security_change_sid(struct selinux_state *state,
1988 u32 ssid,
1989 u32 tsid,
1990 u16 tclass,
1991 u32 *out_sid)
1992 {
1993 return security_compute_sid(state,
1994 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1995 out_sid, false);
1996 }
1997
convert_context_handle_invalid_context(struct selinux_state * state,struct policydb * policydb,struct context * context)1998 static inline int convert_context_handle_invalid_context(
1999 struct selinux_state *state,
2000 struct policydb *policydb,
2001 struct context *context)
2002 {
2003 char *s;
2004 u32 len;
2005
2006 if (enforcing_enabled(state))
2007 return -EINVAL;
2008
2009 if (!context_struct_to_string(policydb, context, &s, &len)) {
2010 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2011 s);
2012 kfree(s);
2013 }
2014 return 0;
2015 }
2016
2017 /*
2018 * Convert the values in the security context
2019 * structure `oldc' from the values specified
2020 * in the policy `p->oldp' to the values specified
2021 * in the policy `p->newp', storing the new context
2022 * in `newc'. Verify that the context is valid
2023 * under the new policy.
2024 */
convert_context(struct context * oldc,struct context * newc,void * p)2025 static int convert_context(struct context *oldc, struct context *newc, void *p)
2026 {
2027 struct convert_context_args *args;
2028 struct ocontext *oc;
2029 struct role_datum *role;
2030 struct type_datum *typdatum;
2031 struct user_datum *usrdatum;
2032 char *s;
2033 u32 len;
2034 int rc;
2035
2036 args = p;
2037
2038 if (oldc->str) {
2039 s = kstrdup(oldc->str, GFP_KERNEL);
2040 if (!s)
2041 return -ENOMEM;
2042
2043 rc = string_to_context_struct(args->newp, NULL, s,
2044 newc, SECSID_NULL);
2045 if (rc == -EINVAL) {
2046 /*
2047 * Retain string representation for later mapping.
2048 *
2049 * IMPORTANT: We need to copy the contents of oldc->str
2050 * back into s again because string_to_context_struct()
2051 * may have garbled it.
2052 */
2053 memcpy(s, oldc->str, oldc->len);
2054 context_init(newc);
2055 newc->str = s;
2056 newc->len = oldc->len;
2057 return 0;
2058 }
2059 kfree(s);
2060 if (rc) {
2061 /* Other error condition, e.g. ENOMEM. */
2062 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2063 oldc->str, -rc);
2064 return rc;
2065 }
2066 pr_info("SELinux: Context %s became valid (mapped).\n",
2067 oldc->str);
2068 return 0;
2069 }
2070
2071 context_init(newc);
2072
2073 /* Convert the user. */
2074 usrdatum = symtab_search(&args->newp->p_users,
2075 sym_name(args->oldp,
2076 SYM_USERS, oldc->user - 1));
2077 if (!usrdatum)
2078 goto bad;
2079 newc->user = usrdatum->value;
2080
2081 /* Convert the role. */
2082 role = symtab_search(&args->newp->p_roles,
2083 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2084 if (!role)
2085 goto bad;
2086 newc->role = role->value;
2087
2088 /* Convert the type. */
2089 typdatum = symtab_search(&args->newp->p_types,
2090 sym_name(args->oldp,
2091 SYM_TYPES, oldc->type - 1));
2092 if (!typdatum)
2093 goto bad;
2094 newc->type = typdatum->value;
2095
2096 /* Convert the MLS fields if dealing with MLS policies */
2097 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2098 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2099 if (rc)
2100 goto bad;
2101 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2102 /*
2103 * Switching between non-MLS and MLS policy:
2104 * ensure that the MLS fields of the context for all
2105 * existing entries in the sidtab are filled in with a
2106 * suitable default value, likely taken from one of the
2107 * initial SIDs.
2108 */
2109 oc = args->newp->ocontexts[OCON_ISID];
2110 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2111 oc = oc->next;
2112 if (!oc) {
2113 pr_err("SELinux: unable to look up"
2114 " the initial SIDs list\n");
2115 goto bad;
2116 }
2117 rc = mls_range_set(newc, &oc->context[0].range);
2118 if (rc)
2119 goto bad;
2120 }
2121
2122 /* Check the validity of the new context. */
2123 if (!policydb_context_isvalid(args->newp, newc)) {
2124 rc = convert_context_handle_invalid_context(args->state,
2125 args->oldp,
2126 oldc);
2127 if (rc)
2128 goto bad;
2129 }
2130
2131 return 0;
2132 bad:
2133 /* Map old representation to string and save it. */
2134 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2135 if (rc)
2136 return rc;
2137 context_destroy(newc);
2138 newc->str = s;
2139 newc->len = len;
2140 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2141 newc->str);
2142 return 0;
2143 }
2144
security_load_policycaps(struct selinux_state * state,struct selinux_policy * policy)2145 static void security_load_policycaps(struct selinux_state *state,
2146 struct selinux_policy *policy)
2147 {
2148 struct policydb *p;
2149 unsigned int i;
2150 struct ebitmap_node *node;
2151
2152 p = &policy->policydb;
2153
2154 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2155 WRITE_ONCE(state->policycap[i],
2156 ebitmap_get_bit(&p->policycaps, i));
2157
2158 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2159 pr_info("SELinux: policy capability %s=%d\n",
2160 selinux_policycap_names[i],
2161 ebitmap_get_bit(&p->policycaps, i));
2162
2163 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2164 if (i >= ARRAY_SIZE(selinux_policycap_names))
2165 pr_info("SELinux: unknown policy capability %u\n",
2166 i);
2167 }
2168 }
2169
2170 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2171 struct selinux_policy *newpolicy);
2172
selinux_policy_free(struct selinux_policy * policy)2173 static void selinux_policy_free(struct selinux_policy *policy)
2174 {
2175 if (!policy)
2176 return;
2177
2178 sidtab_destroy(policy->sidtab);
2179 kfree(policy->map.mapping);
2180 policydb_destroy(&policy->policydb);
2181 kfree(policy->sidtab);
2182 kfree(policy);
2183 }
2184
selinux_policy_cond_free(struct selinux_policy * policy)2185 static void selinux_policy_cond_free(struct selinux_policy *policy)
2186 {
2187 cond_policydb_destroy_dup(&policy->policydb);
2188 kfree(policy);
2189 }
2190
selinux_policy_cancel(struct selinux_state * state,struct selinux_load_state * load_state)2191 void selinux_policy_cancel(struct selinux_state *state,
2192 struct selinux_load_state *load_state)
2193 {
2194 struct selinux_policy *oldpolicy;
2195
2196 oldpolicy = rcu_dereference_protected(state->policy,
2197 lockdep_is_held(&state->policy_mutex));
2198
2199 sidtab_cancel_convert(oldpolicy->sidtab);
2200 selinux_policy_free(load_state->policy);
2201 kfree(load_state->convert_data);
2202 }
2203
selinux_notify_policy_change(struct selinux_state * state,u32 seqno)2204 static void selinux_notify_policy_change(struct selinux_state *state,
2205 u32 seqno)
2206 {
2207 /* Flush external caches and notify userspace of policy load */
2208 avc_ss_reset(state->avc, seqno);
2209 selnl_notify_policyload(seqno);
2210 selinux_status_update_policyload(state, seqno);
2211 selinux_netlbl_cache_invalidate();
2212 selinux_xfrm_notify_policyload();
2213 selinux_ima_measure_state_locked(state);
2214 }
2215
selinux_policy_commit(struct selinux_state * state,struct selinux_load_state * load_state)2216 void selinux_policy_commit(struct selinux_state *state,
2217 struct selinux_load_state *load_state)
2218 {
2219 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2220 unsigned long flags;
2221 u32 seqno;
2222
2223 oldpolicy = rcu_dereference_protected(state->policy,
2224 lockdep_is_held(&state->policy_mutex));
2225
2226 /* If switching between different policy types, log MLS status */
2227 if (oldpolicy) {
2228 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2229 pr_info("SELinux: Disabling MLS support...\n");
2230 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2231 pr_info("SELinux: Enabling MLS support...\n");
2232 }
2233
2234 /* Set latest granting seqno for new policy. */
2235 if (oldpolicy)
2236 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2237 else
2238 newpolicy->latest_granting = 1;
2239 seqno = newpolicy->latest_granting;
2240
2241 /* Install the new policy. */
2242 if (oldpolicy) {
2243 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2244 rcu_assign_pointer(state->policy, newpolicy);
2245 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2246 } else {
2247 rcu_assign_pointer(state->policy, newpolicy);
2248 }
2249
2250 /* Load the policycaps from the new policy */
2251 security_load_policycaps(state, newpolicy);
2252
2253 if (!selinux_initialized(state)) {
2254 /*
2255 * After first policy load, the security server is
2256 * marked as initialized and ready to handle requests and
2257 * any objects created prior to policy load are then labeled.
2258 */
2259 selinux_mark_initialized(state);
2260 selinux_complete_init();
2261 }
2262
2263 /* Free the old policy */
2264 synchronize_rcu();
2265 selinux_policy_free(oldpolicy);
2266 kfree(load_state->convert_data);
2267
2268 /* Notify others of the policy change */
2269 selinux_notify_policy_change(state, seqno);
2270 }
2271
2272 /**
2273 * security_load_policy - Load a security policy configuration.
2274 * @state: SELinux state
2275 * @data: binary policy data
2276 * @len: length of data in bytes
2277 * @load_state: policy load state
2278 *
2279 * Load a new set of security policy configuration data,
2280 * validate it and convert the SID table as necessary.
2281 * This function will flush the access vector cache after
2282 * loading the new policy.
2283 */
security_load_policy(struct selinux_state * state,void * data,size_t len,struct selinux_load_state * load_state)2284 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2285 struct selinux_load_state *load_state)
2286 {
2287 struct selinux_policy *newpolicy, *oldpolicy;
2288 struct selinux_policy_convert_data *convert_data;
2289 int rc = 0;
2290 struct policy_file file = { data, len }, *fp = &file;
2291
2292 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2293 if (!newpolicy)
2294 return -ENOMEM;
2295
2296 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2297 if (!newpolicy->sidtab) {
2298 rc = -ENOMEM;
2299 goto err_policy;
2300 }
2301
2302 rc = policydb_read(&newpolicy->policydb, fp);
2303 if (rc)
2304 goto err_sidtab;
2305
2306 newpolicy->policydb.len = len;
2307 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2308 &newpolicy->map);
2309 if (rc)
2310 goto err_policydb;
2311
2312 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2313 if (rc) {
2314 pr_err("SELinux: unable to load the initial SIDs\n");
2315 goto err_mapping;
2316 }
2317
2318 if (!selinux_initialized(state)) {
2319 /* First policy load, so no need to preserve state from old policy */
2320 load_state->policy = newpolicy;
2321 load_state->convert_data = NULL;
2322 return 0;
2323 }
2324
2325 oldpolicy = rcu_dereference_protected(state->policy,
2326 lockdep_is_held(&state->policy_mutex));
2327
2328 /* Preserve active boolean values from the old policy */
2329 rc = security_preserve_bools(oldpolicy, newpolicy);
2330 if (rc) {
2331 pr_err("SELinux: unable to preserve booleans\n");
2332 goto err_free_isids;
2333 }
2334
2335 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2336 if (!convert_data) {
2337 rc = -ENOMEM;
2338 goto err_free_isids;
2339 }
2340
2341 /*
2342 * Convert the internal representations of contexts
2343 * in the new SID table.
2344 */
2345 convert_data->args.state = state;
2346 convert_data->args.oldp = &oldpolicy->policydb;
2347 convert_data->args.newp = &newpolicy->policydb;
2348
2349 convert_data->sidtab_params.func = convert_context;
2350 convert_data->sidtab_params.args = &convert_data->args;
2351 convert_data->sidtab_params.target = newpolicy->sidtab;
2352
2353 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2354 if (rc) {
2355 pr_err("SELinux: unable to convert the internal"
2356 " representation of contexts in the new SID"
2357 " table\n");
2358 goto err_free_convert_data;
2359 }
2360
2361 load_state->policy = newpolicy;
2362 load_state->convert_data = convert_data;
2363 return 0;
2364
2365 err_free_convert_data:
2366 kfree(convert_data);
2367 err_free_isids:
2368 sidtab_destroy(newpolicy->sidtab);
2369 err_mapping:
2370 kfree(newpolicy->map.mapping);
2371 err_policydb:
2372 policydb_destroy(&newpolicy->policydb);
2373 err_sidtab:
2374 kfree(newpolicy->sidtab);
2375 err_policy:
2376 kfree(newpolicy);
2377
2378 return rc;
2379 }
2380
2381 /**
2382 * ocontext_to_sid - Helper to safely get sid for an ocontext
2383 * @sidtab: SID table
2384 * @c: ocontext structure
2385 * @index: index of the context entry (0 or 1)
2386 * @out_sid: pointer to the resulting SID value
2387 *
2388 * For all ocontexts except OCON_ISID the SID fields are populated
2389 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2390 * operation, this helper must be used to do that safely.
2391 *
2392 * WARNING: This function may return -ESTALE, indicating that the caller
2393 * must retry the operation after re-acquiring the policy pointer!
2394 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2395 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2396 size_t index, u32 *out_sid)
2397 {
2398 int rc;
2399 u32 sid;
2400
2401 /* Ensure the associated sidtab entry is visible to this thread. */
2402 sid = smp_load_acquire(&c->sid[index]);
2403 if (!sid) {
2404 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2405 if (rc)
2406 return rc;
2407
2408 /*
2409 * Ensure the new sidtab entry is visible to other threads
2410 * when they see the SID.
2411 */
2412 smp_store_release(&c->sid[index], sid);
2413 }
2414 *out_sid = sid;
2415 return 0;
2416 }
2417
2418 /**
2419 * security_port_sid - Obtain the SID for a port.
2420 * @state: SELinux state
2421 * @protocol: protocol number
2422 * @port: port number
2423 * @out_sid: security identifier
2424 */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2425 int security_port_sid(struct selinux_state *state,
2426 u8 protocol, u16 port, u32 *out_sid)
2427 {
2428 struct selinux_policy *policy;
2429 struct policydb *policydb;
2430 struct sidtab *sidtab;
2431 struct ocontext *c;
2432 int rc;
2433
2434 if (!selinux_initialized(state)) {
2435 *out_sid = SECINITSID_PORT;
2436 return 0;
2437 }
2438
2439 retry:
2440 rc = 0;
2441 rcu_read_lock();
2442 policy = rcu_dereference(state->policy);
2443 policydb = &policy->policydb;
2444 sidtab = policy->sidtab;
2445
2446 c = policydb->ocontexts[OCON_PORT];
2447 while (c) {
2448 if (c->u.port.protocol == protocol &&
2449 c->u.port.low_port <= port &&
2450 c->u.port.high_port >= port)
2451 break;
2452 c = c->next;
2453 }
2454
2455 if (c) {
2456 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2457 if (rc == -ESTALE) {
2458 rcu_read_unlock();
2459 goto retry;
2460 }
2461 if (rc)
2462 goto out;
2463 } else {
2464 *out_sid = SECINITSID_PORT;
2465 }
2466
2467 out:
2468 rcu_read_unlock();
2469 return rc;
2470 }
2471
2472 /**
2473 * security_ib_pkey_sid - Obtain the SID for a pkey.
2474 * @state: SELinux state
2475 * @subnet_prefix: Subnet Prefix
2476 * @pkey_num: pkey number
2477 * @out_sid: security identifier
2478 */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2479 int security_ib_pkey_sid(struct selinux_state *state,
2480 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2481 {
2482 struct selinux_policy *policy;
2483 struct policydb *policydb;
2484 struct sidtab *sidtab;
2485 struct ocontext *c;
2486 int rc;
2487
2488 if (!selinux_initialized(state)) {
2489 *out_sid = SECINITSID_UNLABELED;
2490 return 0;
2491 }
2492
2493 retry:
2494 rc = 0;
2495 rcu_read_lock();
2496 policy = rcu_dereference(state->policy);
2497 policydb = &policy->policydb;
2498 sidtab = policy->sidtab;
2499
2500 c = policydb->ocontexts[OCON_IBPKEY];
2501 while (c) {
2502 if (c->u.ibpkey.low_pkey <= pkey_num &&
2503 c->u.ibpkey.high_pkey >= pkey_num &&
2504 c->u.ibpkey.subnet_prefix == subnet_prefix)
2505 break;
2506
2507 c = c->next;
2508 }
2509
2510 if (c) {
2511 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2512 if (rc == -ESTALE) {
2513 rcu_read_unlock();
2514 goto retry;
2515 }
2516 if (rc)
2517 goto out;
2518 } else
2519 *out_sid = SECINITSID_UNLABELED;
2520
2521 out:
2522 rcu_read_unlock();
2523 return rc;
2524 }
2525
2526 /**
2527 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2528 * @state: SELinux state
2529 * @dev_name: device name
2530 * @port_num: port number
2531 * @out_sid: security identifier
2532 */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2533 int security_ib_endport_sid(struct selinux_state *state,
2534 const char *dev_name, u8 port_num, u32 *out_sid)
2535 {
2536 struct selinux_policy *policy;
2537 struct policydb *policydb;
2538 struct sidtab *sidtab;
2539 struct ocontext *c;
2540 int rc;
2541
2542 if (!selinux_initialized(state)) {
2543 *out_sid = SECINITSID_UNLABELED;
2544 return 0;
2545 }
2546
2547 retry:
2548 rc = 0;
2549 rcu_read_lock();
2550 policy = rcu_dereference(state->policy);
2551 policydb = &policy->policydb;
2552 sidtab = policy->sidtab;
2553
2554 c = policydb->ocontexts[OCON_IBENDPORT];
2555 while (c) {
2556 if (c->u.ibendport.port == port_num &&
2557 !strncmp(c->u.ibendport.dev_name,
2558 dev_name,
2559 IB_DEVICE_NAME_MAX))
2560 break;
2561
2562 c = c->next;
2563 }
2564
2565 if (c) {
2566 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2567 if (rc == -ESTALE) {
2568 rcu_read_unlock();
2569 goto retry;
2570 }
2571 if (rc)
2572 goto out;
2573 } else
2574 *out_sid = SECINITSID_UNLABELED;
2575
2576 out:
2577 rcu_read_unlock();
2578 return rc;
2579 }
2580
2581 /**
2582 * security_netif_sid - Obtain the SID for a network interface.
2583 * @state: SELinux state
2584 * @name: interface name
2585 * @if_sid: interface SID
2586 */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2587 int security_netif_sid(struct selinux_state *state,
2588 char *name, u32 *if_sid)
2589 {
2590 struct selinux_policy *policy;
2591 struct policydb *policydb;
2592 struct sidtab *sidtab;
2593 int rc;
2594 struct ocontext *c;
2595
2596 if (!selinux_initialized(state)) {
2597 *if_sid = SECINITSID_NETIF;
2598 return 0;
2599 }
2600
2601 retry:
2602 rc = 0;
2603 rcu_read_lock();
2604 policy = rcu_dereference(state->policy);
2605 policydb = &policy->policydb;
2606 sidtab = policy->sidtab;
2607
2608 c = policydb->ocontexts[OCON_NETIF];
2609 while (c) {
2610 if (strcmp(name, c->u.name) == 0)
2611 break;
2612 c = c->next;
2613 }
2614
2615 if (c) {
2616 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2617 if (rc == -ESTALE) {
2618 rcu_read_unlock();
2619 goto retry;
2620 }
2621 if (rc)
2622 goto out;
2623 } else
2624 *if_sid = SECINITSID_NETIF;
2625
2626 out:
2627 rcu_read_unlock();
2628 return rc;
2629 }
2630
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2631 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2632 {
2633 int i, fail = 0;
2634
2635 for (i = 0; i < 4; i++)
2636 if (addr[i] != (input[i] & mask[i])) {
2637 fail = 1;
2638 break;
2639 }
2640
2641 return !fail;
2642 }
2643
2644 /**
2645 * security_node_sid - Obtain the SID for a node (host).
2646 * @state: SELinux state
2647 * @domain: communication domain aka address family
2648 * @addrp: address
2649 * @addrlen: address length in bytes
2650 * @out_sid: security identifier
2651 */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2652 int security_node_sid(struct selinux_state *state,
2653 u16 domain,
2654 void *addrp,
2655 u32 addrlen,
2656 u32 *out_sid)
2657 {
2658 struct selinux_policy *policy;
2659 struct policydb *policydb;
2660 struct sidtab *sidtab;
2661 int rc;
2662 struct ocontext *c;
2663
2664 if (!selinux_initialized(state)) {
2665 *out_sid = SECINITSID_NODE;
2666 return 0;
2667 }
2668
2669 retry:
2670 rcu_read_lock();
2671 policy = rcu_dereference(state->policy);
2672 policydb = &policy->policydb;
2673 sidtab = policy->sidtab;
2674
2675 switch (domain) {
2676 case AF_INET: {
2677 u32 addr;
2678
2679 rc = -EINVAL;
2680 if (addrlen != sizeof(u32))
2681 goto out;
2682
2683 addr = *((u32 *)addrp);
2684
2685 c = policydb->ocontexts[OCON_NODE];
2686 while (c) {
2687 if (c->u.node.addr == (addr & c->u.node.mask))
2688 break;
2689 c = c->next;
2690 }
2691 break;
2692 }
2693
2694 case AF_INET6:
2695 rc = -EINVAL;
2696 if (addrlen != sizeof(u64) * 2)
2697 goto out;
2698 c = policydb->ocontexts[OCON_NODE6];
2699 while (c) {
2700 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2701 c->u.node6.mask))
2702 break;
2703 c = c->next;
2704 }
2705 break;
2706
2707 default:
2708 rc = 0;
2709 *out_sid = SECINITSID_NODE;
2710 goto out;
2711 }
2712
2713 if (c) {
2714 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2715 if (rc == -ESTALE) {
2716 rcu_read_unlock();
2717 goto retry;
2718 }
2719 if (rc)
2720 goto out;
2721 } else {
2722 *out_sid = SECINITSID_NODE;
2723 }
2724
2725 rc = 0;
2726 out:
2727 rcu_read_unlock();
2728 return rc;
2729 }
2730
2731 #define SIDS_NEL 25
2732
2733 /**
2734 * security_get_user_sids - Obtain reachable SIDs for a user.
2735 * @state: SELinux state
2736 * @fromsid: starting SID
2737 * @username: username
2738 * @sids: array of reachable SIDs for user
2739 * @nel: number of elements in @sids
2740 *
2741 * Generate the set of SIDs for legal security contexts
2742 * for a given user that can be reached by @fromsid.
2743 * Set *@sids to point to a dynamically allocated
2744 * array containing the set of SIDs. Set *@nel to the
2745 * number of elements in the array.
2746 */
2747
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2748 int security_get_user_sids(struct selinux_state *state,
2749 u32 fromsid,
2750 char *username,
2751 u32 **sids,
2752 u32 *nel)
2753 {
2754 struct selinux_policy *policy;
2755 struct policydb *policydb;
2756 struct sidtab *sidtab;
2757 struct context *fromcon, usercon;
2758 u32 *mysids = NULL, *mysids2, sid;
2759 u32 i, j, mynel, maxnel = SIDS_NEL;
2760 struct user_datum *user;
2761 struct role_datum *role;
2762 struct ebitmap_node *rnode, *tnode;
2763 int rc;
2764
2765 *sids = NULL;
2766 *nel = 0;
2767
2768 if (!selinux_initialized(state))
2769 return 0;
2770
2771 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2772 if (!mysids)
2773 return -ENOMEM;
2774
2775 retry:
2776 mynel = 0;
2777 rcu_read_lock();
2778 policy = rcu_dereference(state->policy);
2779 policydb = &policy->policydb;
2780 sidtab = policy->sidtab;
2781
2782 context_init(&usercon);
2783
2784 rc = -EINVAL;
2785 fromcon = sidtab_search(sidtab, fromsid);
2786 if (!fromcon)
2787 goto out_unlock;
2788
2789 rc = -EINVAL;
2790 user = symtab_search(&policydb->p_users, username);
2791 if (!user)
2792 goto out_unlock;
2793
2794 usercon.user = user->value;
2795
2796 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2797 role = policydb->role_val_to_struct[i];
2798 usercon.role = i + 1;
2799 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2800 usercon.type = j + 1;
2801
2802 if (mls_setup_user_range(policydb, fromcon, user,
2803 &usercon))
2804 continue;
2805
2806 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2807 if (rc == -ESTALE) {
2808 rcu_read_unlock();
2809 goto retry;
2810 }
2811 if (rc)
2812 goto out_unlock;
2813 if (mynel < maxnel) {
2814 mysids[mynel++] = sid;
2815 } else {
2816 rc = -ENOMEM;
2817 maxnel += SIDS_NEL;
2818 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2819 if (!mysids2)
2820 goto out_unlock;
2821 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2822 kfree(mysids);
2823 mysids = mysids2;
2824 mysids[mynel++] = sid;
2825 }
2826 }
2827 }
2828 rc = 0;
2829 out_unlock:
2830 rcu_read_unlock();
2831 if (rc || !mynel) {
2832 kfree(mysids);
2833 return rc;
2834 }
2835
2836 rc = -ENOMEM;
2837 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2838 if (!mysids2) {
2839 kfree(mysids);
2840 return rc;
2841 }
2842 for (i = 0, j = 0; i < mynel; i++) {
2843 struct av_decision dummy_avd;
2844 rc = avc_has_perm_noaudit(state,
2845 fromsid, mysids[i],
2846 SECCLASS_PROCESS, /* kernel value */
2847 PROCESS__TRANSITION, AVC_STRICT,
2848 &dummy_avd);
2849 if (!rc)
2850 mysids2[j++] = mysids[i];
2851 cond_resched();
2852 }
2853 kfree(mysids);
2854 *sids = mysids2;
2855 *nel = j;
2856 return 0;
2857 }
2858
2859 /**
2860 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2861 * @policy: policy
2862 * @fstype: filesystem type
2863 * @path: path from root of mount
2864 * @orig_sclass: file security class
2865 * @sid: SID for path
2866 *
2867 * Obtain a SID to use for a file in a filesystem that
2868 * cannot support xattr or use a fixed labeling behavior like
2869 * transition SIDs or task SIDs.
2870 *
2871 * WARNING: This function may return -ESTALE, indicating that the caller
2872 * must retry the operation after re-acquiring the policy pointer!
2873 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2874 static inline int __security_genfs_sid(struct selinux_policy *policy,
2875 const char *fstype,
2876 const char *path,
2877 u16 orig_sclass,
2878 u32 *sid)
2879 {
2880 struct policydb *policydb = &policy->policydb;
2881 struct sidtab *sidtab = policy->sidtab;
2882 int len;
2883 u16 sclass;
2884 struct genfs *genfs;
2885 struct ocontext *c;
2886 int cmp = 0;
2887
2888 while (path[0] == '/' && path[1] == '/')
2889 path++;
2890
2891 sclass = unmap_class(&policy->map, orig_sclass);
2892 *sid = SECINITSID_UNLABELED;
2893
2894 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2895 cmp = strcmp(fstype, genfs->fstype);
2896 if (cmp <= 0)
2897 break;
2898 }
2899
2900 if (!genfs || cmp)
2901 return -ENOENT;
2902
2903 for (c = genfs->head; c; c = c->next) {
2904 len = strlen(c->u.name);
2905 if ((!c->v.sclass || sclass == c->v.sclass) &&
2906 (strncmp(c->u.name, path, len) == 0))
2907 break;
2908 }
2909
2910 if (!c)
2911 return -ENOENT;
2912
2913 return ocontext_to_sid(sidtab, c, 0, sid);
2914 }
2915
2916 /**
2917 * security_genfs_sid - Obtain a SID for a file in a filesystem
2918 * @state: SELinux state
2919 * @fstype: filesystem type
2920 * @path: path from root of mount
2921 * @orig_sclass: file security class
2922 * @sid: SID for path
2923 *
2924 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2925 * it afterward.
2926 */
security_genfs_sid(struct selinux_state * state,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2927 int security_genfs_sid(struct selinux_state *state,
2928 const char *fstype,
2929 const char *path,
2930 u16 orig_sclass,
2931 u32 *sid)
2932 {
2933 struct selinux_policy *policy;
2934 int retval;
2935
2936 if (!selinux_initialized(state)) {
2937 *sid = SECINITSID_UNLABELED;
2938 return 0;
2939 }
2940
2941 do {
2942 rcu_read_lock();
2943 policy = rcu_dereference(state->policy);
2944 retval = __security_genfs_sid(policy, fstype, path,
2945 orig_sclass, sid);
2946 rcu_read_unlock();
2947 } while (retval == -ESTALE);
2948 return retval;
2949 }
2950
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2951 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2952 const char *fstype,
2953 const char *path,
2954 u16 orig_sclass,
2955 u32 *sid)
2956 {
2957 /* no lock required, policy is not yet accessible by other threads */
2958 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2959 }
2960
2961 /**
2962 * security_fs_use - Determine how to handle labeling for a filesystem.
2963 * @state: SELinux state
2964 * @sb: superblock in question
2965 */
security_fs_use(struct selinux_state * state,struct super_block * sb)2966 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2967 {
2968 struct selinux_policy *policy;
2969 struct policydb *policydb;
2970 struct sidtab *sidtab;
2971 int rc;
2972 struct ocontext *c;
2973 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2974 const char *fstype = sb->s_type->name;
2975
2976 if (!selinux_initialized(state)) {
2977 sbsec->behavior = SECURITY_FS_USE_NONE;
2978 sbsec->sid = SECINITSID_UNLABELED;
2979 return 0;
2980 }
2981
2982 retry:
2983 rcu_read_lock();
2984 policy = rcu_dereference(state->policy);
2985 policydb = &policy->policydb;
2986 sidtab = policy->sidtab;
2987
2988 c = policydb->ocontexts[OCON_FSUSE];
2989 while (c) {
2990 if (strcmp(fstype, c->u.name) == 0)
2991 break;
2992 c = c->next;
2993 }
2994
2995 if (c) {
2996 sbsec->behavior = c->v.behavior;
2997 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2998 if (rc == -ESTALE) {
2999 rcu_read_unlock();
3000 goto retry;
3001 }
3002 if (rc)
3003 goto out;
3004 } else {
3005 rc = __security_genfs_sid(policy, fstype, "/",
3006 SECCLASS_DIR, &sbsec->sid);
3007 if (rc == -ESTALE) {
3008 rcu_read_unlock();
3009 goto retry;
3010 }
3011 if (rc) {
3012 sbsec->behavior = SECURITY_FS_USE_NONE;
3013 rc = 0;
3014 } else {
3015 sbsec->behavior = SECURITY_FS_USE_GENFS;
3016 }
3017 }
3018
3019 out:
3020 rcu_read_unlock();
3021 return rc;
3022 }
3023
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3024 int security_get_bools(struct selinux_policy *policy,
3025 u32 *len, char ***names, int **values)
3026 {
3027 struct policydb *policydb;
3028 u32 i;
3029 int rc;
3030
3031 policydb = &policy->policydb;
3032
3033 *names = NULL;
3034 *values = NULL;
3035
3036 rc = 0;
3037 *len = policydb->p_bools.nprim;
3038 if (!*len)
3039 goto out;
3040
3041 rc = -ENOMEM;
3042 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3043 if (!*names)
3044 goto err;
3045
3046 rc = -ENOMEM;
3047 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3048 if (!*values)
3049 goto err;
3050
3051 for (i = 0; i < *len; i++) {
3052 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3053
3054 rc = -ENOMEM;
3055 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3056 GFP_ATOMIC);
3057 if (!(*names)[i])
3058 goto err;
3059 }
3060 rc = 0;
3061 out:
3062 return rc;
3063 err:
3064 if (*names) {
3065 for (i = 0; i < *len; i++)
3066 kfree((*names)[i]);
3067 kfree(*names);
3068 }
3069 kfree(*values);
3070 *len = 0;
3071 *names = NULL;
3072 *values = NULL;
3073 goto out;
3074 }
3075
3076
security_set_bools(struct selinux_state * state,u32 len,int * values)3077 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3078 {
3079 struct selinux_policy *newpolicy, *oldpolicy;
3080 int rc;
3081 u32 i, seqno = 0;
3082
3083 if (!selinux_initialized(state))
3084 return -EINVAL;
3085
3086 oldpolicy = rcu_dereference_protected(state->policy,
3087 lockdep_is_held(&state->policy_mutex));
3088
3089 /* Consistency check on number of booleans, should never fail */
3090 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3091 return -EINVAL;
3092
3093 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3094 if (!newpolicy)
3095 return -ENOMEM;
3096
3097 /*
3098 * Deep copy only the parts of the policydb that might be
3099 * modified as a result of changing booleans.
3100 */
3101 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3102 if (rc) {
3103 kfree(newpolicy);
3104 return -ENOMEM;
3105 }
3106
3107 /* Update the boolean states in the copy */
3108 for (i = 0; i < len; i++) {
3109 int new_state = !!values[i];
3110 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3111
3112 if (new_state != old_state) {
3113 audit_log(audit_context(), GFP_ATOMIC,
3114 AUDIT_MAC_CONFIG_CHANGE,
3115 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3116 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3117 new_state,
3118 old_state,
3119 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3120 audit_get_sessionid(current));
3121 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3122 }
3123 }
3124
3125 /* Re-evaluate the conditional rules in the copy */
3126 evaluate_cond_nodes(&newpolicy->policydb);
3127
3128 /* Set latest granting seqno for new policy */
3129 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3130 seqno = newpolicy->latest_granting;
3131
3132 /* Install the new policy */
3133 rcu_assign_pointer(state->policy, newpolicy);
3134
3135 /*
3136 * Free the conditional portions of the old policydb
3137 * that were copied for the new policy, and the oldpolicy
3138 * structure itself but not what it references.
3139 */
3140 synchronize_rcu();
3141 selinux_policy_cond_free(oldpolicy);
3142
3143 /* Notify others of the policy change */
3144 selinux_notify_policy_change(state, seqno);
3145 return 0;
3146 }
3147
security_get_bool_value(struct selinux_state * state,u32 index)3148 int security_get_bool_value(struct selinux_state *state,
3149 u32 index)
3150 {
3151 struct selinux_policy *policy;
3152 struct policydb *policydb;
3153 int rc;
3154 u32 len;
3155
3156 if (!selinux_initialized(state))
3157 return 0;
3158
3159 rcu_read_lock();
3160 policy = rcu_dereference(state->policy);
3161 policydb = &policy->policydb;
3162
3163 rc = -EFAULT;
3164 len = policydb->p_bools.nprim;
3165 if (index >= len)
3166 goto out;
3167
3168 rc = policydb->bool_val_to_struct[index]->state;
3169 out:
3170 rcu_read_unlock();
3171 return rc;
3172 }
3173
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3174 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3175 struct selinux_policy *newpolicy)
3176 {
3177 int rc, *bvalues = NULL;
3178 char **bnames = NULL;
3179 struct cond_bool_datum *booldatum;
3180 u32 i, nbools = 0;
3181
3182 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3183 if (rc)
3184 goto out;
3185 for (i = 0; i < nbools; i++) {
3186 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3187 bnames[i]);
3188 if (booldatum)
3189 booldatum->state = bvalues[i];
3190 }
3191 evaluate_cond_nodes(&newpolicy->policydb);
3192
3193 out:
3194 if (bnames) {
3195 for (i = 0; i < nbools; i++)
3196 kfree(bnames[i]);
3197 }
3198 kfree(bnames);
3199 kfree(bvalues);
3200 return rc;
3201 }
3202
3203 /*
3204 * security_sid_mls_copy() - computes a new sid based on the given
3205 * sid and the mls portion of mls_sid.
3206 */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3207 int security_sid_mls_copy(struct selinux_state *state,
3208 u32 sid, u32 mls_sid, u32 *new_sid)
3209 {
3210 struct selinux_policy *policy;
3211 struct policydb *policydb;
3212 struct sidtab *sidtab;
3213 struct context *context1;
3214 struct context *context2;
3215 struct context newcon;
3216 char *s;
3217 u32 len;
3218 int rc;
3219
3220 if (!selinux_initialized(state)) {
3221 *new_sid = sid;
3222 return 0;
3223 }
3224
3225 retry:
3226 rc = 0;
3227 context_init(&newcon);
3228
3229 rcu_read_lock();
3230 policy = rcu_dereference(state->policy);
3231 policydb = &policy->policydb;
3232 sidtab = policy->sidtab;
3233
3234 if (!policydb->mls_enabled) {
3235 *new_sid = sid;
3236 goto out_unlock;
3237 }
3238
3239 rc = -EINVAL;
3240 context1 = sidtab_search(sidtab, sid);
3241 if (!context1) {
3242 pr_err("SELinux: %s: unrecognized SID %d\n",
3243 __func__, sid);
3244 goto out_unlock;
3245 }
3246
3247 rc = -EINVAL;
3248 context2 = sidtab_search(sidtab, mls_sid);
3249 if (!context2) {
3250 pr_err("SELinux: %s: unrecognized SID %d\n",
3251 __func__, mls_sid);
3252 goto out_unlock;
3253 }
3254
3255 newcon.user = context1->user;
3256 newcon.role = context1->role;
3257 newcon.type = context1->type;
3258 rc = mls_context_cpy(&newcon, context2);
3259 if (rc)
3260 goto out_unlock;
3261
3262 /* Check the validity of the new context. */
3263 if (!policydb_context_isvalid(policydb, &newcon)) {
3264 rc = convert_context_handle_invalid_context(state, policydb,
3265 &newcon);
3266 if (rc) {
3267 if (!context_struct_to_string(policydb, &newcon, &s,
3268 &len)) {
3269 struct audit_buffer *ab;
3270
3271 ab = audit_log_start(audit_context(),
3272 GFP_ATOMIC,
3273 AUDIT_SELINUX_ERR);
3274 audit_log_format(ab,
3275 "op=security_sid_mls_copy invalid_context=");
3276 /* don't record NUL with untrusted strings */
3277 audit_log_n_untrustedstring(ab, s, len - 1);
3278 audit_log_end(ab);
3279 kfree(s);
3280 }
3281 goto out_unlock;
3282 }
3283 }
3284 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3285 if (rc == -ESTALE) {
3286 rcu_read_unlock();
3287 context_destroy(&newcon);
3288 goto retry;
3289 }
3290 out_unlock:
3291 rcu_read_unlock();
3292 context_destroy(&newcon);
3293 return rc;
3294 }
3295
3296 /**
3297 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3298 * @state: SELinux state
3299 * @nlbl_sid: NetLabel SID
3300 * @nlbl_type: NetLabel labeling protocol type
3301 * @xfrm_sid: XFRM SID
3302 * @peer_sid: network peer sid
3303 *
3304 * Description:
3305 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3306 * resolved into a single SID it is returned via @peer_sid and the function
3307 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3308 * returns a negative value. A table summarizing the behavior is below:
3309 *
3310 * | function return | @sid
3311 * ------------------------------+-----------------+-----------------
3312 * no peer labels | 0 | SECSID_NULL
3313 * single peer label | 0 | <peer_label>
3314 * multiple, consistent labels | 0 | <peer_label>
3315 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3316 *
3317 */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3318 int security_net_peersid_resolve(struct selinux_state *state,
3319 u32 nlbl_sid, u32 nlbl_type,
3320 u32 xfrm_sid,
3321 u32 *peer_sid)
3322 {
3323 struct selinux_policy *policy;
3324 struct policydb *policydb;
3325 struct sidtab *sidtab;
3326 int rc;
3327 struct context *nlbl_ctx;
3328 struct context *xfrm_ctx;
3329
3330 *peer_sid = SECSID_NULL;
3331
3332 /* handle the common (which also happens to be the set of easy) cases
3333 * right away, these two if statements catch everything involving a
3334 * single or absent peer SID/label */
3335 if (xfrm_sid == SECSID_NULL) {
3336 *peer_sid = nlbl_sid;
3337 return 0;
3338 }
3339 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3340 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3341 * is present */
3342 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3343 *peer_sid = xfrm_sid;
3344 return 0;
3345 }
3346
3347 if (!selinux_initialized(state))
3348 return 0;
3349
3350 rcu_read_lock();
3351 policy = rcu_dereference(state->policy);
3352 policydb = &policy->policydb;
3353 sidtab = policy->sidtab;
3354
3355 /*
3356 * We don't need to check initialized here since the only way both
3357 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3358 * security server was initialized and state->initialized was true.
3359 */
3360 if (!policydb->mls_enabled) {
3361 rc = 0;
3362 goto out;
3363 }
3364
3365 rc = -EINVAL;
3366 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3367 if (!nlbl_ctx) {
3368 pr_err("SELinux: %s: unrecognized SID %d\n",
3369 __func__, nlbl_sid);
3370 goto out;
3371 }
3372 rc = -EINVAL;
3373 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3374 if (!xfrm_ctx) {
3375 pr_err("SELinux: %s: unrecognized SID %d\n",
3376 __func__, xfrm_sid);
3377 goto out;
3378 }
3379 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3380 if (rc)
3381 goto out;
3382
3383 /* at present NetLabel SIDs/labels really only carry MLS
3384 * information so if the MLS portion of the NetLabel SID
3385 * matches the MLS portion of the labeled XFRM SID/label
3386 * then pass along the XFRM SID as it is the most
3387 * expressive */
3388 *peer_sid = xfrm_sid;
3389 out:
3390 rcu_read_unlock();
3391 return rc;
3392 }
3393
get_classes_callback(void * k,void * d,void * args)3394 static int get_classes_callback(void *k, void *d, void *args)
3395 {
3396 struct class_datum *datum = d;
3397 char *name = k, **classes = args;
3398 int value = datum->value - 1;
3399
3400 classes[value] = kstrdup(name, GFP_ATOMIC);
3401 if (!classes[value])
3402 return -ENOMEM;
3403
3404 return 0;
3405 }
3406
security_get_classes(struct selinux_policy * policy,char *** classes,int * nclasses)3407 int security_get_classes(struct selinux_policy *policy,
3408 char ***classes, int *nclasses)
3409 {
3410 struct policydb *policydb;
3411 int rc;
3412
3413 policydb = &policy->policydb;
3414
3415 rc = -ENOMEM;
3416 *nclasses = policydb->p_classes.nprim;
3417 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3418 if (!*classes)
3419 goto out;
3420
3421 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3422 *classes);
3423 if (rc) {
3424 int i;
3425 for (i = 0; i < *nclasses; i++)
3426 kfree((*classes)[i]);
3427 kfree(*classes);
3428 }
3429
3430 out:
3431 return rc;
3432 }
3433
get_permissions_callback(void * k,void * d,void * args)3434 static int get_permissions_callback(void *k, void *d, void *args)
3435 {
3436 struct perm_datum *datum = d;
3437 char *name = k, **perms = args;
3438 int value = datum->value - 1;
3439
3440 perms[value] = kstrdup(name, GFP_ATOMIC);
3441 if (!perms[value])
3442 return -ENOMEM;
3443
3444 return 0;
3445 }
3446
security_get_permissions(struct selinux_policy * policy,char * class,char *** perms,int * nperms)3447 int security_get_permissions(struct selinux_policy *policy,
3448 char *class, char ***perms, int *nperms)
3449 {
3450 struct policydb *policydb;
3451 int rc, i;
3452 struct class_datum *match;
3453
3454 policydb = &policy->policydb;
3455
3456 rc = -EINVAL;
3457 match = symtab_search(&policydb->p_classes, class);
3458 if (!match) {
3459 pr_err("SELinux: %s: unrecognized class %s\n",
3460 __func__, class);
3461 goto out;
3462 }
3463
3464 rc = -ENOMEM;
3465 *nperms = match->permissions.nprim;
3466 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3467 if (!*perms)
3468 goto out;
3469
3470 if (match->comdatum) {
3471 rc = hashtab_map(&match->comdatum->permissions.table,
3472 get_permissions_callback, *perms);
3473 if (rc)
3474 goto err;
3475 }
3476
3477 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3478 *perms);
3479 if (rc)
3480 goto err;
3481
3482 out:
3483 return rc;
3484
3485 err:
3486 for (i = 0; i < *nperms; i++)
3487 kfree((*perms)[i]);
3488 kfree(*perms);
3489 return rc;
3490 }
3491
security_get_reject_unknown(struct selinux_state * state)3492 int security_get_reject_unknown(struct selinux_state *state)
3493 {
3494 struct selinux_policy *policy;
3495 int value;
3496
3497 if (!selinux_initialized(state))
3498 return 0;
3499
3500 rcu_read_lock();
3501 policy = rcu_dereference(state->policy);
3502 value = policy->policydb.reject_unknown;
3503 rcu_read_unlock();
3504 return value;
3505 }
3506
security_get_allow_unknown(struct selinux_state * state)3507 int security_get_allow_unknown(struct selinux_state *state)
3508 {
3509 struct selinux_policy *policy;
3510 int value;
3511
3512 if (!selinux_initialized(state))
3513 return 0;
3514
3515 rcu_read_lock();
3516 policy = rcu_dereference(state->policy);
3517 value = policy->policydb.allow_unknown;
3518 rcu_read_unlock();
3519 return value;
3520 }
3521
3522 /**
3523 * security_policycap_supported - Check for a specific policy capability
3524 * @state: SELinux state
3525 * @req_cap: capability
3526 *
3527 * Description:
3528 * This function queries the currently loaded policy to see if it supports the
3529 * capability specified by @req_cap. Returns true (1) if the capability is
3530 * supported, false (0) if it isn't supported.
3531 *
3532 */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3533 int security_policycap_supported(struct selinux_state *state,
3534 unsigned int req_cap)
3535 {
3536 struct selinux_policy *policy;
3537 int rc;
3538
3539 if (!selinux_initialized(state))
3540 return 0;
3541
3542 rcu_read_lock();
3543 policy = rcu_dereference(state->policy);
3544 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3545 rcu_read_unlock();
3546
3547 return rc;
3548 }
3549
3550 struct selinux_audit_rule {
3551 u32 au_seqno;
3552 struct context au_ctxt;
3553 };
3554
selinux_audit_rule_free(void * vrule)3555 void selinux_audit_rule_free(void *vrule)
3556 {
3557 struct selinux_audit_rule *rule = vrule;
3558
3559 if (rule) {
3560 context_destroy(&rule->au_ctxt);
3561 kfree(rule);
3562 }
3563 }
3564
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3565 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3566 {
3567 struct selinux_state *state = &selinux_state;
3568 struct selinux_policy *policy;
3569 struct policydb *policydb;
3570 struct selinux_audit_rule *tmprule;
3571 struct role_datum *roledatum;
3572 struct type_datum *typedatum;
3573 struct user_datum *userdatum;
3574 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3575 int rc = 0;
3576
3577 *rule = NULL;
3578
3579 if (!selinux_initialized(state))
3580 return -EOPNOTSUPP;
3581
3582 switch (field) {
3583 case AUDIT_SUBJ_USER:
3584 case AUDIT_SUBJ_ROLE:
3585 case AUDIT_SUBJ_TYPE:
3586 case AUDIT_OBJ_USER:
3587 case AUDIT_OBJ_ROLE:
3588 case AUDIT_OBJ_TYPE:
3589 /* only 'equals' and 'not equals' fit user, role, and type */
3590 if (op != Audit_equal && op != Audit_not_equal)
3591 return -EINVAL;
3592 break;
3593 case AUDIT_SUBJ_SEN:
3594 case AUDIT_SUBJ_CLR:
3595 case AUDIT_OBJ_LEV_LOW:
3596 case AUDIT_OBJ_LEV_HIGH:
3597 /* we do not allow a range, indicated by the presence of '-' */
3598 if (strchr(rulestr, '-'))
3599 return -EINVAL;
3600 break;
3601 default:
3602 /* only the above fields are valid */
3603 return -EINVAL;
3604 }
3605
3606 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3607 if (!tmprule)
3608 return -ENOMEM;
3609
3610 context_init(&tmprule->au_ctxt);
3611
3612 rcu_read_lock();
3613 policy = rcu_dereference(state->policy);
3614 policydb = &policy->policydb;
3615
3616 tmprule->au_seqno = policy->latest_granting;
3617
3618 switch (field) {
3619 case AUDIT_SUBJ_USER:
3620 case AUDIT_OBJ_USER:
3621 rc = -EINVAL;
3622 userdatum = symtab_search(&policydb->p_users, rulestr);
3623 if (!userdatum)
3624 goto out;
3625 tmprule->au_ctxt.user = userdatum->value;
3626 break;
3627 case AUDIT_SUBJ_ROLE:
3628 case AUDIT_OBJ_ROLE:
3629 rc = -EINVAL;
3630 roledatum = symtab_search(&policydb->p_roles, rulestr);
3631 if (!roledatum)
3632 goto out;
3633 tmprule->au_ctxt.role = roledatum->value;
3634 break;
3635 case AUDIT_SUBJ_TYPE:
3636 case AUDIT_OBJ_TYPE:
3637 rc = -EINVAL;
3638 typedatum = symtab_search(&policydb->p_types, rulestr);
3639 if (!typedatum)
3640 goto out;
3641 tmprule->au_ctxt.type = typedatum->value;
3642 break;
3643 case AUDIT_SUBJ_SEN:
3644 case AUDIT_SUBJ_CLR:
3645 case AUDIT_OBJ_LEV_LOW:
3646 case AUDIT_OBJ_LEV_HIGH:
3647 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3648 GFP_ATOMIC);
3649 if (rc)
3650 goto out;
3651 break;
3652 }
3653 rc = 0;
3654 out:
3655 rcu_read_unlock();
3656
3657 if (rc) {
3658 selinux_audit_rule_free(tmprule);
3659 tmprule = NULL;
3660 }
3661
3662 *rule = tmprule;
3663
3664 return rc;
3665 }
3666
3667 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3668 int selinux_audit_rule_known(struct audit_krule *rule)
3669 {
3670 int i;
3671
3672 for (i = 0; i < rule->field_count; i++) {
3673 struct audit_field *f = &rule->fields[i];
3674 switch (f->type) {
3675 case AUDIT_SUBJ_USER:
3676 case AUDIT_SUBJ_ROLE:
3677 case AUDIT_SUBJ_TYPE:
3678 case AUDIT_SUBJ_SEN:
3679 case AUDIT_SUBJ_CLR:
3680 case AUDIT_OBJ_USER:
3681 case AUDIT_OBJ_ROLE:
3682 case AUDIT_OBJ_TYPE:
3683 case AUDIT_OBJ_LEV_LOW:
3684 case AUDIT_OBJ_LEV_HIGH:
3685 return 1;
3686 }
3687 }
3688
3689 return 0;
3690 }
3691
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3692 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3693 {
3694 struct selinux_state *state = &selinux_state;
3695 struct selinux_policy *policy;
3696 struct context *ctxt;
3697 struct mls_level *level;
3698 struct selinux_audit_rule *rule = vrule;
3699 int match = 0;
3700
3701 if (unlikely(!rule)) {
3702 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3703 return -ENOENT;
3704 }
3705
3706 if (!selinux_initialized(state))
3707 return 0;
3708
3709 rcu_read_lock();
3710
3711 policy = rcu_dereference(state->policy);
3712
3713 if (rule->au_seqno < policy->latest_granting) {
3714 match = -ESTALE;
3715 goto out;
3716 }
3717
3718 ctxt = sidtab_search(policy->sidtab, sid);
3719 if (unlikely(!ctxt)) {
3720 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3721 sid);
3722 match = -ENOENT;
3723 goto out;
3724 }
3725
3726 /* a field/op pair that is not caught here will simply fall through
3727 without a match */
3728 switch (field) {
3729 case AUDIT_SUBJ_USER:
3730 case AUDIT_OBJ_USER:
3731 switch (op) {
3732 case Audit_equal:
3733 match = (ctxt->user == rule->au_ctxt.user);
3734 break;
3735 case Audit_not_equal:
3736 match = (ctxt->user != rule->au_ctxt.user);
3737 break;
3738 }
3739 break;
3740 case AUDIT_SUBJ_ROLE:
3741 case AUDIT_OBJ_ROLE:
3742 switch (op) {
3743 case Audit_equal:
3744 match = (ctxt->role == rule->au_ctxt.role);
3745 break;
3746 case Audit_not_equal:
3747 match = (ctxt->role != rule->au_ctxt.role);
3748 break;
3749 }
3750 break;
3751 case AUDIT_SUBJ_TYPE:
3752 case AUDIT_OBJ_TYPE:
3753 switch (op) {
3754 case Audit_equal:
3755 match = (ctxt->type == rule->au_ctxt.type);
3756 break;
3757 case Audit_not_equal:
3758 match = (ctxt->type != rule->au_ctxt.type);
3759 break;
3760 }
3761 break;
3762 case AUDIT_SUBJ_SEN:
3763 case AUDIT_SUBJ_CLR:
3764 case AUDIT_OBJ_LEV_LOW:
3765 case AUDIT_OBJ_LEV_HIGH:
3766 level = ((field == AUDIT_SUBJ_SEN ||
3767 field == AUDIT_OBJ_LEV_LOW) ?
3768 &ctxt->range.level[0] : &ctxt->range.level[1]);
3769 switch (op) {
3770 case Audit_equal:
3771 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3772 level);
3773 break;
3774 case Audit_not_equal:
3775 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3776 level);
3777 break;
3778 case Audit_lt:
3779 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3780 level) &&
3781 !mls_level_eq(&rule->au_ctxt.range.level[0],
3782 level));
3783 break;
3784 case Audit_le:
3785 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3786 level);
3787 break;
3788 case Audit_gt:
3789 match = (mls_level_dom(level,
3790 &rule->au_ctxt.range.level[0]) &&
3791 !mls_level_eq(level,
3792 &rule->au_ctxt.range.level[0]));
3793 break;
3794 case Audit_ge:
3795 match = mls_level_dom(level,
3796 &rule->au_ctxt.range.level[0]);
3797 break;
3798 }
3799 }
3800
3801 out:
3802 rcu_read_unlock();
3803 return match;
3804 }
3805
aurule_avc_callback(u32 event)3806 static int aurule_avc_callback(u32 event)
3807 {
3808 if (event == AVC_CALLBACK_RESET)
3809 return audit_update_lsm_rules();
3810 return 0;
3811 }
3812
aurule_init(void)3813 static int __init aurule_init(void)
3814 {
3815 int err;
3816
3817 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3818 if (err)
3819 panic("avc_add_callback() failed, error %d\n", err);
3820
3821 return err;
3822 }
3823 __initcall(aurule_init);
3824
3825 #ifdef CONFIG_NETLABEL
3826 /**
3827 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3828 * @secattr: the NetLabel packet security attributes
3829 * @sid: the SELinux SID
3830 *
3831 * Description:
3832 * Attempt to cache the context in @ctx, which was derived from the packet in
3833 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3834 * already been initialized.
3835 *
3836 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3837 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3838 u32 sid)
3839 {
3840 u32 *sid_cache;
3841
3842 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3843 if (sid_cache == NULL)
3844 return;
3845 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3846 if (secattr->cache == NULL) {
3847 kfree(sid_cache);
3848 return;
3849 }
3850
3851 *sid_cache = sid;
3852 secattr->cache->free = kfree;
3853 secattr->cache->data = sid_cache;
3854 secattr->flags |= NETLBL_SECATTR_CACHE;
3855 }
3856
3857 /**
3858 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3859 * @state: SELinux state
3860 * @secattr: the NetLabel packet security attributes
3861 * @sid: the SELinux SID
3862 *
3863 * Description:
3864 * Convert the given NetLabel security attributes in @secattr into a
3865 * SELinux SID. If the @secattr field does not contain a full SELinux
3866 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3867 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3868 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3869 * conversion for future lookups. Returns zero on success, negative values on
3870 * failure.
3871 *
3872 */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3873 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3874 struct netlbl_lsm_secattr *secattr,
3875 u32 *sid)
3876 {
3877 struct selinux_policy *policy;
3878 struct policydb *policydb;
3879 struct sidtab *sidtab;
3880 int rc;
3881 struct context *ctx;
3882 struct context ctx_new;
3883
3884 if (!selinux_initialized(state)) {
3885 *sid = SECSID_NULL;
3886 return 0;
3887 }
3888
3889 retry:
3890 rc = 0;
3891 rcu_read_lock();
3892 policy = rcu_dereference(state->policy);
3893 policydb = &policy->policydb;
3894 sidtab = policy->sidtab;
3895
3896 if (secattr->flags & NETLBL_SECATTR_CACHE)
3897 *sid = *(u32 *)secattr->cache->data;
3898 else if (secattr->flags & NETLBL_SECATTR_SECID)
3899 *sid = secattr->attr.secid;
3900 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3901 rc = -EIDRM;
3902 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3903 if (ctx == NULL)
3904 goto out;
3905
3906 context_init(&ctx_new);
3907 ctx_new.user = ctx->user;
3908 ctx_new.role = ctx->role;
3909 ctx_new.type = ctx->type;
3910 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3911 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3912 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3913 if (rc)
3914 goto out;
3915 }
3916 rc = -EIDRM;
3917 if (!mls_context_isvalid(policydb, &ctx_new)) {
3918 ebitmap_destroy(&ctx_new.range.level[0].cat);
3919 goto out;
3920 }
3921
3922 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3923 ebitmap_destroy(&ctx_new.range.level[0].cat);
3924 if (rc == -ESTALE) {
3925 rcu_read_unlock();
3926 goto retry;
3927 }
3928 if (rc)
3929 goto out;
3930
3931 security_netlbl_cache_add(secattr, *sid);
3932 } else
3933 *sid = SECSID_NULL;
3934
3935 out:
3936 rcu_read_unlock();
3937 return rc;
3938 }
3939
3940 /**
3941 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3942 * @state: SELinux state
3943 * @sid: the SELinux SID
3944 * @secattr: the NetLabel packet security attributes
3945 *
3946 * Description:
3947 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3948 * Returns zero on success, negative values on failure.
3949 *
3950 */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3951 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3952 u32 sid, struct netlbl_lsm_secattr *secattr)
3953 {
3954 struct selinux_policy *policy;
3955 struct policydb *policydb;
3956 int rc;
3957 struct context *ctx;
3958
3959 if (!selinux_initialized(state))
3960 return 0;
3961
3962 rcu_read_lock();
3963 policy = rcu_dereference(state->policy);
3964 policydb = &policy->policydb;
3965
3966 rc = -ENOENT;
3967 ctx = sidtab_search(policy->sidtab, sid);
3968 if (ctx == NULL)
3969 goto out;
3970
3971 rc = -ENOMEM;
3972 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3973 GFP_ATOMIC);
3974 if (secattr->domain == NULL)
3975 goto out;
3976
3977 secattr->attr.secid = sid;
3978 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3979 mls_export_netlbl_lvl(policydb, ctx, secattr);
3980 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3981 out:
3982 rcu_read_unlock();
3983 return rc;
3984 }
3985 #endif /* CONFIG_NETLABEL */
3986
3987 /**
3988 * __security_read_policy - read the policy.
3989 * @policy: SELinux policy
3990 * @data: binary policy data
3991 * @len: length of data in bytes
3992 *
3993 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3994 static int __security_read_policy(struct selinux_policy *policy,
3995 void *data, size_t *len)
3996 {
3997 int rc;
3998 struct policy_file fp;
3999
4000 fp.data = data;
4001 fp.len = *len;
4002
4003 rc = policydb_write(&policy->policydb, &fp);
4004 if (rc)
4005 return rc;
4006
4007 *len = (unsigned long)fp.data - (unsigned long)data;
4008 return 0;
4009 }
4010
4011 /**
4012 * security_read_policy - read the policy.
4013 * @state: selinux_state
4014 * @data: binary policy data
4015 * @len: length of data in bytes
4016 *
4017 */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)4018 int security_read_policy(struct selinux_state *state,
4019 void **data, size_t *len)
4020 {
4021 struct selinux_policy *policy;
4022
4023 policy = rcu_dereference_protected(
4024 state->policy, lockdep_is_held(&state->policy_mutex));
4025 if (!policy)
4026 return -EINVAL;
4027
4028 *len = policy->policydb.len;
4029 *data = vmalloc_user(*len);
4030 if (!*data)
4031 return -ENOMEM;
4032
4033 return __security_read_policy(policy, *data, len);
4034 }
4035
4036 /**
4037 * security_read_state_kernel - read the policy.
4038 * @state: selinux_state
4039 * @data: binary policy data
4040 * @len: length of data in bytes
4041 *
4042 * Allocates kernel memory for reading SELinux policy.
4043 * This function is for internal use only and should not
4044 * be used for returning data to user space.
4045 *
4046 * This function must be called with policy_mutex held.
4047 */
security_read_state_kernel(struct selinux_state * state,void ** data,size_t * len)4048 int security_read_state_kernel(struct selinux_state *state,
4049 void **data, size_t *len)
4050 {
4051 int err;
4052 struct selinux_policy *policy;
4053
4054 policy = rcu_dereference_protected(
4055 state->policy, lockdep_is_held(&state->policy_mutex));
4056 if (!policy)
4057 return -EINVAL;
4058
4059 *len = policy->policydb.len;
4060 *data = vmalloc(*len);
4061 if (!*data)
4062 return -ENOMEM;
4063
4064 err = __security_read_policy(policy, *data, len);
4065 if (err) {
4066 vfree(*data);
4067 *data = NULL;
4068 *len = 0;
4069 }
4070 return err;
4071 }
4072