1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/gc.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/f2fs_fs.h>
12 #include <linux/kthread.h>
13 #include <linux/delay.h>
14 #include <linux/freezer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/random.h>
17 #include <linux/sched/mm.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *victim_entry_slab;
27
28 static unsigned int count_bits(const unsigned long *addr,
29 unsigned int offset, unsigned int len);
30
gc_thread_func(void * data)31 static int gc_thread_func(void *data)
32 {
33 struct f2fs_sb_info *sbi = data;
34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37 unsigned int wait_ms;
38 struct f2fs_gc_control gc_control = {
39 .victim_segno = NULL_SEGNO,
40 .should_migrate_blocks = false,
41 .err_gc_skipped = false };
42
43 wait_ms = gc_th->min_sleep_time;
44
45 set_freezable();
46 do {
47 bool sync_mode, foreground = false;
48
49 wait_event_interruptible_timeout(*wq,
50 kthread_should_stop() || freezing(current) ||
51 waitqueue_active(fggc_wq) ||
52 gc_th->gc_wake,
53 msecs_to_jiffies(wait_ms));
54
55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
56 foreground = true;
57
58 /* give it a try one time */
59 if (gc_th->gc_wake)
60 gc_th->gc_wake = 0;
61
62 if (try_to_freeze()) {
63 stat_other_skip_bggc_count(sbi);
64 continue;
65 }
66 if (kthread_should_stop())
67 break;
68
69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 increase_sleep_time(gc_th, &wait_ms);
71 stat_other_skip_bggc_count(sbi);
72 continue;
73 }
74
75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
76 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
77 f2fs_stop_checkpoint(sbi, false,
78 STOP_CP_REASON_FAULT_INJECT);
79 }
80
81 if (!sb_start_write_trylock(sbi->sb)) {
82 stat_other_skip_bggc_count(sbi);
83 continue;
84 }
85
86 /*
87 * [GC triggering condition]
88 * 0. GC is not conducted currently.
89 * 1. There are enough dirty segments.
90 * 2. IO subsystem is idle by checking the # of writeback pages.
91 * 3. IO subsystem is idle by checking the # of requests in
92 * bdev's request list.
93 *
94 * Note) We have to avoid triggering GCs frequently.
95 * Because it is possible that some segments can be
96 * invalidated soon after by user update or deletion.
97 * So, I'd like to wait some time to collect dirty segments.
98 */
99 if (sbi->gc_mode == GC_URGENT_HIGH ||
100 sbi->gc_mode == GC_URGENT_MID) {
101 wait_ms = gc_th->urgent_sleep_time;
102 f2fs_down_write(&sbi->gc_lock);
103 goto do_gc;
104 }
105
106 if (foreground) {
107 f2fs_down_write(&sbi->gc_lock);
108 goto do_gc;
109 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
110 stat_other_skip_bggc_count(sbi);
111 goto next;
112 }
113
114 if (!is_idle(sbi, GC_TIME)) {
115 increase_sleep_time(gc_th, &wait_ms);
116 f2fs_up_write(&sbi->gc_lock);
117 stat_io_skip_bggc_count(sbi);
118 goto next;
119 }
120
121 if (has_enough_invalid_blocks(sbi))
122 decrease_sleep_time(gc_th, &wait_ms);
123 else
124 increase_sleep_time(gc_th, &wait_ms);
125 do_gc:
126 if (!foreground)
127 stat_inc_bggc_count(sbi->stat_info);
128
129 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
130
131 /* foreground GC was been triggered via f2fs_balance_fs() */
132 if (foreground)
133 sync_mode = false;
134
135 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
136 gc_control.no_bg_gc = foreground;
137 gc_control.nr_free_secs = foreground ? 1 : 0;
138
139 /* if return value is not zero, no victim was selected */
140 if (f2fs_gc(sbi, &gc_control)) {
141 /* don't bother wait_ms by foreground gc */
142 if (!foreground)
143 wait_ms = gc_th->no_gc_sleep_time;
144 }
145
146 if (foreground)
147 wake_up_all(&gc_th->fggc_wq);
148
149 trace_f2fs_background_gc(sbi->sb, wait_ms,
150 prefree_segments(sbi), free_segments(sbi));
151
152 /* balancing f2fs's metadata periodically */
153 f2fs_balance_fs_bg(sbi, true);
154 next:
155 if (sbi->gc_mode == GC_URGENT_HIGH) {
156 spin_lock(&sbi->gc_urgent_high_lock);
157 if (sbi->gc_urgent_high_remaining) {
158 sbi->gc_urgent_high_remaining--;
159 if (!sbi->gc_urgent_high_remaining)
160 sbi->gc_mode = GC_NORMAL;
161 }
162 spin_unlock(&sbi->gc_urgent_high_lock);
163 }
164 sb_end_write(sbi->sb);
165
166 } while (!kthread_should_stop());
167 return 0;
168 }
169
f2fs_start_gc_thread(struct f2fs_sb_info * sbi)170 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
171 {
172 struct f2fs_gc_kthread *gc_th;
173 dev_t dev = sbi->sb->s_bdev->bd_dev;
174 int err = 0;
175
176 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
177 if (!gc_th) {
178 err = -ENOMEM;
179 goto out;
180 }
181
182 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
183 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
184 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
185 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
186
187 gc_th->gc_wake = 0;
188
189 sbi->gc_thread = gc_th;
190 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
191 init_waitqueue_head(&sbi->gc_thread->fggc_wq);
192 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
193 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
194 if (IS_ERR(gc_th->f2fs_gc_task)) {
195 err = PTR_ERR(gc_th->f2fs_gc_task);
196 kfree(gc_th);
197 sbi->gc_thread = NULL;
198 }
199 out:
200 return err;
201 }
202
f2fs_stop_gc_thread(struct f2fs_sb_info * sbi)203 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
204 {
205 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
206
207 if (!gc_th)
208 return;
209 kthread_stop(gc_th->f2fs_gc_task);
210 wake_up_all(&gc_th->fggc_wq);
211 kfree(gc_th);
212 sbi->gc_thread = NULL;
213 }
214
select_gc_type(struct f2fs_sb_info * sbi,int gc_type)215 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
216 {
217 int gc_mode;
218
219 if (gc_type == BG_GC) {
220 if (sbi->am.atgc_enabled)
221 gc_mode = GC_AT;
222 else
223 gc_mode = GC_CB;
224 } else {
225 gc_mode = GC_GREEDY;
226 }
227
228 switch (sbi->gc_mode) {
229 case GC_IDLE_CB:
230 gc_mode = GC_CB;
231 break;
232 case GC_IDLE_GREEDY:
233 case GC_URGENT_HIGH:
234 gc_mode = GC_GREEDY;
235 break;
236 case GC_IDLE_AT:
237 gc_mode = GC_AT;
238 break;
239 }
240
241 return gc_mode;
242 }
243
select_policy(struct f2fs_sb_info * sbi,int gc_type,int type,struct victim_sel_policy * p)244 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
245 int type, struct victim_sel_policy *p)
246 {
247 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
248
249 if (p->alloc_mode == SSR) {
250 p->gc_mode = GC_GREEDY;
251 p->dirty_bitmap = dirty_i->dirty_segmap[type];
252 p->max_search = dirty_i->nr_dirty[type];
253 p->ofs_unit = 1;
254 } else if (p->alloc_mode == AT_SSR) {
255 p->gc_mode = GC_GREEDY;
256 p->dirty_bitmap = dirty_i->dirty_segmap[type];
257 p->max_search = dirty_i->nr_dirty[type];
258 p->ofs_unit = 1;
259 } else {
260 p->gc_mode = select_gc_type(sbi, gc_type);
261 p->ofs_unit = sbi->segs_per_sec;
262 if (__is_large_section(sbi)) {
263 p->dirty_bitmap = dirty_i->dirty_secmap;
264 p->max_search = count_bits(p->dirty_bitmap,
265 0, MAIN_SECS(sbi));
266 } else {
267 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
268 p->max_search = dirty_i->nr_dirty[DIRTY];
269 }
270 }
271
272 /*
273 * adjust candidates range, should select all dirty segments for
274 * foreground GC and urgent GC cases.
275 */
276 if (gc_type != FG_GC &&
277 (sbi->gc_mode != GC_URGENT_HIGH) &&
278 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
279 p->max_search > sbi->max_victim_search)
280 p->max_search = sbi->max_victim_search;
281
282 /* let's select beginning hot/small space first in no_heap mode*/
283 if (f2fs_need_rand_seg(sbi))
284 p->offset = prandom_u32_max(MAIN_SECS(sbi) * sbi->segs_per_sec);
285 else if (test_opt(sbi, NOHEAP) &&
286 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
287 p->offset = 0;
288 else
289 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
290 }
291
get_max_cost(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)292 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
293 struct victim_sel_policy *p)
294 {
295 /* SSR allocates in a segment unit */
296 if (p->alloc_mode == SSR)
297 return sbi->blocks_per_seg;
298 else if (p->alloc_mode == AT_SSR)
299 return UINT_MAX;
300
301 /* LFS */
302 if (p->gc_mode == GC_GREEDY)
303 return 2 * sbi->blocks_per_seg * p->ofs_unit;
304 else if (p->gc_mode == GC_CB)
305 return UINT_MAX;
306 else if (p->gc_mode == GC_AT)
307 return UINT_MAX;
308 else /* No other gc_mode */
309 return 0;
310 }
311
check_bg_victims(struct f2fs_sb_info * sbi)312 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
313 {
314 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
315 unsigned int secno;
316
317 /*
318 * If the gc_type is FG_GC, we can select victim segments
319 * selected by background GC before.
320 * Those segments guarantee they have small valid blocks.
321 */
322 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
323 if (sec_usage_check(sbi, secno))
324 continue;
325 clear_bit(secno, dirty_i->victim_secmap);
326 return GET_SEG_FROM_SEC(sbi, secno);
327 }
328 return NULL_SEGNO;
329 }
330
get_cb_cost(struct f2fs_sb_info * sbi,unsigned int segno)331 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
332 {
333 struct sit_info *sit_i = SIT_I(sbi);
334 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
335 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
336 unsigned long long mtime = 0;
337 unsigned int vblocks;
338 unsigned char age = 0;
339 unsigned char u;
340 unsigned int i;
341 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
342
343 for (i = 0; i < usable_segs_per_sec; i++)
344 mtime += get_seg_entry(sbi, start + i)->mtime;
345 vblocks = get_valid_blocks(sbi, segno, true);
346
347 mtime = div_u64(mtime, usable_segs_per_sec);
348 vblocks = div_u64(vblocks, usable_segs_per_sec);
349
350 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
351
352 /* Handle if the system time has changed by the user */
353 if (mtime < sit_i->min_mtime)
354 sit_i->min_mtime = mtime;
355 if (mtime > sit_i->max_mtime)
356 sit_i->max_mtime = mtime;
357 if (sit_i->max_mtime != sit_i->min_mtime)
358 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
359 sit_i->max_mtime - sit_i->min_mtime);
360
361 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
362 }
363
get_gc_cost(struct f2fs_sb_info * sbi,unsigned int segno,struct victim_sel_policy * p)364 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
365 unsigned int segno, struct victim_sel_policy *p)
366 {
367 if (p->alloc_mode == SSR)
368 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
369
370 /* alloc_mode == LFS */
371 if (p->gc_mode == GC_GREEDY)
372 return get_valid_blocks(sbi, segno, true);
373 else if (p->gc_mode == GC_CB)
374 return get_cb_cost(sbi, segno);
375
376 f2fs_bug_on(sbi, 1);
377 return 0;
378 }
379
count_bits(const unsigned long * addr,unsigned int offset,unsigned int len)380 static unsigned int count_bits(const unsigned long *addr,
381 unsigned int offset, unsigned int len)
382 {
383 unsigned int end = offset + len, sum = 0;
384
385 while (offset < end) {
386 if (test_bit(offset++, addr))
387 ++sum;
388 }
389 return sum;
390 }
391
attach_victim_entry(struct f2fs_sb_info * sbi,unsigned long long mtime,unsigned int segno,struct rb_node * parent,struct rb_node ** p,bool left_most)392 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
393 unsigned long long mtime, unsigned int segno,
394 struct rb_node *parent, struct rb_node **p,
395 bool left_most)
396 {
397 struct atgc_management *am = &sbi->am;
398 struct victim_entry *ve;
399
400 ve = f2fs_kmem_cache_alloc(victim_entry_slab,
401 GFP_NOFS, true, NULL);
402
403 ve->mtime = mtime;
404 ve->segno = segno;
405
406 rb_link_node(&ve->rb_node, parent, p);
407 rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
408
409 list_add_tail(&ve->list, &am->victim_list);
410
411 am->victim_count++;
412
413 return ve;
414 }
415
insert_victim_entry(struct f2fs_sb_info * sbi,unsigned long long mtime,unsigned int segno)416 static void insert_victim_entry(struct f2fs_sb_info *sbi,
417 unsigned long long mtime, unsigned int segno)
418 {
419 struct atgc_management *am = &sbi->am;
420 struct rb_node **p;
421 struct rb_node *parent = NULL;
422 bool left_most = true;
423
424 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
425 attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
426 }
427
add_victim_entry(struct f2fs_sb_info * sbi,struct victim_sel_policy * p,unsigned int segno)428 static void add_victim_entry(struct f2fs_sb_info *sbi,
429 struct victim_sel_policy *p, unsigned int segno)
430 {
431 struct sit_info *sit_i = SIT_I(sbi);
432 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
433 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
434 unsigned long long mtime = 0;
435 unsigned int i;
436
437 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
438 if (p->gc_mode == GC_AT &&
439 get_valid_blocks(sbi, segno, true) == 0)
440 return;
441 }
442
443 for (i = 0; i < sbi->segs_per_sec; i++)
444 mtime += get_seg_entry(sbi, start + i)->mtime;
445 mtime = div_u64(mtime, sbi->segs_per_sec);
446
447 /* Handle if the system time has changed by the user */
448 if (mtime < sit_i->min_mtime)
449 sit_i->min_mtime = mtime;
450 if (mtime > sit_i->max_mtime)
451 sit_i->max_mtime = mtime;
452 if (mtime < sit_i->dirty_min_mtime)
453 sit_i->dirty_min_mtime = mtime;
454 if (mtime > sit_i->dirty_max_mtime)
455 sit_i->dirty_max_mtime = mtime;
456
457 /* don't choose young section as candidate */
458 if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
459 return;
460
461 insert_victim_entry(sbi, mtime, segno);
462 }
463
lookup_central_victim(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)464 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
465 struct victim_sel_policy *p)
466 {
467 struct atgc_management *am = &sbi->am;
468 struct rb_node *parent = NULL;
469 bool left_most;
470
471 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
472
473 return parent;
474 }
475
atgc_lookup_victim(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)476 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
477 struct victim_sel_policy *p)
478 {
479 struct sit_info *sit_i = SIT_I(sbi);
480 struct atgc_management *am = &sbi->am;
481 struct rb_root_cached *root = &am->root;
482 struct rb_node *node;
483 struct rb_entry *re;
484 struct victim_entry *ve;
485 unsigned long long total_time;
486 unsigned long long age, u, accu;
487 unsigned long long max_mtime = sit_i->dirty_max_mtime;
488 unsigned long long min_mtime = sit_i->dirty_min_mtime;
489 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
490 unsigned int vblocks;
491 unsigned int dirty_threshold = max(am->max_candidate_count,
492 am->candidate_ratio *
493 am->victim_count / 100);
494 unsigned int age_weight = am->age_weight;
495 unsigned int cost;
496 unsigned int iter = 0;
497
498 if (max_mtime < min_mtime)
499 return;
500
501 max_mtime += 1;
502 total_time = max_mtime - min_mtime;
503
504 accu = div64_u64(ULLONG_MAX, total_time);
505 accu = min_t(unsigned long long, div_u64(accu, 100),
506 DEFAULT_ACCURACY_CLASS);
507
508 node = rb_first_cached(root);
509 next:
510 re = rb_entry_safe(node, struct rb_entry, rb_node);
511 if (!re)
512 return;
513
514 ve = (struct victim_entry *)re;
515
516 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
517 goto skip;
518
519 /* age = 10000 * x% * 60 */
520 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
521 age_weight;
522
523 vblocks = get_valid_blocks(sbi, ve->segno, true);
524 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
525
526 /* u = 10000 * x% * 40 */
527 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
528 (100 - age_weight);
529
530 f2fs_bug_on(sbi, age + u >= UINT_MAX);
531
532 cost = UINT_MAX - (age + u);
533 iter++;
534
535 if (cost < p->min_cost ||
536 (cost == p->min_cost && age > p->oldest_age)) {
537 p->min_cost = cost;
538 p->oldest_age = age;
539 p->min_segno = ve->segno;
540 }
541 skip:
542 if (iter < dirty_threshold) {
543 node = rb_next(node);
544 goto next;
545 }
546 }
547
548 /*
549 * select candidates around source section in range of
550 * [target - dirty_threshold, target + dirty_threshold]
551 */
atssr_lookup_victim(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)552 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
553 struct victim_sel_policy *p)
554 {
555 struct sit_info *sit_i = SIT_I(sbi);
556 struct atgc_management *am = &sbi->am;
557 struct rb_node *node;
558 struct rb_entry *re;
559 struct victim_entry *ve;
560 unsigned long long age;
561 unsigned long long max_mtime = sit_i->dirty_max_mtime;
562 unsigned long long min_mtime = sit_i->dirty_min_mtime;
563 unsigned int seg_blocks = sbi->blocks_per_seg;
564 unsigned int vblocks;
565 unsigned int dirty_threshold = max(am->max_candidate_count,
566 am->candidate_ratio *
567 am->victim_count / 100);
568 unsigned int cost;
569 unsigned int iter = 0;
570 int stage = 0;
571
572 if (max_mtime < min_mtime)
573 return;
574 max_mtime += 1;
575 next_stage:
576 node = lookup_central_victim(sbi, p);
577 next_node:
578 re = rb_entry_safe(node, struct rb_entry, rb_node);
579 if (!re) {
580 if (stage == 0)
581 goto skip_stage;
582 return;
583 }
584
585 ve = (struct victim_entry *)re;
586
587 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
588 goto skip_node;
589
590 age = max_mtime - ve->mtime;
591
592 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
593 f2fs_bug_on(sbi, !vblocks);
594
595 /* rare case */
596 if (vblocks == seg_blocks)
597 goto skip_node;
598
599 iter++;
600
601 age = max_mtime - abs(p->age - age);
602 cost = UINT_MAX - vblocks;
603
604 if (cost < p->min_cost ||
605 (cost == p->min_cost && age > p->oldest_age)) {
606 p->min_cost = cost;
607 p->oldest_age = age;
608 p->min_segno = ve->segno;
609 }
610 skip_node:
611 if (iter < dirty_threshold) {
612 if (stage == 0)
613 node = rb_prev(node);
614 else if (stage == 1)
615 node = rb_next(node);
616 goto next_node;
617 }
618 skip_stage:
619 if (stage < 1) {
620 stage++;
621 iter = 0;
622 goto next_stage;
623 }
624 }
lookup_victim_by_age(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)625 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
626 struct victim_sel_policy *p)
627 {
628 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
629 &sbi->am.root, true));
630
631 if (p->gc_mode == GC_AT)
632 atgc_lookup_victim(sbi, p);
633 else if (p->alloc_mode == AT_SSR)
634 atssr_lookup_victim(sbi, p);
635 else
636 f2fs_bug_on(sbi, 1);
637 }
638
release_victim_entry(struct f2fs_sb_info * sbi)639 static void release_victim_entry(struct f2fs_sb_info *sbi)
640 {
641 struct atgc_management *am = &sbi->am;
642 struct victim_entry *ve, *tmp;
643
644 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
645 list_del(&ve->list);
646 kmem_cache_free(victim_entry_slab, ve);
647 am->victim_count--;
648 }
649
650 am->root = RB_ROOT_CACHED;
651
652 f2fs_bug_on(sbi, am->victim_count);
653 f2fs_bug_on(sbi, !list_empty(&am->victim_list));
654 }
655
f2fs_pin_section(struct f2fs_sb_info * sbi,unsigned int segno)656 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
657 {
658 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
659 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
660
661 if (!dirty_i->enable_pin_section)
662 return false;
663 if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
664 dirty_i->pinned_secmap_cnt++;
665 return true;
666 }
667
f2fs_pinned_section_exists(struct dirty_seglist_info * dirty_i)668 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
669 {
670 return dirty_i->pinned_secmap_cnt;
671 }
672
f2fs_section_is_pinned(struct dirty_seglist_info * dirty_i,unsigned int secno)673 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
674 unsigned int secno)
675 {
676 return dirty_i->enable_pin_section &&
677 f2fs_pinned_section_exists(dirty_i) &&
678 test_bit(secno, dirty_i->pinned_secmap);
679 }
680
f2fs_unpin_all_sections(struct f2fs_sb_info * sbi,bool enable)681 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
682 {
683 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
684
685 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
686 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
687 DIRTY_I(sbi)->pinned_secmap_cnt = 0;
688 }
689 DIRTY_I(sbi)->enable_pin_section = enable;
690 }
691
f2fs_gc_pinned_control(struct inode * inode,int gc_type,unsigned int segno)692 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
693 unsigned int segno)
694 {
695 if (!f2fs_is_pinned_file(inode))
696 return 0;
697 if (gc_type != FG_GC)
698 return -EBUSY;
699 if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
700 f2fs_pin_file_control(inode, true);
701 return -EAGAIN;
702 }
703
704 /*
705 * This function is called from two paths.
706 * One is garbage collection and the other is SSR segment selection.
707 * When it is called during GC, it just gets a victim segment
708 * and it does not remove it from dirty seglist.
709 * When it is called from SSR segment selection, it finds a segment
710 * which has minimum valid blocks and removes it from dirty seglist.
711 */
get_victim_by_default(struct f2fs_sb_info * sbi,unsigned int * result,int gc_type,int type,char alloc_mode,unsigned long long age)712 static int get_victim_by_default(struct f2fs_sb_info *sbi,
713 unsigned int *result, int gc_type, int type,
714 char alloc_mode, unsigned long long age)
715 {
716 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
717 struct sit_info *sm = SIT_I(sbi);
718 struct victim_sel_policy p;
719 unsigned int secno, last_victim;
720 unsigned int last_segment;
721 unsigned int nsearched;
722 bool is_atgc;
723 int ret = 0;
724
725 mutex_lock(&dirty_i->seglist_lock);
726 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
727
728 p.alloc_mode = alloc_mode;
729 p.age = age;
730 p.age_threshold = sbi->am.age_threshold;
731
732 retry:
733 select_policy(sbi, gc_type, type, &p);
734 p.min_segno = NULL_SEGNO;
735 p.oldest_age = 0;
736 p.min_cost = get_max_cost(sbi, &p);
737
738 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
739 nsearched = 0;
740
741 if (is_atgc)
742 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
743
744 if (*result != NULL_SEGNO) {
745 if (!get_valid_blocks(sbi, *result, false)) {
746 ret = -ENODATA;
747 goto out;
748 }
749
750 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
751 ret = -EBUSY;
752 else
753 p.min_segno = *result;
754 goto out;
755 }
756
757 ret = -ENODATA;
758 if (p.max_search == 0)
759 goto out;
760
761 if (__is_large_section(sbi) && p.alloc_mode == LFS) {
762 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
763 p.min_segno = sbi->next_victim_seg[BG_GC];
764 *result = p.min_segno;
765 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
766 goto got_result;
767 }
768 if (gc_type == FG_GC &&
769 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
770 p.min_segno = sbi->next_victim_seg[FG_GC];
771 *result = p.min_segno;
772 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
773 goto got_result;
774 }
775 }
776
777 last_victim = sm->last_victim[p.gc_mode];
778 if (p.alloc_mode == LFS && gc_type == FG_GC) {
779 p.min_segno = check_bg_victims(sbi);
780 if (p.min_segno != NULL_SEGNO)
781 goto got_it;
782 }
783
784 while (1) {
785 unsigned long cost, *dirty_bitmap;
786 unsigned int unit_no, segno;
787
788 dirty_bitmap = p.dirty_bitmap;
789 unit_no = find_next_bit(dirty_bitmap,
790 last_segment / p.ofs_unit,
791 p.offset / p.ofs_unit);
792 segno = unit_no * p.ofs_unit;
793 if (segno >= last_segment) {
794 if (sm->last_victim[p.gc_mode]) {
795 last_segment =
796 sm->last_victim[p.gc_mode];
797 sm->last_victim[p.gc_mode] = 0;
798 p.offset = 0;
799 continue;
800 }
801 break;
802 }
803
804 p.offset = segno + p.ofs_unit;
805 nsearched++;
806
807 #ifdef CONFIG_F2FS_CHECK_FS
808 /*
809 * skip selecting the invalid segno (that is failed due to block
810 * validity check failure during GC) to avoid endless GC loop in
811 * such cases.
812 */
813 if (test_bit(segno, sm->invalid_segmap))
814 goto next;
815 #endif
816
817 secno = GET_SEC_FROM_SEG(sbi, segno);
818
819 if (sec_usage_check(sbi, secno))
820 goto next;
821
822 /* Don't touch checkpointed data */
823 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
824 if (p.alloc_mode == LFS) {
825 /*
826 * LFS is set to find source section during GC.
827 * The victim should have no checkpointed data.
828 */
829 if (get_ckpt_valid_blocks(sbi, segno, true))
830 goto next;
831 } else {
832 /*
833 * SSR | AT_SSR are set to find target segment
834 * for writes which can be full by checkpointed
835 * and newly written blocks.
836 */
837 if (!f2fs_segment_has_free_slot(sbi, segno))
838 goto next;
839 }
840 }
841
842 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
843 goto next;
844
845 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
846 goto next;
847
848 if (is_atgc) {
849 add_victim_entry(sbi, &p, segno);
850 goto next;
851 }
852
853 cost = get_gc_cost(sbi, segno, &p);
854
855 if (p.min_cost > cost) {
856 p.min_segno = segno;
857 p.min_cost = cost;
858 }
859 next:
860 if (nsearched >= p.max_search) {
861 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
862 sm->last_victim[p.gc_mode] =
863 last_victim + p.ofs_unit;
864 else
865 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
866 sm->last_victim[p.gc_mode] %=
867 (MAIN_SECS(sbi) * sbi->segs_per_sec);
868 break;
869 }
870 }
871
872 /* get victim for GC_AT/AT_SSR */
873 if (is_atgc) {
874 lookup_victim_by_age(sbi, &p);
875 release_victim_entry(sbi);
876 }
877
878 if (is_atgc && p.min_segno == NULL_SEGNO &&
879 sm->elapsed_time < p.age_threshold) {
880 p.age_threshold = 0;
881 goto retry;
882 }
883
884 if (p.min_segno != NULL_SEGNO) {
885 got_it:
886 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
887 got_result:
888 if (p.alloc_mode == LFS) {
889 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
890 if (gc_type == FG_GC)
891 sbi->cur_victim_sec = secno;
892 else
893 set_bit(secno, dirty_i->victim_secmap);
894 }
895 ret = 0;
896
897 }
898 out:
899 if (p.min_segno != NULL_SEGNO)
900 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
901 sbi->cur_victim_sec,
902 prefree_segments(sbi), free_segments(sbi));
903 mutex_unlock(&dirty_i->seglist_lock);
904
905 return ret;
906 }
907
908 static const struct victim_selection default_v_ops = {
909 .get_victim = get_victim_by_default,
910 };
911
find_gc_inode(struct gc_inode_list * gc_list,nid_t ino)912 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
913 {
914 struct inode_entry *ie;
915
916 ie = radix_tree_lookup(&gc_list->iroot, ino);
917 if (ie)
918 return ie->inode;
919 return NULL;
920 }
921
add_gc_inode(struct gc_inode_list * gc_list,struct inode * inode)922 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
923 {
924 struct inode_entry *new_ie;
925
926 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
927 iput(inode);
928 return;
929 }
930 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
931 GFP_NOFS, true, NULL);
932 new_ie->inode = inode;
933
934 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
935 list_add_tail(&new_ie->list, &gc_list->ilist);
936 }
937
put_gc_inode(struct gc_inode_list * gc_list)938 static void put_gc_inode(struct gc_inode_list *gc_list)
939 {
940 struct inode_entry *ie, *next_ie;
941
942 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
943 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
944 iput(ie->inode);
945 list_del(&ie->list);
946 kmem_cache_free(f2fs_inode_entry_slab, ie);
947 }
948 }
949
check_valid_map(struct f2fs_sb_info * sbi,unsigned int segno,int offset)950 static int check_valid_map(struct f2fs_sb_info *sbi,
951 unsigned int segno, int offset)
952 {
953 struct sit_info *sit_i = SIT_I(sbi);
954 struct seg_entry *sentry;
955 int ret;
956
957 down_read(&sit_i->sentry_lock);
958 sentry = get_seg_entry(sbi, segno);
959 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
960 up_read(&sit_i->sentry_lock);
961 return ret;
962 }
963
964 /*
965 * This function compares node address got in summary with that in NAT.
966 * On validity, copy that node with cold status, otherwise (invalid node)
967 * ignore that.
968 */
gc_node_segment(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,unsigned int segno,int gc_type)969 static int gc_node_segment(struct f2fs_sb_info *sbi,
970 struct f2fs_summary *sum, unsigned int segno, int gc_type)
971 {
972 struct f2fs_summary *entry;
973 block_t start_addr;
974 int off;
975 int phase = 0;
976 bool fggc = (gc_type == FG_GC);
977 int submitted = 0;
978 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
979
980 start_addr = START_BLOCK(sbi, segno);
981
982 next_step:
983 entry = sum;
984
985 if (fggc && phase == 2)
986 atomic_inc(&sbi->wb_sync_req[NODE]);
987
988 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
989 nid_t nid = le32_to_cpu(entry->nid);
990 struct page *node_page;
991 struct node_info ni;
992 int err;
993
994 /* stop BG_GC if there is not enough free sections. */
995 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
996 return submitted;
997
998 if (check_valid_map(sbi, segno, off) == 0)
999 continue;
1000
1001 if (phase == 0) {
1002 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1003 META_NAT, true);
1004 continue;
1005 }
1006
1007 if (phase == 1) {
1008 f2fs_ra_node_page(sbi, nid);
1009 continue;
1010 }
1011
1012 /* phase == 2 */
1013 node_page = f2fs_get_node_page(sbi, nid);
1014 if (IS_ERR(node_page))
1015 continue;
1016
1017 /* block may become invalid during f2fs_get_node_page */
1018 if (check_valid_map(sbi, segno, off) == 0) {
1019 f2fs_put_page(node_page, 1);
1020 continue;
1021 }
1022
1023 if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1024 f2fs_put_page(node_page, 1);
1025 continue;
1026 }
1027
1028 if (ni.blk_addr != start_addr + off) {
1029 f2fs_put_page(node_page, 1);
1030 continue;
1031 }
1032
1033 err = f2fs_move_node_page(node_page, gc_type);
1034 if (!err && gc_type == FG_GC)
1035 submitted++;
1036 stat_inc_node_blk_count(sbi, 1, gc_type);
1037 }
1038
1039 if (++phase < 3)
1040 goto next_step;
1041
1042 if (fggc)
1043 atomic_dec(&sbi->wb_sync_req[NODE]);
1044 return submitted;
1045 }
1046
1047 /*
1048 * Calculate start block index indicating the given node offset.
1049 * Be careful, caller should give this node offset only indicating direct node
1050 * blocks. If any node offsets, which point the other types of node blocks such
1051 * as indirect or double indirect node blocks, are given, it must be a caller's
1052 * bug.
1053 */
f2fs_start_bidx_of_node(unsigned int node_ofs,struct inode * inode)1054 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1055 {
1056 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1057 unsigned int bidx;
1058
1059 if (node_ofs == 0)
1060 return 0;
1061
1062 if (node_ofs <= 2) {
1063 bidx = node_ofs - 1;
1064 } else if (node_ofs <= indirect_blks) {
1065 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1066
1067 bidx = node_ofs - 2 - dec;
1068 } else {
1069 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1070
1071 bidx = node_ofs - 5 - dec;
1072 }
1073 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1074 }
1075
is_alive(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,struct node_info * dni,block_t blkaddr,unsigned int * nofs)1076 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1077 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1078 {
1079 struct page *node_page;
1080 nid_t nid;
1081 unsigned int ofs_in_node, max_addrs;
1082 block_t source_blkaddr;
1083
1084 nid = le32_to_cpu(sum->nid);
1085 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1086
1087 node_page = f2fs_get_node_page(sbi, nid);
1088 if (IS_ERR(node_page))
1089 return false;
1090
1091 if (f2fs_get_node_info(sbi, nid, dni, false)) {
1092 f2fs_put_page(node_page, 1);
1093 return false;
1094 }
1095
1096 if (sum->version != dni->version) {
1097 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1098 __func__);
1099 set_sbi_flag(sbi, SBI_NEED_FSCK);
1100 }
1101
1102 if (f2fs_check_nid_range(sbi, dni->ino)) {
1103 f2fs_put_page(node_page, 1);
1104 return false;
1105 }
1106
1107 max_addrs = IS_INODE(node_page) ? DEF_ADDRS_PER_INODE :
1108 DEF_ADDRS_PER_BLOCK;
1109 if (ofs_in_node >= max_addrs) {
1110 f2fs_err(sbi, "Inconsistent ofs_in_node:%u in summary, ino:%u, nid:%u, max:%u",
1111 ofs_in_node, dni->ino, dni->nid, max_addrs);
1112 f2fs_put_page(node_page, 1);
1113 return false;
1114 }
1115
1116 *nofs = ofs_of_node(node_page);
1117 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1118 f2fs_put_page(node_page, 1);
1119
1120 if (source_blkaddr != blkaddr) {
1121 #ifdef CONFIG_F2FS_CHECK_FS
1122 unsigned int segno = GET_SEGNO(sbi, blkaddr);
1123 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1124
1125 if (unlikely(check_valid_map(sbi, segno, offset))) {
1126 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1127 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1128 blkaddr, source_blkaddr, segno);
1129 set_sbi_flag(sbi, SBI_NEED_FSCK);
1130 }
1131 }
1132 #endif
1133 return false;
1134 }
1135 return true;
1136 }
1137
ra_data_block(struct inode * inode,pgoff_t index)1138 static int ra_data_block(struct inode *inode, pgoff_t index)
1139 {
1140 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1141 struct address_space *mapping = inode->i_mapping;
1142 struct dnode_of_data dn;
1143 struct page *page;
1144 struct extent_info ei = {0, 0, 0};
1145 struct f2fs_io_info fio = {
1146 .sbi = sbi,
1147 .ino = inode->i_ino,
1148 .type = DATA,
1149 .temp = COLD,
1150 .op = REQ_OP_READ,
1151 .op_flags = 0,
1152 .encrypted_page = NULL,
1153 .in_list = false,
1154 .retry = false,
1155 };
1156 int err;
1157
1158 page = f2fs_grab_cache_page(mapping, index, true);
1159 if (!page)
1160 return -ENOMEM;
1161
1162 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1163 dn.data_blkaddr = ei.blk + index - ei.fofs;
1164 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1165 DATA_GENERIC_ENHANCE_READ))) {
1166 err = -EFSCORRUPTED;
1167 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1168 goto put_page;
1169 }
1170 goto got_it;
1171 }
1172
1173 set_new_dnode(&dn, inode, NULL, NULL, 0);
1174 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1175 if (err)
1176 goto put_page;
1177 f2fs_put_dnode(&dn);
1178
1179 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1180 err = -ENOENT;
1181 goto put_page;
1182 }
1183 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1184 DATA_GENERIC_ENHANCE))) {
1185 err = -EFSCORRUPTED;
1186 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1187 goto put_page;
1188 }
1189 got_it:
1190 /* read page */
1191 fio.page = page;
1192 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1193
1194 /*
1195 * don't cache encrypted data into meta inode until previous dirty
1196 * data were writebacked to avoid racing between GC and flush.
1197 */
1198 f2fs_wait_on_page_writeback(page, DATA, true, true);
1199
1200 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1201
1202 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1203 dn.data_blkaddr,
1204 FGP_LOCK | FGP_CREAT, GFP_NOFS);
1205 if (!fio.encrypted_page) {
1206 err = -ENOMEM;
1207 goto put_page;
1208 }
1209
1210 err = f2fs_submit_page_bio(&fio);
1211 if (err)
1212 goto put_encrypted_page;
1213 f2fs_put_page(fio.encrypted_page, 0);
1214 f2fs_put_page(page, 1);
1215
1216 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
1217 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1218
1219 return 0;
1220 put_encrypted_page:
1221 f2fs_put_page(fio.encrypted_page, 1);
1222 put_page:
1223 f2fs_put_page(page, 1);
1224 return err;
1225 }
1226
1227 /*
1228 * Move data block via META_MAPPING while keeping locked data page.
1229 * This can be used to move blocks, aka LBAs, directly on disk.
1230 */
move_data_block(struct inode * inode,block_t bidx,int gc_type,unsigned int segno,int off)1231 static int move_data_block(struct inode *inode, block_t bidx,
1232 int gc_type, unsigned int segno, int off)
1233 {
1234 struct f2fs_io_info fio = {
1235 .sbi = F2FS_I_SB(inode),
1236 .ino = inode->i_ino,
1237 .type = DATA,
1238 .temp = COLD,
1239 .op = REQ_OP_READ,
1240 .op_flags = 0,
1241 .encrypted_page = NULL,
1242 .in_list = false,
1243 .retry = false,
1244 };
1245 struct dnode_of_data dn;
1246 struct f2fs_summary sum;
1247 struct node_info ni;
1248 struct page *page, *mpage;
1249 block_t newaddr;
1250 int err = 0;
1251 bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1252 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1253 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1254 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1255
1256 /* do not read out */
1257 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1258 if (!page)
1259 return -ENOMEM;
1260
1261 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1262 err = -ENOENT;
1263 goto out;
1264 }
1265
1266 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1267 if (err)
1268 goto out;
1269
1270 set_new_dnode(&dn, inode, NULL, NULL, 0);
1271 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1272 if (err)
1273 goto out;
1274
1275 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1276 ClearPageUptodate(page);
1277 err = -ENOENT;
1278 goto put_out;
1279 }
1280
1281 /*
1282 * don't cache encrypted data into meta inode until previous dirty
1283 * data were writebacked to avoid racing between GC and flush.
1284 */
1285 f2fs_wait_on_page_writeback(page, DATA, true, true);
1286
1287 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1288
1289 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1290 if (err)
1291 goto put_out;
1292
1293 /* read page */
1294 fio.page = page;
1295 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1296
1297 if (lfs_mode)
1298 f2fs_down_write(&fio.sbi->io_order_lock);
1299
1300 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1301 fio.old_blkaddr, false);
1302 if (!mpage) {
1303 err = -ENOMEM;
1304 goto up_out;
1305 }
1306
1307 fio.encrypted_page = mpage;
1308
1309 /* read source block in mpage */
1310 if (!PageUptodate(mpage)) {
1311 err = f2fs_submit_page_bio(&fio);
1312 if (err) {
1313 f2fs_put_page(mpage, 1);
1314 goto up_out;
1315 }
1316
1317 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO,
1318 F2FS_BLKSIZE);
1319 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO,
1320 F2FS_BLKSIZE);
1321
1322 lock_page(mpage);
1323 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1324 !PageUptodate(mpage))) {
1325 err = -EIO;
1326 f2fs_put_page(mpage, 1);
1327 goto up_out;
1328 }
1329 }
1330
1331 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1332
1333 /* allocate block address */
1334 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1335 &sum, type, NULL);
1336
1337 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1338 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1339 if (!fio.encrypted_page) {
1340 err = -ENOMEM;
1341 f2fs_put_page(mpage, 1);
1342 goto recover_block;
1343 }
1344
1345 /* write target block */
1346 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1347 memcpy(page_address(fio.encrypted_page),
1348 page_address(mpage), PAGE_SIZE);
1349 f2fs_put_page(mpage, 1);
1350 invalidate_mapping_pages(META_MAPPING(fio.sbi),
1351 fio.old_blkaddr, fio.old_blkaddr);
1352 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr);
1353
1354 set_page_dirty(fio.encrypted_page);
1355 if (clear_page_dirty_for_io(fio.encrypted_page))
1356 dec_page_count(fio.sbi, F2FS_DIRTY_META);
1357
1358 set_page_writeback(fio.encrypted_page);
1359 ClearPageError(page);
1360
1361 fio.op = REQ_OP_WRITE;
1362 fio.op_flags = REQ_SYNC;
1363 fio.new_blkaddr = newaddr;
1364 f2fs_submit_page_write(&fio);
1365 if (fio.retry) {
1366 err = -EAGAIN;
1367 if (PageWriteback(fio.encrypted_page))
1368 end_page_writeback(fio.encrypted_page);
1369 goto put_page_out;
1370 }
1371
1372 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE);
1373
1374 f2fs_update_data_blkaddr(&dn, newaddr);
1375 set_inode_flag(inode, FI_APPEND_WRITE);
1376 if (page->index == 0)
1377 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1378 put_page_out:
1379 f2fs_put_page(fio.encrypted_page, 1);
1380 recover_block:
1381 if (err)
1382 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1383 true, true, true);
1384 up_out:
1385 if (lfs_mode)
1386 f2fs_up_write(&fio.sbi->io_order_lock);
1387 put_out:
1388 f2fs_put_dnode(&dn);
1389 out:
1390 f2fs_put_page(page, 1);
1391 return err;
1392 }
1393
move_data_page(struct inode * inode,block_t bidx,int gc_type,unsigned int segno,int off)1394 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1395 unsigned int segno, int off)
1396 {
1397 struct page *page;
1398 int err = 0;
1399
1400 page = f2fs_get_lock_data_page(inode, bidx, true);
1401 if (IS_ERR(page))
1402 return PTR_ERR(page);
1403
1404 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1405 err = -ENOENT;
1406 goto out;
1407 }
1408
1409 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1410 if (err)
1411 goto out;
1412
1413 if (gc_type == BG_GC) {
1414 if (PageWriteback(page)) {
1415 err = -EAGAIN;
1416 goto out;
1417 }
1418 set_page_dirty(page);
1419 set_page_private_gcing(page);
1420 } else {
1421 struct f2fs_io_info fio = {
1422 .sbi = F2FS_I_SB(inode),
1423 .ino = inode->i_ino,
1424 .type = DATA,
1425 .temp = COLD,
1426 .op = REQ_OP_WRITE,
1427 .op_flags = REQ_SYNC,
1428 .old_blkaddr = NULL_ADDR,
1429 .page = page,
1430 .encrypted_page = NULL,
1431 .need_lock = LOCK_REQ,
1432 .io_type = FS_GC_DATA_IO,
1433 };
1434 bool is_dirty = PageDirty(page);
1435
1436 retry:
1437 f2fs_wait_on_page_writeback(page, DATA, true, true);
1438
1439 set_page_dirty(page);
1440 if (clear_page_dirty_for_io(page)) {
1441 inode_dec_dirty_pages(inode);
1442 f2fs_remove_dirty_inode(inode);
1443 }
1444
1445 set_page_private_gcing(page);
1446
1447 err = f2fs_do_write_data_page(&fio);
1448 if (err) {
1449 clear_page_private_gcing(page);
1450 if (err == -ENOMEM) {
1451 memalloc_retry_wait(GFP_NOFS);
1452 goto retry;
1453 }
1454 if (is_dirty)
1455 set_page_dirty(page);
1456 }
1457 }
1458 out:
1459 f2fs_put_page(page, 1);
1460 return err;
1461 }
1462
1463 /*
1464 * This function tries to get parent node of victim data block, and identifies
1465 * data block validity. If the block is valid, copy that with cold status and
1466 * modify parent node.
1467 * If the parent node is not valid or the data block address is different,
1468 * the victim data block is ignored.
1469 */
gc_data_segment(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,struct gc_inode_list * gc_list,unsigned int segno,int gc_type,bool force_migrate)1470 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1471 struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1472 bool force_migrate)
1473 {
1474 struct super_block *sb = sbi->sb;
1475 struct f2fs_summary *entry;
1476 block_t start_addr;
1477 int off;
1478 int phase = 0;
1479 int submitted = 0;
1480 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1481
1482 start_addr = START_BLOCK(sbi, segno);
1483
1484 next_step:
1485 entry = sum;
1486
1487 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1488 struct page *data_page;
1489 struct inode *inode;
1490 struct node_info dni; /* dnode info for the data */
1491 unsigned int ofs_in_node, nofs;
1492 block_t start_bidx;
1493 nid_t nid = le32_to_cpu(entry->nid);
1494
1495 /*
1496 * stop BG_GC if there is not enough free sections.
1497 * Or, stop GC if the segment becomes fully valid caused by
1498 * race condition along with SSR block allocation.
1499 */
1500 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1501 (!force_migrate && get_valid_blocks(sbi, segno, true) ==
1502 CAP_BLKS_PER_SEC(sbi)))
1503 return submitted;
1504
1505 if (check_valid_map(sbi, segno, off) == 0)
1506 continue;
1507
1508 if (phase == 0) {
1509 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1510 META_NAT, true);
1511 continue;
1512 }
1513
1514 if (phase == 1) {
1515 f2fs_ra_node_page(sbi, nid);
1516 continue;
1517 }
1518
1519 /* Get an inode by ino with checking validity */
1520 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1521 continue;
1522
1523 if (phase == 2) {
1524 f2fs_ra_node_page(sbi, dni.ino);
1525 continue;
1526 }
1527
1528 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1529
1530 if (phase == 3) {
1531 int err;
1532
1533 inode = f2fs_iget(sb, dni.ino);
1534 if (IS_ERR(inode) || is_bad_inode(inode) ||
1535 special_file(inode->i_mode))
1536 continue;
1537
1538 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1539 if (err == -EAGAIN) {
1540 iput(inode);
1541 return submitted;
1542 }
1543
1544 if (!f2fs_down_write_trylock(
1545 &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1546 iput(inode);
1547 sbi->skipped_gc_rwsem++;
1548 continue;
1549 }
1550
1551 start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1552 ofs_in_node;
1553
1554 if (f2fs_post_read_required(inode)) {
1555 int err = ra_data_block(inode, start_bidx);
1556
1557 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1558 if (err) {
1559 iput(inode);
1560 continue;
1561 }
1562 add_gc_inode(gc_list, inode);
1563 continue;
1564 }
1565
1566 data_page = f2fs_get_read_data_page(inode,
1567 start_bidx, REQ_RAHEAD, true);
1568 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1569 if (IS_ERR(data_page)) {
1570 iput(inode);
1571 continue;
1572 }
1573
1574 f2fs_put_page(data_page, 0);
1575 add_gc_inode(gc_list, inode);
1576 continue;
1577 }
1578
1579 /* phase 4 */
1580 inode = find_gc_inode(gc_list, dni.ino);
1581 if (inode) {
1582 struct f2fs_inode_info *fi = F2FS_I(inode);
1583 bool locked = false;
1584 int err;
1585
1586 if (S_ISREG(inode->i_mode)) {
1587 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) {
1588 sbi->skipped_gc_rwsem++;
1589 continue;
1590 }
1591 if (!f2fs_down_write_trylock(
1592 &fi->i_gc_rwsem[WRITE])) {
1593 sbi->skipped_gc_rwsem++;
1594 f2fs_up_write(&fi->i_gc_rwsem[READ]);
1595 continue;
1596 }
1597 locked = true;
1598
1599 /* wait for all inflight aio data */
1600 inode_dio_wait(inode);
1601 }
1602
1603 start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1604 + ofs_in_node;
1605 if (f2fs_post_read_required(inode))
1606 err = move_data_block(inode, start_bidx,
1607 gc_type, segno, off);
1608 else
1609 err = move_data_page(inode, start_bidx, gc_type,
1610 segno, off);
1611
1612 if (!err && (gc_type == FG_GC ||
1613 f2fs_post_read_required(inode)))
1614 submitted++;
1615
1616 if (locked) {
1617 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1618 f2fs_up_write(&fi->i_gc_rwsem[READ]);
1619 }
1620
1621 stat_inc_data_blk_count(sbi, 1, gc_type);
1622 }
1623 }
1624
1625 if (++phase < 5)
1626 goto next_step;
1627
1628 return submitted;
1629 }
1630
__get_victim(struct f2fs_sb_info * sbi,unsigned int * victim,int gc_type)1631 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1632 int gc_type)
1633 {
1634 struct sit_info *sit_i = SIT_I(sbi);
1635 int ret;
1636
1637 down_write(&sit_i->sentry_lock);
1638 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1639 NO_CHECK_TYPE, LFS, 0);
1640 up_write(&sit_i->sentry_lock);
1641 return ret;
1642 }
1643
do_garbage_collect(struct f2fs_sb_info * sbi,unsigned int start_segno,struct gc_inode_list * gc_list,int gc_type,bool force_migrate)1644 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1645 unsigned int start_segno,
1646 struct gc_inode_list *gc_list, int gc_type,
1647 bool force_migrate)
1648 {
1649 struct page *sum_page;
1650 struct f2fs_summary_block *sum;
1651 struct blk_plug plug;
1652 unsigned int segno = start_segno;
1653 unsigned int end_segno = start_segno + sbi->segs_per_sec;
1654 int seg_freed = 0, migrated = 0;
1655 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1656 SUM_TYPE_DATA : SUM_TYPE_NODE;
1657 int submitted = 0;
1658
1659 if (__is_large_section(sbi))
1660 end_segno = rounddown(end_segno, sbi->segs_per_sec);
1661
1662 /*
1663 * zone-capacity can be less than zone-size in zoned devices,
1664 * resulting in less than expected usable segments in the zone,
1665 * calculate the end segno in the zone which can be garbage collected
1666 */
1667 if (f2fs_sb_has_blkzoned(sbi))
1668 end_segno -= sbi->segs_per_sec -
1669 f2fs_usable_segs_in_sec(sbi, segno);
1670
1671 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1672
1673 /* readahead multi ssa blocks those have contiguous address */
1674 if (__is_large_section(sbi))
1675 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1676 end_segno - segno, META_SSA, true);
1677
1678 /* reference all summary page */
1679 while (segno < end_segno) {
1680 sum_page = f2fs_get_sum_page(sbi, segno++);
1681 if (IS_ERR(sum_page)) {
1682 int err = PTR_ERR(sum_page);
1683
1684 end_segno = segno - 1;
1685 for (segno = start_segno; segno < end_segno; segno++) {
1686 sum_page = find_get_page(META_MAPPING(sbi),
1687 GET_SUM_BLOCK(sbi, segno));
1688 f2fs_put_page(sum_page, 0);
1689 f2fs_put_page(sum_page, 0);
1690 }
1691 return err;
1692 }
1693 unlock_page(sum_page);
1694 }
1695
1696 blk_start_plug(&plug);
1697
1698 for (segno = start_segno; segno < end_segno; segno++) {
1699
1700 /* find segment summary of victim */
1701 sum_page = find_get_page(META_MAPPING(sbi),
1702 GET_SUM_BLOCK(sbi, segno));
1703 f2fs_put_page(sum_page, 0);
1704
1705 if (get_valid_blocks(sbi, segno, false) == 0)
1706 goto freed;
1707 if (gc_type == BG_GC && __is_large_section(sbi) &&
1708 migrated >= sbi->migration_granularity)
1709 goto skip;
1710 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1711 goto skip;
1712
1713 sum = page_address(sum_page);
1714 if (type != GET_SUM_TYPE((&sum->footer))) {
1715 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1716 segno, type, GET_SUM_TYPE((&sum->footer)));
1717 set_sbi_flag(sbi, SBI_NEED_FSCK);
1718 f2fs_stop_checkpoint(sbi, false,
1719 STOP_CP_REASON_CORRUPTED_SUMMARY);
1720 goto skip;
1721 }
1722
1723 /*
1724 * this is to avoid deadlock:
1725 * - lock_page(sum_page) - f2fs_replace_block
1726 * - check_valid_map() - down_write(sentry_lock)
1727 * - down_read(sentry_lock) - change_curseg()
1728 * - lock_page(sum_page)
1729 */
1730 if (type == SUM_TYPE_NODE)
1731 submitted += gc_node_segment(sbi, sum->entries, segno,
1732 gc_type);
1733 else
1734 submitted += gc_data_segment(sbi, sum->entries, gc_list,
1735 segno, gc_type,
1736 force_migrate);
1737
1738 stat_inc_seg_count(sbi, type, gc_type);
1739 sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1740 migrated++;
1741
1742 freed:
1743 if (gc_type == FG_GC &&
1744 get_valid_blocks(sbi, segno, false) == 0)
1745 seg_freed++;
1746
1747 if (__is_large_section(sbi))
1748 sbi->next_victim_seg[gc_type] =
1749 (segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO;
1750 skip:
1751 f2fs_put_page(sum_page, 0);
1752 }
1753
1754 if (submitted)
1755 f2fs_submit_merged_write(sbi,
1756 (type == SUM_TYPE_NODE) ? NODE : DATA);
1757
1758 blk_finish_plug(&plug);
1759
1760 stat_inc_call_count(sbi->stat_info);
1761
1762 return seg_freed;
1763 }
1764
f2fs_gc(struct f2fs_sb_info * sbi,struct f2fs_gc_control * gc_control)1765 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1766 {
1767 int gc_type = gc_control->init_gc_type;
1768 unsigned int segno = gc_control->victim_segno;
1769 int sec_freed = 0, seg_freed = 0, total_freed = 0;
1770 int ret = 0;
1771 struct cp_control cpc;
1772 struct gc_inode_list gc_list = {
1773 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1774 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1775 };
1776 unsigned int skipped_round = 0, round = 0;
1777
1778 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1779 gc_control->nr_free_secs,
1780 get_pages(sbi, F2FS_DIRTY_NODES),
1781 get_pages(sbi, F2FS_DIRTY_DENTS),
1782 get_pages(sbi, F2FS_DIRTY_IMETA),
1783 free_sections(sbi),
1784 free_segments(sbi),
1785 reserved_segments(sbi),
1786 prefree_segments(sbi));
1787
1788 cpc.reason = __get_cp_reason(sbi);
1789 sbi->skipped_gc_rwsem = 0;
1790 gc_more:
1791 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1792 ret = -EINVAL;
1793 goto stop;
1794 }
1795 if (unlikely(f2fs_cp_error(sbi))) {
1796 ret = -EIO;
1797 goto stop;
1798 }
1799
1800 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1801 /*
1802 * For example, if there are many prefree_segments below given
1803 * threshold, we can make them free by checkpoint. Then, we
1804 * secure free segments which doesn't need fggc any more.
1805 */
1806 if (prefree_segments(sbi)) {
1807 ret = f2fs_write_checkpoint(sbi, &cpc);
1808 if (ret)
1809 goto stop;
1810 }
1811 if (has_not_enough_free_secs(sbi, 0, 0))
1812 gc_type = FG_GC;
1813 }
1814
1815 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1816 if (gc_type == BG_GC && gc_control->no_bg_gc) {
1817 ret = -EINVAL;
1818 goto stop;
1819 }
1820 retry:
1821 ret = __get_victim(sbi, &segno, gc_type);
1822 if (ret) {
1823 /* allow to search victim from sections has pinned data */
1824 if (ret == -ENODATA && gc_type == FG_GC &&
1825 f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1826 f2fs_unpin_all_sections(sbi, false);
1827 goto retry;
1828 }
1829 goto stop;
1830 }
1831
1832 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1833 gc_control->should_migrate_blocks);
1834 total_freed += seg_freed;
1835
1836 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1837 sec_freed++;
1838
1839 if (gc_type == FG_GC)
1840 sbi->cur_victim_sec = NULL_SEGNO;
1841
1842 if (gc_control->init_gc_type == FG_GC ||
1843 !has_not_enough_free_secs(sbi,
1844 (gc_type == FG_GC) ? sec_freed : 0, 0)) {
1845 if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs)
1846 goto go_gc_more;
1847 goto stop;
1848 }
1849
1850 /* FG_GC stops GC by skip_count */
1851 if (gc_type == FG_GC) {
1852 if (sbi->skipped_gc_rwsem)
1853 skipped_round++;
1854 round++;
1855 if (skipped_round > MAX_SKIP_GC_COUNT &&
1856 skipped_round * 2 >= round) {
1857 ret = f2fs_write_checkpoint(sbi, &cpc);
1858 goto stop;
1859 }
1860 }
1861
1862 /* Write checkpoint to reclaim prefree segments */
1863 if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE &&
1864 prefree_segments(sbi)) {
1865 ret = f2fs_write_checkpoint(sbi, &cpc);
1866 if (ret)
1867 goto stop;
1868 }
1869 go_gc_more:
1870 segno = NULL_SEGNO;
1871 goto gc_more;
1872
1873 stop:
1874 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1875 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1876
1877 if (gc_type == FG_GC)
1878 f2fs_unpin_all_sections(sbi, true);
1879
1880 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1881 get_pages(sbi, F2FS_DIRTY_NODES),
1882 get_pages(sbi, F2FS_DIRTY_DENTS),
1883 get_pages(sbi, F2FS_DIRTY_IMETA),
1884 free_sections(sbi),
1885 free_segments(sbi),
1886 reserved_segments(sbi),
1887 prefree_segments(sbi));
1888
1889 f2fs_up_write(&sbi->gc_lock);
1890
1891 put_gc_inode(&gc_list);
1892
1893 if (gc_control->err_gc_skipped && !ret)
1894 ret = sec_freed ? 0 : -EAGAIN;
1895 return ret;
1896 }
1897
f2fs_create_garbage_collection_cache(void)1898 int __init f2fs_create_garbage_collection_cache(void)
1899 {
1900 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1901 sizeof(struct victim_entry));
1902 if (!victim_entry_slab)
1903 return -ENOMEM;
1904 return 0;
1905 }
1906
f2fs_destroy_garbage_collection_cache(void)1907 void f2fs_destroy_garbage_collection_cache(void)
1908 {
1909 kmem_cache_destroy(victim_entry_slab);
1910 }
1911
init_atgc_management(struct f2fs_sb_info * sbi)1912 static void init_atgc_management(struct f2fs_sb_info *sbi)
1913 {
1914 struct atgc_management *am = &sbi->am;
1915
1916 if (test_opt(sbi, ATGC) &&
1917 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1918 am->atgc_enabled = true;
1919
1920 am->root = RB_ROOT_CACHED;
1921 INIT_LIST_HEAD(&am->victim_list);
1922 am->victim_count = 0;
1923
1924 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1925 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1926 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1927 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1928 }
1929
f2fs_build_gc_manager(struct f2fs_sb_info * sbi)1930 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1931 {
1932 DIRTY_I(sbi)->v_ops = &default_v_ops;
1933
1934 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1935
1936 /* give warm/cold data area from slower device */
1937 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1938 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1939 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1940
1941 init_atgc_management(sbi);
1942 }
1943
free_segment_range(struct f2fs_sb_info * sbi,unsigned int secs,bool gc_only)1944 static int free_segment_range(struct f2fs_sb_info *sbi,
1945 unsigned int secs, bool gc_only)
1946 {
1947 unsigned int segno, next_inuse, start, end;
1948 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1949 int gc_mode, gc_type;
1950 int err = 0;
1951 int type;
1952
1953 /* Force block allocation for GC */
1954 MAIN_SECS(sbi) -= secs;
1955 start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1956 end = MAIN_SEGS(sbi) - 1;
1957
1958 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1959 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1960 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1961 SIT_I(sbi)->last_victim[gc_mode] = 0;
1962
1963 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1964 if (sbi->next_victim_seg[gc_type] >= start)
1965 sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1966 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1967
1968 /* Move out cursegs from the target range */
1969 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1970 f2fs_allocate_segment_for_resize(sbi, type, start, end);
1971
1972 /* do GC to move out valid blocks in the range */
1973 for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1974 struct gc_inode_list gc_list = {
1975 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1976 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1977 };
1978
1979 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true);
1980 put_gc_inode(&gc_list);
1981
1982 if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1983 err = -EAGAIN;
1984 goto out;
1985 }
1986 if (fatal_signal_pending(current)) {
1987 err = -ERESTARTSYS;
1988 goto out;
1989 }
1990 }
1991 if (gc_only)
1992 goto out;
1993
1994 err = f2fs_write_checkpoint(sbi, &cpc);
1995 if (err)
1996 goto out;
1997
1998 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1999 if (next_inuse <= end) {
2000 f2fs_err(sbi, "segno %u should be free but still inuse!",
2001 next_inuse);
2002 f2fs_bug_on(sbi, 1);
2003 }
2004 out:
2005 MAIN_SECS(sbi) += secs;
2006 return err;
2007 }
2008
update_sb_metadata(struct f2fs_sb_info * sbi,int secs)2009 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2010 {
2011 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2012 int section_count;
2013 int segment_count;
2014 int segment_count_main;
2015 long long block_count;
2016 int segs = secs * sbi->segs_per_sec;
2017
2018 f2fs_down_write(&sbi->sb_lock);
2019
2020 section_count = le32_to_cpu(raw_sb->section_count);
2021 segment_count = le32_to_cpu(raw_sb->segment_count);
2022 segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2023 block_count = le64_to_cpu(raw_sb->block_count);
2024
2025 raw_sb->section_count = cpu_to_le32(section_count + secs);
2026 raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2027 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2028 raw_sb->block_count = cpu_to_le64(block_count +
2029 (long long)segs * sbi->blocks_per_seg);
2030 if (f2fs_is_multi_device(sbi)) {
2031 int last_dev = sbi->s_ndevs - 1;
2032 int dev_segs =
2033 le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2034
2035 raw_sb->devs[last_dev].total_segments =
2036 cpu_to_le32(dev_segs + segs);
2037 }
2038
2039 f2fs_up_write(&sbi->sb_lock);
2040 }
2041
update_fs_metadata(struct f2fs_sb_info * sbi,int secs)2042 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2043 {
2044 int segs = secs * sbi->segs_per_sec;
2045 long long blks = (long long)segs * sbi->blocks_per_seg;
2046 long long user_block_count =
2047 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2048
2049 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2050 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2051 MAIN_SECS(sbi) += secs;
2052 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2053 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2054 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2055
2056 if (f2fs_is_multi_device(sbi)) {
2057 int last_dev = sbi->s_ndevs - 1;
2058
2059 FDEV(last_dev).total_segments =
2060 (int)FDEV(last_dev).total_segments + segs;
2061 FDEV(last_dev).end_blk =
2062 (long long)FDEV(last_dev).end_blk + blks;
2063 #ifdef CONFIG_BLK_DEV_ZONED
2064 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
2065 (int)(blks >> sbi->log_blocks_per_blkz);
2066 #endif
2067 }
2068 }
2069
f2fs_resize_fs(struct f2fs_sb_info * sbi,__u64 block_count)2070 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
2071 {
2072 __u64 old_block_count, shrunk_blocks;
2073 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2074 unsigned int secs;
2075 int err = 0;
2076 __u32 rem;
2077
2078 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2079 if (block_count > old_block_count)
2080 return -EINVAL;
2081
2082 if (f2fs_is_multi_device(sbi)) {
2083 int last_dev = sbi->s_ndevs - 1;
2084 __u64 last_segs = FDEV(last_dev).total_segments;
2085
2086 if (block_count + last_segs * sbi->blocks_per_seg <=
2087 old_block_count)
2088 return -EINVAL;
2089 }
2090
2091 /* new fs size should align to section size */
2092 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2093 if (rem)
2094 return -EINVAL;
2095
2096 if (block_count == old_block_count)
2097 return 0;
2098
2099 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2100 f2fs_err(sbi, "Should run fsck to repair first.");
2101 return -EFSCORRUPTED;
2102 }
2103
2104 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2105 f2fs_err(sbi, "Checkpoint should be enabled.");
2106 return -EINVAL;
2107 }
2108
2109 shrunk_blocks = old_block_count - block_count;
2110 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2111
2112 /* stop other GC */
2113 if (!f2fs_down_write_trylock(&sbi->gc_lock))
2114 return -EAGAIN;
2115
2116 /* stop CP to protect MAIN_SEC in free_segment_range */
2117 f2fs_lock_op(sbi);
2118
2119 spin_lock(&sbi->stat_lock);
2120 if (shrunk_blocks + valid_user_blocks(sbi) +
2121 sbi->current_reserved_blocks + sbi->unusable_block_count +
2122 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2123 err = -ENOSPC;
2124 spin_unlock(&sbi->stat_lock);
2125
2126 if (err)
2127 goto out_unlock;
2128
2129 err = free_segment_range(sbi, secs, true);
2130
2131 out_unlock:
2132 f2fs_unlock_op(sbi);
2133 f2fs_up_write(&sbi->gc_lock);
2134 if (err)
2135 return err;
2136
2137 freeze_super(sbi->sb);
2138 f2fs_down_write(&sbi->gc_lock);
2139 f2fs_down_write(&sbi->cp_global_sem);
2140
2141 spin_lock(&sbi->stat_lock);
2142 if (shrunk_blocks + valid_user_blocks(sbi) +
2143 sbi->current_reserved_blocks + sbi->unusable_block_count +
2144 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2145 err = -ENOSPC;
2146 else
2147 sbi->user_block_count -= shrunk_blocks;
2148 spin_unlock(&sbi->stat_lock);
2149 if (err)
2150 goto out_err;
2151
2152 set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2153 err = free_segment_range(sbi, secs, false);
2154 if (err)
2155 goto recover_out;
2156
2157 update_sb_metadata(sbi, -secs);
2158
2159 err = f2fs_commit_super(sbi, false);
2160 if (err) {
2161 update_sb_metadata(sbi, secs);
2162 goto recover_out;
2163 }
2164
2165 update_fs_metadata(sbi, -secs);
2166 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2167 set_sbi_flag(sbi, SBI_IS_DIRTY);
2168
2169 err = f2fs_write_checkpoint(sbi, &cpc);
2170 if (err) {
2171 update_fs_metadata(sbi, secs);
2172 update_sb_metadata(sbi, secs);
2173 f2fs_commit_super(sbi, false);
2174 }
2175 recover_out:
2176 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2177 if (err) {
2178 set_sbi_flag(sbi, SBI_NEED_FSCK);
2179 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2180
2181 spin_lock(&sbi->stat_lock);
2182 sbi->user_block_count += shrunk_blocks;
2183 spin_unlock(&sbi->stat_lock);
2184 }
2185 out_err:
2186 f2fs_up_write(&sbi->cp_global_sem);
2187 f2fs_up_write(&sbi->gc_lock);
2188 thaw_super(sbi->sb);
2189 return err;
2190 }
2191