1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "sysfs_local.h"
13
14 static DEFINE_IDA(sdw_bus_ida);
15 static DEFINE_IDA(sdw_peripheral_ida);
16
sdw_get_id(struct sdw_bus * bus)17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21 if (rc < 0)
22 return rc;
23
24 bus->id = rc;
25 return 0;
26 }
27
28 /**
29 * sdw_bus_master_add() - add a bus Master instance
30 * @bus: bus instance
31 * @parent: parent device
32 * @fwnode: firmware node handle
33 *
34 * Initializes the bus instance, read properties and create child
35 * devices.
36 */
sdw_bus_master_add(struct sdw_bus * bus,struct device * parent,struct fwnode_handle * fwnode)37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38 struct fwnode_handle *fwnode)
39 {
40 struct sdw_master_prop *prop = NULL;
41 int ret;
42
43 if (!parent) {
44 pr_err("SoundWire parent device is not set\n");
45 return -ENODEV;
46 }
47
48 ret = sdw_get_id(bus);
49 if (ret < 0) {
50 dev_err(parent, "Failed to get bus id\n");
51 return ret;
52 }
53
54 ret = sdw_master_device_add(bus, parent, fwnode);
55 if (ret < 0) {
56 dev_err(parent, "Failed to add master device at link %d\n",
57 bus->link_id);
58 return ret;
59 }
60
61 if (!bus->ops) {
62 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
63 return -EINVAL;
64 }
65
66 if (!bus->compute_params) {
67 dev_err(bus->dev,
68 "Bandwidth allocation not configured, compute_params no set\n");
69 return -EINVAL;
70 }
71
72 mutex_init(&bus->msg_lock);
73 mutex_init(&bus->bus_lock);
74 INIT_LIST_HEAD(&bus->slaves);
75 INIT_LIST_HEAD(&bus->m_rt_list);
76
77 /*
78 * Initialize multi_link flag
79 */
80 bus->multi_link = false;
81 if (bus->ops->read_prop) {
82 ret = bus->ops->read_prop(bus);
83 if (ret < 0) {
84 dev_err(bus->dev,
85 "Bus read properties failed:%d\n", ret);
86 return ret;
87 }
88 }
89
90 sdw_bus_debugfs_init(bus);
91
92 /*
93 * Device numbers in SoundWire are 0 through 15. Enumeration device
94 * number (0), Broadcast device number (15), Group numbers (12 and
95 * 13) and Master device number (14) are not used for assignment so
96 * mask these and other higher bits.
97 */
98
99 /* Set higher order bits */
100 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
101
102 /* Set enumuration device number and broadcast device number */
103 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
104 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
105
106 /* Set group device numbers and master device number */
107 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
108 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
109 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
110
111 /*
112 * SDW is an enumerable bus, but devices can be powered off. So,
113 * they won't be able to report as present.
114 *
115 * Create Slave devices based on Slaves described in
116 * the respective firmware (ACPI/DT)
117 */
118 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
119 ret = sdw_acpi_find_slaves(bus);
120 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
121 ret = sdw_of_find_slaves(bus);
122 else
123 ret = -ENOTSUPP; /* No ACPI/DT so error out */
124
125 if (ret < 0) {
126 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
127 return ret;
128 }
129
130 /*
131 * Initialize clock values based on Master properties. The max
132 * frequency is read from max_clk_freq property. Current assumption
133 * is that the bus will start at highest clock frequency when
134 * powered on.
135 *
136 * Default active bank will be 0 as out of reset the Slaves have
137 * to start with bank 0 (Table 40 of Spec)
138 */
139 prop = &bus->prop;
140 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
141 bus->params.curr_dr_freq = bus->params.max_dr_freq;
142 bus->params.curr_bank = SDW_BANK0;
143 bus->params.next_bank = SDW_BANK1;
144
145 return 0;
146 }
147 EXPORT_SYMBOL(sdw_bus_master_add);
148
sdw_delete_slave(struct device * dev,void * data)149 static int sdw_delete_slave(struct device *dev, void *data)
150 {
151 struct sdw_slave *slave = dev_to_sdw_dev(dev);
152 struct sdw_bus *bus = slave->bus;
153
154 pm_runtime_disable(dev);
155
156 sdw_slave_debugfs_exit(slave);
157
158 mutex_lock(&bus->bus_lock);
159
160 if (slave->dev_num) { /* clear dev_num if assigned */
161 clear_bit(slave->dev_num, bus->assigned);
162 if (bus->dev_num_ida_min)
163 ida_free(&sdw_peripheral_ida, slave->dev_num);
164 }
165 list_del_init(&slave->node);
166 mutex_unlock(&bus->bus_lock);
167
168 device_unregister(dev);
169 return 0;
170 }
171
172 /**
173 * sdw_bus_master_delete() - delete the bus master instance
174 * @bus: bus to be deleted
175 *
176 * Remove the instance, delete the child devices.
177 */
sdw_bus_master_delete(struct sdw_bus * bus)178 void sdw_bus_master_delete(struct sdw_bus *bus)
179 {
180 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
181 sdw_master_device_del(bus);
182
183 sdw_bus_debugfs_exit(bus);
184 ida_free(&sdw_bus_ida, bus->id);
185 }
186 EXPORT_SYMBOL(sdw_bus_master_delete);
187
188 /*
189 * SDW IO Calls
190 */
191
find_response_code(enum sdw_command_response resp)192 static inline int find_response_code(enum sdw_command_response resp)
193 {
194 switch (resp) {
195 case SDW_CMD_OK:
196 return 0;
197
198 case SDW_CMD_IGNORED:
199 return -ENODATA;
200
201 case SDW_CMD_TIMEOUT:
202 return -ETIMEDOUT;
203
204 default:
205 return -EIO;
206 }
207 }
208
do_transfer(struct sdw_bus * bus,struct sdw_msg * msg)209 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
210 {
211 int retry = bus->prop.err_threshold;
212 enum sdw_command_response resp;
213 int ret = 0, i;
214
215 for (i = 0; i <= retry; i++) {
216 resp = bus->ops->xfer_msg(bus, msg);
217 ret = find_response_code(resp);
218
219 /* if cmd is ok or ignored return */
220 if (ret == 0 || ret == -ENODATA)
221 return ret;
222 }
223
224 return ret;
225 }
226
do_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg,struct sdw_defer * defer)227 static inline int do_transfer_defer(struct sdw_bus *bus,
228 struct sdw_msg *msg,
229 struct sdw_defer *defer)
230 {
231 int retry = bus->prop.err_threshold;
232 enum sdw_command_response resp;
233 int ret = 0, i;
234
235 defer->msg = msg;
236 defer->length = msg->len;
237 init_completion(&defer->complete);
238
239 for (i = 0; i <= retry; i++) {
240 resp = bus->ops->xfer_msg_defer(bus, msg, defer);
241 ret = find_response_code(resp);
242 /* if cmd is ok or ignored return */
243 if (ret == 0 || ret == -ENODATA)
244 return ret;
245 }
246
247 return ret;
248 }
249
sdw_reset_page(struct sdw_bus * bus,u16 dev_num)250 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
251 {
252 int retry = bus->prop.err_threshold;
253 enum sdw_command_response resp;
254 int ret = 0, i;
255
256 for (i = 0; i <= retry; i++) {
257 resp = bus->ops->reset_page_addr(bus, dev_num);
258 ret = find_response_code(resp);
259 /* if cmd is ok or ignored return */
260 if (ret == 0 || ret == -ENODATA)
261 return ret;
262 }
263
264 return ret;
265 }
266
sdw_transfer_unlocked(struct sdw_bus * bus,struct sdw_msg * msg)267 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
268 {
269 int ret;
270
271 ret = do_transfer(bus, msg);
272 if (ret != 0 && ret != -ENODATA)
273 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
274 msg->dev_num, ret,
275 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
276 msg->addr, msg->len);
277
278 if (msg->page)
279 sdw_reset_page(bus, msg->dev_num);
280
281 return ret;
282 }
283
284 /**
285 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
286 * @bus: SDW bus
287 * @msg: SDW message to be xfered
288 */
sdw_transfer(struct sdw_bus * bus,struct sdw_msg * msg)289 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
290 {
291 int ret;
292
293 mutex_lock(&bus->msg_lock);
294
295 ret = sdw_transfer_unlocked(bus, msg);
296
297 mutex_unlock(&bus->msg_lock);
298
299 return ret;
300 }
301
302 /**
303 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
304 * @bus: SDW bus
305 * @sync_delay: Delay before reading status
306 */
sdw_show_ping_status(struct sdw_bus * bus,bool sync_delay)307 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
308 {
309 u32 status;
310
311 if (!bus->ops->read_ping_status)
312 return;
313
314 /*
315 * wait for peripheral to sync if desired. 10-15ms should be more than
316 * enough in most cases.
317 */
318 if (sync_delay)
319 usleep_range(10000, 15000);
320
321 mutex_lock(&bus->msg_lock);
322
323 status = bus->ops->read_ping_status(bus);
324
325 mutex_unlock(&bus->msg_lock);
326
327 if (!status)
328 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
329 else
330 dev_dbg(bus->dev, "PING status: %#x\n", status);
331 }
332 EXPORT_SYMBOL(sdw_show_ping_status);
333
334 /**
335 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
336 * @bus: SDW bus
337 * @msg: SDW message to be xfered
338 * @defer: Defer block for signal completion
339 *
340 * Caller needs to hold the msg_lock lock while calling this
341 */
sdw_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg,struct sdw_defer * defer)342 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
343 struct sdw_defer *defer)
344 {
345 int ret;
346
347 if (!bus->ops->xfer_msg_defer)
348 return -ENOTSUPP;
349
350 ret = do_transfer_defer(bus, msg, defer);
351 if (ret != 0 && ret != -ENODATA)
352 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
353 msg->dev_num, ret);
354
355 if (msg->page)
356 sdw_reset_page(bus, msg->dev_num);
357
358 return ret;
359 }
360
sdw_fill_msg(struct sdw_msg * msg,struct sdw_slave * slave,u32 addr,size_t count,u16 dev_num,u8 flags,u8 * buf)361 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
362 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
363 {
364 memset(msg, 0, sizeof(*msg));
365 msg->addr = addr; /* addr is 16 bit and truncated here */
366 msg->len = count;
367 msg->dev_num = dev_num;
368 msg->flags = flags;
369 msg->buf = buf;
370
371 if (addr < SDW_REG_NO_PAGE) /* no paging area */
372 return 0;
373
374 if (addr >= SDW_REG_MAX) { /* illegal addr */
375 pr_err("SDW: Invalid address %x passed\n", addr);
376 return -EINVAL;
377 }
378
379 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
380 if (slave && !slave->prop.paging_support)
381 return 0;
382 /* no need for else as that will fall-through to paging */
383 }
384
385 /* paging mandatory */
386 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
387 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
388 return -EINVAL;
389 }
390
391 if (!slave) {
392 pr_err("SDW: No slave for paging addr\n");
393 return -EINVAL;
394 }
395
396 if (!slave->prop.paging_support) {
397 dev_err(&slave->dev,
398 "address %x needs paging but no support\n", addr);
399 return -EINVAL;
400 }
401
402 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
403 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
404 msg->addr |= BIT(15);
405 msg->page = true;
406
407 return 0;
408 }
409
410 /*
411 * Read/Write IO functions.
412 * no_pm versions can only be called by the bus, e.g. while enumerating or
413 * handling suspend-resume sequences.
414 * all clients need to use the pm versions
415 */
416
417 static int
sdw_nread_no_pm(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)418 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
419 {
420 struct sdw_msg msg;
421 int ret;
422
423 ret = sdw_fill_msg(&msg, slave, addr, count,
424 slave->dev_num, SDW_MSG_FLAG_READ, val);
425 if (ret < 0)
426 return ret;
427
428 ret = sdw_transfer(slave->bus, &msg);
429 if (slave->is_mockup_device)
430 ret = 0;
431 return ret;
432 }
433
434 static int
sdw_nwrite_no_pm(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)435 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
436 {
437 struct sdw_msg msg;
438 int ret;
439
440 ret = sdw_fill_msg(&msg, slave, addr, count,
441 slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
442 if (ret < 0)
443 return ret;
444
445 ret = sdw_transfer(slave->bus, &msg);
446 if (slave->is_mockup_device)
447 ret = 0;
448 return ret;
449 }
450
sdw_write_no_pm(struct sdw_slave * slave,u32 addr,u8 value)451 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
452 {
453 return sdw_nwrite_no_pm(slave, addr, 1, &value);
454 }
455 EXPORT_SYMBOL(sdw_write_no_pm);
456
457 static int
sdw_bread_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr)458 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
459 {
460 struct sdw_msg msg;
461 u8 buf;
462 int ret;
463
464 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
465 SDW_MSG_FLAG_READ, &buf);
466 if (ret < 0)
467 return ret;
468
469 ret = sdw_transfer(bus, &msg);
470 if (ret < 0)
471 return ret;
472
473 return buf;
474 }
475
476 static int
sdw_bwrite_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)477 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
478 {
479 struct sdw_msg msg;
480 int ret;
481
482 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
483 SDW_MSG_FLAG_WRITE, &value);
484 if (ret < 0)
485 return ret;
486
487 return sdw_transfer(bus, &msg);
488 }
489
sdw_bread_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr)490 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
491 {
492 struct sdw_msg msg;
493 u8 buf;
494 int ret;
495
496 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
497 SDW_MSG_FLAG_READ, &buf);
498 if (ret < 0)
499 return ret;
500
501 ret = sdw_transfer_unlocked(bus, &msg);
502 if (ret < 0)
503 return ret;
504
505 return buf;
506 }
507 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
508
sdw_bwrite_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)509 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
510 {
511 struct sdw_msg msg;
512 int ret;
513
514 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
515 SDW_MSG_FLAG_WRITE, &value);
516 if (ret < 0)
517 return ret;
518
519 return sdw_transfer_unlocked(bus, &msg);
520 }
521 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
522
sdw_read_no_pm(struct sdw_slave * slave,u32 addr)523 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
524 {
525 u8 buf;
526 int ret;
527
528 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
529 if (ret < 0)
530 return ret;
531 else
532 return buf;
533 }
534 EXPORT_SYMBOL(sdw_read_no_pm);
535
sdw_update_no_pm(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)536 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
537 {
538 int tmp;
539
540 tmp = sdw_read_no_pm(slave, addr);
541 if (tmp < 0)
542 return tmp;
543
544 tmp = (tmp & ~mask) | val;
545 return sdw_write_no_pm(slave, addr, tmp);
546 }
547 EXPORT_SYMBOL(sdw_update_no_pm);
548
549 /* Read-Modify-Write Slave register */
sdw_update(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)550 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
551 {
552 int tmp;
553
554 tmp = sdw_read(slave, addr);
555 if (tmp < 0)
556 return tmp;
557
558 tmp = (tmp & ~mask) | val;
559 return sdw_write(slave, addr, tmp);
560 }
561 EXPORT_SYMBOL(sdw_update);
562
563 /**
564 * sdw_nread() - Read "n" contiguous SDW Slave registers
565 * @slave: SDW Slave
566 * @addr: Register address
567 * @count: length
568 * @val: Buffer for values to be read
569 */
sdw_nread(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)570 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
571 {
572 int ret;
573
574 ret = pm_runtime_resume_and_get(&slave->dev);
575 if (ret < 0 && ret != -EACCES)
576 return ret;
577
578 ret = sdw_nread_no_pm(slave, addr, count, val);
579
580 pm_runtime_mark_last_busy(&slave->dev);
581 pm_runtime_put(&slave->dev);
582
583 return ret;
584 }
585 EXPORT_SYMBOL(sdw_nread);
586
587 /**
588 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
589 * @slave: SDW Slave
590 * @addr: Register address
591 * @count: length
592 * @val: Buffer for values to be written
593 */
sdw_nwrite(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)594 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
595 {
596 int ret;
597
598 ret = pm_runtime_resume_and_get(&slave->dev);
599 if (ret < 0 && ret != -EACCES)
600 return ret;
601
602 ret = sdw_nwrite_no_pm(slave, addr, count, val);
603
604 pm_runtime_mark_last_busy(&slave->dev);
605 pm_runtime_put(&slave->dev);
606
607 return ret;
608 }
609 EXPORT_SYMBOL(sdw_nwrite);
610
611 /**
612 * sdw_read() - Read a SDW Slave register
613 * @slave: SDW Slave
614 * @addr: Register address
615 */
sdw_read(struct sdw_slave * slave,u32 addr)616 int sdw_read(struct sdw_slave *slave, u32 addr)
617 {
618 u8 buf;
619 int ret;
620
621 ret = sdw_nread(slave, addr, 1, &buf);
622 if (ret < 0)
623 return ret;
624
625 return buf;
626 }
627 EXPORT_SYMBOL(sdw_read);
628
629 /**
630 * sdw_write() - Write a SDW Slave register
631 * @slave: SDW Slave
632 * @addr: Register address
633 * @value: Register value
634 */
sdw_write(struct sdw_slave * slave,u32 addr,u8 value)635 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
636 {
637 return sdw_nwrite(slave, addr, 1, &value);
638 }
639 EXPORT_SYMBOL(sdw_write);
640
641 /*
642 * SDW alert handling
643 */
644
645 /* called with bus_lock held */
sdw_get_slave(struct sdw_bus * bus,int i)646 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
647 {
648 struct sdw_slave *slave;
649
650 list_for_each_entry(slave, &bus->slaves, node) {
651 if (slave->dev_num == i)
652 return slave;
653 }
654
655 return NULL;
656 }
657
sdw_compare_devid(struct sdw_slave * slave,struct sdw_slave_id id)658 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
659 {
660 if (slave->id.mfg_id != id.mfg_id ||
661 slave->id.part_id != id.part_id ||
662 slave->id.class_id != id.class_id ||
663 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
664 slave->id.unique_id != id.unique_id))
665 return -ENODEV;
666
667 return 0;
668 }
669 EXPORT_SYMBOL(sdw_compare_devid);
670
671 /* called with bus_lock held */
sdw_get_device_num(struct sdw_slave * slave)672 static int sdw_get_device_num(struct sdw_slave *slave)
673 {
674 int bit;
675
676 if (slave->bus->dev_num_ida_min) {
677 bit = ida_alloc_range(&sdw_peripheral_ida,
678 slave->bus->dev_num_ida_min, SDW_MAX_DEVICES,
679 GFP_KERNEL);
680 if (bit < 0)
681 goto err;
682 } else {
683 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
684 if (bit == SDW_MAX_DEVICES) {
685 bit = -ENODEV;
686 goto err;
687 }
688 }
689
690 /*
691 * Do not update dev_num in Slave data structure here,
692 * Update once program dev_num is successful
693 */
694 set_bit(bit, slave->bus->assigned);
695
696 err:
697 return bit;
698 }
699
sdw_assign_device_num(struct sdw_slave * slave)700 static int sdw_assign_device_num(struct sdw_slave *slave)
701 {
702 struct sdw_bus *bus = slave->bus;
703 int ret, dev_num;
704 bool new_device = false;
705
706 /* check first if device number is assigned, if so reuse that */
707 if (!slave->dev_num) {
708 if (!slave->dev_num_sticky) {
709 mutex_lock(&slave->bus->bus_lock);
710 dev_num = sdw_get_device_num(slave);
711 mutex_unlock(&slave->bus->bus_lock);
712 if (dev_num < 0) {
713 dev_err(bus->dev, "Get dev_num failed: %d\n",
714 dev_num);
715 return dev_num;
716 }
717 slave->dev_num = dev_num;
718 slave->dev_num_sticky = dev_num;
719 new_device = true;
720 } else {
721 slave->dev_num = slave->dev_num_sticky;
722 }
723 }
724
725 if (!new_device)
726 dev_dbg(bus->dev,
727 "Slave already registered, reusing dev_num:%d\n",
728 slave->dev_num);
729
730 /* Clear the slave->dev_num to transfer message on device 0 */
731 dev_num = slave->dev_num;
732 slave->dev_num = 0;
733
734 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
735 if (ret < 0) {
736 dev_err(bus->dev, "Program device_num %d failed: %d\n",
737 dev_num, ret);
738 return ret;
739 }
740
741 /* After xfer of msg, restore dev_num */
742 slave->dev_num = slave->dev_num_sticky;
743
744 return 0;
745 }
746
sdw_extract_slave_id(struct sdw_bus * bus,u64 addr,struct sdw_slave_id * id)747 void sdw_extract_slave_id(struct sdw_bus *bus,
748 u64 addr, struct sdw_slave_id *id)
749 {
750 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
751
752 id->sdw_version = SDW_VERSION(addr);
753 id->unique_id = SDW_UNIQUE_ID(addr);
754 id->mfg_id = SDW_MFG_ID(addr);
755 id->part_id = SDW_PART_ID(addr);
756 id->class_id = SDW_CLASS_ID(addr);
757
758 dev_dbg(bus->dev,
759 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
760 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
761 }
762 EXPORT_SYMBOL(sdw_extract_slave_id);
763
sdw_program_device_num(struct sdw_bus * bus,bool * programmed)764 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
765 {
766 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
767 struct sdw_slave *slave, *_s;
768 struct sdw_slave_id id;
769 struct sdw_msg msg;
770 bool found;
771 int count = 0, ret;
772 u64 addr;
773
774 *programmed = false;
775
776 /* No Slave, so use raw xfer api */
777 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
778 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
779 if (ret < 0)
780 return ret;
781
782 do {
783 ret = sdw_transfer(bus, &msg);
784 if (ret == -ENODATA) { /* end of device id reads */
785 dev_dbg(bus->dev, "No more devices to enumerate\n");
786 ret = 0;
787 break;
788 }
789 if (ret < 0) {
790 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
791 break;
792 }
793
794 /*
795 * Construct the addr and extract. Cast the higher shift
796 * bits to avoid truncation due to size limit.
797 */
798 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
799 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
800 ((u64)buf[0] << 40);
801
802 sdw_extract_slave_id(bus, addr, &id);
803
804 found = false;
805 /* Now compare with entries */
806 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
807 if (sdw_compare_devid(slave, id) == 0) {
808 found = true;
809
810 /*
811 * To prevent skipping state-machine stages don't
812 * program a device until we've seen it UNATTACH.
813 * Must return here because no other device on #0
814 * can be detected until this one has been
815 * assigned a device ID.
816 */
817 if (slave->status != SDW_SLAVE_UNATTACHED)
818 return 0;
819
820 /*
821 * Assign a new dev_num to this Slave and
822 * not mark it present. It will be marked
823 * present after it reports ATTACHED on new
824 * dev_num
825 */
826 ret = sdw_assign_device_num(slave);
827 if (ret < 0) {
828 dev_err(bus->dev,
829 "Assign dev_num failed:%d\n",
830 ret);
831 return ret;
832 }
833
834 *programmed = true;
835
836 break;
837 }
838 }
839
840 if (!found) {
841 /* TODO: Park this device in Group 13 */
842
843 /*
844 * add Slave device even if there is no platform
845 * firmware description. There will be no driver probe
846 * but the user/integration will be able to see the
847 * device, enumeration status and device number in sysfs
848 */
849 sdw_slave_add(bus, &id, NULL);
850
851 dev_err(bus->dev, "Slave Entry not found\n");
852 }
853
854 count++;
855
856 /*
857 * Check till error out or retry (count) exhausts.
858 * Device can drop off and rejoin during enumeration
859 * so count till twice the bound.
860 */
861
862 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
863
864 return ret;
865 }
866
sdw_modify_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)867 static void sdw_modify_slave_status(struct sdw_slave *slave,
868 enum sdw_slave_status status)
869 {
870 struct sdw_bus *bus = slave->bus;
871
872 mutex_lock(&bus->bus_lock);
873
874 dev_vdbg(bus->dev,
875 "changing status slave %d status %d new status %d\n",
876 slave->dev_num, slave->status, status);
877
878 if (status == SDW_SLAVE_UNATTACHED) {
879 dev_dbg(&slave->dev,
880 "initializing enumeration and init completion for Slave %d\n",
881 slave->dev_num);
882
883 init_completion(&slave->enumeration_complete);
884 init_completion(&slave->initialization_complete);
885
886 } else if ((status == SDW_SLAVE_ATTACHED) &&
887 (slave->status == SDW_SLAVE_UNATTACHED)) {
888 dev_dbg(&slave->dev,
889 "signaling enumeration completion for Slave %d\n",
890 slave->dev_num);
891
892 complete(&slave->enumeration_complete);
893 }
894 slave->status = status;
895 mutex_unlock(&bus->bus_lock);
896 }
897
sdw_slave_clk_stop_callback(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,enum sdw_clk_stop_type type)898 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
899 enum sdw_clk_stop_mode mode,
900 enum sdw_clk_stop_type type)
901 {
902 int ret = 0;
903
904 mutex_lock(&slave->sdw_dev_lock);
905
906 if (slave->probed) {
907 struct device *dev = &slave->dev;
908 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
909
910 if (drv->ops && drv->ops->clk_stop)
911 ret = drv->ops->clk_stop(slave, mode, type);
912 }
913
914 mutex_unlock(&slave->sdw_dev_lock);
915
916 return ret;
917 }
918
sdw_slave_clk_stop_prepare(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,bool prepare)919 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
920 enum sdw_clk_stop_mode mode,
921 bool prepare)
922 {
923 bool wake_en;
924 u32 val = 0;
925 int ret;
926
927 wake_en = slave->prop.wake_capable;
928
929 if (prepare) {
930 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
931
932 if (mode == SDW_CLK_STOP_MODE1)
933 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
934
935 if (wake_en)
936 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
937 } else {
938 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
939 if (ret < 0) {
940 if (ret != -ENODATA)
941 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
942 return ret;
943 }
944 val = ret;
945 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
946 }
947
948 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
949
950 if (ret < 0 && ret != -ENODATA)
951 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
952
953 return ret;
954 }
955
sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus * bus,u16 dev_num)956 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
957 {
958 int retry = bus->clk_stop_timeout;
959 int val;
960
961 do {
962 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
963 if (val < 0) {
964 if (val != -ENODATA)
965 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
966 return val;
967 }
968 val &= SDW_SCP_STAT_CLK_STP_NF;
969 if (!val) {
970 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
971 dev_num);
972 return 0;
973 }
974
975 usleep_range(1000, 1500);
976 retry--;
977 } while (retry);
978
979 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
980 dev_num);
981
982 return -ETIMEDOUT;
983 }
984
985 /**
986 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
987 *
988 * @bus: SDW bus instance
989 *
990 * Query Slave for clock stop mode and prepare for that mode.
991 */
sdw_bus_prep_clk_stop(struct sdw_bus * bus)992 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
993 {
994 bool simple_clk_stop = true;
995 struct sdw_slave *slave;
996 bool is_slave = false;
997 int ret = 0;
998
999 /*
1000 * In order to save on transition time, prepare
1001 * each Slave and then wait for all Slave(s) to be
1002 * prepared for clock stop.
1003 * If one of the Slave devices has lost sync and
1004 * replies with Command Ignored/-ENODATA, we continue
1005 * the loop
1006 */
1007 list_for_each_entry(slave, &bus->slaves, node) {
1008 if (!slave->dev_num)
1009 continue;
1010
1011 if (slave->status != SDW_SLAVE_ATTACHED &&
1012 slave->status != SDW_SLAVE_ALERT)
1013 continue;
1014
1015 /* Identify if Slave(s) are available on Bus */
1016 is_slave = true;
1017
1018 ret = sdw_slave_clk_stop_callback(slave,
1019 SDW_CLK_STOP_MODE0,
1020 SDW_CLK_PRE_PREPARE);
1021 if (ret < 0 && ret != -ENODATA) {
1022 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1023 return ret;
1024 }
1025
1026 /* Only prepare a Slave device if needed */
1027 if (!slave->prop.simple_clk_stop_capable) {
1028 simple_clk_stop = false;
1029
1030 ret = sdw_slave_clk_stop_prepare(slave,
1031 SDW_CLK_STOP_MODE0,
1032 true);
1033 if (ret < 0 && ret != -ENODATA) {
1034 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1035 return ret;
1036 }
1037 }
1038 }
1039
1040 /* Skip remaining clock stop preparation if no Slave is attached */
1041 if (!is_slave)
1042 return 0;
1043
1044 /*
1045 * Don't wait for all Slaves to be ready if they follow the simple
1046 * state machine
1047 */
1048 if (!simple_clk_stop) {
1049 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1050 SDW_BROADCAST_DEV_NUM);
1051 /*
1052 * if there are no Slave devices present and the reply is
1053 * Command_Ignored/-ENODATA, we don't need to continue with the
1054 * flow and can just return here. The error code is not modified
1055 * and its handling left as an exercise for the caller.
1056 */
1057 if (ret < 0)
1058 return ret;
1059 }
1060
1061 /* Inform slaves that prep is done */
1062 list_for_each_entry(slave, &bus->slaves, node) {
1063 if (!slave->dev_num)
1064 continue;
1065
1066 if (slave->status != SDW_SLAVE_ATTACHED &&
1067 slave->status != SDW_SLAVE_ALERT)
1068 continue;
1069
1070 ret = sdw_slave_clk_stop_callback(slave,
1071 SDW_CLK_STOP_MODE0,
1072 SDW_CLK_POST_PREPARE);
1073
1074 if (ret < 0 && ret != -ENODATA) {
1075 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1076 return ret;
1077 }
1078 }
1079
1080 return 0;
1081 }
1082 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1083
1084 /**
1085 * sdw_bus_clk_stop: stop bus clock
1086 *
1087 * @bus: SDW bus instance
1088 *
1089 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1090 * write to SCP_CTRL register.
1091 */
sdw_bus_clk_stop(struct sdw_bus * bus)1092 int sdw_bus_clk_stop(struct sdw_bus *bus)
1093 {
1094 int ret;
1095
1096 /*
1097 * broadcast clock stop now, attached Slaves will ACK this,
1098 * unattached will ignore
1099 */
1100 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1101 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1102 if (ret < 0) {
1103 if (ret != -ENODATA)
1104 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1105 return ret;
1106 }
1107
1108 return 0;
1109 }
1110 EXPORT_SYMBOL(sdw_bus_clk_stop);
1111
1112 /**
1113 * sdw_bus_exit_clk_stop: Exit clock stop mode
1114 *
1115 * @bus: SDW bus instance
1116 *
1117 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1118 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1119 * back.
1120 */
sdw_bus_exit_clk_stop(struct sdw_bus * bus)1121 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1122 {
1123 bool simple_clk_stop = true;
1124 struct sdw_slave *slave;
1125 bool is_slave = false;
1126 int ret;
1127
1128 /*
1129 * In order to save on transition time, de-prepare
1130 * each Slave and then wait for all Slave(s) to be
1131 * de-prepared after clock resume.
1132 */
1133 list_for_each_entry(slave, &bus->slaves, node) {
1134 if (!slave->dev_num)
1135 continue;
1136
1137 if (slave->status != SDW_SLAVE_ATTACHED &&
1138 slave->status != SDW_SLAVE_ALERT)
1139 continue;
1140
1141 /* Identify if Slave(s) are available on Bus */
1142 is_slave = true;
1143
1144 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1145 SDW_CLK_PRE_DEPREPARE);
1146 if (ret < 0)
1147 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1148
1149 /* Only de-prepare a Slave device if needed */
1150 if (!slave->prop.simple_clk_stop_capable) {
1151 simple_clk_stop = false;
1152
1153 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1154 false);
1155
1156 if (ret < 0)
1157 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1158 }
1159 }
1160
1161 /* Skip remaining clock stop de-preparation if no Slave is attached */
1162 if (!is_slave)
1163 return 0;
1164
1165 /*
1166 * Don't wait for all Slaves to be ready if they follow the simple
1167 * state machine
1168 */
1169 if (!simple_clk_stop) {
1170 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1171 if (ret < 0)
1172 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1173 }
1174
1175 list_for_each_entry(slave, &bus->slaves, node) {
1176 if (!slave->dev_num)
1177 continue;
1178
1179 if (slave->status != SDW_SLAVE_ATTACHED &&
1180 slave->status != SDW_SLAVE_ALERT)
1181 continue;
1182
1183 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1184 SDW_CLK_POST_DEPREPARE);
1185 if (ret < 0)
1186 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1187 }
1188
1189 return 0;
1190 }
1191 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1192
sdw_configure_dpn_intr(struct sdw_slave * slave,int port,bool enable,int mask)1193 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1194 int port, bool enable, int mask)
1195 {
1196 u32 addr;
1197 int ret;
1198 u8 val = 0;
1199
1200 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1201 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1202 enable ? "on" : "off");
1203 mask |= SDW_DPN_INT_TEST_FAIL;
1204 }
1205
1206 addr = SDW_DPN_INTMASK(port);
1207
1208 /* Set/Clear port ready interrupt mask */
1209 if (enable) {
1210 val |= mask;
1211 val |= SDW_DPN_INT_PORT_READY;
1212 } else {
1213 val &= ~(mask);
1214 val &= ~SDW_DPN_INT_PORT_READY;
1215 }
1216
1217 ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1218 if (ret < 0)
1219 dev_err(&slave->dev,
1220 "SDW_DPN_INTMASK write failed:%d\n", val);
1221
1222 return ret;
1223 }
1224
sdw_slave_set_frequency(struct sdw_slave * slave)1225 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1226 {
1227 u32 mclk_freq = slave->bus->prop.mclk_freq;
1228 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1229 unsigned int scale;
1230 u8 scale_index;
1231 u8 base;
1232 int ret;
1233
1234 /*
1235 * frequency base and scale registers are required for SDCA
1236 * devices. They may also be used for 1.2+/non-SDCA devices,
1237 * but we will need a DisCo property to cover this case
1238 */
1239 if (!slave->id.class_id)
1240 return 0;
1241
1242 if (!mclk_freq) {
1243 dev_err(&slave->dev,
1244 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1245 return -EINVAL;
1246 }
1247
1248 /*
1249 * map base frequency using Table 89 of SoundWire 1.2 spec.
1250 * The order of the tests just follows the specification, this
1251 * is not a selection between possible values or a search for
1252 * the best value but just a mapping. Only one case per platform
1253 * is relevant.
1254 * Some BIOS have inconsistent values for mclk_freq but a
1255 * correct root so we force the mclk_freq to avoid variations.
1256 */
1257 if (!(19200000 % mclk_freq)) {
1258 mclk_freq = 19200000;
1259 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1260 } else if (!(24000000 % mclk_freq)) {
1261 mclk_freq = 24000000;
1262 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1263 } else if (!(24576000 % mclk_freq)) {
1264 mclk_freq = 24576000;
1265 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1266 } else if (!(22579200 % mclk_freq)) {
1267 mclk_freq = 22579200;
1268 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1269 } else if (!(32000000 % mclk_freq)) {
1270 mclk_freq = 32000000;
1271 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1272 } else {
1273 dev_err(&slave->dev,
1274 "Unsupported clock base, mclk %d\n",
1275 mclk_freq);
1276 return -EINVAL;
1277 }
1278
1279 if (mclk_freq % curr_freq) {
1280 dev_err(&slave->dev,
1281 "mclk %d is not multiple of bus curr_freq %d\n",
1282 mclk_freq, curr_freq);
1283 return -EINVAL;
1284 }
1285
1286 scale = mclk_freq / curr_freq;
1287
1288 /*
1289 * map scale to Table 90 of SoundWire 1.2 spec - and check
1290 * that the scale is a power of two and maximum 64
1291 */
1292 scale_index = ilog2(scale);
1293
1294 if (BIT(scale_index) != scale || scale_index > 6) {
1295 dev_err(&slave->dev,
1296 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1297 scale, mclk_freq, curr_freq);
1298 return -EINVAL;
1299 }
1300 scale_index++;
1301
1302 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1303 if (ret < 0) {
1304 dev_err(&slave->dev,
1305 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1306 return ret;
1307 }
1308
1309 /* initialize scale for both banks */
1310 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1311 if (ret < 0) {
1312 dev_err(&slave->dev,
1313 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1314 return ret;
1315 }
1316 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1317 if (ret < 0)
1318 dev_err(&slave->dev,
1319 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1320
1321 dev_dbg(&slave->dev,
1322 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1323 base, scale_index, mclk_freq, curr_freq);
1324
1325 return ret;
1326 }
1327
sdw_initialize_slave(struct sdw_slave * slave)1328 static int sdw_initialize_slave(struct sdw_slave *slave)
1329 {
1330 struct sdw_slave_prop *prop = &slave->prop;
1331 int status;
1332 int ret;
1333 u8 val;
1334
1335 ret = sdw_slave_set_frequency(slave);
1336 if (ret < 0)
1337 return ret;
1338
1339 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1340 /* Clear bus clash interrupt before enabling interrupt mask */
1341 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1342 if (status < 0) {
1343 dev_err(&slave->dev,
1344 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1345 return status;
1346 }
1347 if (status & SDW_SCP_INT1_BUS_CLASH) {
1348 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1349 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1350 if (ret < 0) {
1351 dev_err(&slave->dev,
1352 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1353 return ret;
1354 }
1355 }
1356 }
1357 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1358 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1359 /* Clear parity interrupt before enabling interrupt mask */
1360 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1361 if (status < 0) {
1362 dev_err(&slave->dev,
1363 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1364 return status;
1365 }
1366 if (status & SDW_SCP_INT1_PARITY) {
1367 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1368 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1369 if (ret < 0) {
1370 dev_err(&slave->dev,
1371 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1372 return ret;
1373 }
1374 }
1375 }
1376
1377 /*
1378 * Set SCP_INT1_MASK register, typically bus clash and
1379 * implementation-defined interrupt mask. The Parity detection
1380 * may not always be correct on startup so its use is
1381 * device-dependent, it might e.g. only be enabled in
1382 * steady-state after a couple of frames.
1383 */
1384 val = slave->prop.scp_int1_mask;
1385
1386 /* Enable SCP interrupts */
1387 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1388 if (ret < 0) {
1389 dev_err(&slave->dev,
1390 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1391 return ret;
1392 }
1393
1394 /* No need to continue if DP0 is not present */
1395 if (!slave->prop.dp0_prop)
1396 return 0;
1397
1398 /* Enable DP0 interrupts */
1399 val = prop->dp0_prop->imp_def_interrupts;
1400 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1401
1402 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1403 if (ret < 0)
1404 dev_err(&slave->dev,
1405 "SDW_DP0_INTMASK read failed:%d\n", ret);
1406 return ret;
1407 }
1408
sdw_handle_dp0_interrupt(struct sdw_slave * slave,u8 * slave_status)1409 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1410 {
1411 u8 clear, impl_int_mask;
1412 int status, status2, ret, count = 0;
1413
1414 status = sdw_read_no_pm(slave, SDW_DP0_INT);
1415 if (status < 0) {
1416 dev_err(&slave->dev,
1417 "SDW_DP0_INT read failed:%d\n", status);
1418 return status;
1419 }
1420
1421 do {
1422 clear = status & ~SDW_DP0_INTERRUPTS;
1423
1424 if (status & SDW_DP0_INT_TEST_FAIL) {
1425 dev_err(&slave->dev, "Test fail for port 0\n");
1426 clear |= SDW_DP0_INT_TEST_FAIL;
1427 }
1428
1429 /*
1430 * Assumption: PORT_READY interrupt will be received only for
1431 * ports implementing Channel Prepare state machine (CP_SM)
1432 */
1433
1434 if (status & SDW_DP0_INT_PORT_READY) {
1435 complete(&slave->port_ready[0]);
1436 clear |= SDW_DP0_INT_PORT_READY;
1437 }
1438
1439 if (status & SDW_DP0_INT_BRA_FAILURE) {
1440 dev_err(&slave->dev, "BRA failed\n");
1441 clear |= SDW_DP0_INT_BRA_FAILURE;
1442 }
1443
1444 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1445 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1446
1447 if (status & impl_int_mask) {
1448 clear |= impl_int_mask;
1449 *slave_status = clear;
1450 }
1451
1452 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1453 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1454 if (ret < 0) {
1455 dev_err(&slave->dev,
1456 "SDW_DP0_INT write failed:%d\n", ret);
1457 return ret;
1458 }
1459
1460 /* Read DP0 interrupt again */
1461 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1462 if (status2 < 0) {
1463 dev_err(&slave->dev,
1464 "SDW_DP0_INT read failed:%d\n", status2);
1465 return status2;
1466 }
1467 /* filter to limit loop to interrupts identified in the first status read */
1468 status &= status2;
1469
1470 count++;
1471
1472 /* we can get alerts while processing so keep retrying */
1473 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1474
1475 if (count == SDW_READ_INTR_CLEAR_RETRY)
1476 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1477
1478 return ret;
1479 }
1480
sdw_handle_port_interrupt(struct sdw_slave * slave,int port,u8 * slave_status)1481 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1482 int port, u8 *slave_status)
1483 {
1484 u8 clear, impl_int_mask;
1485 int status, status2, ret, count = 0;
1486 u32 addr;
1487
1488 if (port == 0)
1489 return sdw_handle_dp0_interrupt(slave, slave_status);
1490
1491 addr = SDW_DPN_INT(port);
1492 status = sdw_read_no_pm(slave, addr);
1493 if (status < 0) {
1494 dev_err(&slave->dev,
1495 "SDW_DPN_INT read failed:%d\n", status);
1496
1497 return status;
1498 }
1499
1500 do {
1501 clear = status & ~SDW_DPN_INTERRUPTS;
1502
1503 if (status & SDW_DPN_INT_TEST_FAIL) {
1504 dev_err(&slave->dev, "Test fail for port:%d\n", port);
1505 clear |= SDW_DPN_INT_TEST_FAIL;
1506 }
1507
1508 /*
1509 * Assumption: PORT_READY interrupt will be received only
1510 * for ports implementing CP_SM.
1511 */
1512 if (status & SDW_DPN_INT_PORT_READY) {
1513 complete(&slave->port_ready[port]);
1514 clear |= SDW_DPN_INT_PORT_READY;
1515 }
1516
1517 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1518 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1519
1520 if (status & impl_int_mask) {
1521 clear |= impl_int_mask;
1522 *slave_status = clear;
1523 }
1524
1525 /* clear the interrupt but don't touch reserved fields */
1526 ret = sdw_write_no_pm(slave, addr, clear);
1527 if (ret < 0) {
1528 dev_err(&slave->dev,
1529 "SDW_DPN_INT write failed:%d\n", ret);
1530 return ret;
1531 }
1532
1533 /* Read DPN interrupt again */
1534 status2 = sdw_read_no_pm(slave, addr);
1535 if (status2 < 0) {
1536 dev_err(&slave->dev,
1537 "SDW_DPN_INT read failed:%d\n", status2);
1538 return status2;
1539 }
1540 /* filter to limit loop to interrupts identified in the first status read */
1541 status &= status2;
1542
1543 count++;
1544
1545 /* we can get alerts while processing so keep retrying */
1546 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1547
1548 if (count == SDW_READ_INTR_CLEAR_RETRY)
1549 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1550
1551 return ret;
1552 }
1553
sdw_handle_slave_alerts(struct sdw_slave * slave)1554 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1555 {
1556 struct sdw_slave_intr_status slave_intr;
1557 u8 clear = 0, bit, port_status[15] = {0};
1558 int port_num, stat, ret, count = 0;
1559 unsigned long port;
1560 bool slave_notify;
1561 u8 sdca_cascade = 0;
1562 u8 buf, buf2[2], _buf, _buf2[2];
1563 bool parity_check;
1564 bool parity_quirk;
1565
1566 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1567
1568 ret = pm_runtime_resume_and_get(&slave->dev);
1569 if (ret < 0 && ret != -EACCES) {
1570 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1571 return ret;
1572 }
1573
1574 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1575 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1576 if (ret < 0) {
1577 dev_err(&slave->dev,
1578 "SDW_SCP_INT1 read failed:%d\n", ret);
1579 goto io_err;
1580 }
1581 buf = ret;
1582
1583 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1584 if (ret < 0) {
1585 dev_err(&slave->dev,
1586 "SDW_SCP_INT2/3 read failed:%d\n", ret);
1587 goto io_err;
1588 }
1589
1590 if (slave->prop.is_sdca) {
1591 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1592 if (ret < 0) {
1593 dev_err(&slave->dev,
1594 "SDW_DP0_INT read failed:%d\n", ret);
1595 goto io_err;
1596 }
1597 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1598 }
1599
1600 do {
1601 slave_notify = false;
1602
1603 /*
1604 * Check parity, bus clash and Slave (impl defined)
1605 * interrupt
1606 */
1607 if (buf & SDW_SCP_INT1_PARITY) {
1608 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1609 parity_quirk = !slave->first_interrupt_done &&
1610 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1611
1612 if (parity_check && !parity_quirk)
1613 dev_err(&slave->dev, "Parity error detected\n");
1614 clear |= SDW_SCP_INT1_PARITY;
1615 }
1616
1617 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1618 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1619 dev_err(&slave->dev, "Bus clash detected\n");
1620 clear |= SDW_SCP_INT1_BUS_CLASH;
1621 }
1622
1623 /*
1624 * When bus clash or parity errors are detected, such errors
1625 * are unlikely to be recoverable errors.
1626 * TODO: In such scenario, reset bus. Make this configurable
1627 * via sysfs property with bus reset being the default.
1628 */
1629
1630 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1631 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1632 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1633 slave_notify = true;
1634 }
1635 clear |= SDW_SCP_INT1_IMPL_DEF;
1636 }
1637
1638 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1639 if (sdca_cascade)
1640 slave_notify = true;
1641
1642 /* Check port 0 - 3 interrupts */
1643 port = buf & SDW_SCP_INT1_PORT0_3;
1644
1645 /* To get port number corresponding to bits, shift it */
1646 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1647 for_each_set_bit(bit, &port, 8) {
1648 sdw_handle_port_interrupt(slave, bit,
1649 &port_status[bit]);
1650 }
1651
1652 /* Check if cascade 2 interrupt is present */
1653 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1654 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1655 for_each_set_bit(bit, &port, 8) {
1656 /* scp2 ports start from 4 */
1657 port_num = bit + 4;
1658 sdw_handle_port_interrupt(slave,
1659 port_num,
1660 &port_status[port_num]);
1661 }
1662 }
1663
1664 /* now check last cascade */
1665 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1666 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1667 for_each_set_bit(bit, &port, 8) {
1668 /* scp3 ports start from 11 */
1669 port_num = bit + 11;
1670 sdw_handle_port_interrupt(slave,
1671 port_num,
1672 &port_status[port_num]);
1673 }
1674 }
1675
1676 /* Update the Slave driver */
1677 if (slave_notify) {
1678 mutex_lock(&slave->sdw_dev_lock);
1679
1680 if (slave->probed) {
1681 struct device *dev = &slave->dev;
1682 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1683
1684 if (drv->ops && drv->ops->interrupt_callback) {
1685 slave_intr.sdca_cascade = sdca_cascade;
1686 slave_intr.control_port = clear;
1687 memcpy(slave_intr.port, &port_status,
1688 sizeof(slave_intr.port));
1689
1690 drv->ops->interrupt_callback(slave, &slave_intr);
1691 }
1692 }
1693
1694 mutex_unlock(&slave->sdw_dev_lock);
1695 }
1696
1697 /* Ack interrupt */
1698 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1699 if (ret < 0) {
1700 dev_err(&slave->dev,
1701 "SDW_SCP_INT1 write failed:%d\n", ret);
1702 goto io_err;
1703 }
1704
1705 /* at this point all initial interrupt sources were handled */
1706 slave->first_interrupt_done = true;
1707
1708 /*
1709 * Read status again to ensure no new interrupts arrived
1710 * while servicing interrupts.
1711 */
1712 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1713 if (ret < 0) {
1714 dev_err(&slave->dev,
1715 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1716 goto io_err;
1717 }
1718 _buf = ret;
1719
1720 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1721 if (ret < 0) {
1722 dev_err(&slave->dev,
1723 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1724 goto io_err;
1725 }
1726
1727 if (slave->prop.is_sdca) {
1728 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1729 if (ret < 0) {
1730 dev_err(&slave->dev,
1731 "SDW_DP0_INT recheck read failed:%d\n", ret);
1732 goto io_err;
1733 }
1734 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1735 }
1736
1737 /*
1738 * Make sure no interrupts are pending, but filter to limit loop
1739 * to interrupts identified in the first status read
1740 */
1741 buf &= _buf;
1742 buf2[0] &= _buf2[0];
1743 buf2[1] &= _buf2[1];
1744 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1745
1746 /*
1747 * Exit loop if Slave is continuously in ALERT state even
1748 * after servicing the interrupt multiple times.
1749 */
1750 count++;
1751
1752 /* we can get alerts while processing so keep retrying */
1753 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1754
1755 if (count == SDW_READ_INTR_CLEAR_RETRY)
1756 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1757
1758 io_err:
1759 pm_runtime_mark_last_busy(&slave->dev);
1760 pm_runtime_put_autosuspend(&slave->dev);
1761
1762 return ret;
1763 }
1764
sdw_update_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)1765 static int sdw_update_slave_status(struct sdw_slave *slave,
1766 enum sdw_slave_status status)
1767 {
1768 int ret = 0;
1769
1770 mutex_lock(&slave->sdw_dev_lock);
1771
1772 if (slave->probed) {
1773 struct device *dev = &slave->dev;
1774 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1775
1776 if (drv->ops && drv->ops->update_status)
1777 ret = drv->ops->update_status(slave, status);
1778 }
1779
1780 mutex_unlock(&slave->sdw_dev_lock);
1781
1782 return ret;
1783 }
1784
1785 /**
1786 * sdw_handle_slave_status() - Handle Slave status
1787 * @bus: SDW bus instance
1788 * @status: Status for all Slave(s)
1789 */
sdw_handle_slave_status(struct sdw_bus * bus,enum sdw_slave_status status[])1790 int sdw_handle_slave_status(struct sdw_bus *bus,
1791 enum sdw_slave_status status[])
1792 {
1793 enum sdw_slave_status prev_status;
1794 struct sdw_slave *slave;
1795 bool attached_initializing, id_programmed;
1796 int i, ret = 0;
1797
1798 /* first check if any Slaves fell off the bus */
1799 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1800 mutex_lock(&bus->bus_lock);
1801 if (test_bit(i, bus->assigned) == false) {
1802 mutex_unlock(&bus->bus_lock);
1803 continue;
1804 }
1805 mutex_unlock(&bus->bus_lock);
1806
1807 slave = sdw_get_slave(bus, i);
1808 if (!slave)
1809 continue;
1810
1811 if (status[i] == SDW_SLAVE_UNATTACHED &&
1812 slave->status != SDW_SLAVE_UNATTACHED) {
1813 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1814 i, slave->status);
1815 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1816
1817 /* Ensure driver knows that peripheral unattached */
1818 ret = sdw_update_slave_status(slave, status[i]);
1819 if (ret < 0)
1820 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1821 }
1822 }
1823
1824 if (status[0] == SDW_SLAVE_ATTACHED) {
1825 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1826
1827 /*
1828 * Programming a device number will have side effects,
1829 * so we deal with other devices at a later time.
1830 * This relies on those devices reporting ATTACHED, which will
1831 * trigger another call to this function. This will only
1832 * happen if at least one device ID was programmed.
1833 * Error returns from sdw_program_device_num() are currently
1834 * ignored because there's no useful recovery that can be done.
1835 * Returning the error here could result in the current status
1836 * of other devices not being handled, because if no device IDs
1837 * were programmed there's nothing to guarantee a status change
1838 * to trigger another call to this function.
1839 */
1840 sdw_program_device_num(bus, &id_programmed);
1841 if (id_programmed)
1842 return 0;
1843 }
1844
1845 /* Continue to check other slave statuses */
1846 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1847 mutex_lock(&bus->bus_lock);
1848 if (test_bit(i, bus->assigned) == false) {
1849 mutex_unlock(&bus->bus_lock);
1850 continue;
1851 }
1852 mutex_unlock(&bus->bus_lock);
1853
1854 slave = sdw_get_slave(bus, i);
1855 if (!slave)
1856 continue;
1857
1858 attached_initializing = false;
1859
1860 switch (status[i]) {
1861 case SDW_SLAVE_UNATTACHED:
1862 if (slave->status == SDW_SLAVE_UNATTACHED)
1863 break;
1864
1865 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1866 i, slave->status);
1867
1868 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1869 break;
1870
1871 case SDW_SLAVE_ALERT:
1872 ret = sdw_handle_slave_alerts(slave);
1873 if (ret < 0)
1874 dev_err(&slave->dev,
1875 "Slave %d alert handling failed: %d\n",
1876 i, ret);
1877 break;
1878
1879 case SDW_SLAVE_ATTACHED:
1880 if (slave->status == SDW_SLAVE_ATTACHED)
1881 break;
1882
1883 prev_status = slave->status;
1884 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1885
1886 if (prev_status == SDW_SLAVE_ALERT)
1887 break;
1888
1889 attached_initializing = true;
1890
1891 ret = sdw_initialize_slave(slave);
1892 if (ret < 0)
1893 dev_err(&slave->dev,
1894 "Slave %d initialization failed: %d\n",
1895 i, ret);
1896
1897 break;
1898
1899 default:
1900 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1901 i, status[i]);
1902 break;
1903 }
1904
1905 ret = sdw_update_slave_status(slave, status[i]);
1906 if (ret < 0)
1907 dev_err(&slave->dev,
1908 "Update Slave status failed:%d\n", ret);
1909 if (attached_initializing) {
1910 dev_dbg(&slave->dev,
1911 "signaling initialization completion for Slave %d\n",
1912 slave->dev_num);
1913
1914 complete(&slave->initialization_complete);
1915
1916 /*
1917 * If the manager became pm_runtime active, the peripherals will be
1918 * restarted and attach, but their pm_runtime status may remain
1919 * suspended. If the 'update_slave_status' callback initiates
1920 * any sort of deferred processing, this processing would not be
1921 * cancelled on pm_runtime suspend.
1922 * To avoid such zombie states, we queue a request to resume.
1923 * This would be a no-op in case the peripheral was being resumed
1924 * by e.g. the ALSA/ASoC framework.
1925 */
1926 pm_request_resume(&slave->dev);
1927 }
1928 }
1929
1930 return ret;
1931 }
1932 EXPORT_SYMBOL(sdw_handle_slave_status);
1933
sdw_clear_slave_status(struct sdw_bus * bus,u32 request)1934 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1935 {
1936 struct sdw_slave *slave;
1937 int i;
1938
1939 /* Check all non-zero devices */
1940 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1941 mutex_lock(&bus->bus_lock);
1942 if (test_bit(i, bus->assigned) == false) {
1943 mutex_unlock(&bus->bus_lock);
1944 continue;
1945 }
1946 mutex_unlock(&bus->bus_lock);
1947
1948 slave = sdw_get_slave(bus, i);
1949 if (!slave)
1950 continue;
1951
1952 if (slave->status != SDW_SLAVE_UNATTACHED) {
1953 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1954 slave->first_interrupt_done = false;
1955 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1956 }
1957
1958 /* keep track of request, used in pm_runtime resume */
1959 slave->unattach_request = request;
1960 }
1961 }
1962 EXPORT_SYMBOL(sdw_clear_slave_status);
1963