1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57
58 #include "amdgpu_ras.h"
59 #include "sdma_v4_4.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
74
75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
77
78 #define WREG32_SDMA(instance, offset, value) \
79 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
80 #define RREG32_SDMA(instance, offset) \
81 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
82
83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
88
89 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
100 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
101 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
102 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
112 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
113 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
114 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
115 };
116
117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
118 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
120 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
121 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
122 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
123 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
124 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
125 };
126
127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
128 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
129 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
130 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
131 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
133 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
134 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
135 };
136
137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
143 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
144 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
148 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
149 };
150
151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
153 };
154
155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
156 {
157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
183 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
184 };
185
186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
213 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
214 };
215
216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
217 {
218 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
219 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
220 };
221
222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
223 {
224 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
225 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
226 };
227
228 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
229 {
230 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
234 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
235 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
236 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
237 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
238 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
242 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
245 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
246 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
247 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
248 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
249 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
250 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
251 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
252 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
253 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
254 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
255 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
256 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
257 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
258 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
259 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
260 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
261 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
262 };
263
264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
265 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
266 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
267 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
268 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
269 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
270 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
271 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
272 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
273 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
274 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
275 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
276 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
277 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
278 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
279 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
280 };
281
282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
283 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
284 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
285 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
286 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
287 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
288 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
289 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
290 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
291 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
292 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
293 };
294
295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
296 { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
298 0, 0,
299 },
300 { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
302 0, 0,
303 },
304 { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
306 0, 0,
307 },
308 { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
310 0, 0,
311 },
312 { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
314 0, 0,
315 },
316 { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
318 0, 0,
319 },
320 { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
322 0, 0,
323 },
324 { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
326 0, 0,
327 },
328 { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
330 0, 0,
331 },
332 { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
334 0, 0,
335 },
336 { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
338 0, 0,
339 },
340 { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
342 0, 0,
343 },
344 { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
346 0, 0,
347 },
348 { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
350 0, 0,
351 },
352 { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
354 0, 0,
355 },
356 { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
358 0, 0,
359 },
360 { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
362 0, 0,
363 },
364 { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
366 0, 0,
367 },
368 { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
370 0, 0,
371 },
372 { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
373 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
374 0, 0,
375 },
376 { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
377 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
378 0, 0,
379 },
380 { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
381 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
382 0, 0,
383 },
384 { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
385 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
386 0, 0,
387 },
388 { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
389 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
390 0, 0,
391 },
392 };
393
sdma_v4_0_get_reg_offset(struct amdgpu_device * adev,u32 instance,u32 offset)394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
395 u32 instance, u32 offset)
396 {
397 switch (instance) {
398 case 0:
399 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
400 case 1:
401 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
402 case 2:
403 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
404 case 3:
405 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
406 case 4:
407 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
408 case 5:
409 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
410 case 6:
411 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
412 case 7:
413 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
414 default:
415 break;
416 }
417 return 0;
418 }
419
sdma_v4_0_seq_to_irq_id(int seq_num)420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
421 {
422 switch (seq_num) {
423 case 0:
424 return SOC15_IH_CLIENTID_SDMA0;
425 case 1:
426 return SOC15_IH_CLIENTID_SDMA1;
427 case 2:
428 return SOC15_IH_CLIENTID_SDMA2;
429 case 3:
430 return SOC15_IH_CLIENTID_SDMA3;
431 case 4:
432 return SOC15_IH_CLIENTID_SDMA4;
433 case 5:
434 return SOC15_IH_CLIENTID_SDMA5;
435 case 6:
436 return SOC15_IH_CLIENTID_SDMA6;
437 case 7:
438 return SOC15_IH_CLIENTID_SDMA7;
439 default:
440 break;
441 }
442 return -EINVAL;
443 }
444
sdma_v4_0_irq_id_to_seq(unsigned client_id)445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
446 {
447 switch (client_id) {
448 case SOC15_IH_CLIENTID_SDMA0:
449 return 0;
450 case SOC15_IH_CLIENTID_SDMA1:
451 return 1;
452 case SOC15_IH_CLIENTID_SDMA2:
453 return 2;
454 case SOC15_IH_CLIENTID_SDMA3:
455 return 3;
456 case SOC15_IH_CLIENTID_SDMA4:
457 return 4;
458 case SOC15_IH_CLIENTID_SDMA5:
459 return 5;
460 case SOC15_IH_CLIENTID_SDMA6:
461 return 6;
462 case SOC15_IH_CLIENTID_SDMA7:
463 return 7;
464 default:
465 break;
466 }
467 return -EINVAL;
468 }
469
sdma_v4_0_init_golden_registers(struct amdgpu_device * adev)470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
471 {
472 switch (adev->ip_versions[SDMA0_HWIP][0]) {
473 case IP_VERSION(4, 0, 0):
474 soc15_program_register_sequence(adev,
475 golden_settings_sdma_4,
476 ARRAY_SIZE(golden_settings_sdma_4));
477 soc15_program_register_sequence(adev,
478 golden_settings_sdma_vg10,
479 ARRAY_SIZE(golden_settings_sdma_vg10));
480 break;
481 case IP_VERSION(4, 0, 1):
482 soc15_program_register_sequence(adev,
483 golden_settings_sdma_4,
484 ARRAY_SIZE(golden_settings_sdma_4));
485 soc15_program_register_sequence(adev,
486 golden_settings_sdma_vg12,
487 ARRAY_SIZE(golden_settings_sdma_vg12));
488 break;
489 case IP_VERSION(4, 2, 0):
490 soc15_program_register_sequence(adev,
491 golden_settings_sdma0_4_2_init,
492 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
493 soc15_program_register_sequence(adev,
494 golden_settings_sdma0_4_2,
495 ARRAY_SIZE(golden_settings_sdma0_4_2));
496 soc15_program_register_sequence(adev,
497 golden_settings_sdma1_4_2,
498 ARRAY_SIZE(golden_settings_sdma1_4_2));
499 break;
500 case IP_VERSION(4, 2, 2):
501 soc15_program_register_sequence(adev,
502 golden_settings_sdma_arct,
503 ARRAY_SIZE(golden_settings_sdma_arct));
504 break;
505 case IP_VERSION(4, 4, 0):
506 soc15_program_register_sequence(adev,
507 golden_settings_sdma_aldebaran,
508 ARRAY_SIZE(golden_settings_sdma_aldebaran));
509 break;
510 case IP_VERSION(4, 1, 0):
511 case IP_VERSION(4, 1, 1):
512 soc15_program_register_sequence(adev,
513 golden_settings_sdma_4_1,
514 ARRAY_SIZE(golden_settings_sdma_4_1));
515 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
516 soc15_program_register_sequence(adev,
517 golden_settings_sdma_rv2,
518 ARRAY_SIZE(golden_settings_sdma_rv2));
519 else
520 soc15_program_register_sequence(adev,
521 golden_settings_sdma_rv1,
522 ARRAY_SIZE(golden_settings_sdma_rv1));
523 break;
524 case IP_VERSION(4, 1, 2):
525 soc15_program_register_sequence(adev,
526 golden_settings_sdma_4_3,
527 ARRAY_SIZE(golden_settings_sdma_4_3));
528 break;
529 default:
530 break;
531 }
532 }
533
sdma_v4_0_setup_ulv(struct amdgpu_device * adev)534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
535 {
536 int i;
537
538 /*
539 * The only chips with SDMAv4 and ULV are VG10 and VG20.
540 * Server SKUs take a different hysteresis setting from other SKUs.
541 */
542 switch (adev->ip_versions[SDMA0_HWIP][0]) {
543 case IP_VERSION(4, 0, 0):
544 if (adev->pdev->device == 0x6860)
545 break;
546 return;
547 case IP_VERSION(4, 2, 0):
548 if (adev->pdev->device == 0x66a1)
549 break;
550 return;
551 default:
552 return;
553 }
554
555 for (i = 0; i < adev->sdma.num_instances; i++) {
556 uint32_t temp;
557
558 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
559 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
560 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
561 }
562 }
563
564 /**
565 * sdma_v4_0_init_microcode - load ucode images from disk
566 *
567 * @adev: amdgpu_device pointer
568 *
569 * Use the firmware interface to load the ucode images into
570 * the driver (not loaded into hw).
571 * Returns 0 on success, error on failure.
572 */
573
574 // emulation only, won't work on real chip
575 // vega10 real chip need to use PSP to load firmware
sdma_v4_0_init_microcode(struct amdgpu_device * adev)576 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
577 {
578 int ret, i;
579
580 for (i = 0; i < adev->sdma.num_instances; i++) {
581 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
582 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) {
583 /* Acturus & Aldebaran will leverage the same FW memory
584 for every SDMA instance */
585 ret = amdgpu_sdma_init_microcode(adev, 0, true);
586 break;
587 } else {
588 ret = amdgpu_sdma_init_microcode(adev, i, false);
589 if (ret)
590 return ret;
591 }
592 }
593
594 return ret;
595 }
596
597 /**
598 * sdma_v4_0_ring_get_rptr - get the current read pointer
599 *
600 * @ring: amdgpu ring pointer
601 *
602 * Get the current rptr from the hardware (VEGA10+).
603 */
sdma_v4_0_ring_get_rptr(struct amdgpu_ring * ring)604 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
605 {
606 u64 *rptr;
607
608 /* XXX check if swapping is necessary on BE */
609 rptr = ((u64 *)ring->rptr_cpu_addr);
610
611 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
612 return ((*rptr) >> 2);
613 }
614
615 /**
616 * sdma_v4_0_ring_get_wptr - get the current write pointer
617 *
618 * @ring: amdgpu ring pointer
619 *
620 * Get the current wptr from the hardware (VEGA10+).
621 */
sdma_v4_0_ring_get_wptr(struct amdgpu_ring * ring)622 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
623 {
624 struct amdgpu_device *adev = ring->adev;
625 u64 wptr;
626
627 if (ring->use_doorbell) {
628 /* XXX check if swapping is necessary on BE */
629 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
630 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
631 } else {
632 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
633 wptr = wptr << 32;
634 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
635 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
636 ring->me, wptr);
637 }
638
639 return wptr >> 2;
640 }
641
642 /**
643 * sdma_v4_0_ring_set_wptr - commit the write pointer
644 *
645 * @ring: amdgpu ring pointer
646 *
647 * Write the wptr back to the hardware (VEGA10+).
648 */
sdma_v4_0_ring_set_wptr(struct amdgpu_ring * ring)649 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
650 {
651 struct amdgpu_device *adev = ring->adev;
652
653 DRM_DEBUG("Setting write pointer\n");
654 if (ring->use_doorbell) {
655 u64 *wb = (u64 *)ring->wptr_cpu_addr;
656
657 DRM_DEBUG("Using doorbell -- "
658 "wptr_offs == 0x%08x "
659 "lower_32_bits(ring->wptr << 2) == 0x%08x "
660 "upper_32_bits(ring->wptr << 2) == 0x%08x\n",
661 ring->wptr_offs,
662 lower_32_bits(ring->wptr << 2),
663 upper_32_bits(ring->wptr << 2));
664 /* XXX check if swapping is necessary on BE */
665 WRITE_ONCE(*wb, (ring->wptr << 2));
666 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
667 ring->doorbell_index, ring->wptr << 2);
668 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
669 } else {
670 DRM_DEBUG("Not using doorbell -- "
671 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
672 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
673 ring->me,
674 lower_32_bits(ring->wptr << 2),
675 ring->me,
676 upper_32_bits(ring->wptr << 2));
677 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
678 lower_32_bits(ring->wptr << 2));
679 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
680 upper_32_bits(ring->wptr << 2));
681 }
682 }
683
684 /**
685 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
686 *
687 * @ring: amdgpu ring pointer
688 *
689 * Get the current wptr from the hardware (VEGA10+).
690 */
sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring * ring)691 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
692 {
693 struct amdgpu_device *adev = ring->adev;
694 u64 wptr;
695
696 if (ring->use_doorbell) {
697 /* XXX check if swapping is necessary on BE */
698 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
699 } else {
700 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
701 wptr = wptr << 32;
702 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
703 }
704
705 return wptr >> 2;
706 }
707
708 /**
709 * sdma_v4_0_page_ring_set_wptr - commit the write pointer
710 *
711 * @ring: amdgpu ring pointer
712 *
713 * Write the wptr back to the hardware (VEGA10+).
714 */
sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring * ring)715 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
716 {
717 struct amdgpu_device *adev = ring->adev;
718
719 if (ring->use_doorbell) {
720 u64 *wb = (u64 *)ring->wptr_cpu_addr;
721
722 /* XXX check if swapping is necessary on BE */
723 WRITE_ONCE(*wb, (ring->wptr << 2));
724 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
725 } else {
726 uint64_t wptr = ring->wptr << 2;
727
728 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
729 lower_32_bits(wptr));
730 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
731 upper_32_bits(wptr));
732 }
733 }
734
sdma_v4_0_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)735 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
736 {
737 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
738 int i;
739
740 for (i = 0; i < count; i++)
741 if (sdma && sdma->burst_nop && (i == 0))
742 amdgpu_ring_write(ring, ring->funcs->nop |
743 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
744 else
745 amdgpu_ring_write(ring, ring->funcs->nop);
746 }
747
748 /**
749 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
750 *
751 * @ring: amdgpu ring pointer
752 * @job: job to retrieve vmid from
753 * @ib: IB object to schedule
754 * @flags: unused
755 *
756 * Schedule an IB in the DMA ring (VEGA10).
757 */
sdma_v4_0_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)758 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
759 struct amdgpu_job *job,
760 struct amdgpu_ib *ib,
761 uint32_t flags)
762 {
763 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
764
765 /* IB packet must end on a 8 DW boundary */
766 sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
767
768 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
769 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
770 /* base must be 32 byte aligned */
771 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
772 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
773 amdgpu_ring_write(ring, ib->length_dw);
774 amdgpu_ring_write(ring, 0);
775 amdgpu_ring_write(ring, 0);
776
777 }
778
sdma_v4_0_wait_reg_mem(struct amdgpu_ring * ring,int mem_space,int hdp,uint32_t addr0,uint32_t addr1,uint32_t ref,uint32_t mask,uint32_t inv)779 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
780 int mem_space, int hdp,
781 uint32_t addr0, uint32_t addr1,
782 uint32_t ref, uint32_t mask,
783 uint32_t inv)
784 {
785 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
786 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
787 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
788 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
789 if (mem_space) {
790 /* memory */
791 amdgpu_ring_write(ring, addr0);
792 amdgpu_ring_write(ring, addr1);
793 } else {
794 /* registers */
795 amdgpu_ring_write(ring, addr0 << 2);
796 amdgpu_ring_write(ring, addr1 << 2);
797 }
798 amdgpu_ring_write(ring, ref); /* reference */
799 amdgpu_ring_write(ring, mask); /* mask */
800 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
801 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
802 }
803
804 /**
805 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
806 *
807 * @ring: amdgpu ring pointer
808 *
809 * Emit an hdp flush packet on the requested DMA ring.
810 */
sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring * ring)811 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
812 {
813 struct amdgpu_device *adev = ring->adev;
814 u32 ref_and_mask = 0;
815 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
816
817 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
818
819 sdma_v4_0_wait_reg_mem(ring, 0, 1,
820 adev->nbio.funcs->get_hdp_flush_done_offset(adev),
821 adev->nbio.funcs->get_hdp_flush_req_offset(adev),
822 ref_and_mask, ref_and_mask, 10);
823 }
824
825 /**
826 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
827 *
828 * @ring: amdgpu ring pointer
829 * @addr: address
830 * @seq: sequence number
831 * @flags: fence related flags
832 *
833 * Add a DMA fence packet to the ring to write
834 * the fence seq number and DMA trap packet to generate
835 * an interrupt if needed (VEGA10).
836 */
sdma_v4_0_ring_emit_fence(struct amdgpu_ring * ring,u64 addr,u64 seq,unsigned flags)837 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
838 unsigned flags)
839 {
840 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
841 /* write the fence */
842 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
843 /* zero in first two bits */
844 BUG_ON(addr & 0x3);
845 amdgpu_ring_write(ring, lower_32_bits(addr));
846 amdgpu_ring_write(ring, upper_32_bits(addr));
847 amdgpu_ring_write(ring, lower_32_bits(seq));
848
849 /* optionally write high bits as well */
850 if (write64bit) {
851 addr += 4;
852 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
853 /* zero in first two bits */
854 BUG_ON(addr & 0x3);
855 amdgpu_ring_write(ring, lower_32_bits(addr));
856 amdgpu_ring_write(ring, upper_32_bits(addr));
857 amdgpu_ring_write(ring, upper_32_bits(seq));
858 }
859
860 /* generate an interrupt */
861 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
862 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
863 }
864
865
866 /**
867 * sdma_v4_0_gfx_enable - enable the gfx async dma engines
868 *
869 * @adev: amdgpu_device pointer
870 * @enable: enable SDMA RB/IB
871 * control the gfx async dma ring buffers (VEGA10).
872 */
sdma_v4_0_gfx_enable(struct amdgpu_device * adev,bool enable)873 static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable)
874 {
875 u32 rb_cntl, ib_cntl;
876 int i;
877
878 amdgpu_sdma_unset_buffer_funcs_helper(adev);
879
880 for (i = 0; i < adev->sdma.num_instances; i++) {
881 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
882 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0);
883 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
884 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
885 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0);
886 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
887 }
888 }
889
890 /**
891 * sdma_v4_0_rlc_stop - stop the compute async dma engines
892 *
893 * @adev: amdgpu_device pointer
894 *
895 * Stop the compute async dma queues (VEGA10).
896 */
sdma_v4_0_rlc_stop(struct amdgpu_device * adev)897 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
898 {
899 /* XXX todo */
900 }
901
902 /**
903 * sdma_v4_0_page_stop - stop the page async dma engines
904 *
905 * @adev: amdgpu_device pointer
906 *
907 * Stop the page async dma ring buffers (VEGA10).
908 */
sdma_v4_0_page_stop(struct amdgpu_device * adev)909 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
910 {
911 u32 rb_cntl, ib_cntl;
912 int i;
913
914 amdgpu_sdma_unset_buffer_funcs_helper(adev);
915
916 for (i = 0; i < adev->sdma.num_instances; i++) {
917 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
918 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
919 RB_ENABLE, 0);
920 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
921 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
922 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
923 IB_ENABLE, 0);
924 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
925 }
926 }
927
928 /**
929 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
930 *
931 * @adev: amdgpu_device pointer
932 * @enable: enable/disable the DMA MEs context switch.
933 *
934 * Halt or unhalt the async dma engines context switch (VEGA10).
935 */
sdma_v4_0_ctx_switch_enable(struct amdgpu_device * adev,bool enable)936 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
937 {
938 u32 f32_cntl, phase_quantum = 0;
939 int i;
940
941 if (amdgpu_sdma_phase_quantum) {
942 unsigned value = amdgpu_sdma_phase_quantum;
943 unsigned unit = 0;
944
945 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
946 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
947 value = (value + 1) >> 1;
948 unit++;
949 }
950 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
951 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
952 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
953 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
954 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
955 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
956 WARN_ONCE(1,
957 "clamping sdma_phase_quantum to %uK clock cycles\n",
958 value << unit);
959 }
960 phase_quantum =
961 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
962 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
963 }
964
965 for (i = 0; i < adev->sdma.num_instances; i++) {
966 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
967 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
968 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
969 if (enable && amdgpu_sdma_phase_quantum) {
970 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
971 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
972 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
973 }
974 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
975
976 /*
977 * Enable SDMA utilization. Its only supported on
978 * Arcturus for the moment and firmware version 14
979 * and above.
980 */
981 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) &&
982 adev->sdma.instance[i].fw_version >= 14)
983 WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
984 /* Extend page fault timeout to avoid interrupt storm */
985 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
986 }
987
988 }
989
990 /**
991 * sdma_v4_0_enable - stop the async dma engines
992 *
993 * @adev: amdgpu_device pointer
994 * @enable: enable/disable the DMA MEs.
995 *
996 * Halt or unhalt the async dma engines (VEGA10).
997 */
sdma_v4_0_enable(struct amdgpu_device * adev,bool enable)998 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
999 {
1000 u32 f32_cntl;
1001 int i;
1002
1003 if (!enable) {
1004 sdma_v4_0_gfx_enable(adev, enable);
1005 sdma_v4_0_rlc_stop(adev);
1006 if (adev->sdma.has_page_queue)
1007 sdma_v4_0_page_stop(adev);
1008 }
1009
1010 for (i = 0; i < adev->sdma.num_instances; i++) {
1011 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1012 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1013 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1014 }
1015 }
1016
1017 /*
1018 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1019 */
sdma_v4_0_rb_cntl(struct amdgpu_ring * ring,uint32_t rb_cntl)1020 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1021 {
1022 /* Set ring buffer size in dwords */
1023 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1024
1025 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1026 #ifdef __BIG_ENDIAN
1027 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1028 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1029 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1030 #endif
1031 return rb_cntl;
1032 }
1033
1034 /**
1035 * sdma_v4_0_gfx_resume - setup and start the async dma engines
1036 *
1037 * @adev: amdgpu_device pointer
1038 * @i: instance to resume
1039 *
1040 * Set up the gfx DMA ring buffers and enable them (VEGA10).
1041 * Returns 0 for success, error for failure.
1042 */
sdma_v4_0_gfx_resume(struct amdgpu_device * adev,unsigned int i)1043 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1044 {
1045 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1046 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1047 u32 doorbell;
1048 u32 doorbell_offset;
1049 u64 wptr_gpu_addr;
1050
1051 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1052 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1053 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1054
1055 /* Initialize the ring buffer's read and write pointers */
1056 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1057 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1058 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1059 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1060
1061 /* set the wb address whether it's enabled or not */
1062 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1063 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1064 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1065 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1066
1067 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1068 RPTR_WRITEBACK_ENABLE, 1);
1069
1070 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1071 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1072
1073 ring->wptr = 0;
1074
1075 /* before programing wptr to a less value, need set minor_ptr_update first */
1076 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1077
1078 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1079 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1080
1081 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1082 ring->use_doorbell);
1083 doorbell_offset = REG_SET_FIELD(doorbell_offset,
1084 SDMA0_GFX_DOORBELL_OFFSET,
1085 OFFSET, ring->doorbell_index);
1086 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1087 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1088
1089 sdma_v4_0_ring_set_wptr(ring);
1090
1091 /* set minor_ptr_update to 0 after wptr programed */
1092 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1093
1094 /* setup the wptr shadow polling */
1095 wptr_gpu_addr = ring->wptr_gpu_addr;
1096 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1097 lower_32_bits(wptr_gpu_addr));
1098 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1099 upper_32_bits(wptr_gpu_addr));
1100 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1101 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1102 SDMA0_GFX_RB_WPTR_POLL_CNTL,
1103 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1104 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1105
1106 /* enable DMA RB */
1107 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1108 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1109
1110 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1111 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1112 #ifdef __BIG_ENDIAN
1113 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1114 #endif
1115 /* enable DMA IBs */
1116 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1117 }
1118
1119 /**
1120 * sdma_v4_0_page_resume - setup and start the async dma engines
1121 *
1122 * @adev: amdgpu_device pointer
1123 * @i: instance to resume
1124 *
1125 * Set up the page DMA ring buffers and enable them (VEGA10).
1126 * Returns 0 for success, error for failure.
1127 */
sdma_v4_0_page_resume(struct amdgpu_device * adev,unsigned int i)1128 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1129 {
1130 struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1131 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1132 u32 doorbell;
1133 u32 doorbell_offset;
1134 u64 wptr_gpu_addr;
1135
1136 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1137 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1138 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1139
1140 /* Initialize the ring buffer's read and write pointers */
1141 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1142 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1143 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1144 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1145
1146 /* set the wb address whether it's enabled or not */
1147 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1148 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1149 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1150 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1151
1152 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1153 RPTR_WRITEBACK_ENABLE, 1);
1154
1155 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1156 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1157
1158 ring->wptr = 0;
1159
1160 /* before programing wptr to a less value, need set minor_ptr_update first */
1161 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1162
1163 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1164 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1165
1166 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1167 ring->use_doorbell);
1168 doorbell_offset = REG_SET_FIELD(doorbell_offset,
1169 SDMA0_PAGE_DOORBELL_OFFSET,
1170 OFFSET, ring->doorbell_index);
1171 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1172 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1173
1174 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1175 sdma_v4_0_page_ring_set_wptr(ring);
1176
1177 /* set minor_ptr_update to 0 after wptr programed */
1178 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1179
1180 /* setup the wptr shadow polling */
1181 wptr_gpu_addr = ring->wptr_gpu_addr;
1182 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1183 lower_32_bits(wptr_gpu_addr));
1184 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1185 upper_32_bits(wptr_gpu_addr));
1186 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1187 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1188 SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1189 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1190 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1191
1192 /* enable DMA RB */
1193 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1194 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1195
1196 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1197 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1198 #ifdef __BIG_ENDIAN
1199 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1200 #endif
1201 /* enable DMA IBs */
1202 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1203 }
1204
1205 static void
sdma_v4_1_update_power_gating(struct amdgpu_device * adev,bool enable)1206 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1207 {
1208 uint32_t def, data;
1209
1210 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1211 /* enable idle interrupt */
1212 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1213 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1214
1215 if (data != def)
1216 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1217 } else {
1218 /* disable idle interrupt */
1219 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1220 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1221 if (data != def)
1222 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1223 }
1224 }
1225
sdma_v4_1_init_power_gating(struct amdgpu_device * adev)1226 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1227 {
1228 uint32_t def, data;
1229
1230 /* Enable HW based PG. */
1231 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1232 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1233 if (data != def)
1234 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1235
1236 /* enable interrupt */
1237 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1238 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1239 if (data != def)
1240 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1241
1242 /* Configure hold time to filter in-valid power on/off request. Use default right now */
1243 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1244 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1245 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1246 /* Configure switch time for hysteresis purpose. Use default right now */
1247 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1248 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1249 if(data != def)
1250 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1251 }
1252
sdma_v4_0_init_pg(struct amdgpu_device * adev)1253 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1254 {
1255 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1256 return;
1257
1258 switch (adev->ip_versions[SDMA0_HWIP][0]) {
1259 case IP_VERSION(4, 1, 0):
1260 case IP_VERSION(4, 1, 1):
1261 case IP_VERSION(4, 1, 2):
1262 sdma_v4_1_init_power_gating(adev);
1263 sdma_v4_1_update_power_gating(adev, true);
1264 break;
1265 default:
1266 break;
1267 }
1268 }
1269
1270 /**
1271 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1272 *
1273 * @adev: amdgpu_device pointer
1274 *
1275 * Set up the compute DMA queues and enable them (VEGA10).
1276 * Returns 0 for success, error for failure.
1277 */
sdma_v4_0_rlc_resume(struct amdgpu_device * adev)1278 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1279 {
1280 sdma_v4_0_init_pg(adev);
1281
1282 return 0;
1283 }
1284
1285 /**
1286 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1287 *
1288 * @adev: amdgpu_device pointer
1289 *
1290 * Loads the sDMA0/1 ucode.
1291 * Returns 0 for success, -EINVAL if the ucode is not available.
1292 */
sdma_v4_0_load_microcode(struct amdgpu_device * adev)1293 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1294 {
1295 const struct sdma_firmware_header_v1_0 *hdr;
1296 const __le32 *fw_data;
1297 u32 fw_size;
1298 int i, j;
1299
1300 /* halt the MEs */
1301 sdma_v4_0_enable(adev, false);
1302
1303 for (i = 0; i < adev->sdma.num_instances; i++) {
1304 if (!adev->sdma.instance[i].fw)
1305 return -EINVAL;
1306
1307 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1308 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1309 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1310
1311 fw_data = (const __le32 *)
1312 (adev->sdma.instance[i].fw->data +
1313 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1314
1315 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1316
1317 for (j = 0; j < fw_size; j++)
1318 WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1319 le32_to_cpup(fw_data++));
1320
1321 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1322 adev->sdma.instance[i].fw_version);
1323 }
1324
1325 return 0;
1326 }
1327
1328 /**
1329 * sdma_v4_0_start - setup and start the async dma engines
1330 *
1331 * @adev: amdgpu_device pointer
1332 *
1333 * Set up the DMA engines and enable them (VEGA10).
1334 * Returns 0 for success, error for failure.
1335 */
sdma_v4_0_start(struct amdgpu_device * adev)1336 static int sdma_v4_0_start(struct amdgpu_device *adev)
1337 {
1338 struct amdgpu_ring *ring;
1339 int i, r = 0;
1340
1341 if (amdgpu_sriov_vf(adev)) {
1342 sdma_v4_0_ctx_switch_enable(adev, false);
1343 sdma_v4_0_enable(adev, false);
1344 } else {
1345
1346 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1347 r = sdma_v4_0_load_microcode(adev);
1348 if (r)
1349 return r;
1350 }
1351
1352 /* unhalt the MEs */
1353 sdma_v4_0_enable(adev, true);
1354 /* enable sdma ring preemption */
1355 sdma_v4_0_ctx_switch_enable(adev, true);
1356 }
1357
1358 /* start the gfx rings and rlc compute queues */
1359 for (i = 0; i < adev->sdma.num_instances; i++) {
1360 uint32_t temp;
1361
1362 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1363 sdma_v4_0_gfx_resume(adev, i);
1364 if (adev->sdma.has_page_queue)
1365 sdma_v4_0_page_resume(adev, i);
1366
1367 /* set utc l1 enable flag always to 1 */
1368 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1369 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1370 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1371
1372 if (!amdgpu_sriov_vf(adev)) {
1373 /* unhalt engine */
1374 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1375 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1376 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1377 }
1378 }
1379
1380 if (amdgpu_sriov_vf(adev)) {
1381 sdma_v4_0_ctx_switch_enable(adev, true);
1382 sdma_v4_0_enable(adev, true);
1383 } else {
1384 r = sdma_v4_0_rlc_resume(adev);
1385 if (r)
1386 return r;
1387 }
1388
1389 for (i = 0; i < adev->sdma.num_instances; i++) {
1390 ring = &adev->sdma.instance[i].ring;
1391
1392 r = amdgpu_ring_test_helper(ring);
1393 if (r)
1394 return r;
1395
1396 if (adev->sdma.has_page_queue) {
1397 struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1398
1399 r = amdgpu_ring_test_helper(page);
1400 if (r)
1401 return r;
1402
1403 if (adev->mman.buffer_funcs_ring == page)
1404 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1405 }
1406
1407 if (adev->mman.buffer_funcs_ring == ring)
1408 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1409 }
1410
1411 return r;
1412 }
1413
1414 /**
1415 * sdma_v4_0_ring_test_ring - simple async dma engine test
1416 *
1417 * @ring: amdgpu_ring structure holding ring information
1418 *
1419 * Test the DMA engine by writing using it to write an
1420 * value to memory. (VEGA10).
1421 * Returns 0 for success, error for failure.
1422 */
sdma_v4_0_ring_test_ring(struct amdgpu_ring * ring)1423 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1424 {
1425 struct amdgpu_device *adev = ring->adev;
1426 unsigned i;
1427 unsigned index;
1428 int r;
1429 u32 tmp;
1430 u64 gpu_addr;
1431
1432 r = amdgpu_device_wb_get(adev, &index);
1433 if (r)
1434 return r;
1435
1436 gpu_addr = adev->wb.gpu_addr + (index * 4);
1437 tmp = 0xCAFEDEAD;
1438 adev->wb.wb[index] = cpu_to_le32(tmp);
1439
1440 r = amdgpu_ring_alloc(ring, 5);
1441 if (r)
1442 goto error_free_wb;
1443
1444 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1445 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1446 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1447 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1448 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1449 amdgpu_ring_write(ring, 0xDEADBEEF);
1450 amdgpu_ring_commit(ring);
1451
1452 for (i = 0; i < adev->usec_timeout; i++) {
1453 tmp = le32_to_cpu(adev->wb.wb[index]);
1454 if (tmp == 0xDEADBEEF)
1455 break;
1456 udelay(1);
1457 }
1458
1459 if (i >= adev->usec_timeout)
1460 r = -ETIMEDOUT;
1461
1462 error_free_wb:
1463 amdgpu_device_wb_free(adev, index);
1464 return r;
1465 }
1466
1467 /**
1468 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1469 *
1470 * @ring: amdgpu_ring structure holding ring information
1471 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1472 *
1473 * Test a simple IB in the DMA ring (VEGA10).
1474 * Returns 0 on success, error on failure.
1475 */
sdma_v4_0_ring_test_ib(struct amdgpu_ring * ring,long timeout)1476 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1477 {
1478 struct amdgpu_device *adev = ring->adev;
1479 struct amdgpu_ib ib;
1480 struct dma_fence *f = NULL;
1481 unsigned index;
1482 long r;
1483 u32 tmp = 0;
1484 u64 gpu_addr;
1485
1486 r = amdgpu_device_wb_get(adev, &index);
1487 if (r)
1488 return r;
1489
1490 gpu_addr = adev->wb.gpu_addr + (index * 4);
1491 tmp = 0xCAFEDEAD;
1492 adev->wb.wb[index] = cpu_to_le32(tmp);
1493 memset(&ib, 0, sizeof(ib));
1494 r = amdgpu_ib_get(adev, NULL, 256,
1495 AMDGPU_IB_POOL_DIRECT, &ib);
1496 if (r)
1497 goto err0;
1498
1499 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1500 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1501 ib.ptr[1] = lower_32_bits(gpu_addr);
1502 ib.ptr[2] = upper_32_bits(gpu_addr);
1503 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1504 ib.ptr[4] = 0xDEADBEEF;
1505 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1506 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1507 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1508 ib.length_dw = 8;
1509
1510 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1511 if (r)
1512 goto err1;
1513
1514 r = dma_fence_wait_timeout(f, false, timeout);
1515 if (r == 0) {
1516 r = -ETIMEDOUT;
1517 goto err1;
1518 } else if (r < 0) {
1519 goto err1;
1520 }
1521 tmp = le32_to_cpu(adev->wb.wb[index]);
1522 if (tmp == 0xDEADBEEF)
1523 r = 0;
1524 else
1525 r = -EINVAL;
1526
1527 err1:
1528 amdgpu_ib_free(adev, &ib, NULL);
1529 dma_fence_put(f);
1530 err0:
1531 amdgpu_device_wb_free(adev, index);
1532 return r;
1533 }
1534
1535
1536 /**
1537 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1538 *
1539 * @ib: indirect buffer to fill with commands
1540 * @pe: addr of the page entry
1541 * @src: src addr to copy from
1542 * @count: number of page entries to update
1543 *
1544 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1545 */
sdma_v4_0_vm_copy_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t src,unsigned count)1546 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1547 uint64_t pe, uint64_t src,
1548 unsigned count)
1549 {
1550 unsigned bytes = count * 8;
1551
1552 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1553 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1554 ib->ptr[ib->length_dw++] = bytes - 1;
1555 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1556 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1557 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1558 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1559 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1560
1561 }
1562
1563 /**
1564 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1565 *
1566 * @ib: indirect buffer to fill with commands
1567 * @pe: addr of the page entry
1568 * @value: dst addr to write into pe
1569 * @count: number of page entries to update
1570 * @incr: increase next addr by incr bytes
1571 *
1572 * Update PTEs by writing them manually using sDMA (VEGA10).
1573 */
sdma_v4_0_vm_write_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t value,unsigned count,uint32_t incr)1574 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1575 uint64_t value, unsigned count,
1576 uint32_t incr)
1577 {
1578 unsigned ndw = count * 2;
1579
1580 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1581 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1582 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1583 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1584 ib->ptr[ib->length_dw++] = ndw - 1;
1585 for (; ndw > 0; ndw -= 2) {
1586 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1587 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1588 value += incr;
1589 }
1590 }
1591
1592 /**
1593 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1594 *
1595 * @ib: indirect buffer to fill with commands
1596 * @pe: addr of the page entry
1597 * @addr: dst addr to write into pe
1598 * @count: number of page entries to update
1599 * @incr: increase next addr by incr bytes
1600 * @flags: access flags
1601 *
1602 * Update the page tables using sDMA (VEGA10).
1603 */
sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1604 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1605 uint64_t pe,
1606 uint64_t addr, unsigned count,
1607 uint32_t incr, uint64_t flags)
1608 {
1609 /* for physically contiguous pages (vram) */
1610 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1611 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1612 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1613 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1614 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1615 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1616 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1617 ib->ptr[ib->length_dw++] = incr; /* increment size */
1618 ib->ptr[ib->length_dw++] = 0;
1619 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1620 }
1621
1622 /**
1623 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1624 *
1625 * @ring: amdgpu_ring structure holding ring information
1626 * @ib: indirect buffer to fill with padding
1627 */
sdma_v4_0_ring_pad_ib(struct amdgpu_ring * ring,struct amdgpu_ib * ib)1628 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1629 {
1630 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1631 u32 pad_count;
1632 int i;
1633
1634 pad_count = (-ib->length_dw) & 7;
1635 for (i = 0; i < pad_count; i++)
1636 if (sdma && sdma->burst_nop && (i == 0))
1637 ib->ptr[ib->length_dw++] =
1638 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1639 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1640 else
1641 ib->ptr[ib->length_dw++] =
1642 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1643 }
1644
1645
1646 /**
1647 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1648 *
1649 * @ring: amdgpu_ring pointer
1650 *
1651 * Make sure all previous operations are completed (CIK).
1652 */
sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring * ring)1653 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1654 {
1655 uint32_t seq = ring->fence_drv.sync_seq;
1656 uint64_t addr = ring->fence_drv.gpu_addr;
1657
1658 /* wait for idle */
1659 sdma_v4_0_wait_reg_mem(ring, 1, 0,
1660 addr & 0xfffffffc,
1661 upper_32_bits(addr) & 0xffffffff,
1662 seq, 0xffffffff, 4);
1663 }
1664
1665
1666 /**
1667 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1668 *
1669 * @ring: amdgpu_ring pointer
1670 * @vmid: vmid number to use
1671 * @pd_addr: address
1672 *
1673 * Update the page table base and flush the VM TLB
1674 * using sDMA (VEGA10).
1675 */
sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned vmid,uint64_t pd_addr)1676 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1677 unsigned vmid, uint64_t pd_addr)
1678 {
1679 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1680 }
1681
sdma_v4_0_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)1682 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1683 uint32_t reg, uint32_t val)
1684 {
1685 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1686 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1687 amdgpu_ring_write(ring, reg);
1688 amdgpu_ring_write(ring, val);
1689 }
1690
sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring * ring,uint32_t reg,uint32_t val,uint32_t mask)1691 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1692 uint32_t val, uint32_t mask)
1693 {
1694 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1695 }
1696
sdma_v4_0_fw_support_paging_queue(struct amdgpu_device * adev)1697 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1698 {
1699 uint fw_version = adev->sdma.instance[0].fw_version;
1700
1701 switch (adev->ip_versions[SDMA0_HWIP][0]) {
1702 case IP_VERSION(4, 0, 0):
1703 return fw_version >= 430;
1704 case IP_VERSION(4, 0, 1):
1705 /*return fw_version >= 31;*/
1706 return false;
1707 case IP_VERSION(4, 2, 0):
1708 return fw_version >= 123;
1709 default:
1710 return false;
1711 }
1712 }
1713
sdma_v4_0_early_init(void * handle)1714 static int sdma_v4_0_early_init(void *handle)
1715 {
1716 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1717 int r;
1718
1719 r = sdma_v4_0_init_microcode(adev);
1720 if (r) {
1721 DRM_ERROR("Failed to load sdma firmware!\n");
1722 return r;
1723 }
1724
1725 /* TODO: Page queue breaks driver reload under SRIOV */
1726 if ((adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 0, 0)) &&
1727 amdgpu_sriov_vf((adev)))
1728 adev->sdma.has_page_queue = false;
1729 else if (sdma_v4_0_fw_support_paging_queue(adev))
1730 adev->sdma.has_page_queue = true;
1731
1732 sdma_v4_0_set_ring_funcs(adev);
1733 sdma_v4_0_set_buffer_funcs(adev);
1734 sdma_v4_0_set_vm_pte_funcs(adev);
1735 sdma_v4_0_set_irq_funcs(adev);
1736 sdma_v4_0_set_ras_funcs(adev);
1737
1738 return 0;
1739 }
1740
1741 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1742 void *err_data,
1743 struct amdgpu_iv_entry *entry);
1744
sdma_v4_0_late_init(void * handle)1745 static int sdma_v4_0_late_init(void *handle)
1746 {
1747 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1748
1749 sdma_v4_0_setup_ulv(adev);
1750
1751 if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1752 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops &&
1753 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count)
1754 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev);
1755 }
1756
1757 return 0;
1758 }
1759
sdma_v4_0_sw_init(void * handle)1760 static int sdma_v4_0_sw_init(void *handle)
1761 {
1762 struct amdgpu_ring *ring;
1763 int r, i;
1764 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1765
1766 /* SDMA trap event */
1767 for (i = 0; i < adev->sdma.num_instances; i++) {
1768 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1769 SDMA0_4_0__SRCID__SDMA_TRAP,
1770 &adev->sdma.trap_irq);
1771 if (r)
1772 return r;
1773 }
1774
1775 /* SDMA SRAM ECC event */
1776 for (i = 0; i < adev->sdma.num_instances; i++) {
1777 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1778 SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1779 &adev->sdma.ecc_irq);
1780 if (r)
1781 return r;
1782 }
1783
1784 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1785 for (i = 0; i < adev->sdma.num_instances; i++) {
1786 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1787 SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1788 &adev->sdma.vm_hole_irq);
1789 if (r)
1790 return r;
1791
1792 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1793 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1794 &adev->sdma.doorbell_invalid_irq);
1795 if (r)
1796 return r;
1797
1798 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1799 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1800 &adev->sdma.pool_timeout_irq);
1801 if (r)
1802 return r;
1803
1804 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1805 SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1806 &adev->sdma.srbm_write_irq);
1807 if (r)
1808 return r;
1809 }
1810
1811 for (i = 0; i < adev->sdma.num_instances; i++) {
1812 ring = &adev->sdma.instance[i].ring;
1813 ring->ring_obj = NULL;
1814 ring->use_doorbell = true;
1815
1816 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1817 ring->use_doorbell?"true":"false");
1818
1819 /* doorbell size is 2 dwords, get DWORD offset */
1820 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1821
1822 /*
1823 * On Arcturus, SDMA instance 5~7 has a different vmhub
1824 * type(AMDGPU_MMHUB1).
1825 */
1826 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
1827 ring->vm_hub = AMDGPU_MMHUB1(0);
1828 else
1829 ring->vm_hub = AMDGPU_MMHUB0(0);
1830
1831 sprintf(ring->name, "sdma%d", i);
1832 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1833 AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1834 AMDGPU_RING_PRIO_DEFAULT, NULL);
1835 if (r)
1836 return r;
1837
1838 if (adev->sdma.has_page_queue) {
1839 ring = &adev->sdma.instance[i].page;
1840 ring->ring_obj = NULL;
1841 ring->use_doorbell = true;
1842
1843 /* paging queue use same doorbell index/routing as gfx queue
1844 * with 0x400 (4096 dwords) offset on second doorbell page
1845 */
1846 if (adev->ip_versions[SDMA0_HWIP][0] >= IP_VERSION(4, 0, 0) &&
1847 adev->ip_versions[SDMA0_HWIP][0] < IP_VERSION(4, 2, 0)) {
1848 ring->doorbell_index =
1849 adev->doorbell_index.sdma_engine[i] << 1;
1850 ring->doorbell_index += 0x400;
1851 } else {
1852 /* From vega20, the sdma_doorbell_range in 1st
1853 * doorbell page is reserved for page queue.
1854 */
1855 ring->doorbell_index =
1856 (adev->doorbell_index.sdma_engine[i] + 1) << 1;
1857 }
1858
1859 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
1860 ring->vm_hub = AMDGPU_MMHUB1(0);
1861 else
1862 ring->vm_hub = AMDGPU_MMHUB0(0);
1863
1864 sprintf(ring->name, "page%d", i);
1865 r = amdgpu_ring_init(adev, ring, 1024,
1866 &adev->sdma.trap_irq,
1867 AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1868 AMDGPU_RING_PRIO_DEFAULT, NULL);
1869 if (r)
1870 return r;
1871 }
1872 }
1873
1874 if (amdgpu_sdma_ras_sw_init(adev)) {
1875 dev_err(adev->dev, "Failed to initialize sdma ras block!\n");
1876 return -EINVAL;
1877 }
1878
1879 return r;
1880 }
1881
sdma_v4_0_sw_fini(void * handle)1882 static int sdma_v4_0_sw_fini(void *handle)
1883 {
1884 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1885 int i;
1886
1887 for (i = 0; i < adev->sdma.num_instances; i++) {
1888 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1889 if (adev->sdma.has_page_queue)
1890 amdgpu_ring_fini(&adev->sdma.instance[i].page);
1891 }
1892
1893 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
1894 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0))
1895 amdgpu_sdma_destroy_inst_ctx(adev, true);
1896 else
1897 amdgpu_sdma_destroy_inst_ctx(adev, false);
1898
1899 return 0;
1900 }
1901
sdma_v4_0_hw_init(void * handle)1902 static int sdma_v4_0_hw_init(void *handle)
1903 {
1904 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1905
1906 if (adev->flags & AMD_IS_APU)
1907 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1908
1909 if (!amdgpu_sriov_vf(adev))
1910 sdma_v4_0_init_golden_registers(adev);
1911
1912 return sdma_v4_0_start(adev);
1913 }
1914
sdma_v4_0_hw_fini(void * handle)1915 static int sdma_v4_0_hw_fini(void *handle)
1916 {
1917 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1918 int i;
1919
1920 if (amdgpu_sriov_vf(adev)) {
1921 /* disable the scheduler for SDMA */
1922 amdgpu_sdma_unset_buffer_funcs_helper(adev);
1923 return 0;
1924 }
1925
1926 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1927 for (i = 0; i < adev->sdma.num_instances; i++) {
1928 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1929 AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1930 }
1931 }
1932
1933 sdma_v4_0_ctx_switch_enable(adev, false);
1934 sdma_v4_0_enable(adev, false);
1935
1936 if (adev->flags & AMD_IS_APU)
1937 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1938
1939 return 0;
1940 }
1941
sdma_v4_0_suspend(void * handle)1942 static int sdma_v4_0_suspend(void *handle)
1943 {
1944 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1945
1946 /* SMU saves SDMA state for us */
1947 if (adev->in_s0ix) {
1948 sdma_v4_0_gfx_enable(adev, false);
1949 return 0;
1950 }
1951
1952 return sdma_v4_0_hw_fini(adev);
1953 }
1954
sdma_v4_0_resume(void * handle)1955 static int sdma_v4_0_resume(void *handle)
1956 {
1957 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1958
1959 /* SMU restores SDMA state for us */
1960 if (adev->in_s0ix) {
1961 sdma_v4_0_enable(adev, true);
1962 sdma_v4_0_gfx_enable(adev, true);
1963 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1964 return 0;
1965 }
1966
1967 return sdma_v4_0_hw_init(adev);
1968 }
1969
sdma_v4_0_is_idle(void * handle)1970 static bool sdma_v4_0_is_idle(void *handle)
1971 {
1972 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1973 u32 i;
1974
1975 for (i = 0; i < adev->sdma.num_instances; i++) {
1976 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1977
1978 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1979 return false;
1980 }
1981
1982 return true;
1983 }
1984
sdma_v4_0_wait_for_idle(void * handle)1985 static int sdma_v4_0_wait_for_idle(void *handle)
1986 {
1987 unsigned i, j;
1988 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1989 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1990
1991 for (i = 0; i < adev->usec_timeout; i++) {
1992 for (j = 0; j < adev->sdma.num_instances; j++) {
1993 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1994 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1995 break;
1996 }
1997 if (j == adev->sdma.num_instances)
1998 return 0;
1999 udelay(1);
2000 }
2001 return -ETIMEDOUT;
2002 }
2003
sdma_v4_0_soft_reset(void * handle)2004 static int sdma_v4_0_soft_reset(void *handle)
2005 {
2006 /* todo */
2007
2008 return 0;
2009 }
2010
sdma_v4_0_set_trap_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)2011 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2012 struct amdgpu_irq_src *source,
2013 unsigned type,
2014 enum amdgpu_interrupt_state state)
2015 {
2016 u32 sdma_cntl;
2017
2018 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2019 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2020 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2021 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2022
2023 return 0;
2024 }
2025
sdma_v4_0_process_trap_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2026 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2027 struct amdgpu_irq_src *source,
2028 struct amdgpu_iv_entry *entry)
2029 {
2030 uint32_t instance;
2031
2032 DRM_DEBUG("IH: SDMA trap\n");
2033 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2034 switch (entry->ring_id) {
2035 case 0:
2036 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2037 break;
2038 case 1:
2039 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0))
2040 amdgpu_fence_process(&adev->sdma.instance[instance].page);
2041 break;
2042 case 2:
2043 /* XXX compute */
2044 break;
2045 case 3:
2046 if (adev->ip_versions[SDMA0_HWIP][0] != IP_VERSION(4, 2, 0))
2047 amdgpu_fence_process(&adev->sdma.instance[instance].page);
2048 break;
2049 }
2050 return 0;
2051 }
2052
sdma_v4_0_process_ras_data_cb(struct amdgpu_device * adev,void * err_data,struct amdgpu_iv_entry * entry)2053 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2054 void *err_data,
2055 struct amdgpu_iv_entry *entry)
2056 {
2057 int instance;
2058
2059 /* When “Full RAS” is enabled, the per-IP interrupt sources should
2060 * be disabled and the driver should only look for the aggregated
2061 * interrupt via sync flood
2062 */
2063 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2064 goto out;
2065
2066 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2067 if (instance < 0)
2068 goto out;
2069
2070 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2071
2072 out:
2073 return AMDGPU_RAS_SUCCESS;
2074 }
2075
sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2076 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2077 struct amdgpu_irq_src *source,
2078 struct amdgpu_iv_entry *entry)
2079 {
2080 int instance;
2081
2082 DRM_ERROR("Illegal instruction in SDMA command stream\n");
2083
2084 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2085 if (instance < 0)
2086 return 0;
2087
2088 switch (entry->ring_id) {
2089 case 0:
2090 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2091 break;
2092 }
2093 return 0;
2094 }
2095
sdma_v4_0_set_ecc_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)2096 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2097 struct amdgpu_irq_src *source,
2098 unsigned type,
2099 enum amdgpu_interrupt_state state)
2100 {
2101 u32 sdma_edc_config;
2102
2103 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2104 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2105 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2106 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2107
2108 return 0;
2109 }
2110
sdma_v4_0_print_iv_entry(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry)2111 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2112 struct amdgpu_iv_entry *entry)
2113 {
2114 int instance;
2115 struct amdgpu_task_info task_info;
2116 u64 addr;
2117
2118 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2119 if (instance < 0 || instance >= adev->sdma.num_instances) {
2120 dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2121 return -EINVAL;
2122 }
2123
2124 addr = (u64)entry->src_data[0] << 12;
2125 addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2126
2127 memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2128 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2129
2130 dev_dbg_ratelimited(adev->dev,
2131 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2132 "pasid:%u, for process %s pid %d thread %s pid %d\n",
2133 instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2134 entry->pasid, task_info.process_name, task_info.tgid,
2135 task_info.task_name, task_info.pid);
2136 return 0;
2137 }
2138
sdma_v4_0_process_vm_hole_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2139 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2140 struct amdgpu_irq_src *source,
2141 struct amdgpu_iv_entry *entry)
2142 {
2143 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2144 sdma_v4_0_print_iv_entry(adev, entry);
2145 return 0;
2146 }
2147
sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2148 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2149 struct amdgpu_irq_src *source,
2150 struct amdgpu_iv_entry *entry)
2151 {
2152 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2153 sdma_v4_0_print_iv_entry(adev, entry);
2154 return 0;
2155 }
2156
sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2157 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2158 struct amdgpu_irq_src *source,
2159 struct amdgpu_iv_entry *entry)
2160 {
2161 dev_dbg_ratelimited(adev->dev,
2162 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2163 sdma_v4_0_print_iv_entry(adev, entry);
2164 return 0;
2165 }
2166
sdma_v4_0_process_srbm_write_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2167 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2168 struct amdgpu_irq_src *source,
2169 struct amdgpu_iv_entry *entry)
2170 {
2171 dev_dbg_ratelimited(adev->dev,
2172 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2173 sdma_v4_0_print_iv_entry(adev, entry);
2174 return 0;
2175 }
2176
sdma_v4_0_update_medium_grain_clock_gating(struct amdgpu_device * adev,bool enable)2177 static void sdma_v4_0_update_medium_grain_clock_gating(
2178 struct amdgpu_device *adev,
2179 bool enable)
2180 {
2181 uint32_t data, def;
2182 int i;
2183
2184 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2185 for (i = 0; i < adev->sdma.num_instances; i++) {
2186 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2187 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2188 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2189 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2190 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2191 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2192 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2193 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2194 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2195 if (def != data)
2196 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2197 }
2198 } else {
2199 for (i = 0; i < adev->sdma.num_instances; i++) {
2200 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2201 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2202 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2203 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2204 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2205 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2206 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2207 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2208 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2209 if (def != data)
2210 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2211 }
2212 }
2213 }
2214
2215
sdma_v4_0_update_medium_grain_light_sleep(struct amdgpu_device * adev,bool enable)2216 static void sdma_v4_0_update_medium_grain_light_sleep(
2217 struct amdgpu_device *adev,
2218 bool enable)
2219 {
2220 uint32_t data, def;
2221 int i;
2222
2223 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2224 for (i = 0; i < adev->sdma.num_instances; i++) {
2225 /* 1-not override: enable sdma mem light sleep */
2226 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2227 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2228 if (def != data)
2229 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2230 }
2231 } else {
2232 for (i = 0; i < adev->sdma.num_instances; i++) {
2233 /* 0-override:disable sdma mem light sleep */
2234 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2235 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2236 if (def != data)
2237 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2238 }
2239 }
2240 }
2241
sdma_v4_0_set_clockgating_state(void * handle,enum amd_clockgating_state state)2242 static int sdma_v4_0_set_clockgating_state(void *handle,
2243 enum amd_clockgating_state state)
2244 {
2245 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2246
2247 if (amdgpu_sriov_vf(adev))
2248 return 0;
2249
2250 sdma_v4_0_update_medium_grain_clock_gating(adev,
2251 state == AMD_CG_STATE_GATE);
2252 sdma_v4_0_update_medium_grain_light_sleep(adev,
2253 state == AMD_CG_STATE_GATE);
2254 return 0;
2255 }
2256
sdma_v4_0_set_powergating_state(void * handle,enum amd_powergating_state state)2257 static int sdma_v4_0_set_powergating_state(void *handle,
2258 enum amd_powergating_state state)
2259 {
2260 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2261
2262 switch (adev->ip_versions[SDMA0_HWIP][0]) {
2263 case IP_VERSION(4, 1, 0):
2264 case IP_VERSION(4, 1, 1):
2265 case IP_VERSION(4, 1, 2):
2266 sdma_v4_1_update_power_gating(adev,
2267 state == AMD_PG_STATE_GATE);
2268 break;
2269 default:
2270 break;
2271 }
2272
2273 return 0;
2274 }
2275
sdma_v4_0_get_clockgating_state(void * handle,u64 * flags)2276 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2277 {
2278 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2279 int data;
2280
2281 if (amdgpu_sriov_vf(adev))
2282 *flags = 0;
2283
2284 /* AMD_CG_SUPPORT_SDMA_MGCG */
2285 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2286 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2287 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2288
2289 /* AMD_CG_SUPPORT_SDMA_LS */
2290 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2291 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2292 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2293 }
2294
2295 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2296 .name = "sdma_v4_0",
2297 .early_init = sdma_v4_0_early_init,
2298 .late_init = sdma_v4_0_late_init,
2299 .sw_init = sdma_v4_0_sw_init,
2300 .sw_fini = sdma_v4_0_sw_fini,
2301 .hw_init = sdma_v4_0_hw_init,
2302 .hw_fini = sdma_v4_0_hw_fini,
2303 .suspend = sdma_v4_0_suspend,
2304 .resume = sdma_v4_0_resume,
2305 .is_idle = sdma_v4_0_is_idle,
2306 .wait_for_idle = sdma_v4_0_wait_for_idle,
2307 .soft_reset = sdma_v4_0_soft_reset,
2308 .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2309 .set_powergating_state = sdma_v4_0_set_powergating_state,
2310 .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2311 };
2312
2313 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2314 .type = AMDGPU_RING_TYPE_SDMA,
2315 .align_mask = 0xff,
2316 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2317 .support_64bit_ptrs = true,
2318 .secure_submission_supported = true,
2319 .get_rptr = sdma_v4_0_ring_get_rptr,
2320 .get_wptr = sdma_v4_0_ring_get_wptr,
2321 .set_wptr = sdma_v4_0_ring_set_wptr,
2322 .emit_frame_size =
2323 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2324 3 + /* hdp invalidate */
2325 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2326 /* sdma_v4_0_ring_emit_vm_flush */
2327 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2328 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2329 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2330 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2331 .emit_ib = sdma_v4_0_ring_emit_ib,
2332 .emit_fence = sdma_v4_0_ring_emit_fence,
2333 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2334 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2335 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2336 .test_ring = sdma_v4_0_ring_test_ring,
2337 .test_ib = sdma_v4_0_ring_test_ib,
2338 .insert_nop = sdma_v4_0_ring_insert_nop,
2339 .pad_ib = sdma_v4_0_ring_pad_ib,
2340 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2341 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2342 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2343 };
2344
2345 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2346 .type = AMDGPU_RING_TYPE_SDMA,
2347 .align_mask = 0xff,
2348 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2349 .support_64bit_ptrs = true,
2350 .secure_submission_supported = true,
2351 .get_rptr = sdma_v4_0_ring_get_rptr,
2352 .get_wptr = sdma_v4_0_page_ring_get_wptr,
2353 .set_wptr = sdma_v4_0_page_ring_set_wptr,
2354 .emit_frame_size =
2355 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2356 3 + /* hdp invalidate */
2357 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2358 /* sdma_v4_0_ring_emit_vm_flush */
2359 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2360 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2361 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2362 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2363 .emit_ib = sdma_v4_0_ring_emit_ib,
2364 .emit_fence = sdma_v4_0_ring_emit_fence,
2365 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2366 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2367 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2368 .test_ring = sdma_v4_0_ring_test_ring,
2369 .test_ib = sdma_v4_0_ring_test_ib,
2370 .insert_nop = sdma_v4_0_ring_insert_nop,
2371 .pad_ib = sdma_v4_0_ring_pad_ib,
2372 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2373 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2374 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2375 };
2376
sdma_v4_0_set_ring_funcs(struct amdgpu_device * adev)2377 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2378 {
2379 int i;
2380
2381 for (i = 0; i < adev->sdma.num_instances; i++) {
2382 adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2383 adev->sdma.instance[i].ring.me = i;
2384 if (adev->sdma.has_page_queue) {
2385 adev->sdma.instance[i].page.funcs =
2386 &sdma_v4_0_page_ring_funcs;
2387 adev->sdma.instance[i].page.me = i;
2388 }
2389 }
2390 }
2391
2392 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2393 .set = sdma_v4_0_set_trap_irq_state,
2394 .process = sdma_v4_0_process_trap_irq,
2395 };
2396
2397 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2398 .process = sdma_v4_0_process_illegal_inst_irq,
2399 };
2400
2401 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2402 .set = sdma_v4_0_set_ecc_irq_state,
2403 .process = amdgpu_sdma_process_ecc_irq,
2404 };
2405
2406 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2407 .process = sdma_v4_0_process_vm_hole_irq,
2408 };
2409
2410 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2411 .process = sdma_v4_0_process_doorbell_invalid_irq,
2412 };
2413
2414 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2415 .process = sdma_v4_0_process_pool_timeout_irq,
2416 };
2417
2418 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2419 .process = sdma_v4_0_process_srbm_write_irq,
2420 };
2421
sdma_v4_0_set_irq_funcs(struct amdgpu_device * adev)2422 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2423 {
2424 adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2425 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2426 /*For Arcturus and Aldebaran, add another 4 irq handler*/
2427 switch (adev->sdma.num_instances) {
2428 case 5:
2429 case 8:
2430 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2431 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2432 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2433 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2434 break;
2435 default:
2436 break;
2437 }
2438 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2439 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2440 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2441 adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2442 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2443 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2444 adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2445 }
2446
2447 /**
2448 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2449 *
2450 * @ib: indirect buffer to copy to
2451 * @src_offset: src GPU address
2452 * @dst_offset: dst GPU address
2453 * @byte_count: number of bytes to xfer
2454 * @tmz: if a secure copy should be used
2455 *
2456 * Copy GPU buffers using the DMA engine (VEGA10/12).
2457 * Used by the amdgpu ttm implementation to move pages if
2458 * registered as the asic copy callback.
2459 */
sdma_v4_0_emit_copy_buffer(struct amdgpu_ib * ib,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,bool tmz)2460 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2461 uint64_t src_offset,
2462 uint64_t dst_offset,
2463 uint32_t byte_count,
2464 bool tmz)
2465 {
2466 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2467 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2468 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2469 ib->ptr[ib->length_dw++] = byte_count - 1;
2470 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2471 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2472 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2473 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2474 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2475 }
2476
2477 /**
2478 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2479 *
2480 * @ib: indirect buffer to copy to
2481 * @src_data: value to write to buffer
2482 * @dst_offset: dst GPU address
2483 * @byte_count: number of bytes to xfer
2484 *
2485 * Fill GPU buffers using the DMA engine (VEGA10/12).
2486 */
sdma_v4_0_emit_fill_buffer(struct amdgpu_ib * ib,uint32_t src_data,uint64_t dst_offset,uint32_t byte_count)2487 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2488 uint32_t src_data,
2489 uint64_t dst_offset,
2490 uint32_t byte_count)
2491 {
2492 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2493 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2494 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2495 ib->ptr[ib->length_dw++] = src_data;
2496 ib->ptr[ib->length_dw++] = byte_count - 1;
2497 }
2498
2499 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2500 .copy_max_bytes = 0x400000,
2501 .copy_num_dw = 7,
2502 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2503
2504 .fill_max_bytes = 0x400000,
2505 .fill_num_dw = 5,
2506 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2507 };
2508
sdma_v4_0_set_buffer_funcs(struct amdgpu_device * adev)2509 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2510 {
2511 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2512 if (adev->sdma.has_page_queue)
2513 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2514 else
2515 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2516 }
2517
2518 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2519 .copy_pte_num_dw = 7,
2520 .copy_pte = sdma_v4_0_vm_copy_pte,
2521
2522 .write_pte = sdma_v4_0_vm_write_pte,
2523 .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2524 };
2525
sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device * adev)2526 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2527 {
2528 struct drm_gpu_scheduler *sched;
2529 unsigned i;
2530
2531 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2532 for (i = 0; i < adev->sdma.num_instances; i++) {
2533 if (adev->sdma.has_page_queue)
2534 sched = &adev->sdma.instance[i].page.sched;
2535 else
2536 sched = &adev->sdma.instance[i].ring.sched;
2537 adev->vm_manager.vm_pte_scheds[i] = sched;
2538 }
2539 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2540 }
2541
sdma_v4_0_get_ras_error_count(uint32_t value,uint32_t instance,uint32_t * sec_count)2542 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2543 uint32_t instance,
2544 uint32_t *sec_count)
2545 {
2546 uint32_t i;
2547 uint32_t sec_cnt;
2548
2549 /* double bits error (multiple bits) error detection is not supported */
2550 for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2551 /* the SDMA_EDC_COUNTER register in each sdma instance
2552 * shares the same sed shift_mask
2553 * */
2554 sec_cnt = (value &
2555 sdma_v4_0_ras_fields[i].sec_count_mask) >>
2556 sdma_v4_0_ras_fields[i].sec_count_shift;
2557 if (sec_cnt) {
2558 DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2559 sdma_v4_0_ras_fields[i].name,
2560 instance, sec_cnt);
2561 *sec_count += sec_cnt;
2562 }
2563 }
2564 }
2565
sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device * adev,uint32_t instance,void * ras_error_status)2566 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2567 uint32_t instance, void *ras_error_status)
2568 {
2569 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2570 uint32_t sec_count = 0;
2571 uint32_t reg_value = 0;
2572
2573 reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2574 /* double bit error is not supported */
2575 if (reg_value)
2576 sdma_v4_0_get_ras_error_count(reg_value,
2577 instance, &sec_count);
2578 /* err_data->ce_count should be initialized to 0
2579 * before calling into this function */
2580 err_data->ce_count += sec_count;
2581 /* double bit error is not supported
2582 * set ue count to 0 */
2583 err_data->ue_count = 0;
2584
2585 return 0;
2586 };
2587
sdma_v4_0_query_ras_error_count(struct amdgpu_device * adev,void * ras_error_status)2588 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev, void *ras_error_status)
2589 {
2590 int i = 0;
2591
2592 for (i = 0; i < adev->sdma.num_instances; i++) {
2593 if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2594 dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2595 return;
2596 }
2597 }
2598 }
2599
sdma_v4_0_reset_ras_error_count(struct amdgpu_device * adev)2600 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2601 {
2602 int i;
2603
2604 /* read back edc counter registers to clear the counters */
2605 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2606 for (i = 0; i < adev->sdma.num_instances; i++)
2607 RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2608 }
2609 }
2610
2611 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2612 .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2613 .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2614 };
2615
2616 static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2617 .ras_block = {
2618 .hw_ops = &sdma_v4_0_ras_hw_ops,
2619 .ras_cb = sdma_v4_0_process_ras_data_cb,
2620 },
2621 };
2622
sdma_v4_0_set_ras_funcs(struct amdgpu_device * adev)2623 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2624 {
2625 switch (adev->ip_versions[SDMA0_HWIP][0]) {
2626 case IP_VERSION(4, 2, 0):
2627 case IP_VERSION(4, 2, 2):
2628 adev->sdma.ras = &sdma_v4_0_ras;
2629 break;
2630 case IP_VERSION(4, 4, 0):
2631 adev->sdma.ras = &sdma_v4_4_ras;
2632 break;
2633 default:
2634 break;
2635 }
2636
2637 }
2638
2639 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2640 .type = AMD_IP_BLOCK_TYPE_SDMA,
2641 .major = 4,
2642 .minor = 0,
2643 .rev = 0,
2644 .funcs = &sdma_v4_0_ip_funcs,
2645 };
2646