1 /*
2  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3  */
4 
5 				/* this file has an amazingly stupid
6 				   name, yura please fix it to be
7 				   reiserfs.h, and merge all the rest
8 				   of our .h files that are in this
9 				   directory into it.  */
10 
11 #ifndef _LINUX_REISER_FS_H
12 #define _LINUX_REISER_FS_H
13 
14 #include <linux/types.h>
15 #include <linux/magic.h>
16 
17 #ifdef __KERNEL__
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched.h>
21 #include <linux/workqueue.h>
22 #include <asm/unaligned.h>
23 #include <linux/bitops.h>
24 #include <linux/proc_fs.h>
25 #include <linux/buffer_head.h>
26 #include <linux/reiserfs_fs_i.h>
27 #include <linux/reiserfs_fs_sb.h>
28 #endif
29 
30 /*
31  *  include/linux/reiser_fs.h
32  *
33  *  Reiser File System constants and structures
34  *
35  */
36 
37 /* ioctl's command */
38 #define REISERFS_IOC_UNPACK		_IOW(0xCD,1,long)
39 /* define following flags to be the same as in ext2, so that chattr(1),
40    lsattr(1) will work with us. */
41 #define REISERFS_IOC_GETFLAGS		FS_IOC_GETFLAGS
42 #define REISERFS_IOC_SETFLAGS		FS_IOC_SETFLAGS
43 #define REISERFS_IOC_GETVERSION		FS_IOC_GETVERSION
44 #define REISERFS_IOC_SETVERSION		FS_IOC_SETVERSION
45 
46 #ifdef __KERNEL__
47 /* the 32 bit compat definitions with int argument */
48 #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
49 #define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
50 #define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
51 #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
52 #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
53 
54 /*
55  * Locking primitives. The write lock is a per superblock
56  * special mutex that has properties close to the Big Kernel Lock
57  * which was used in the previous locking scheme.
58  */
59 void reiserfs_write_lock(struct super_block *s);
60 void reiserfs_write_unlock(struct super_block *s);
61 int reiserfs_write_lock_once(struct super_block *s);
62 void reiserfs_write_unlock_once(struct super_block *s, int lock_depth);
63 
64 #ifdef CONFIG_REISERFS_CHECK
65 void reiserfs_lock_check_recursive(struct super_block *s);
66 #else
reiserfs_lock_check_recursive(struct super_block * s)67 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
68 #endif
69 
70 /*
71  * Several mutexes depend on the write lock.
72  * However sometimes we want to relax the write lock while we hold
73  * these mutexes, according to the release/reacquire on schedule()
74  * properties of the Bkl that were used.
75  * Reiserfs performances and locking were based on this scheme.
76  * Now that the write lock is a mutex and not the bkl anymore, doing so
77  * may result in a deadlock:
78  *
79  * A acquire write_lock
80  * A acquire j_commit_mutex
81  * A release write_lock and wait for something
82  * B acquire write_lock
83  * B can't acquire j_commit_mutex and sleep
84  * A can't acquire write lock anymore
85  * deadlock
86  *
87  * What we do here is avoiding such deadlock by playing the same game
88  * than the Bkl: if we can't acquire a mutex that depends on the write lock,
89  * we release the write lock, wait a bit and then retry.
90  *
91  * The mutexes concerned by this hack are:
92  * - The commit mutex of a journal list
93  * - The flush mutex
94  * - The journal lock
95  * - The inode mutex
96  */
reiserfs_mutex_lock_safe(struct mutex * m,struct super_block * s)97 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
98 			       struct super_block *s)
99 {
100 	reiserfs_lock_check_recursive(s);
101 	reiserfs_write_unlock(s);
102 	mutex_lock(m);
103 	reiserfs_write_lock(s);
104 }
105 
106 static inline void
reiserfs_mutex_lock_nested_safe(struct mutex * m,unsigned int subclass,struct super_block * s)107 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
108 			       struct super_block *s)
109 {
110 	reiserfs_lock_check_recursive(s);
111 	reiserfs_write_unlock(s);
112 	mutex_lock_nested(m, subclass);
113 	reiserfs_write_lock(s);
114 }
115 
116 static inline void
reiserfs_down_read_safe(struct rw_semaphore * sem,struct super_block * s)117 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
118 {
119 	reiserfs_lock_check_recursive(s);
120 	reiserfs_write_unlock(s);
121 	down_read(sem);
122 	reiserfs_write_lock(s);
123 }
124 
125 /*
126  * When we schedule, we usually want to also release the write lock,
127  * according to the previous bkl based locking scheme of reiserfs.
128  */
reiserfs_cond_resched(struct super_block * s)129 static inline void reiserfs_cond_resched(struct super_block *s)
130 {
131 	if (need_resched()) {
132 		reiserfs_write_unlock(s);
133 		schedule();
134 		reiserfs_write_lock(s);
135 	}
136 }
137 
138 struct fid;
139 
140 /* in reading the #defines, it may help to understand that they employ
141    the following abbreviations:
142 
143    B = Buffer
144    I = Item header
145    H = Height within the tree (should be changed to LEV)
146    N = Number of the item in the node
147    STAT = stat data
148    DEH = Directory Entry Header
149    EC = Entry Count
150    E = Entry number
151    UL = Unsigned Long
152    BLKH = BLocK Header
153    UNFM = UNForMatted node
154    DC = Disk Child
155    P = Path
156 
157    These #defines are named by concatenating these abbreviations,
158    where first comes the arguments, and last comes the return value,
159    of the macro.
160 
161 */
162 
163 #define USE_INODE_GENERATION_COUNTER
164 
165 #define REISERFS_PREALLOCATE
166 #define DISPLACE_NEW_PACKING_LOCALITIES
167 #define PREALLOCATION_SIZE 9
168 
169 /* n must be power of 2 */
170 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
171 
172 // to be ok for alpha and others we have to align structures to 8 byte
173 // boundary.
174 // FIXME: do not change 4 by anything else: there is code which relies on that
175 #define ROUND_UP(x) _ROUND_UP(x,8LL)
176 
177 /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
178 ** messages.
179 */
180 #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
181 
182 void __reiserfs_warning(struct super_block *s, const char *id,
183 			 const char *func, const char *fmt, ...);
184 #define reiserfs_warning(s, id, fmt, args...) \
185 	 __reiserfs_warning(s, id, __func__, fmt, ##args)
186 /* assertions handling */
187 
188 /** always check a condition and panic if it's false. */
189 #define __RASSERT(cond, scond, format, args...)			\
190 do {									\
191 	if (!(cond))							\
192 		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
193 			       __FILE__ ":%i:%s: " format "\n",		\
194 			       in_interrupt() ? -1 : task_pid_nr(current), \
195 			       __LINE__, __func__ , ##args);		\
196 } while (0)
197 
198 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
199 
200 #if defined( CONFIG_REISERFS_CHECK )
201 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
202 #else
203 #define RFALSE( cond, format, args... ) do {;} while( 0 )
204 #endif
205 
206 #define CONSTF __attribute_const__
207 /*
208  * Disk Data Structures
209  */
210 
211 /***************************************************************************/
212 /*                             SUPER BLOCK                                 */
213 /***************************************************************************/
214 
215 /*
216  * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
217  * the version in RAM is part of a larger structure containing fields never written to disk.
218  */
219 #define UNSET_HASH 0		// read_super will guess about, what hash names
220 		     // in directories were sorted with
221 #define TEA_HASH  1
222 #define YURA_HASH 2
223 #define R5_HASH   3
224 #define DEFAULT_HASH R5_HASH
225 
226 struct journal_params {
227 	__le32 jp_journal_1st_block;	/* where does journal start from on its
228 					 * device */
229 	__le32 jp_journal_dev;	/* journal device st_rdev */
230 	__le32 jp_journal_size;	/* size of the journal */
231 	__le32 jp_journal_trans_max;	/* max number of blocks in a transaction. */
232 	__le32 jp_journal_magic;	/* random value made on fs creation (this
233 					 * was sb_journal_block_count) */
234 	__le32 jp_journal_max_batch;	/* max number of blocks to batch into a
235 					 * trans */
236 	__le32 jp_journal_max_commit_age;	/* in seconds, how old can an async
237 						 * commit be */
238 	__le32 jp_journal_max_trans_age;	/* in seconds, how old can a transaction
239 						 * be */
240 };
241 
242 /* this is the super from 3.5.X, where X >= 10 */
243 struct reiserfs_super_block_v1 {
244 	__le32 s_block_count;	/* blocks count         */
245 	__le32 s_free_blocks;	/* free blocks count    */
246 	__le32 s_root_block;	/* root block number    */
247 	struct journal_params s_journal;
248 	__le16 s_blocksize;	/* block size */
249 	__le16 s_oid_maxsize;	/* max size of object id array, see
250 				 * get_objectid() commentary  */
251 	__le16 s_oid_cursize;	/* current size of object id array */
252 	__le16 s_umount_state;	/* this is set to 1 when filesystem was
253 				 * umounted, to 2 - when not */
254 	char s_magic[10];	/* reiserfs magic string indicates that
255 				 * file system is reiserfs:
256 				 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
257 	__le16 s_fs_state;	/* it is set to used by fsck to mark which
258 				 * phase of rebuilding is done */
259 	__le32 s_hash_function_code;	/* indicate, what hash function is being use
260 					 * to sort names in a directory*/
261 	__le16 s_tree_height;	/* height of disk tree */
262 	__le16 s_bmap_nr;	/* amount of bitmap blocks needed to address
263 				 * each block of file system */
264 	__le16 s_version;	/* this field is only reliable on filesystem
265 				 * with non-standard journal */
266 	__le16 s_reserved_for_journal;	/* size in blocks of journal area on main
267 					 * device, we need to keep after
268 					 * making fs with non-standard journal */
269 } __attribute__ ((__packed__));
270 
271 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
272 
273 /* this is the on disk super block */
274 struct reiserfs_super_block {
275 	struct reiserfs_super_block_v1 s_v1;
276 	__le32 s_inode_generation;
277 	__le32 s_flags;		/* Right now used only by inode-attributes, if enabled */
278 	unsigned char s_uuid[16];	/* filesystem unique identifier */
279 	unsigned char s_label[16];	/* filesystem volume label */
280 	__le16 s_mnt_count;		/* Count of mounts since last fsck */
281 	__le16 s_max_mnt_count;		/* Maximum mounts before check */
282 	__le32 s_lastcheck;		/* Timestamp of last fsck */
283 	__le32 s_check_interval;	/* Interval between checks */
284 	char s_unused[76];	/* zero filled by mkreiserfs and
285 				 * reiserfs_convert_objectid_map_v1()
286 				 * so any additions must be updated
287 				 * there as well. */
288 } __attribute__ ((__packed__));
289 
290 #define SB_SIZE (sizeof(struct reiserfs_super_block))
291 
292 #define REISERFS_VERSION_1 0
293 #define REISERFS_VERSION_2 2
294 
295 // on-disk super block fields converted to cpu form
296 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
297 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
298 #define SB_BLOCKSIZE(s) \
299         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
300 #define SB_BLOCK_COUNT(s) \
301         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
302 #define SB_FREE_BLOCKS(s) \
303         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
304 #define SB_REISERFS_MAGIC(s) \
305         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
306 #define SB_ROOT_BLOCK(s) \
307         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
308 #define SB_TREE_HEIGHT(s) \
309         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
310 #define SB_REISERFS_STATE(s) \
311         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
312 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
313 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
314 
315 #define PUT_SB_BLOCK_COUNT(s, val) \
316    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
317 #define PUT_SB_FREE_BLOCKS(s, val) \
318    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
319 #define PUT_SB_ROOT_BLOCK(s, val) \
320    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
321 #define PUT_SB_TREE_HEIGHT(s, val) \
322    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
323 #define PUT_SB_REISERFS_STATE(s, val) \
324    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
325 #define PUT_SB_VERSION(s, val) \
326    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
327 #define PUT_SB_BMAP_NR(s, val) \
328    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
329 
330 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
331 #define SB_ONDISK_JOURNAL_SIZE(s) \
332          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
333 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
334          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
335 #define SB_ONDISK_JOURNAL_DEVICE(s) \
336          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
337 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
338          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
339 
340 #define is_block_in_log_or_reserved_area(s, block) \
341          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
342          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
343          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
344          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
345 
346 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
347 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
348 int is_reiserfs_jr(struct reiserfs_super_block *rs);
349 
350 /* ReiserFS leaves the first 64k unused, so that partition labels have
351    enough space.  If someone wants to write a fancy bootloader that
352    needs more than 64k, let us know, and this will be increased in size.
353    This number must be larger than than the largest block size on any
354    platform, or code will break.  -Hans */
355 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
356 #define REISERFS_FIRST_BLOCK unused_define
357 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
358 
359 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
360 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
361 
362 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
363 #define CARRY_ON      0
364 #define REPEAT_SEARCH -1
365 #define IO_ERROR      -2
366 #define NO_DISK_SPACE -3
367 #define NO_BALANCING_NEEDED  (-4)
368 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
369 #define QUOTA_EXCEEDED -6
370 
371 typedef __u32 b_blocknr_t;
372 typedef __le32 unp_t;
373 
374 struct unfm_nodeinfo {
375 	unp_t unfm_nodenum;
376 	unsigned short unfm_freespace;
377 };
378 
379 /* there are two formats of keys: 3.5 and 3.6
380  */
381 #define KEY_FORMAT_3_5 0
382 #define KEY_FORMAT_3_6 1
383 
384 /* there are two stat datas */
385 #define STAT_DATA_V1 0
386 #define STAT_DATA_V2 1
387 
REISERFS_I(const struct inode * inode)388 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
389 {
390 	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
391 }
392 
REISERFS_SB(const struct super_block * sb)393 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
394 {
395 	return sb->s_fs_info;
396 }
397 
398 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
399  * which overflows on large file systems. */
reiserfs_bmap_count(struct super_block * sb)400 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
401 {
402 	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
403 }
404 
bmap_would_wrap(unsigned bmap_nr)405 static inline int bmap_would_wrap(unsigned bmap_nr)
406 {
407 	return bmap_nr > ((1LL << 16) - 1);
408 }
409 
410 /** this says about version of key of all items (but stat data) the
411     object consists of */
412 #define get_inode_item_key_version( inode )                                    \
413     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
414 
415 #define set_inode_item_key_version( inode, version )                           \
416          ({ if((version)==KEY_FORMAT_3_6)                                      \
417                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
418             else                                                               \
419                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
420 
421 #define get_inode_sd_version(inode)                                            \
422     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
423 
424 #define set_inode_sd_version(inode, version)                                   \
425          ({ if((version)==STAT_DATA_V2)                                        \
426                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
427             else                                                               \
428                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
429 
430 /* This is an aggressive tail suppression policy, I am hoping it
431    improves our benchmarks. The principle behind it is that percentage
432    space saving is what matters, not absolute space saving.  This is
433    non-intuitive, but it helps to understand it if you consider that the
434    cost to access 4 blocks is not much more than the cost to access 1
435    block, if you have to do a seek and rotate.  A tail risks a
436    non-linear disk access that is significant as a percentage of total
437    time cost for a 4 block file and saves an amount of space that is
438    less significant as a percentage of space, or so goes the hypothesis.
439    -Hans */
440 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
441 (\
442   (!(n_tail_size)) || \
443   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
444    ( (n_file_size) >= (n_block_size) * 4 ) || \
445    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
446      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
447    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
448      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
449    ( ( (n_file_size) >= (n_block_size) ) && \
450      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
451 )
452 
453 /* Another strategy for tails, this one means only create a tail if all the
454    file would fit into one DIRECT item.
455    Primary intention for this one is to increase performance by decreasing
456    seeking.
457 */
458 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
459 (\
460   (!(n_tail_size)) || \
461   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
462 )
463 
464 /*
465  * values for s_umount_state field
466  */
467 #define REISERFS_VALID_FS    1
468 #define REISERFS_ERROR_FS    2
469 
470 //
471 // there are 5 item types currently
472 //
473 #define TYPE_STAT_DATA 0
474 #define TYPE_INDIRECT 1
475 #define TYPE_DIRECT 2
476 #define TYPE_DIRENTRY 3
477 #define TYPE_MAXTYPE 3
478 #define TYPE_ANY 15		// FIXME: comment is required
479 
480 /***************************************************************************/
481 /*                       KEY & ITEM HEAD                                   */
482 /***************************************************************************/
483 
484 //
485 // directories use this key as well as old files
486 //
487 struct offset_v1 {
488 	__le32 k_offset;
489 	__le32 k_uniqueness;
490 } __attribute__ ((__packed__));
491 
492 struct offset_v2 {
493 	__le64 v;
494 } __attribute__ ((__packed__));
495 
offset_v2_k_type(const struct offset_v2 * v2)496 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
497 {
498 	__u8 type = le64_to_cpu(v2->v) >> 60;
499 	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
500 }
501 
set_offset_v2_k_type(struct offset_v2 * v2,int type)502 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
503 {
504 	v2->v =
505 	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
506 }
507 
offset_v2_k_offset(const struct offset_v2 * v2)508 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
509 {
510 	return le64_to_cpu(v2->v) & (~0ULL >> 4);
511 }
512 
set_offset_v2_k_offset(struct offset_v2 * v2,loff_t offset)513 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
514 {
515 	offset &= (~0ULL >> 4);
516 	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
517 }
518 
519 /* Key of an item determines its location in the S+tree, and
520    is composed of 4 components */
521 struct reiserfs_key {
522 	__le32 k_dir_id;	/* packing locality: by default parent
523 				   directory object id */
524 	__le32 k_objectid;	/* object identifier */
525 	union {
526 		struct offset_v1 k_offset_v1;
527 		struct offset_v2 k_offset_v2;
528 	} __attribute__ ((__packed__)) u;
529 } __attribute__ ((__packed__));
530 
531 struct in_core_key {
532 	__u32 k_dir_id;		/* packing locality: by default parent
533 				   directory object id */
534 	__u32 k_objectid;	/* object identifier */
535 	__u64 k_offset;
536 	__u8 k_type;
537 };
538 
539 struct cpu_key {
540 	struct in_core_key on_disk_key;
541 	int version;
542 	int key_length;		/* 3 in all cases but direct2indirect and
543 				   indirect2direct conversion */
544 };
545 
546 /* Our function for comparing keys can compare keys of different
547    lengths.  It takes as a parameter the length of the keys it is to
548    compare.  These defines are used in determining what is to be passed
549    to it as that parameter. */
550 #define REISERFS_FULL_KEY_LEN     4
551 #define REISERFS_SHORT_KEY_LEN    2
552 
553 /* The result of the key compare */
554 #define FIRST_GREATER 1
555 #define SECOND_GREATER -1
556 #define KEYS_IDENTICAL 0
557 #define KEY_FOUND 1
558 #define KEY_NOT_FOUND 0
559 
560 #define KEY_SIZE (sizeof(struct reiserfs_key))
561 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
562 
563 /* return values for search_by_key and clones */
564 #define ITEM_FOUND 1
565 #define ITEM_NOT_FOUND 0
566 #define ENTRY_FOUND 1
567 #define ENTRY_NOT_FOUND 0
568 #define DIRECTORY_NOT_FOUND -1
569 #define REGULAR_FILE_FOUND -2
570 #define DIRECTORY_FOUND -3
571 #define BYTE_FOUND 1
572 #define BYTE_NOT_FOUND 0
573 #define FILE_NOT_FOUND -1
574 
575 #define POSITION_FOUND 1
576 #define POSITION_NOT_FOUND 0
577 
578 // return values for reiserfs_find_entry and search_by_entry_key
579 #define NAME_FOUND 1
580 #define NAME_NOT_FOUND 0
581 #define GOTO_PREVIOUS_ITEM 2
582 #define NAME_FOUND_INVISIBLE 3
583 
584 /*  Everything in the filesystem is stored as a set of items.  The
585     item head contains the key of the item, its free space (for
586     indirect items) and specifies the location of the item itself
587     within the block.  */
588 
589 struct item_head {
590 	/* Everything in the tree is found by searching for it based on
591 	 * its key.*/
592 	struct reiserfs_key ih_key;
593 	union {
594 		/* The free space in the last unformatted node of an
595 		   indirect item if this is an indirect item.  This
596 		   equals 0xFFFF iff this is a direct item or stat data
597 		   item. Note that the key, not this field, is used to
598 		   determine the item type, and thus which field this
599 		   union contains. */
600 		__le16 ih_free_space_reserved;
601 		/* Iff this is a directory item, this field equals the
602 		   number of directory entries in the directory item. */
603 		__le16 ih_entry_count;
604 	} __attribute__ ((__packed__)) u;
605 	__le16 ih_item_len;	/* total size of the item body */
606 	__le16 ih_item_location;	/* an offset to the item body
607 					 * within the block */
608 	__le16 ih_version;	/* 0 for all old items, 2 for new
609 				   ones. Highest bit is set by fsck
610 				   temporary, cleaned after all
611 				   done */
612 } __attribute__ ((__packed__));
613 /* size of item header     */
614 #define IH_SIZE (sizeof(struct item_head))
615 
616 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
617 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
618 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
619 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
620 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
621 
622 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
623 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
624 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
625 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
626 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
627 
628 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
629 
630 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
631 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
632 
633 /* these operate on indirect items, where you've got an array of ints
634 ** at a possibly unaligned location.  These are a noop on ia32
635 **
636 ** p is the array of __u32, i is the index into the array, v is the value
637 ** to store there.
638 */
639 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
640 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
641 
642 //
643 // in old version uniqueness field shows key type
644 //
645 #define V1_SD_UNIQUENESS 0
646 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
647 #define V1_DIRECT_UNIQUENESS 0xffffffff
648 #define V1_DIRENTRY_UNIQUENESS 500
649 #define V1_ANY_UNIQUENESS 555	// FIXME: comment is required
650 
651 //
652 // here are conversion routines
653 //
654 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
uniqueness2type(__u32 uniqueness)655 static inline int uniqueness2type(__u32 uniqueness)
656 {
657 	switch ((int)uniqueness) {
658 	case V1_SD_UNIQUENESS:
659 		return TYPE_STAT_DATA;
660 	case V1_INDIRECT_UNIQUENESS:
661 		return TYPE_INDIRECT;
662 	case V1_DIRECT_UNIQUENESS:
663 		return TYPE_DIRECT;
664 	case V1_DIRENTRY_UNIQUENESS:
665 		return TYPE_DIRENTRY;
666 	case V1_ANY_UNIQUENESS:
667 	default:
668 		return TYPE_ANY;
669 	}
670 }
671 
672 static inline __u32 type2uniqueness(int type) CONSTF;
type2uniqueness(int type)673 static inline __u32 type2uniqueness(int type)
674 {
675 	switch (type) {
676 	case TYPE_STAT_DATA:
677 		return V1_SD_UNIQUENESS;
678 	case TYPE_INDIRECT:
679 		return V1_INDIRECT_UNIQUENESS;
680 	case TYPE_DIRECT:
681 		return V1_DIRECT_UNIQUENESS;
682 	case TYPE_DIRENTRY:
683 		return V1_DIRENTRY_UNIQUENESS;
684 	case TYPE_ANY:
685 	default:
686 		return V1_ANY_UNIQUENESS;
687 	}
688 }
689 
690 //
691 // key is pointer to on disk key which is stored in le, result is cpu,
692 // there is no way to get version of object from key, so, provide
693 // version to these defines
694 //
le_key_k_offset(int version,const struct reiserfs_key * key)695 static inline loff_t le_key_k_offset(int version,
696 				     const struct reiserfs_key *key)
697 {
698 	return (version == KEY_FORMAT_3_5) ?
699 	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
700 	    offset_v2_k_offset(&(key->u.k_offset_v2));
701 }
702 
le_ih_k_offset(const struct item_head * ih)703 static inline loff_t le_ih_k_offset(const struct item_head *ih)
704 {
705 	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
706 }
707 
le_key_k_type(int version,const struct reiserfs_key * key)708 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
709 {
710 	return (version == KEY_FORMAT_3_5) ?
711 	    uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
712 	    offset_v2_k_type(&(key->u.k_offset_v2));
713 }
714 
le_ih_k_type(const struct item_head * ih)715 static inline loff_t le_ih_k_type(const struct item_head *ih)
716 {
717 	return le_key_k_type(ih_version(ih), &(ih->ih_key));
718 }
719 
set_le_key_k_offset(int version,struct reiserfs_key * key,loff_t offset)720 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
721 				       loff_t offset)
722 {
723 	(version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :	/* jdm check */
724 	    (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
725 }
726 
set_le_ih_k_offset(struct item_head * ih,loff_t offset)727 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
728 {
729 	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
730 }
731 
set_le_key_k_type(int version,struct reiserfs_key * key,int type)732 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
733 				     int type)
734 {
735 	(version == KEY_FORMAT_3_5) ?
736 	    (void)(key->u.k_offset_v1.k_uniqueness =
737 		   cpu_to_le32(type2uniqueness(type)))
738 	    : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
739 }
740 
set_le_ih_k_type(struct item_head * ih,int type)741 static inline void set_le_ih_k_type(struct item_head *ih, int type)
742 {
743 	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
744 }
745 
is_direntry_le_key(int version,struct reiserfs_key * key)746 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
747 {
748 	return le_key_k_type(version, key) == TYPE_DIRENTRY;
749 }
750 
is_direct_le_key(int version,struct reiserfs_key * key)751 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
752 {
753 	return le_key_k_type(version, key) == TYPE_DIRECT;
754 }
755 
is_indirect_le_key(int version,struct reiserfs_key * key)756 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
757 {
758 	return le_key_k_type(version, key) == TYPE_INDIRECT;
759 }
760 
is_statdata_le_key(int version,struct reiserfs_key * key)761 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
762 {
763 	return le_key_k_type(version, key) == TYPE_STAT_DATA;
764 }
765 
766 //
767 // item header has version.
768 //
is_direntry_le_ih(struct item_head * ih)769 static inline int is_direntry_le_ih(struct item_head *ih)
770 {
771 	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
772 }
773 
is_direct_le_ih(struct item_head * ih)774 static inline int is_direct_le_ih(struct item_head *ih)
775 {
776 	return is_direct_le_key(ih_version(ih), &ih->ih_key);
777 }
778 
is_indirect_le_ih(struct item_head * ih)779 static inline int is_indirect_le_ih(struct item_head *ih)
780 {
781 	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
782 }
783 
is_statdata_le_ih(struct item_head * ih)784 static inline int is_statdata_le_ih(struct item_head *ih)
785 {
786 	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
787 }
788 
789 //
790 // key is pointer to cpu key, result is cpu
791 //
cpu_key_k_offset(const struct cpu_key * key)792 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
793 {
794 	return key->on_disk_key.k_offset;
795 }
796 
cpu_key_k_type(const struct cpu_key * key)797 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
798 {
799 	return key->on_disk_key.k_type;
800 }
801 
set_cpu_key_k_offset(struct cpu_key * key,loff_t offset)802 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
803 {
804 	key->on_disk_key.k_offset = offset;
805 }
806 
set_cpu_key_k_type(struct cpu_key * key,int type)807 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
808 {
809 	key->on_disk_key.k_type = type;
810 }
811 
cpu_key_k_offset_dec(struct cpu_key * key)812 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
813 {
814 	key->on_disk_key.k_offset--;
815 }
816 
817 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
818 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
819 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
820 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
821 
822 /* are these used ? */
823 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
824 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
825 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
826 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
827 
828 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
829     (!COMP_SHORT_KEYS(ih, key) && \
830 	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
831 
832 /* maximal length of item */
833 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
834 #define MIN_ITEM_LEN 1
835 
836 /* object identifier for root dir */
837 #define REISERFS_ROOT_OBJECTID 2
838 #define REISERFS_ROOT_PARENT_OBJECTID 1
839 
840 extern struct reiserfs_key root_key;
841 
842 /*
843  * Picture represents a leaf of the S+tree
844  *  ______________________________________________________
845  * |      |  Array of     |                   |           |
846  * |Block |  Object-Item  |      F r e e      |  Objects- |
847  * | head |  Headers      |     S p a c e     |   Items   |
848  * |______|_______________|___________________|___________|
849  */
850 
851 /* Header of a disk block.  More precisely, header of a formatted leaf
852    or internal node, and not the header of an unformatted node. */
853 struct block_head {
854 	__le16 blk_level;	/* Level of a block in the tree. */
855 	__le16 blk_nr_item;	/* Number of keys/items in a block. */
856 	__le16 blk_free_space;	/* Block free space in bytes. */
857 	__le16 blk_reserved;
858 	/* dump this in v4/planA */
859 	struct reiserfs_key blk_right_delim_key;	/* kept only for compatibility */
860 };
861 
862 #define BLKH_SIZE                     (sizeof(struct block_head))
863 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
864 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
865 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
866 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
867 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
868 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
869 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
870 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
871 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
872 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
873 
874 /*
875  * values for blk_level field of the struct block_head
876  */
877 
878 #define FREE_LEVEL 0		/* when node gets removed from the tree its
879 				   blk_level is set to FREE_LEVEL. It is then
880 				   used to see whether the node is still in the
881 				   tree */
882 
883 #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
884 
885 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
886 #define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
887 /* Number of items that are in buffer. */
888 #define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
889 #define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
890 #define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
891 
892 #define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
893 #define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
894 #define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
895 
896 /* Get right delimiting key. -- little endian */
897 #define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
898 
899 /* Does the buffer contain a disk leaf. */
900 #define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
901 
902 /* Does the buffer contain a disk internal node */
903 #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
904 					    && B_LEVEL(bh) <= MAX_HEIGHT)
905 
906 /***************************************************************************/
907 /*                             STAT DATA                                   */
908 /***************************************************************************/
909 
910 //
911 // old stat data is 32 bytes long. We are going to distinguish new one by
912 // different size
913 //
914 struct stat_data_v1 {
915 	__le16 sd_mode;		/* file type, permissions */
916 	__le16 sd_nlink;	/* number of hard links */
917 	__le16 sd_uid;		/* owner */
918 	__le16 sd_gid;		/* group */
919 	__le32 sd_size;		/* file size */
920 	__le32 sd_atime;	/* time of last access */
921 	__le32 sd_mtime;	/* time file was last modified  */
922 	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
923 	union {
924 		__le32 sd_rdev;
925 		__le32 sd_blocks;	/* number of blocks file uses */
926 	} __attribute__ ((__packed__)) u;
927 	__le32 sd_first_direct_byte;	/* first byte of file which is stored
928 					   in a direct item: except that if it
929 					   equals 1 it is a symlink and if it
930 					   equals ~(__u32)0 there is no
931 					   direct item.  The existence of this
932 					   field really grates on me. Let's
933 					   replace it with a macro based on
934 					   sd_size and our tail suppression
935 					   policy.  Someday.  -Hans */
936 } __attribute__ ((__packed__));
937 
938 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
939 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
940 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
941 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
942 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
943 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
944 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
945 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
946 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
947 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
948 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
949 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
950 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
951 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
952 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
953 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
954 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
955 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
956 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
957 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
958 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
959 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
960 #define sd_v1_first_direct_byte(sdp) \
961                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
962 #define set_sd_v1_first_direct_byte(sdp,v) \
963                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
964 
965 /* inode flags stored in sd_attrs (nee sd_reserved) */
966 
967 /* we want common flags to have the same values as in ext2,
968    so chattr(1) will work without problems */
969 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
970 #define REISERFS_APPEND_FL    FS_APPEND_FL
971 #define REISERFS_SYNC_FL      FS_SYNC_FL
972 #define REISERFS_NOATIME_FL   FS_NOATIME_FL
973 #define REISERFS_NODUMP_FL    FS_NODUMP_FL
974 #define REISERFS_SECRM_FL     FS_SECRM_FL
975 #define REISERFS_UNRM_FL      FS_UNRM_FL
976 #define REISERFS_COMPR_FL     FS_COMPR_FL
977 #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
978 
979 /* persistent flags that file inherits from the parent directory */
980 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
981 				REISERFS_SYNC_FL |	\
982 				REISERFS_NOATIME_FL |	\
983 				REISERFS_NODUMP_FL |	\
984 				REISERFS_SECRM_FL |	\
985 				REISERFS_COMPR_FL |	\
986 				REISERFS_NOTAIL_FL )
987 
988 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
989    address blocks) */
990 struct stat_data {
991 	__le16 sd_mode;		/* file type, permissions */
992 	__le16 sd_attrs;	/* persistent inode flags */
993 	__le32 sd_nlink;	/* number of hard links */
994 	__le64 sd_size;		/* file size */
995 	__le32 sd_uid;		/* owner */
996 	__le32 sd_gid;		/* group */
997 	__le32 sd_atime;	/* time of last access */
998 	__le32 sd_mtime;	/* time file was last modified  */
999 	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1000 	__le32 sd_blocks;
1001 	union {
1002 		__le32 sd_rdev;
1003 		__le32 sd_generation;
1004 		//__le32 sd_first_direct_byte;
1005 		/* first byte of file which is stored in a
1006 		   direct item: except that if it equals 1
1007 		   it is a symlink and if it equals
1008 		   ~(__u32)0 there is no direct item.  The
1009 		   existence of this field really grates
1010 		   on me. Let's replace it with a macro
1011 		   based on sd_size and our tail
1012 		   suppression policy? */
1013 	} __attribute__ ((__packed__)) u;
1014 } __attribute__ ((__packed__));
1015 //
1016 // this is 44 bytes long
1017 //
1018 #define SD_SIZE (sizeof(struct stat_data))
1019 #define SD_V2_SIZE              SD_SIZE
1020 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1021 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1022 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1023 /* sd_reserved */
1024 /* set_sd_reserved */
1025 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1026 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1027 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1028 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1029 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1030 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1031 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1032 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1033 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1034 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1035 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1036 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1037 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1038 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1039 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1040 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1041 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1042 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1043 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1044 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1045 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1046 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1047 
1048 /***************************************************************************/
1049 /*                      DIRECTORY STRUCTURE                                */
1050 /***************************************************************************/
1051 /*
1052    Picture represents the structure of directory items
1053    ________________________________________________
1054    |  Array of     |   |     |        |       |   |
1055    | directory     |N-1| N-2 | ....   |   1st |0th|
1056    | entry headers |   |     |        |       |   |
1057    |_______________|___|_____|________|_______|___|
1058                     <----   directory entries         ------>
1059 
1060  First directory item has k_offset component 1. We store "." and ".."
1061  in one item, always, we never split "." and ".." into differing
1062  items.  This makes, among other things, the code for removing
1063  directories simpler. */
1064 #define SD_OFFSET  0
1065 #define SD_UNIQUENESS 0
1066 #define DOT_OFFSET 1
1067 #define DOT_DOT_OFFSET 2
1068 #define DIRENTRY_UNIQUENESS 500
1069 
1070 /* */
1071 #define FIRST_ITEM_OFFSET 1
1072 
1073 /*
1074    Q: How to get key of object pointed to by entry from entry?
1075 
1076    A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1077       of object, entry points to */
1078 
1079 /* NOT IMPLEMENTED:
1080    Directory will someday contain stat data of object */
1081 
1082 struct reiserfs_de_head {
1083 	__le32 deh_offset;	/* third component of the directory entry key */
1084 	__le32 deh_dir_id;	/* objectid of the parent directory of the object, that is referenced
1085 				   by directory entry */
1086 	__le32 deh_objectid;	/* objectid of the object, that is referenced by directory entry */
1087 	__le16 deh_location;	/* offset of name in the whole item */
1088 	__le16 deh_state;	/* whether 1) entry contains stat data (for future), and 2) whether
1089 				   entry is hidden (unlinked) */
1090 } __attribute__ ((__packed__));
1091 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1092 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1093 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1094 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1095 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1096 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1097 
1098 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1099 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1100 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1101 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1102 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1103 
1104 /* empty directory contains two entries "." and ".." and their headers */
1105 #define EMPTY_DIR_SIZE \
1106 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1107 
1108 /* old format directories have this size when empty */
1109 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1110 
1111 #define DEH_Statdata 0		/* not used now */
1112 #define DEH_Visible 2
1113 
1114 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1115 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1116 #   define ADDR_UNALIGNED_BITS  (3)
1117 #endif
1118 
1119 /* These are only used to manipulate deh_state.
1120  * Because of this, we'll use the ext2_ bit routines,
1121  * since they are little endian */
1122 #ifdef ADDR_UNALIGNED_BITS
1123 
1124 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1125 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1126 
1127 #   define set_bit_unaligned(nr, addr)	\
1128 	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1129 #   define clear_bit_unaligned(nr, addr)	\
1130 	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1131 #   define test_bit_unaligned(nr, addr)	\
1132 	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1133 
1134 #else
1135 
1136 #   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
1137 #   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
1138 #   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
1139 
1140 #endif
1141 
1142 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1143 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1144 #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1145 #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1146 
1147 #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1148 #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1149 #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1150 
1151 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1152 				   __le32 par_dirid, __le32 par_objid);
1153 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1154 				__le32 par_dirid, __le32 par_objid);
1155 
1156 /* array of the entry headers */
1157  /* get item body */
1158 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1159 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1160 
1161 /* length of the directory entry in directory item. This define
1162    calculates length of i-th directory entry using directory entry
1163    locations from dir entry head. When it calculates length of 0-th
1164    directory entry, it uses length of whole item in place of entry
1165    location of the non-existent following entry in the calculation.
1166    See picture above.*/
1167 /*
1168 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1169 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1170 */
entry_length(const struct buffer_head * bh,const struct item_head * ih,int pos_in_item)1171 static inline int entry_length(const struct buffer_head *bh,
1172 			       const struct item_head *ih, int pos_in_item)
1173 {
1174 	struct reiserfs_de_head *deh;
1175 
1176 	deh = B_I_DEH(bh, ih) + pos_in_item;
1177 	if (pos_in_item)
1178 		return deh_location(deh - 1) - deh_location(deh);
1179 
1180 	return ih_item_len(ih) - deh_location(deh);
1181 }
1182 
1183 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1184 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1185 
1186 /* name by bh, ih and entry_num */
1187 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1188 
1189 // two entries per block (at least)
1190 #define REISERFS_MAX_NAME(block_size) 255
1191 
1192 /* this structure is used for operations on directory entries. It is
1193    not a disk structure. */
1194 /* When reiserfs_find_entry or search_by_entry_key find directory
1195    entry, they return filled reiserfs_dir_entry structure */
1196 struct reiserfs_dir_entry {
1197 	struct buffer_head *de_bh;
1198 	int de_item_num;
1199 	struct item_head *de_ih;
1200 	int de_entry_num;
1201 	struct reiserfs_de_head *de_deh;
1202 	int de_entrylen;
1203 	int de_namelen;
1204 	char *de_name;
1205 	unsigned long *de_gen_number_bit_string;
1206 
1207 	__u32 de_dir_id;
1208 	__u32 de_objectid;
1209 
1210 	struct cpu_key de_entry_key;
1211 };
1212 
1213 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1214 
1215 /* pointer to file name, stored in entry */
1216 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1217 
1218 /* length of name */
1219 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1220 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1221 
1222 /* hash value occupies bits from 7 up to 30 */
1223 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1224 /* generation number occupies 7 bits starting from 0 up to 6 */
1225 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1226 #define MAX_GENERATION_NUMBER  127
1227 
1228 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1229 
1230 /*
1231  * Picture represents an internal node of the reiserfs tree
1232  *  ______________________________________________________
1233  * |      |  Array of     |  Array of         |  Free     |
1234  * |block |    keys       |  pointers         | space     |
1235  * | head |      N        |      N+1          |           |
1236  * |______|_______________|___________________|___________|
1237  */
1238 
1239 /***************************************************************************/
1240 /*                      DISK CHILD                                         */
1241 /***************************************************************************/
1242 /* Disk child pointer: The pointer from an internal node of the tree
1243    to a node that is on disk. */
1244 struct disk_child {
1245 	__le32 dc_block_number;	/* Disk child's block number. */
1246 	__le16 dc_size;		/* Disk child's used space.   */
1247 	__le16 dc_reserved;
1248 };
1249 
1250 #define DC_SIZE (sizeof(struct disk_child))
1251 #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
1252 #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
1253 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1254 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1255 
1256 /* Get disk child by buffer header and position in the tree node. */
1257 #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
1258 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1259 
1260 /* Get disk child number by buffer header and position in the tree node. */
1261 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1262 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1263 				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1264 
1265  /* maximal value of field child_size in structure disk_child */
1266  /* child size is the combined size of all items and their headers */
1267 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1268 
1269 /* amount of used space in buffer (not including block head) */
1270 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1271 
1272 /* max and min number of keys in internal node */
1273 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1274 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1275 
1276 /***************************************************************************/
1277 /*                      PATH STRUCTURES AND DEFINES                        */
1278 /***************************************************************************/
1279 
1280 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1281    key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1282    does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1283    reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1284    position of the block_number of the next node if it is looking through an internal node.  If it
1285    is looking through a leaf node bin_search will find the position of the item which has key either
1286    equal to given key, or which is the maximal key less than the given key. */
1287 
1288 struct path_element {
1289 	struct buffer_head *pe_buffer;	/* Pointer to the buffer at the path in the tree. */
1290 	int pe_position;	/* Position in the tree node which is placed in the */
1291 	/* buffer above.                                  */
1292 };
1293 
1294 #define MAX_HEIGHT 5		/* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1295 #define EXTENDED_MAX_HEIGHT         7	/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1296 #define FIRST_PATH_ELEMENT_OFFSET   2	/* Must be equal to at least 2. */
1297 
1298 #define ILLEGAL_PATH_ELEMENT_OFFSET 1	/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1299 #define MAX_FEB_SIZE 6		/* this MUST be MAX_HEIGHT + 1. See about FEB below */
1300 
1301 /* We need to keep track of who the ancestors of nodes are.  When we
1302    perform a search we record which nodes were visited while
1303    descending the tree looking for the node we searched for. This list
1304    of nodes is called the path.  This information is used while
1305    performing balancing.  Note that this path information may become
1306    invalid, and this means we must check it when using it to see if it
1307    is still valid. You'll need to read search_by_key and the comments
1308    in it, especially about decrement_counters_in_path(), to understand
1309    this structure.
1310 
1311 Paths make the code so much harder to work with and debug.... An
1312 enormous number of bugs are due to them, and trying to write or modify
1313 code that uses them just makes my head hurt.  They are based on an
1314 excessive effort to avoid disturbing the precious VFS code.:-( The
1315 gods only know how we are going to SMP the code that uses them.
1316 znodes are the way! */
1317 
1318 #define PATH_READA	0x1	/* do read ahead */
1319 #define PATH_READA_BACK 0x2	/* read backwards */
1320 
1321 struct treepath {
1322 	int path_length;	/* Length of the array above.   */
1323 	int reada;
1324 	struct path_element path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
1325 	int pos_in_item;
1326 };
1327 
1328 #define pos_in_item(path) ((path)->pos_in_item)
1329 
1330 #define INITIALIZE_PATH(var) \
1331 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1332 
1333 /* Get path element by path and path position. */
1334 #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
1335 
1336 /* Get buffer header at the path by path and path position. */
1337 #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1338 
1339 /* Get position in the element at the path by path and path position. */
1340 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1341 
1342 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1343 				/* you know, to the person who didn't
1344 				   write this the macro name does not
1345 				   at first suggest what it does.
1346 				   Maybe POSITION_FROM_PATH_END? Or
1347 				   maybe we should just focus on
1348 				   dumping paths... -Hans */
1349 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1350 
1351 #define PATH_PITEM_HEAD(path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1352 
1353 /* in do_balance leaf has h == 0 in contrast with path structure,
1354    where root has level == 0. That is why we need these defines */
1355 #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h))	/* tb->S[h] */
1356 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)	/* tb->F[h] or tb->S[0]->b_parent */
1357 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1358 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)	/* tb->S[h]->b_item_order */
1359 
1360 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1361 
1362 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1363 #define get_ih(path) PATH_PITEM_HEAD(path)
1364 #define get_item_pos(path) PATH_LAST_POSITION(path)
1365 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1366 #define item_moved(ih,path) comp_items(ih, path)
1367 #define path_changed(ih,path) comp_items (ih, path)
1368 
1369 /***************************************************************************/
1370 /*                       MISC                                              */
1371 /***************************************************************************/
1372 
1373 /* Size of pointer to the unformatted node. */
1374 #define UNFM_P_SIZE (sizeof(unp_t))
1375 #define UNFM_P_SHIFT 2
1376 
1377 // in in-core inode key is stored on le form
1378 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1379 
1380 #define MAX_UL_INT 0xffffffff
1381 #define MAX_INT    0x7ffffff
1382 #define MAX_US_INT 0xffff
1383 
1384 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1385 #define U32_MAX (~(__u32)0)
1386 
max_reiserfs_offset(struct inode * inode)1387 static inline loff_t max_reiserfs_offset(struct inode *inode)
1388 {
1389 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1390 		return (loff_t) U32_MAX;
1391 
1392 	return (loff_t) ((~(__u64) 0) >> 4);
1393 }
1394 
1395 /*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
1396 #define MAX_KEY_OBJECTID	MAX_UL_INT
1397 
1398 #define MAX_B_NUM  MAX_UL_INT
1399 #define MAX_FC_NUM MAX_US_INT
1400 
1401 /* the purpose is to detect overflow of an unsigned short */
1402 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1403 
1404 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1405 #define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode  */
1406 #define REISERFS_USER_MEM		1	/* reiserfs user memory mode            */
1407 
1408 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1409 #define get_generation(s) atomic_read (&fs_generation(s))
1410 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1411 #define __fs_changed(gen,s) (gen != get_generation (s))
1412 #define fs_changed(gen,s)		\
1413 ({					\
1414 	reiserfs_cond_resched(s);	\
1415 	__fs_changed(gen, s);		\
1416 })
1417 
1418 /***************************************************************************/
1419 /*                  FIXATE NODES                                           */
1420 /***************************************************************************/
1421 
1422 #define VI_TYPE_LEFT_MERGEABLE 1
1423 #define VI_TYPE_RIGHT_MERGEABLE 2
1424 
1425 /* To make any changes in the tree we always first find node, that
1426    contains item to be changed/deleted or place to insert a new
1427    item. We call this node S. To do balancing we need to decide what
1428    we will shift to left/right neighbor, or to a new node, where new
1429    item will be etc. To make this analysis simpler we build virtual
1430    node. Virtual node is an array of items, that will replace items of
1431    node S. (For instance if we are going to delete an item, virtual
1432    node does not contain it). Virtual node keeps information about
1433    item sizes and types, mergeability of first and last items, sizes
1434    of all entries in directory item. We use this array of items when
1435    calculating what we can shift to neighbors and how many nodes we
1436    have to have if we do not any shiftings, if we shift to left/right
1437    neighbor or to both. */
1438 struct virtual_item {
1439 	int vi_index;		// index in the array of item operations
1440 	unsigned short vi_type;	// left/right mergeability
1441 	unsigned short vi_item_len;	/* length of item that it will have after balancing */
1442 	struct item_head *vi_ih;
1443 	const char *vi_item;	// body of item (old or new)
1444 	const void *vi_new_data;	// 0 always but paste mode
1445 	void *vi_uarea;		// item specific area
1446 };
1447 
1448 struct virtual_node {
1449 	char *vn_free_ptr;	/* this is a pointer to the free space in the buffer */
1450 	unsigned short vn_nr_item;	/* number of items in virtual node */
1451 	short vn_size;		/* size of node , that node would have if it has unlimited size and no balancing is performed */
1452 	short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
1453 	short vn_affected_item_num;
1454 	short vn_pos_in_item;
1455 	struct item_head *vn_ins_ih;	/* item header of inserted item, 0 for other modes */
1456 	const void *vn_data;
1457 	struct virtual_item *vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
1458 };
1459 
1460 /* used by directory items when creating virtual nodes */
1461 struct direntry_uarea {
1462 	int flags;
1463 	__u16 entry_count;
1464 	__u16 entry_sizes[1];
1465 } __attribute__ ((__packed__));
1466 
1467 /***************************************************************************/
1468 /*                  TREE BALANCE                                           */
1469 /***************************************************************************/
1470 
1471 /* This temporary structure is used in tree balance algorithms, and
1472    constructed as we go to the extent that its various parts are
1473    needed.  It contains arrays of nodes that can potentially be
1474    involved in the balancing of node S, and parameters that define how
1475    each of the nodes must be balanced.  Note that in these algorithms
1476    for balancing the worst case is to need to balance the current node
1477    S and the left and right neighbors and all of their parents plus
1478    create a new node.  We implement S1 balancing for the leaf nodes
1479    and S0 balancing for the internal nodes (S1 and S0 are defined in
1480    our papers.)*/
1481 
1482 #define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
1483 
1484 /* maximum number of FEB blocknrs on a single level */
1485 #define MAX_AMOUNT_NEEDED 2
1486 
1487 /* someday somebody will prefix every field in this struct with tb_ */
1488 struct tree_balance {
1489 	int tb_mode;
1490 	int need_balance_dirty;
1491 	struct super_block *tb_sb;
1492 	struct reiserfs_transaction_handle *transaction_handle;
1493 	struct treepath *tb_path;
1494 	struct buffer_head *L[MAX_HEIGHT];	/* array of left neighbors of nodes in the path */
1495 	struct buffer_head *R[MAX_HEIGHT];	/* array of right neighbors of nodes in the path */
1496 	struct buffer_head *FL[MAX_HEIGHT];	/* array of fathers of the left  neighbors      */
1497 	struct buffer_head *FR[MAX_HEIGHT];	/* array of fathers of the right neighbors      */
1498 	struct buffer_head *CFL[MAX_HEIGHT];	/* array of common parents of center node and its left neighbor  */
1499 	struct buffer_head *CFR[MAX_HEIGHT];	/* array of common parents of center node and its right neighbor */
1500 
1501 	struct buffer_head *FEB[MAX_FEB_SIZE];	/* array of empty buffers. Number of buffers in array equals
1502 						   cur_blknum. */
1503 	struct buffer_head *used[MAX_FEB_SIZE];
1504 	struct buffer_head *thrown[MAX_FEB_SIZE];
1505 	int lnum[MAX_HEIGHT];	/* array of number of items which must be
1506 				   shifted to the left in order to balance the
1507 				   current node; for leaves includes item that
1508 				   will be partially shifted; for internal
1509 				   nodes, it is the number of child pointers
1510 				   rather than items. It includes the new item
1511 				   being created. The code sometimes subtracts
1512 				   one to get the number of wholly shifted
1513 				   items for other purposes. */
1514 	int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
1515 	int lkey[MAX_HEIGHT];	/* array indexed by height h mapping the key delimiting L[h] and
1516 				   S[h] to its item number within the node CFL[h] */
1517 	int rkey[MAX_HEIGHT];	/* substitute r for l in comment above */
1518 	int insert_size[MAX_HEIGHT];	/* the number of bytes by we are trying to add or remove from
1519 					   S[h]. A negative value means removing.  */
1520 	int blknum[MAX_HEIGHT];	/* number of nodes that will replace node S[h] after
1521 				   balancing on the level h of the tree.  If 0 then S is
1522 				   being deleted, if 1 then S is remaining and no new nodes
1523 				   are being created, if 2 or 3 then 1 or 2 new nodes is
1524 				   being created */
1525 
1526 	/* fields that are used only for balancing leaves of the tree */
1527 	int cur_blknum;		/* number of empty blocks having been already allocated                 */
1528 	int s0num;		/* number of items that fall into left most  node when S[0] splits     */
1529 	int s1num;		/* number of items that fall into first  new node when S[0] splits     */
1530 	int s2num;		/* number of items that fall into second new node when S[0] splits     */
1531 	int lbytes;		/* number of bytes which can flow to the left neighbor from the        left    */
1532 	/* most liquid item that cannot be shifted from S[0] entirely         */
1533 	/* if -1 then nothing will be partially shifted */
1534 	int rbytes;		/* number of bytes which will flow to the right neighbor from the right        */
1535 	/* most liquid item that cannot be shifted from S[0] entirely         */
1536 	/* if -1 then nothing will be partially shifted                           */
1537 	int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits   */
1538 	/* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
1539 	int s2bytes;
1540 	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];	/* buffers which are to be freed after do_balance finishes by unfix_nodes */
1541 	char *vn_buf;		/* kmalloced memory. Used to create
1542 				   virtual node and keep map of
1543 				   dirtied bitmap blocks */
1544 	int vn_buf_size;	/* size of the vn_buf */
1545 	struct virtual_node *tb_vn;	/* VN starts after bitmap of bitmap blocks */
1546 
1547 	int fs_gen;		/* saved value of `reiserfs_generation' counter
1548 				   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1549 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1550 	struct in_core_key key;	/* key pointer, to pass to block allocator or
1551 				   another low-level subsystem */
1552 #endif
1553 };
1554 
1555 /* These are modes of balancing */
1556 
1557 /* When inserting an item. */
1558 #define M_INSERT	'i'
1559 /* When inserting into (directories only) or appending onto an already
1560    existent item. */
1561 #define M_PASTE		'p'
1562 /* When deleting an item. */
1563 #define M_DELETE	'd'
1564 /* When truncating an item or removing an entry from a (directory) item. */
1565 #define M_CUT 		'c'
1566 
1567 /* used when balancing on leaf level skipped (in reiserfsck) */
1568 #define M_INTERNAL	'n'
1569 
1570 /* When further balancing is not needed, then do_balance does not need
1571    to be called. */
1572 #define M_SKIP_BALANCING 		's'
1573 #define M_CONVERT	'v'
1574 
1575 /* modes of leaf_move_items */
1576 #define LEAF_FROM_S_TO_L 0
1577 #define LEAF_FROM_S_TO_R 1
1578 #define LEAF_FROM_R_TO_L 2
1579 #define LEAF_FROM_L_TO_R 3
1580 #define LEAF_FROM_S_TO_SNEW 4
1581 
1582 #define FIRST_TO_LAST 0
1583 #define LAST_TO_FIRST 1
1584 
1585 /* used in do_balance for passing parent of node information that has
1586    been gotten from tb struct */
1587 struct buffer_info {
1588 	struct tree_balance *tb;
1589 	struct buffer_head *bi_bh;
1590 	struct buffer_head *bi_parent;
1591 	int bi_position;
1592 };
1593 
sb_from_tb(struct tree_balance * tb)1594 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
1595 {
1596 	return tb ? tb->tb_sb : NULL;
1597 }
1598 
sb_from_bi(struct buffer_info * bi)1599 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
1600 {
1601 	return bi ? sb_from_tb(bi->tb) : NULL;
1602 }
1603 
1604 /* there are 4 types of items: stat data, directory item, indirect, direct.
1605 +-------------------+------------+--------------+------------+
1606 |	            |  k_offset  | k_uniqueness | mergeable? |
1607 +-------------------+------------+--------------+------------+
1608 |     stat data     |	0        |      0       |   no       |
1609 +-------------------+------------+--------------+------------+
1610 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
1611 | non 1st directory | hash value |              |   yes      |
1612 |     item          |            |              |            |
1613 +-------------------+------------+--------------+------------+
1614 | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1615 +-------------------+------------+--------------+------------+
1616 | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1617 +-------------------+------------+--------------+------------+
1618 */
1619 
1620 struct item_operations {
1621 	int (*bytes_number) (struct item_head * ih, int block_size);
1622 	void (*decrement_key) (struct cpu_key *);
1623 	int (*is_left_mergeable) (struct reiserfs_key * ih,
1624 				  unsigned long bsize);
1625 	void (*print_item) (struct item_head *, char *item);
1626 	void (*check_item) (struct item_head *, char *item);
1627 
1628 	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1629 			  int is_affected, int insert_size);
1630 	int (*check_left) (struct virtual_item * vi, int free,
1631 			   int start_skip, int end_skip);
1632 	int (*check_right) (struct virtual_item * vi, int free);
1633 	int (*part_size) (struct virtual_item * vi, int from, int to);
1634 	int (*unit_num) (struct virtual_item * vi);
1635 	void (*print_vi) (struct virtual_item * vi);
1636 };
1637 
1638 extern struct item_operations *item_ops[TYPE_ANY + 1];
1639 
1640 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1641 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1642 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1643 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1644 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1645 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1646 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1647 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1648 #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
1649 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1650 
1651 #define COMP_SHORT_KEYS comp_short_keys
1652 
1653 /* number of blocks pointed to by the indirect item */
1654 #define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
1655 
1656 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1657 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1658 
1659 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1660 
1661 /* get the item header */
1662 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1663 
1664 /* get key */
1665 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1666 
1667 /* get the key */
1668 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1669 
1670 /* get item body */
1671 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1672 
1673 /* get the stat data by the buffer header and the item order */
1674 #define B_N_STAT_DATA(bh,nr) \
1675 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1676 
1677     /* following defines use reiserfs buffer header and item header */
1678 
1679 /* get stat-data */
1680 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1681 
1682 // this is 3976 for size==4096
1683 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1684 
1685 /* indirect items consist of entries which contain blocknrs, pos
1686    indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1687    blocknr contained by the entry pos points to */
1688 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1689 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1690 
1691 struct reiserfs_iget_args {
1692 	__u32 objectid;
1693 	__u32 dirid;
1694 };
1695 
1696 /***************************************************************************/
1697 /*                    FUNCTION DECLARATIONS                                */
1698 /***************************************************************************/
1699 
1700 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1701 
1702 #define journal_trans_half(blocksize) \
1703 	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1704 
1705 /* journal.c see journal.c for all the comments here */
1706 
1707 /* first block written in a commit.  */
1708 struct reiserfs_journal_desc {
1709 	__le32 j_trans_id;	/* id of commit */
1710 	__le32 j_len;		/* length of commit. len +1 is the commit block */
1711 	__le32 j_mount_id;	/* mount id of this trans */
1712 	__le32 j_realblock[1];	/* real locations for each block */
1713 };
1714 
1715 #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
1716 #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
1717 #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
1718 
1719 #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1720 #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
1721 #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1722 
1723 /* last block written in a commit */
1724 struct reiserfs_journal_commit {
1725 	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
1726 	__le32 j_len;		/* ditto */
1727 	__le32 j_realblock[1];	/* real locations for each block */
1728 };
1729 
1730 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1731 #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
1732 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1733 
1734 #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1735 #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
1736 
1737 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1738 ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1739 ** and this transaction does not need to be replayed.
1740 */
1741 struct reiserfs_journal_header {
1742 	__le32 j_last_flush_trans_id;	/* id of last fully flushed transaction */
1743 	__le32 j_first_unflushed_offset;	/* offset in the log of where to start replay after a crash */
1744 	__le32 j_mount_id;
1745 	/* 12 */ struct journal_params jh_journal;
1746 };
1747 
1748 /* biggest tunable defines are right here */
1749 #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
1750 #define JOURNAL_TRANS_MAX_DEFAULT 1024	/* biggest possible single transaction, don't change for now (8/3/99) */
1751 #define JOURNAL_TRANS_MIN_DEFAULT 256
1752 #define JOURNAL_MAX_BATCH_DEFAULT   900	/* max blocks to batch into one transaction, don't make this any bigger than 900 */
1753 #define JOURNAL_MIN_RATIO 2
1754 #define JOURNAL_MAX_COMMIT_AGE 30
1755 #define JOURNAL_MAX_TRANS_AGE 30
1756 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1757 #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
1758 					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
1759 					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
1760 
1761 #ifdef CONFIG_QUOTA
1762 /* We need to update data and inode (atime) */
1763 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1764 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1765 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1766 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1767 /* same as with INIT */
1768 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1769 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1770 #else
1771 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1772 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1773 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1774 #endif
1775 
1776 /* both of these can be as low as 1, or as high as you want.  The min is the
1777 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1778 ** as needed, and released when transactions are committed.  On release, if
1779 ** the current number of nodes is > max, the node is freed, otherwise,
1780 ** it is put on a free list for faster use later.
1781 */
1782 #define REISERFS_MIN_BITMAP_NODES 10
1783 #define REISERFS_MAX_BITMAP_NODES 100
1784 
1785 #define JBH_HASH_SHIFT 13	/* these are based on journal hash size of 8192 */
1786 #define JBH_HASH_MASK 8191
1787 
1788 #define _jhashfn(sb,block)	\
1789 	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1790 	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1791 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1792 
1793 // We need these to make journal.c code more readable
1794 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1795 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1796 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1797 
1798 enum reiserfs_bh_state_bits {
1799 	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
1800 	BH_JDirty_wait,
1801 	BH_JNew,		/* disk block was taken off free list before
1802 				 * being in a finished transaction, or
1803 				 * written to disk. Can be reused immed. */
1804 	BH_JPrepared,
1805 	BH_JRestore_dirty,
1806 	BH_JTest,		// debugging only will go away
1807 };
1808 
1809 BUFFER_FNS(JDirty, journaled);
1810 TAS_BUFFER_FNS(JDirty, journaled);
1811 BUFFER_FNS(JDirty_wait, journal_dirty);
1812 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1813 BUFFER_FNS(JNew, journal_new);
1814 TAS_BUFFER_FNS(JNew, journal_new);
1815 BUFFER_FNS(JPrepared, journal_prepared);
1816 TAS_BUFFER_FNS(JPrepared, journal_prepared);
1817 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1818 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1819 BUFFER_FNS(JTest, journal_test);
1820 TAS_BUFFER_FNS(JTest, journal_test);
1821 
1822 /*
1823 ** transaction handle which is passed around for all journal calls
1824 */
1825 struct reiserfs_transaction_handle {
1826 	struct super_block *t_super;	/* super for this FS when journal_begin was
1827 					   called. saves calls to reiserfs_get_super
1828 					   also used by nested transactions to make
1829 					   sure they are nesting on the right FS
1830 					   _must_ be first in the handle
1831 					 */
1832 	int t_refcount;
1833 	int t_blocks_logged;	/* number of blocks this writer has logged */
1834 	int t_blocks_allocated;	/* number of blocks this writer allocated */
1835 	unsigned int t_trans_id;	/* sanity check, equals the current trans id */
1836 	void *t_handle_save;	/* save existing current->journal_info */
1837 	unsigned displace_new_blocks:1;	/* if new block allocation occurres, that block
1838 					   should be displaced from others */
1839 	struct list_head t_list;
1840 };
1841 
1842 /* used to keep track of ordered and tail writes, attached to the buffer
1843  * head through b_journal_head.
1844  */
1845 struct reiserfs_jh {
1846 	struct reiserfs_journal_list *jl;
1847 	struct buffer_head *bh;
1848 	struct list_head list;
1849 };
1850 
1851 void reiserfs_free_jh(struct buffer_head *bh);
1852 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1853 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1854 int journal_mark_dirty(struct reiserfs_transaction_handle *,
1855 		       struct super_block *, struct buffer_head *bh);
1856 
reiserfs_file_data_log(struct inode * inode)1857 static inline int reiserfs_file_data_log(struct inode *inode)
1858 {
1859 	if (reiserfs_data_log(inode->i_sb) ||
1860 	    (REISERFS_I(inode)->i_flags & i_data_log))
1861 		return 1;
1862 	return 0;
1863 }
1864 
reiserfs_transaction_running(struct super_block * s)1865 static inline int reiserfs_transaction_running(struct super_block *s)
1866 {
1867 	struct reiserfs_transaction_handle *th = current->journal_info;
1868 	if (th && th->t_super == s)
1869 		return 1;
1870 	if (th && th->t_super == NULL)
1871 		BUG();
1872 	return 0;
1873 }
1874 
reiserfs_transaction_free_space(struct reiserfs_transaction_handle * th)1875 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1876 {
1877 	return th->t_blocks_allocated - th->t_blocks_logged;
1878 }
1879 
1880 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1881 								    super_block
1882 								    *,
1883 								    int count);
1884 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1885 int reiserfs_commit_page(struct inode *inode, struct page *page,
1886 			 unsigned from, unsigned to);
1887 int reiserfs_flush_old_commits(struct super_block *);
1888 int reiserfs_commit_for_inode(struct inode *);
1889 int reiserfs_inode_needs_commit(struct inode *);
1890 void reiserfs_update_inode_transaction(struct inode *);
1891 void reiserfs_wait_on_write_block(struct super_block *s);
1892 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1893 void reiserfs_allow_writes(struct super_block *s);
1894 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1895 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1896 				 int wait);
1897 void reiserfs_restore_prepared_buffer(struct super_block *,
1898 				      struct buffer_head *bh);
1899 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1900 		 unsigned int);
1901 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1902 int journal_release_error(struct reiserfs_transaction_handle *,
1903 			  struct super_block *);
1904 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1905 		unsigned long);
1906 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1907 		     unsigned long);
1908 int journal_mark_freed(struct reiserfs_transaction_handle *,
1909 		       struct super_block *, b_blocknr_t blocknr);
1910 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1911 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
1912 			 int bit_nr, int searchall, b_blocknr_t *next);
1913 int journal_begin(struct reiserfs_transaction_handle *,
1914 		  struct super_block *sb, unsigned long);
1915 int journal_join_abort(struct reiserfs_transaction_handle *,
1916 		       struct super_block *sb, unsigned long);
1917 void reiserfs_abort_journal(struct super_block *sb, int errno);
1918 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1919 int reiserfs_allocate_list_bitmaps(struct super_block *s,
1920 				   struct reiserfs_list_bitmap *, unsigned int);
1921 
1922 void add_save_link(struct reiserfs_transaction_handle *th,
1923 		   struct inode *inode, int truncate);
1924 int remove_save_link(struct inode *inode, int truncate);
1925 
1926 /* objectid.c */
1927 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1928 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1929 			       __u32 objectid_to_release);
1930 int reiserfs_convert_objectid_map_v1(struct super_block *);
1931 
1932 /* stree.c */
1933 int B_IS_IN_TREE(const struct buffer_head *);
1934 extern void copy_item_head(struct item_head *to,
1935 			   const struct item_head *from);
1936 
1937 // first key is in cpu form, second - le
1938 extern int comp_short_keys(const struct reiserfs_key *le_key,
1939 			   const struct cpu_key *cpu_key);
1940 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1941 
1942 // both are in le form
1943 extern int comp_le_keys(const struct reiserfs_key *,
1944 			const struct reiserfs_key *);
1945 extern int comp_short_le_keys(const struct reiserfs_key *,
1946 			      const struct reiserfs_key *);
1947 
1948 //
1949 // get key version from on disk key - kludge
1950 //
le_key_version(const struct reiserfs_key * key)1951 static inline int le_key_version(const struct reiserfs_key *key)
1952 {
1953 	int type;
1954 
1955 	type = offset_v2_k_type(&(key->u.k_offset_v2));
1956 	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1957 	    && type != TYPE_DIRENTRY)
1958 		return KEY_FORMAT_3_5;
1959 
1960 	return KEY_FORMAT_3_6;
1961 
1962 }
1963 
copy_key(struct reiserfs_key * to,const struct reiserfs_key * from)1964 static inline void copy_key(struct reiserfs_key *to,
1965 			    const struct reiserfs_key *from)
1966 {
1967 	memcpy(to, from, KEY_SIZE);
1968 }
1969 
1970 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
1971 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
1972 				    const struct super_block *sb);
1973 int search_by_key(struct super_block *, const struct cpu_key *,
1974 		  struct treepath *, int);
1975 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1976 int search_for_position_by_key(struct super_block *sb,
1977 			       const struct cpu_key *cpu_key,
1978 			       struct treepath *search_path);
1979 extern void decrement_bcount(struct buffer_head *bh);
1980 void decrement_counters_in_path(struct treepath *search_path);
1981 void pathrelse(struct treepath *search_path);
1982 int reiserfs_check_path(struct treepath *p);
1983 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
1984 
1985 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1986 			 struct treepath *path,
1987 			 const struct cpu_key *key,
1988 			 struct item_head *ih,
1989 			 struct inode *inode, const char *body);
1990 
1991 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1992 			     struct treepath *path,
1993 			     const struct cpu_key *key,
1994 			     struct inode *inode,
1995 			     const char *body, int paste_size);
1996 
1997 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1998 			   struct treepath *path,
1999 			   struct cpu_key *key,
2000 			   struct inode *inode,
2001 			   struct page *page, loff_t new_file_size);
2002 
2003 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
2004 			 struct treepath *path,
2005 			 const struct cpu_key *key,
2006 			 struct inode *inode, struct buffer_head *un_bh);
2007 
2008 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
2009 				struct inode *inode, struct reiserfs_key *key);
2010 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
2011 			   struct inode *inode);
2012 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
2013 			 struct inode *inode, struct page *,
2014 			 int update_timestamps);
2015 
2016 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
2017 #define file_size(inode) ((inode)->i_size)
2018 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
2019 
2020 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
2021 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
2022 
2023 void padd_item(char *item, int total_length, int length);
2024 
2025 /* inode.c */
2026 /* args for the create parameter of reiserfs_get_block */
2027 #define GET_BLOCK_NO_CREATE 0	/* don't create new blocks or convert tails */
2028 #define GET_BLOCK_CREATE 1	/* add anything you need to find block */
2029 #define GET_BLOCK_NO_HOLE 2	/* return -ENOENT for file holes */
2030 #define GET_BLOCK_READ_DIRECT 4	/* read the tail if indirect item not found */
2031 #define GET_BLOCK_NO_IMUX     8	/* i_mutex is not held, don't preallocate */
2032 #define GET_BLOCK_NO_DANGLE   16	/* don't leave any transactions running */
2033 
2034 void reiserfs_read_locked_inode(struct inode *inode,
2035 				struct reiserfs_iget_args *args);
2036 int reiserfs_find_actor(struct inode *inode, void *p);
2037 int reiserfs_init_locked_inode(struct inode *inode, void *p);
2038 void reiserfs_evict_inode(struct inode *inode);
2039 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2040 int reiserfs_get_block(struct inode *inode, sector_t block,
2041 		       struct buffer_head *bh_result, int create);
2042 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2043 				     int fh_len, int fh_type);
2044 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2045 				     int fh_len, int fh_type);
2046 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
2047 		       int connectable);
2048 
2049 int reiserfs_truncate_file(struct inode *, int update_timestamps);
2050 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2051 		  int type, int key_length);
2052 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2053 		       int version,
2054 		       loff_t offset, int type, int length, int entry_count);
2055 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2056 
2057 struct reiserfs_security_handle;
2058 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
2059 		       struct inode *dir, int mode,
2060 		       const char *symname, loff_t i_size,
2061 		       struct dentry *dentry, struct inode *inode,
2062 		       struct reiserfs_security_handle *security);
2063 
2064 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
2065 			     struct inode *inode, loff_t size);
2066 
reiserfs_update_sd(struct reiserfs_transaction_handle * th,struct inode * inode)2067 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
2068 				      struct inode *inode)
2069 {
2070 	reiserfs_update_sd_size(th, inode, inode->i_size);
2071 }
2072 
2073 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2074 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
2075 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2076 
2077 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
2078 
2079 /* namei.c */
2080 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2081 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
2082 			struct treepath *path, struct reiserfs_dir_entry *de);
2083 struct dentry *reiserfs_get_parent(struct dentry *);
2084 
2085 #ifdef CONFIG_REISERFS_PROC_INFO
2086 int reiserfs_proc_info_init(struct super_block *sb);
2087 int reiserfs_proc_info_done(struct super_block *sb);
2088 int reiserfs_proc_info_global_init(void);
2089 int reiserfs_proc_info_global_done(void);
2090 
2091 #define PROC_EXP( e )   e
2092 
2093 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2094 #define PROC_INFO_MAX( sb, field, value )								\
2095     __PINFO( sb ).field =												\
2096         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2097 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2098 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2099 #define PROC_INFO_BH_STAT( sb, bh, level )							\
2100     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
2101     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
2102     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2103 #else
reiserfs_proc_info_init(struct super_block * sb)2104 static inline int reiserfs_proc_info_init(struct super_block *sb)
2105 {
2106 	return 0;
2107 }
2108 
reiserfs_proc_info_done(struct super_block * sb)2109 static inline int reiserfs_proc_info_done(struct super_block *sb)
2110 {
2111 	return 0;
2112 }
2113 
reiserfs_proc_info_global_init(void)2114 static inline int reiserfs_proc_info_global_init(void)
2115 {
2116 	return 0;
2117 }
2118 
reiserfs_proc_info_global_done(void)2119 static inline int reiserfs_proc_info_global_done(void)
2120 {
2121 	return 0;
2122 }
2123 
2124 #define PROC_EXP( e )
2125 #define VOID_V ( ( void ) 0 )
2126 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2127 #define PROC_INFO_INC( sb, field ) VOID_V
2128 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2129 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2130 #endif
2131 
2132 /* dir.c */
2133 extern const struct inode_operations reiserfs_dir_inode_operations;
2134 extern const struct inode_operations reiserfs_symlink_inode_operations;
2135 extern const struct inode_operations reiserfs_special_inode_operations;
2136 extern const struct file_operations reiserfs_dir_operations;
2137 int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
2138 
2139 /* tail_conversion.c */
2140 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2141 		    struct treepath *, struct buffer_head *, loff_t);
2142 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2143 		    struct page *, struct treepath *, const struct cpu_key *,
2144 		    loff_t, char *);
2145 void reiserfs_unmap_buffer(struct buffer_head *);
2146 
2147 /* file.c */
2148 extern const struct inode_operations reiserfs_file_inode_operations;
2149 extern const struct file_operations reiserfs_file_operations;
2150 extern const struct address_space_operations reiserfs_address_space_operations;
2151 
2152 /* fix_nodes.c */
2153 
2154 int fix_nodes(int n_op_mode, struct tree_balance *tb,
2155 	      struct item_head *ins_ih, const void *);
2156 void unfix_nodes(struct tree_balance *);
2157 
2158 /* prints.c */
2159 void __reiserfs_panic(struct super_block *s, const char *id,
2160 		      const char *function, const char *fmt, ...)
2161     __attribute__ ((noreturn));
2162 #define reiserfs_panic(s, id, fmt, args...) \
2163 	__reiserfs_panic(s, id, __func__, fmt, ##args)
2164 void __reiserfs_error(struct super_block *s, const char *id,
2165 		      const char *function, const char *fmt, ...);
2166 #define reiserfs_error(s, id, fmt, args...) \
2167 	 __reiserfs_error(s, id, __func__, fmt, ##args)
2168 void reiserfs_info(struct super_block *s, const char *fmt, ...);
2169 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2170 void print_indirect_item(struct buffer_head *bh, int item_num);
2171 void store_print_tb(struct tree_balance *tb);
2172 void print_cur_tb(char *mes);
2173 void print_de(struct reiserfs_dir_entry *de);
2174 void print_bi(struct buffer_info *bi, char *mes);
2175 #define PRINT_LEAF_ITEMS 1	/* print all items */
2176 #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
2177 #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
2178 void print_block(struct buffer_head *bh, ...);
2179 void print_bmap(struct super_block *s, int silent);
2180 void print_bmap_block(int i, char *data, int size, int silent);
2181 /*void print_super_block (struct super_block * s, char * mes);*/
2182 void print_objectid_map(struct super_block *s);
2183 void print_block_head(struct buffer_head *bh, char *mes);
2184 void check_leaf(struct buffer_head *bh);
2185 void check_internal(struct buffer_head *bh);
2186 void print_statistics(struct super_block *s);
2187 char *reiserfs_hashname(int code);
2188 
2189 /* lbalance.c */
2190 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2191 		    int mov_bytes, struct buffer_head *Snew);
2192 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2193 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2194 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2195 		       int del_num, int del_bytes);
2196 void leaf_insert_into_buf(struct buffer_info *bi, int before,
2197 			  struct item_head *inserted_item_ih,
2198 			  const char *inserted_item_body, int zeros_number);
2199 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2200 			  int pos_in_item, int paste_size, const char *body,
2201 			  int zeros_number);
2202 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2203 			  int pos_in_item, int cut_size);
2204 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2205 			int new_entry_count, struct reiserfs_de_head *new_dehs,
2206 			const char *records, int paste_size);
2207 /* ibalance.c */
2208 int balance_internal(struct tree_balance *, int, int, struct item_head *,
2209 		     struct buffer_head **);
2210 
2211 /* do_balance.c */
2212 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2213 				struct buffer_head *bh, int flag);
2214 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2215 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2216 
2217 void do_balance(struct tree_balance *tb, struct item_head *ih,
2218 		const char *body, int flag);
2219 void reiserfs_invalidate_buffer(struct tree_balance *tb,
2220 				struct buffer_head *bh);
2221 
2222 int get_left_neighbor_position(struct tree_balance *tb, int h);
2223 int get_right_neighbor_position(struct tree_balance *tb, int h);
2224 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2225 		 struct buffer_head *, int);
2226 void make_empty_node(struct buffer_info *);
2227 struct buffer_head *get_FEB(struct tree_balance *);
2228 
2229 /* bitmap.c */
2230 
2231 /* structure contains hints for block allocator, and it is a container for
2232  * arguments, such as node, search path, transaction_handle, etc. */
2233 struct __reiserfs_blocknr_hint {
2234 	struct inode *inode;	/* inode passed to allocator, if we allocate unf. nodes */
2235 	sector_t block;		/* file offset, in blocks */
2236 	struct in_core_key key;
2237 	struct treepath *path;	/* search path, used by allocator to deternine search_start by
2238 				 * various ways */
2239 	struct reiserfs_transaction_handle *th;	/* transaction handle is needed to log super blocks and
2240 						 * bitmap blocks changes  */
2241 	b_blocknr_t beg, end;
2242 	b_blocknr_t search_start;	/* a field used to transfer search start value (block number)
2243 					 * between different block allocator procedures
2244 					 * (determine_search_start() and others) */
2245 	int prealloc_size;	/* is set in determine_prealloc_size() function, used by underlayed
2246 				 * function that do actual allocation */
2247 
2248 	unsigned formatted_node:1;	/* the allocator uses different polices for getting disk space for
2249 					 * formatted/unformatted blocks with/without preallocation */
2250 	unsigned preallocate:1;
2251 };
2252 
2253 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2254 
2255 int reiserfs_parse_alloc_options(struct super_block *, char *);
2256 void reiserfs_init_alloc_options(struct super_block *s);
2257 
2258 /*
2259  * given a directory, this will tell you what packing locality
2260  * to use for a new object underneat it.  The locality is returned
2261  * in disk byte order (le).
2262  */
2263 __le32 reiserfs_choose_packing(struct inode *dir);
2264 
2265 int reiserfs_init_bitmap_cache(struct super_block *sb);
2266 void reiserfs_free_bitmap_cache(struct super_block *sb);
2267 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2268 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2269 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2270 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2271 			 b_blocknr_t, int for_unformatted);
2272 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2273 			       int);
reiserfs_new_form_blocknrs(struct tree_balance * tb,b_blocknr_t * new_blocknrs,int amount_needed)2274 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2275 					     b_blocknr_t * new_blocknrs,
2276 					     int amount_needed)
2277 {
2278 	reiserfs_blocknr_hint_t hint = {
2279 		.th = tb->transaction_handle,
2280 		.path = tb->tb_path,
2281 		.inode = NULL,
2282 		.key = tb->key,
2283 		.block = 0,
2284 		.formatted_node = 1
2285 	};
2286 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2287 					  0);
2288 }
2289 
reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct treepath * path,sector_t block)2290 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2291 					    *th, struct inode *inode,
2292 					    b_blocknr_t * new_blocknrs,
2293 					    struct treepath *path,
2294 					    sector_t block)
2295 {
2296 	reiserfs_blocknr_hint_t hint = {
2297 		.th = th,
2298 		.path = path,
2299 		.inode = inode,
2300 		.block = block,
2301 		.formatted_node = 0,
2302 		.preallocate = 0
2303 	};
2304 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2305 }
2306 
2307 #ifdef REISERFS_PREALLOCATE
reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct treepath * path,sector_t block)2308 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2309 					     *th, struct inode *inode,
2310 					     b_blocknr_t * new_blocknrs,
2311 					     struct treepath *path,
2312 					     sector_t block)
2313 {
2314 	reiserfs_blocknr_hint_t hint = {
2315 		.th = th,
2316 		.path = path,
2317 		.inode = inode,
2318 		.block = block,
2319 		.formatted_node = 0,
2320 		.preallocate = 1
2321 	};
2322 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2323 }
2324 
2325 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2326 			       struct inode *inode);
2327 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2328 #endif
2329 
2330 /* hashes.c */
2331 __u32 keyed_hash(const signed char *msg, int len);
2332 __u32 yura_hash(const signed char *msg, int len);
2333 __u32 r5_hash(const signed char *msg, int len);
2334 
2335 #define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
2336 #define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
2337 #define reiserfs_test_le_bit		test_bit_le
2338 #define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
2339 
2340 /* sometimes reiserfs_truncate may require to allocate few new blocks
2341    to perform indirect2direct conversion. People probably used to
2342    think, that truncate should work without problems on a filesystem
2343    without free disk space. They may complain that they can not
2344    truncate due to lack of free disk space. This spare space allows us
2345    to not worry about it. 500 is probably too much, but it should be
2346    absolutely safe */
2347 #define SPARE_SPACE 500
2348 
2349 /* prototypes from ioctl.c */
2350 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2351 long reiserfs_compat_ioctl(struct file *filp,
2352 		   unsigned int cmd, unsigned long arg);
2353 int reiserfs_unpack(struct inode *inode, struct file *filp);
2354 
2355 #endif /* __KERNEL__ */
2356 
2357 #endif				/* _LINUX_REISER_FS_H */
2358