1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel reference Implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_opt *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 extern kmem_cache_t *sctp_bucket_cachep;
111 extern int sctp_assoc_valid(struct sock *sk, struct sctp_association *asoc);
112
113 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)114 static inline int sctp_wspace(struct sctp_association *asoc)
115 {
116 struct sock *sk = asoc->base.sk;
117 int amt = 0;
118
119 amt = sk->sndbuf - asoc->sndbuf_used;
120 if (amt < 0)
121 amt = 0;
122 return amt;
123 }
124
125 /* Increment the used sndbuf space count of the corresponding association by
126 * the size of the outgoing data chunk.
127 * Also, set the skb destructor for sndbuf accounting later.
128 *
129 * Since it is always 1-1 between chunk and skb, and also a new skb is always
130 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
131 * destructor in the data chunk skb for the purpose of the sndbuf space
132 * tracking.
133 */
sctp_set_owner_w(struct sctp_chunk * chunk)134 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
135 {
136 struct sctp_association *asoc = chunk->asoc;
137 struct sock *sk = asoc->base.sk;
138
139 /* The sndbuf space is tracked per association. */
140 sctp_association_hold(asoc);
141
142 chunk->skb->destructor = sctp_wfree;
143 /* Save the chunk pointer in skb for sctp_wfree to use later. */
144 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
145
146 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk);
147 sk->wmem_queued += SCTP_DATA_SNDSIZE(chunk);
148 }
149
150 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)151 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
152 int len)
153 {
154 struct sctp_af *af;
155
156 /* Verify basic sockaddr. */
157 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
158 if (!af)
159 return -EINVAL;
160
161 /* Is this a valid SCTP address? */
162 if (!af->addr_valid(addr, sctp_sk(sk)))
163 return -EINVAL;
164
165 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
166 return -EINVAL;
167
168 return 0;
169 }
170
171 /* Look up the association by its id. If this is not a UDP-style
172 * socket, the ID field is always ignored.
173 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)174 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
175 {
176 struct sctp_association *asoc = NULL;
177
178 /* If this is not a UDP-style socket, assoc id should be ignored. */
179 if (!sctp_style(sk, UDP)) {
180 /* Return NULL if the socket state is not ESTABLISHED. It
181 * could be a TCP-style listening socket or a socket which
182 * hasn't yet called connect() to establish an association.
183 */
184 if (!sctp_sstate(sk, ESTABLISHED))
185 return NULL;
186
187 /* Get the first and the only association from the list. */
188 if (!list_empty(&sctp_sk(sk)->ep->asocs))
189 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
190 struct sctp_association, asocs);
191 return asoc;
192 }
193
194 /* Otherwise this is a UDP-style socket. */
195 asoc = (struct sctp_association *)id;
196 if (!sctp_assoc_valid(sk, asoc))
197 return NULL;
198
199 return asoc;
200 }
201
202 /* Look up the transport from an address and an assoc id. If both address and
203 * id are specified, the associations matching the address and the id should be
204 * the same.
205 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)206 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
207 struct sockaddr_storage *addr,
208 sctp_assoc_t id)
209 {
210 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
211 struct sctp_transport *transport;
212 union sctp_addr *laddr = (union sctp_addr *)addr;
213
214 laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
215 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
216 (union sctp_addr *)addr,
217 &transport);
218 laddr->v4.sin_port = htons(laddr->v4.sin_port);
219
220 if (!addr_asoc)
221 return NULL;
222
223 id_asoc = sctp_id2assoc(sk, id);
224 if (id_asoc && (id_asoc != addr_asoc))
225 return NULL;
226
227 sctp_get_pf_specific(sk->family)->addr_v4map(sctp_sk(sk),
228 (union sctp_addr *)addr);
229
230 return transport;
231 }
232
233 /* API 3.1.2 bind() - UDP Style Syntax
234 * The syntax of bind() is,
235 *
236 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
237 *
238 * sd - the socket descriptor returned by socket().
239 * addr - the address structure (struct sockaddr_in or struct
240 * sockaddr_in6 [RFC 2553]),
241 * addr_len - the size of the address structure.
242 */
sctp_bind(struct sock * sk,struct sockaddr * uaddr,int addr_len)243 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len)
244 {
245 int retval = 0;
246
247 sctp_lock_sock(sk);
248
249 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, uaddr: %p, addr_len: %d)\n",
250 sk, uaddr, addr_len);
251
252 /* Disallow binding twice. */
253 if (!sctp_sk(sk)->ep->base.bind_addr.port)
254 retval = sctp_do_bind(sk, (union sctp_addr *)uaddr,
255 addr_len);
256 else
257 retval = -EINVAL;
258
259 sctp_release_sock(sk);
260
261 return retval;
262 }
263
264 static long sctp_get_port_local(struct sock *, union sctp_addr *);
265
266 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_opt * opt,union sctp_addr * addr,int len)267 static struct sctp_af *sctp_sockaddr_af(struct sctp_opt *opt,
268 union sctp_addr *addr, int len)
269 {
270 struct sctp_af *af;
271
272 /* Check minimum size. */
273 if (len < sizeof (struct sockaddr))
274 return NULL;
275
276 /* Does this PF support this AF? */
277 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
278 return NULL;
279
280 /* If we get this far, af is valid. */
281 af = sctp_get_af_specific(addr->sa.sa_family);
282
283 if (len < af->sockaddr_len)
284 return NULL;
285
286 return af;
287 }
288
289 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)290 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
291 {
292 struct sctp_opt *sp = sctp_sk(sk);
293 struct sctp_endpoint *ep = sp->ep;
294 struct sctp_bind_addr *bp = &ep->base.bind_addr;
295 struct sctp_af *af;
296 unsigned short snum;
297 int ret = 0;
298
299 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d)\n",
300 sk, addr, len);
301
302 /* Common sockaddr verification. */
303 af = sctp_sockaddr_af(sp, addr, len);
304 if (!af)
305 return -EINVAL;
306
307 /* PF specific bind() address verification. */
308 if (!sp->pf->bind_verify(sp, addr))
309 return -EADDRNOTAVAIL;
310
311 snum= ntohs(addr->v4.sin_port);
312
313 SCTP_DEBUG_PRINTK("sctp_do_bind: port: %d, new port: %d\n",
314 bp->port, snum);
315
316 /* We must either be unbound, or bind to the same port. */
317 if (bp->port && (snum != bp->port)) {
318 SCTP_DEBUG_PRINTK("sctp_do_bind:"
319 " New port %d does not match existing port "
320 "%d.\n", snum, bp->port);
321 return -EINVAL;
322 }
323
324 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
325 return -EACCES;
326
327 /* See if the address matches any of the addresses we may have
328 * already bound before checking against other endpoints.
329 */
330 if (sctp_bind_addr_match(bp, addr, sp))
331 return -EINVAL;
332
333 /* Make sure we are allowed to bind here.
334 * The function sctp_get_port_local() does duplicate address
335 * detection.
336 */
337 if ((ret = sctp_get_port_local(sk, addr))) {
338 return -EADDRINUSE;
339 }
340
341 /* Refresh ephemeral port. */
342 if (!bp->port)
343 bp->port = sk->num;
344
345 /* Add the address to the bind address list. */
346 sctp_local_bh_disable();
347 sctp_write_lock(&ep->base.addr_lock);
348
349 /* Use GFP_ATOMIC since BHs are disabled. */
350 addr->v4.sin_port = ntohs(addr->v4.sin_port);
351 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
352 addr->v4.sin_port = htons(addr->v4.sin_port);
353 sctp_write_unlock(&ep->base.addr_lock);
354 sctp_local_bh_enable();
355
356 /* Copy back into socket for getsockname() use. */
357 if (!ret) {
358 sk->sport = htons(sk->num);
359 af->to_sk_saddr(addr, sk);
360 }
361
362 return ret;
363 }
364
365 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
366 *
367 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
368 * at any one time. If a sender, after sending an ASCONF chunk, decides
369 * it needs to transfer another ASCONF Chunk, it MUST wait until the
370 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
371 * subsequent ASCONF. Note this restriction binds each side, so at any
372 * time two ASCONF may be in-transit on any given association (one sent
373 * from each endpoint).
374 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)375 static int sctp_send_asconf(struct sctp_association *asoc,
376 struct sctp_chunk *chunk)
377 {
378 int retval = 0;
379
380 /* If there is an outstanding ASCONF chunk, queue it for later
381 * transmission.
382 */
383 if (asoc->addip_last_asconf) {
384 __skb_queue_tail(&asoc->addip_chunks, (struct sk_buff *)chunk);
385 goto out;
386 }
387
388 /* Hold the chunk until an ASCONF_ACK is received. */
389 sctp_chunk_hold(chunk);
390 retval = sctp_primitive_ASCONF(asoc, chunk);
391 if (retval)
392 sctp_chunk_free(chunk);
393 else
394 asoc->addip_last_asconf = chunk;
395
396 out:
397 return retval;
398 }
399
400 /* Add a list of addresses as bind addresses to local endpoint or
401 * association.
402 *
403 * Basically run through each address specified in the addrs/addrcnt
404 * array/length pair, determine if it is IPv6 or IPv4 and call
405 * sctp_do_bind() on it.
406 *
407 * If any of them fails, then the operation will be reversed and the
408 * ones that were added will be removed.
409 *
410 * Only sctp_setsockopt_bindx() is supposed to call this function.
411 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)412 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
413 {
414 int cnt;
415 int retval = 0;
416 void *addr_buf;
417 struct sockaddr *sa_addr;
418 struct sctp_af *af;
419
420 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
421 sk, addrs, addrcnt);
422
423 addr_buf = addrs;
424 for (cnt = 0; cnt < addrcnt; cnt++) {
425 /* The list may contain either IPv4 or IPv6 address;
426 * determine the address length for walking thru the list.
427 */
428 sa_addr = (struct sockaddr *)addr_buf;
429 af = sctp_get_af_specific(sa_addr->sa_family);
430 if (!af) {
431 retval = -EINVAL;
432 goto err_bindx_add;
433 }
434
435 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
436 af->sockaddr_len);
437
438 addr_buf += af->sockaddr_len;
439
440 err_bindx_add:
441 if (retval < 0) {
442 /* Failed. Cleanup the ones that have been added */
443 if (cnt > 0)
444 sctp_bindx_rem(sk, addrs, cnt);
445 return retval;
446 }
447 }
448
449 return retval;
450 }
451
452 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
453 * associations that are part of the endpoint indicating that a list of local
454 * addresses are added to the endpoint.
455 *
456 * If any of the addresses is already in the bind address list of the
457 * association, we do not send the chunk for that association. But it will not
458 * affect other associations.
459 *
460 * Only sctp_setsockopt_bindx() is supposed to call this function.
461 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)462 static int sctp_send_asconf_add_ip(struct sock *sk,
463 struct sockaddr *addrs,
464 int addrcnt)
465 {
466 struct sctp_opt *sp;
467 struct sctp_endpoint *ep;
468 struct sctp_association *asoc;
469 struct sctp_bind_addr *bp;
470 struct sctp_chunk *chunk;
471 struct sctp_sockaddr_entry *laddr;
472 union sctp_addr *addr;
473 void *addr_buf;
474 struct sctp_af *af;
475 struct list_head *pos;
476 struct list_head *p;
477 int i;
478 int retval = 0;
479
480 if (!sctp_addip_enable)
481 return retval;
482
483 sp = sctp_sk(sk);
484 ep = sp->ep;
485
486 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
487 __FUNCTION__, sk, addrs, addrcnt);
488
489 list_for_each(pos, &ep->asocs) {
490 asoc = list_entry(pos, struct sctp_association, asocs);
491
492 if (!asoc->peer.asconf_capable)
493 continue;
494
495 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
496 continue;
497
498 if (!sctp_state(asoc, ESTABLISHED))
499 continue;
500
501 /* Check if any address in the packed array of addresses is
502 * in the bind address list of the association. If so,
503 * do not send the asconf chunk to its peer, but continue with
504 * other associations.
505 */
506 addr_buf = addrs;
507 for (i = 0; i < addrcnt; i++) {
508 addr = (union sctp_addr *)addr_buf;
509 af = sctp_get_af_specific(addr->v4.sin_family);
510 if (!af) {
511 retval = -EINVAL;
512 goto out;
513 }
514
515 if (sctp_assoc_lookup_laddr(asoc, addr))
516 break;
517
518 addr_buf += af->sockaddr_len;
519 }
520 if (i < addrcnt)
521 continue;
522
523 /* Use the first address in bind addr list of association as
524 * Address Parameter of ASCONF CHUNK.
525 */
526 sctp_read_lock(&asoc->base.addr_lock);
527 bp = &asoc->base.bind_addr;
528 p = bp->address_list.next;
529 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
530 sctp_read_unlock(&asoc->base.addr_lock);
531
532 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
533 addrcnt, SCTP_PARAM_ADD_IP);
534 if (!chunk) {
535 retval = -ENOMEM;
536 goto out;
537 }
538
539 retval = sctp_send_asconf(asoc, chunk);
540
541 /* FIXME: After sending the add address ASCONF chunk, we
542 * cannot append the address to the association's binding
543 * address list, because the new address may be used as the
544 * source of a message sent to the peer before the ASCONF
545 * chunk is received by the peer. So we should wait until
546 * ASCONF_ACK is received.
547 */
548 }
549
550 out:
551 return retval;
552 }
553
554 /* Remove a list of addresses from bind addresses list. Do not remove the
555 * last address.
556 *
557 * Basically run through each address specified in the addrs/addrcnt
558 * array/length pair, determine if it is IPv6 or IPv4 and call
559 * sctp_del_bind() on it.
560 *
561 * If any of them fails, then the operation will be reversed and the
562 * ones that were removed will be added back.
563 *
564 * At least one address has to be left; if only one address is
565 * available, the operation will return -EBUSY.
566 *
567 * Only sctp_setsockopt_bindx() is supposed to call this function.
568 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)569 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
570 {
571 struct sctp_opt *sp = sctp_sk(sk);
572 struct sctp_endpoint *ep = sp->ep;
573 int cnt;
574 struct sctp_bind_addr *bp = &ep->base.bind_addr;
575 int retval = 0;
576 union sctp_addr saveaddr;
577 void *addr_buf;
578 struct sockaddr *sa_addr;
579 struct sctp_af *af;
580
581 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
582 sk, addrs, addrcnt);
583
584 addr_buf = addrs;
585 for (cnt = 0; cnt < addrcnt; cnt++) {
586 /* If the bind address list is empty or if there is only one
587 * bind address, there is nothing more to be removed (we need
588 * at least one address here).
589 */
590 if (list_empty(&bp->address_list) ||
591 (sctp_list_single_entry(&bp->address_list))) {
592 retval = -EBUSY;
593 goto err_bindx_rem;
594 }
595
596 /* The list may contain either IPv4 or IPv6 address;
597 * determine the address length to copy the address to
598 * saveaddr.
599 */
600 sa_addr = (struct sockaddr *)addr_buf;
601 af = sctp_get_af_specific(sa_addr->sa_family);
602 if (!af) {
603 retval = -EINVAL;
604 goto err_bindx_rem;
605 }
606 memcpy(&saveaddr, sa_addr, af->sockaddr_len);
607 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
608 if (saveaddr.v4.sin_port != bp->port) {
609 retval = -EINVAL;
610 goto err_bindx_rem;
611 }
612
613 /* FIXME - There is probably a need to check if sk->sk_saddr and
614 * sk->rcv_addr are currently set to one of the addresses to
615 * be removed. This is something which needs to be looked into
616 * when we are fixing the outstanding issues with multi-homing
617 * socket routing and failover schemes. Refer to comments in
618 * sctp_do_bind(). -daisy
619 */
620 sctp_local_bh_disable();
621 sctp_write_lock(&ep->base.addr_lock);
622
623 retval = sctp_del_bind_addr(bp, &saveaddr);
624
625 sctp_write_unlock(&ep->base.addr_lock);
626 sctp_local_bh_enable();
627
628 addr_buf += af->sockaddr_len;
629 err_bindx_rem:
630 if (retval < 0) {
631 /* Failed. Add the ones that has been removed back */
632 if (cnt > 0)
633 sctp_bindx_add(sk, addrs, cnt);
634 return retval;
635 }
636 }
637
638 return retval;
639 }
640
641 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
642 * the associations that are part of the endpoint indicating that a list of
643 * local addresses are removed from the endpoint.
644 *
645 * If any of the addresses is already in the bind address list of the
646 * association, we do not send the chunk for that association. But it will not
647 * affect other associations.
648 *
649 * Only sctp_setsockopt_bindx() is supposed to call this function.
650 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)651 static int sctp_send_asconf_del_ip(struct sock *sk,
652 struct sockaddr *addrs,
653 int addrcnt)
654 {
655 struct sctp_opt *sp;
656 struct sctp_endpoint *ep;
657 struct sctp_association *asoc;
658 struct sctp_bind_addr *bp;
659 struct sctp_chunk *chunk;
660 union sctp_addr *laddr;
661 void *addr_buf;
662 struct sctp_af *af;
663 struct list_head *pos;
664 int i;
665 int retval = 0;
666
667 if (!sctp_addip_enable)
668 return retval;
669
670 sp = sctp_sk(sk);
671 ep = sp->ep;
672
673 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
674 __FUNCTION__, sk, addrs, addrcnt);
675
676 list_for_each(pos, &ep->asocs) {
677 asoc = list_entry(pos, struct sctp_association, asocs);
678
679 if (!asoc->peer.asconf_capable)
680 continue;
681
682 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
683 continue;
684
685 if (!sctp_state(asoc, ESTABLISHED))
686 continue;
687
688 /* Check if any address in the packed array of addresses is
689 * not present in the bind address list of the association.
690 * If so, do not send the asconf chunk to its peer, but
691 * continue with other associations.
692 */
693 addr_buf = addrs;
694 for (i = 0; i < addrcnt; i++) {
695 laddr = (union sctp_addr *)addr_buf;
696 af = sctp_get_af_specific(laddr->v4.sin_family);
697 if (!af) {
698 retval = -EINVAL;
699 goto out;
700 }
701
702 if (!sctp_assoc_lookup_laddr(asoc, laddr))
703 break;
704
705 addr_buf += af->sockaddr_len;
706 }
707 if (i < addrcnt)
708 continue;
709
710 /* Find one address in the association's bind address list
711 * that is not in the packed array of addresses. This is to
712 * make sure that we do not delete all the addresses in the
713 * association.
714 */
715 sctp_read_lock(&asoc->base.addr_lock);
716 bp = &asoc->base.bind_addr;
717 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
718 addrcnt, sp);
719 sctp_read_unlock(&asoc->base.addr_lock);
720 if (!laddr)
721 continue;
722
723 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
724 SCTP_PARAM_DEL_IP);
725 if (!chunk) {
726 retval = -ENOMEM;
727 goto out;
728 }
729
730 retval = sctp_send_asconf(asoc, chunk);
731
732 /* FIXME: After sending the delete address ASCONF chunk, we
733 * cannot remove the addresses from the association's bind
734 * address list, because there maybe some packet send to
735 * the delete addresses, so we should wait until ASCONF_ACK
736 * packet is received.
737 */
738 }
739 out:
740 return retval;
741 }
742
743 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
744 *
745 * API 8.1
746 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
747 * int flags);
748 *
749 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
750 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
751 * or IPv6 addresses.
752 *
753 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
754 * Section 3.1.2 for this usage.
755 *
756 * addrs is a pointer to an array of one or more socket addresses. Each
757 * address is contained in its appropriate structure (i.e. struct
758 * sockaddr_in or struct sockaddr_in6) the family of the address type
759 * must be used to distengish the address length (note that this
760 * representation is termed a "packed array" of addresses). The caller
761 * specifies the number of addresses in the array with addrcnt.
762 *
763 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
764 * -1, and sets errno to the appropriate error code.
765 *
766 * For SCTP, the port given in each socket address must be the same, or
767 * sctp_bindx() will fail, setting errno to EINVAL.
768 *
769 * The flags parameter is formed from the bitwise OR of zero or more of
770 * the following currently defined flags:
771 *
772 * SCTP_BINDX_ADD_ADDR
773 *
774 * SCTP_BINDX_REM_ADDR
775 *
776 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
777 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
778 * addresses from the association. The two flags are mutually exclusive;
779 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
780 * not remove all addresses from an association; sctp_bindx() will
781 * reject such an attempt with EINVAL.
782 *
783 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
784 * additional addresses with an endpoint after calling bind(). Or use
785 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
786 * socket is associated with so that no new association accepted will be
787 * associated with those addresses. If the endpoint supports dynamic
788 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
789 * endpoint to send the appropriate message to the peer to change the
790 * peers address lists.
791 *
792 * Adding and removing addresses from a connected association is
793 * optional functionality. Implementations that do not support this
794 * functionality should return EOPNOTSUPP.
795 *
796 * Basically do nothing but copying the addresses from user to kernel
797 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
798 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() * from userspace.
799 *
800 * We don't use copy_from_user() for optimization: we first do the
801 * sanity checks (buffer size -fast- and access check-healthy
802 * pointer); if all of those succeed, then we can alloc the memory
803 * (expensive operation) needed to copy the data to kernel. Then we do
804 * the copying without checking the user space area
805 * (__copy_from_user()).
806 *
807 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
808 * it.
809 *
810 * sk The sk of the socket
811 * addrs The pointer to the addresses in user land
812 * addrssize Size of the addrs buffer
813 * op Operation to perform (add or remove, see the flags of
814 * sctp_bindx)
815 *
816 * Returns 0 if ok, <0 errno code on error.
817 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr * addrs,int addrs_size,int op)818 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, struct sockaddr *addrs,
819 int addrs_size, int op)
820 {
821 struct sockaddr *kaddrs;
822 int err;
823 int addrcnt = 0;
824 int walk_size = 0;
825 struct sockaddr *sa_addr;
826 void *addr_buf;
827 struct sctp_af *af;
828
829 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
830 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
831
832 if (unlikely(addrs_size <= 0))
833 return -EINVAL;
834
835 /* Check the user passed a healthy pointer. */
836 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
837 return -EFAULT;
838
839 /* Alloc space for the address array in kernel memory. */
840 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
841 if (unlikely(!kaddrs))
842 return -ENOMEM;
843
844 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
845 kfree(kaddrs);
846 return -EFAULT;
847 }
848
849 /* Walk through the addrs buffer and count the number of addresses. */
850 addr_buf = kaddrs;
851 while (walk_size < addrs_size) {
852 sa_addr = (struct sockaddr *)addr_buf;
853 af = sctp_get_af_specific(sa_addr->sa_family);
854
855 /* If the address family is not supported or if this address
856 * causes the address buffer to overflow return EINVAL.
857 */
858 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
859 kfree(kaddrs);
860 return -EINVAL;
861 }
862 addrcnt++;
863 addr_buf += af->sockaddr_len;
864 walk_size += af->sockaddr_len;
865 }
866
867 /* Do the work. */
868 switch (op) {
869 case SCTP_BINDX_ADD_ADDR:
870 err = sctp_bindx_add(sk, kaddrs, addrcnt);
871 if (err)
872 goto out;
873 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
874 break;
875
876 case SCTP_BINDX_REM_ADDR:
877 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
878 if (err)
879 goto out;
880 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
881 break;
882
883 default:
884 err = -EINVAL;
885 break;
886 };
887
888 out:
889 kfree(kaddrs);
890
891 return err;
892 }
893
894 /* API 3.1.4 close() - UDP Style Syntax
895 * Applications use close() to perform graceful shutdown (as described in
896 * Section 10.1 of [SCTP]) on ALL the associations currently represented
897 * by a UDP-style socket.
898 *
899 * The syntax is
900 *
901 * ret = close(int sd);
902 *
903 * sd - the socket descriptor of the associations to be closed.
904 *
905 * To gracefully shutdown a specific association represented by the
906 * UDP-style socket, an application should use the sendmsg() call,
907 * passing no user data, but including the appropriate flag in the
908 * ancillary data (see Section xxxx).
909 *
910 * If sd in the close() call is a branched-off socket representing only
911 * one association, the shutdown is performed on that association only.
912 *
913 * 4.1.6 close() - TCP Style Syntax
914 *
915 * Applications use close() to gracefully close down an association.
916 *
917 * The syntax is:
918 *
919 * int close(int sd);
920 *
921 * sd - the socket descriptor of the association to be closed.
922 *
923 * After an application calls close() on a socket descriptor, no further
924 * socket operations will succeed on that descriptor.
925 *
926 * API 7.1.4 SO_LINGER
927 *
928 * An application using the TCP-style socket can use this option to
929 * perform the SCTP ABORT primitive. The linger option structure is:
930 *
931 * struct linger {
932 * int l_onoff; // option on/off
933 * int l_linger; // linger time
934 * };
935 *
936 * To enable the option, set l_onoff to 1. If the l_linger value is set
937 * to 0, calling close() is the same as the ABORT primitive. If the
938 * value is set to a negative value, the setsockopt() call will return
939 * an error. If the value is set to a positive value linger_time, the
940 * close() can be blocked for at most linger_time ms. If the graceful
941 * shutdown phase does not finish during this period, close() will
942 * return but the graceful shutdown phase continues in the system.
943 */
sctp_close(struct sock * sk,long timeout)944 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
945 {
946 struct sctp_endpoint *ep;
947 struct sctp_association *asoc;
948 struct list_head *pos, *temp;
949
950 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
951
952 sctp_lock_sock(sk);
953 sk->shutdown = SHUTDOWN_MASK;
954
955 ep = sctp_sk(sk)->ep;
956
957 /* Walk all associations on a socket, not on an endpoint. */
958 list_for_each_safe(pos, temp, &ep->asocs) {
959 asoc = list_entry(pos, struct sctp_association, asocs);
960
961 if (sctp_style(sk, TCP)) {
962 /* A closed association can still be in the list if
963 * it belongs to a TCP-style listening socket that is
964 * not yet accepted. If so, free it. If not, send an
965 * ABORT or SHUTDOWN based on the linger options.
966 */
967 if (sctp_state(asoc, CLOSED)) {
968 sctp_unhash_established(asoc);
969 sctp_association_free(asoc);
970
971 } else if (sk->linger && !sk->lingertime) {
972 struct sctp_chunk *chunk;
973
974 chunk = sctp_make_abort_user(asoc, NULL, 0);
975 if (chunk)
976 sctp_primitive_ABORT(asoc, NULL);
977 } else
978 sctp_primitive_SHUTDOWN(asoc, NULL);
979 } else
980 sctp_primitive_SHUTDOWN(asoc, NULL);
981 }
982
983 /* Clean up any skbs sitting on the receive queue. */
984 sctp_queue_purge_ulpevents(&sk->receive_queue);
985 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
986
987 /* On a TCP-style socket, block for at most linger_time if set. */
988 if (sctp_style(sk, TCP) && timeout)
989 sctp_wait_for_close(sk, timeout);
990
991 /* This will run the backlog queue. */
992 sctp_release_sock(sk);
993
994 /* Supposedly, no process has access to the socket, but
995 * the net layers still may.
996 */
997 sctp_local_bh_disable();
998 sctp_bh_lock_sock(sk);
999
1000 /* Hold the sock, since inet_sock_release() will put sock_put()
1001 * and we have just a little more cleanup.
1002 */
1003 sock_hold(sk);
1004 inet_sock_release(sk);
1005
1006 sctp_bh_unlock_sock(sk);
1007 sctp_local_bh_enable();
1008
1009 sock_put(sk);
1010
1011 SCTP_DBG_OBJCNT_DEC(sock);
1012 }
1013
1014 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1015 static int sctp_error(struct sock *sk, int flags, int err)
1016 {
1017 if (err == -EPIPE)
1018 err = sock_error(sk) ? : -EPIPE;
1019 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1020 send_sig(SIGPIPE, current, 0);
1021 return err;
1022 }
1023
1024 /* API 3.1.3 sendmsg() - UDP Style Syntax
1025 *
1026 * An application uses sendmsg() and recvmsg() calls to transmit data to
1027 * and receive data from its peer.
1028 *
1029 * ssize_t sendmsg(int socket, const struct msghdr *message,
1030 * int flags);
1031 *
1032 * socket - the socket descriptor of the endpoint.
1033 * message - pointer to the msghdr structure which contains a single
1034 * user message and possibly some ancillary data.
1035 *
1036 * See Section 5 for complete description of the data
1037 * structures.
1038 *
1039 * flags - flags sent or received with the user message, see Section
1040 * 5 for complete description of the flags.
1041 *
1042 * Note: This function could use a rewrite especially when explicit
1043 * connect support comes in.
1044 */
1045 /* BUG: We do not implement the equivalent of wait_for_tcp_memory(). */
1046
1047 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1048
sctp_sendmsg(struct sock * sk,struct msghdr * msg,int msg_len)1049 SCTP_STATIC int sctp_sendmsg(struct sock *sk, struct msghdr *msg, int msg_len)
1050 {
1051 struct sctp_opt *sp;
1052 struct sctp_endpoint *ep;
1053 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1054 struct sctp_transport *transport, *chunk_tp;
1055 struct sctp_chunk *chunk;
1056 union sctp_addr to;
1057 struct sockaddr *msg_name = NULL;
1058 struct sctp_sndrcvinfo default_sinfo = { 0 };
1059 struct sctp_sndrcvinfo *sinfo;
1060 struct sctp_initmsg *sinit;
1061 sctp_assoc_t associd = NULL;
1062 sctp_cmsgs_t cmsgs = { NULL };
1063 int err;
1064 sctp_scope_t scope;
1065 long timeo;
1066 __u16 sinfo_flags = 0;
1067 struct sctp_datamsg *datamsg;
1068 struct list_head *pos;
1069 int msg_flags = msg->msg_flags;
1070
1071 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %u)\n",
1072 sk, msg, msg_len);
1073
1074 err = 0;
1075 sp = sctp_sk(sk);
1076 ep = sp->ep;
1077
1078 SCTP_DEBUG_PRINTK("Using endpoint: %s.\n", ep->debug_name);
1079
1080 /* We cannot send a message over a TCP-style listening socket. */
1081 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1082 err = -EPIPE;
1083 goto out_nounlock;
1084 }
1085
1086 /* Parse out the SCTP CMSGs. */
1087 err = sctp_msghdr_parse(msg, &cmsgs);
1088
1089 if (err) {
1090 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1091 goto out_nounlock;
1092 }
1093
1094 /* Fetch the destination address for this packet. This
1095 * address only selects the association--it is not necessarily
1096 * the address we will send to.
1097 * For a peeled-off socket, msg_name is ignored.
1098 */
1099 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1100 int msg_namelen = msg->msg_namelen;
1101
1102 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1103 msg_namelen);
1104 if (err)
1105 return err;
1106
1107 if (msg_namelen > sizeof(to))
1108 msg_namelen = sizeof(to);
1109 memcpy(&to, msg->msg_name, msg_namelen);
1110 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1111 "0x%x:%u.\n",
1112 to.v4.sin_addr.s_addr, to.v4.sin_port);
1113
1114 to.v4.sin_port = ntohs(to.v4.sin_port);
1115 msg_name = msg->msg_name;
1116 }
1117
1118 sinfo = cmsgs.info;
1119 sinit = cmsgs.init;
1120
1121 /* Did the user specify SNDRCVINFO? */
1122 if (sinfo) {
1123 sinfo_flags = sinfo->sinfo_flags;
1124 associd = sinfo->sinfo_assoc_id;
1125 }
1126
1127 SCTP_DEBUG_PRINTK("msg_len: %u, sinfo_flags: 0x%x\n",
1128 msg_len, sinfo_flags);
1129
1130 /* MSG_EOF or MSG_ABORT cannot be set on a TCP-style socket. */
1131 if (sctp_style(sk, TCP) && (sinfo_flags & (MSG_EOF | MSG_ABORT))) {
1132 err = -EINVAL;
1133 goto out_nounlock;
1134 }
1135
1136 /* If MSG_EOF is set, no data can be sent. Disallow sending zero
1137 * length messages when MSG_EOF|MSG_ABORT is not set.
1138 * If MSG_ABORT is set, the message length could be non zero with
1139 * the msg_iov set to the user abort reason.
1140 */
1141 if (((sinfo_flags & MSG_EOF) && (msg_len > 0)) ||
1142 (!(sinfo_flags & (MSG_EOF|MSG_ABORT)) && (msg_len == 0))) {
1143 err = -EINVAL;
1144 goto out_nounlock;
1145 }
1146
1147 /* If MSG_ADDR_OVER is set, there must be an address
1148 * specified in msg_name.
1149 */
1150 if ((sinfo_flags & MSG_ADDR_OVER) && (!msg->msg_name)) {
1151 err = -EINVAL;
1152 goto out_nounlock;
1153 }
1154
1155 transport = NULL;
1156
1157 SCTP_DEBUG_PRINTK("About to look up association.\n");
1158
1159 sctp_lock_sock(sk);
1160
1161 /* If a msg_name has been specified, assume this is to be used. */
1162 if (msg_name) {
1163 /* Look for a matching association on the endpoint. */
1164 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1165 if (!asoc) {
1166 /* If we could not find a matching association on the
1167 * endpoint, make sure that it is not a TCP-style
1168 * socket that already has an association or there is
1169 * no peeled-off association on another socket.
1170 */
1171 if ((sctp_style(sk, TCP) &&
1172 sctp_sstate(sk, ESTABLISHED)) ||
1173 sctp_endpoint_is_peeled_off(ep, &to)) {
1174 err = -EADDRNOTAVAIL;
1175 goto out_unlock;
1176 }
1177 }
1178 } else {
1179 asoc = sctp_id2assoc(sk, associd);
1180 if (!asoc) {
1181 err = -EPIPE;
1182 goto out_unlock;
1183 }
1184 }
1185
1186 if (asoc) {
1187 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1188
1189 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1190 * socket that has an association in CLOSED state. This can
1191 * happen when an accepted socket has an association that is
1192 * already CLOSED.
1193 */
1194 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1195 err = -EPIPE;
1196 goto out_unlock;
1197 }
1198
1199 if (sinfo_flags & MSG_EOF) {
1200 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1201 asoc);
1202 sctp_primitive_SHUTDOWN(asoc, NULL);
1203 err = 0;
1204 goto out_unlock;
1205 }
1206 if (sinfo_flags & MSG_ABORT) {
1207 struct sctp_chunk *chunk;
1208
1209 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1210 if (!chunk) {
1211 err = -ENOMEM;
1212 goto out_unlock;
1213 }
1214
1215 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1216 sctp_primitive_ABORT(asoc, chunk);
1217 err = 0;
1218 goto out_unlock;
1219 }
1220 }
1221
1222 /* Do we need to create the association? */
1223 if (!asoc) {
1224 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1225
1226 if (sinfo_flags & (MSG_EOF | MSG_ABORT)) {
1227 err = -EINVAL;
1228 goto out_unlock;
1229 }
1230
1231 /* Check for invalid stream against the stream counts,
1232 * either the default or the user specified stream counts.
1233 */
1234 if (sinfo) {
1235 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1236 /* Check against the defaults. */
1237 if (sinfo->sinfo_stream >=
1238 sp->initmsg.sinit_num_ostreams) {
1239 err = -EINVAL;
1240 goto out_unlock;
1241 }
1242 } else {
1243 /* Check against the requested. */
1244 if (sinfo->sinfo_stream >=
1245 sinit->sinit_num_ostreams) {
1246 err = -EINVAL;
1247 goto out_unlock;
1248 }
1249 }
1250 }
1251
1252 /*
1253 * API 3.1.2 bind() - UDP Style Syntax
1254 * If a bind() or sctp_bindx() is not called prior to a
1255 * sendmsg() call that initiates a new association, the
1256 * system picks an ephemeral port and will choose an address
1257 * set equivalent to binding with a wildcard address.
1258 */
1259 if (!ep->base.bind_addr.port) {
1260 if (sctp_autobind(sk)) {
1261 err = -EAGAIN;
1262 goto out_unlock;
1263 }
1264 }
1265
1266 scope = sctp_scope(&to);
1267 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1268 if (!new_asoc) {
1269 err = -ENOMEM;
1270 goto out_unlock;
1271 }
1272 asoc = new_asoc;
1273
1274 /* If the SCTP_INIT ancillary data is specified, set all
1275 * the association init values accordingly.
1276 */
1277 if (sinit) {
1278 if (sinit->sinit_num_ostreams) {
1279 asoc->c.sinit_num_ostreams =
1280 sinit->sinit_num_ostreams;
1281 }
1282 if (sinit->sinit_max_instreams) {
1283 asoc->c.sinit_max_instreams =
1284 sinit->sinit_max_instreams;
1285 }
1286 if (sinit->sinit_max_attempts) {
1287 asoc->max_init_attempts
1288 = sinit->sinit_max_attempts;
1289 }
1290 if (sinit->sinit_max_init_timeo) {
1291 asoc->max_init_timeo =
1292 SCTP_MSECS_TO_JIFFIES(sinit->sinit_max_init_timeo);
1293 }
1294 }
1295
1296 /* Prime the peer's transport structures. */
1297 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL);
1298 if (!transport) {
1299 err = -ENOMEM;
1300 goto out_free;
1301 }
1302 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1303 if (err < 0) {
1304 err = -ENOMEM;
1305 goto out_free;
1306 }
1307 }
1308
1309 /* ASSERT: we have a valid association at this point. */
1310 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1311
1312 if (!sinfo) {
1313 /* If the user didn't specify SNDRCVINFO, make up one with
1314 * some defaults.
1315 */
1316 default_sinfo.sinfo_stream = asoc->default_stream;
1317 default_sinfo.sinfo_flags = asoc->default_flags;
1318 default_sinfo.sinfo_ppid = asoc->default_ppid;
1319 default_sinfo.sinfo_context = asoc->default_context;
1320 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1321 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1322 sinfo = &default_sinfo;
1323 }
1324
1325 /* API 7.1.7, the sndbuf size per association bounds the
1326 * maximum size of data that can be sent in a single send call.
1327 */
1328 if (msg_len > sk->sndbuf) {
1329 err = -EMSGSIZE;
1330 goto out_free;
1331 }
1332
1333 /* If fragmentation is disabled and the message length exceeds the
1334 * association fragmentation point, return EMSGSIZE. The I-D
1335 * does not specify what this error is, but this looks like
1336 * a great fit.
1337 */
1338 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1339 err = -EMSGSIZE;
1340 goto out_free;
1341 }
1342
1343 if (sinfo) {
1344 /* Check for invalid stream. */
1345 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1346 err = -EINVAL;
1347 goto out_free;
1348 }
1349 }
1350
1351 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1352 if (!sctp_wspace(asoc)) {
1353 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1354 if (err)
1355 goto out_free;
1356 }
1357
1358 /* If an address is passed with the sendto/sendmsg call, it is used
1359 * to override the primary destination address in the TCP model, or
1360 * when MSG_ADDR_OVER flag is set in the UDP model.
1361 */
1362 if ((sctp_style(sk, TCP) && msg_name) ||
1363 (sinfo_flags & MSG_ADDR_OVER)) {
1364 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1365 if (!chunk_tp) {
1366 err = -EINVAL;
1367 goto out_free;
1368 }
1369 } else
1370 chunk_tp = NULL;
1371
1372 /* Auto-connect, if we aren't connected already. */
1373 if (sctp_state(asoc, CLOSED)) {
1374 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1375 if (err < 0)
1376 goto out_free;
1377 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1378 }
1379
1380 /* Break the message into multiple chunks of maximum size. */
1381 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1382 if (!datamsg) {
1383 err = -ENOMEM;
1384 goto out_free;
1385 }
1386
1387 /* Now send the (possibly) fragmented message. */
1388 list_for_each(pos, &datamsg->chunks) {
1389 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1390 sctp_datamsg_track(chunk);
1391
1392 /* Do accounting for the write space. */
1393 sctp_set_owner_w(chunk);
1394
1395 chunk->transport = chunk_tp;
1396
1397 /* Send it to the lower layers. Note: all chunks
1398 * must either fail or succeed. The lower layer
1399 * works that way today. Keep it that way or this
1400 * breaks.
1401 */
1402 err = sctp_primitive_SEND(asoc, chunk);
1403 /* Did the lower layer accept the chunk? */
1404 if (err)
1405 sctp_chunk_free(chunk);
1406 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1407 }
1408
1409 sctp_datamsg_free(datamsg);
1410 if (err)
1411 goto out_free;
1412 else
1413 err = msg_len;
1414
1415 /* If we are already past ASSOCIATE, the lower
1416 * layers are responsible for association cleanup.
1417 */
1418 goto out_unlock;
1419
1420 out_free:
1421 if (new_asoc)
1422 sctp_association_free(asoc);
1423 out_unlock:
1424 sctp_release_sock(sk);
1425
1426 out_nounlock:
1427 return sctp_error(sk, msg_flags, err);
1428
1429 #if 0
1430 do_sock_err:
1431 if (msg_len)
1432 err = msg_len;
1433 else
1434 err = sock_error(sk);
1435 goto out;
1436
1437 do_interrupted:
1438 if (msg_len)
1439 err = msg_len;
1440 goto out;
1441 #endif /* 0 */
1442 }
1443
1444 /* This is an extended version of skb_pull() that removes the data from the
1445 * start of a skb even when data is spread across the list of skb's in the
1446 * frag_list. len specifies the total amount of data that needs to be removed.
1447 * when 'len' bytes could be removed from the skb, it returns 0.
1448 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1449 * could not be removed.
1450 */
sctp_skb_pull(struct sk_buff * skb,int len)1451 static int sctp_skb_pull(struct sk_buff *skb, int len)
1452 {
1453 struct sk_buff *list;
1454 int skb_len = skb_headlen(skb);
1455 int rlen;
1456
1457 if (len <= skb_len) {
1458 __skb_pull(skb, len);
1459 return 0;
1460 }
1461 len -= skb_len;
1462 __skb_pull(skb, skb_len);
1463
1464 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1465 rlen = sctp_skb_pull(list, len);
1466 skb->len -= (len-rlen);
1467 skb->data_len -= (len-rlen);
1468
1469 if (!rlen)
1470 return 0;
1471
1472 len = rlen;
1473 }
1474
1475 return len;
1476 }
1477
1478 /* API 3.1.3 recvmsg() - UDP Style Syntax
1479 *
1480 * ssize_t recvmsg(int socket, struct msghdr *message,
1481 * int flags);
1482 *
1483 * socket - the socket descriptor of the endpoint.
1484 * message - pointer to the msghdr structure which contains a single
1485 * user message and possibly some ancillary data.
1486 *
1487 * See Section 5 for complete description of the data
1488 * structures.
1489 *
1490 * flags - flags sent or received with the user message, see Section
1491 * 5 for complete description of the flags.
1492 */
1493 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1494
sctp_recvmsg(struct sock * sk,struct msghdr * msg,int len,int noblock,int flags,int * addr_len)1495 SCTP_STATIC int sctp_recvmsg(struct sock *sk, struct msghdr *msg, int len,
1496 int noblock, int flags, int *addr_len)
1497 {
1498 struct sctp_ulpevent *event = NULL;
1499 struct sctp_opt *sp = sctp_sk(sk);
1500 struct sk_buff *skb;
1501 int copied;
1502 int err = 0;
1503 int skb_len;
1504
1505 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %d, %s: %d, %s: "
1506 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1507 "len", len, "knoblauch", noblock,
1508 "flags", flags, "addr_len", addr_len);
1509
1510 sctp_lock_sock(sk);
1511
1512 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1513 err = -ENOTCONN;
1514 goto out;
1515 }
1516
1517 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1518 if (!skb)
1519 goto out;
1520
1521 /* Get the total length of the skb including any skb's in the
1522 * frag_list.
1523 */
1524 skb_len = skb->len;
1525
1526 copied = skb_len;
1527 if (copied > len)
1528 copied = len;
1529
1530 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1531
1532 event = sctp_skb2event(skb);
1533
1534 if (err)
1535 goto out_free;
1536
1537 sock_recv_timestamp(msg, sk, skb);
1538 if (sctp_ulpevent_is_notification(event)) {
1539 msg->msg_flags |= MSG_NOTIFICATION;
1540 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1541 } else {
1542 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1543 }
1544
1545 /* Check if we allow SCTP_SNDRCVINFO. */
1546 if (sp->subscribe.sctp_data_io_event)
1547 sctp_ulpevent_read_sndrcvinfo(event, msg);
1548 #if 0
1549 /* FIXME: we should be calling IP/IPv6 layers. */
1550 if (sk->sk_protinfo.af_inet.cmsg_flags)
1551 ip_cmsg_recv(msg, skb);
1552 #endif
1553
1554 err = copied;
1555
1556 /* If skb's length exceeds the user's buffer, update the skb and
1557 * push it back to the receive_queue so that the next call to
1558 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1559 */
1560 if (skb_len > copied) {
1561 msg->msg_flags &= ~MSG_EOR;
1562 if (flags & MSG_PEEK)
1563 goto out_free;
1564 sctp_skb_pull(skb, copied);
1565 skb_queue_head(&sk->receive_queue, skb);
1566
1567 /* When only partial message is copied to the user, increase
1568 * rwnd by that amount. If all the data in the skb is read,
1569 * rwnd is updated when the event is freed.
1570 */
1571 sctp_assoc_rwnd_increase(event->asoc, copied);
1572 goto out;
1573 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1574 (event->msg_flags & MSG_EOR))
1575 msg->msg_flags |= MSG_EOR;
1576 else
1577 msg->msg_flags &= ~MSG_EOR;
1578
1579 out_free:
1580 if (flags & MSG_PEEK) {
1581 /* Release the skb reference acquired after peeking the skb in
1582 * sctp_skb_recv_datagram().
1583 */
1584 kfree_skb(skb);
1585 } else {
1586 /* Free the event which includes releasing the reference to
1587 * the owner of the skb, freeing the skb and updating the
1588 * rwnd.
1589 */
1590 sctp_ulpevent_free(event);
1591 }
1592 out:
1593 sctp_release_sock(sk);
1594 return err;
1595 }
1596
1597 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1598 *
1599 * This option is a on/off flag. If enabled no SCTP message
1600 * fragmentation will be performed. Instead if a message being sent
1601 * exceeds the current PMTU size, the message will NOT be sent and
1602 * instead a error will be indicated to the user.
1603 */
sctp_setsockopt_disable_fragments(struct sock * sk,char * optval,int optlen)1604 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1605 char *optval, int optlen)
1606 {
1607 int val;
1608
1609 if (optlen < sizeof(int))
1610 return -EINVAL;
1611
1612 if (get_user(val, (int *)optval))
1613 return -EFAULT;
1614
1615 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1616
1617 return 0;
1618 }
1619
sctp_setsockopt_events(struct sock * sk,char * optval,int optlen)1620 static int sctp_setsockopt_events(struct sock *sk, char *optval,
1621 int optlen)
1622 {
1623 if (optlen != sizeof(struct sctp_event_subscribe))
1624 return -EINVAL;
1625 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1626 return -EFAULT;
1627 return 0;
1628 }
1629
1630 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1631 *
1632 * This socket option is applicable to the UDP-style socket only. When
1633 * set it will cause associations that are idle for more than the
1634 * specified number of seconds to automatically close. An association
1635 * being idle is defined an association that has NOT sent or received
1636 * user data. The special value of '0' indicates that no automatic
1637 * close of any associations should be performed. The option expects an
1638 * integer defining the number of seconds of idle time before an
1639 * association is closed.
1640 */
sctp_setsockopt_autoclose(struct sock * sk,char * optval,int optlen)1641 static int sctp_setsockopt_autoclose(struct sock *sk, char *optval,
1642 int optlen)
1643 {
1644 struct sctp_opt *sp = sctp_sk(sk);
1645
1646 /* Applicable to UDP-style socket only */
1647 if (sctp_style(sk, TCP))
1648 return -EOPNOTSUPP;
1649 if (optlen != sizeof(int))
1650 return -EINVAL;
1651 if (copy_from_user(&sp->autoclose, optval, optlen))
1652 return -EFAULT;
1653
1654 sp->ep->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
1655 return 0;
1656 }
1657
1658 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1659 *
1660 * Applications can enable or disable heartbeats for any peer address of
1661 * an association, modify an address's heartbeat interval, force a
1662 * heartbeat to be sent immediately, and adjust the address's maximum
1663 * number of retransmissions sent before an address is considered
1664 * unreachable. The following structure is used to access and modify an
1665 * address's parameters:
1666 *
1667 * struct sctp_paddrparams {
1668 * sctp_assoc_t spp_assoc_id;
1669 * struct sockaddr_storage spp_address;
1670 * uint32_t spp_hbinterval;
1671 * uint16_t spp_pathmaxrxt;
1672 * };
1673 *
1674 * spp_assoc_id - (UDP style socket) This is filled in the application,
1675 * and identifies the association for this query.
1676 * spp_address - This specifies which address is of interest.
1677 * spp_hbinterval - This contains the value of the heartbeat interval,
1678 * in milliseconds. A value of 0, when modifying the
1679 * parameter, specifies that the heartbeat on this
1680 * address should be disabled. A value of UINT32_MAX
1681 * (4294967295), when modifying the parameter,
1682 * specifies that a heartbeat should be sent
1683 * immediately to the peer address, and the current
1684 * interval should remain unchanged.
1685 * spp_pathmaxrxt - This contains the maximum number of
1686 * retransmissions before this address shall be
1687 * considered unreachable.
1688 */
sctp_setsockopt_peer_addr_params(struct sock * sk,char * optval,int optlen)1689 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
1690 char *optval, int optlen)
1691 {
1692 struct sctp_paddrparams params;
1693 struct sctp_transport *trans;
1694 int error;
1695
1696 if (optlen != sizeof(struct sctp_paddrparams))
1697 return -EINVAL;
1698 if (copy_from_user(¶ms, optval, optlen))
1699 return -EFAULT;
1700
1701 /*
1702 * API 7. Socket Options (setting the default value for the endpoint)
1703 * All options that support specific settings on an association by
1704 * filling in either an association id variable or a sockaddr_storage
1705 * SHOULD also support setting of the same value for the entire endpoint
1706 * (i.e. future associations). To accomplish this the following logic is
1707 * used when setting one of these options:
1708
1709 * c) If neither the sockaddr_storage or association identification is
1710 * set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and
1711 * the association identification is 0, the settings are a default
1712 * and to be applied to the endpoint (all future associations).
1713 */
1714
1715 /* update default value for endpoint (all future associations) */
1716 if (!params.spp_assoc_id &&
1717 sctp_is_any(( union sctp_addr *)¶ms.spp_address)) {
1718 /* Manual heartbeat on an endpoint is invalid. */
1719 if (0xffffffff == params.spp_hbinterval)
1720 return -EINVAL;
1721 else if (params.spp_hbinterval)
1722 sctp_sk(sk)->paddrparam.spp_hbinterval =
1723 params.spp_hbinterval;
1724 if (params.spp_pathmaxrxt)
1725 sctp_sk(sk)->paddrparam.spp_pathmaxrxt =
1726 params.spp_pathmaxrxt;
1727 return 0;
1728 }
1729
1730 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
1731 params.spp_assoc_id);
1732 if (!trans)
1733 return -EINVAL;
1734
1735 /* Applications can enable or disable heartbeats for any peer address
1736 * of an association, modify an address's heartbeat interval, force a
1737 * heartbeat to be sent immediately, and adjust the address's maximum
1738 * number of retransmissions sent before an address is considered
1739 * unreachable.
1740 *
1741 * The value of the heartbeat interval, in milliseconds. A value of
1742 * UINT32_MAX (4294967295), when modifying the parameter, specifies
1743 * that a heartbeat should be sent immediately to the peer address,
1744 * and the current interval should remain unchanged.
1745 */
1746 if (0xffffffff == params.spp_hbinterval) {
1747 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
1748 if (error)
1749 return error;
1750 } else {
1751 /* The value of the heartbeat interval, in milliseconds. A value of 0,
1752 * when modifying the parameter, specifies that the heartbeat on this
1753 * address should be disabled.
1754 */
1755 if (params.spp_hbinterval) {
1756 trans->hb_allowed = 1;
1757 trans->hb_interval =
1758 SCTP_MSECS_TO_JIFFIES(params.spp_hbinterval);
1759 } else
1760 trans->hb_allowed = 0;
1761 }
1762
1763 /* spp_pathmaxrxt contains the maximum number of retransmissions
1764 * before this address shall be considered unreachable.
1765 */
1766 if (params.spp_pathmaxrxt)
1767 trans->max_retrans = params.spp_pathmaxrxt;
1768
1769 return 0;
1770 }
1771
1772 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
1773 *
1774 * Applications can specify protocol parameters for the default association
1775 * initialization. The option name argument to setsockopt() and getsockopt()
1776 * is SCTP_INITMSG.
1777 *
1778 * Setting initialization parameters is effective only on an unconnected
1779 * socket (for UDP-style sockets only future associations are effected
1780 * by the change). With TCP-style sockets, this option is inherited by
1781 * sockets derived from a listener socket.
1782 */
sctp_setsockopt_initmsg(struct sock * sk,char * optval,int optlen)1783 static int sctp_setsockopt_initmsg(struct sock *sk, char *optval, int optlen)
1784 {
1785 struct sctp_initmsg sinit;
1786 struct sctp_opt *sp = sctp_sk(sk);
1787
1788 if (optlen != sizeof(struct sctp_initmsg))
1789 return -EINVAL;
1790 if (copy_from_user(&sinit, optval, optlen))
1791 return -EFAULT;
1792
1793 if (sinit.sinit_num_ostreams)
1794 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
1795 if (sinit.sinit_max_instreams)
1796 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
1797 if (sinit.sinit_max_attempts)
1798 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
1799 if (sinit.sinit_max_init_timeo)
1800 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
1801
1802 return 0;
1803 }
1804
1805 /*
1806 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
1807 *
1808 * Applications that wish to use the sendto() system call may wish to
1809 * specify a default set of parameters that would normally be supplied
1810 * through the inclusion of ancillary data. This socket option allows
1811 * such an application to set the default sctp_sndrcvinfo structure.
1812 * The application that wishes to use this socket option simply passes
1813 * in to this call the sctp_sndrcvinfo structure defined in Section
1814 * 5.2.2) The input parameters accepted by this call include
1815 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
1816 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
1817 * to this call if the caller is using the UDP model.
1818 */
sctp_setsockopt_default_send_param(struct sock * sk,char * optval,int optlen)1819 static int sctp_setsockopt_default_send_param(struct sock *sk,
1820 char *optval, int optlen)
1821 {
1822 struct sctp_sndrcvinfo info;
1823 struct sctp_association *asoc;
1824 struct sctp_opt *sp = sctp_sk(sk);
1825
1826 if (optlen != sizeof(struct sctp_sndrcvinfo))
1827 return -EINVAL;
1828 if (copy_from_user(&info, optval, optlen))
1829 return -EFAULT;
1830
1831 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
1832 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
1833 return -EINVAL;
1834
1835 if (asoc) {
1836 asoc->default_stream = info.sinfo_stream;
1837 asoc->default_flags = info.sinfo_flags;
1838 asoc->default_ppid = info.sinfo_ppid;
1839 asoc->default_context = info.sinfo_context;
1840 asoc->default_timetolive = info.sinfo_timetolive;
1841 } else {
1842 sp->default_stream = info.sinfo_stream;
1843 sp->default_flags = info.sinfo_flags;
1844 sp->default_ppid = info.sinfo_ppid;
1845 sp->default_context = info.sinfo_context;
1846 sp->default_timetolive = info.sinfo_timetolive;
1847 }
1848
1849 return 0;
1850 }
1851
1852 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
1853 *
1854 * Requests that the local SCTP stack use the enclosed peer address as
1855 * the association primary. The enclosed address must be one of the
1856 * association peer's addresses.
1857 */
sctp_setsockopt_primary_addr(struct sock * sk,char * optval,int optlen)1858 static int sctp_setsockopt_primary_addr(struct sock *sk, char *optval,
1859 int optlen)
1860 {
1861 struct sctp_prim prim;
1862 struct sctp_transport *trans;
1863
1864 if (optlen != sizeof(struct sctp_prim))
1865 return -EINVAL;
1866
1867 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
1868 return -EFAULT;
1869
1870 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
1871 if (!trans)
1872 return -EINVAL;
1873
1874 sctp_assoc_set_primary(trans->asoc, trans);
1875
1876 return 0;
1877 }
1878
1879 /*
1880 * 7.1.5 SCTP_NODELAY
1881 *
1882 * Turn on/off any Nagle-like algorithm. This means that packets are
1883 * generally sent as soon as possible and no unnecessary delays are
1884 * introduced, at the cost of more packets in the network. Expects an
1885 * integer boolean flag.
1886 */
sctp_setsockopt_nodelay(struct sock * sk,char * optval,int optlen)1887 static int sctp_setsockopt_nodelay(struct sock *sk, char *optval,
1888 int optlen)
1889 {
1890 int val;
1891
1892 if (optlen < sizeof(int))
1893 return -EINVAL;
1894 if (get_user(val, (int *)optval))
1895 return -EFAULT;
1896
1897 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
1898 return 0;
1899 }
1900
1901 /*
1902 *
1903 * 7.1.1 SCTP_RTOINFO
1904 *
1905 * The protocol parameters used to initialize and bound retransmission
1906 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
1907 * and modify these parameters.
1908 * All parameters are time values, in milliseconds. A value of 0, when
1909 * modifying the parameters, indicates that the current value should not
1910 * be changed.
1911 *
1912 */
sctp_setsockopt_rtoinfo(struct sock * sk,char * optval,int optlen)1913 static int sctp_setsockopt_rtoinfo(struct sock *sk, char *optval, int optlen) {
1914 struct sctp_rtoinfo rtoinfo;
1915 struct sctp_association *asoc;
1916
1917 if (optlen != sizeof (struct sctp_rtoinfo))
1918 return -EINVAL;
1919
1920 if (copy_from_user(&rtoinfo, optval, optlen))
1921 return -EFAULT;
1922
1923 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
1924
1925 /* Set the values to the specific association */
1926 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
1927 return -EINVAL;
1928
1929 if (asoc) {
1930 if (rtoinfo.srto_initial != 0)
1931 asoc->rto_initial =
1932 SCTP_MSECS_TO_JIFFIES(rtoinfo.srto_initial);
1933 if (rtoinfo.srto_max != 0)
1934 asoc->rto_max = SCTP_MSECS_TO_JIFFIES(rtoinfo.srto_max);
1935 if (rtoinfo.srto_min != 0)
1936 asoc->rto_min = SCTP_MSECS_TO_JIFFIES(rtoinfo.srto_min);
1937 } else {
1938 /* If there is no association or the association-id = 0
1939 * set the values to the endpoint.
1940 */
1941 struct sctp_opt *sp = sctp_sk(sk);
1942
1943 if (rtoinfo.srto_initial != 0)
1944 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
1945 if (rtoinfo.srto_max != 0)
1946 sp->rtoinfo.srto_max = rtoinfo.srto_max;
1947 if (rtoinfo.srto_min != 0)
1948 sp->rtoinfo.srto_min = rtoinfo.srto_min;
1949 }
1950
1951 return 0;
1952 }
1953
1954 /*
1955 *
1956 * 7.1.2 SCTP_ASSOCINFO
1957 *
1958 * This option is used to tune the the maximum retransmission attempts
1959 * of the association.
1960 * Returns an error if the new association retransmission value is
1961 * greater than the sum of the retransmission value of the peer.
1962 * See [SCTP] for more information.
1963 *
1964 */
sctp_setsockopt_associnfo(struct sock * sk,char * optval,int optlen)1965 static int sctp_setsockopt_associnfo(struct sock *sk, char *optval, int optlen)
1966 {
1967
1968 struct sctp_assocparams assocparams;
1969 struct sctp_association *asoc;
1970
1971 if (optlen != sizeof(struct sctp_assocparams))
1972 return -EINVAL;
1973 if (copy_from_user(&assocparams, optval, optlen))
1974 return -EFAULT;
1975
1976 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
1977
1978 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
1979 return -EINVAL;
1980
1981 /* Set the values to the specific association */
1982 if (asoc) {
1983 if (assocparams.sasoc_asocmaxrxt != 0)
1984 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
1985 if (assocparams.sasoc_cookie_life != 0) {
1986 asoc->cookie_life.tv_sec =
1987 assocparams.sasoc_cookie_life / 1000;
1988 asoc->cookie_life.tv_usec =
1989 (assocparams.sasoc_cookie_life % 1000)
1990 * 1000;
1991 }
1992 } else {
1993 /* Set the values to the endpoint */
1994 struct sctp_opt *sp = sctp_sk(sk);
1995
1996 if (assocparams.sasoc_asocmaxrxt != 0)
1997 sp->assocparams.sasoc_asocmaxrxt =
1998 assocparams.sasoc_asocmaxrxt;
1999 if (assocparams.sasoc_cookie_life != 0)
2000 sp->assocparams.sasoc_cookie_life =
2001 assocparams.sasoc_cookie_life;
2002 }
2003 return 0;
2004 }
2005
2006 /*
2007 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2008 *
2009 * This socket option is a boolean flag which turns on or off mapped V4
2010 * addresses. If this option is turned on and the socket is type
2011 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2012 * If this option is turned off, then no mapping will be done of V4
2013 * addresses and a user will receive both PF_INET6 and PF_INET type
2014 * addresses on the socket.
2015 */
sctp_setsockopt_mappedv4(struct sock * sk,char * optval,int optlen)2016 static int sctp_setsockopt_mappedv4(struct sock *sk, char *optval, int optlen)
2017 {
2018 int val;
2019 struct sctp_opt *sp = sctp_sk(sk);
2020
2021 if (optlen < sizeof(int))
2022 return -EINVAL;
2023 if (get_user(val, (int *)optval))
2024 return -EFAULT;
2025 if (val)
2026 sp->v4mapped = 1;
2027 else
2028 sp->v4mapped = 0;
2029
2030 return 0;
2031 }
2032
2033 /*
2034 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2035 *
2036 * This socket option specifies the maximum size to put in any outgoing
2037 * SCTP chunk. If a message is larger than this size it will be
2038 * fragmented by SCTP into the specified size. Note that the underlying
2039 * SCTP implementation may fragment into smaller sized chunks when the
2040 * PMTU of the underlying association is smaller than the value set by
2041 * the user.
2042 */
sctp_setsockopt_maxseg(struct sock * sk,char * optval,int optlen)2043 static int sctp_setsockopt_maxseg(struct sock *sk, char *optval, int optlen)
2044 {
2045 struct sctp_association *asoc;
2046 struct list_head *pos;
2047 struct sctp_opt *sp = sctp_sk(sk);
2048 int val;
2049
2050 if (optlen < sizeof(int))
2051 return -EINVAL;
2052 if (get_user(val, (int *)optval))
2053 return -EFAULT;
2054 if ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))
2055 return -EINVAL;
2056 sp->user_frag = val;
2057
2058 if (val) {
2059 /* Update the frag_point of the existing associations. */
2060 list_for_each(pos, &(sp->ep->asocs)) {
2061 asoc = list_entry(pos, struct sctp_association, asocs);
2062 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
2063 }
2064 }
2065
2066 return 0;
2067 }
2068
2069
2070 /*
2071 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2072 *
2073 * Requests that the peer mark the enclosed address as the association
2074 * primary. The enclosed address must be one of the association's
2075 * locally bound addresses. The following structure is used to make a
2076 * set primary request:
2077 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,char * optval,int optlen)2078 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char *optval,
2079 int optlen)
2080 {
2081 struct sctp_opt *sp;
2082 struct sctp_endpoint *ep;
2083 struct sctp_association *asoc = NULL;
2084 struct sctp_setpeerprim prim;
2085 struct sctp_chunk *chunk;
2086 int err;
2087
2088 sp = sctp_sk(sk);
2089 ep = sp->ep;
2090
2091 if (!sctp_addip_enable)
2092 return -EPERM;
2093
2094 if (optlen != sizeof(struct sctp_setpeerprim))
2095 return -EINVAL;
2096
2097 if (copy_from_user(&prim, optval, optlen))
2098 return -EFAULT;
2099
2100 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2101 if (!asoc)
2102 return -EINVAL;
2103
2104 if (!asoc->peer.asconf_capable)
2105 return -EPERM;
2106
2107 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2108 return -EPERM;
2109
2110 if (!sctp_state(asoc, ESTABLISHED))
2111 return -ENOTCONN;
2112
2113 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2114 return -EADDRNOTAVAIL;
2115
2116 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2117 chunk = sctp_make_asconf_set_prim(asoc,
2118 (union sctp_addr *)&prim.sspp_addr);
2119 if (!chunk)
2120 return -ENOMEM;
2121
2122 err = sctp_send_asconf(asoc, chunk);
2123
2124 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2125
2126 return err;
2127 }
2128
sctp_setsockopt_adaption_layer(struct sock * sk,char __user * optval,int optlen)2129 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2130 int optlen)
2131 {
2132 __u32 val;
2133
2134 if (optlen < sizeof(__u32))
2135 return -EINVAL;
2136 if (copy_from_user(&val, optval, sizeof(__u32)))
2137 return -EFAULT;
2138
2139 sctp_sk(sk)->adaption_ind = val;
2140
2141 return 0;
2142 }
2143
2144 /* API 6.2 setsockopt(), getsockopt()
2145 *
2146 * Applications use setsockopt() and getsockopt() to set or retrieve
2147 * socket options. Socket options are used to change the default
2148 * behavior of sockets calls. They are described in Section 7.
2149 *
2150 * The syntax is:
2151 *
2152 * ret = getsockopt(int sd, int level, int optname, void *optval,
2153 * int *optlen);
2154 * ret = setsockopt(int sd, int level, int optname, const void *optval,
2155 * int optlen);
2156 *
2157 * sd - the socket descript.
2158 * level - set to IPPROTO_SCTP for all SCTP options.
2159 * optname - the option name.
2160 * optval - the buffer to store the value of the option.
2161 * optlen - the size of the buffer.
2162 */
sctp_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)2163 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2164 char *optval, int optlen)
2165 {
2166 int retval = 0;
2167
2168 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2169 sk, optname);
2170
2171 /* I can hardly begin to describe how wrong this is. This is
2172 * so broken as to be worse than useless. The API draft
2173 * REALLY is NOT helpful here... I am not convinced that the
2174 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2175 * are at all well-founded.
2176 */
2177 if (level != SOL_SCTP) {
2178 struct sctp_af *af = sctp_sk(sk)->pf->af;
2179 retval = af->setsockopt(sk, level, optname, optval, optlen);
2180 goto out_nounlock;
2181 }
2182
2183 sctp_lock_sock(sk);
2184
2185 switch (optname) {
2186 case SCTP_SOCKOPT_BINDX_ADD:
2187 /* 'optlen' is the size of the addresses buffer. */
2188 retval = sctp_setsockopt_bindx(sk, (struct sockaddr *)optval,
2189 optlen, SCTP_BINDX_ADD_ADDR);
2190 break;
2191
2192 case SCTP_SOCKOPT_BINDX_REM:
2193 /* 'optlen' is the size of the addresses buffer. */
2194 retval = sctp_setsockopt_bindx(sk, (struct sockaddr *)optval,
2195 optlen, SCTP_BINDX_REM_ADDR);
2196 break;
2197
2198 case SCTP_DISABLE_FRAGMENTS:
2199 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2200 break;
2201
2202 case SCTP_EVENTS:
2203 retval = sctp_setsockopt_events(sk, optval, optlen);
2204 break;
2205
2206 case SCTP_AUTOCLOSE:
2207 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2208 break;
2209
2210 case SCTP_PEER_ADDR_PARAMS:
2211 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2212 break;
2213
2214 case SCTP_INITMSG:
2215 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2216 break;
2217 case SCTP_DEFAULT_SEND_PARAM:
2218 retval = sctp_setsockopt_default_send_param(sk, optval,
2219 optlen);
2220 break;
2221 case SCTP_PRIMARY_ADDR:
2222 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2223 break;
2224 case SCTP_SET_PEER_PRIMARY_ADDR:
2225 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2226 break;
2227 case SCTP_NODELAY:
2228 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2229 break;
2230 case SCTP_RTOINFO:
2231 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2232 break;
2233 case SCTP_ASSOCINFO:
2234 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2235 break;
2236 case SCTP_I_WANT_MAPPED_V4_ADDR:
2237 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2238 break;
2239 case SCTP_MAXSEG:
2240 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2241 break;
2242 case SCTP_ADAPTION_LAYER:
2243 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2244 break;
2245
2246 default:
2247 retval = -ENOPROTOOPT;
2248 break;
2249 };
2250
2251 sctp_release_sock(sk);
2252
2253 out_nounlock:
2254 return retval;
2255 }
2256
2257 /* API 3.1.6 connect() - UDP Style Syntax
2258 *
2259 * An application may use the connect() call in the UDP model to initiate an
2260 * association without sending data.
2261 *
2262 * The syntax is:
2263 *
2264 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2265 *
2266 * sd: the socket descriptor to have a new association added to.
2267 *
2268 * nam: the address structure (either struct sockaddr_in or struct
2269 * sockaddr_in6 defined in RFC2553 [7]).
2270 *
2271 * len: the size of the address.
2272 */
sctp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)2273 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *uaddr,
2274 int addr_len)
2275 {
2276 struct sctp_opt *sp;
2277 struct sctp_endpoint *ep;
2278 struct sctp_association *asoc;
2279 struct sctp_transport *transport;
2280 union sctp_addr to;
2281 struct sctp_af *af;
2282 sctp_scope_t scope;
2283 long timeo;
2284 int err = 0;
2285
2286 sctp_lock_sock(sk);
2287
2288 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d)\n",
2289 __FUNCTION__, sk, uaddr, addr_len);
2290
2291 sp = sctp_sk(sk);
2292 ep = sp->ep;
2293
2294 /* connect() cannot be done on a socket that is already in ESTABLISHED
2295 * state - UDP-style peeled off socket or a TCP-style socket that
2296 * is already connected.
2297 * It cannot be done even on a TCP-style listening socket.
2298 */
2299 if (sctp_sstate(sk, ESTABLISHED) ||
2300 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
2301 err = -EISCONN;
2302 goto out_unlock;
2303 }
2304
2305 err = sctp_verify_addr(sk, (union sctp_addr *)uaddr, addr_len);
2306 if (err)
2307 goto out_unlock;
2308
2309 if (addr_len > sizeof(to))
2310 addr_len = sizeof(to);
2311 memcpy(&to, uaddr, addr_len);
2312 to.v4.sin_port = ntohs(to.v4.sin_port);
2313
2314 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
2315 if (asoc) {
2316 if (asoc->state >= SCTP_STATE_ESTABLISHED)
2317 err = -EISCONN;
2318 else
2319 err = -EALREADY;
2320 goto out_unlock;
2321 }
2322
2323 /* If we could not find a matching association on the endpoint,
2324 * make sure that there is no peeled-off association matching the
2325 * peer address even on another socket.
2326 */
2327 if (sctp_endpoint_is_peeled_off(ep, &to)) {
2328 err = -EADDRNOTAVAIL;
2329 goto out_unlock;
2330 }
2331
2332 /* If a bind() or sctp_bindx() is not called prior to a connect()
2333 * call, the system picks an ephemeral port and will choose an address
2334 * set equivalent to binding with a wildcard address.
2335 */
2336 if (!ep->base.bind_addr.port) {
2337 if (sctp_autobind(sk)) {
2338 err = -EAGAIN;
2339 goto out_unlock;
2340 }
2341 }
2342
2343 scope = sctp_scope(&to);
2344 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
2345 if (!asoc) {
2346 err = -ENOMEM;
2347 goto out_unlock;
2348 }
2349
2350 /* Prime the peer's transport structures. */
2351 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL);
2352 if (!transport) {
2353 sctp_association_free(asoc);
2354 goto out_unlock;
2355 }
2356 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
2357 if (err < 0) {
2358 sctp_association_free(asoc);
2359 goto out_unlock;
2360 }
2361
2362 err = sctp_primitive_ASSOCIATE(asoc, NULL);
2363 if (err < 0) {
2364 sctp_association_free(asoc);
2365 goto out_unlock;
2366 }
2367
2368 /* Initialize sk's dport and daddr for getpeername() */
2369 sk->dport = htons(asoc->peer.port);
2370 af = sctp_get_af_specific(to.sa.sa_family);
2371 af->to_sk_daddr(&to, sk);
2372
2373 timeo = sock_sndtimeo(sk, sk->socket->file->f_flags & O_NONBLOCK);
2374 err = sctp_wait_for_connect(asoc, &timeo);
2375
2376 out_unlock:
2377 sctp_release_sock(sk);
2378
2379 return err;
2380 }
2381
2382 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)2383 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2384 {
2385 return -EOPNOTSUPP; /* STUB */
2386 }
2387
2388 /* 4.1.4 accept() - TCP Style Syntax
2389 *
2390 * Applications use accept() call to remove an established SCTP
2391 * association from the accept queue of the endpoint. A new socket
2392 * descriptor will be returned from accept() to represent the newly
2393 * formed association.
2394 */
sctp_accept(struct sock * sk,int flags,int * err)2395 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2396 {
2397 struct sctp_opt *sp;
2398 struct sctp_endpoint *ep;
2399 struct sock *newsk = NULL;
2400 struct sctp_association *asoc;
2401 long timeo;
2402 int error = 0;
2403
2404 sctp_lock_sock(sk);
2405
2406 sp = sctp_sk(sk);
2407 ep = sp->ep;
2408
2409 if (!sctp_style(sk, TCP)) {
2410 error = -EOPNOTSUPP;
2411 goto out;
2412 }
2413
2414 if (!sctp_sstate(sk, LISTENING)) {
2415 error = -EINVAL;
2416 goto out;
2417 }
2418
2419 timeo = sock_rcvtimeo(sk, sk->socket->file->f_flags & O_NONBLOCK);
2420
2421 error = sctp_wait_for_accept(sk, timeo);
2422 if (error)
2423 goto out;
2424
2425 /* We treat the list of associations on the endpoint as the accept
2426 * queue and pick the first association on the list.
2427 */
2428 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2429
2430 newsk = sp->pf->create_accept_sk(sk, asoc);
2431 if (!newsk) {
2432 error = -ENOMEM;
2433 goto out;
2434 }
2435
2436 /* Populate the fields of the newsk from the oldsk and migrate the
2437 * asoc to the newsk.
2438 */
2439 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2440
2441 out:
2442 sctp_release_sock(sk);
2443 *err = error;
2444 return newsk;
2445 }
2446
2447 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)2448 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2449 {
2450 return -ENOIOCTLCMD;
2451 }
2452
2453 /* This is the function which gets called during socket creation to
2454 * initialized the SCTP-specific portion of the sock.
2455 * The sock structure should already be zero-filled memory.
2456 */
sctp_init_sock(struct sock * sk)2457 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2458 {
2459 struct sctp_endpoint *ep;
2460 struct sctp_opt *sp;
2461
2462 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2463
2464 sp = sctp_sk(sk);
2465
2466 /* Initialize the SCTP per socket area. */
2467 switch (sk->type) {
2468 case SOCK_SEQPACKET:
2469 sp->type = SCTP_SOCKET_UDP;
2470 break;
2471 case SOCK_STREAM:
2472 sp->type = SCTP_SOCKET_TCP;
2473 break;
2474 default:
2475 return -ESOCKTNOSUPPORT;
2476 }
2477
2478 /* Initialize default send parameters. These parameters can be
2479 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2480 */
2481 sp->default_stream = 0;
2482 sp->default_ppid = 0;
2483 sp->default_flags = 0;
2484 sp->default_context = 0;
2485 sp->default_timetolive = 0;
2486
2487 /* Initialize default setup parameters. These parameters
2488 * can be modified with the SCTP_INITMSG socket option or
2489 * overridden by the SCTP_INIT CMSG.
2490 */
2491 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
2492 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
2493 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
2494 sp->initmsg.sinit_max_init_timeo = JIFFIES_TO_MSECS(sctp_rto_max);
2495
2496 /* Initialize default RTO related parameters. These parameters can
2497 * be modified for with the SCTP_RTOINFO socket option.
2498 */
2499 sp->rtoinfo.srto_initial = JIFFIES_TO_MSECS(sctp_rto_initial);
2500 sp->rtoinfo.srto_max = JIFFIES_TO_MSECS(sctp_rto_max);
2501 sp->rtoinfo.srto_min = JIFFIES_TO_MSECS(sctp_rto_min);
2502
2503 /* Initialize default association related parameters. These parameters
2504 * can be modified with the SCTP_ASSOCINFO socket option.
2505 */
2506 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2507 sp->assocparams.sasoc_number_peer_destinations = 0;
2508 sp->assocparams.sasoc_peer_rwnd = 0;
2509 sp->assocparams.sasoc_local_rwnd = 0;
2510 sp->assocparams.sasoc_cookie_life =
2511 JIFFIES_TO_MSECS(sctp_valid_cookie_life);
2512
2513 /* Initialize default event subscriptions. By default, all the
2514 * options are off.
2515 */
2516 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2517
2518 /* Default Peer Address Parameters. These defaults can
2519 * be modified via SCTP_PEER_ADDR_PARAMS
2520 */
2521 sp->paddrparam.spp_hbinterval = JIFFIES_TO_MSECS(sctp_hb_interval);
2522 sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path;
2523
2524 /* If enabled no SCTP message fragmentation will be performed.
2525 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
2526 */
2527 sp->disable_fragments = 0;
2528
2529 /* Turn on/off any Nagle-like algorithm. */
2530 sp->nodelay = 1;
2531
2532 /* Enable by default. */
2533 sp->v4mapped = 1;
2534
2535 /* Auto-close idle associations after the configured
2536 * number of seconds. A value of 0 disables this
2537 * feature. Configure through the SCTP_AUTOCLOSE socket option,
2538 * for UDP-style sockets only.
2539 */
2540 sp->autoclose = 0;
2541
2542 /* User specified fragmentation limit. */
2543 sp->user_frag = 0;
2544
2545 sp->adaption_ind = 0;
2546
2547 sp->pf = sctp_get_pf_specific(sk->family);
2548
2549 /* Control variables for partial data delivery. */
2550 sp->pd_mode = 0;
2551 skb_queue_head_init(&sp->pd_lobby);
2552
2553 /* Create a per socket endpoint structure. Even if we
2554 * change the data structure relationships, this may still
2555 * be useful for storing pre-connect address information.
2556 */
2557 ep = sctp_endpoint_new(sk, GFP_KERNEL);
2558 if (!ep)
2559 return -ENOMEM;
2560
2561 sp->ep = ep;
2562 sp->hmac = NULL;
2563
2564 SCTP_DBG_OBJCNT_INC(sock);
2565 return 0;
2566 }
2567
2568 /* Cleanup any SCTP per socket resources. */
sctp_destroy_sock(struct sock * sk)2569 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
2570 {
2571 struct sctp_endpoint *ep;
2572
2573 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
2574
2575 /* Release our hold on the endpoint. */
2576 ep = sctp_sk(sk)->ep;
2577 sctp_endpoint_free(ep);
2578
2579 return 0;
2580 }
2581
2582 /* API 4.1.7 shutdown() - TCP Style Syntax
2583 * int shutdown(int socket, int how);
2584 *
2585 * sd - the socket descriptor of the association to be closed.
2586 * how - Specifies the type of shutdown. The values are
2587 * as follows:
2588 * SHUT_RD
2589 * Disables further receive operations. No SCTP
2590 * protocol action is taken.
2591 * SHUT_WR
2592 * Disables further send operations, and initiates
2593 * the SCTP shutdown sequence.
2594 * SHUT_RDWR
2595 * Disables further send and receive operations
2596 * and initiates the SCTP shutdown sequence.
2597 */
sctp_shutdown(struct sock * sk,int how)2598 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
2599 {
2600 struct sctp_endpoint *ep;
2601 struct sctp_association *asoc;
2602
2603 if (!sctp_style(sk, TCP))
2604 return;
2605
2606 if (how & SEND_SHUTDOWN) {
2607 ep = sctp_sk(sk)->ep;
2608 if (!list_empty(&ep->asocs)) {
2609 asoc = list_entry(ep->asocs.next,
2610 struct sctp_association, asocs);
2611 sctp_primitive_SHUTDOWN(asoc, NULL);
2612 }
2613 }
2614 }
2615
2616 /* 7.2.1 Association Status (SCTP_STATUS)
2617
2618 * Applications can retrieve current status information about an
2619 * association, including association state, peer receiver window size,
2620 * number of unacked data chunks, and number of data chunks pending
2621 * receipt. This information is read-only.
2622 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char * optval,int * optlen)2623 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, char *optval,
2624 int *optlen)
2625 {
2626 struct sctp_status status;
2627 struct sctp_association *asoc = NULL;
2628 struct sctp_transport *transport;
2629 sctp_assoc_t associd;
2630 int retval = 0;
2631
2632 if (len != sizeof(status)) {
2633 retval = -EINVAL;
2634 goto out;
2635 }
2636
2637 if (copy_from_user(&status, optval, sizeof(status))) {
2638 retval = -EFAULT;
2639 goto out;
2640 }
2641
2642 associd = status.sstat_assoc_id;
2643 asoc = sctp_id2assoc(sk, associd);
2644 if (!asoc) {
2645 retval = -EINVAL;
2646 goto out;
2647 }
2648
2649 transport = asoc->peer.primary_path;
2650
2651 status.sstat_assoc_id = sctp_assoc2id(asoc);
2652 status.sstat_state = asoc->state;
2653 status.sstat_rwnd = asoc->peer.rwnd;
2654 status.sstat_unackdata = asoc->unack_data;
2655
2656 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
2657 status.sstat_instrms = asoc->c.sinit_max_instreams;
2658 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
2659 status.sstat_fragmentation_point = asoc->frag_point;
2660 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2661 memcpy(&status.sstat_primary.spinfo_address,
2662 &(transport->ipaddr), sizeof(union sctp_addr));
2663 /* Map ipv4 address into v4-mapped-on-v6 address. */
2664 sctp_get_pf_specific(sk->family)->addr_v4map(sctp_sk(sk),
2665 (union sctp_addr *)&status.sstat_primary.spinfo_address);
2666 status.sstat_primary.spinfo_state = transport->active;
2667 status.sstat_primary.spinfo_cwnd = transport->cwnd;
2668 status.sstat_primary.spinfo_srtt = transport->srtt;
2669 status.sstat_primary.spinfo_rto = JIFFIES_TO_MSECS(transport->rto);
2670 status.sstat_primary.spinfo_mtu = transport->pmtu;
2671
2672 if (put_user(len, optlen)) {
2673 retval = -EFAULT;
2674 goto out;
2675 }
2676
2677 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %p\n",
2678 len, status.sstat_state, status.sstat_rwnd,
2679 status.sstat_assoc_id);
2680
2681 if (copy_to_user(optval, &status, len)) {
2682 retval = -EFAULT;
2683 goto out;
2684 }
2685
2686 out:
2687 return (retval);
2688 }
2689
2690
2691 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
2692 *
2693 * Applications can retrieve information about a specific peer address
2694 * of an association, including its reachability state, congestion
2695 * window, and retransmission timer values. This information is
2696 * read-only.
2697 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char * optval,int * optlen)2698 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
2699 char *optval, int *optlen)
2700 {
2701 struct sctp_paddrinfo pinfo;
2702 struct sctp_transport *transport;
2703 int retval = 0;
2704
2705 if (len != sizeof(pinfo)) {
2706 retval = -EINVAL;
2707 goto out;
2708 }
2709
2710 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
2711 retval = -EFAULT;
2712 goto out;
2713 }
2714
2715 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
2716 pinfo.spinfo_assoc_id);
2717 if (!transport)
2718 return -EINVAL;
2719
2720 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2721 pinfo.spinfo_state = transport->active;
2722 pinfo.spinfo_cwnd = transport->cwnd;
2723 pinfo.spinfo_srtt = transport->srtt;
2724 pinfo.spinfo_rto = JIFFIES_TO_MSECS(transport->rto);
2725 pinfo.spinfo_mtu = transport->pmtu;
2726
2727 if (put_user(len, optlen)) {
2728 retval = -EFAULT;
2729 goto out;
2730 }
2731
2732 if (copy_to_user(optval, &pinfo, len)) {
2733 retval = -EFAULT;
2734 goto out;
2735 }
2736
2737 out:
2738 return (retval);
2739 }
2740
2741 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2742 *
2743 * This option is a on/off flag. If enabled no SCTP message
2744 * fragmentation will be performed. Instead if a message being sent
2745 * exceeds the current PMTU size, the message will NOT be sent and
2746 * instead a error will be indicated to the user.
2747 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char * optval,int * optlen)2748 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
2749 char *optval, int *optlen)
2750 {
2751 int val;
2752
2753 if (len < sizeof(int))
2754 return -EINVAL;
2755
2756 len = sizeof(int);
2757 val = (sctp_sk(sk)->disable_fragments == 1);
2758 if (put_user(len, optlen))
2759 return -EFAULT;
2760 if (copy_to_user(optval, &val, len))
2761 return -EFAULT;
2762 return 0;
2763 }
2764
2765 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
2766 *
2767 * This socket option is used to specify various notifications and
2768 * ancillary data the user wishes to receive.
2769 */
sctp_getsockopt_events(struct sock * sk,int len,char * optval,int * optlen)2770 static int sctp_getsockopt_events(struct sock *sk, int len, char *optval,
2771 int *optlen)
2772 {
2773 if (len != sizeof(struct sctp_event_subscribe))
2774 return -EINVAL;
2775 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
2776 return -EFAULT;
2777 return 0;
2778 }
2779
2780 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2781 *
2782 * This socket option is applicable to the UDP-style socket only. When
2783 * set it will cause associations that are idle for more than the
2784 * specified number of seconds to automatically close. An association
2785 * being idle is defined an association that has NOT sent or received
2786 * user data. The special value of '0' indicates that no automatic
2787 * close of any associations should be performed. The option expects an
2788 * integer defining the number of seconds of idle time before an
2789 * association is closed.
2790 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char * optval,int * optlen)2791 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char *optval, int *optlen)
2792 {
2793 /* Applicable to UDP-style socket only */
2794 if (sctp_style(sk, TCP))
2795 return -EOPNOTSUPP;
2796 if (len != sizeof(int))
2797 return -EINVAL;
2798 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
2799 return -EFAULT;
2800 return 0;
2801 }
2802
2803 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sctp_association * asoc,struct socket ** sockp)2804 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
2805 struct socket **sockp)
2806 {
2807 struct sock *sk = asoc->base.sk;
2808 struct socket *sock;
2809 int err = 0;
2810
2811 /* An association cannot be branched off from an already peeled-off
2812 * socket, nor is this supported for tcp style sockets.
2813 */
2814 if (!sctp_style(sk, UDP))
2815 return -EINVAL;
2816
2817 /* Create a new socket. */
2818 err = sock_create(sk->family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
2819 if (err < 0)
2820 return err;
2821
2822 /* Populate the fields of the newsk from the oldsk and migrate the
2823 * asoc to the newsk.
2824 */
2825 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
2826 *sockp = sock;
2827
2828 return err;
2829 }
2830
sctp_getsockopt_peeloff(struct sock * sk,int len,char * optval,int * optlen)2831 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char *optval, int *optlen)
2832 {
2833 sctp_peeloff_arg_t peeloff;
2834 struct socket *newsock;
2835 int retval = 0;
2836 struct sctp_association *asoc;
2837
2838 if (len != sizeof(sctp_peeloff_arg_t))
2839 return -EINVAL;
2840 if (copy_from_user(&peeloff, optval, len))
2841 return -EFAULT;
2842
2843 asoc = sctp_id2assoc(sk, peeloff.associd);
2844 if (!asoc) {
2845 retval = -EINVAL;
2846 goto out;
2847 }
2848
2849 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
2850
2851 retval = sctp_do_peeloff(asoc, &newsock);
2852 if (retval < 0)
2853 goto out;
2854
2855 /* Map the socket to an unused fd that can be returned to the user. */
2856 retval = sock_map_fd(newsock);
2857 if (retval < 0) {
2858 sock_release(newsock);
2859 goto out;
2860 }
2861
2862 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
2863 __FUNCTION__, sk, asoc, newsock->sk, retval);
2864
2865 /* Return the fd mapped to the new socket. */
2866 peeloff.sd = retval;
2867 if (copy_to_user(optval, &peeloff, len))
2868 retval = -EFAULT;
2869
2870 out:
2871 return retval;
2872 }
2873
2874 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2875 *
2876 * Applications can enable or disable heartbeats for any peer address of
2877 * an association, modify an address's heartbeat interval, force a
2878 * heartbeat to be sent immediately, and adjust the address's maximum
2879 * number of retransmissions sent before an address is considered
2880 * unreachable. The following structure is used to access and modify an
2881 * address's parameters:
2882 *
2883 * struct sctp_paddrparams {
2884 * sctp_assoc_t spp_assoc_id;
2885 * struct sockaddr_storage spp_address;
2886 * uint32_t spp_hbinterval;
2887 * uint16_t spp_pathmaxrxt;
2888 * };
2889 *
2890 * spp_assoc_id - (UDP style socket) This is filled in the application,
2891 * and identifies the association for this query.
2892 * spp_address - This specifies which address is of interest.
2893 * spp_hbinterval - This contains the value of the heartbeat interval,
2894 * in milliseconds. A value of 0, when modifying the
2895 * parameter, specifies that the heartbeat on this
2896 * address should be disabled. A value of UINT32_MAX
2897 * (4294967295), when modifying the parameter,
2898 * specifies that a heartbeat should be sent
2899 * immediately to the peer address, and the current
2900 * interval should remain unchanged.
2901 * spp_pathmaxrxt - This contains the maximum number of
2902 * retransmissions before this address shall be
2903 * considered unreachable.
2904 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char * optval,int * optlen)2905 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
2906 char *optval, int *optlen)
2907 {
2908 struct sctp_paddrparams params;
2909 struct sctp_transport *trans;
2910
2911 if (len != sizeof(struct sctp_paddrparams))
2912 return -EINVAL;
2913 if (copy_from_user(¶ms, optval, *optlen))
2914 return -EFAULT;
2915
2916 /* If no association id is specified retrieve the default value
2917 * for the endpoint that will be used for all future associations
2918 */
2919 if (!params.spp_assoc_id &&
2920 sctp_is_any(( union sctp_addr *)¶ms.spp_address)) {
2921 params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval;
2922 params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt;
2923
2924 goto done;
2925 }
2926
2927 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2928 params.spp_assoc_id);
2929 if (!trans)
2930 return -EINVAL;
2931
2932 /* The value of the heartbeat interval, in milliseconds. A value of 0,
2933 * when modifying the parameter, specifies that the heartbeat on this
2934 * address should be disabled.
2935 */
2936 if (!trans->hb_allowed)
2937 params.spp_hbinterval = 0;
2938 else
2939 params.spp_hbinterval = JIFFIES_TO_MSECS(trans->hb_interval);
2940
2941 /* spp_pathmaxrxt contains the maximum number of retransmissions
2942 * before this address shall be considered unreachable.
2943 */
2944 params.spp_pathmaxrxt = trans->max_retrans;
2945
2946 done:
2947 if (copy_to_user(optval, ¶ms, len))
2948 return -EFAULT;
2949
2950 if (put_user(len, optlen))
2951 return -EFAULT;
2952
2953 return 0;
2954 }
2955
2956 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2957 *
2958 * Applications can specify protocol parameters for the default association
2959 * initialization. The option name argument to setsockopt() and getsockopt()
2960 * is SCTP_INITMSG.
2961 *
2962 * Setting initialization parameters is effective only on an unconnected
2963 * socket (for UDP-style sockets only future associations are effected
2964 * by the change). With TCP-style sockets, this option is inherited by
2965 * sockets derived from a listener socket.
2966 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char * optval,int * optlen)2967 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char *optval, int *optlen)
2968 {
2969 if (len != sizeof(struct sctp_initmsg))
2970 return -EINVAL;
2971 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
2972 return -EFAULT;
2973 return 0;
2974 }
2975
sctp_getsockopt_peer_addrs_num(struct sock * sk,int len,char * optval,int * optlen)2976 static int sctp_getsockopt_peer_addrs_num(struct sock *sk, int len,
2977 char *optval, int *optlen)
2978 {
2979 sctp_assoc_t id;
2980 struct sctp_association *asoc;
2981 struct list_head *pos;
2982 int cnt = 0;
2983
2984 if (len != sizeof(sctp_assoc_t))
2985 return -EINVAL;
2986
2987 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
2988 return -EFAULT;
2989
2990 /* For UDP-style sockets, id specifies the association to query. */
2991 asoc = sctp_id2assoc(sk, id);
2992 if (!asoc)
2993 return -EINVAL;
2994
2995 list_for_each(pos, &asoc->peer.transport_addr_list) {
2996 cnt ++;
2997 }
2998
2999 return cnt;
3000 }
3001
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char * optval,int * optlen)3002 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3003 char *optval, int *optlen)
3004 {
3005 struct sctp_association *asoc;
3006 struct list_head *pos;
3007 int cnt = 0;
3008 struct sctp_getaddrs getaddrs;
3009 struct sctp_transport *from;
3010 void *to;
3011 union sctp_addr temp;
3012 struct sctp_opt *sp = sctp_sk(sk);
3013 int addrlen;
3014
3015 if (len != sizeof(struct sctp_getaddrs))
3016 return -EINVAL;
3017
3018 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3019 return -EFAULT;
3020
3021 if (getaddrs.addr_num <= 0) return -EINVAL;
3022
3023 /* For UDP-style sockets, id specifies the association to query. */
3024 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3025 if (!asoc)
3026 return -EINVAL;
3027
3028 to = (void *)getaddrs.addrs;
3029 list_for_each(pos, &asoc->peer.transport_addr_list) {
3030 from = list_entry(pos, struct sctp_transport, transports);
3031 memcpy(&temp, &from->ipaddr, sizeof(temp));
3032 sctp_get_pf_specific(sk->family)->addr_v4map(sp, &temp);
3033 addrlen = sctp_get_af_specific(sk->family)->sockaddr_len;
3034 temp.v4.sin_port = htons(temp.v4.sin_port);
3035 if (copy_to_user(to, &temp, addrlen))
3036 return -EFAULT;
3037 to += addrlen ;
3038 cnt ++;
3039 if (cnt >= getaddrs.addr_num) break;
3040 }
3041 getaddrs.addr_num = cnt;
3042 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs)))
3043 return -EFAULT;
3044
3045 return 0;
3046 }
3047
sctp_getsockopt_local_addrs_num(struct sock * sk,int len,char * optval,int * optlen)3048 static int sctp_getsockopt_local_addrs_num(struct sock *sk, int len,
3049 char *optval, int *optlen)
3050 {
3051 sctp_assoc_t id;
3052 struct sctp_bind_addr *bp;
3053 struct sctp_association *asoc;
3054 struct list_head *pos;
3055 struct sctp_sockaddr_entry *addr;
3056 rwlock_t *addr_lock;
3057 unsigned long flags;
3058 int cnt = 0;
3059
3060 if (len != sizeof(sctp_assoc_t))
3061 return -EINVAL;
3062
3063 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3064 return -EFAULT;
3065
3066 /*
3067 * For UDP-style sockets, id specifies the association to query.
3068 * If the id field is set to the value '0' then the locally bound
3069 * addresses are returned without regard to any particular
3070 * association.
3071 */
3072 if (0 == id) {
3073 bp = &sctp_sk(sk)->ep->base.bind_addr;
3074 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3075 } else {
3076 asoc = sctp_id2assoc(sk, id);
3077 if (!asoc)
3078 return -EINVAL;
3079 bp = &asoc->base.bind_addr;
3080 addr_lock = &asoc->base.addr_lock;
3081 }
3082
3083 sctp_read_lock(addr_lock);
3084
3085 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3086 * addresses from the global local address list.
3087 */
3088 if (sctp_list_single_entry(&bp->address_list)) {
3089 addr = list_entry(bp->address_list.next,
3090 struct sctp_sockaddr_entry, list);
3091 if (sctp_is_any(&addr->a)) {
3092 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3093 list_for_each(pos, &sctp_local_addr_list) {
3094 addr = list_entry(pos,
3095 struct sctp_sockaddr_entry,
3096 list);
3097 if ((PF_INET == sk->family) &&
3098 (AF_INET6 == addr->a.sa.sa_family))
3099 continue;
3100 cnt++;
3101 }
3102 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3103 flags);
3104 } else {
3105 cnt = 1;
3106 }
3107 goto done;
3108 }
3109
3110 list_for_each(pos, &bp->address_list) {
3111 cnt ++;
3112 }
3113
3114 done:
3115 sctp_read_unlock(addr_lock);
3116 return cnt;
3117 }
3118
3119 /* Helper function that copies local addresses to user and returns the number
3120 * of addresses copied.
3121 */
sctp_copy_laddrs_to_user(struct sock * sk,__u16 port,int max_addrs,void __user * to)3122 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, int max_addrs,
3123 void __user *to)
3124 {
3125 struct list_head *pos;
3126 struct sctp_sockaddr_entry *addr;
3127 unsigned long flags;
3128 union sctp_addr temp;
3129 int cnt = 0;
3130 int addrlen;
3131
3132 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3133 list_for_each(pos, &sctp_local_addr_list) {
3134 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3135 if ((PF_INET == sk->family) &&
3136 (AF_INET6 == addr->a.sa.sa_family))
3137 continue;
3138 memcpy(&temp, &addr->a, sizeof(temp));
3139 sctp_get_pf_specific(sk->family)->addr_v4map(sctp_sk(sk),
3140 &temp);
3141 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; temp.v4.sin_port = htons(port);
3142 if (copy_to_user(to, &temp, addrlen)) {
3143 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3144 flags);
3145 return -EFAULT;
3146 }
3147 to += addrlen;
3148 cnt ++;
3149 if (cnt >= max_addrs) break;
3150 }
3151 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3152
3153 return cnt;
3154 }
3155
sctp_getsockopt_local_addrs(struct sock * sk,int len,char * optval,int * optlen)3156 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3157 char *optval, int *optlen)
3158 {
3159 struct sctp_bind_addr *bp;
3160 struct sctp_association *asoc;
3161 struct list_head *pos;
3162 int cnt = 0;
3163 struct sctp_getaddrs getaddrs;
3164 struct sctp_sockaddr_entry *addr;
3165 void *to;
3166 union sctp_addr temp;
3167 struct sctp_opt *sp = sctp_sk(sk);
3168 int addrlen;
3169 rwlock_t *addr_lock;
3170 int err = 0;
3171
3172 if (len != sizeof(struct sctp_getaddrs))
3173 return -EINVAL;
3174
3175 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3176 return -EFAULT;
3177
3178 if (getaddrs.addr_num <= 0 ||
3179 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
3180 return -EINVAL;
3181 /*
3182 * For UDP-style sockets, id specifies the association to query.
3183 * If the id field is set to the value '0' then the locally bound
3184 * addresses are returned without regard to any particular
3185 * association.
3186 */
3187 if (0 == getaddrs.assoc_id) {
3188 bp = &sctp_sk(sk)->ep->base.bind_addr;
3189 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3190 } else {
3191 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3192 if (!asoc)
3193 return -EINVAL;
3194 bp = &asoc->base.bind_addr;
3195 addr_lock = &asoc->base.addr_lock;
3196 }
3197
3198 to = (void *)getaddrs.addrs;
3199
3200 sctp_read_lock(addr_lock);
3201
3202 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3203 * addresses from the global local address list.
3204 */
3205 if (sctp_list_single_entry(&bp->address_list)) {
3206 addr = list_entry(bp->address_list.next,
3207 struct sctp_sockaddr_entry, list);
3208 if (sctp_is_any(&addr->a)) {
3209 cnt = sctp_copy_laddrs_to_user(sk, bp->port,
3210 getaddrs.addr_num, to);
3211 if (cnt < 0) {
3212 err = cnt;
3213 goto unlock;
3214 }
3215 goto copy_getaddrs;
3216 }
3217 }
3218
3219 list_for_each(pos, &bp->address_list) {
3220 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3221 memcpy(&temp, &addr->a, sizeof(temp));
3222 sctp_get_pf_specific(sk->family)->addr_v4map(sp, &temp);
3223 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3224 temp.v4.sin_port = htons(temp.v4.sin_port);
3225 if (copy_to_user(to, &temp, addrlen)) {
3226 err = -EFAULT;
3227 goto unlock;
3228 }
3229 to += addrlen;
3230 cnt ++;
3231 if (cnt >= getaddrs.addr_num) break;
3232 }
3233
3234 copy_getaddrs:
3235 getaddrs.addr_num = cnt;
3236 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs)))
3237 err = -EFAULT;
3238
3239 unlock:
3240 sctp_read_unlock(addr_lock);
3241 return err;
3242 }
3243
3244 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3245 *
3246 * Requests that the local SCTP stack use the enclosed peer address as
3247 * the association primary. The enclosed address must be one of the
3248 * association peer's addresses.
3249 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char * optval,int * optlen)3250 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
3251 char *optval, int *optlen)
3252 {
3253 struct sctp_prim prim;
3254 struct sctp_association *asoc;
3255 struct sctp_opt *sp = sctp_sk(sk);
3256
3257 if (len != sizeof(struct sctp_prim))
3258 return -EINVAL;
3259
3260 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3261 return -EFAULT;
3262
3263 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
3264 if (!asoc)
3265 return -EINVAL;
3266
3267 if (!asoc->peer.primary_path)
3268 return -ENOTCONN;
3269
3270 asoc->peer.primary_path->ipaddr.v4.sin_port =
3271 htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
3272 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
3273 sizeof(union sctp_addr));
3274 asoc->peer.primary_path->ipaddr.v4.sin_port =
3275 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
3276
3277 sctp_get_pf_specific(sk->family)->addr_v4map(sp,
3278 (union sctp_addr *)&prim.ssp_addr);
3279
3280 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
3281 return -EFAULT;
3282
3283 return 0;
3284 }
3285
3286 /*
3287 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
3288 *
3289 * Requests that the local endpoint set the specified Adaption Layer
3290 * Indication parameter for all future INIT and INIT-ACK exchanges.
3291 */
sctp_getsockopt_adaption_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)3292 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
3293 char __user *optval, int __user *optlen)
3294 {
3295 __u32 val;
3296
3297 if (len < sizeof(__u32))
3298 return -EINVAL;
3299
3300 len = sizeof(__u32);
3301 val = sctp_sk(sk)->adaption_ind;
3302 if (put_user(len, optlen))
3303 return -EFAULT;
3304 if (copy_to_user(optval, &val, len))
3305 return -EFAULT;
3306 return 0;
3307 }
3308
3309 /*
3310 *
3311 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
3312 *
3313 * Applications that wish to use the sendto() system call may wish to
3314 * specify a default set of parameters that would normally be supplied
3315 * through the inclusion of ancillary data. This socket option allows
3316 * such an application to set the default sctp_sndrcvinfo structure.
3317
3318
3319 * The application that wishes to use this socket option simply passes
3320 * in to this call the sctp_sndrcvinfo structure defined in Section
3321 * 5.2.2) The input parameters accepted by this call include
3322 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
3323 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
3324 * to this call if the caller is using the UDP model.
3325 *
3326 * For getsockopt, it get the default sctp_sndrcvinfo structure.
3327 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char * optval,int * optlen)3328 static int sctp_getsockopt_default_send_param(struct sock *sk,
3329 int len, char *optval, int *optlen)
3330 {
3331 struct sctp_sndrcvinfo info;
3332 struct sctp_association *asoc;
3333 struct sctp_opt *sp = sctp_sk(sk);
3334
3335 if (len != sizeof(struct sctp_sndrcvinfo))
3336 return -EINVAL;
3337 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
3338 return -EFAULT;
3339
3340 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3341 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3342 return -EINVAL;
3343
3344 if (asoc) {
3345 info.sinfo_stream = asoc->default_stream;
3346 info.sinfo_flags = asoc->default_flags;
3347 info.sinfo_ppid = asoc->default_ppid;
3348 info.sinfo_context = asoc->default_context;
3349 info.sinfo_timetolive = asoc->default_timetolive;
3350 } else {
3351 info.sinfo_stream = sp->default_stream;
3352 info.sinfo_flags = sp->default_flags;
3353 info.sinfo_ppid = sp->default_ppid;
3354 info.sinfo_context = sp->default_context;
3355 info.sinfo_timetolive = sp->default_timetolive;
3356 }
3357
3358 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
3359 return -EFAULT;
3360
3361 return 0;
3362 }
3363
3364 /*
3365 *
3366 * 7.1.5 SCTP_NODELAY
3367 *
3368 * Turn on/off any Nagle-like algorithm. This means that packets are
3369 * generally sent as soon as possible and no unnecessary delays are
3370 * introduced, at the cost of more packets in the network. Expects an
3371 * integer boolean flag.
3372 */
3373
sctp_getsockopt_nodelay(struct sock * sk,int len,char * optval,int * optlen)3374 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
3375 char *optval, int *optlen)
3376 {
3377 int val;
3378
3379 if (len < sizeof(int))
3380 return -EINVAL;
3381
3382 len = sizeof(int);
3383 val = (sctp_sk(sk)->nodelay == 1);
3384 if (put_user(len, optlen))
3385 return -EFAULT;
3386 if (copy_to_user(optval, &val, len))
3387 return -EFAULT;
3388 return 0;
3389 }
3390
3391 /*
3392 *
3393 * 7.1.1 SCTP_RTOINFO
3394 *
3395 * The protocol parameters used to initialize and bound retransmission
3396 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3397 * and modify these parameters.
3398 * All parameters are time values, in milliseconds. A value of 0, when
3399 * modifying the parameters, indicates that the current value should not
3400 * be changed.
3401 *
3402 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char * optval,int * optlen)3403 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, char *optval,
3404 int *optlen) {
3405 struct sctp_rtoinfo rtoinfo;
3406 struct sctp_association *asoc;
3407
3408 if (len != sizeof (struct sctp_rtoinfo))
3409 return -EINVAL;
3410
3411 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
3412 return -EFAULT;
3413
3414 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3415
3416 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3417 return -EINVAL;
3418
3419 /* Values corresponding to the specific association. */
3420 if (asoc) {
3421 rtoinfo.srto_initial = JIFFIES_TO_MSECS(asoc->rto_initial);
3422 rtoinfo.srto_max = JIFFIES_TO_MSECS(asoc->rto_max);
3423 rtoinfo.srto_min = JIFFIES_TO_MSECS(asoc->rto_min);
3424 } else {
3425 /* Values corresponding to the endpoint. */
3426 struct sctp_opt *sp = sctp_sk(sk);
3427
3428 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
3429 rtoinfo.srto_max = sp->rtoinfo.srto_max;
3430 rtoinfo.srto_min = sp->rtoinfo.srto_min;
3431 }
3432
3433 if (put_user(len, optlen))
3434 return -EFAULT;
3435
3436 if (copy_to_user(optval, &rtoinfo, len))
3437 return -EFAULT;
3438
3439 return 0;
3440 }
3441
3442 /*
3443 *
3444 * 7.1.2 SCTP_ASSOCINFO
3445 *
3446 * This option is used to tune the the maximum retransmission attempts
3447 * of the association.
3448 * Returns an error if the new association retransmission value is
3449 * greater than the sum of the retransmission value of the peer.
3450 * See [SCTP] for more information.
3451 *
3452 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char * optval,int * optlen)3453 static int sctp_getsockopt_associnfo(struct sock *sk, int len, char *optval,
3454 int *optlen)
3455 {
3456
3457 struct sctp_assocparams assocparams;
3458 struct sctp_association *asoc;
3459 struct list_head *pos;
3460 int cnt = 0;
3461
3462 if (len != sizeof (struct sctp_assocparams))
3463 return -EINVAL;
3464
3465 if (copy_from_user(&assocparams, optval,
3466 sizeof (struct sctp_assocparams)))
3467 return -EFAULT;
3468
3469 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3470
3471 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3472 return -EINVAL;
3473
3474 /* Values correspoinding to the specific association */
3475 if (assocparams.sasoc_assoc_id != 0) {
3476 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
3477 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
3478 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
3479 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
3480 * 1000) +
3481 (asoc->cookie_life.tv_usec
3482 / 1000);
3483
3484 list_for_each(pos, &asoc->peer.transport_addr_list) {
3485 cnt ++;
3486 }
3487
3488 assocparams.sasoc_number_peer_destinations = cnt;
3489 } else {
3490 /* Values corresponding to the endpoint */
3491 struct sctp_opt *sp = sctp_sk(sk);
3492
3493 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
3494 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
3495 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
3496 assocparams.sasoc_cookie_life =
3497 sp->assocparams.sasoc_cookie_life;
3498 assocparams.sasoc_number_peer_destinations =
3499 sp->assocparams.
3500 sasoc_number_peer_destinations;
3501 }
3502
3503 if (put_user(len, optlen))
3504 return -EFAULT;
3505
3506 if (copy_to_user(optval, &assocparams, len))
3507 return -EFAULT;
3508
3509 return 0;
3510 }
3511
3512 /*
3513 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3514 *
3515 * This socket option is a boolean flag which turns on or off mapped V4
3516 * addresses. If this option is turned on and the socket is type
3517 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3518 * If this option is turned off, then no mapping will be done of V4
3519 * addresses and a user will receive both PF_INET6 and PF_INET type
3520 * addresses on the socket.
3521 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char * optval,int * optlen)3522 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
3523 char *optval, int *optlen)
3524 {
3525 int val;
3526 struct sctp_opt *sp = sctp_sk(sk);
3527
3528 if (len < sizeof(int))
3529 return -EINVAL;
3530
3531 len = sizeof(int);
3532 val = sp->v4mapped;
3533 if (put_user(len, optlen))
3534 return -EFAULT;
3535 if (copy_to_user(optval, &val, len))
3536 return -EFAULT;
3537
3538 return 0;
3539 }
3540
3541 /*
3542 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
3543 *
3544 * This socket option specifies the maximum size to put in any outgoing
3545 * SCTP chunk. If a message is larger than this size it will be
3546 * fragmented by SCTP into the specified size. Note that the underlying
3547 * SCTP implementation may fragment into smaller sized chunks when the
3548 * PMTU of the underlying association is smaller than the value set by
3549 * the user.
3550 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char * optval,int * optlen)3551 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
3552 char *optval, int *optlen)
3553 {
3554 int val;
3555
3556 if (len < sizeof(int))
3557 return -EINVAL;
3558
3559 len = sizeof(int);
3560
3561 val = sctp_sk(sk)->user_frag;
3562 if (put_user(len, optlen))
3563 return -EFAULT;
3564 if (copy_to_user(optval, &val, len))
3565 return -EFAULT;
3566
3567 return 0;
3568 }
3569
sctp_getsockopt(struct sock * sk,int level,int optname,char * optval,int * optlen)3570 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
3571 char *optval, int *optlen)
3572 {
3573 int retval = 0;
3574 int len;
3575
3576 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p, ...)\n", sk);
3577
3578 /* I can hardly begin to describe how wrong this is. This is
3579 * so broken as to be worse than useless. The API draft
3580 * REALLY is NOT helpful here... I am not convinced that the
3581 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
3582 * are at all well-founded.
3583 */
3584 if (level != SOL_SCTP) {
3585 struct sctp_af *af = sctp_sk(sk)->pf->af;
3586
3587 retval = af->getsockopt(sk, level, optname, optval, optlen);
3588 return retval;
3589 }
3590
3591 if (get_user(len, optlen))
3592 return -EFAULT;
3593
3594 sctp_lock_sock(sk);
3595
3596 switch (optname) {
3597 case SCTP_STATUS:
3598 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
3599 break;
3600 case SCTP_DISABLE_FRAGMENTS:
3601 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
3602 optlen);
3603 break;
3604 case SCTP_EVENTS:
3605 retval = sctp_getsockopt_events(sk, len, optval, optlen);
3606 break;
3607 case SCTP_AUTOCLOSE:
3608 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
3609 break;
3610 case SCTP_SOCKOPT_PEELOFF:
3611 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
3612 break;
3613 case SCTP_PEER_ADDR_PARAMS:
3614 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
3615 optlen);
3616 break;
3617 case SCTP_INITMSG:
3618 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
3619 break;
3620 case SCTP_GET_PEER_ADDRS_NUM:
3621 retval = sctp_getsockopt_peer_addrs_num(sk, len, optval,
3622 optlen);
3623 break;
3624 case SCTP_GET_LOCAL_ADDRS_NUM:
3625 retval = sctp_getsockopt_local_addrs_num(sk, len, optval,
3626 optlen);
3627 break;
3628 case SCTP_GET_PEER_ADDRS:
3629 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
3630 optlen);
3631 break;
3632 case SCTP_GET_LOCAL_ADDRS:
3633 retval = sctp_getsockopt_local_addrs(sk, len, optval,
3634 optlen);
3635 break;
3636 case SCTP_DEFAULT_SEND_PARAM:
3637 retval = sctp_getsockopt_default_send_param(sk, len,
3638 optval, optlen);
3639 break;
3640 case SCTP_PRIMARY_ADDR:
3641 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
3642 break;
3643 case SCTP_NODELAY:
3644 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
3645 break;
3646 case SCTP_RTOINFO:
3647 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
3648 break;
3649 case SCTP_ASSOCINFO:
3650 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
3651 break;
3652 case SCTP_I_WANT_MAPPED_V4_ADDR:
3653 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
3654 break;
3655 case SCTP_MAXSEG:
3656 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
3657 break;
3658 case SCTP_GET_PEER_ADDR_INFO:
3659 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
3660 optlen);
3661 break;
3662 case SCTP_ADAPTION_LAYER:
3663 retval = sctp_getsockopt_adaption_layer(sk, len, optval,
3664 optlen);
3665 break;
3666 default:
3667 retval = -ENOPROTOOPT;
3668 break;
3669 };
3670
3671 sctp_release_sock(sk);
3672 return retval;
3673 }
3674
sctp_hash(struct sock * sk)3675 static void sctp_hash(struct sock *sk)
3676 {
3677 /* STUB */
3678 }
3679
sctp_unhash(struct sock * sk)3680 static void sctp_unhash(struct sock *sk)
3681 {
3682 /* STUB */
3683 }
3684
3685 /* Check if port is acceptable. Possibly find first available port.
3686 *
3687 * The port hash table (contained in the 'global' SCTP protocol storage
3688 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
3689 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
3690 * list (the list number is the port number hashed out, so as you
3691 * would expect from a hash function, all the ports in a given list have
3692 * such a number that hashes out to the same list number; you were
3693 * expecting that, right?); so each list has a set of ports, with a
3694 * link to the socket (struct sock) that uses it, the port number and
3695 * a fastreuse flag (FIXME: NPI ipg).
3696 */
3697 static struct sctp_bind_bucket *sctp_bucket_create(
3698 struct sctp_bind_hashbucket *head, unsigned short snum);
3699
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)3700 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
3701 {
3702 struct sctp_bind_hashbucket *head; /* hash list */
3703 struct sctp_bind_bucket *pp; /* hash list port iterator */
3704 unsigned short snum;
3705 int ret;
3706
3707 /* NOTE: Remember to put this back to net order. */
3708 addr->v4.sin_port = ntohs(addr->v4.sin_port);
3709 snum = addr->v4.sin_port;
3710
3711 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
3712 sctp_local_bh_disable();
3713
3714 if (snum == 0) {
3715 /* Search for an available port.
3716 *
3717 * 'sctp_port_rover' was the last port assigned, so
3718 * we start to search from 'sctp_port_rover +
3719 * 1'. What we do is first check if port 'rover' is
3720 * already in the hash table; if not, we use that; if
3721 * it is, we try next.
3722 */
3723 int low = sysctl_local_port_range[0];
3724 int high = sysctl_local_port_range[1];
3725 int remaining = (high - low) + 1;
3726 int rover;
3727 int index;
3728
3729 sctp_spin_lock(&sctp_port_alloc_lock);
3730 rover = sctp_port_rover;
3731 do {
3732 rover++;
3733 if ((rover < low) || (rover > high))
3734 rover = low;
3735 index = sctp_phashfn(rover);
3736 head = &sctp_port_hashtable[index];
3737 sctp_spin_lock(&head->lock);
3738 for (pp = head->chain; pp; pp = pp->next)
3739 if (pp->port == rover)
3740 goto next;
3741 break;
3742 next:
3743 sctp_spin_unlock(&head->lock);
3744 } while (--remaining > 0);
3745 sctp_port_rover = rover;
3746 sctp_spin_unlock(&sctp_port_alloc_lock);
3747
3748 /* Exhausted local port range during search? */
3749 ret = 1;
3750 if (remaining <= 0)
3751 goto fail;
3752
3753 /* OK, here is the one we will use. HEAD (the port
3754 * hash table list entry) is non-NULL and we hold it's
3755 * mutex.
3756 */
3757 snum = rover;
3758 pp = NULL;
3759 } else {
3760 /* We are given an specific port number; we verify
3761 * that it is not being used. If it is used, we will
3762 * exahust the search in the hash list corresponding
3763 * to the port number (snum) - we detect that with the
3764 * port iterator, pp being NULL.
3765 */
3766 head = &sctp_port_hashtable[sctp_phashfn(snum)];
3767 sctp_spin_lock(&head->lock);
3768 for (pp = head->chain; pp; pp = pp->next) {
3769 if (pp->port == snum)
3770 break;
3771 }
3772 }
3773
3774
3775 if (pp && pp->sk) {
3776 /* We had a port hash table hit - there is an
3777 * available port (pp != NULL) and it is being
3778 * used by other socket (pp->sk != NULL); that other
3779 * socket is going to be sk2.
3780 */
3781 int reuse = sk->reuse;
3782 struct sock *sk2 = pp->sk;
3783
3784 SCTP_DEBUG_PRINTK("sctp_get_port() found a "
3785 "possible match\n");
3786 if (pp->fastreuse != 0 && sk->reuse != 0)
3787 goto success;
3788
3789 /* Run through the list of sockets bound to the port
3790 * (pp->port) [via the pointers bind_next and
3791 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
3792 * we get the endpoint they describe and run through
3793 * the endpoint's list of IP (v4 or v6) addresses,
3794 * comparing each of the addresses with the address of
3795 * the socket sk. If we find a match, then that means
3796 * that this port/socket (sk) combination are already
3797 * in an endpoint.
3798 */
3799 for ( ; sk2 != NULL; sk2 = sk2->bind_next) {
3800 struct sctp_endpoint *ep2;
3801 ep2 = sctp_sk(sk2)->ep;
3802
3803 if (sk == sk2 ||
3804 (reuse && sk2->reuse &&
3805 sk2->state != SCTP_SS_LISTENING))
3806 continue;
3807
3808 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
3809 sctp_sk(sk)))
3810 goto found;
3811 }
3812
3813 found:
3814 /* If we found a conflict, fail. */
3815 if (sk2 != NULL) {
3816 ret = (long) sk2;
3817 goto fail_unlock;
3818 }
3819 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
3820 }
3821
3822 /* If there was a hash table miss, create a new port. */
3823 ret = 1;
3824
3825 if (!pp && !(pp = sctp_bucket_create(head, snum)))
3826 goto fail_unlock;
3827
3828 /* In either case (hit or miss), make sure fastreuse is 1 only
3829 * if sk->reuse is too (that is, if the caller requested
3830 * SO_REUSEADDR on this socket -sk-).
3831 */
3832 if (!pp->sk)
3833 pp->fastreuse = sk->reuse ? 1 : 0;
3834 else if (pp->fastreuse && sk->reuse == 0)
3835 pp->fastreuse = 0;
3836
3837 /* We are set, so fill up all the data in the hash table
3838 * entry, tie the socket list information with the rest of the
3839 * sockets FIXME: Blurry, NPI (ipg).
3840 */
3841 success:
3842 (sk)->num = snum;
3843 if (sk->prev == NULL) {
3844 if ((sk->bind_next = pp->sk) != NULL)
3845 pp->sk->bind_pprev = &sk->bind_next;
3846 pp->sk = sk;
3847 sk->bind_pprev = &pp->sk;
3848 sk->prev = (struct sock *) pp;
3849 }
3850 ret = 0;
3851
3852 fail_unlock:
3853 sctp_spin_unlock(&head->lock);
3854
3855 fail:
3856 sctp_local_bh_enable();
3857
3858 SCTP_DEBUG_PRINTK("sctp_get_port() ends, ret=%d\n", ret);
3859 addr->v4.sin_port = htons(addr->v4.sin_port);
3860 return ret;
3861 }
3862
3863 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
3864 * port is requested.
3865 */
sctp_get_port(struct sock * sk,unsigned short snum)3866 static int sctp_get_port(struct sock *sk, unsigned short snum)
3867 {
3868 long ret;
3869 union sctp_addr addr;
3870 struct sctp_af *af = sctp_sk(sk)->pf->af;
3871
3872 /* Set up a dummy address struct from the sk. */
3873 af->from_sk(&addr, sk);
3874 addr.v4.sin_port = htons(snum);
3875
3876 /* Note: sk->sk_num gets filled in if ephemeral port request. */
3877 ret = sctp_get_port_local(sk, &addr);
3878
3879 return (ret ? 1 : 0);
3880 }
3881
3882 /*
3883 * 3.1.3 listen() - UDP Style Syntax
3884 *
3885 * By default, new associations are not accepted for UDP style sockets.
3886 * An application uses listen() to mark a socket as being able to
3887 * accept new associations.
3888 */
sctp_seqpacket_listen(struct sock * sk,int backlog)3889 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
3890 {
3891 struct sctp_opt *sp = sctp_sk(sk);
3892 struct sctp_endpoint *ep = sp->ep;
3893
3894 /* Only UDP style sockets that are not peeled off are allowed to
3895 * listen().
3896 */
3897 if (!sctp_style(sk, UDP))
3898 return -EINVAL;
3899
3900 /* If backlog is zero, disable listening. */
3901 if (!backlog) {
3902 if (sctp_sstate(sk, CLOSED))
3903 return 0;
3904
3905 sctp_unhash_endpoint(ep);
3906 sk->state = SCTP_SS_CLOSED;
3907 }
3908
3909 /* Return if we are already listening. */
3910 if (sctp_sstate(sk, LISTENING))
3911 return 0;
3912
3913 /*
3914 * If a bind() or sctp_bindx() is not called prior to a listen()
3915 * call that allows new associations to be accepted, the system
3916 * picks an ephemeral port and will choose an address set equivalent
3917 * to binding with a wildcard address.
3918 *
3919 * This is not currently spelled out in the SCTP sockets
3920 * extensions draft, but follows the practice as seen in TCP
3921 * sockets.
3922 */
3923 if (!ep->base.bind_addr.port) {
3924 if (sctp_autobind(sk))
3925 return -EAGAIN;
3926 } else {
3927 if (sctp_get_port(sk, sk->num)) {
3928 sk->state = SCTP_SS_CLOSED;
3929 return -EADDRINUSE;
3930 }
3931 }
3932 sk->state = SCTP_SS_LISTENING;
3933 sctp_hash_endpoint(ep);
3934 return 0;
3935 }
3936
3937 /*
3938 * 4.1.3 listen() - TCP Style Syntax
3939 *
3940 * Applications uses listen() to ready the SCTP endpoint for accepting
3941 * inbound associations.
3942 */
sctp_stream_listen(struct sock * sk,int backlog)3943 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
3944 {
3945 struct sctp_opt *sp = sctp_sk(sk);
3946 struct sctp_endpoint *ep = sp->ep;
3947
3948 /* If backlog is zero, disable listening. */
3949 if (!backlog) {
3950 if (sctp_sstate(sk, CLOSED))
3951 return 0;
3952
3953 sctp_unhash_endpoint(ep);
3954 sk->state = SCTP_SS_CLOSED;
3955 }
3956
3957 if (sctp_sstate(sk, LISTENING))
3958 return 0;
3959
3960 /*
3961 * If a bind() or sctp_bindx() is not called prior to a listen()
3962 * call that allows new associations to be accepted, the system
3963 * picks an ephemeral port and will choose an address set equivalent
3964 * to binding with a wildcard address.
3965 *
3966 * This is not currently spelled out in the SCTP sockets
3967 * extensions draft, but follows the practice as seen in TCP
3968 * sockets.
3969 */
3970 if (!ep->base.bind_addr.port) {
3971 if (sctp_autobind(sk))
3972 return -EAGAIN;
3973 }
3974 sk->state = SCTP_SS_LISTENING;
3975 sk->max_ack_backlog = backlog;
3976 sctp_hash_endpoint(ep);
3977 return 0;
3978 }
3979
3980 /*
3981 * Move a socket to LISTENING state.
3982 */
sctp_inet_listen(struct socket * sock,int backlog)3983 int sctp_inet_listen(struct socket *sock, int backlog)
3984 {
3985 struct sock *sk = sock->sk;
3986 struct crypto_tfm *tfm=NULL;
3987 int err = -EINVAL;
3988
3989 if (unlikely(backlog < 0))
3990 goto out;
3991
3992 sctp_lock_sock(sk);
3993
3994 if (sock->state != SS_UNCONNECTED)
3995 goto out;
3996
3997 /* Allocate HMAC for generating cookie. */
3998 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
3999 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4000 if (!tfm) {
4001 err = -ENOSYS;
4002 goto out;
4003 }
4004 }
4005
4006 switch (sock->type) {
4007 case SOCK_SEQPACKET:
4008 err = sctp_seqpacket_listen(sk, backlog);
4009 break;
4010 case SOCK_STREAM:
4011 err = sctp_stream_listen(sk, backlog);
4012 break;
4013 default:
4014 break;
4015 };
4016 if (err)
4017 goto cleanup;
4018
4019 /* Store away the transform reference. */
4020 if (!sctp_sk(sk)->hmac)
4021 sctp_sk(sk)->hmac = tfm;
4022 out:
4023 sctp_release_sock(sk);
4024 return err;
4025 cleanup:
4026 if (tfm)
4027 sctp_crypto_free_tfm(tfm);
4028 goto out;
4029 }
4030
4031 /*
4032 * This function is done by modeling the current datagram_poll() and the
4033 * tcp_poll(). Note that, based on these implementations, we don't
4034 * lock the socket in this function, even though it seems that,
4035 * ideally, locking or some other mechanisms can be used to ensure
4036 * the integrity of the counters (sndbuf and wmem_queued) used
4037 * in this place. We assume that we don't need locks either until proven
4038 * otherwise.
4039 *
4040 * Another thing to note is that we include the Async I/O support
4041 * here, again, by modeling the current TCP/UDP code. We don't have
4042 * a good way to test with it yet.
4043 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)4044 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4045 {
4046 struct sock *sk = sock->sk;
4047 struct sctp_opt *sp = sctp_sk(sk);
4048 unsigned int mask;
4049
4050 poll_wait(file, sk->sleep, wait);
4051
4052 /* A TCP-style listening socket becomes readable when the accept queue
4053 * is not empty.
4054 */
4055 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4056 return (!list_empty(&sp->ep->asocs)) ?
4057 (POLLIN | POLLRDNORM) : 0;
4058
4059 mask = 0;
4060
4061 /* Is there any exceptional events? */
4062 if (sk->err || !skb_queue_empty(&sk->error_queue))
4063 mask |= POLLERR;
4064 if (sk->shutdown == SHUTDOWN_MASK)
4065 mask |= POLLHUP;
4066
4067 /* Is it readable? Reconsider this code with TCP-style support. */
4068 if (!skb_queue_empty(&sk->receive_queue) ||
4069 (sk->shutdown & RCV_SHUTDOWN))
4070 mask |= POLLIN | POLLRDNORM;
4071
4072 /* The association is either gone or not ready. */
4073 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4074 return mask;
4075
4076 /* Is it writable? */
4077 if (sctp_writeable(sk)) {
4078 mask |= POLLOUT | POLLWRNORM;
4079 } else {
4080 set_bit(SOCK_ASYNC_NOSPACE, &sk->socket->flags);
4081 /*
4082 * Since the socket is not locked, the buffer
4083 * might be made available after the writeable check and
4084 * before the bit is set. This could cause a lost I/O
4085 * signal. tcp_poll() has a race breaker for this race
4086 * condition. Based on their implementation, we put
4087 * in the following code to cover it as well.
4088 */
4089 if (sctp_writeable(sk))
4090 mask |= POLLOUT | POLLWRNORM;
4091 }
4092 return mask;
4093 }
4094
4095 /********************************************************************
4096 * 2nd Level Abstractions
4097 ********************************************************************/
4098
sctp_bucket_create(struct sctp_bind_hashbucket * head,unsigned short snum)4099 static struct sctp_bind_bucket *sctp_bucket_create(
4100 struct sctp_bind_hashbucket *head, unsigned short snum)
4101 {
4102 struct sctp_bind_bucket *pp;
4103
4104 SCTP_DEBUG_PRINTK( "sctp_bucket_create() begins, snum=%d\n", snum);
4105 pp = kmalloc(sizeof(struct sctp_bind_bucket), GFP_ATOMIC);
4106 if (pp) {
4107 pp->port = snum;
4108 pp->fastreuse = 0;
4109 pp->sk = NULL;
4110 if ((pp->next = head->chain) != NULL)
4111 pp->next->pprev = &pp->next;
4112 head->chain = pp;
4113 pp->pprev = &head->chain;
4114 }
4115 SCTP_DEBUG_PRINTK("sctp_bucket_create() ends, pp=%p\n", pp);
4116 return pp;
4117 }
4118
4119 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)4120 static __inline__ void __sctp_put_port(struct sock *sk)
4121 {
4122 struct sctp_bind_hashbucket *head =
4123 &sctp_port_hashtable[sctp_phashfn((sk)->num)];
4124 struct sctp_bind_bucket *pp;
4125
4126 sctp_spin_lock(&head->lock);
4127 pp = (struct sctp_bind_bucket *) sk->prev;
4128 if (sk->bind_next)
4129 sk->bind_next->bind_pprev = sk->bind_pprev;
4130 *(sk->bind_pprev) = sk->bind_next;
4131 sk->prev = NULL;
4132 (sk)->num = 0;
4133 if (pp->sk) {
4134 if (pp->next)
4135 pp->next->pprev = pp->pprev;
4136 *(pp->pprev) = pp->next;
4137 kfree(pp);
4138 }
4139 sctp_spin_unlock(&head->lock);
4140 }
4141
sctp_put_port(struct sock * sk)4142 void sctp_put_port(struct sock *sk)
4143 {
4144 sctp_local_bh_disable();
4145 __sctp_put_port(sk);
4146 sctp_local_bh_enable();
4147 }
4148
4149 /*
4150 * The system picks an ephemeral port and choose an address set equivalent
4151 * to binding with a wildcard address.
4152 * One of those addresses will be the primary address for the association.
4153 * This automatically enables the multihoming capability of SCTP.
4154 */
sctp_autobind(struct sock * sk)4155 static int sctp_autobind(struct sock *sk)
4156 {
4157 union sctp_addr autoaddr;
4158 struct sctp_af *af;
4159 unsigned short port;
4160
4161 /* Initialize a local sockaddr structure to INADDR_ANY. */
4162 af = sctp_sk(sk)->pf->af;
4163
4164 port = htons(sk->num);
4165 af->inaddr_any(&autoaddr, port);
4166
4167 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
4168 }
4169
4170 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
4171 *
4172 * From RFC 2292
4173 * 4.2 The cmsghdr Structure *
4174 *
4175 * When ancillary data is sent or received, any number of ancillary data
4176 * objects can be specified by the msg_control and msg_controllen members of
4177 * the msghdr structure, because each object is preceded by
4178 * a cmsghdr structure defining the object's length (the cmsg_len member).
4179 * Historically Berkeley-derived implementations have passed only one object
4180 * at a time, but this API allows multiple objects to be
4181 * passed in a single call to sendmsg() or recvmsg(). The following example
4182 * shows two ancillary data objects in a control buffer.
4183 *
4184 * |<--------------------------- msg_controllen -------------------------->|
4185 * | |
4186 *
4187 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
4188 *
4189 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
4190 * | | |
4191 *
4192 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
4193 *
4194 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
4195 * | | | | |
4196 *
4197 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4198 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
4199 *
4200 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
4201 *
4202 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4203 * ^
4204 * |
4205 *
4206 * msg_control
4207 * points here
4208 */
sctp_msghdr_parse(const struct msghdr * msg,sctp_cmsgs_t * cmsgs)4209 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
4210 sctp_cmsgs_t *cmsgs)
4211 {
4212 struct cmsghdr *cmsg;
4213
4214 for (cmsg = CMSG_FIRSTHDR(msg);
4215 cmsg != NULL;
4216 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
4217 if (!CMSG_OK(msg, cmsg))
4218 return -EINVAL;
4219
4220 /* Should we parse this header or ignore? */
4221 if (cmsg->cmsg_level != IPPROTO_SCTP)
4222 continue;
4223
4224 /* Strictly check lengths following example in SCM code. */
4225 switch (cmsg->cmsg_type) {
4226 case SCTP_INIT:
4227 /* SCTP Socket API Extension
4228 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
4229 *
4230 * This cmsghdr structure provides information for
4231 * initializing new SCTP associations with sendmsg().
4232 * The SCTP_INITMSG socket option uses this same data
4233 * structure. This structure is not used for
4234 * recvmsg().
4235 *
4236 * cmsg_level cmsg_type cmsg_data[]
4237 * ------------ ------------ ----------------------
4238 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
4239 */
4240 if (cmsg->cmsg_len !=
4241 CMSG_LEN(sizeof(struct sctp_initmsg)))
4242 return -EINVAL;
4243 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
4244 break;
4245
4246 case SCTP_SNDRCV:
4247 /* SCTP Socket API Extension
4248 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
4249 *
4250 * This cmsghdr structure specifies SCTP options for
4251 * sendmsg() and describes SCTP header information
4252 * about a received message through recvmsg().
4253 *
4254 * cmsg_level cmsg_type cmsg_data[]
4255 * ------------ ------------ ----------------------
4256 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
4257 */
4258 if (cmsg->cmsg_len !=
4259 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
4260 return -EINVAL;
4261
4262 cmsgs->info =
4263 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
4264
4265 /* Minimally, validate the sinfo_flags. */
4266 if (cmsgs->info->sinfo_flags &
4267 ~(MSG_UNORDERED | MSG_ADDR_OVER |
4268 MSG_ABORT | MSG_EOF))
4269 return -EINVAL;
4270 break;
4271
4272 default:
4273 return -EINVAL;
4274 };
4275 }
4276 return 0;
4277 }
4278
4279 /*
4280 * Wait for a packet..
4281 * Note: This function is the same function as in core/datagram.c
4282 * with a few modifications to make lksctp work.
4283 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)4284 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
4285 {
4286 int error;
4287 DECLARE_WAITQUEUE(wait, current);
4288
4289 add_wait_queue_exclusive(sk->sleep, &wait);
4290 __set_current_state(TASK_INTERRUPTIBLE);
4291
4292 /* Socket errors? */
4293 error = sock_error(sk);
4294 if (error)
4295 goto out;
4296
4297 if (!skb_queue_empty(&sk->receive_queue))
4298 goto ready;
4299
4300 /* Socket shut down? */
4301 if (sk->shutdown & RCV_SHUTDOWN)
4302 goto out;
4303
4304 /* Sequenced packets can come disconnected. If so we report the
4305 * problem.
4306 */
4307 error = -ENOTCONN;
4308
4309 /* Is there a good reason to think that we may receive some data? */
4310 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
4311 goto out;
4312
4313 /* Handle signals. */
4314 if (signal_pending(current))
4315 goto interrupted;
4316
4317 /* Let another process have a go. Since we are going to sleep
4318 * anyway. Note: This may cause odd behaviors if the message
4319 * does not fit in the user's buffer, but this seems to be the
4320 * only way to honor MSG_DONTWAIT realistically.
4321 */
4322 sctp_release_sock(sk);
4323 *timeo_p = schedule_timeout(*timeo_p);
4324 sctp_lock_sock(sk);
4325
4326 ready:
4327 remove_wait_queue(sk->sleep, &wait);
4328 __set_current_state(TASK_RUNNING);
4329 return 0;
4330
4331 interrupted:
4332 error = sock_intr_errno(*timeo_p);
4333
4334 out:
4335 remove_wait_queue(sk->sleep, &wait);
4336 __set_current_state(TASK_RUNNING);
4337 *err = error;
4338 return error;
4339 }
4340
4341 /* Receive a datagram.
4342 * Note: This is pretty much the same routine as in core/datagram.c
4343 * with a few changes to make lksctp work.
4344 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int noblock,int * err)4345 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
4346 int noblock, int *err)
4347 {
4348 int error;
4349 struct sk_buff *skb;
4350 long timeo;
4351
4352 /* Caller is allowed not to check sk->err before calling. */
4353 error = sock_error(sk);
4354 if (error)
4355 goto no_packet;
4356
4357 timeo = sock_rcvtimeo(sk, noblock);
4358
4359 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
4360 timeo, MAX_SCHEDULE_TIMEOUT);
4361
4362 do {
4363 /* Again only user level code calls this function,
4364 * so nothing interrupt level
4365 * will suddenly eat the receive_queue.
4366 *
4367 * Look at current nfs client by the way...
4368 * However, this function was corrent in any case. 8)
4369 */
4370 if (flags & MSG_PEEK) {
4371 unsigned long cpu_flags;
4372
4373 sctp_spin_lock_irqsave(&sk->receive_queue.lock,
4374 cpu_flags);
4375 skb = skb_peek(&sk->receive_queue);
4376 if (skb)
4377 atomic_inc(&skb->users);
4378 sctp_spin_unlock_irqrestore(&sk->receive_queue.lock,
4379 cpu_flags);
4380 } else {
4381 skb = skb_dequeue(&sk->receive_queue);
4382 }
4383
4384 if (skb)
4385 return skb;
4386
4387 if (sk->shutdown & RCV_SHUTDOWN)
4388 break;
4389
4390 /* User doesn't want to wait. */
4391 error = -EAGAIN;
4392 if (!timeo)
4393 goto no_packet;
4394 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
4395
4396 return NULL;
4397
4398 no_packet:
4399 *err = error;
4400 return NULL;
4401 }
4402
4403 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)4404 static void __sctp_write_space(struct sctp_association *asoc)
4405 {
4406 struct sock *sk = asoc->base.sk;
4407 struct socket *sock = sk->socket;
4408
4409 if ((sctp_wspace(asoc) > 0) && sock) {
4410 if (waitqueue_active(&asoc->wait))
4411 wake_up_interruptible(&asoc->wait);
4412
4413 if (sctp_writeable(sk)) {
4414 if (sk->sleep && waitqueue_active(sk->sleep))
4415 wake_up_interruptible(sk->sleep);
4416
4417 /* Note that we try to include the Async I/O support
4418 * here by modeling from the current TCP/UDP code.
4419 * We have not tested with it yet.
4420 */
4421 if (sock->fasync_list &&
4422 !(sk->shutdown & SEND_SHUTDOWN))
4423 sock_wake_async(sock, 2, POLL_OUT);
4424 }
4425 }
4426 }
4427
4428 /* Do accounting for the sndbuf space.
4429 * Decrement the used sndbuf space of the corresponding association by the
4430 * data size which was just transmitted(freed).
4431 */
sctp_wfree(struct sk_buff * skb)4432 static void sctp_wfree(struct sk_buff *skb)
4433 {
4434 struct sctp_association *asoc;
4435 struct sctp_chunk *chunk;
4436 struct sock *sk;
4437
4438 /* Get the saved chunk pointer. */
4439 chunk = *((struct sctp_chunk **)(skb->cb));
4440 asoc = chunk->asoc;
4441 sk = asoc->base.sk;
4442 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk);
4443 sk->wmem_queued -= SCTP_DATA_SNDSIZE(chunk);
4444 __sctp_write_space(asoc);
4445
4446 sctp_association_put(asoc);
4447 }
4448
4449 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)4450 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
4451 size_t msg_len)
4452 {
4453 struct sock *sk = asoc->base.sk;
4454 int err = 0;
4455 long current_timeo = *timeo_p;
4456 DECLARE_WAITQUEUE(wait, current);
4457
4458 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%u\n",
4459 asoc, (long)(*timeo_p), msg_len);
4460
4461 /* Increment the association's refcnt. */
4462 sctp_association_hold(asoc);
4463
4464 /* Wait on the association specific sndbuf space. */
4465 add_wait_queue_exclusive(&asoc->wait, &wait);
4466
4467 /* Wait on the association specific sndbuf space. */
4468 for (;;) {
4469 __set_current_state(TASK_INTERRUPTIBLE);
4470 if (!*timeo_p)
4471 goto do_nonblock;
4472 if (sk->err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4473 asoc->base.dead)
4474 goto do_error;
4475 if (signal_pending(current))
4476 goto do_interrupted;
4477 if (msg_len <= sctp_wspace(asoc))
4478 break;
4479
4480 /* Let another process have a go. Since we are going
4481 * to sleep anyway.
4482 */
4483 sctp_release_sock(sk);
4484 current_timeo = schedule_timeout(current_timeo);
4485 sctp_lock_sock(sk);
4486
4487 *timeo_p = current_timeo;
4488 }
4489
4490 out:
4491 remove_wait_queue(&asoc->wait, &wait);
4492 __set_current_state(TASK_RUNNING);
4493
4494 /* Release the association's refcnt. */
4495 sctp_association_put(asoc);
4496
4497 return err;
4498
4499 do_error:
4500 err = -EPIPE;
4501 goto out;
4502
4503 do_interrupted:
4504 err = sock_intr_errno(*timeo_p);
4505 goto out;
4506
4507 do_nonblock:
4508 err = -EAGAIN;
4509 goto out;
4510 }
4511
4512 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)4513 void sctp_write_space(struct sock *sk)
4514 {
4515 struct sctp_association *asoc;
4516 struct list_head *pos;
4517
4518 /* Wake up the tasks in each wait queue. */
4519 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
4520 asoc = list_entry(pos, struct sctp_association, asocs);
4521 __sctp_write_space(asoc);
4522 }
4523 }
4524
4525 /* Is there any sndbuf space available on the socket?
4526 *
4527 * Note that wmem_queued is the sum of the send buffers on all of the
4528 * associations on the same socket. For a UDP-style socket with
4529 * multiple associations, it is possible for it to be "unwriteable"
4530 * prematurely. I assume that this is acceptable because
4531 * a premature "unwriteable" is better than an accidental "writeable" which
4532 * would cause an unwanted block under certain circumstances. For the 1-1
4533 * UDP-style sockets or TCP-style sockets, this code should work.
4534 * - Daisy
4535 */
sctp_writeable(struct sock * sk)4536 static int sctp_writeable(struct sock *sk)
4537 {
4538 int amt = 0;
4539
4540 amt = sk->sndbuf - sk->wmem_queued;
4541 if (amt < 0)
4542 amt = 0;
4543 return amt;
4544 }
4545
4546 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
4547 * returns immediately with EINPROGRESS.
4548 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)4549 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
4550 {
4551 struct sock *sk = asoc->base.sk;
4552 int err = 0;
4553 long current_timeo = *timeo_p;
4554 DECLARE_WAITQUEUE(wait, current);
4555
4556 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
4557 (long)(*timeo_p));
4558
4559 /* Increment the association's refcnt. */
4560 sctp_association_hold(asoc);
4561
4562 add_wait_queue_exclusive(&asoc->wait, &wait);
4563 for (;;) {
4564 __set_current_state(TASK_INTERRUPTIBLE);
4565 if (!*timeo_p)
4566 goto do_nonblock;
4567 if (sk->shutdown & RCV_SHUTDOWN)
4568 break;
4569 if (sk->err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4570 asoc->base.dead)
4571 goto do_error;
4572 if (signal_pending(current))
4573 goto do_interrupted;
4574
4575 if (sctp_state(asoc, ESTABLISHED))
4576 break;
4577
4578 /* Let another process have a go. Since we are going
4579 * to sleep anyway.
4580 */
4581 sctp_release_sock(sk);
4582 current_timeo = schedule_timeout(current_timeo);
4583 sctp_lock_sock(sk);
4584
4585 *timeo_p = current_timeo;
4586 }
4587
4588 out:
4589 remove_wait_queue(&asoc->wait, &wait);
4590 __set_current_state(TASK_RUNNING);
4591
4592 /* Release the association's refcnt. */
4593 sctp_association_put(asoc);
4594
4595 return err;
4596
4597 do_error:
4598 if (asoc->counters[SCTP_COUNTER_INIT_ERROR] + 1 >=
4599 asoc->max_init_attempts)
4600 err = -ETIMEDOUT;
4601 else
4602 err = -ECONNREFUSED;
4603 goto out;
4604
4605 do_interrupted:
4606 err = sock_intr_errno(*timeo_p);
4607 goto out;
4608
4609 do_nonblock:
4610 err = -EINPROGRESS;
4611 goto out;
4612 }
4613
sctp_wait_for_accept(struct sock * sk,long timeo)4614 static int sctp_wait_for_accept(struct sock *sk, long timeo)
4615 {
4616 struct sctp_endpoint *ep;
4617 int err = 0;
4618 DECLARE_WAITQUEUE(wait, current);
4619
4620 ep = sctp_sk(sk)->ep;
4621
4622 add_wait_queue_exclusive(sk->sleep, &wait);
4623
4624 for (;;) {
4625 __set_current_state(TASK_INTERRUPTIBLE);
4626 if (list_empty(&ep->asocs)) {
4627 sctp_release_sock(sk);
4628 timeo = schedule_timeout(timeo);
4629 sctp_lock_sock(sk);
4630 }
4631
4632 err = -EINVAL;
4633 if (!sctp_sstate(sk, LISTENING))
4634 break;
4635
4636 err = 0;
4637 if (!list_empty(&ep->asocs))
4638 break;
4639
4640 err = sock_intr_errno(timeo);
4641 if (signal_pending(current))
4642 break;
4643
4644 err = -EAGAIN;
4645 if (!timeo)
4646 break;
4647 }
4648
4649 remove_wait_queue(sk->sleep, &wait);
4650 __set_current_state(TASK_RUNNING);
4651
4652 return err;
4653 }
4654
sctp_wait_for_close(struct sock * sk,long timeout)4655 void sctp_wait_for_close(struct sock *sk, long timeout)
4656 {
4657 DECLARE_WAITQUEUE(wait, current);
4658
4659 add_wait_queue_exclusive(sk->sleep, &wait);
4660
4661 do {
4662 __set_current_state(TASK_INTERRUPTIBLE);
4663 if (list_empty(&sctp_sk(sk)->ep->asocs))
4664 break;
4665 sctp_release_sock(sk);
4666 timeout = schedule_timeout(timeout);
4667 sctp_lock_sock(sk);
4668 } while (!signal_pending(current) && timeout);
4669
4670 remove_wait_queue(sk->sleep, &wait);
4671 __set_current_state(TASK_RUNNING);
4672 }
4673
4674 /* Populate the fields of the newsk from the oldsk and migrate the assoc
4675 * and its messages to the newsk.
4676 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,sctp_socket_type_t type)4677 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
4678 struct sctp_association *assoc,
4679 sctp_socket_type_t type)
4680 {
4681 struct sctp_opt *oldsp = sctp_sk(oldsk);
4682 struct sctp_opt *newsp = sctp_sk(newsk);
4683 struct sctp_endpoint *newep = newsp->ep;
4684 struct sk_buff *skb, *tmp;
4685 struct sctp_ulpevent *event;
4686
4687 /* Migrate socket buffer sizes and all the socket level options to the
4688 * new socket.
4689 */
4690 newsk->sndbuf = oldsk->sndbuf;
4691 newsk->rcvbuf = oldsk->rcvbuf;
4692 /* Brute force copy old sctp opt. */
4693 memcpy(newsp, oldsp, sizeof(struct sctp_opt));
4694
4695 /* Restore the ep value that was overwritten with the above structure
4696 * copy.
4697 */
4698 newsp->ep = newep;
4699 newsp->hmac = NULL;
4700
4701 newsk->num = oldsk->num;
4702
4703 /* Move any messages in the old socket's receive queue that are for the
4704 * peeled off association to the new socket's receive queue.
4705 */
4706 sctp_skb_for_each(skb, &oldsk->receive_queue, tmp) {
4707 event = sctp_skb2event(skb);
4708 if (event->asoc == assoc) {
4709 __skb_unlink(skb, skb->list);
4710 __skb_queue_tail(&newsk->receive_queue, skb);
4711 }
4712 }
4713
4714 /* Clean up any messages pending delivery due to partial
4715 * delivery. Three cases:
4716 * 1) No partial deliver; no work.
4717 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
4718 * 3) Peeling off non-partial delivery; move pd_lobby to recieve_queue.
4719 */
4720 skb_queue_head_init(&newsp->pd_lobby);
4721 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;;
4722
4723 if (sctp_sk(oldsk)->pd_mode) {
4724 struct sk_buff_head *queue;
4725
4726 /* Decide which queue to move pd_lobby skbs to. */
4727 if (assoc->ulpq.pd_mode) {
4728 queue = &newsp->pd_lobby;
4729 } else
4730 queue = &newsk->receive_queue;
4731
4732 /* Walk through the pd_lobby, looking for skbs that
4733 * need moved to the new socket.
4734 */
4735 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
4736 event = sctp_skb2event(skb);
4737 if (event->asoc == assoc) {
4738 __skb_unlink(skb, skb->list);
4739 __skb_queue_tail(queue, skb);
4740 }
4741 }
4742
4743 /* Clear up any skbs waiting for the partial
4744 * delivery to finish.
4745 */
4746 if (assoc->ulpq.pd_mode)
4747 sctp_clear_pd(oldsk);
4748
4749 }
4750
4751 /* Set the type of socket to indicate that it is peeled off from the
4752 * original UDP-style socket or created with the accept() call on a
4753 * TCP-style socket..
4754 */
4755 newsp->type = type;
4756
4757 /* Migrate the association to the new socket. */
4758 sctp_assoc_migrate(assoc, newsk);
4759
4760 /* If the association on the newsk is already closed before accept()
4761 * is called, set RCV_SHUTDOWN flag.
4762 */
4763 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
4764 newsk->shutdown |= RCV_SHUTDOWN;
4765
4766 newsk->state = SCTP_SS_ESTABLISHED;
4767 }
4768
4769 /* This proto struct describes the ULP interface for SCTP. */
4770 struct proto sctp_prot = {
4771 .name = "SCTP",
4772 .close = sctp_close,
4773 .connect = sctp_connect,
4774 .disconnect = sctp_disconnect,
4775 .accept = sctp_accept,
4776 .ioctl = sctp_ioctl,
4777 .init = sctp_init_sock,
4778 .destroy = sctp_destroy_sock,
4779 .shutdown = sctp_shutdown,
4780 .setsockopt = sctp_setsockopt,
4781 .getsockopt = sctp_getsockopt,
4782 .sendmsg = sctp_sendmsg,
4783 .recvmsg = sctp_recvmsg,
4784 .bind = sctp_bind,
4785 .backlog_rcv = sctp_backlog_rcv,
4786 .hash = sctp_hash,
4787 .unhash = sctp_unhash,
4788 .get_port = sctp_get_port,
4789 };
4790