1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel reference Implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * The SCTP reference implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * The SCTP reference implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Perry Melange         <pmelange@null.cc.uic.edu>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang 	    <hui.huang@nokia.com>
42  *    Sridhar Samudrala     <sri@us.ibm.com>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *
45  * Any bugs reported given to us we will try to fix... any fixes shared will
46  * be incorporated into the next SCTP release.
47  */
48 
49 #include <linux/types.h>
50 #include <linux/list.h>   /* For struct list_head */
51 #include <linux/socket.h>
52 #include <linux/ip.h>
53 #include <net/sock.h>	  /* For skb_set_owner_w */
54 
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 
58 /* Declare internal functions here.  */
59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
60 static void sctp_check_transmitted(struct sctp_outq *q,
61 				   struct list_head *transmitted_queue,
62 				   struct sctp_transport *transport,
63 				   struct sctp_sackhdr *sack,
64 				   __u32 highest_new_tsn);
65 
66 static void sctp_mark_missing(struct sctp_outq *q,
67 			      struct list_head *transmitted_queue,
68 			      struct sctp_transport *transport,
69 			      __u32 highest_new_tsn,
70 			      int count_of_newacks);
71 
72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
73 
74 /* Add data to the front of the queue. */
sctp_outq_head_data(struct sctp_outq * q,struct sctp_chunk * ch)75 static inline void sctp_outq_head_data(struct sctp_outq *q,
76 					struct sctp_chunk *ch)
77 {
78 	__skb_queue_head(&q->out, (struct sk_buff *)ch);
79 	q->out_qlen += ch->skb->len;
80 	return;
81 }
82 
83 /* Take data from the front of the queue. */
sctp_outq_dequeue_data(struct sctp_outq * q)84 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
85 {
86 	struct sctp_chunk *ch;
87 	ch = (struct sctp_chunk *)__skb_dequeue(&q->out);
88 	if (ch)
89 		q->out_qlen -= ch->skb->len;
90 	return ch;
91 }
92 /* Add data chunk to the end of the queue. */
sctp_outq_tail_data(struct sctp_outq * q,struct sctp_chunk * ch)93 static inline void sctp_outq_tail_data(struct sctp_outq *q,
94 				       struct sctp_chunk *ch)
95 {
96 	__skb_queue_tail(&q->out, (struct sk_buff *)ch);
97 	q->out_qlen += ch->skb->len;
98 	return;
99 }
100 
101 /* Insert a chunk behind chunk 'pos'. */
sctp_outq_insert_data(struct sctp_outq * q,struct sctp_chunk * ch,struct sctp_chunk * pos)102 static inline void sctp_outq_insert_data(struct sctp_outq *q,
103 					 struct sctp_chunk *ch,
104 					 struct sctp_chunk *pos)
105 {
106 	__skb_insert((struct sk_buff *)ch, (struct sk_buff *)pos->prev,
107 		     (struct sk_buff *)pos, pos->list);
108 	q->out_qlen += ch->skb->len;
109 }
110 
111 /*
112  * SFR-CACC algorithm:
113  * D) If count_of_newacks is greater than or equal to 2
114  * and t was not sent to the current primary then the
115  * sender MUST NOT increment missing report count for t.
116  */
sctp_cacc_skip_3_1_d(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks)117 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
118 				       struct sctp_transport *transport,
119 				       int count_of_newacks)
120 {
121 	if (count_of_newacks >=2 && transport != primary)
122 		return 1;
123 	return 0;
124 }
125 
126 /*
127  * SFR-CACC algorithm:
128  * F) If count_of_newacks is less than 2, let d be the
129  * destination to which t was sent. If cacc_saw_newack
130  * is 0 for destination d, then the sender MUST NOT
131  * increment missing report count for t.
132  */
sctp_cacc_skip_3_1_f(struct sctp_transport * transport,int count_of_newacks)133 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
134 				       int count_of_newacks)
135 {
136 	if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack)
137 		return 1;
138 	return 0;
139 }
140 
141 /*
142  * SFR-CACC algorithm:
143  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
144  * execute steps C, D, F.
145  *
146  * C has been implemented in sctp_outq_sack
147  */
sctp_cacc_skip_3_1(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks)148 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
149 				     struct sctp_transport *transport,
150 				     int count_of_newacks)
151 {
152 	if (!primary->cacc.cycling_changeover) {
153 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
154 			return 1;
155 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
156 			return 1;
157 		return 0;
158 	}
159 	return 0;
160 }
161 
162 /*
163  * SFR-CACC algorithm:
164  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
165  * than next_tsn_at_change of the current primary, then
166  * the sender MUST NOT increment missing report count
167  * for t.
168  */
sctp_cacc_skip_3_2(struct sctp_transport * primary,__u32 tsn)169 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
170 {
171 	if (primary->cacc.cycling_changeover &&
172 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
173 		return 1;
174 	return 0;
175 }
176 
177 /*
178  * SFR-CACC algorithm:
179  * 3) If the missing report count for TSN t is to be
180  * incremented according to [RFC2960] and
181  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
182  * then the sender MUST futher execute steps 3.1 and
183  * 3.2 to determine if the missing report count for
184  * TSN t SHOULD NOT be incremented.
185  *
186  * 3.3) If 3.1 and 3.2 do not dictate that the missing
187  * report count for t should not be incremented, then
188  * the sender SOULD increment missing report count for
189  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
190  */
sctp_cacc_skip(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks,__u32 tsn)191 static inline int sctp_cacc_skip(struct sctp_transport *primary,
192 				 struct sctp_transport *transport,
193 				 int count_of_newacks,
194 				 __u32 tsn)
195 {
196 	if (primary->cacc.changeover_active &&
197 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks)
198 	     || sctp_cacc_skip_3_2(primary, tsn)))
199 		return 1;
200 	return 0;
201 }
202 
203 /* Initialize an existing sctp_outq.  This does the boring stuff.
204  * You still need to define handlers if you really want to DO
205  * something with this structure...
206  */
sctp_outq_init(struct sctp_association * asoc,struct sctp_outq * q)207 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
208 {
209 	q->asoc = asoc;
210 	skb_queue_head_init(&q->out);
211 	skb_queue_head_init(&q->control);
212 	INIT_LIST_HEAD(&q->retransmit);
213 	INIT_LIST_HEAD(&q->sacked);
214 	INIT_LIST_HEAD(&q->abandoned);
215 
216 	q->outstanding_bytes = 0;
217 	q->empty = 1;
218 	q->cork  = 0;
219 
220 	q->malloced = 0;
221 	q->out_qlen = 0;
222 }
223 
224 /* Free the outqueue structure and any related pending chunks.
225  */
sctp_outq_teardown(struct sctp_outq * q)226 void sctp_outq_teardown(struct sctp_outq *q)
227 {
228 	struct sctp_transport *transport;
229 	struct list_head *lchunk, *pos, *temp;
230 	struct sctp_chunk *chunk;
231 
232 	/* Throw away unacknowledged chunks. */
233 	list_for_each(pos, &q->asoc->peer.transport_addr_list) {
234 		transport = list_entry(pos, struct sctp_transport, transports);
235 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
236 			chunk = list_entry(lchunk, struct sctp_chunk,
237 					   transmitted_list);
238 			/* Mark as part of a failed message. */
239 			sctp_chunk_fail(chunk, q->error);
240 			sctp_chunk_free(chunk);
241 		}
242 	}
243 
244 	/* Throw away chunks that have been gap ACKed.  */
245 	list_for_each_safe(lchunk, temp, &q->sacked) {
246 		list_del_init(lchunk);
247 		chunk = list_entry(lchunk, struct sctp_chunk,
248 				   transmitted_list);
249 		sctp_chunk_fail(chunk, q->error);
250 		sctp_chunk_free(chunk);
251 	}
252 
253 	/* Throw away any chunks in the retransmit queue. */
254 	list_for_each_safe(lchunk, temp, &q->retransmit) {
255 		list_del_init(lchunk);
256 		chunk = list_entry(lchunk, struct sctp_chunk,
257 				   transmitted_list);
258 		sctp_chunk_fail(chunk, q->error);
259 		sctp_chunk_free(chunk);
260 	}
261 
262 	/* Throw away any chunks that are in the abandoned queue. */
263 	list_for_each_safe(lchunk, temp, &q->abandoned) {
264 		list_del_init(lchunk);
265 		chunk = list_entry(lchunk, struct sctp_chunk,
266 				   transmitted_list);
267 		sctp_chunk_fail(chunk, q->error);
268 		sctp_chunk_free(chunk);
269 	}
270 
271 	/* Throw away any leftover data chunks. */
272 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
273 
274 		/* Mark as send failure. */
275 		sctp_chunk_fail(chunk, q->error);
276 		sctp_chunk_free(chunk);
277 	}
278 
279 	q->error = 0;
280 
281 	/* Throw away any leftover control chunks. */
282 	while ((chunk = (struct sctp_chunk *) skb_dequeue(&q->control)) != NULL)
283 		sctp_chunk_free(chunk);
284 }
285 
286 /* Free the outqueue structure and any related pending chunks.  */
sctp_outq_free(struct sctp_outq * q)287 void sctp_outq_free(struct sctp_outq *q)
288 {
289 	/* Throw away leftover chunks. */
290 	sctp_outq_teardown(q);
291 
292 	/* If we were kmalloc()'d, free the memory.  */
293 	if (q->malloced)
294 		kfree(q);
295 }
296 
297 /* Put a new chunk in an sctp_outq.  */
sctp_outq_tail(struct sctp_outq * q,struct sctp_chunk * chunk)298 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
299 {
300 	int error = 0;
301 
302 	SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
303 			  q, chunk, chunk && chunk->chunk_hdr ?
304 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
305 			  : "Illegal Chunk");
306 
307 	/* If it is data, queue it up, otherwise, send it
308 	 * immediately.
309 	 */
310 	if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
311 		/* Is it OK to queue data chunks?  */
312 		/* From 9. Termination of Association
313 		 *
314 		 * When either endpoint performs a shutdown, the
315 		 * association on each peer will stop accepting new
316 		 * data from its user and only deliver data in queue
317 		 * at the time of sending or receiving the SHUTDOWN
318 		 * chunk.
319 		 */
320 		switch (q->asoc->state) {
321 		case SCTP_STATE_EMPTY:
322 		case SCTP_STATE_CLOSED:
323 		case SCTP_STATE_SHUTDOWN_PENDING:
324 		case SCTP_STATE_SHUTDOWN_SENT:
325 		case SCTP_STATE_SHUTDOWN_RECEIVED:
326 		case SCTP_STATE_SHUTDOWN_ACK_SENT:
327 			/* Cannot send after transport endpoint shutdown */
328 			error = -ESHUTDOWN;
329 			break;
330 
331 		default:
332 			SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
333 			  q, chunk, chunk && chunk->chunk_hdr ?
334 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
335 			  : "Illegal Chunk");
336 
337 			sctp_outq_tail_data(q, chunk);
338 			if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
339 				SCTP_INC_STATS(SctpOutUnorderChunks);
340 			else
341 				SCTP_INC_STATS(SctpOutOrderChunks);
342 			q->empty = 0;
343 			break;
344 		};
345 	} else {
346 		__skb_queue_tail(&q->control, (struct sk_buff *) chunk);
347 		SCTP_INC_STATS(SctpOutCtrlChunks);
348 	}
349 
350 	if (error < 0)
351 		return error;
352 
353 	if (!q->cork)
354 		error = sctp_outq_flush(q, 0);
355 
356 	return error;
357 }
358 
359 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
360  * and the abandoned list are in ascending order.
361  */
sctp_insert_list(struct list_head * head,struct list_head * new)362 static void sctp_insert_list(struct list_head *head, struct list_head *new)
363 {
364 	struct list_head *pos;
365 	struct sctp_chunk *nchunk, *lchunk;
366 	__u32 ntsn, ltsn;
367 	int done = 0;
368 
369 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
370 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
371 
372 	list_for_each(pos, head) {
373 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
374 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
375 		if (TSN_lt(ntsn, ltsn)) {
376 			list_add(new, pos->prev);
377 			done = 1;
378 			break;
379 		}
380 	}
381 	if (!done)
382 		list_add_tail(new, head);
383 }
384 
385 /* Mark all the eligible packets on a transport for retransmission.  */
sctp_retransmit_mark(struct sctp_outq * q,struct sctp_transport * transport,__u8 fast_retransmit)386 void sctp_retransmit_mark(struct sctp_outq *q,
387 			  struct sctp_transport *transport,
388 			  __u8 fast_retransmit)
389 {
390 	struct list_head *lchunk, *ltemp;
391 	struct sctp_chunk *chunk;
392 
393 	/* Walk through the specified transmitted queue.  */
394 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
395 		chunk = list_entry(lchunk, struct sctp_chunk,
396 				   transmitted_list);
397 
398 		/* If the chunk is abandoned, move it to abandoned list. */
399 		if (sctp_chunk_abandoned(chunk)) {
400 			list_del_init(lchunk);
401 			sctp_insert_list(&q->abandoned, lchunk);
402 			continue;
403 		}
404 
405 		/* If we are doing retransmission due to a fast retransmit,
406 		 * only the chunk's that are marked for fast retransmit
407 		 * should be added to the retransmit queue.  If we are doing
408 		 * retransmission due to a timeout or pmtu discovery, only the
409 		 * chunks that are not yet acked should be added to the
410 		 * retransmit queue.
411 		 */
412 		if ((fast_retransmit && chunk->fast_retransmit) ||
413 		   (!fast_retransmit && !chunk->tsn_gap_acked)) {
414 			/* RFC 2960 6.2.1 Processing a Received SACK
415 			 *
416 			 * C) Any time a DATA chunk is marked for
417 			 * retransmission (via either T3-rtx timer expiration
418 			 * (Section 6.3.3) or via fast retransmit
419 			 * (Section 7.2.4)), add the data size of those
420 			 * chunks to the rwnd.
421 			 */
422 			q->asoc->peer.rwnd += sctp_data_size(chunk);
423 			q->outstanding_bytes -= sctp_data_size(chunk);
424 			transport->flight_size -= sctp_data_size(chunk);
425 
426 			/* sctpimpguide-05 Section 2.8.2
427 			 * M5) If a T3-rtx timer expires, the
428 			 * 'TSN.Missing.Report' of all affected TSNs is set
429 			 * to 0.
430 			 */
431 			chunk->tsn_missing_report = 0;
432 
433 			/* If a chunk that is being used for RTT measurement
434 			 * has to be retransmitted, we cannot use this chunk
435 			 * anymore for RTT measurements. Reset rto_pending so
436 			 * that a new RTT measurement is started when a new
437 			 * data chunk is sent.
438 			 */
439 			if (chunk->rtt_in_progress) {
440 				chunk->rtt_in_progress = 0;
441 				transport->rto_pending = 0;
442 			}
443 
444 			/* Move the chunk to the retransmit queue. The chunks
445 			 * on the retransmit queue are always kept in order.
446 			 */
447 			list_del_init(lchunk);
448 			sctp_insert_list(&q->retransmit, lchunk);
449 		}
450 	}
451 
452 	SCTP_DEBUG_PRINTK("%s: transport: %p, fast_retransmit: %d, "
453 			  "cwnd: %d, ssthresh: %d, flight_size: %d, "
454 			  "pba: %d\n", __FUNCTION__,
455 			  transport, fast_retransmit,
456 			  transport->cwnd, transport->ssthresh,
457 			  transport->flight_size,
458 			  transport->partial_bytes_acked);
459 
460 }
461 
462 /* Mark all the eligible packets on a transport for retransmission and force
463  * one packet out.
464  */
sctp_retransmit(struct sctp_outq * q,struct sctp_transport * transport,sctp_retransmit_reason_t reason)465 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
466 		     sctp_retransmit_reason_t reason)
467 {
468 	int error = 0;
469 	__u8 fast_retransmit = 0;
470 
471 	switch(reason) {
472 	case SCTP_RTXR_T3_RTX:
473 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
474 		/* Update the retran path if the T3-rtx timer has expired for
475 		 * the current retran path.
476 		 */
477 		if (transport == transport->asoc->peer.retran_path)
478 			sctp_assoc_update_retran_path(transport->asoc);
479 		break;
480 	case SCTP_RTXR_FAST_RTX:
481 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
482 		fast_retransmit = 1;
483 		break;
484 	case SCTP_RTXR_PMTUD:
485 	default:
486 		break;
487 	}
488 
489 	sctp_retransmit_mark(q, transport, fast_retransmit);
490 
491 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
492 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
493 	 * following the procedures outlined in C1 - C5.
494 	 */
495 	sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
496 
497 	error = sctp_outq_flush(q, /* rtx_timeout */ 1);
498 
499 	if (error)
500 		q->asoc->base.sk->err = -error;
501 }
502 
503 /*
504  * Transmit DATA chunks on the retransmit queue.  Upon return from
505  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
506  * need to be transmitted by the caller.
507  * We assume that pkt->transport has already been set.
508  *
509  * The return value is a normal kernel error return value.
510  */
sctp_outq_flush_rtx(struct sctp_outq * q,struct sctp_packet * pkt,int rtx_timeout,int * start_timer)511 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
512 			       int rtx_timeout, int *start_timer)
513 {
514 	struct list_head *lqueue;
515 	struct list_head *lchunk, *lchunk1;
516 	struct sctp_transport *transport = pkt->transport;
517 	sctp_xmit_t status;
518 	struct sctp_chunk *chunk, *chunk1;
519 	struct sctp_association *asoc;
520 	int error = 0;
521 
522 	asoc = q->asoc;
523 	lqueue = &q->retransmit;
524 
525 	/* RFC 2960 6.3.3 Handle T3-rtx Expiration
526 	 *
527 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
528 	 * outstanding DATA chunks for the address for which the
529 	 * T3-rtx has expired will fit into a single packet, subject
530 	 * to the MTU constraint for the path corresponding to the
531 	 * destination transport address to which the retransmission
532 	 * is being sent (this may be different from the address for
533 	 * which the timer expires [see Section 6.4]). Call this value
534 	 * K. Bundle and retransmit those K DATA chunks in a single
535 	 * packet to the destination endpoint.
536 	 *
537 	 * [Just to be painfully clear, if we are retransmitting
538 	 * because a timeout just happened, we should send only ONE
539 	 * packet of retransmitted data.]
540 	 */
541 	lchunk = sctp_list_dequeue(lqueue);
542 
543 	while (lchunk) {
544 		chunk = list_entry(lchunk, struct sctp_chunk,
545 				   transmitted_list);
546 
547 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
548 		 * simple approach is just to move such TSNs out of the
549 		 * way and into a 'transmitted' queue and skip to the
550 		 * next chunk.
551 		 */
552 		if (chunk->tsn_gap_acked) {
553 			list_add_tail(lchunk, &transport->transmitted);
554 			lchunk = sctp_list_dequeue(lqueue);
555 			continue;
556 		}
557 
558 		/* Attempt to append this chunk to the packet. */
559 		status = sctp_packet_append_chunk(pkt, chunk);
560 
561 		switch (status) {
562 		case SCTP_XMIT_PMTU_FULL:
563 			/* Send this packet.  */
564 			if ((error = sctp_packet_transmit(pkt)) == 0)
565 				*start_timer = 1;
566 
567 			/* If we are retransmitting, we should only
568 			 * send a single packet.
569 			 */
570 			if (rtx_timeout) {
571 				list_add(lchunk, lqueue);
572 				lchunk = NULL;
573 			}
574 
575 			/* Bundle lchunk in the next round.  */
576 			break;
577 
578 		case SCTP_XMIT_RWND_FULL:
579 		        /* Send this packet. */
580 			if ((error = sctp_packet_transmit(pkt)) == 0)
581 				*start_timer = 1;
582 
583 			/* Stop sending DATA as there is no more room
584 			 * at the receiver.
585 			 */
586 			list_add(lchunk, lqueue);
587 			lchunk = NULL;
588 			break;
589 
590 		case SCTP_XMIT_NAGLE_DELAY:
591 		        /* Send this packet. */
592 			if ((error = sctp_packet_transmit(pkt)) == 0)
593 				*start_timer = 1;
594 
595 			/* Stop sending DATA because of nagle delay. */
596 			list_add(lchunk, lqueue);
597 			lchunk = NULL;
598 			break;
599 
600 		default:
601 			/* The append was successful, so add this chunk to
602 			 * the transmitted list.
603 			 */
604 			list_add_tail(lchunk, &transport->transmitted);
605 
606 			/* Mark the chunk as ineligible for fast retransmit
607 			 * after it is retransmitted.
608 			 */
609 			chunk->fast_retransmit = 0;
610 
611 			*start_timer = 1;
612 			q->empty = 0;
613 
614 			/* Retrieve a new chunk to bundle. */
615 			lchunk = sctp_list_dequeue(lqueue);
616 			break;
617 		};
618 
619 		/* If we are here due to a retransmit timeout or a fast
620 		 * retransmit and if there are any chunks left in the retransmit
621 		 * queue that could not fit in the PMTU sized packet, they need			 * to be marked as ineligible for a subsequent fast retransmit.
622 		 */
623 		if (rtx_timeout && !lchunk) {
624 			list_for_each(lchunk1, lqueue) {
625 				chunk1 = list_entry(lchunk1, struct sctp_chunk,
626 						    transmitted_list);
627 				chunk1->fast_retransmit = 0;
628 			}
629 		}
630 	}
631 
632 	return error;
633 }
634 
635 /* Cork the outqueue so queued chunks are really queued. */
sctp_outq_uncork(struct sctp_outq * q)636 int sctp_outq_uncork(struct sctp_outq *q)
637 {
638 	int error = 0;
639 	if (q->cork) {
640 		q->cork = 0;
641 		error = sctp_outq_flush(q, 0);
642 	}
643 	return error;
644 }
645 
646 /*
647  * Try to flush an outqueue.
648  *
649  * Description: Send everything in q which we legally can, subject to
650  * congestion limitations.
651  * * Note: This function can be called from multiple contexts so appropriate
652  * locking concerns must be made.  Today we use the sock lock to protect
653  * this function.
654  */
sctp_outq_flush(struct sctp_outq * q,int rtx_timeout)655 int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
656 {
657 	struct sctp_packet *packet;
658 	struct sctp_packet singleton;
659 	struct sctp_association *asoc = q->asoc;
660 	__u16 sport = asoc->base.bind_addr.port;
661 	__u16 dport = asoc->peer.port;
662 	__u32 vtag = asoc->peer.i.init_tag;
663 	struct sk_buff_head *queue;
664 	struct sctp_transport *transport = NULL;
665 	struct sctp_transport *new_transport;
666 	struct sctp_chunk *chunk;
667 	sctp_xmit_t status;
668 	int error = 0;
669 	int start_timer = 0;
670 
671 	/* These transports have chunks to send. */
672 	struct list_head transport_list;
673 	struct list_head *ltransport;
674 
675 	INIT_LIST_HEAD(&transport_list);
676 	packet = NULL;
677 
678 	/*
679 	 * 6.10 Bundling
680 	 *   ...
681 	 *   When bundling control chunks with DATA chunks, an
682 	 *   endpoint MUST place control chunks first in the outbound
683 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
684 	 *   within a SCTP packet in increasing order of TSN.
685 	 *   ...
686 	 */
687 
688 	queue = &q->control;
689 	while ((chunk = (struct sctp_chunk *)skb_dequeue(queue)) != NULL) {
690 		/* Pick the right transport to use. */
691 		new_transport = chunk->transport;
692 
693 		if (!new_transport) {
694 			new_transport = asoc->peer.active_path;
695 		} else if (!new_transport->active) {
696 			/* If the chunk is Heartbeat or Heartbeat Ack,
697 			 * send it to chunk->transport, even if it's
698 			 * inactive.
699 			 *
700 			 * 3.3.6 Heartbeat Acknowledgement:
701 			 * ...
702 			 * A HEARTBEAT ACK is always sent to the source IP
703 			 * address of the IP datagram containing the
704 			 * HEARTBEAT chunk to which this ack is responding.
705 			 * ...
706 			 */
707 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
708 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK)
709 				new_transport = asoc->peer.active_path;
710 		}
711 
712 		/* Are we switching transports?
713 		 * Take care of transport locks.
714 		 */
715 		if (new_transport != transport) {
716 			transport = new_transport;
717 			if (list_empty(&transport->send_ready)) {
718 				list_add_tail(&transport->send_ready,
719 					      &transport_list);
720 			}
721 			packet = &transport->packet;
722 			sctp_packet_config(packet, vtag,
723 					   asoc->peer.ecn_capable);
724 		}
725 
726 		switch (chunk->chunk_hdr->type) {
727 		/*
728 		 * 6.10 Bundling
729 		 *   ...
730 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
731 		 *   COMPLETE with any other chunks.  [Send them immediately.]
732 		 */
733 		case SCTP_CID_INIT:
734 		case SCTP_CID_INIT_ACK:
735 		case SCTP_CID_SHUTDOWN_COMPLETE:
736 			sctp_packet_init(&singleton, transport, sport, dport);
737 			sctp_packet_config(&singleton, vtag, 0);
738 			sctp_packet_append_chunk(&singleton, chunk);
739 			error = sctp_packet_transmit(&singleton);
740 			if (error < 0)
741 				return error;
742 			break;
743 
744 		case SCTP_CID_ABORT:
745 		case SCTP_CID_SACK:
746 		case SCTP_CID_HEARTBEAT:
747 		case SCTP_CID_HEARTBEAT_ACK:
748 		case SCTP_CID_SHUTDOWN:
749 		case SCTP_CID_SHUTDOWN_ACK:
750 		case SCTP_CID_ERROR:
751 		case SCTP_CID_COOKIE_ECHO:
752 		case SCTP_CID_COOKIE_ACK:
753 		case SCTP_CID_ECN_ECNE:
754 		case SCTP_CID_ECN_CWR:
755 		case SCTP_CID_ASCONF:
756 		case SCTP_CID_ASCONF_ACK:
757 		case SCTP_CID_FWD_TSN:
758 			sctp_packet_transmit_chunk(packet, chunk);
759 			break;
760 
761 		default:
762 			/* We built a chunk with an illegal type! */
763 			BUG();
764 		};
765 	}
766 
767 	/* Is it OK to send data chunks?  */
768 	switch (asoc->state) {
769 	case SCTP_STATE_COOKIE_ECHOED:
770 		/* Only allow bundling when this packet has a COOKIE-ECHO
771 		 * chunk.
772 		 */
773 		if (!packet || !packet->has_cookie_echo)
774 			break;
775 
776 		/* fallthru */
777 	case SCTP_STATE_ESTABLISHED:
778 	case SCTP_STATE_SHUTDOWN_PENDING:
779 	case SCTP_STATE_SHUTDOWN_RECEIVED:
780 		/*
781 		 * RFC 2960 6.1  Transmission of DATA Chunks
782 		 *
783 		 * C) When the time comes for the sender to transmit,
784 		 * before sending new DATA chunks, the sender MUST
785 		 * first transmit any outstanding DATA chunks which
786 		 * are marked for retransmission (limited by the
787 		 * current cwnd).
788 		 */
789 		if (!list_empty(&q->retransmit)) {
790 			if (transport == asoc->peer.retran_path)
791 				goto retran;
792 
793 			/* Switch transports & prepare the packet.  */
794 
795 			transport = asoc->peer.retran_path;
796 
797 			if (list_empty(&transport->send_ready)) {
798 				list_add_tail(&transport->send_ready,
799 					      &transport_list);
800 			}
801 
802 			packet = &transport->packet;
803 			sctp_packet_config(packet, vtag,
804 					   asoc->peer.ecn_capable);
805 		retran:
806 			error = sctp_outq_flush_rtx(q, packet,
807 						    rtx_timeout, &start_timer);
808 
809 			if (start_timer)
810 				sctp_transport_reset_timers(transport);
811 
812 			/* This can happen on COOKIE-ECHO resend.  Only
813 			 * one chunk can get bundled with a COOKIE-ECHO.
814 			 */
815 			if (packet->has_cookie_echo)
816 				goto sctp_flush_out;
817 
818 			/* Don't send new data if there is still data
819 			 * waiting to retransmit.
820 			 */
821 			if (!list_empty(&q->retransmit))
822 				goto sctp_flush_out;
823 		}
824 
825 		/* Finally, transmit new packets.  */
826 		start_timer = 0;
827 		queue = &q->out;
828 
829 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
830 			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
831 			 * stream identifier.
832 			 */
833 			if (chunk->sinfo.sinfo_stream >=
834 			    asoc->c.sinit_num_ostreams) {
835 
836 				/* Mark as failed send. */
837 				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
838 				sctp_chunk_free(chunk);
839 				continue;
840 			}
841 
842 			/* Has this chunk expired? */
843 			if (sctp_chunk_abandoned(chunk)) {
844 				sctp_chunk_fail(chunk, 0);
845 				sctp_chunk_free(chunk);
846 				continue;
847 			}
848 
849 			/* If there is a specified transport, use it.
850 			 * Otherwise, we want to use the active path.
851 			 */
852 			new_transport = chunk->transport;
853 			if (!new_transport || !new_transport->active)
854 				new_transport = asoc->peer.active_path;
855 
856 			/* Change packets if necessary.  */
857 			if (new_transport != transport) {
858 				transport = new_transport;
859 
860 				/* Schedule to have this transport's
861 				 * packet flushed.
862 				 */
863 				if (list_empty(&transport->send_ready)) {
864 					list_add_tail(&transport->send_ready,
865 						      &transport_list);
866 				}
867 
868 				packet = &transport->packet;
869 				sctp_packet_config(packet, vtag,
870 						   asoc->peer.ecn_capable);
871 			}
872 
873 			SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
874 					  q, chunk,
875 					  chunk && chunk->chunk_hdr ?
876 					  sctp_cname(SCTP_ST_CHUNK(
877 						  chunk->chunk_hdr->type))
878 					  : "Illegal Chunk");
879 
880 			SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
881 					"%p skb->users %d.\n",
882 					ntohl(chunk->subh.data_hdr->tsn),
883 					chunk->skb ?chunk->skb->head : NULL,
884 					chunk->skb ?
885 					atomic_read(&chunk->skb->users) : -1);
886 
887 			/* Add the chunk to the packet.  */
888 			status = sctp_packet_transmit_chunk(packet, chunk);
889 
890 			switch (status) {
891 			case SCTP_XMIT_PMTU_FULL:
892 			case SCTP_XMIT_RWND_FULL:
893 			case SCTP_XMIT_NAGLE_DELAY:
894 				/* We could not append this chunk, so put
895 				 * the chunk back on the output queue.
896 				 */
897 				SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
898 					"not transmit TSN: 0x%x, status: %d\n",
899 					ntohl(chunk->subh.data_hdr->tsn),
900 					status);
901 				sctp_outq_head_data(q, chunk);
902 				goto sctp_flush_out;
903 				break;
904 
905 			case SCTP_XMIT_OK:
906 				break;
907 
908 			default:
909 				BUG();
910 			}
911 
912 			/* BUG: We assume that the sctp_packet_transmit()
913 			 * call below will succeed all the time and add the
914 			 * chunk to the transmitted list and restart the
915 			 * timers.
916 			 * It is possible that the call can fail under OOM
917 			 * conditions.
918 			 *
919 			 * Is this really a problem?  Won't this behave
920 			 * like a lost TSN?
921 			 */
922 			list_add_tail(&chunk->transmitted_list,
923 				      &transport->transmitted);
924 
925 			sctp_transport_reset_timers(transport);
926 
927 			q->empty = 0;
928 
929 			/* Only let one DATA chunk get bundled with a
930 			 * COOKIE-ECHO chunk.
931 			 */
932 			if (packet->has_cookie_echo)
933 				goto sctp_flush_out;
934 		}
935 		break;
936 
937 	default:
938 		/* Do nothing.  */
939 		break;
940 	}
941 
942 sctp_flush_out:
943 
944 	/* Before returning, examine all the transports touched in
945 	 * this call.  Right now, we bluntly force clear all the
946 	 * transports.  Things might change after we implement Nagle.
947 	 * But such an examination is still required.
948 	 *
949 	 * --xguo
950 	 */
951 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
952 		struct sctp_transport *t = list_entry(ltransport,
953 						      struct sctp_transport,
954 						      send_ready);
955 		packet = &t->packet;
956 		if (!sctp_packet_empty(packet))
957 			error = sctp_packet_transmit(packet);
958 	}
959 
960 	return error;
961 }
962 
963 /* Update unack_data based on the incoming SACK chunk */
sctp_sack_update_unack_data(struct sctp_association * assoc,struct sctp_sackhdr * sack)964 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
965 					struct sctp_sackhdr *sack)
966 {
967 	sctp_sack_variable_t *frags;
968 	__u16 unack_data;
969 	int i;
970 
971 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
972 
973 	frags = sack->variable;
974 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
975 		unack_data -= ((ntohs(frags[i].gab.end) -
976 				ntohs(frags[i].gab.start) + 1));
977 	}
978 
979 	assoc->unack_data = unack_data;
980 }
981 
982 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
sctp_highest_new_tsn(struct sctp_sackhdr * sack,struct sctp_association * asoc)983 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack,
984 				  struct sctp_association *asoc)
985 {
986 	struct list_head *ltransport, *lchunk;
987 	struct sctp_transport *transport;
988 	struct sctp_chunk *chunk;
989 	__u32 highest_new_tsn, tsn;
990 	struct list_head *transport_list = &asoc->peer.transport_addr_list;
991 
992 	highest_new_tsn = ntohl(sack->cum_tsn_ack);
993 
994 	list_for_each(ltransport, transport_list) {
995 		transport = list_entry(ltransport, struct sctp_transport,
996 				       transports);
997 		list_for_each(lchunk, &transport->transmitted) {
998 			chunk = list_entry(lchunk, struct sctp_chunk,
999 					   transmitted_list);
1000 			tsn = ntohl(chunk->subh.data_hdr->tsn);
1001 
1002 			if (!chunk->tsn_gap_acked &&
1003 			    TSN_lt(highest_new_tsn, tsn) &&
1004 			    sctp_acked(sack, tsn))
1005 				highest_new_tsn = tsn;
1006 		}
1007 	}
1008 
1009 	return highest_new_tsn;
1010 }
1011 
1012 /* This is where we REALLY process a SACK.
1013  *
1014  * Process the SACK against the outqueue.  Mostly, this just frees
1015  * things off the transmitted queue.
1016  */
sctp_outq_sack(struct sctp_outq * q,struct sctp_sackhdr * sack)1017 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1018 {
1019 	struct sctp_association *asoc = q->asoc;
1020 	struct sctp_transport *transport;
1021 	struct sctp_chunk *tchunk = NULL;
1022 	struct list_head *lchunk, *transport_list, *pos, *temp;
1023 	sctp_sack_variable_t *frags = sack->variable;
1024 	__u32 sack_ctsn, ctsn, tsn;
1025 	__u32 highest_tsn, highest_new_tsn;
1026 	__u32 sack_a_rwnd;
1027 	unsigned outstanding;
1028 	struct sctp_transport *primary = asoc->peer.primary_path;
1029 	int count_of_newacks = 0;
1030 
1031 	/* Grab the association's destination address list. */
1032 	transport_list = &asoc->peer.transport_addr_list;
1033 
1034 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1035 
1036 	/*
1037 	 * SFR-CACC algorithm:
1038 	 * On receipt of a SACK the sender SHOULD execute the
1039 	 * following statements.
1040 	 *
1041 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1042 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1043 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1044 	 * all destinations.
1045 	 */
1046 	if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1047 		primary->cacc.changeover_active = 0;
1048 		list_for_each(pos, transport_list) {
1049 			transport = list_entry(pos, struct sctp_transport,
1050 					transports);
1051 			transport->cacc.cycling_changeover = 0;
1052 		}
1053 	}
1054 
1055 	/*
1056 	 * SFR-CACC algorithm:
1057 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1058 	 * is set the receiver of the SACK MUST take the following actions:
1059 	 *
1060 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1061 	 * addresses.
1062 	 */
1063 	if (sack->num_gap_ack_blocks > 0 &&
1064 	    primary->cacc.changeover_active) {
1065 		list_for_each(pos, transport_list) {
1066 			transport = list_entry(pos, struct sctp_transport,
1067 					transports);
1068 			transport->cacc.cacc_saw_newack = 0;
1069 		}
1070 	}
1071 
1072 	/* Get the highest TSN in the sack. */
1073 	highest_tsn = sack_ctsn;
1074 	if (sack->num_gap_ack_blocks)
1075 		highest_tsn +=
1076 		    ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end);
1077 
1078 	if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
1079 		highest_new_tsn = highest_tsn;
1080 		asoc->highest_sacked = highest_tsn;
1081 	} else {
1082 		highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
1083 	}
1084 
1085 	/* Run through the retransmit queue.  Credit bytes received
1086 	 * and free those chunks that we can.
1087 	 */
1088 	sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
1089 	sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0);
1090 
1091 	/* Run through the transmitted queue.
1092 	 * Credit bytes received and free those chunks which we can.
1093 	 *
1094 	 * This is a MASSIVE candidate for optimization.
1095 	 */
1096 	list_for_each(pos, transport_list) {
1097 		transport  = list_entry(pos, struct sctp_transport,
1098 					transports);
1099 		sctp_check_transmitted(q, &transport->transmitted,
1100 				       transport, sack, highest_new_tsn);
1101 		/*
1102 		 * SFR-CACC algorithm:
1103 		 * C) Let count_of_newacks be the number of
1104 		 * destinations for which cacc_saw_newack is set.
1105 		 */
1106 		if (transport->cacc.cacc_saw_newack)
1107 			count_of_newacks ++;
1108 	}
1109 
1110 	list_for_each(pos, transport_list) {
1111 		transport  = list_entry(pos, struct sctp_transport,
1112 					transports);
1113 		sctp_mark_missing(q, &transport->transmitted, transport,
1114 				  highest_new_tsn, count_of_newacks);
1115 	}
1116 
1117 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1118 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
1119 		asoc->ctsn_ack_point = sack_ctsn;
1120 
1121 	/* Update unack_data field in the assoc. */
1122 	sctp_sack_update_unack_data(asoc, sack);
1123 
1124 	ctsn = asoc->ctsn_ack_point;
1125 
1126 	/* Throw away stuff rotting on the sack queue.  */
1127 	list_for_each_safe(lchunk, temp, &q->sacked) {
1128 		tchunk = list_entry(lchunk, struct sctp_chunk,
1129 				    transmitted_list);
1130 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1131 		if (TSN_lte(tsn, ctsn))
1132 			sctp_chunk_free(tchunk);
1133 	}
1134 
1135 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1136 	 *     number of bytes still outstanding after processing the
1137 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1138 	 */
1139 
1140 	sack_a_rwnd = ntohl(sack->a_rwnd);
1141 	outstanding = q->outstanding_bytes;
1142 
1143 	if (outstanding < sack_a_rwnd)
1144 		sack_a_rwnd -= outstanding;
1145 	else
1146 		sack_a_rwnd = 0;
1147 
1148 	asoc->peer.rwnd = sack_a_rwnd;
1149 
1150 	sctp_generate_fwdtsn(q, sack_ctsn);
1151 
1152 	SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1153 			  __FUNCTION__, sack_ctsn);
1154 	SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1155 			  "%p is 0x%x. Adv peer ack point: 0x%x\n",
1156 			  __FUNCTION__, asoc, ctsn, asoc->adv_peer_ack_point);
1157 
1158 	/* See if all chunks are acked.
1159 	 * Make sure the empty queue handler will get run later.
1160 	 */
1161 	q->empty = skb_queue_empty(&q->out) && skb_queue_empty(&q->control) &&
1162 			list_empty(&q->retransmit);
1163 	if (!q->empty)
1164 		goto finish;
1165 
1166 	list_for_each(pos, transport_list) {
1167 		transport  = list_entry(pos, struct sctp_transport,
1168 					transports);
1169 		q->empty = q->empty && list_empty(&transport->transmitted);
1170 		if (!q->empty)
1171 			goto finish;
1172 	}
1173 
1174 	SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1175 finish:
1176 	return q->empty;
1177 }
1178 
1179 /* Is the outqueue empty?  */
sctp_outq_is_empty(const struct sctp_outq * q)1180 int sctp_outq_is_empty(const struct sctp_outq *q)
1181 {
1182 	return q->empty;
1183 }
1184 
1185 /********************************************************************
1186  * 2nd Level Abstractions
1187  ********************************************************************/
1188 
1189 /* Go through a transport's transmitted list or the association's retransmit
1190  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1191  * The retransmit list will not have an associated transport.
1192  *
1193  * I added coherent debug information output.	--xguo
1194  *
1195  * Instead of printing 'sacked' or 'kept' for each TSN on the
1196  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1197  * KEPT TSN6-TSN7, etc.
1198  */
sctp_check_transmitted(struct sctp_outq * q,struct list_head * transmitted_queue,struct sctp_transport * transport,struct sctp_sackhdr * sack,__u32 highest_new_tsn_in_sack)1199 static void sctp_check_transmitted(struct sctp_outq *q,
1200 				   struct list_head *transmitted_queue,
1201 				   struct sctp_transport *transport,
1202 				   struct sctp_sackhdr *sack,
1203 				   __u32 highest_new_tsn_in_sack)
1204 {
1205 	struct list_head *lchunk;
1206 	struct sctp_chunk *tchunk;
1207 	struct list_head tlist;
1208 	__u32 tsn;
1209 	__u32 sack_ctsn;
1210 	__u32 rtt;
1211 	__u8 restart_timer = 0;
1212 	int bytes_acked = 0;
1213 
1214 	/* These state variables are for coherent debug output. --xguo */
1215 
1216 #if SCTP_DEBUG
1217 	__u32 dbg_ack_tsn = 0;	/* An ACKed TSN range starts here... */
1218 	__u32 dbg_last_ack_tsn = 0;  /* ...and finishes here.	     */
1219 	__u32 dbg_kept_tsn = 0;	/* An un-ACKed range starts here...  */
1220 	__u32 dbg_last_kept_tsn = 0; /* ...and finishes here.	     */
1221 
1222 	/* 0 : The last TSN was ACKed.
1223 	 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1224 	 * -1: We need to initialize.
1225 	 */
1226 	int dbg_prt_state = -1;
1227 #endif /* SCTP_DEBUG */
1228 
1229 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1230 
1231 	INIT_LIST_HEAD(&tlist);
1232 
1233 	/* The while loop will skip empty transmitted queues. */
1234 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1235 		tchunk = list_entry(lchunk, struct sctp_chunk,
1236 				    transmitted_list);
1237 
1238 		if (sctp_chunk_abandoned(tchunk)) {
1239 			/* Move the chunk to abandoned list. */
1240 			sctp_insert_list(&q->abandoned, lchunk);
1241 			continue;
1242 		}
1243 
1244 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1245 		if (sctp_acked(sack, tsn)) {
1246 			/* If this queue is the retransmit queue, the
1247 			 * retransmit timer has already reclaimed
1248 			 * the outstanding bytes for this chunk, so only
1249 			 * count bytes associated with a transport.
1250 			 */
1251 			if (transport) {
1252 				/* If this chunk is being used for RTT
1253 				 * measurement, calculate the RTT and update
1254 				 * the RTO using this value.
1255 				 *
1256 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1257 				 * MUST NOT be made using packets that were
1258 				 * retransmitted (and thus for which it is
1259 				 * ambiguous whether the reply was for the
1260 				 * first instance of the packet or a later
1261 				 * instance).
1262 				 */
1263 			   	if (!tchunk->tsn_gap_acked &&
1264 				    !tchunk->resent &&
1265 				    tchunk->rtt_in_progress) {
1266 					rtt = jiffies - tchunk->sent_at;
1267 					sctp_transport_update_rto(transport,
1268 								  rtt);
1269 				}
1270 			}
1271                         if (TSN_lte(tsn, sack_ctsn)) {
1272 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1273 				 *
1274 				 * R3) Whenever a SACK is received
1275 				 * that acknowledges the DATA chunk
1276 				 * with the earliest outstanding TSN
1277 				 * for that address, restart T3-rtx
1278 				 * timer for that address with its
1279 				 * current RTO.
1280 				 */
1281 				restart_timer = 1;
1282 
1283 				if (!tchunk->tsn_gap_acked) {
1284 					tchunk->tsn_gap_acked = 1;
1285 					bytes_acked += sctp_data_size(tchunk);
1286 					/*
1287 					 * SFR-CACC algorithm:
1288 					 * 2) If the SACK contains gap acks
1289 					 * and the flag CHANGEOVER_ACTIVE is
1290 					 * set the receiver of the SACK MUST
1291 					 * take the following action:
1292 					 *
1293 					 * B) For each TSN t being acked that
1294 					 * has not been acked in any SACK so
1295 					 * far, set cacc_saw_newack to 1 for
1296 					 * the destination that the TSN was
1297 					 * sent to.
1298 					 */
1299 					if (transport &&
1300 					    sack->num_gap_ack_blocks &&
1301 					    q->asoc->peer.primary_path->cacc.
1302 					    changeover_active)
1303 						transport->cacc.cacc_saw_newack
1304 							= 1;
1305 				}
1306 
1307 				list_add_tail(&tchunk->transmitted_list,
1308 					      &q->sacked);
1309 			} else {
1310 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1311 				 * M2) Each time a SACK arrives reporting
1312 				 * 'Stray DATA chunk(s)' record the highest TSN
1313 				 * reported as newly acknowledged, call this
1314 				 * value 'HighestTSNinSack'. A newly
1315 				 * acknowledged DATA chunk is one not
1316 				 * previously acknowledged in a SACK.
1317 				 *
1318 				 * When the SCTP sender of data receives a SACK
1319 				 * chunk that acknowledges, for the first time,
1320 				 * the receipt of a DATA chunk, all the still
1321 				 * unacknowledged DATA chunks whose TSN is
1322 				 * older than that newly acknowledged DATA
1323 				 * chunk, are qualified as 'Stray DATA chunks'.
1324 				 */
1325 				if (!tchunk->tsn_gap_acked) {
1326 					tchunk->tsn_gap_acked = 1;
1327 					bytes_acked += sctp_data_size(tchunk);
1328 				}
1329 				list_add_tail(lchunk, &tlist);
1330 			}
1331 
1332 #if SCTP_DEBUG
1333 			switch (dbg_prt_state) {
1334 			case 0:	/* last TSN was ACKed */
1335 				if (dbg_last_ack_tsn + 1 == tsn) {
1336 					/* This TSN belongs to the
1337 					 * current ACK range.
1338 					 */
1339 					break;
1340 				}
1341 
1342 				if (dbg_last_ack_tsn != dbg_ack_tsn) {
1343 					/* Display the end of the
1344 					 * current range.
1345 					 */
1346 					SCTP_DEBUG_PRINTK("-%08x",
1347 							  dbg_last_ack_tsn);
1348 				}
1349 
1350 				/* Start a new range.  */
1351 				SCTP_DEBUG_PRINTK(",%08x", tsn);
1352 				dbg_ack_tsn = tsn;
1353 				break;
1354 
1355 			case 1:	/* The last TSN was NOT ACKed. */
1356 				if (dbg_last_kept_tsn != dbg_kept_tsn) {
1357 					/* Display the end of current range. */
1358 					SCTP_DEBUG_PRINTK("-%08x",
1359 							  dbg_last_kept_tsn);
1360 				}
1361 
1362 				SCTP_DEBUG_PRINTK("\n");
1363 
1364 				/* FALL THROUGH... */
1365 			default:
1366 				/* This is the first-ever TSN we examined.  */
1367 				/* Start a new range of ACK-ed TSNs.  */
1368 				SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1369 				dbg_prt_state = 0;
1370 				dbg_ack_tsn = tsn;
1371 			};
1372 
1373 			dbg_last_ack_tsn = tsn;
1374 #endif /* SCTP_DEBUG */
1375 
1376 		} else {
1377 			if (tchunk->tsn_gap_acked) {
1378 				SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1379 						  "data TSN: 0x%x\n",
1380 						  __FUNCTION__,
1381 						  tsn);
1382 				tchunk->tsn_gap_acked = 0;
1383 
1384 				bytes_acked -= sctp_data_size(tchunk);
1385 
1386 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1387 				 *
1388 				 * R4) Whenever a SACK is received missing a
1389 				 * TSN that was previously acknowledged via a
1390 				 * Gap Ack Block, start T3-rtx for the
1391 				 * destination address to which the DATA
1392 				 * chunk was originally
1393 				 * transmitted if it is not already running.
1394 				 */
1395 				restart_timer = 1;
1396 			}
1397 
1398 			list_add_tail(lchunk, &tlist);
1399 
1400 #if SCTP_DEBUG
1401 			/* See the above comments on ACK-ed TSNs. */
1402 			switch (dbg_prt_state) {
1403 			case 1:
1404 				if (dbg_last_kept_tsn + 1 == tsn)
1405 					break;
1406 
1407 				if (dbg_last_kept_tsn != dbg_kept_tsn)
1408 					SCTP_DEBUG_PRINTK("-%08x",
1409 							  dbg_last_kept_tsn);
1410 
1411 				SCTP_DEBUG_PRINTK(",%08x", tsn);
1412 				dbg_kept_tsn = tsn;
1413 				break;
1414 
1415 			case 0:
1416 				if (dbg_last_ack_tsn != dbg_ack_tsn)
1417 					SCTP_DEBUG_PRINTK("-%08x",
1418 							  dbg_last_ack_tsn);
1419 				SCTP_DEBUG_PRINTK("\n");
1420 
1421 				/* FALL THROUGH... */
1422 			default:
1423 				SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1424 				dbg_prt_state = 1;
1425 				dbg_kept_tsn = tsn;
1426 			};
1427 
1428 			dbg_last_kept_tsn = tsn;
1429 #endif /* SCTP_DEBUG */
1430 		}
1431 	}
1432 
1433 #if SCTP_DEBUG
1434 	/* Finish off the last range, displaying its ending TSN.  */
1435 	switch (dbg_prt_state) {
1436 	case 0:
1437 		if (dbg_last_ack_tsn != dbg_ack_tsn) {
1438 			SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
1439 		} else {
1440 			SCTP_DEBUG_PRINTK("\n");
1441 		}
1442 	break;
1443 
1444 	case 1:
1445 		if (dbg_last_kept_tsn != dbg_kept_tsn) {
1446 			SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
1447 		} else {
1448 			SCTP_DEBUG_PRINTK("\n");
1449 		}
1450 	};
1451 #endif /* SCTP_DEBUG */
1452 	if (transport) {
1453 		if (bytes_acked) {
1454 			/* 8.2. When an outstanding TSN is acknowledged,
1455 			 * the endpoint shall clear the error counter of
1456 			 * the destination transport address to which the
1457 			 * DATA chunk was last sent.
1458 			 * The association's overall error counter is
1459 			 * also cleared.
1460 			 */
1461 			transport->error_count = 0;
1462 			transport->asoc->overall_error_count = 0;
1463 
1464 			/* Mark the destination transport address as
1465 			 * active if it is not so marked.
1466 			 */
1467 			if (!transport->active) {
1468 				sctp_assoc_control_transport(
1469 					transport->asoc,
1470 					transport,
1471 					SCTP_TRANSPORT_UP,
1472 					SCTP_RECEIVED_SACK);
1473 			}
1474 
1475 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1476 						  bytes_acked);
1477 
1478 			transport->flight_size -= bytes_acked;
1479 			q->outstanding_bytes -= bytes_acked;
1480 		} else {
1481 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1482 			 * When a sender is doing zero window probing, it
1483 			 * should not timeout the association if it continues
1484 			 * to receive new packets from the receiver. The
1485 			 * reason is that the receiver MAY keep its window
1486 			 * closed for an indefinite time.
1487 			 * A sender is doing zero window probing when the
1488 			 * receiver's advertised window is zero, and there is
1489 			 * only one data chunk in flight to the receiver.
1490 			 */
1491 			if (!q->asoc->peer.rwnd &&
1492 			    !list_empty(&tlist) &&
1493 			    (sack_ctsn+2 == q->asoc->next_tsn)) {
1494 				SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1495 						  "window probe: %u\n",
1496 						  __FUNCTION__, sack_ctsn);
1497 				q->asoc->overall_error_count = 0;
1498 				transport->error_count = 0;
1499 			}
1500 		}
1501 
1502 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1503 		 *
1504 		 * R2) Whenever all outstanding data sent to an address have
1505 		 * been acknowledged, turn off the T3-rtx timer of that
1506 		 * address.
1507 		 */
1508 		if (!transport->flight_size) {
1509 			if (timer_pending(&transport->T3_rtx_timer) &&
1510 			    del_timer(&transport->T3_rtx_timer)) {
1511 				sctp_transport_put(transport);
1512 			}
1513 		} else if (restart_timer) {
1514 			if (!mod_timer(&transport->T3_rtx_timer,
1515 				       jiffies + transport->rto))
1516 				sctp_transport_hold(transport);
1517 		}
1518 	}
1519 
1520 	list_splice(&tlist, transmitted_queue);
1521 }
1522 
1523 /* Mark chunks as missing and consequently may get retransmitted. */
sctp_mark_missing(struct sctp_outq * q,struct list_head * transmitted_queue,struct sctp_transport * transport,__u32 highest_new_tsn_in_sack,int count_of_newacks)1524 static void sctp_mark_missing(struct sctp_outq *q,
1525 			      struct list_head *transmitted_queue,
1526 			      struct sctp_transport *transport,
1527 			      __u32 highest_new_tsn_in_sack,
1528 			      int count_of_newacks)
1529 {
1530 	struct sctp_chunk *chunk;
1531 	struct list_head *pos;
1532 	__u32 tsn;
1533 	char do_fast_retransmit = 0;
1534 	struct sctp_transport *primary = q->asoc->peer.primary_path;
1535 
1536 	list_for_each(pos, transmitted_queue) {
1537 
1538 		chunk = list_entry(pos, struct sctp_chunk, transmitted_list);
1539 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1540 
1541 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1542 		 * 'Unacknowledged TSN's', if the TSN number of an
1543 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1544 		 * value, increment the 'TSN.Missing.Report' count on that
1545 		 * chunk if it has NOT been fast retransmitted or marked for
1546 		 * fast retransmit already.
1547 		 */
1548 		if (!chunk->fast_retransmit &&
1549 		    !chunk->tsn_gap_acked &&
1550 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1551 
1552 			/* SFR-CACC may require us to skip marking
1553 			 * this chunk as missing.
1554 			 */
1555 			if (!transport || !sctp_cacc_skip(primary, transport,
1556 					    count_of_newacks, tsn)) {
1557 				chunk->tsn_missing_report++;
1558 
1559 				SCTP_DEBUG_PRINTK(
1560 					"%s: TSN 0x%x missing counter: %d\n",
1561 					__FUNCTION__, tsn,
1562 					chunk->tsn_missing_report);
1563 			}
1564 		}
1565 		/*
1566 		 * M4) If any DATA chunk is found to have a
1567 		 * 'TSN.Missing.Report'
1568 		 * value larger than or equal to 4, mark that chunk for
1569 		 * retransmission and start the fast retransmit procedure.
1570 		 */
1571 
1572 		if (chunk->tsn_missing_report >= 4) {
1573 			chunk->fast_retransmit = 1;
1574 			do_fast_retransmit = 1;
1575 		}
1576 	}
1577 
1578 	if (transport) {
1579 		if (do_fast_retransmit)
1580 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1581 
1582 		SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1583 				  "ssthresh: %d, flight_size: %d, pba: %d\n",
1584 				  __FUNCTION__, transport, transport->cwnd,
1585 			  	  transport->ssthresh, transport->flight_size,
1586 				  transport->partial_bytes_acked);
1587 	}
1588 }
1589 
1590 /* Is the given TSN acked by this packet?  */
sctp_acked(struct sctp_sackhdr * sack,__u32 tsn)1591 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1592 {
1593 	int i;
1594 	sctp_sack_variable_t *frags;
1595 	__u16 gap;
1596 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1597 
1598         if (TSN_lte(tsn, ctsn))
1599 		goto pass;
1600 
1601 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1602 	 *
1603 	 * Gap Ack Blocks:
1604 	 *  These fields contain the Gap Ack Blocks. They are repeated
1605 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1606 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1607 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1608 	 *  Ack + Gap Ack Block Start) and less than or equal to
1609 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1610 	 *  Block are assumed to have been received correctly.
1611 	 */
1612 
1613 	frags = sack->variable;
1614 	gap = tsn - ctsn;
1615 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1616 		if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1617 		    TSN_lte(gap, ntohs(frags[i].gab.end)))
1618 			goto pass;
1619 	}
1620 
1621 	return 0;
1622 pass:
1623 	return 1;
1624 }
1625 
sctp_get_skip_pos(struct sctp_fwdtsn_skip * skiplist,int nskips,__u16 stream)1626 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1627 				    int nskips, __u16 stream)
1628 {
1629 	int i;
1630 
1631 	for (i = 0; i < nskips; i++) {
1632 		if (skiplist[i].stream == stream)
1633 			return i;
1634 	}
1635 	return i;
1636 }
1637 
1638 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
sctp_generate_fwdtsn(struct sctp_outq * q,__u32 ctsn)1639 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1640 {
1641 	struct sctp_association *asoc = q->asoc;
1642 	struct sctp_chunk *ftsn_chunk = NULL;
1643 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1644 	int nskips = 0;
1645 	int skip_pos = 0;
1646 	__u32 tsn;
1647 	struct sctp_chunk *chunk;
1648 	struct list_head *lchunk, *temp;
1649 
1650 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1651 	 * received SACK.
1652 	 *
1653 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1654 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1655 	 */
1656 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1657 		asoc->adv_peer_ack_point = ctsn;
1658 
1659 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1660 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1661 	 * the chunk next in the out-queue space is marked as "abandoned" as
1662 	 * shown in the following example:
1663 	 *
1664 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1665 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1666 	 *
1667 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1668 	 *   normal SACK processing           local advancement
1669 	 *                ...                           ...
1670 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1671 	 *                103 abandoned                 103 abandoned
1672 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1673 	 *                105                           105
1674 	 *                106 acked                     106 acked
1675 	 *                ...                           ...
1676 	 *
1677 	 * In this example, the data sender successfully advanced the
1678 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1679 	 */
1680 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1681 		chunk = list_entry(lchunk, struct sctp_chunk,
1682 					transmitted_list);
1683 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1684 
1685 		/* Remove any chunks in the abandoned queue that are acked by
1686 		 * the ctsn.
1687 		 */
1688 		if (TSN_lte(tsn, ctsn)) {
1689 			list_del_init(lchunk);
1690 			if (!chunk->tsn_gap_acked) {
1691 			chunk->transport->flight_size -=
1692 						 sctp_data_size(chunk);
1693 			q->outstanding_bytes -= sctp_data_size(chunk);
1694 			}
1695 			sctp_chunk_free(chunk);
1696 		} else {
1697 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1698 				asoc->adv_peer_ack_point = tsn;
1699 				if (chunk->chunk_hdr->flags &
1700 					 SCTP_DATA_UNORDERED)
1701 					continue;
1702 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1703 						nskips,
1704 						chunk->subh.data_hdr->stream);
1705 				ftsn_skip_arr[skip_pos].stream =
1706 					chunk->subh.data_hdr->stream;
1707 				ftsn_skip_arr[skip_pos].ssn =
1708 					 chunk->subh.data_hdr->ssn;
1709 				if (skip_pos == nskips)
1710 					nskips++;
1711 				if (nskips == 10)
1712 					break;
1713 			} else
1714 				break;
1715 		}
1716 	}
1717 
1718 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1719 	 * is greater than the Cumulative TSN ACK carried in the received
1720 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1721 	 * chunk containing the latest value of the
1722 	 * "Advanced.Peer.Ack.Point".
1723 	 *
1724 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1725 	 * list each stream and sequence number in the forwarded TSN. This
1726 	 * information will enable the receiver to easily find any
1727 	 * stranded TSN's waiting on stream reorder queues. Each stream
1728 	 * SHOULD only be reported once; this means that if multiple
1729 	 * abandoned messages occur in the same stream then only the
1730 	 * highest abandoned stream sequence number is reported. If the
1731 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1732 	 * the sender of the FORWARD TSN SHOULD lower the
1733 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1734 	 * single MTU.
1735 	 */
1736 	if (asoc->adv_peer_ack_point > ctsn)
1737 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1738 					      nskips, &ftsn_skip_arr[0]);
1739 
1740 	if (ftsn_chunk) {
1741 		__skb_queue_tail(&q->control, (struct sk_buff *)ftsn_chunk);
1742 		SCTP_INC_STATS(SctpOutCtrlChunks);
1743 	}
1744 }
1745