1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 #include <trace/events/sock.h>
63
64 #include <linux/socket.h> /* for sa_family_t */
65 #include <linux/export.h>
66 #include <net/sock.h>
67 #include <net/sctp/sctp.h>
68 #include <net/sctp/sm.h>
69 #include <net/sctp/stream_sched.h>
70
71 /* Forward declarations for internal helper functions. */
72 static bool sctp_writeable(const struct sock *sk);
73 static void sctp_wfree(struct sk_buff *skb);
74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
75 size_t msg_len);
76 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
77 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
78 static int sctp_wait_for_accept(struct sock *sk, long timeo);
79 static void sctp_wait_for_close(struct sock *sk, long timeo);
80 static void sctp_destruct_sock(struct sock *sk);
81 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
82 union sctp_addr *addr, int len);
83 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
84 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
87 static int sctp_send_asconf(struct sctp_association *asoc,
88 struct sctp_chunk *chunk);
89 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
90 static int sctp_autobind(struct sock *sk);
91 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
92 struct sctp_association *assoc,
93 enum sctp_socket_type type);
94
95 static unsigned long sctp_memory_pressure;
96 static atomic_long_t sctp_memory_allocated;
97 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc);
98 struct percpu_counter sctp_sockets_allocated;
99
sctp_enter_memory_pressure(struct sock * sk)100 static void sctp_enter_memory_pressure(struct sock *sk)
101 {
102 WRITE_ONCE(sctp_memory_pressure, 1);
103 }
104
105
106 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)107 static inline int sctp_wspace(struct sctp_association *asoc)
108 {
109 struct sock *sk = asoc->base.sk;
110
111 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
112 : sk_stream_wspace(sk);
113 }
114
115 /* Increment the used sndbuf space count of the corresponding association by
116 * the size of the outgoing data chunk.
117 * Also, set the skb destructor for sndbuf accounting later.
118 *
119 * Since it is always 1-1 between chunk and skb, and also a new skb is always
120 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
121 * destructor in the data chunk skb for the purpose of the sndbuf space
122 * tracking.
123 */
sctp_set_owner_w(struct sctp_chunk * chunk)124 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
125 {
126 struct sctp_association *asoc = chunk->asoc;
127 struct sock *sk = asoc->base.sk;
128
129 /* The sndbuf space is tracked per association. */
130 sctp_association_hold(asoc);
131
132 if (chunk->shkey)
133 sctp_auth_shkey_hold(chunk->shkey);
134
135 skb_set_owner_w(chunk->skb, sk);
136
137 chunk->skb->destructor = sctp_wfree;
138 /* Save the chunk pointer in skb for sctp_wfree to use later. */
139 skb_shinfo(chunk->skb)->destructor_arg = chunk;
140
141 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
142 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
143 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk));
144 sk_mem_charge(sk, chunk->skb->truesize);
145 }
146
sctp_clear_owner_w(struct sctp_chunk * chunk)147 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
148 {
149 skb_orphan(chunk->skb);
150 }
151
152 #define traverse_and_process() \
153 do { \
154 msg = chunk->msg; \
155 if (msg == prev_msg) \
156 continue; \
157 list_for_each_entry(c, &msg->chunks, frag_list) { \
158 if ((clear && asoc->base.sk == c->skb->sk) || \
159 (!clear && asoc->base.sk != c->skb->sk)) \
160 cb(c); \
161 } \
162 prev_msg = msg; \
163 } while (0)
164
sctp_for_each_tx_datachunk(struct sctp_association * asoc,bool clear,void (* cb)(struct sctp_chunk *))165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 bool clear,
167 void (*cb)(struct sctp_chunk *))
168
169 {
170 struct sctp_datamsg *msg, *prev_msg = NULL;
171 struct sctp_outq *q = &asoc->outqueue;
172 struct sctp_chunk *chunk, *c;
173 struct sctp_transport *t;
174
175 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
176 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
177 traverse_and_process();
178
179 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
180 traverse_and_process();
181
182 list_for_each_entry(chunk, &q->sacked, transmitted_list)
183 traverse_and_process();
184
185 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
186 traverse_and_process();
187
188 list_for_each_entry(chunk, &q->out_chunk_list, list)
189 traverse_and_process();
190 }
191
sctp_for_each_rx_skb(struct sctp_association * asoc,struct sock * sk,void (* cb)(struct sk_buff *,struct sock *))192 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
193 void (*cb)(struct sk_buff *, struct sock *))
194
195 {
196 struct sk_buff *skb, *tmp;
197
198 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
199 cb(skb, sk);
200
201 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
202 cb(skb, sk);
203
204 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
205 cb(skb, sk);
206 }
207
208 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)209 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
210 int len)
211 {
212 struct sctp_af *af;
213
214 /* Verify basic sockaddr. */
215 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
216 if (!af)
217 return -EINVAL;
218
219 /* Is this a valid SCTP address? */
220 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
221 return -EINVAL;
222
223 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
224 return -EINVAL;
225
226 return 0;
227 }
228
229 /* Look up the association by its id. If this is not a UDP-style
230 * socket, the ID field is always ignored.
231 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)232 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
233 {
234 struct sctp_association *asoc = NULL;
235
236 /* If this is not a UDP-style socket, assoc id should be ignored. */
237 if (!sctp_style(sk, UDP)) {
238 /* Return NULL if the socket state is not ESTABLISHED. It
239 * could be a TCP-style listening socket or a socket which
240 * hasn't yet called connect() to establish an association.
241 */
242 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
243 return NULL;
244
245 /* Get the first and the only association from the list. */
246 if (!list_empty(&sctp_sk(sk)->ep->asocs))
247 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
248 struct sctp_association, asocs);
249 return asoc;
250 }
251
252 /* Otherwise this is a UDP-style socket. */
253 if (id <= SCTP_ALL_ASSOC)
254 return NULL;
255
256 spin_lock_bh(&sctp_assocs_id_lock);
257 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
258 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
259 asoc = NULL;
260 spin_unlock_bh(&sctp_assocs_id_lock);
261
262 return asoc;
263 }
264
265 /* Look up the transport from an address and an assoc id. If both address and
266 * id are specified, the associations matching the address and the id should be
267 * the same.
268 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)269 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
270 struct sockaddr_storage *addr,
271 sctp_assoc_t id)
272 {
273 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
274 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
275 union sctp_addr *laddr = (union sctp_addr *)addr;
276 struct sctp_transport *transport;
277
278 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
279 return NULL;
280
281 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
282 laddr,
283 &transport);
284
285 if (!addr_asoc)
286 return NULL;
287
288 id_asoc = sctp_id2assoc(sk, id);
289 if (id_asoc && (id_asoc != addr_asoc))
290 return NULL;
291
292 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
293 (union sctp_addr *)addr);
294
295 return transport;
296 }
297
298 /* API 3.1.2 bind() - UDP Style Syntax
299 * The syntax of bind() is,
300 *
301 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
302 *
303 * sd - the socket descriptor returned by socket().
304 * addr - the address structure (struct sockaddr_in or struct
305 * sockaddr_in6 [RFC 2553]),
306 * addr_len - the size of the address structure.
307 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)308 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
309 {
310 int retval = 0;
311
312 lock_sock(sk);
313
314 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
315 addr, addr_len);
316
317 /* Disallow binding twice. */
318 if (!sctp_sk(sk)->ep->base.bind_addr.port)
319 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
320 addr_len);
321 else
322 retval = -EINVAL;
323
324 release_sock(sk);
325
326 return retval;
327 }
328
329 static int sctp_get_port_local(struct sock *, union sctp_addr *);
330
331 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)332 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
333 union sctp_addr *addr, int len)
334 {
335 struct sctp_af *af;
336
337 /* Check minimum size. */
338 if (len < sizeof (struct sockaddr))
339 return NULL;
340
341 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
342 return NULL;
343
344 if (addr->sa.sa_family == AF_INET6) {
345 if (len < SIN6_LEN_RFC2133)
346 return NULL;
347 /* V4 mapped address are really of AF_INET family */
348 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
349 !opt->pf->af_supported(AF_INET, opt))
350 return NULL;
351 }
352
353 /* If we get this far, af is valid. */
354 af = sctp_get_af_specific(addr->sa.sa_family);
355
356 if (len < af->sockaddr_len)
357 return NULL;
358
359 return af;
360 }
361
sctp_auto_asconf_init(struct sctp_sock * sp)362 static void sctp_auto_asconf_init(struct sctp_sock *sp)
363 {
364 struct net *net = sock_net(&sp->inet.sk);
365
366 if (net->sctp.default_auto_asconf) {
367 spin_lock_bh(&net->sctp.addr_wq_lock);
368 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
369 spin_unlock_bh(&net->sctp.addr_wq_lock);
370 sp->do_auto_asconf = 1;
371 }
372 }
373
374 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)375 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
376 {
377 struct net *net = sock_net(sk);
378 struct sctp_sock *sp = sctp_sk(sk);
379 struct sctp_endpoint *ep = sp->ep;
380 struct sctp_bind_addr *bp = &ep->base.bind_addr;
381 struct sctp_af *af;
382 unsigned short snum;
383 int ret = 0;
384
385 /* Common sockaddr verification. */
386 af = sctp_sockaddr_af(sp, addr, len);
387 if (!af) {
388 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
389 __func__, sk, addr, len);
390 return -EINVAL;
391 }
392
393 snum = ntohs(addr->v4.sin_port);
394
395 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
396 __func__, sk, &addr->sa, bp->port, snum, len);
397
398 /* PF specific bind() address verification. */
399 if (!sp->pf->bind_verify(sp, addr))
400 return -EADDRNOTAVAIL;
401
402 /* We must either be unbound, or bind to the same port.
403 * It's OK to allow 0 ports if we are already bound.
404 * We'll just inhert an already bound port in this case
405 */
406 if (bp->port) {
407 if (!snum)
408 snum = bp->port;
409 else if (snum != bp->port) {
410 pr_debug("%s: new port %d doesn't match existing port "
411 "%d\n", __func__, snum, bp->port);
412 return -EINVAL;
413 }
414 }
415
416 if (snum && inet_port_requires_bind_service(net, snum) &&
417 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
418 return -EACCES;
419
420 /* See if the address matches any of the addresses we may have
421 * already bound before checking against other endpoints.
422 */
423 if (sctp_bind_addr_match(bp, addr, sp))
424 return -EINVAL;
425
426 /* Make sure we are allowed to bind here.
427 * The function sctp_get_port_local() does duplicate address
428 * detection.
429 */
430 addr->v4.sin_port = htons(snum);
431 if (sctp_get_port_local(sk, addr))
432 return -EADDRINUSE;
433
434 /* Refresh ephemeral port. */
435 if (!bp->port) {
436 bp->port = inet_sk(sk)->inet_num;
437 sctp_auto_asconf_init(sp);
438 }
439
440 /* Add the address to the bind address list.
441 * Use GFP_ATOMIC since BHs will be disabled.
442 */
443 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
444 SCTP_ADDR_SRC, GFP_ATOMIC);
445
446 if (ret) {
447 sctp_put_port(sk);
448 return ret;
449 }
450 /* Copy back into socket for getsockname() use. */
451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
452 sp->pf->to_sk_saddr(addr, sk);
453
454 return ret;
455 }
456
457 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
458 *
459 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
460 * at any one time. If a sender, after sending an ASCONF chunk, decides
461 * it needs to transfer another ASCONF Chunk, it MUST wait until the
462 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
463 * subsequent ASCONF. Note this restriction binds each side, so at any
464 * time two ASCONF may be in-transit on any given association (one sent
465 * from each endpoint).
466 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)467 static int sctp_send_asconf(struct sctp_association *asoc,
468 struct sctp_chunk *chunk)
469 {
470 int retval = 0;
471
472 /* If there is an outstanding ASCONF chunk, queue it for later
473 * transmission.
474 */
475 if (asoc->addip_last_asconf) {
476 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
477 goto out;
478 }
479
480 /* Hold the chunk until an ASCONF_ACK is received. */
481 sctp_chunk_hold(chunk);
482 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
483 if (retval)
484 sctp_chunk_free(chunk);
485 else
486 asoc->addip_last_asconf = chunk;
487
488 out:
489 return retval;
490 }
491
492 /* Add a list of addresses as bind addresses to local endpoint or
493 * association.
494 *
495 * Basically run through each address specified in the addrs/addrcnt
496 * array/length pair, determine if it is IPv6 or IPv4 and call
497 * sctp_do_bind() on it.
498 *
499 * If any of them fails, then the operation will be reversed and the
500 * ones that were added will be removed.
501 *
502 * Only sctp_setsockopt_bindx() is supposed to call this function.
503 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)504 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
505 {
506 int cnt;
507 int retval = 0;
508 void *addr_buf;
509 struct sockaddr *sa_addr;
510 struct sctp_af *af;
511
512 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
513 addrs, addrcnt);
514
515 addr_buf = addrs;
516 for (cnt = 0; cnt < addrcnt; cnt++) {
517 /* The list may contain either IPv4 or IPv6 address;
518 * determine the address length for walking thru the list.
519 */
520 sa_addr = addr_buf;
521 af = sctp_get_af_specific(sa_addr->sa_family);
522 if (!af) {
523 retval = -EINVAL;
524 goto err_bindx_add;
525 }
526
527 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
528 af->sockaddr_len);
529
530 addr_buf += af->sockaddr_len;
531
532 err_bindx_add:
533 if (retval < 0) {
534 /* Failed. Cleanup the ones that have been added */
535 if (cnt > 0)
536 sctp_bindx_rem(sk, addrs, cnt);
537 return retval;
538 }
539 }
540
541 return retval;
542 }
543
544 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
545 * associations that are part of the endpoint indicating that a list of local
546 * addresses are added to the endpoint.
547 *
548 * If any of the addresses is already in the bind address list of the
549 * association, we do not send the chunk for that association. But it will not
550 * affect other associations.
551 *
552 * Only sctp_setsockopt_bindx() is supposed to call this function.
553 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)554 static int sctp_send_asconf_add_ip(struct sock *sk,
555 struct sockaddr *addrs,
556 int addrcnt)
557 {
558 struct sctp_sock *sp;
559 struct sctp_endpoint *ep;
560 struct sctp_association *asoc;
561 struct sctp_bind_addr *bp;
562 struct sctp_chunk *chunk;
563 struct sctp_sockaddr_entry *laddr;
564 union sctp_addr *addr;
565 union sctp_addr saveaddr;
566 void *addr_buf;
567 struct sctp_af *af;
568 struct list_head *p;
569 int i;
570 int retval = 0;
571
572 sp = sctp_sk(sk);
573 ep = sp->ep;
574
575 if (!ep->asconf_enable)
576 return retval;
577
578 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
579 __func__, sk, addrs, addrcnt);
580
581 list_for_each_entry(asoc, &ep->asocs, asocs) {
582 if (!asoc->peer.asconf_capable)
583 continue;
584
585 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
586 continue;
587
588 if (!sctp_state(asoc, ESTABLISHED))
589 continue;
590
591 /* Check if any address in the packed array of addresses is
592 * in the bind address list of the association. If so,
593 * do not send the asconf chunk to its peer, but continue with
594 * other associations.
595 */
596 addr_buf = addrs;
597 for (i = 0; i < addrcnt; i++) {
598 addr = addr_buf;
599 af = sctp_get_af_specific(addr->v4.sin_family);
600 if (!af) {
601 retval = -EINVAL;
602 goto out;
603 }
604
605 if (sctp_assoc_lookup_laddr(asoc, addr))
606 break;
607
608 addr_buf += af->sockaddr_len;
609 }
610 if (i < addrcnt)
611 continue;
612
613 /* Use the first valid address in bind addr list of
614 * association as Address Parameter of ASCONF CHUNK.
615 */
616 bp = &asoc->base.bind_addr;
617 p = bp->address_list.next;
618 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
619 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
620 addrcnt, SCTP_PARAM_ADD_IP);
621 if (!chunk) {
622 retval = -ENOMEM;
623 goto out;
624 }
625
626 /* Add the new addresses to the bind address list with
627 * use_as_src set to 0.
628 */
629 addr_buf = addrs;
630 for (i = 0; i < addrcnt; i++) {
631 addr = addr_buf;
632 af = sctp_get_af_specific(addr->v4.sin_family);
633 memcpy(&saveaddr, addr, af->sockaddr_len);
634 retval = sctp_add_bind_addr(bp, &saveaddr,
635 sizeof(saveaddr),
636 SCTP_ADDR_NEW, GFP_ATOMIC);
637 addr_buf += af->sockaddr_len;
638 }
639 if (asoc->src_out_of_asoc_ok) {
640 struct sctp_transport *trans;
641
642 list_for_each_entry(trans,
643 &asoc->peer.transport_addr_list, transports) {
644 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
645 2*asoc->pathmtu, 4380));
646 trans->ssthresh = asoc->peer.i.a_rwnd;
647 trans->rto = asoc->rto_initial;
648 sctp_max_rto(asoc, trans);
649 trans->rtt = trans->srtt = trans->rttvar = 0;
650 /* Clear the source and route cache */
651 sctp_transport_route(trans, NULL,
652 sctp_sk(asoc->base.sk));
653 }
654 }
655 retval = sctp_send_asconf(asoc, chunk);
656 }
657
658 out:
659 return retval;
660 }
661
662 /* Remove a list of addresses from bind addresses list. Do not remove the
663 * last address.
664 *
665 * Basically run through each address specified in the addrs/addrcnt
666 * array/length pair, determine if it is IPv6 or IPv4 and call
667 * sctp_del_bind() on it.
668 *
669 * If any of them fails, then the operation will be reversed and the
670 * ones that were removed will be added back.
671 *
672 * At least one address has to be left; if only one address is
673 * available, the operation will return -EBUSY.
674 *
675 * Only sctp_setsockopt_bindx() is supposed to call this function.
676 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)677 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
678 {
679 struct sctp_sock *sp = sctp_sk(sk);
680 struct sctp_endpoint *ep = sp->ep;
681 int cnt;
682 struct sctp_bind_addr *bp = &ep->base.bind_addr;
683 int retval = 0;
684 void *addr_buf;
685 union sctp_addr *sa_addr;
686 struct sctp_af *af;
687
688 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
689 __func__, sk, addrs, addrcnt);
690
691 addr_buf = addrs;
692 for (cnt = 0; cnt < addrcnt; cnt++) {
693 /* If the bind address list is empty or if there is only one
694 * bind address, there is nothing more to be removed (we need
695 * at least one address here).
696 */
697 if (list_empty(&bp->address_list) ||
698 (sctp_list_single_entry(&bp->address_list))) {
699 retval = -EBUSY;
700 goto err_bindx_rem;
701 }
702
703 sa_addr = addr_buf;
704 af = sctp_get_af_specific(sa_addr->sa.sa_family);
705 if (!af) {
706 retval = -EINVAL;
707 goto err_bindx_rem;
708 }
709
710 if (!af->addr_valid(sa_addr, sp, NULL)) {
711 retval = -EADDRNOTAVAIL;
712 goto err_bindx_rem;
713 }
714
715 if (sa_addr->v4.sin_port &&
716 sa_addr->v4.sin_port != htons(bp->port)) {
717 retval = -EINVAL;
718 goto err_bindx_rem;
719 }
720
721 if (!sa_addr->v4.sin_port)
722 sa_addr->v4.sin_port = htons(bp->port);
723
724 /* FIXME - There is probably a need to check if sk->sk_saddr and
725 * sk->sk_rcv_addr are currently set to one of the addresses to
726 * be removed. This is something which needs to be looked into
727 * when we are fixing the outstanding issues with multi-homing
728 * socket routing and failover schemes. Refer to comments in
729 * sctp_do_bind(). -daisy
730 */
731 retval = sctp_del_bind_addr(bp, sa_addr);
732
733 addr_buf += af->sockaddr_len;
734 err_bindx_rem:
735 if (retval < 0) {
736 /* Failed. Add the ones that has been removed back */
737 if (cnt > 0)
738 sctp_bindx_add(sk, addrs, cnt);
739 return retval;
740 }
741 }
742
743 return retval;
744 }
745
746 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
747 * the associations that are part of the endpoint indicating that a list of
748 * local addresses are removed from the endpoint.
749 *
750 * If any of the addresses is already in the bind address list of the
751 * association, we do not send the chunk for that association. But it will not
752 * affect other associations.
753 *
754 * Only sctp_setsockopt_bindx() is supposed to call this function.
755 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)756 static int sctp_send_asconf_del_ip(struct sock *sk,
757 struct sockaddr *addrs,
758 int addrcnt)
759 {
760 struct sctp_sock *sp;
761 struct sctp_endpoint *ep;
762 struct sctp_association *asoc;
763 struct sctp_transport *transport;
764 struct sctp_bind_addr *bp;
765 struct sctp_chunk *chunk;
766 union sctp_addr *laddr;
767 void *addr_buf;
768 struct sctp_af *af;
769 struct sctp_sockaddr_entry *saddr;
770 int i;
771 int retval = 0;
772 int stored = 0;
773
774 chunk = NULL;
775 sp = sctp_sk(sk);
776 ep = sp->ep;
777
778 if (!ep->asconf_enable)
779 return retval;
780
781 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
782 __func__, sk, addrs, addrcnt);
783
784 list_for_each_entry(asoc, &ep->asocs, asocs) {
785
786 if (!asoc->peer.asconf_capable)
787 continue;
788
789 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
790 continue;
791
792 if (!sctp_state(asoc, ESTABLISHED))
793 continue;
794
795 /* Check if any address in the packed array of addresses is
796 * not present in the bind address list of the association.
797 * If so, do not send the asconf chunk to its peer, but
798 * continue with other associations.
799 */
800 addr_buf = addrs;
801 for (i = 0; i < addrcnt; i++) {
802 laddr = addr_buf;
803 af = sctp_get_af_specific(laddr->v4.sin_family);
804 if (!af) {
805 retval = -EINVAL;
806 goto out;
807 }
808
809 if (!sctp_assoc_lookup_laddr(asoc, laddr))
810 break;
811
812 addr_buf += af->sockaddr_len;
813 }
814 if (i < addrcnt)
815 continue;
816
817 /* Find one address in the association's bind address list
818 * that is not in the packed array of addresses. This is to
819 * make sure that we do not delete all the addresses in the
820 * association.
821 */
822 bp = &asoc->base.bind_addr;
823 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
824 addrcnt, sp);
825 if ((laddr == NULL) && (addrcnt == 1)) {
826 if (asoc->asconf_addr_del_pending)
827 continue;
828 asoc->asconf_addr_del_pending =
829 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
830 if (asoc->asconf_addr_del_pending == NULL) {
831 retval = -ENOMEM;
832 goto out;
833 }
834 asoc->asconf_addr_del_pending->sa.sa_family =
835 addrs->sa_family;
836 asoc->asconf_addr_del_pending->v4.sin_port =
837 htons(bp->port);
838 if (addrs->sa_family == AF_INET) {
839 struct sockaddr_in *sin;
840
841 sin = (struct sockaddr_in *)addrs;
842 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
843 } else if (addrs->sa_family == AF_INET6) {
844 struct sockaddr_in6 *sin6;
845
846 sin6 = (struct sockaddr_in6 *)addrs;
847 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
848 }
849
850 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
851 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
852 asoc->asconf_addr_del_pending);
853
854 asoc->src_out_of_asoc_ok = 1;
855 stored = 1;
856 goto skip_mkasconf;
857 }
858
859 if (laddr == NULL)
860 return -EINVAL;
861
862 /* We do not need RCU protection throughout this loop
863 * because this is done under a socket lock from the
864 * setsockopt call.
865 */
866 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
867 SCTP_PARAM_DEL_IP);
868 if (!chunk) {
869 retval = -ENOMEM;
870 goto out;
871 }
872
873 skip_mkasconf:
874 /* Reset use_as_src flag for the addresses in the bind address
875 * list that are to be deleted.
876 */
877 addr_buf = addrs;
878 for (i = 0; i < addrcnt; i++) {
879 laddr = addr_buf;
880 af = sctp_get_af_specific(laddr->v4.sin_family);
881 list_for_each_entry(saddr, &bp->address_list, list) {
882 if (sctp_cmp_addr_exact(&saddr->a, laddr))
883 saddr->state = SCTP_ADDR_DEL;
884 }
885 addr_buf += af->sockaddr_len;
886 }
887
888 /* Update the route and saddr entries for all the transports
889 * as some of the addresses in the bind address list are
890 * about to be deleted and cannot be used as source addresses.
891 */
892 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
893 transports) {
894 sctp_transport_route(transport, NULL,
895 sctp_sk(asoc->base.sk));
896 }
897
898 if (stored)
899 /* We don't need to transmit ASCONF */
900 continue;
901 retval = sctp_send_asconf(asoc, chunk);
902 }
903 out:
904 return retval;
905 }
906
907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
909 {
910 struct sock *sk = sctp_opt2sk(sp);
911 union sctp_addr *addr;
912 struct sctp_af *af;
913
914 /* It is safe to write port space in caller. */
915 addr = &addrw->a;
916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
917 af = sctp_get_af_specific(addr->sa.sa_family);
918 if (!af)
919 return -EINVAL;
920 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
921 return -EINVAL;
922
923 if (addrw->state == SCTP_ADDR_NEW)
924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
925 else
926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
927 }
928
929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
930 *
931 * API 8.1
932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
933 * int flags);
934 *
935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
937 * or IPv6 addresses.
938 *
939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
940 * Section 3.1.2 for this usage.
941 *
942 * addrs is a pointer to an array of one or more socket addresses. Each
943 * address is contained in its appropriate structure (i.e. struct
944 * sockaddr_in or struct sockaddr_in6) the family of the address type
945 * must be used to distinguish the address length (note that this
946 * representation is termed a "packed array" of addresses). The caller
947 * specifies the number of addresses in the array with addrcnt.
948 *
949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
950 * -1, and sets errno to the appropriate error code.
951 *
952 * For SCTP, the port given in each socket address must be the same, or
953 * sctp_bindx() will fail, setting errno to EINVAL.
954 *
955 * The flags parameter is formed from the bitwise OR of zero or more of
956 * the following currently defined flags:
957 *
958 * SCTP_BINDX_ADD_ADDR
959 *
960 * SCTP_BINDX_REM_ADDR
961 *
962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
964 * addresses from the association. The two flags are mutually exclusive;
965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
966 * not remove all addresses from an association; sctp_bindx() will
967 * reject such an attempt with EINVAL.
968 *
969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
970 * additional addresses with an endpoint after calling bind(). Or use
971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
972 * socket is associated with so that no new association accepted will be
973 * associated with those addresses. If the endpoint supports dynamic
974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
975 * endpoint to send the appropriate message to the peer to change the
976 * peers address lists.
977 *
978 * Adding and removing addresses from a connected association is
979 * optional functionality. Implementations that do not support this
980 * functionality should return EOPNOTSUPP.
981 *
982 * Basically do nothing but copying the addresses from user to kernel
983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
985 * from userspace.
986 *
987 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
988 * it.
989 *
990 * sk The sk of the socket
991 * addrs The pointer to the addresses
992 * addrssize Size of the addrs buffer
993 * op Operation to perform (add or remove, see the flags of
994 * sctp_bindx)
995 *
996 * Returns 0 if ok, <0 errno code on error.
997 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr * addrs,int addrs_size,int op)998 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
999 int addrs_size, int op)
1000 {
1001 int err;
1002 int addrcnt = 0;
1003 int walk_size = 0;
1004 struct sockaddr *sa_addr;
1005 void *addr_buf = addrs;
1006 struct sctp_af *af;
1007
1008 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1009 __func__, sk, addr_buf, addrs_size, op);
1010
1011 if (unlikely(addrs_size <= 0))
1012 return -EINVAL;
1013
1014 /* Walk through the addrs buffer and count the number of addresses. */
1015 while (walk_size < addrs_size) {
1016 if (walk_size + sizeof(sa_family_t) > addrs_size)
1017 return -EINVAL;
1018
1019 sa_addr = addr_buf;
1020 af = sctp_get_af_specific(sa_addr->sa_family);
1021
1022 /* If the address family is not supported or if this address
1023 * causes the address buffer to overflow return EINVAL.
1024 */
1025 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1026 return -EINVAL;
1027 addrcnt++;
1028 addr_buf += af->sockaddr_len;
1029 walk_size += af->sockaddr_len;
1030 }
1031
1032 /* Do the work. */
1033 switch (op) {
1034 case SCTP_BINDX_ADD_ADDR:
1035 /* Allow security module to validate bindx addresses. */
1036 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1037 addrs, addrs_size);
1038 if (err)
1039 return err;
1040 err = sctp_bindx_add(sk, addrs, addrcnt);
1041 if (err)
1042 return err;
1043 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1044 case SCTP_BINDX_REM_ADDR:
1045 err = sctp_bindx_rem(sk, addrs, addrcnt);
1046 if (err)
1047 return err;
1048 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1049
1050 default:
1051 return -EINVAL;
1052 }
1053 }
1054
sctp_bind_add(struct sock * sk,struct sockaddr * addrs,int addrlen)1055 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1056 int addrlen)
1057 {
1058 int err;
1059
1060 lock_sock(sk);
1061 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1062 release_sock(sk);
1063 return err;
1064 }
1065
sctp_connect_new_asoc(struct sctp_endpoint * ep,const union sctp_addr * daddr,const struct sctp_initmsg * init,struct sctp_transport ** tp)1066 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1067 const union sctp_addr *daddr,
1068 const struct sctp_initmsg *init,
1069 struct sctp_transport **tp)
1070 {
1071 struct sctp_association *asoc;
1072 struct sock *sk = ep->base.sk;
1073 struct net *net = sock_net(sk);
1074 enum sctp_scope scope;
1075 int err;
1076
1077 if (sctp_endpoint_is_peeled_off(ep, daddr))
1078 return -EADDRNOTAVAIL;
1079
1080 if (!ep->base.bind_addr.port) {
1081 if (sctp_autobind(sk))
1082 return -EAGAIN;
1083 } else {
1084 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1085 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1086 return -EACCES;
1087 }
1088
1089 scope = sctp_scope(daddr);
1090 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1091 if (!asoc)
1092 return -ENOMEM;
1093
1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1095 if (err < 0)
1096 goto free;
1097
1098 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1099 if (!*tp) {
1100 err = -ENOMEM;
1101 goto free;
1102 }
1103
1104 if (!init)
1105 return 0;
1106
1107 if (init->sinit_num_ostreams) {
1108 __u16 outcnt = init->sinit_num_ostreams;
1109
1110 asoc->c.sinit_num_ostreams = outcnt;
1111 /* outcnt has been changed, need to re-init stream */
1112 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1113 if (err)
1114 goto free;
1115 }
1116
1117 if (init->sinit_max_instreams)
1118 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1119
1120 if (init->sinit_max_attempts)
1121 asoc->max_init_attempts = init->sinit_max_attempts;
1122
1123 if (init->sinit_max_init_timeo)
1124 asoc->max_init_timeo =
1125 msecs_to_jiffies(init->sinit_max_init_timeo);
1126
1127 return 0;
1128 free:
1129 sctp_association_free(asoc);
1130 return err;
1131 }
1132
sctp_connect_add_peer(struct sctp_association * asoc,union sctp_addr * daddr,int addr_len)1133 static int sctp_connect_add_peer(struct sctp_association *asoc,
1134 union sctp_addr *daddr, int addr_len)
1135 {
1136 struct sctp_endpoint *ep = asoc->ep;
1137 struct sctp_association *old;
1138 struct sctp_transport *t;
1139 int err;
1140
1141 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1142 if (err)
1143 return err;
1144
1145 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1146 if (old && old != asoc)
1147 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1148 : -EALREADY;
1149
1150 if (sctp_endpoint_is_peeled_off(ep, daddr))
1151 return -EADDRNOTAVAIL;
1152
1153 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1154 if (!t)
1155 return -ENOMEM;
1156
1157 return 0;
1158 }
1159
1160 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1161 *
1162 * Common routine for handling connect() and sctp_connectx().
1163 * Connect will come in with just a single address.
1164 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,int flags,sctp_assoc_t * assoc_id)1165 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1166 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1167 {
1168 struct sctp_sock *sp = sctp_sk(sk);
1169 struct sctp_endpoint *ep = sp->ep;
1170 struct sctp_transport *transport;
1171 struct sctp_association *asoc;
1172 void *addr_buf = kaddrs;
1173 union sctp_addr *daddr;
1174 struct sctp_af *af;
1175 int walk_size, err;
1176 long timeo;
1177
1178 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1179 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1180 return -EISCONN;
1181
1182 daddr = addr_buf;
1183 af = sctp_get_af_specific(daddr->sa.sa_family);
1184 if (!af || af->sockaddr_len > addrs_size)
1185 return -EINVAL;
1186
1187 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1188 if (err)
1189 return err;
1190
1191 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1192 if (asoc)
1193 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1194 : -EALREADY;
1195
1196 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1197 if (err)
1198 return err;
1199 asoc = transport->asoc;
1200
1201 addr_buf += af->sockaddr_len;
1202 walk_size = af->sockaddr_len;
1203 while (walk_size < addrs_size) {
1204 err = -EINVAL;
1205 if (walk_size + sizeof(sa_family_t) > addrs_size)
1206 goto out_free;
1207
1208 daddr = addr_buf;
1209 af = sctp_get_af_specific(daddr->sa.sa_family);
1210 if (!af || af->sockaddr_len + walk_size > addrs_size)
1211 goto out_free;
1212
1213 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1214 goto out_free;
1215
1216 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1217 if (err)
1218 goto out_free;
1219
1220 addr_buf += af->sockaddr_len;
1221 walk_size += af->sockaddr_len;
1222 }
1223
1224 /* In case the user of sctp_connectx() wants an association
1225 * id back, assign one now.
1226 */
1227 if (assoc_id) {
1228 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1229 if (err < 0)
1230 goto out_free;
1231 }
1232
1233 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1234 if (err < 0)
1235 goto out_free;
1236
1237 /* Initialize sk's dport and daddr for getpeername() */
1238 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1239 sp->pf->to_sk_daddr(daddr, sk);
1240 sk->sk_err = 0;
1241
1242 if (assoc_id)
1243 *assoc_id = asoc->assoc_id;
1244
1245 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1246 return sctp_wait_for_connect(asoc, &timeo);
1247
1248 out_free:
1249 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1250 __func__, asoc, kaddrs, err);
1251 sctp_association_free(asoc);
1252 return err;
1253 }
1254
1255 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1256 *
1257 * API 8.9
1258 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1259 * sctp_assoc_t *asoc);
1260 *
1261 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1262 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1263 * or IPv6 addresses.
1264 *
1265 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1266 * Section 3.1.2 for this usage.
1267 *
1268 * addrs is a pointer to an array of one or more socket addresses. Each
1269 * address is contained in its appropriate structure (i.e. struct
1270 * sockaddr_in or struct sockaddr_in6) the family of the address type
1271 * must be used to distengish the address length (note that this
1272 * representation is termed a "packed array" of addresses). The caller
1273 * specifies the number of addresses in the array with addrcnt.
1274 *
1275 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1276 * the association id of the new association. On failure, sctp_connectx()
1277 * returns -1, and sets errno to the appropriate error code. The assoc_id
1278 * is not touched by the kernel.
1279 *
1280 * For SCTP, the port given in each socket address must be the same, or
1281 * sctp_connectx() will fail, setting errno to EINVAL.
1282 *
1283 * An application can use sctp_connectx to initiate an association with
1284 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1285 * allows a caller to specify multiple addresses at which a peer can be
1286 * reached. The way the SCTP stack uses the list of addresses to set up
1287 * the association is implementation dependent. This function only
1288 * specifies that the stack will try to make use of all the addresses in
1289 * the list when needed.
1290 *
1291 * Note that the list of addresses passed in is only used for setting up
1292 * the association. It does not necessarily equal the set of addresses
1293 * the peer uses for the resulting association. If the caller wants to
1294 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1295 * retrieve them after the association has been set up.
1296 *
1297 * Basically do nothing but copying the addresses from user to kernel
1298 * land and invoking either sctp_connectx(). This is used for tunneling
1299 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1300 *
1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1302 * it.
1303 *
1304 * sk The sk of the socket
1305 * addrs The pointer to the addresses
1306 * addrssize Size of the addrs buffer
1307 *
1308 * Returns >=0 if ok, <0 errno code on error.
1309 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1310 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1311 int addrs_size, sctp_assoc_t *assoc_id)
1312 {
1313 int err = 0, flags = 0;
1314
1315 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1316 __func__, sk, kaddrs, addrs_size);
1317
1318 /* make sure the 1st addr's sa_family is accessible later */
1319 if (unlikely(addrs_size < sizeof(sa_family_t)))
1320 return -EINVAL;
1321
1322 /* Allow security module to validate connectx addresses. */
1323 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1324 (struct sockaddr *)kaddrs,
1325 addrs_size);
1326 if (err)
1327 return err;
1328
1329 /* in-kernel sockets don't generally have a file allocated to them
1330 * if all they do is call sock_create_kern().
1331 */
1332 if (sk->sk_socket->file)
1333 flags = sk->sk_socket->file->f_flags;
1334
1335 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1336 }
1337
1338 /*
1339 * This is an older interface. It's kept for backward compatibility
1340 * to the option that doesn't provide association id.
1341 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1342 static int sctp_setsockopt_connectx_old(struct sock *sk,
1343 struct sockaddr *kaddrs,
1344 int addrs_size)
1345 {
1346 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1347 }
1348
1349 /*
1350 * New interface for the API. The since the API is done with a socket
1351 * option, to make it simple we feed back the association id is as a return
1352 * indication to the call. Error is always negative and association id is
1353 * always positive.
1354 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1355 static int sctp_setsockopt_connectx(struct sock *sk,
1356 struct sockaddr *kaddrs,
1357 int addrs_size)
1358 {
1359 sctp_assoc_t assoc_id = 0;
1360 int err = 0;
1361
1362 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1363
1364 if (err)
1365 return err;
1366 else
1367 return assoc_id;
1368 }
1369
1370 /*
1371 * New (hopefully final) interface for the API.
1372 * We use the sctp_getaddrs_old structure so that use-space library
1373 * can avoid any unnecessary allocations. The only different part
1374 * is that we store the actual length of the address buffer into the
1375 * addrs_num structure member. That way we can re-use the existing
1376 * code.
1377 */
1378 #ifdef CONFIG_COMPAT
1379 struct compat_sctp_getaddrs_old {
1380 sctp_assoc_t assoc_id;
1381 s32 addr_num;
1382 compat_uptr_t addrs; /* struct sockaddr * */
1383 };
1384 #endif
1385
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1387 char __user *optval,
1388 int __user *optlen)
1389 {
1390 struct sctp_getaddrs_old param;
1391 sctp_assoc_t assoc_id = 0;
1392 struct sockaddr *kaddrs;
1393 int err = 0;
1394
1395 #ifdef CONFIG_COMPAT
1396 if (in_compat_syscall()) {
1397 struct compat_sctp_getaddrs_old param32;
1398
1399 if (len < sizeof(param32))
1400 return -EINVAL;
1401 if (copy_from_user(¶m32, optval, sizeof(param32)))
1402 return -EFAULT;
1403
1404 param.assoc_id = param32.assoc_id;
1405 param.addr_num = param32.addr_num;
1406 param.addrs = compat_ptr(param32.addrs);
1407 } else
1408 #endif
1409 {
1410 if (len < sizeof(param))
1411 return -EINVAL;
1412 if (copy_from_user(¶m, optval, sizeof(param)))
1413 return -EFAULT;
1414 }
1415
1416 kaddrs = memdup_user(param.addrs, param.addr_num);
1417 if (IS_ERR(kaddrs))
1418 return PTR_ERR(kaddrs);
1419
1420 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1421 kfree(kaddrs);
1422 if (err == 0 || err == -EINPROGRESS) {
1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1424 return -EFAULT;
1425 if (put_user(sizeof(assoc_id), optlen))
1426 return -EFAULT;
1427 }
1428
1429 return err;
1430 }
1431
1432 /* API 3.1.4 close() - UDP Style Syntax
1433 * Applications use close() to perform graceful shutdown (as described in
1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1435 * by a UDP-style socket.
1436 *
1437 * The syntax is
1438 *
1439 * ret = close(int sd);
1440 *
1441 * sd - the socket descriptor of the associations to be closed.
1442 *
1443 * To gracefully shutdown a specific association represented by the
1444 * UDP-style socket, an application should use the sendmsg() call,
1445 * passing no user data, but including the appropriate flag in the
1446 * ancillary data (see Section xxxx).
1447 *
1448 * If sd in the close() call is a branched-off socket representing only
1449 * one association, the shutdown is performed on that association only.
1450 *
1451 * 4.1.6 close() - TCP Style Syntax
1452 *
1453 * Applications use close() to gracefully close down an association.
1454 *
1455 * The syntax is:
1456 *
1457 * int close(int sd);
1458 *
1459 * sd - the socket descriptor of the association to be closed.
1460 *
1461 * After an application calls close() on a socket descriptor, no further
1462 * socket operations will succeed on that descriptor.
1463 *
1464 * API 7.1.4 SO_LINGER
1465 *
1466 * An application using the TCP-style socket can use this option to
1467 * perform the SCTP ABORT primitive. The linger option structure is:
1468 *
1469 * struct linger {
1470 * int l_onoff; // option on/off
1471 * int l_linger; // linger time
1472 * };
1473 *
1474 * To enable the option, set l_onoff to 1. If the l_linger value is set
1475 * to 0, calling close() is the same as the ABORT primitive. If the
1476 * value is set to a negative value, the setsockopt() call will return
1477 * an error. If the value is set to a positive value linger_time, the
1478 * close() can be blocked for at most linger_time ms. If the graceful
1479 * shutdown phase does not finish during this period, close() will
1480 * return but the graceful shutdown phase continues in the system.
1481 */
sctp_close(struct sock * sk,long timeout)1482 static void sctp_close(struct sock *sk, long timeout)
1483 {
1484 struct net *net = sock_net(sk);
1485 struct sctp_endpoint *ep;
1486 struct sctp_association *asoc;
1487 struct list_head *pos, *temp;
1488 unsigned int data_was_unread;
1489
1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1491
1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1493 sk->sk_shutdown = SHUTDOWN_MASK;
1494 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1495
1496 ep = sctp_sk(sk)->ep;
1497
1498 /* Clean up any skbs sitting on the receive queue. */
1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1501
1502 /* Walk all associations on an endpoint. */
1503 list_for_each_safe(pos, temp, &ep->asocs) {
1504 asoc = list_entry(pos, struct sctp_association, asocs);
1505
1506 if (sctp_style(sk, TCP)) {
1507 /* A closed association can still be in the list if
1508 * it belongs to a TCP-style listening socket that is
1509 * not yet accepted. If so, free it. If not, send an
1510 * ABORT or SHUTDOWN based on the linger options.
1511 */
1512 if (sctp_state(asoc, CLOSED)) {
1513 sctp_association_free(asoc);
1514 continue;
1515 }
1516 }
1517
1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1519 !skb_queue_empty(&asoc->ulpq.reasm) ||
1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1522 struct sctp_chunk *chunk;
1523
1524 chunk = sctp_make_abort_user(asoc, NULL, 0);
1525 sctp_primitive_ABORT(net, asoc, chunk);
1526 } else
1527 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1528 }
1529
1530 /* On a TCP-style socket, block for at most linger_time if set. */
1531 if (sctp_style(sk, TCP) && timeout)
1532 sctp_wait_for_close(sk, timeout);
1533
1534 /* This will run the backlog queue. */
1535 release_sock(sk);
1536
1537 /* Supposedly, no process has access to the socket, but
1538 * the net layers still may.
1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1540 * held and that should be grabbed before socket lock.
1541 */
1542 spin_lock_bh(&net->sctp.addr_wq_lock);
1543 bh_lock_sock_nested(sk);
1544
1545 /* Hold the sock, since sk_common_release() will put sock_put()
1546 * and we have just a little more cleanup.
1547 */
1548 sock_hold(sk);
1549 sk_common_release(sk);
1550
1551 bh_unlock_sock(sk);
1552 spin_unlock_bh(&net->sctp.addr_wq_lock);
1553
1554 sock_put(sk);
1555
1556 SCTP_DBG_OBJCNT_DEC(sock);
1557 }
1558
1559 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1560 static int sctp_error(struct sock *sk, int flags, int err)
1561 {
1562 if (err == -EPIPE)
1563 err = sock_error(sk) ? : -EPIPE;
1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1565 send_sig(SIGPIPE, current, 0);
1566 return err;
1567 }
1568
1569 /* API 3.1.3 sendmsg() - UDP Style Syntax
1570 *
1571 * An application uses sendmsg() and recvmsg() calls to transmit data to
1572 * and receive data from its peer.
1573 *
1574 * ssize_t sendmsg(int socket, const struct msghdr *message,
1575 * int flags);
1576 *
1577 * socket - the socket descriptor of the endpoint.
1578 * message - pointer to the msghdr structure which contains a single
1579 * user message and possibly some ancillary data.
1580 *
1581 * See Section 5 for complete description of the data
1582 * structures.
1583 *
1584 * flags - flags sent or received with the user message, see Section
1585 * 5 for complete description of the flags.
1586 *
1587 * Note: This function could use a rewrite especially when explicit
1588 * connect support comes in.
1589 */
1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1591
1592 static int sctp_msghdr_parse(const struct msghdr *msg,
1593 struct sctp_cmsgs *cmsgs);
1594
sctp_sendmsg_parse(struct sock * sk,struct sctp_cmsgs * cmsgs,struct sctp_sndrcvinfo * srinfo,const struct msghdr * msg,size_t msg_len)1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1596 struct sctp_sndrcvinfo *srinfo,
1597 const struct msghdr *msg, size_t msg_len)
1598 {
1599 __u16 sflags;
1600 int err;
1601
1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1603 return -EPIPE;
1604
1605 if (msg_len > sk->sk_sndbuf)
1606 return -EMSGSIZE;
1607
1608 memset(cmsgs, 0, sizeof(*cmsgs));
1609 err = sctp_msghdr_parse(msg, cmsgs);
1610 if (err) {
1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1612 return err;
1613 }
1614
1615 memset(srinfo, 0, sizeof(*srinfo));
1616 if (cmsgs->srinfo) {
1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1623 }
1624
1625 if (cmsgs->sinfo) {
1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1631 }
1632
1633 if (cmsgs->prinfo) {
1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1636 cmsgs->prinfo->pr_policy);
1637 }
1638
1639 sflags = srinfo->sinfo_flags;
1640 if (!sflags && msg_len)
1641 return 0;
1642
1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1644 return -EINVAL;
1645
1646 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1648 return -EINVAL;
1649
1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1651 return -EINVAL;
1652
1653 return 0;
1654 }
1655
sctp_sendmsg_new_asoc(struct sock * sk,__u16 sflags,struct sctp_cmsgs * cmsgs,union sctp_addr * daddr,struct sctp_transport ** tp)1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1657 struct sctp_cmsgs *cmsgs,
1658 union sctp_addr *daddr,
1659 struct sctp_transport **tp)
1660 {
1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1662 struct sctp_association *asoc;
1663 struct cmsghdr *cmsg;
1664 __be32 flowinfo = 0;
1665 struct sctp_af *af;
1666 int err;
1667
1668 *tp = NULL;
1669
1670 if (sflags & (SCTP_EOF | SCTP_ABORT))
1671 return -EINVAL;
1672
1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1674 sctp_sstate(sk, CLOSING)))
1675 return -EADDRNOTAVAIL;
1676
1677 /* Label connection socket for first association 1-to-many
1678 * style for client sequence socket()->sendmsg(). This
1679 * needs to be done before sctp_assoc_add_peer() as that will
1680 * set up the initial packet that needs to account for any
1681 * security ip options (CIPSO/CALIPSO) added to the packet.
1682 */
1683 af = sctp_get_af_specific(daddr->sa.sa_family);
1684 if (!af)
1685 return -EINVAL;
1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1687 (struct sockaddr *)daddr,
1688 af->sockaddr_len);
1689 if (err < 0)
1690 return err;
1691
1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1693 if (err)
1694 return err;
1695 asoc = (*tp)->asoc;
1696
1697 if (!cmsgs->addrs_msg)
1698 return 0;
1699
1700 if (daddr->sa.sa_family == AF_INET6)
1701 flowinfo = daddr->v6.sin6_flowinfo;
1702
1703 /* sendv addr list parse */
1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1705 union sctp_addr _daddr;
1706 int dlen;
1707
1708 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1710 cmsg->cmsg_type != SCTP_DSTADDRV6))
1711 continue;
1712
1713 daddr = &_daddr;
1714 memset(daddr, 0, sizeof(*daddr));
1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1717 if (dlen < sizeof(struct in_addr)) {
1718 err = -EINVAL;
1719 goto free;
1720 }
1721
1722 dlen = sizeof(struct in_addr);
1723 daddr->v4.sin_family = AF_INET;
1724 daddr->v4.sin_port = htons(asoc->peer.port);
1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1726 } else {
1727 if (dlen < sizeof(struct in6_addr)) {
1728 err = -EINVAL;
1729 goto free;
1730 }
1731
1732 dlen = sizeof(struct in6_addr);
1733 daddr->v6.sin6_flowinfo = flowinfo;
1734 daddr->v6.sin6_family = AF_INET6;
1735 daddr->v6.sin6_port = htons(asoc->peer.port);
1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1737 }
1738
1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1740 if (err)
1741 goto free;
1742 }
1743
1744 return 0;
1745
1746 free:
1747 sctp_association_free(asoc);
1748 return err;
1749 }
1750
sctp_sendmsg_check_sflags(struct sctp_association * asoc,__u16 sflags,struct msghdr * msg,size_t msg_len)1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1752 __u16 sflags, struct msghdr *msg,
1753 size_t msg_len)
1754 {
1755 struct sock *sk = asoc->base.sk;
1756 struct net *net = sock_net(sk);
1757
1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1759 return -EPIPE;
1760
1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1762 !sctp_state(asoc, ESTABLISHED))
1763 return 0;
1764
1765 if (sflags & SCTP_EOF) {
1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1767 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1768
1769 return 0;
1770 }
1771
1772 if (sflags & SCTP_ABORT) {
1773 struct sctp_chunk *chunk;
1774
1775 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1776 if (!chunk)
1777 return -ENOMEM;
1778
1779 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1780 sctp_primitive_ABORT(net, asoc, chunk);
1781 iov_iter_revert(&msg->msg_iter, msg_len);
1782
1783 return 0;
1784 }
1785
1786 return 1;
1787 }
1788
sctp_sendmsg_to_asoc(struct sctp_association * asoc,struct msghdr * msg,size_t msg_len,struct sctp_transport * transport,struct sctp_sndrcvinfo * sinfo)1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1790 struct msghdr *msg, size_t msg_len,
1791 struct sctp_transport *transport,
1792 struct sctp_sndrcvinfo *sinfo)
1793 {
1794 struct sock *sk = asoc->base.sk;
1795 struct sctp_sock *sp = sctp_sk(sk);
1796 struct net *net = sock_net(sk);
1797 struct sctp_datamsg *datamsg;
1798 bool wait_connect = false;
1799 struct sctp_chunk *chunk;
1800 long timeo;
1801 int err;
1802
1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1804 err = -EINVAL;
1805 goto err;
1806 }
1807
1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1810 if (err)
1811 goto err;
1812 }
1813
1814 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1815 err = -EMSGSIZE;
1816 goto err;
1817 }
1818
1819 if (asoc->pmtu_pending) {
1820 if (sp->param_flags & SPP_PMTUD_ENABLE)
1821 sctp_assoc_sync_pmtu(asoc);
1822 asoc->pmtu_pending = 0;
1823 }
1824
1825 if (sctp_wspace(asoc) < (int)msg_len)
1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1827
1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1830 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1831 if (err)
1832 goto err;
1833 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) {
1834 err = -EINVAL;
1835 goto err;
1836 }
1837 }
1838
1839 if (sctp_state(asoc, CLOSED)) {
1840 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1841 if (err)
1842 goto err;
1843
1844 if (asoc->ep->intl_enable) {
1845 timeo = sock_sndtimeo(sk, 0);
1846 err = sctp_wait_for_connect(asoc, &timeo);
1847 if (err) {
1848 err = -ESRCH;
1849 goto err;
1850 }
1851 } else {
1852 wait_connect = true;
1853 }
1854
1855 pr_debug("%s: we associated primitively\n", __func__);
1856 }
1857
1858 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1859 if (IS_ERR(datamsg)) {
1860 err = PTR_ERR(datamsg);
1861 goto err;
1862 }
1863
1864 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1865
1866 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1867 sctp_chunk_hold(chunk);
1868 sctp_set_owner_w(chunk);
1869 chunk->transport = transport;
1870 }
1871
1872 err = sctp_primitive_SEND(net, asoc, datamsg);
1873 if (err) {
1874 sctp_datamsg_free(datamsg);
1875 goto err;
1876 }
1877
1878 pr_debug("%s: we sent primitively\n", __func__);
1879
1880 sctp_datamsg_put(datamsg);
1881
1882 if (unlikely(wait_connect)) {
1883 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1884 sctp_wait_for_connect(asoc, &timeo);
1885 }
1886
1887 err = msg_len;
1888
1889 err:
1890 return err;
1891 }
1892
sctp_sendmsg_get_daddr(struct sock * sk,const struct msghdr * msg,struct sctp_cmsgs * cmsgs)1893 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1894 const struct msghdr *msg,
1895 struct sctp_cmsgs *cmsgs)
1896 {
1897 union sctp_addr *daddr = NULL;
1898 int err;
1899
1900 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1901 int len = msg->msg_namelen;
1902
1903 if (len > sizeof(*daddr))
1904 len = sizeof(*daddr);
1905
1906 daddr = (union sctp_addr *)msg->msg_name;
1907
1908 err = sctp_verify_addr(sk, daddr, len);
1909 if (err)
1910 return ERR_PTR(err);
1911 }
1912
1913 return daddr;
1914 }
1915
sctp_sendmsg_update_sinfo(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct sctp_cmsgs * cmsgs)1916 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1917 struct sctp_sndrcvinfo *sinfo,
1918 struct sctp_cmsgs *cmsgs)
1919 {
1920 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1921 sinfo->sinfo_stream = asoc->default_stream;
1922 sinfo->sinfo_ppid = asoc->default_ppid;
1923 sinfo->sinfo_context = asoc->default_context;
1924 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1925
1926 if (!cmsgs->prinfo)
1927 sinfo->sinfo_flags = asoc->default_flags;
1928 }
1929
1930 if (!cmsgs->srinfo && !cmsgs->prinfo)
1931 sinfo->sinfo_timetolive = asoc->default_timetolive;
1932
1933 if (cmsgs->authinfo) {
1934 /* Reuse sinfo_tsn to indicate that authinfo was set and
1935 * sinfo_ssn to save the keyid on tx path.
1936 */
1937 sinfo->sinfo_tsn = 1;
1938 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1939 }
1940 }
1941
sctp_sendmsg(struct sock * sk,struct msghdr * msg,size_t msg_len)1942 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1943 {
1944 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1945 struct sctp_transport *transport = NULL;
1946 struct sctp_sndrcvinfo _sinfo, *sinfo;
1947 struct sctp_association *asoc, *tmp;
1948 struct sctp_cmsgs cmsgs;
1949 union sctp_addr *daddr;
1950 bool new = false;
1951 __u16 sflags;
1952 int err;
1953
1954 /* Parse and get snd_info */
1955 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1956 if (err)
1957 goto out;
1958
1959 sinfo = &_sinfo;
1960 sflags = sinfo->sinfo_flags;
1961
1962 /* Get daddr from msg */
1963 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1964 if (IS_ERR(daddr)) {
1965 err = PTR_ERR(daddr);
1966 goto out;
1967 }
1968
1969 lock_sock(sk);
1970
1971 /* SCTP_SENDALL process */
1972 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1973 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1974 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1975 msg_len);
1976 if (err == 0)
1977 continue;
1978 if (err < 0)
1979 goto out_unlock;
1980
1981 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1982
1983 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1984 NULL, sinfo);
1985 if (err < 0)
1986 goto out_unlock;
1987
1988 iov_iter_revert(&msg->msg_iter, err);
1989 }
1990
1991 goto out_unlock;
1992 }
1993
1994 /* Get and check or create asoc */
1995 if (daddr) {
1996 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1997 if (asoc) {
1998 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1999 msg_len);
2000 if (err <= 0)
2001 goto out_unlock;
2002 } else {
2003 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2004 &transport);
2005 if (err)
2006 goto out_unlock;
2007
2008 asoc = transport->asoc;
2009 new = true;
2010 }
2011
2012 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2013 transport = NULL;
2014 } else {
2015 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2016 if (!asoc) {
2017 err = -EPIPE;
2018 goto out_unlock;
2019 }
2020
2021 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2022 if (err <= 0)
2023 goto out_unlock;
2024 }
2025
2026 /* Update snd_info with the asoc */
2027 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2028
2029 /* Send msg to the asoc */
2030 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2031 if (err < 0 && err != -ESRCH && new)
2032 sctp_association_free(asoc);
2033
2034 out_unlock:
2035 release_sock(sk);
2036 out:
2037 return sctp_error(sk, msg->msg_flags, err);
2038 }
2039
2040 /* This is an extended version of skb_pull() that removes the data from the
2041 * start of a skb even when data is spread across the list of skb's in the
2042 * frag_list. len specifies the total amount of data that needs to be removed.
2043 * when 'len' bytes could be removed from the skb, it returns 0.
2044 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2045 * could not be removed.
2046 */
sctp_skb_pull(struct sk_buff * skb,int len)2047 static int sctp_skb_pull(struct sk_buff *skb, int len)
2048 {
2049 struct sk_buff *list;
2050 int skb_len = skb_headlen(skb);
2051 int rlen;
2052
2053 if (len <= skb_len) {
2054 __skb_pull(skb, len);
2055 return 0;
2056 }
2057 len -= skb_len;
2058 __skb_pull(skb, skb_len);
2059
2060 skb_walk_frags(skb, list) {
2061 rlen = sctp_skb_pull(list, len);
2062 skb->len -= (len-rlen);
2063 skb->data_len -= (len-rlen);
2064
2065 if (!rlen)
2066 return 0;
2067
2068 len = rlen;
2069 }
2070
2071 return len;
2072 }
2073
2074 /* API 3.1.3 recvmsg() - UDP Style Syntax
2075 *
2076 * ssize_t recvmsg(int socket, struct msghdr *message,
2077 * int flags);
2078 *
2079 * socket - the socket descriptor of the endpoint.
2080 * message - pointer to the msghdr structure which contains a single
2081 * user message and possibly some ancillary data.
2082 *
2083 * See Section 5 for complete description of the data
2084 * structures.
2085 *
2086 * flags - flags sent or received with the user message, see Section
2087 * 5 for complete description of the flags.
2088 */
sctp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2089 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2090 int flags, int *addr_len)
2091 {
2092 struct sctp_ulpevent *event = NULL;
2093 struct sctp_sock *sp = sctp_sk(sk);
2094 struct sk_buff *skb, *head_skb;
2095 int copied;
2096 int err = 0;
2097 int skb_len;
2098
2099 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2100 __func__, sk, msg, len, flags, addr_len);
2101
2102 if (unlikely(flags & MSG_ERRQUEUE))
2103 return inet_recv_error(sk, msg, len, addr_len);
2104
2105 if (sk_can_busy_loop(sk) &&
2106 skb_queue_empty_lockless(&sk->sk_receive_queue))
2107 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2108
2109 lock_sock(sk);
2110
2111 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2112 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2113 err = -ENOTCONN;
2114 goto out;
2115 }
2116
2117 skb = sctp_skb_recv_datagram(sk, flags, &err);
2118 if (!skb)
2119 goto out;
2120
2121 /* Get the total length of the skb including any skb's in the
2122 * frag_list.
2123 */
2124 skb_len = skb->len;
2125
2126 copied = skb_len;
2127 if (copied > len)
2128 copied = len;
2129
2130 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2131
2132 event = sctp_skb2event(skb);
2133
2134 if (err)
2135 goto out_free;
2136
2137 if (event->chunk && event->chunk->head_skb)
2138 head_skb = event->chunk->head_skb;
2139 else
2140 head_skb = skb;
2141 sock_recv_cmsgs(msg, sk, head_skb);
2142 if (sctp_ulpevent_is_notification(event)) {
2143 msg->msg_flags |= MSG_NOTIFICATION;
2144 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2145 } else {
2146 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2147 }
2148
2149 /* Check if we allow SCTP_NXTINFO. */
2150 if (sp->recvnxtinfo)
2151 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2152 /* Check if we allow SCTP_RCVINFO. */
2153 if (sp->recvrcvinfo)
2154 sctp_ulpevent_read_rcvinfo(event, msg);
2155 /* Check if we allow SCTP_SNDRCVINFO. */
2156 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2157 sctp_ulpevent_read_sndrcvinfo(event, msg);
2158
2159 err = copied;
2160
2161 /* If skb's length exceeds the user's buffer, update the skb and
2162 * push it back to the receive_queue so that the next call to
2163 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2164 */
2165 if (skb_len > copied) {
2166 msg->msg_flags &= ~MSG_EOR;
2167 if (flags & MSG_PEEK)
2168 goto out_free;
2169 sctp_skb_pull(skb, copied);
2170 skb_queue_head(&sk->sk_receive_queue, skb);
2171
2172 /* When only partial message is copied to the user, increase
2173 * rwnd by that amount. If all the data in the skb is read,
2174 * rwnd is updated when the event is freed.
2175 */
2176 if (!sctp_ulpevent_is_notification(event))
2177 sctp_assoc_rwnd_increase(event->asoc, copied);
2178 goto out;
2179 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2180 (event->msg_flags & MSG_EOR))
2181 msg->msg_flags |= MSG_EOR;
2182 else
2183 msg->msg_flags &= ~MSG_EOR;
2184
2185 out_free:
2186 if (flags & MSG_PEEK) {
2187 /* Release the skb reference acquired after peeking the skb in
2188 * sctp_skb_recv_datagram().
2189 */
2190 kfree_skb(skb);
2191 } else {
2192 /* Free the event which includes releasing the reference to
2193 * the owner of the skb, freeing the skb and updating the
2194 * rwnd.
2195 */
2196 sctp_ulpevent_free(event);
2197 }
2198 out:
2199 release_sock(sk);
2200 return err;
2201 }
2202
2203 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2204 *
2205 * This option is a on/off flag. If enabled no SCTP message
2206 * fragmentation will be performed. Instead if a message being sent
2207 * exceeds the current PMTU size, the message will NOT be sent and
2208 * instead a error will be indicated to the user.
2209 */
sctp_setsockopt_disable_fragments(struct sock * sk,int * val,unsigned int optlen)2210 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2211 unsigned int optlen)
2212 {
2213 if (optlen < sizeof(int))
2214 return -EINVAL;
2215 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2216 return 0;
2217 }
2218
sctp_setsockopt_events(struct sock * sk,__u8 * sn_type,unsigned int optlen)2219 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2220 unsigned int optlen)
2221 {
2222 struct sctp_sock *sp = sctp_sk(sk);
2223 struct sctp_association *asoc;
2224 int i;
2225
2226 if (optlen > sizeof(struct sctp_event_subscribe))
2227 return -EINVAL;
2228
2229 for (i = 0; i < optlen; i++)
2230 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2231 sn_type[i]);
2232
2233 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2234 asoc->subscribe = sctp_sk(sk)->subscribe;
2235
2236 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2237 * if there is no data to be sent or retransmit, the stack will
2238 * immediately send up this notification.
2239 */
2240 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2241 struct sctp_ulpevent *event;
2242
2243 asoc = sctp_id2assoc(sk, 0);
2244 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2245 event = sctp_ulpevent_make_sender_dry_event(asoc,
2246 GFP_USER | __GFP_NOWARN);
2247 if (!event)
2248 return -ENOMEM;
2249
2250 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2251 }
2252 }
2253
2254 return 0;
2255 }
2256
2257 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2258 *
2259 * This socket option is applicable to the UDP-style socket only. When
2260 * set it will cause associations that are idle for more than the
2261 * specified number of seconds to automatically close. An association
2262 * being idle is defined an association that has NOT sent or received
2263 * user data. The special value of '0' indicates that no automatic
2264 * close of any associations should be performed. The option expects an
2265 * integer defining the number of seconds of idle time before an
2266 * association is closed.
2267 */
sctp_setsockopt_autoclose(struct sock * sk,u32 * optval,unsigned int optlen)2268 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2269 unsigned int optlen)
2270 {
2271 struct sctp_sock *sp = sctp_sk(sk);
2272 struct net *net = sock_net(sk);
2273
2274 /* Applicable to UDP-style socket only */
2275 if (sctp_style(sk, TCP))
2276 return -EOPNOTSUPP;
2277 if (optlen != sizeof(int))
2278 return -EINVAL;
2279
2280 sp->autoclose = *optval;
2281 if (sp->autoclose > net->sctp.max_autoclose)
2282 sp->autoclose = net->sctp.max_autoclose;
2283
2284 return 0;
2285 }
2286
2287 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2288 *
2289 * Applications can enable or disable heartbeats for any peer address of
2290 * an association, modify an address's heartbeat interval, force a
2291 * heartbeat to be sent immediately, and adjust the address's maximum
2292 * number of retransmissions sent before an address is considered
2293 * unreachable. The following structure is used to access and modify an
2294 * address's parameters:
2295 *
2296 * struct sctp_paddrparams {
2297 * sctp_assoc_t spp_assoc_id;
2298 * struct sockaddr_storage spp_address;
2299 * uint32_t spp_hbinterval;
2300 * uint16_t spp_pathmaxrxt;
2301 * uint32_t spp_pathmtu;
2302 * uint32_t spp_sackdelay;
2303 * uint32_t spp_flags;
2304 * uint32_t spp_ipv6_flowlabel;
2305 * uint8_t spp_dscp;
2306 * };
2307 *
2308 * spp_assoc_id - (one-to-many style socket) This is filled in the
2309 * application, and identifies the association for
2310 * this query.
2311 * spp_address - This specifies which address is of interest.
2312 * spp_hbinterval - This contains the value of the heartbeat interval,
2313 * in milliseconds. If a value of zero
2314 * is present in this field then no changes are to
2315 * be made to this parameter.
2316 * spp_pathmaxrxt - This contains the maximum number of
2317 * retransmissions before this address shall be
2318 * considered unreachable. If a value of zero
2319 * is present in this field then no changes are to
2320 * be made to this parameter.
2321 * spp_pathmtu - When Path MTU discovery is disabled the value
2322 * specified here will be the "fixed" path mtu.
2323 * Note that if the spp_address field is empty
2324 * then all associations on this address will
2325 * have this fixed path mtu set upon them.
2326 *
2327 * spp_sackdelay - When delayed sack is enabled, this value specifies
2328 * the number of milliseconds that sacks will be delayed
2329 * for. This value will apply to all addresses of an
2330 * association if the spp_address field is empty. Note
2331 * also, that if delayed sack is enabled and this
2332 * value is set to 0, no change is made to the last
2333 * recorded delayed sack timer value.
2334 *
2335 * spp_flags - These flags are used to control various features
2336 * on an association. The flag field may contain
2337 * zero or more of the following options.
2338 *
2339 * SPP_HB_ENABLE - Enable heartbeats on the
2340 * specified address. Note that if the address
2341 * field is empty all addresses for the association
2342 * have heartbeats enabled upon them.
2343 *
2344 * SPP_HB_DISABLE - Disable heartbeats on the
2345 * speicifed address. Note that if the address
2346 * field is empty all addresses for the association
2347 * will have their heartbeats disabled. Note also
2348 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2349 * mutually exclusive, only one of these two should
2350 * be specified. Enabling both fields will have
2351 * undetermined results.
2352 *
2353 * SPP_HB_DEMAND - Request a user initiated heartbeat
2354 * to be made immediately.
2355 *
2356 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2357 * heartbeat delayis to be set to the value of 0
2358 * milliseconds.
2359 *
2360 * SPP_PMTUD_ENABLE - This field will enable PMTU
2361 * discovery upon the specified address. Note that
2362 * if the address feild is empty then all addresses
2363 * on the association are effected.
2364 *
2365 * SPP_PMTUD_DISABLE - This field will disable PMTU
2366 * discovery upon the specified address. Note that
2367 * if the address feild is empty then all addresses
2368 * on the association are effected. Not also that
2369 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2370 * exclusive. Enabling both will have undetermined
2371 * results.
2372 *
2373 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2374 * on delayed sack. The time specified in spp_sackdelay
2375 * is used to specify the sack delay for this address. Note
2376 * that if spp_address is empty then all addresses will
2377 * enable delayed sack and take on the sack delay
2378 * value specified in spp_sackdelay.
2379 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2380 * off delayed sack. If the spp_address field is blank then
2381 * delayed sack is disabled for the entire association. Note
2382 * also that this field is mutually exclusive to
2383 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2384 * results.
2385 *
2386 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2387 * setting of the IPV6 flow label value. The value is
2388 * contained in the spp_ipv6_flowlabel field.
2389 * Upon retrieval, this flag will be set to indicate that
2390 * the spp_ipv6_flowlabel field has a valid value returned.
2391 * If a specific destination address is set (in the
2392 * spp_address field), then the value returned is that of
2393 * the address. If just an association is specified (and
2394 * no address), then the association's default flow label
2395 * is returned. If neither an association nor a destination
2396 * is specified, then the socket's default flow label is
2397 * returned. For non-IPv6 sockets, this flag will be left
2398 * cleared.
2399 *
2400 * SPP_DSCP: Setting this flag enables the setting of the
2401 * Differentiated Services Code Point (DSCP) value
2402 * associated with either the association or a specific
2403 * address. The value is obtained in the spp_dscp field.
2404 * Upon retrieval, this flag will be set to indicate that
2405 * the spp_dscp field has a valid value returned. If a
2406 * specific destination address is set when called (in the
2407 * spp_address field), then that specific destination
2408 * address's DSCP value is returned. If just an association
2409 * is specified, then the association's default DSCP is
2410 * returned. If neither an association nor a destination is
2411 * specified, then the socket's default DSCP is returned.
2412 *
2413 * spp_ipv6_flowlabel
2414 * - This field is used in conjunction with the
2415 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2416 * The 20 least significant bits are used for the flow
2417 * label. This setting has precedence over any IPv6-layer
2418 * setting.
2419 *
2420 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2421 * and contains the DSCP. The 6 most significant bits are
2422 * used for the DSCP. This setting has precedence over any
2423 * IPv4- or IPv6- layer setting.
2424 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2425 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2426 struct sctp_transport *trans,
2427 struct sctp_association *asoc,
2428 struct sctp_sock *sp,
2429 int hb_change,
2430 int pmtud_change,
2431 int sackdelay_change)
2432 {
2433 int error;
2434
2435 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2436 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2437 trans->asoc, trans);
2438 if (error)
2439 return error;
2440 }
2441
2442 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2443 * this field is ignored. Note also that a value of zero indicates
2444 * the current setting should be left unchanged.
2445 */
2446 if (params->spp_flags & SPP_HB_ENABLE) {
2447
2448 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2449 * set. This lets us use 0 value when this flag
2450 * is set.
2451 */
2452 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2453 params->spp_hbinterval = 0;
2454
2455 if (params->spp_hbinterval ||
2456 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2457 if (trans) {
2458 trans->hbinterval =
2459 msecs_to_jiffies(params->spp_hbinterval);
2460 sctp_transport_reset_hb_timer(trans);
2461 } else if (asoc) {
2462 asoc->hbinterval =
2463 msecs_to_jiffies(params->spp_hbinterval);
2464 } else {
2465 sp->hbinterval = params->spp_hbinterval;
2466 }
2467 }
2468 }
2469
2470 if (hb_change) {
2471 if (trans) {
2472 trans->param_flags =
2473 (trans->param_flags & ~SPP_HB) | hb_change;
2474 } else if (asoc) {
2475 asoc->param_flags =
2476 (asoc->param_flags & ~SPP_HB) | hb_change;
2477 } else {
2478 sp->param_flags =
2479 (sp->param_flags & ~SPP_HB) | hb_change;
2480 }
2481 }
2482
2483 /* When Path MTU discovery is disabled the value specified here will
2484 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2485 * include the flag SPP_PMTUD_DISABLE for this field to have any
2486 * effect).
2487 */
2488 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2489 if (trans) {
2490 trans->pathmtu = params->spp_pathmtu;
2491 sctp_assoc_sync_pmtu(asoc);
2492 } else if (asoc) {
2493 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2494 } else {
2495 sp->pathmtu = params->spp_pathmtu;
2496 }
2497 }
2498
2499 if (pmtud_change) {
2500 if (trans) {
2501 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2502 (params->spp_flags & SPP_PMTUD_ENABLE);
2503 trans->param_flags =
2504 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2505 if (update) {
2506 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2507 sctp_assoc_sync_pmtu(asoc);
2508 }
2509 sctp_transport_pl_reset(trans);
2510 } else if (asoc) {
2511 asoc->param_flags =
2512 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2513 } else {
2514 sp->param_flags =
2515 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2516 }
2517 }
2518
2519 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2520 * value of this field is ignored. Note also that a value of zero
2521 * indicates the current setting should be left unchanged.
2522 */
2523 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2524 if (trans) {
2525 trans->sackdelay =
2526 msecs_to_jiffies(params->spp_sackdelay);
2527 } else if (asoc) {
2528 asoc->sackdelay =
2529 msecs_to_jiffies(params->spp_sackdelay);
2530 } else {
2531 sp->sackdelay = params->spp_sackdelay;
2532 }
2533 }
2534
2535 if (sackdelay_change) {
2536 if (trans) {
2537 trans->param_flags =
2538 (trans->param_flags & ~SPP_SACKDELAY) |
2539 sackdelay_change;
2540 } else if (asoc) {
2541 asoc->param_flags =
2542 (asoc->param_flags & ~SPP_SACKDELAY) |
2543 sackdelay_change;
2544 } else {
2545 sp->param_flags =
2546 (sp->param_flags & ~SPP_SACKDELAY) |
2547 sackdelay_change;
2548 }
2549 }
2550
2551 /* Note that a value of zero indicates the current setting should be
2552 left unchanged.
2553 */
2554 if (params->spp_pathmaxrxt) {
2555 if (trans) {
2556 trans->pathmaxrxt = params->spp_pathmaxrxt;
2557 } else if (asoc) {
2558 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2559 } else {
2560 sp->pathmaxrxt = params->spp_pathmaxrxt;
2561 }
2562 }
2563
2564 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2565 if (trans) {
2566 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2567 trans->flowlabel = params->spp_ipv6_flowlabel &
2568 SCTP_FLOWLABEL_VAL_MASK;
2569 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2570 }
2571 } else if (asoc) {
2572 struct sctp_transport *t;
2573
2574 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2575 transports) {
2576 if (t->ipaddr.sa.sa_family != AF_INET6)
2577 continue;
2578 t->flowlabel = params->spp_ipv6_flowlabel &
2579 SCTP_FLOWLABEL_VAL_MASK;
2580 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2581 }
2582 asoc->flowlabel = params->spp_ipv6_flowlabel &
2583 SCTP_FLOWLABEL_VAL_MASK;
2584 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2585 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2586 sp->flowlabel = params->spp_ipv6_flowlabel &
2587 SCTP_FLOWLABEL_VAL_MASK;
2588 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2589 }
2590 }
2591
2592 if (params->spp_flags & SPP_DSCP) {
2593 if (trans) {
2594 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2595 trans->dscp |= SCTP_DSCP_SET_MASK;
2596 } else if (asoc) {
2597 struct sctp_transport *t;
2598
2599 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2600 transports) {
2601 t->dscp = params->spp_dscp &
2602 SCTP_DSCP_VAL_MASK;
2603 t->dscp |= SCTP_DSCP_SET_MASK;
2604 }
2605 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2606 asoc->dscp |= SCTP_DSCP_SET_MASK;
2607 } else {
2608 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2609 sp->dscp |= SCTP_DSCP_SET_MASK;
2610 }
2611 }
2612
2613 return 0;
2614 }
2615
sctp_setsockopt_peer_addr_params(struct sock * sk,struct sctp_paddrparams * params,unsigned int optlen)2616 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2617 struct sctp_paddrparams *params,
2618 unsigned int optlen)
2619 {
2620 struct sctp_transport *trans = NULL;
2621 struct sctp_association *asoc = NULL;
2622 struct sctp_sock *sp = sctp_sk(sk);
2623 int error;
2624 int hb_change, pmtud_change, sackdelay_change;
2625
2626 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2627 spp_ipv6_flowlabel), 4)) {
2628 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2629 return -EINVAL;
2630 } else if (optlen != sizeof(*params)) {
2631 return -EINVAL;
2632 }
2633
2634 /* Validate flags and value parameters. */
2635 hb_change = params->spp_flags & SPP_HB;
2636 pmtud_change = params->spp_flags & SPP_PMTUD;
2637 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2638
2639 if (hb_change == SPP_HB ||
2640 pmtud_change == SPP_PMTUD ||
2641 sackdelay_change == SPP_SACKDELAY ||
2642 params->spp_sackdelay > 500 ||
2643 (params->spp_pathmtu &&
2644 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2645 return -EINVAL;
2646
2647 /* If an address other than INADDR_ANY is specified, and
2648 * no transport is found, then the request is invalid.
2649 */
2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2651 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2652 params->spp_assoc_id);
2653 if (!trans)
2654 return -EINVAL;
2655 }
2656
2657 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2658 * socket is a one to many style socket, and an association
2659 * was not found, then the id was invalid.
2660 */
2661 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2662 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2663 sctp_style(sk, UDP))
2664 return -EINVAL;
2665
2666 /* Heartbeat demand can only be sent on a transport or
2667 * association, but not a socket.
2668 */
2669 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2670 return -EINVAL;
2671
2672 /* Process parameters. */
2673 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2674 hb_change, pmtud_change,
2675 sackdelay_change);
2676
2677 if (error)
2678 return error;
2679
2680 /* If changes are for association, also apply parameters to each
2681 * transport.
2682 */
2683 if (!trans && asoc) {
2684 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2685 transports) {
2686 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2687 hb_change, pmtud_change,
2688 sackdelay_change);
2689 }
2690 }
2691
2692 return 0;
2693 }
2694
sctp_spp_sackdelay_enable(__u32 param_flags)2695 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2696 {
2697 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2698 }
2699
sctp_spp_sackdelay_disable(__u32 param_flags)2700 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2701 {
2702 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2703 }
2704
sctp_apply_asoc_delayed_ack(struct sctp_sack_info * params,struct sctp_association * asoc)2705 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2706 struct sctp_association *asoc)
2707 {
2708 struct sctp_transport *trans;
2709
2710 if (params->sack_delay) {
2711 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2712 asoc->param_flags =
2713 sctp_spp_sackdelay_enable(asoc->param_flags);
2714 }
2715 if (params->sack_freq == 1) {
2716 asoc->param_flags =
2717 sctp_spp_sackdelay_disable(asoc->param_flags);
2718 } else if (params->sack_freq > 1) {
2719 asoc->sackfreq = params->sack_freq;
2720 asoc->param_flags =
2721 sctp_spp_sackdelay_enable(asoc->param_flags);
2722 }
2723
2724 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2725 transports) {
2726 if (params->sack_delay) {
2727 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2728 trans->param_flags =
2729 sctp_spp_sackdelay_enable(trans->param_flags);
2730 }
2731 if (params->sack_freq == 1) {
2732 trans->param_flags =
2733 sctp_spp_sackdelay_disable(trans->param_flags);
2734 } else if (params->sack_freq > 1) {
2735 trans->sackfreq = params->sack_freq;
2736 trans->param_flags =
2737 sctp_spp_sackdelay_enable(trans->param_flags);
2738 }
2739 }
2740 }
2741
2742 /*
2743 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2744 *
2745 * This option will effect the way delayed acks are performed. This
2746 * option allows you to get or set the delayed ack time, in
2747 * milliseconds. It also allows changing the delayed ack frequency.
2748 * Changing the frequency to 1 disables the delayed sack algorithm. If
2749 * the assoc_id is 0, then this sets or gets the endpoints default
2750 * values. If the assoc_id field is non-zero, then the set or get
2751 * effects the specified association for the one to many model (the
2752 * assoc_id field is ignored by the one to one model). Note that if
2753 * sack_delay or sack_freq are 0 when setting this option, then the
2754 * current values will remain unchanged.
2755 *
2756 * struct sctp_sack_info {
2757 * sctp_assoc_t sack_assoc_id;
2758 * uint32_t sack_delay;
2759 * uint32_t sack_freq;
2760 * };
2761 *
2762 * sack_assoc_id - This parameter, indicates which association the user
2763 * is performing an action upon. Note that if this field's value is
2764 * zero then the endpoints default value is changed (effecting future
2765 * associations only).
2766 *
2767 * sack_delay - This parameter contains the number of milliseconds that
2768 * the user is requesting the delayed ACK timer be set to. Note that
2769 * this value is defined in the standard to be between 200 and 500
2770 * milliseconds.
2771 *
2772 * sack_freq - This parameter contains the number of packets that must
2773 * be received before a sack is sent without waiting for the delay
2774 * timer to expire. The default value for this is 2, setting this
2775 * value to 1 will disable the delayed sack algorithm.
2776 */
__sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params)2777 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2778 struct sctp_sack_info *params)
2779 {
2780 struct sctp_sock *sp = sctp_sk(sk);
2781 struct sctp_association *asoc;
2782
2783 /* Validate value parameter. */
2784 if (params->sack_delay > 500)
2785 return -EINVAL;
2786
2787 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2788 * socket is a one to many style socket, and an association
2789 * was not found, then the id was invalid.
2790 */
2791 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2792 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2793 sctp_style(sk, UDP))
2794 return -EINVAL;
2795
2796 if (asoc) {
2797 sctp_apply_asoc_delayed_ack(params, asoc);
2798
2799 return 0;
2800 }
2801
2802 if (sctp_style(sk, TCP))
2803 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2804
2805 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2806 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2807 if (params->sack_delay) {
2808 sp->sackdelay = params->sack_delay;
2809 sp->param_flags =
2810 sctp_spp_sackdelay_enable(sp->param_flags);
2811 }
2812 if (params->sack_freq == 1) {
2813 sp->param_flags =
2814 sctp_spp_sackdelay_disable(sp->param_flags);
2815 } else if (params->sack_freq > 1) {
2816 sp->sackfreq = params->sack_freq;
2817 sp->param_flags =
2818 sctp_spp_sackdelay_enable(sp->param_flags);
2819 }
2820 }
2821
2822 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2823 params->sack_assoc_id == SCTP_ALL_ASSOC)
2824 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2825 sctp_apply_asoc_delayed_ack(params, asoc);
2826
2827 return 0;
2828 }
2829
sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params,unsigned int optlen)2830 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2831 struct sctp_sack_info *params,
2832 unsigned int optlen)
2833 {
2834 if (optlen == sizeof(struct sctp_assoc_value)) {
2835 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2836 struct sctp_sack_info p;
2837
2838 pr_warn_ratelimited(DEPRECATED
2839 "%s (pid %d) "
2840 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2841 "Use struct sctp_sack_info instead\n",
2842 current->comm, task_pid_nr(current));
2843
2844 p.sack_assoc_id = v->assoc_id;
2845 p.sack_delay = v->assoc_value;
2846 p.sack_freq = v->assoc_value ? 0 : 1;
2847 return __sctp_setsockopt_delayed_ack(sk, &p);
2848 }
2849
2850 if (optlen != sizeof(struct sctp_sack_info))
2851 return -EINVAL;
2852 if (params->sack_delay == 0 && params->sack_freq == 0)
2853 return 0;
2854 return __sctp_setsockopt_delayed_ack(sk, params);
2855 }
2856
2857 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2858 *
2859 * Applications can specify protocol parameters for the default association
2860 * initialization. The option name argument to setsockopt() and getsockopt()
2861 * is SCTP_INITMSG.
2862 *
2863 * Setting initialization parameters is effective only on an unconnected
2864 * socket (for UDP-style sockets only future associations are effected
2865 * by the change). With TCP-style sockets, this option is inherited by
2866 * sockets derived from a listener socket.
2867 */
sctp_setsockopt_initmsg(struct sock * sk,struct sctp_initmsg * sinit,unsigned int optlen)2868 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2869 unsigned int optlen)
2870 {
2871 struct sctp_sock *sp = sctp_sk(sk);
2872
2873 if (optlen != sizeof(struct sctp_initmsg))
2874 return -EINVAL;
2875
2876 if (sinit->sinit_num_ostreams)
2877 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2878 if (sinit->sinit_max_instreams)
2879 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2880 if (sinit->sinit_max_attempts)
2881 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2882 if (sinit->sinit_max_init_timeo)
2883 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2884
2885 return 0;
2886 }
2887
2888 /*
2889 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2890 *
2891 * Applications that wish to use the sendto() system call may wish to
2892 * specify a default set of parameters that would normally be supplied
2893 * through the inclusion of ancillary data. This socket option allows
2894 * such an application to set the default sctp_sndrcvinfo structure.
2895 * The application that wishes to use this socket option simply passes
2896 * in to this call the sctp_sndrcvinfo structure defined in Section
2897 * 5.2.2) The input parameters accepted by this call include
2898 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2899 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2900 * to this call if the caller is using the UDP model.
2901 */
sctp_setsockopt_default_send_param(struct sock * sk,struct sctp_sndrcvinfo * info,unsigned int optlen)2902 static int sctp_setsockopt_default_send_param(struct sock *sk,
2903 struct sctp_sndrcvinfo *info,
2904 unsigned int optlen)
2905 {
2906 struct sctp_sock *sp = sctp_sk(sk);
2907 struct sctp_association *asoc;
2908
2909 if (optlen != sizeof(*info))
2910 return -EINVAL;
2911 if (info->sinfo_flags &
2912 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2913 SCTP_ABORT | SCTP_EOF))
2914 return -EINVAL;
2915
2916 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2917 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2918 sctp_style(sk, UDP))
2919 return -EINVAL;
2920
2921 if (asoc) {
2922 asoc->default_stream = info->sinfo_stream;
2923 asoc->default_flags = info->sinfo_flags;
2924 asoc->default_ppid = info->sinfo_ppid;
2925 asoc->default_context = info->sinfo_context;
2926 asoc->default_timetolive = info->sinfo_timetolive;
2927
2928 return 0;
2929 }
2930
2931 if (sctp_style(sk, TCP))
2932 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2933
2934 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2935 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2936 sp->default_stream = info->sinfo_stream;
2937 sp->default_flags = info->sinfo_flags;
2938 sp->default_ppid = info->sinfo_ppid;
2939 sp->default_context = info->sinfo_context;
2940 sp->default_timetolive = info->sinfo_timetolive;
2941 }
2942
2943 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2944 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2945 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2946 asoc->default_stream = info->sinfo_stream;
2947 asoc->default_flags = info->sinfo_flags;
2948 asoc->default_ppid = info->sinfo_ppid;
2949 asoc->default_context = info->sinfo_context;
2950 asoc->default_timetolive = info->sinfo_timetolive;
2951 }
2952 }
2953
2954 return 0;
2955 }
2956
2957 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2958 * (SCTP_DEFAULT_SNDINFO)
2959 */
sctp_setsockopt_default_sndinfo(struct sock * sk,struct sctp_sndinfo * info,unsigned int optlen)2960 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2961 struct sctp_sndinfo *info,
2962 unsigned int optlen)
2963 {
2964 struct sctp_sock *sp = sctp_sk(sk);
2965 struct sctp_association *asoc;
2966
2967 if (optlen != sizeof(*info))
2968 return -EINVAL;
2969 if (info->snd_flags &
2970 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2971 SCTP_ABORT | SCTP_EOF))
2972 return -EINVAL;
2973
2974 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2975 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2976 sctp_style(sk, UDP))
2977 return -EINVAL;
2978
2979 if (asoc) {
2980 asoc->default_stream = info->snd_sid;
2981 asoc->default_flags = info->snd_flags;
2982 asoc->default_ppid = info->snd_ppid;
2983 asoc->default_context = info->snd_context;
2984
2985 return 0;
2986 }
2987
2988 if (sctp_style(sk, TCP))
2989 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2990
2991 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2992 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2993 sp->default_stream = info->snd_sid;
2994 sp->default_flags = info->snd_flags;
2995 sp->default_ppid = info->snd_ppid;
2996 sp->default_context = info->snd_context;
2997 }
2998
2999 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
3000 info->snd_assoc_id == SCTP_ALL_ASSOC) {
3001 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3002 asoc->default_stream = info->snd_sid;
3003 asoc->default_flags = info->snd_flags;
3004 asoc->default_ppid = info->snd_ppid;
3005 asoc->default_context = info->snd_context;
3006 }
3007 }
3008
3009 return 0;
3010 }
3011
3012 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3013 *
3014 * Requests that the local SCTP stack use the enclosed peer address as
3015 * the association primary. The enclosed address must be one of the
3016 * association peer's addresses.
3017 */
sctp_setsockopt_primary_addr(struct sock * sk,struct sctp_prim * prim,unsigned int optlen)3018 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3019 unsigned int optlen)
3020 {
3021 struct sctp_transport *trans;
3022 struct sctp_af *af;
3023 int err;
3024
3025 if (optlen != sizeof(struct sctp_prim))
3026 return -EINVAL;
3027
3028 /* Allow security module to validate address but need address len. */
3029 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3030 if (!af)
3031 return -EINVAL;
3032
3033 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3034 (struct sockaddr *)&prim->ssp_addr,
3035 af->sockaddr_len);
3036 if (err)
3037 return err;
3038
3039 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3040 if (!trans)
3041 return -EINVAL;
3042
3043 sctp_assoc_set_primary(trans->asoc, trans);
3044
3045 return 0;
3046 }
3047
3048 /*
3049 * 7.1.5 SCTP_NODELAY
3050 *
3051 * Turn on/off any Nagle-like algorithm. This means that packets are
3052 * generally sent as soon as possible and no unnecessary delays are
3053 * introduced, at the cost of more packets in the network. Expects an
3054 * integer boolean flag.
3055 */
sctp_setsockopt_nodelay(struct sock * sk,int * val,unsigned int optlen)3056 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3057 unsigned int optlen)
3058 {
3059 if (optlen < sizeof(int))
3060 return -EINVAL;
3061 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3062 return 0;
3063 }
3064
3065 /*
3066 *
3067 * 7.1.1 SCTP_RTOINFO
3068 *
3069 * The protocol parameters used to initialize and bound retransmission
3070 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3071 * and modify these parameters.
3072 * All parameters are time values, in milliseconds. A value of 0, when
3073 * modifying the parameters, indicates that the current value should not
3074 * be changed.
3075 *
3076 */
sctp_setsockopt_rtoinfo(struct sock * sk,struct sctp_rtoinfo * rtoinfo,unsigned int optlen)3077 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3078 struct sctp_rtoinfo *rtoinfo,
3079 unsigned int optlen)
3080 {
3081 struct sctp_association *asoc;
3082 unsigned long rto_min, rto_max;
3083 struct sctp_sock *sp = sctp_sk(sk);
3084
3085 if (optlen != sizeof (struct sctp_rtoinfo))
3086 return -EINVAL;
3087
3088 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3089
3090 /* Set the values to the specific association */
3091 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3092 sctp_style(sk, UDP))
3093 return -EINVAL;
3094
3095 rto_max = rtoinfo->srto_max;
3096 rto_min = rtoinfo->srto_min;
3097
3098 if (rto_max)
3099 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3100 else
3101 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3102
3103 if (rto_min)
3104 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3105 else
3106 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3107
3108 if (rto_min > rto_max)
3109 return -EINVAL;
3110
3111 if (asoc) {
3112 if (rtoinfo->srto_initial != 0)
3113 asoc->rto_initial =
3114 msecs_to_jiffies(rtoinfo->srto_initial);
3115 asoc->rto_max = rto_max;
3116 asoc->rto_min = rto_min;
3117 } else {
3118 /* If there is no association or the association-id = 0
3119 * set the values to the endpoint.
3120 */
3121 if (rtoinfo->srto_initial != 0)
3122 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3123 sp->rtoinfo.srto_max = rto_max;
3124 sp->rtoinfo.srto_min = rto_min;
3125 }
3126
3127 return 0;
3128 }
3129
3130 /*
3131 *
3132 * 7.1.2 SCTP_ASSOCINFO
3133 *
3134 * This option is used to tune the maximum retransmission attempts
3135 * of the association.
3136 * Returns an error if the new association retransmission value is
3137 * greater than the sum of the retransmission value of the peer.
3138 * See [SCTP] for more information.
3139 *
3140 */
sctp_setsockopt_associnfo(struct sock * sk,struct sctp_assocparams * assocparams,unsigned int optlen)3141 static int sctp_setsockopt_associnfo(struct sock *sk,
3142 struct sctp_assocparams *assocparams,
3143 unsigned int optlen)
3144 {
3145
3146 struct sctp_association *asoc;
3147
3148 if (optlen != sizeof(struct sctp_assocparams))
3149 return -EINVAL;
3150
3151 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3152
3153 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3154 sctp_style(sk, UDP))
3155 return -EINVAL;
3156
3157 /* Set the values to the specific association */
3158 if (asoc) {
3159 if (assocparams->sasoc_asocmaxrxt != 0) {
3160 __u32 path_sum = 0;
3161 int paths = 0;
3162 struct sctp_transport *peer_addr;
3163
3164 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3165 transports) {
3166 path_sum += peer_addr->pathmaxrxt;
3167 paths++;
3168 }
3169
3170 /* Only validate asocmaxrxt if we have more than
3171 * one path/transport. We do this because path
3172 * retransmissions are only counted when we have more
3173 * then one path.
3174 */
3175 if (paths > 1 &&
3176 assocparams->sasoc_asocmaxrxt > path_sum)
3177 return -EINVAL;
3178
3179 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3180 }
3181
3182 if (assocparams->sasoc_cookie_life != 0)
3183 asoc->cookie_life =
3184 ms_to_ktime(assocparams->sasoc_cookie_life);
3185 } else {
3186 /* Set the values to the endpoint */
3187 struct sctp_sock *sp = sctp_sk(sk);
3188
3189 if (assocparams->sasoc_asocmaxrxt != 0)
3190 sp->assocparams.sasoc_asocmaxrxt =
3191 assocparams->sasoc_asocmaxrxt;
3192 if (assocparams->sasoc_cookie_life != 0)
3193 sp->assocparams.sasoc_cookie_life =
3194 assocparams->sasoc_cookie_life;
3195 }
3196 return 0;
3197 }
3198
3199 /*
3200 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3201 *
3202 * This socket option is a boolean flag which turns on or off mapped V4
3203 * addresses. If this option is turned on and the socket is type
3204 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3205 * If this option is turned off, then no mapping will be done of V4
3206 * addresses and a user will receive both PF_INET6 and PF_INET type
3207 * addresses on the socket.
3208 */
sctp_setsockopt_mappedv4(struct sock * sk,int * val,unsigned int optlen)3209 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3210 unsigned int optlen)
3211 {
3212 struct sctp_sock *sp = sctp_sk(sk);
3213
3214 if (optlen < sizeof(int))
3215 return -EINVAL;
3216 if (*val)
3217 sp->v4mapped = 1;
3218 else
3219 sp->v4mapped = 0;
3220
3221 return 0;
3222 }
3223
3224 /*
3225 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3226 * This option will get or set the maximum size to put in any outgoing
3227 * SCTP DATA chunk. If a message is larger than this size it will be
3228 * fragmented by SCTP into the specified size. Note that the underlying
3229 * SCTP implementation may fragment into smaller sized chunks when the
3230 * PMTU of the underlying association is smaller than the value set by
3231 * the user. The default value for this option is '0' which indicates
3232 * the user is NOT limiting fragmentation and only the PMTU will effect
3233 * SCTP's choice of DATA chunk size. Note also that values set larger
3234 * than the maximum size of an IP datagram will effectively let SCTP
3235 * control fragmentation (i.e. the same as setting this option to 0).
3236 *
3237 * The following structure is used to access and modify this parameter:
3238 *
3239 * struct sctp_assoc_value {
3240 * sctp_assoc_t assoc_id;
3241 * uint32_t assoc_value;
3242 * };
3243 *
3244 * assoc_id: This parameter is ignored for one-to-one style sockets.
3245 * For one-to-many style sockets this parameter indicates which
3246 * association the user is performing an action upon. Note that if
3247 * this field's value is zero then the endpoints default value is
3248 * changed (effecting future associations only).
3249 * assoc_value: This parameter specifies the maximum size in bytes.
3250 */
sctp_setsockopt_maxseg(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3251 static int sctp_setsockopt_maxseg(struct sock *sk,
3252 struct sctp_assoc_value *params,
3253 unsigned int optlen)
3254 {
3255 struct sctp_sock *sp = sctp_sk(sk);
3256 struct sctp_association *asoc;
3257 sctp_assoc_t assoc_id;
3258 int val;
3259
3260 if (optlen == sizeof(int)) {
3261 pr_warn_ratelimited(DEPRECATED
3262 "%s (pid %d) "
3263 "Use of int in maxseg socket option.\n"
3264 "Use struct sctp_assoc_value instead\n",
3265 current->comm, task_pid_nr(current));
3266 assoc_id = SCTP_FUTURE_ASSOC;
3267 val = *(int *)params;
3268 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3269 assoc_id = params->assoc_id;
3270 val = params->assoc_value;
3271 } else {
3272 return -EINVAL;
3273 }
3274
3275 asoc = sctp_id2assoc(sk, assoc_id);
3276 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3277 sctp_style(sk, UDP))
3278 return -EINVAL;
3279
3280 if (val) {
3281 int min_len, max_len;
3282 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3283 sizeof(struct sctp_data_chunk);
3284
3285 min_len = sctp_min_frag_point(sp, datasize);
3286 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3287
3288 if (val < min_len || val > max_len)
3289 return -EINVAL;
3290 }
3291
3292 if (asoc) {
3293 asoc->user_frag = val;
3294 sctp_assoc_update_frag_point(asoc);
3295 } else {
3296 sp->user_frag = val;
3297 }
3298
3299 return 0;
3300 }
3301
3302
3303 /*
3304 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3305 *
3306 * Requests that the peer mark the enclosed address as the association
3307 * primary. The enclosed address must be one of the association's
3308 * locally bound addresses. The following structure is used to make a
3309 * set primary request:
3310 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,struct sctp_setpeerprim * prim,unsigned int optlen)3311 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3312 struct sctp_setpeerprim *prim,
3313 unsigned int optlen)
3314 {
3315 struct sctp_sock *sp;
3316 struct sctp_association *asoc = NULL;
3317 struct sctp_chunk *chunk;
3318 struct sctp_af *af;
3319 int err;
3320
3321 sp = sctp_sk(sk);
3322
3323 if (!sp->ep->asconf_enable)
3324 return -EPERM;
3325
3326 if (optlen != sizeof(struct sctp_setpeerprim))
3327 return -EINVAL;
3328
3329 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3330 if (!asoc)
3331 return -EINVAL;
3332
3333 if (!asoc->peer.asconf_capable)
3334 return -EPERM;
3335
3336 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3337 return -EPERM;
3338
3339 if (!sctp_state(asoc, ESTABLISHED))
3340 return -ENOTCONN;
3341
3342 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3343 if (!af)
3344 return -EINVAL;
3345
3346 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3347 return -EADDRNOTAVAIL;
3348
3349 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3350 return -EADDRNOTAVAIL;
3351
3352 /* Allow security module to validate address. */
3353 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3354 (struct sockaddr *)&prim->sspp_addr,
3355 af->sockaddr_len);
3356 if (err)
3357 return err;
3358
3359 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3360 chunk = sctp_make_asconf_set_prim(asoc,
3361 (union sctp_addr *)&prim->sspp_addr);
3362 if (!chunk)
3363 return -ENOMEM;
3364
3365 err = sctp_send_asconf(asoc, chunk);
3366
3367 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3368
3369 return err;
3370 }
3371
sctp_setsockopt_adaptation_layer(struct sock * sk,struct sctp_setadaptation * adapt,unsigned int optlen)3372 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3373 struct sctp_setadaptation *adapt,
3374 unsigned int optlen)
3375 {
3376 if (optlen != sizeof(struct sctp_setadaptation))
3377 return -EINVAL;
3378
3379 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3380
3381 return 0;
3382 }
3383
3384 /*
3385 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3386 *
3387 * The context field in the sctp_sndrcvinfo structure is normally only
3388 * used when a failed message is retrieved holding the value that was
3389 * sent down on the actual send call. This option allows the setting of
3390 * a default context on an association basis that will be received on
3391 * reading messages from the peer. This is especially helpful in the
3392 * one-2-many model for an application to keep some reference to an
3393 * internal state machine that is processing messages on the
3394 * association. Note that the setting of this value only effects
3395 * received messages from the peer and does not effect the value that is
3396 * saved with outbound messages.
3397 */
sctp_setsockopt_context(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3398 static int sctp_setsockopt_context(struct sock *sk,
3399 struct sctp_assoc_value *params,
3400 unsigned int optlen)
3401 {
3402 struct sctp_sock *sp = sctp_sk(sk);
3403 struct sctp_association *asoc;
3404
3405 if (optlen != sizeof(struct sctp_assoc_value))
3406 return -EINVAL;
3407
3408 asoc = sctp_id2assoc(sk, params->assoc_id);
3409 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3410 sctp_style(sk, UDP))
3411 return -EINVAL;
3412
3413 if (asoc) {
3414 asoc->default_rcv_context = params->assoc_value;
3415
3416 return 0;
3417 }
3418
3419 if (sctp_style(sk, TCP))
3420 params->assoc_id = SCTP_FUTURE_ASSOC;
3421
3422 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3423 params->assoc_id == SCTP_ALL_ASSOC)
3424 sp->default_rcv_context = params->assoc_value;
3425
3426 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3427 params->assoc_id == SCTP_ALL_ASSOC)
3428 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3429 asoc->default_rcv_context = params->assoc_value;
3430
3431 return 0;
3432 }
3433
3434 /*
3435 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3436 *
3437 * This options will at a minimum specify if the implementation is doing
3438 * fragmented interleave. Fragmented interleave, for a one to many
3439 * socket, is when subsequent calls to receive a message may return
3440 * parts of messages from different associations. Some implementations
3441 * may allow you to turn this value on or off. If so, when turned off,
3442 * no fragment interleave will occur (which will cause a head of line
3443 * blocking amongst multiple associations sharing the same one to many
3444 * socket). When this option is turned on, then each receive call may
3445 * come from a different association (thus the user must receive data
3446 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3447 * association each receive belongs to.
3448 *
3449 * This option takes a boolean value. A non-zero value indicates that
3450 * fragmented interleave is on. A value of zero indicates that
3451 * fragmented interleave is off.
3452 *
3453 * Note that it is important that an implementation that allows this
3454 * option to be turned on, have it off by default. Otherwise an unaware
3455 * application using the one to many model may become confused and act
3456 * incorrectly.
3457 */
sctp_setsockopt_fragment_interleave(struct sock * sk,int * val,unsigned int optlen)3458 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3459 unsigned int optlen)
3460 {
3461 if (optlen != sizeof(int))
3462 return -EINVAL;
3463
3464 sctp_sk(sk)->frag_interleave = !!*val;
3465
3466 if (!sctp_sk(sk)->frag_interleave)
3467 sctp_sk(sk)->ep->intl_enable = 0;
3468
3469 return 0;
3470 }
3471
3472 /*
3473 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3474 * (SCTP_PARTIAL_DELIVERY_POINT)
3475 *
3476 * This option will set or get the SCTP partial delivery point. This
3477 * point is the size of a message where the partial delivery API will be
3478 * invoked to help free up rwnd space for the peer. Setting this to a
3479 * lower value will cause partial deliveries to happen more often. The
3480 * calls argument is an integer that sets or gets the partial delivery
3481 * point. Note also that the call will fail if the user attempts to set
3482 * this value larger than the socket receive buffer size.
3483 *
3484 * Note that any single message having a length smaller than or equal to
3485 * the SCTP partial delivery point will be delivered in one single read
3486 * call as long as the user provided buffer is large enough to hold the
3487 * message.
3488 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,u32 * val,unsigned int optlen)3489 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3490 unsigned int optlen)
3491 {
3492 if (optlen != sizeof(u32))
3493 return -EINVAL;
3494
3495 /* Note: We double the receive buffer from what the user sets
3496 * it to be, also initial rwnd is based on rcvbuf/2.
3497 */
3498 if (*val > (sk->sk_rcvbuf >> 1))
3499 return -EINVAL;
3500
3501 sctp_sk(sk)->pd_point = *val;
3502
3503 return 0; /* is this the right error code? */
3504 }
3505
3506 /*
3507 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3508 *
3509 * This option will allow a user to change the maximum burst of packets
3510 * that can be emitted by this association. Note that the default value
3511 * is 4, and some implementations may restrict this setting so that it
3512 * can only be lowered.
3513 *
3514 * NOTE: This text doesn't seem right. Do this on a socket basis with
3515 * future associations inheriting the socket value.
3516 */
sctp_setsockopt_maxburst(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3517 static int sctp_setsockopt_maxburst(struct sock *sk,
3518 struct sctp_assoc_value *params,
3519 unsigned int optlen)
3520 {
3521 struct sctp_sock *sp = sctp_sk(sk);
3522 struct sctp_association *asoc;
3523 sctp_assoc_t assoc_id;
3524 u32 assoc_value;
3525
3526 if (optlen == sizeof(int)) {
3527 pr_warn_ratelimited(DEPRECATED
3528 "%s (pid %d) "
3529 "Use of int in max_burst socket option deprecated.\n"
3530 "Use struct sctp_assoc_value instead\n",
3531 current->comm, task_pid_nr(current));
3532 assoc_id = SCTP_FUTURE_ASSOC;
3533 assoc_value = *((int *)params);
3534 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3535 assoc_id = params->assoc_id;
3536 assoc_value = params->assoc_value;
3537 } else
3538 return -EINVAL;
3539
3540 asoc = sctp_id2assoc(sk, assoc_id);
3541 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3542 return -EINVAL;
3543
3544 if (asoc) {
3545 asoc->max_burst = assoc_value;
3546
3547 return 0;
3548 }
3549
3550 if (sctp_style(sk, TCP))
3551 assoc_id = SCTP_FUTURE_ASSOC;
3552
3553 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3554 sp->max_burst = assoc_value;
3555
3556 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3557 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3558 asoc->max_burst = assoc_value;
3559
3560 return 0;
3561 }
3562
3563 /*
3564 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3565 *
3566 * This set option adds a chunk type that the user is requesting to be
3567 * received only in an authenticated way. Changes to the list of chunks
3568 * will only effect future associations on the socket.
3569 */
sctp_setsockopt_auth_chunk(struct sock * sk,struct sctp_authchunk * val,unsigned int optlen)3570 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3571 struct sctp_authchunk *val,
3572 unsigned int optlen)
3573 {
3574 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3575
3576 if (!ep->auth_enable)
3577 return -EACCES;
3578
3579 if (optlen != sizeof(struct sctp_authchunk))
3580 return -EINVAL;
3581
3582 switch (val->sauth_chunk) {
3583 case SCTP_CID_INIT:
3584 case SCTP_CID_INIT_ACK:
3585 case SCTP_CID_SHUTDOWN_COMPLETE:
3586 case SCTP_CID_AUTH:
3587 return -EINVAL;
3588 }
3589
3590 /* add this chunk id to the endpoint */
3591 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3592 }
3593
3594 /*
3595 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3596 *
3597 * This option gets or sets the list of HMAC algorithms that the local
3598 * endpoint requires the peer to use.
3599 */
sctp_setsockopt_hmac_ident(struct sock * sk,struct sctp_hmacalgo * hmacs,unsigned int optlen)3600 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3601 struct sctp_hmacalgo *hmacs,
3602 unsigned int optlen)
3603 {
3604 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3605 u32 idents;
3606
3607 if (!ep->auth_enable)
3608 return -EACCES;
3609
3610 if (optlen < sizeof(struct sctp_hmacalgo))
3611 return -EINVAL;
3612 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3613 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3614
3615 idents = hmacs->shmac_num_idents;
3616 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3617 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3618 return -EINVAL;
3619
3620 return sctp_auth_ep_set_hmacs(ep, hmacs);
3621 }
3622
3623 /*
3624 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3625 *
3626 * This option will set a shared secret key which is used to build an
3627 * association shared key.
3628 */
sctp_setsockopt_auth_key(struct sock * sk,struct sctp_authkey * authkey,unsigned int optlen)3629 static int sctp_setsockopt_auth_key(struct sock *sk,
3630 struct sctp_authkey *authkey,
3631 unsigned int optlen)
3632 {
3633 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3634 struct sctp_association *asoc;
3635 int ret = -EINVAL;
3636
3637 if (optlen <= sizeof(struct sctp_authkey))
3638 return -EINVAL;
3639 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3640 * this.
3641 */
3642 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3643
3644 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3645 goto out;
3646
3647 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3648 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3649 sctp_style(sk, UDP))
3650 goto out;
3651
3652 if (asoc) {
3653 ret = sctp_auth_set_key(ep, asoc, authkey);
3654 goto out;
3655 }
3656
3657 if (sctp_style(sk, TCP))
3658 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3659
3660 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3661 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3662 ret = sctp_auth_set_key(ep, asoc, authkey);
3663 if (ret)
3664 goto out;
3665 }
3666
3667 ret = 0;
3668
3669 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3670 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3671 list_for_each_entry(asoc, &ep->asocs, asocs) {
3672 int res = sctp_auth_set_key(ep, asoc, authkey);
3673
3674 if (res && !ret)
3675 ret = res;
3676 }
3677 }
3678
3679 out:
3680 memzero_explicit(authkey, optlen);
3681 return ret;
3682 }
3683
3684 /*
3685 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3686 *
3687 * This option will get or set the active shared key to be used to build
3688 * the association shared key.
3689 */
sctp_setsockopt_active_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3690 static int sctp_setsockopt_active_key(struct sock *sk,
3691 struct sctp_authkeyid *val,
3692 unsigned int optlen)
3693 {
3694 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3695 struct sctp_association *asoc;
3696 int ret = 0;
3697
3698 if (optlen != sizeof(struct sctp_authkeyid))
3699 return -EINVAL;
3700
3701 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3702 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3703 sctp_style(sk, UDP))
3704 return -EINVAL;
3705
3706 if (asoc)
3707 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3708
3709 if (sctp_style(sk, TCP))
3710 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3711
3712 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3713 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3714 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3715 if (ret)
3716 return ret;
3717 }
3718
3719 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3720 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3721 list_for_each_entry(asoc, &ep->asocs, asocs) {
3722 int res = sctp_auth_set_active_key(ep, asoc,
3723 val->scact_keynumber);
3724
3725 if (res && !ret)
3726 ret = res;
3727 }
3728 }
3729
3730 return ret;
3731 }
3732
3733 /*
3734 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3735 *
3736 * This set option will delete a shared secret key from use.
3737 */
sctp_setsockopt_del_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3738 static int sctp_setsockopt_del_key(struct sock *sk,
3739 struct sctp_authkeyid *val,
3740 unsigned int optlen)
3741 {
3742 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3743 struct sctp_association *asoc;
3744 int ret = 0;
3745
3746 if (optlen != sizeof(struct sctp_authkeyid))
3747 return -EINVAL;
3748
3749 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3750 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3751 sctp_style(sk, UDP))
3752 return -EINVAL;
3753
3754 if (asoc)
3755 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3756
3757 if (sctp_style(sk, TCP))
3758 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3759
3760 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3761 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3762 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3763 if (ret)
3764 return ret;
3765 }
3766
3767 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3768 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3769 list_for_each_entry(asoc, &ep->asocs, asocs) {
3770 int res = sctp_auth_del_key_id(ep, asoc,
3771 val->scact_keynumber);
3772
3773 if (res && !ret)
3774 ret = res;
3775 }
3776 }
3777
3778 return ret;
3779 }
3780
3781 /*
3782 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3783 *
3784 * This set option will deactivate a shared secret key.
3785 */
sctp_setsockopt_deactivate_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3786 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3787 struct sctp_authkeyid *val,
3788 unsigned int optlen)
3789 {
3790 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3791 struct sctp_association *asoc;
3792 int ret = 0;
3793
3794 if (optlen != sizeof(struct sctp_authkeyid))
3795 return -EINVAL;
3796
3797 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3798 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3799 sctp_style(sk, UDP))
3800 return -EINVAL;
3801
3802 if (asoc)
3803 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3804
3805 if (sctp_style(sk, TCP))
3806 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3807
3808 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3809 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3810 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3811 if (ret)
3812 return ret;
3813 }
3814
3815 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3816 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3817 list_for_each_entry(asoc, &ep->asocs, asocs) {
3818 int res = sctp_auth_deact_key_id(ep, asoc,
3819 val->scact_keynumber);
3820
3821 if (res && !ret)
3822 ret = res;
3823 }
3824 }
3825
3826 return ret;
3827 }
3828
3829 /*
3830 * 8.1.23 SCTP_AUTO_ASCONF
3831 *
3832 * This option will enable or disable the use of the automatic generation of
3833 * ASCONF chunks to add and delete addresses to an existing association. Note
3834 * that this option has two caveats namely: a) it only affects sockets that
3835 * are bound to all addresses available to the SCTP stack, and b) the system
3836 * administrator may have an overriding control that turns the ASCONF feature
3837 * off no matter what setting the socket option may have.
3838 * This option expects an integer boolean flag, where a non-zero value turns on
3839 * the option, and a zero value turns off the option.
3840 * Note. In this implementation, socket operation overrides default parameter
3841 * being set by sysctl as well as FreeBSD implementation
3842 */
sctp_setsockopt_auto_asconf(struct sock * sk,int * val,unsigned int optlen)3843 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3844 unsigned int optlen)
3845 {
3846 struct sctp_sock *sp = sctp_sk(sk);
3847
3848 if (optlen < sizeof(int))
3849 return -EINVAL;
3850 if (!sctp_is_ep_boundall(sk) && *val)
3851 return -EINVAL;
3852 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3853 return 0;
3854
3855 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3856 if (*val == 0 && sp->do_auto_asconf) {
3857 list_del(&sp->auto_asconf_list);
3858 sp->do_auto_asconf = 0;
3859 } else if (*val && !sp->do_auto_asconf) {
3860 list_add_tail(&sp->auto_asconf_list,
3861 &sock_net(sk)->sctp.auto_asconf_splist);
3862 sp->do_auto_asconf = 1;
3863 }
3864 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3865 return 0;
3866 }
3867
3868 /*
3869 * SCTP_PEER_ADDR_THLDS
3870 *
3871 * This option allows us to alter the partially failed threshold for one or all
3872 * transports in an association. See Section 6.1 of:
3873 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3874 */
sctp_setsockopt_paddr_thresholds(struct sock * sk,struct sctp_paddrthlds_v2 * val,unsigned int optlen,bool v2)3875 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3876 struct sctp_paddrthlds_v2 *val,
3877 unsigned int optlen, bool v2)
3878 {
3879 struct sctp_transport *trans;
3880 struct sctp_association *asoc;
3881 int len;
3882
3883 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3884 if (optlen < len)
3885 return -EINVAL;
3886
3887 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3888 return -EINVAL;
3889
3890 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3891 trans = sctp_addr_id2transport(sk, &val->spt_address,
3892 val->spt_assoc_id);
3893 if (!trans)
3894 return -ENOENT;
3895
3896 if (val->spt_pathmaxrxt)
3897 trans->pathmaxrxt = val->spt_pathmaxrxt;
3898 if (v2)
3899 trans->ps_retrans = val->spt_pathcpthld;
3900 trans->pf_retrans = val->spt_pathpfthld;
3901
3902 return 0;
3903 }
3904
3905 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3906 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3907 sctp_style(sk, UDP))
3908 return -EINVAL;
3909
3910 if (asoc) {
3911 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3912 transports) {
3913 if (val->spt_pathmaxrxt)
3914 trans->pathmaxrxt = val->spt_pathmaxrxt;
3915 if (v2)
3916 trans->ps_retrans = val->spt_pathcpthld;
3917 trans->pf_retrans = val->spt_pathpfthld;
3918 }
3919
3920 if (val->spt_pathmaxrxt)
3921 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3922 if (v2)
3923 asoc->ps_retrans = val->spt_pathcpthld;
3924 asoc->pf_retrans = val->spt_pathpfthld;
3925 } else {
3926 struct sctp_sock *sp = sctp_sk(sk);
3927
3928 if (val->spt_pathmaxrxt)
3929 sp->pathmaxrxt = val->spt_pathmaxrxt;
3930 if (v2)
3931 sp->ps_retrans = val->spt_pathcpthld;
3932 sp->pf_retrans = val->spt_pathpfthld;
3933 }
3934
3935 return 0;
3936 }
3937
sctp_setsockopt_recvrcvinfo(struct sock * sk,int * val,unsigned int optlen)3938 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3939 unsigned int optlen)
3940 {
3941 if (optlen < sizeof(int))
3942 return -EINVAL;
3943
3944 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3945
3946 return 0;
3947 }
3948
sctp_setsockopt_recvnxtinfo(struct sock * sk,int * val,unsigned int optlen)3949 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3950 unsigned int optlen)
3951 {
3952 if (optlen < sizeof(int))
3953 return -EINVAL;
3954
3955 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3956
3957 return 0;
3958 }
3959
sctp_setsockopt_pr_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3960 static int sctp_setsockopt_pr_supported(struct sock *sk,
3961 struct sctp_assoc_value *params,
3962 unsigned int optlen)
3963 {
3964 struct sctp_association *asoc;
3965
3966 if (optlen != sizeof(*params))
3967 return -EINVAL;
3968
3969 asoc = sctp_id2assoc(sk, params->assoc_id);
3970 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3971 sctp_style(sk, UDP))
3972 return -EINVAL;
3973
3974 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3975
3976 return 0;
3977 }
3978
sctp_setsockopt_default_prinfo(struct sock * sk,struct sctp_default_prinfo * info,unsigned int optlen)3979 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3980 struct sctp_default_prinfo *info,
3981 unsigned int optlen)
3982 {
3983 struct sctp_sock *sp = sctp_sk(sk);
3984 struct sctp_association *asoc;
3985 int retval = -EINVAL;
3986
3987 if (optlen != sizeof(*info))
3988 goto out;
3989
3990 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3991 goto out;
3992
3993 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3994 info->pr_value = 0;
3995
3996 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3997 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3998 sctp_style(sk, UDP))
3999 goto out;
4000
4001 retval = 0;
4002
4003 if (asoc) {
4004 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
4005 asoc->default_timetolive = info->pr_value;
4006 goto out;
4007 }
4008
4009 if (sctp_style(sk, TCP))
4010 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4011
4012 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4013 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4014 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4015 sp->default_timetolive = info->pr_value;
4016 }
4017
4018 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4019 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4020 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4021 SCTP_PR_SET_POLICY(asoc->default_flags,
4022 info->pr_policy);
4023 asoc->default_timetolive = info->pr_value;
4024 }
4025 }
4026
4027 out:
4028 return retval;
4029 }
4030
sctp_setsockopt_reconfig_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4031 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4032 struct sctp_assoc_value *params,
4033 unsigned int optlen)
4034 {
4035 struct sctp_association *asoc;
4036 int retval = -EINVAL;
4037
4038 if (optlen != sizeof(*params))
4039 goto out;
4040
4041 asoc = sctp_id2assoc(sk, params->assoc_id);
4042 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4043 sctp_style(sk, UDP))
4044 goto out;
4045
4046 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4047
4048 retval = 0;
4049
4050 out:
4051 return retval;
4052 }
4053
sctp_setsockopt_enable_strreset(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4054 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4055 struct sctp_assoc_value *params,
4056 unsigned int optlen)
4057 {
4058 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4059 struct sctp_association *asoc;
4060 int retval = -EINVAL;
4061
4062 if (optlen != sizeof(*params))
4063 goto out;
4064
4065 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4066 goto out;
4067
4068 asoc = sctp_id2assoc(sk, params->assoc_id);
4069 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4070 sctp_style(sk, UDP))
4071 goto out;
4072
4073 retval = 0;
4074
4075 if (asoc) {
4076 asoc->strreset_enable = params->assoc_value;
4077 goto out;
4078 }
4079
4080 if (sctp_style(sk, TCP))
4081 params->assoc_id = SCTP_FUTURE_ASSOC;
4082
4083 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4084 params->assoc_id == SCTP_ALL_ASSOC)
4085 ep->strreset_enable = params->assoc_value;
4086
4087 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4088 params->assoc_id == SCTP_ALL_ASSOC)
4089 list_for_each_entry(asoc, &ep->asocs, asocs)
4090 asoc->strreset_enable = params->assoc_value;
4091
4092 out:
4093 return retval;
4094 }
4095
sctp_setsockopt_reset_streams(struct sock * sk,struct sctp_reset_streams * params,unsigned int optlen)4096 static int sctp_setsockopt_reset_streams(struct sock *sk,
4097 struct sctp_reset_streams *params,
4098 unsigned int optlen)
4099 {
4100 struct sctp_association *asoc;
4101
4102 if (optlen < sizeof(*params))
4103 return -EINVAL;
4104 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4105 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4106 sizeof(__u16) * sizeof(*params));
4107
4108 if (params->srs_number_streams * sizeof(__u16) >
4109 optlen - sizeof(*params))
4110 return -EINVAL;
4111
4112 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4113 if (!asoc)
4114 return -EINVAL;
4115
4116 return sctp_send_reset_streams(asoc, params);
4117 }
4118
sctp_setsockopt_reset_assoc(struct sock * sk,sctp_assoc_t * associd,unsigned int optlen)4119 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4120 unsigned int optlen)
4121 {
4122 struct sctp_association *asoc;
4123
4124 if (optlen != sizeof(*associd))
4125 return -EINVAL;
4126
4127 asoc = sctp_id2assoc(sk, *associd);
4128 if (!asoc)
4129 return -EINVAL;
4130
4131 return sctp_send_reset_assoc(asoc);
4132 }
4133
sctp_setsockopt_add_streams(struct sock * sk,struct sctp_add_streams * params,unsigned int optlen)4134 static int sctp_setsockopt_add_streams(struct sock *sk,
4135 struct sctp_add_streams *params,
4136 unsigned int optlen)
4137 {
4138 struct sctp_association *asoc;
4139
4140 if (optlen != sizeof(*params))
4141 return -EINVAL;
4142
4143 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4144 if (!asoc)
4145 return -EINVAL;
4146
4147 return sctp_send_add_streams(asoc, params);
4148 }
4149
sctp_setsockopt_scheduler(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4150 static int sctp_setsockopt_scheduler(struct sock *sk,
4151 struct sctp_assoc_value *params,
4152 unsigned int optlen)
4153 {
4154 struct sctp_sock *sp = sctp_sk(sk);
4155 struct sctp_association *asoc;
4156 int retval = 0;
4157
4158 if (optlen < sizeof(*params))
4159 return -EINVAL;
4160
4161 if (params->assoc_value > SCTP_SS_MAX)
4162 return -EINVAL;
4163
4164 asoc = sctp_id2assoc(sk, params->assoc_id);
4165 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4166 sctp_style(sk, UDP))
4167 return -EINVAL;
4168
4169 if (asoc)
4170 return sctp_sched_set_sched(asoc, params->assoc_value);
4171
4172 if (sctp_style(sk, TCP))
4173 params->assoc_id = SCTP_FUTURE_ASSOC;
4174
4175 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4176 params->assoc_id == SCTP_ALL_ASSOC)
4177 sp->default_ss = params->assoc_value;
4178
4179 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4180 params->assoc_id == SCTP_ALL_ASSOC) {
4181 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4182 int ret = sctp_sched_set_sched(asoc,
4183 params->assoc_value);
4184
4185 if (ret && !retval)
4186 retval = ret;
4187 }
4188 }
4189
4190 return retval;
4191 }
4192
sctp_setsockopt_scheduler_value(struct sock * sk,struct sctp_stream_value * params,unsigned int optlen)4193 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4194 struct sctp_stream_value *params,
4195 unsigned int optlen)
4196 {
4197 struct sctp_association *asoc;
4198 int retval = -EINVAL;
4199
4200 if (optlen < sizeof(*params))
4201 goto out;
4202
4203 asoc = sctp_id2assoc(sk, params->assoc_id);
4204 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4205 sctp_style(sk, UDP))
4206 goto out;
4207
4208 if (asoc) {
4209 retval = sctp_sched_set_value(asoc, params->stream_id,
4210 params->stream_value, GFP_KERNEL);
4211 goto out;
4212 }
4213
4214 retval = 0;
4215
4216 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4217 int ret = sctp_sched_set_value(asoc, params->stream_id,
4218 params->stream_value,
4219 GFP_KERNEL);
4220 if (ret && !retval) /* try to return the 1st error. */
4221 retval = ret;
4222 }
4223
4224 out:
4225 return retval;
4226 }
4227
sctp_setsockopt_interleaving_supported(struct sock * sk,struct sctp_assoc_value * p,unsigned int optlen)4228 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4229 struct sctp_assoc_value *p,
4230 unsigned int optlen)
4231 {
4232 struct sctp_sock *sp = sctp_sk(sk);
4233 struct sctp_association *asoc;
4234
4235 if (optlen < sizeof(*p))
4236 return -EINVAL;
4237
4238 asoc = sctp_id2assoc(sk, p->assoc_id);
4239 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4240 return -EINVAL;
4241
4242 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4243 return -EPERM;
4244 }
4245
4246 sp->ep->intl_enable = !!p->assoc_value;
4247 return 0;
4248 }
4249
sctp_setsockopt_reuse_port(struct sock * sk,int * val,unsigned int optlen)4250 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4251 unsigned int optlen)
4252 {
4253 if (!sctp_style(sk, TCP))
4254 return -EOPNOTSUPP;
4255
4256 if (sctp_sk(sk)->ep->base.bind_addr.port)
4257 return -EFAULT;
4258
4259 if (optlen < sizeof(int))
4260 return -EINVAL;
4261
4262 sctp_sk(sk)->reuse = !!*val;
4263
4264 return 0;
4265 }
4266
sctp_assoc_ulpevent_type_set(struct sctp_event * param,struct sctp_association * asoc)4267 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4268 struct sctp_association *asoc)
4269 {
4270 struct sctp_ulpevent *event;
4271
4272 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4273
4274 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4275 if (sctp_outq_is_empty(&asoc->outqueue)) {
4276 event = sctp_ulpevent_make_sender_dry_event(asoc,
4277 GFP_USER | __GFP_NOWARN);
4278 if (!event)
4279 return -ENOMEM;
4280
4281 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4282 }
4283 }
4284
4285 return 0;
4286 }
4287
sctp_setsockopt_event(struct sock * sk,struct sctp_event * param,unsigned int optlen)4288 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4289 unsigned int optlen)
4290 {
4291 struct sctp_sock *sp = sctp_sk(sk);
4292 struct sctp_association *asoc;
4293 int retval = 0;
4294
4295 if (optlen < sizeof(*param))
4296 return -EINVAL;
4297
4298 if (param->se_type < SCTP_SN_TYPE_BASE ||
4299 param->se_type > SCTP_SN_TYPE_MAX)
4300 return -EINVAL;
4301
4302 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4303 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4304 sctp_style(sk, UDP))
4305 return -EINVAL;
4306
4307 if (asoc)
4308 return sctp_assoc_ulpevent_type_set(param, asoc);
4309
4310 if (sctp_style(sk, TCP))
4311 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4312
4313 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4314 param->se_assoc_id == SCTP_ALL_ASSOC)
4315 sctp_ulpevent_type_set(&sp->subscribe,
4316 param->se_type, param->se_on);
4317
4318 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4319 param->se_assoc_id == SCTP_ALL_ASSOC) {
4320 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4321 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4322
4323 if (ret && !retval)
4324 retval = ret;
4325 }
4326 }
4327
4328 return retval;
4329 }
4330
sctp_setsockopt_asconf_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4331 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4332 struct sctp_assoc_value *params,
4333 unsigned int optlen)
4334 {
4335 struct sctp_association *asoc;
4336 struct sctp_endpoint *ep;
4337 int retval = -EINVAL;
4338
4339 if (optlen != sizeof(*params))
4340 goto out;
4341
4342 asoc = sctp_id2assoc(sk, params->assoc_id);
4343 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4344 sctp_style(sk, UDP))
4345 goto out;
4346
4347 ep = sctp_sk(sk)->ep;
4348 ep->asconf_enable = !!params->assoc_value;
4349
4350 if (ep->asconf_enable && ep->auth_enable) {
4351 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4352 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4353 }
4354
4355 retval = 0;
4356
4357 out:
4358 return retval;
4359 }
4360
sctp_setsockopt_auth_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4361 static int sctp_setsockopt_auth_supported(struct sock *sk,
4362 struct sctp_assoc_value *params,
4363 unsigned int optlen)
4364 {
4365 struct sctp_association *asoc;
4366 struct sctp_endpoint *ep;
4367 int retval = -EINVAL;
4368
4369 if (optlen != sizeof(*params))
4370 goto out;
4371
4372 asoc = sctp_id2assoc(sk, params->assoc_id);
4373 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4374 sctp_style(sk, UDP))
4375 goto out;
4376
4377 ep = sctp_sk(sk)->ep;
4378 if (params->assoc_value) {
4379 retval = sctp_auth_init(ep, GFP_KERNEL);
4380 if (retval)
4381 goto out;
4382 if (ep->asconf_enable) {
4383 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4384 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4385 }
4386 }
4387
4388 ep->auth_enable = !!params->assoc_value;
4389 retval = 0;
4390
4391 out:
4392 return retval;
4393 }
4394
sctp_setsockopt_ecn_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4395 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4396 struct sctp_assoc_value *params,
4397 unsigned int optlen)
4398 {
4399 struct sctp_association *asoc;
4400 int retval = -EINVAL;
4401
4402 if (optlen != sizeof(*params))
4403 goto out;
4404
4405 asoc = sctp_id2assoc(sk, params->assoc_id);
4406 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4407 sctp_style(sk, UDP))
4408 goto out;
4409
4410 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4411 retval = 0;
4412
4413 out:
4414 return retval;
4415 }
4416
sctp_setsockopt_pf_expose(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4417 static int sctp_setsockopt_pf_expose(struct sock *sk,
4418 struct sctp_assoc_value *params,
4419 unsigned int optlen)
4420 {
4421 struct sctp_association *asoc;
4422 int retval = -EINVAL;
4423
4424 if (optlen != sizeof(*params))
4425 goto out;
4426
4427 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4428 goto out;
4429
4430 asoc = sctp_id2assoc(sk, params->assoc_id);
4431 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4432 sctp_style(sk, UDP))
4433 goto out;
4434
4435 if (asoc)
4436 asoc->pf_expose = params->assoc_value;
4437 else
4438 sctp_sk(sk)->pf_expose = params->assoc_value;
4439 retval = 0;
4440
4441 out:
4442 return retval;
4443 }
4444
sctp_setsockopt_encap_port(struct sock * sk,struct sctp_udpencaps * encap,unsigned int optlen)4445 static int sctp_setsockopt_encap_port(struct sock *sk,
4446 struct sctp_udpencaps *encap,
4447 unsigned int optlen)
4448 {
4449 struct sctp_association *asoc;
4450 struct sctp_transport *t;
4451 __be16 encap_port;
4452
4453 if (optlen != sizeof(*encap))
4454 return -EINVAL;
4455
4456 /* If an address other than INADDR_ANY is specified, and
4457 * no transport is found, then the request is invalid.
4458 */
4459 encap_port = (__force __be16)encap->sue_port;
4460 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4461 t = sctp_addr_id2transport(sk, &encap->sue_address,
4462 encap->sue_assoc_id);
4463 if (!t)
4464 return -EINVAL;
4465
4466 t->encap_port = encap_port;
4467 return 0;
4468 }
4469
4470 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4471 * socket is a one to many style socket, and an association
4472 * was not found, then the id was invalid.
4473 */
4474 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4475 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4476 sctp_style(sk, UDP))
4477 return -EINVAL;
4478
4479 /* If changes are for association, also apply encap_port to
4480 * each transport.
4481 */
4482 if (asoc) {
4483 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4484 transports)
4485 t->encap_port = encap_port;
4486
4487 asoc->encap_port = encap_port;
4488 return 0;
4489 }
4490
4491 sctp_sk(sk)->encap_port = encap_port;
4492 return 0;
4493 }
4494
sctp_setsockopt_probe_interval(struct sock * sk,struct sctp_probeinterval * params,unsigned int optlen)4495 static int sctp_setsockopt_probe_interval(struct sock *sk,
4496 struct sctp_probeinterval *params,
4497 unsigned int optlen)
4498 {
4499 struct sctp_association *asoc;
4500 struct sctp_transport *t;
4501 __u32 probe_interval;
4502
4503 if (optlen != sizeof(*params))
4504 return -EINVAL;
4505
4506 probe_interval = params->spi_interval;
4507 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4508 return -EINVAL;
4509
4510 /* If an address other than INADDR_ANY is specified, and
4511 * no transport is found, then the request is invalid.
4512 */
4513 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) {
4514 t = sctp_addr_id2transport(sk, ¶ms->spi_address,
4515 params->spi_assoc_id);
4516 if (!t)
4517 return -EINVAL;
4518
4519 t->probe_interval = msecs_to_jiffies(probe_interval);
4520 sctp_transport_pl_reset(t);
4521 return 0;
4522 }
4523
4524 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4525 * socket is a one to many style socket, and an association
4526 * was not found, then the id was invalid.
4527 */
4528 asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4529 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4530 sctp_style(sk, UDP))
4531 return -EINVAL;
4532
4533 /* If changes are for association, also apply probe_interval to
4534 * each transport.
4535 */
4536 if (asoc) {
4537 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4538 t->probe_interval = msecs_to_jiffies(probe_interval);
4539 sctp_transport_pl_reset(t);
4540 }
4541
4542 asoc->probe_interval = msecs_to_jiffies(probe_interval);
4543 return 0;
4544 }
4545
4546 sctp_sk(sk)->probe_interval = probe_interval;
4547 return 0;
4548 }
4549
4550 /* API 6.2 setsockopt(), getsockopt()
4551 *
4552 * Applications use setsockopt() and getsockopt() to set or retrieve
4553 * socket options. Socket options are used to change the default
4554 * behavior of sockets calls. They are described in Section 7.
4555 *
4556 * The syntax is:
4557 *
4558 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4559 * int __user *optlen);
4560 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4561 * int optlen);
4562 *
4563 * sd - the socket descript.
4564 * level - set to IPPROTO_SCTP for all SCTP options.
4565 * optname - the option name.
4566 * optval - the buffer to store the value of the option.
4567 * optlen - the size of the buffer.
4568 */
sctp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4569 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4570 sockptr_t optval, unsigned int optlen)
4571 {
4572 void *kopt = NULL;
4573 int retval = 0;
4574
4575 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4576
4577 /* I can hardly begin to describe how wrong this is. This is
4578 * so broken as to be worse than useless. The API draft
4579 * REALLY is NOT helpful here... I am not convinced that the
4580 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4581 * are at all well-founded.
4582 */
4583 if (level != SOL_SCTP) {
4584 struct sctp_af *af = sctp_sk(sk)->pf->af;
4585
4586 return af->setsockopt(sk, level, optname, optval, optlen);
4587 }
4588
4589 if (optlen > 0) {
4590 /* Trim it to the biggest size sctp sockopt may need if necessary */
4591 optlen = min_t(unsigned int, optlen,
4592 PAGE_ALIGN(USHRT_MAX +
4593 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4594 kopt = memdup_sockptr(optval, optlen);
4595 if (IS_ERR(kopt))
4596 return PTR_ERR(kopt);
4597 }
4598
4599 lock_sock(sk);
4600
4601 switch (optname) {
4602 case SCTP_SOCKOPT_BINDX_ADD:
4603 /* 'optlen' is the size of the addresses buffer. */
4604 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4605 SCTP_BINDX_ADD_ADDR);
4606 break;
4607
4608 case SCTP_SOCKOPT_BINDX_REM:
4609 /* 'optlen' is the size of the addresses buffer. */
4610 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4611 SCTP_BINDX_REM_ADDR);
4612 break;
4613
4614 case SCTP_SOCKOPT_CONNECTX_OLD:
4615 /* 'optlen' is the size of the addresses buffer. */
4616 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4617 break;
4618
4619 case SCTP_SOCKOPT_CONNECTX:
4620 /* 'optlen' is the size of the addresses buffer. */
4621 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4622 break;
4623
4624 case SCTP_DISABLE_FRAGMENTS:
4625 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4626 break;
4627
4628 case SCTP_EVENTS:
4629 retval = sctp_setsockopt_events(sk, kopt, optlen);
4630 break;
4631
4632 case SCTP_AUTOCLOSE:
4633 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4634 break;
4635
4636 case SCTP_PEER_ADDR_PARAMS:
4637 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4638 break;
4639
4640 case SCTP_DELAYED_SACK:
4641 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4642 break;
4643 case SCTP_PARTIAL_DELIVERY_POINT:
4644 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4645 break;
4646
4647 case SCTP_INITMSG:
4648 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4649 break;
4650 case SCTP_DEFAULT_SEND_PARAM:
4651 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4652 break;
4653 case SCTP_DEFAULT_SNDINFO:
4654 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4655 break;
4656 case SCTP_PRIMARY_ADDR:
4657 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4658 break;
4659 case SCTP_SET_PEER_PRIMARY_ADDR:
4660 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4661 break;
4662 case SCTP_NODELAY:
4663 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4664 break;
4665 case SCTP_RTOINFO:
4666 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4667 break;
4668 case SCTP_ASSOCINFO:
4669 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4670 break;
4671 case SCTP_I_WANT_MAPPED_V4_ADDR:
4672 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4673 break;
4674 case SCTP_MAXSEG:
4675 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4676 break;
4677 case SCTP_ADAPTATION_LAYER:
4678 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4679 break;
4680 case SCTP_CONTEXT:
4681 retval = sctp_setsockopt_context(sk, kopt, optlen);
4682 break;
4683 case SCTP_FRAGMENT_INTERLEAVE:
4684 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4685 break;
4686 case SCTP_MAX_BURST:
4687 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4688 break;
4689 case SCTP_AUTH_CHUNK:
4690 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4691 break;
4692 case SCTP_HMAC_IDENT:
4693 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4694 break;
4695 case SCTP_AUTH_KEY:
4696 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4697 break;
4698 case SCTP_AUTH_ACTIVE_KEY:
4699 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4700 break;
4701 case SCTP_AUTH_DELETE_KEY:
4702 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4703 break;
4704 case SCTP_AUTH_DEACTIVATE_KEY:
4705 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4706 break;
4707 case SCTP_AUTO_ASCONF:
4708 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4709 break;
4710 case SCTP_PEER_ADDR_THLDS:
4711 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4712 false);
4713 break;
4714 case SCTP_PEER_ADDR_THLDS_V2:
4715 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4716 true);
4717 break;
4718 case SCTP_RECVRCVINFO:
4719 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4720 break;
4721 case SCTP_RECVNXTINFO:
4722 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4723 break;
4724 case SCTP_PR_SUPPORTED:
4725 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4726 break;
4727 case SCTP_DEFAULT_PRINFO:
4728 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4729 break;
4730 case SCTP_RECONFIG_SUPPORTED:
4731 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4732 break;
4733 case SCTP_ENABLE_STREAM_RESET:
4734 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4735 break;
4736 case SCTP_RESET_STREAMS:
4737 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4738 break;
4739 case SCTP_RESET_ASSOC:
4740 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4741 break;
4742 case SCTP_ADD_STREAMS:
4743 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4744 break;
4745 case SCTP_STREAM_SCHEDULER:
4746 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4747 break;
4748 case SCTP_STREAM_SCHEDULER_VALUE:
4749 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4750 break;
4751 case SCTP_INTERLEAVING_SUPPORTED:
4752 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4753 optlen);
4754 break;
4755 case SCTP_REUSE_PORT:
4756 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4757 break;
4758 case SCTP_EVENT:
4759 retval = sctp_setsockopt_event(sk, kopt, optlen);
4760 break;
4761 case SCTP_ASCONF_SUPPORTED:
4762 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4763 break;
4764 case SCTP_AUTH_SUPPORTED:
4765 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4766 break;
4767 case SCTP_ECN_SUPPORTED:
4768 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4769 break;
4770 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4771 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4772 break;
4773 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4774 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4775 break;
4776 case SCTP_PLPMTUD_PROBE_INTERVAL:
4777 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4778 break;
4779 default:
4780 retval = -ENOPROTOOPT;
4781 break;
4782 }
4783
4784 release_sock(sk);
4785 kfree(kopt);
4786 return retval;
4787 }
4788
4789 /* API 3.1.6 connect() - UDP Style Syntax
4790 *
4791 * An application may use the connect() call in the UDP model to initiate an
4792 * association without sending data.
4793 *
4794 * The syntax is:
4795 *
4796 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4797 *
4798 * sd: the socket descriptor to have a new association added to.
4799 *
4800 * nam: the address structure (either struct sockaddr_in or struct
4801 * sockaddr_in6 defined in RFC2553 [7]).
4802 *
4803 * len: the size of the address.
4804 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len,int flags)4805 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4806 int addr_len, int flags)
4807 {
4808 struct sctp_af *af;
4809 int err = -EINVAL;
4810
4811 lock_sock(sk);
4812 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4813 addr, addr_len);
4814
4815 /* Validate addr_len before calling common connect/connectx routine. */
4816 af = sctp_get_af_specific(addr->sa_family);
4817 if (af && addr_len >= af->sockaddr_len)
4818 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4819
4820 release_sock(sk);
4821 return err;
4822 }
4823
sctp_inet_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)4824 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4825 int addr_len, int flags)
4826 {
4827 if (addr_len < sizeof(uaddr->sa_family))
4828 return -EINVAL;
4829
4830 if (uaddr->sa_family == AF_UNSPEC)
4831 return -EOPNOTSUPP;
4832
4833 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4834 }
4835
4836 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)4837 static int sctp_disconnect(struct sock *sk, int flags)
4838 {
4839 return -EOPNOTSUPP; /* STUB */
4840 }
4841
4842 /* 4.1.4 accept() - TCP Style Syntax
4843 *
4844 * Applications use accept() call to remove an established SCTP
4845 * association from the accept queue of the endpoint. A new socket
4846 * descriptor will be returned from accept() to represent the newly
4847 * formed association.
4848 */
sctp_accept(struct sock * sk,int flags,int * err,bool kern)4849 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4850 {
4851 struct sctp_sock *sp;
4852 struct sctp_endpoint *ep;
4853 struct sock *newsk = NULL;
4854 struct sctp_association *asoc;
4855 long timeo;
4856 int error = 0;
4857
4858 lock_sock(sk);
4859
4860 sp = sctp_sk(sk);
4861 ep = sp->ep;
4862
4863 if (!sctp_style(sk, TCP)) {
4864 error = -EOPNOTSUPP;
4865 goto out;
4866 }
4867
4868 if (!sctp_sstate(sk, LISTENING)) {
4869 error = -EINVAL;
4870 goto out;
4871 }
4872
4873 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4874
4875 error = sctp_wait_for_accept(sk, timeo);
4876 if (error)
4877 goto out;
4878
4879 /* We treat the list of associations on the endpoint as the accept
4880 * queue and pick the first association on the list.
4881 */
4882 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4883
4884 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4885 if (!newsk) {
4886 error = -ENOMEM;
4887 goto out;
4888 }
4889
4890 /* Populate the fields of the newsk from the oldsk and migrate the
4891 * asoc to the newsk.
4892 */
4893 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4894 if (error) {
4895 sk_common_release(newsk);
4896 newsk = NULL;
4897 }
4898
4899 out:
4900 release_sock(sk);
4901 *err = error;
4902 return newsk;
4903 }
4904
4905 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,int * karg)4906 static int sctp_ioctl(struct sock *sk, int cmd, int *karg)
4907 {
4908 int rc = -ENOTCONN;
4909
4910 lock_sock(sk);
4911
4912 /*
4913 * SEQPACKET-style sockets in LISTENING state are valid, for
4914 * SCTP, so only discard TCP-style sockets in LISTENING state.
4915 */
4916 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4917 goto out;
4918
4919 switch (cmd) {
4920 case SIOCINQ: {
4921 struct sk_buff *skb;
4922 *karg = 0;
4923
4924 skb = skb_peek(&sk->sk_receive_queue);
4925 if (skb != NULL) {
4926 /*
4927 * We will only return the amount of this packet since
4928 * that is all that will be read.
4929 */
4930 *karg = skb->len;
4931 }
4932 rc = 0;
4933 break;
4934 }
4935 default:
4936 rc = -ENOIOCTLCMD;
4937 break;
4938 }
4939 out:
4940 release_sock(sk);
4941 return rc;
4942 }
4943
4944 /* This is the function which gets called during socket creation to
4945 * initialized the SCTP-specific portion of the sock.
4946 * The sock structure should already be zero-filled memory.
4947 */
sctp_init_sock(struct sock * sk)4948 static int sctp_init_sock(struct sock *sk)
4949 {
4950 struct net *net = sock_net(sk);
4951 struct sctp_sock *sp;
4952
4953 pr_debug("%s: sk:%p\n", __func__, sk);
4954
4955 sp = sctp_sk(sk);
4956
4957 /* Initialize the SCTP per socket area. */
4958 switch (sk->sk_type) {
4959 case SOCK_SEQPACKET:
4960 sp->type = SCTP_SOCKET_UDP;
4961 break;
4962 case SOCK_STREAM:
4963 sp->type = SCTP_SOCKET_TCP;
4964 break;
4965 default:
4966 return -ESOCKTNOSUPPORT;
4967 }
4968
4969 sk->sk_gso_type = SKB_GSO_SCTP;
4970
4971 /* Initialize default send parameters. These parameters can be
4972 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4973 */
4974 sp->default_stream = 0;
4975 sp->default_ppid = 0;
4976 sp->default_flags = 0;
4977 sp->default_context = 0;
4978 sp->default_timetolive = 0;
4979
4980 sp->default_rcv_context = 0;
4981 sp->max_burst = net->sctp.max_burst;
4982
4983 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4984
4985 /* Initialize default setup parameters. These parameters
4986 * can be modified with the SCTP_INITMSG socket option or
4987 * overridden by the SCTP_INIT CMSG.
4988 */
4989 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4990 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4991 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4992 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4993
4994 /* Initialize default RTO related parameters. These parameters can
4995 * be modified for with the SCTP_RTOINFO socket option.
4996 */
4997 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4998 sp->rtoinfo.srto_max = net->sctp.rto_max;
4999 sp->rtoinfo.srto_min = net->sctp.rto_min;
5000
5001 /* Initialize default association related parameters. These parameters
5002 * can be modified with the SCTP_ASSOCINFO socket option.
5003 */
5004 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5005 sp->assocparams.sasoc_number_peer_destinations = 0;
5006 sp->assocparams.sasoc_peer_rwnd = 0;
5007 sp->assocparams.sasoc_local_rwnd = 0;
5008 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5009
5010 /* Initialize default event subscriptions. By default, all the
5011 * options are off.
5012 */
5013 sp->subscribe = 0;
5014
5015 /* Default Peer Address Parameters. These defaults can
5016 * be modified via SCTP_PEER_ADDR_PARAMS
5017 */
5018 sp->hbinterval = net->sctp.hb_interval;
5019 sp->udp_port = htons(net->sctp.udp_port);
5020 sp->encap_port = htons(net->sctp.encap_port);
5021 sp->pathmaxrxt = net->sctp.max_retrans_path;
5022 sp->pf_retrans = net->sctp.pf_retrans;
5023 sp->ps_retrans = net->sctp.ps_retrans;
5024 sp->pf_expose = net->sctp.pf_expose;
5025 sp->pathmtu = 0; /* allow default discovery */
5026 sp->sackdelay = net->sctp.sack_timeout;
5027 sp->sackfreq = 2;
5028 sp->param_flags = SPP_HB_ENABLE |
5029 SPP_PMTUD_ENABLE |
5030 SPP_SACKDELAY_ENABLE;
5031 sp->default_ss = SCTP_SS_DEFAULT;
5032
5033 /* If enabled no SCTP message fragmentation will be performed.
5034 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5035 */
5036 sp->disable_fragments = 0;
5037
5038 /* Enable Nagle algorithm by default. */
5039 sp->nodelay = 0;
5040
5041 sp->recvrcvinfo = 0;
5042 sp->recvnxtinfo = 0;
5043
5044 /* Enable by default. */
5045 sp->v4mapped = 1;
5046
5047 /* Auto-close idle associations after the configured
5048 * number of seconds. A value of 0 disables this
5049 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5050 * for UDP-style sockets only.
5051 */
5052 sp->autoclose = 0;
5053
5054 /* User specified fragmentation limit. */
5055 sp->user_frag = 0;
5056
5057 sp->adaptation_ind = 0;
5058
5059 sp->pf = sctp_get_pf_specific(sk->sk_family);
5060
5061 /* Control variables for partial data delivery. */
5062 atomic_set(&sp->pd_mode, 0);
5063 skb_queue_head_init(&sp->pd_lobby);
5064 sp->frag_interleave = 0;
5065 sp->probe_interval = net->sctp.probe_interval;
5066
5067 /* Create a per socket endpoint structure. Even if we
5068 * change the data structure relationships, this may still
5069 * be useful for storing pre-connect address information.
5070 */
5071 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5072 if (!sp->ep)
5073 return -ENOMEM;
5074
5075 sp->hmac = NULL;
5076
5077 sk->sk_destruct = sctp_destruct_sock;
5078
5079 SCTP_DBG_OBJCNT_INC(sock);
5080
5081 sk_sockets_allocated_inc(sk);
5082 sock_prot_inuse_add(net, sk->sk_prot, 1);
5083
5084 return 0;
5085 }
5086
5087 /* Cleanup any SCTP per socket resources. Must be called with
5088 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5089 */
sctp_destroy_sock(struct sock * sk)5090 static void sctp_destroy_sock(struct sock *sk)
5091 {
5092 struct sctp_sock *sp;
5093
5094 pr_debug("%s: sk:%p\n", __func__, sk);
5095
5096 /* Release our hold on the endpoint. */
5097 sp = sctp_sk(sk);
5098 /* This could happen during socket init, thus we bail out
5099 * early, since the rest of the below is not setup either.
5100 */
5101 if (sp->ep == NULL)
5102 return;
5103
5104 if (sp->do_auto_asconf) {
5105 sp->do_auto_asconf = 0;
5106 list_del(&sp->auto_asconf_list);
5107 }
5108 sctp_endpoint_free(sp->ep);
5109 sk_sockets_allocated_dec(sk);
5110 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5111 }
5112
5113 /* Triggered when there are no references on the socket anymore */
sctp_destruct_common(struct sock * sk)5114 static void sctp_destruct_common(struct sock *sk)
5115 {
5116 struct sctp_sock *sp = sctp_sk(sk);
5117
5118 /* Free up the HMAC transform. */
5119 crypto_free_shash(sp->hmac);
5120 }
5121
sctp_destruct_sock(struct sock * sk)5122 static void sctp_destruct_sock(struct sock *sk)
5123 {
5124 sctp_destruct_common(sk);
5125 inet_sock_destruct(sk);
5126 }
5127
5128 /* API 4.1.7 shutdown() - TCP Style Syntax
5129 * int shutdown(int socket, int how);
5130 *
5131 * sd - the socket descriptor of the association to be closed.
5132 * how - Specifies the type of shutdown. The values are
5133 * as follows:
5134 * SHUT_RD
5135 * Disables further receive operations. No SCTP
5136 * protocol action is taken.
5137 * SHUT_WR
5138 * Disables further send operations, and initiates
5139 * the SCTP shutdown sequence.
5140 * SHUT_RDWR
5141 * Disables further send and receive operations
5142 * and initiates the SCTP shutdown sequence.
5143 */
sctp_shutdown(struct sock * sk,int how)5144 static void sctp_shutdown(struct sock *sk, int how)
5145 {
5146 struct net *net = sock_net(sk);
5147 struct sctp_endpoint *ep;
5148
5149 if (!sctp_style(sk, TCP))
5150 return;
5151
5152 ep = sctp_sk(sk)->ep;
5153 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5154 struct sctp_association *asoc;
5155
5156 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5157 asoc = list_entry(ep->asocs.next,
5158 struct sctp_association, asocs);
5159 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5160 }
5161 }
5162
sctp_get_sctp_info(struct sock * sk,struct sctp_association * asoc,struct sctp_info * info)5163 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5164 struct sctp_info *info)
5165 {
5166 struct sctp_transport *prim;
5167 struct list_head *pos;
5168 int mask;
5169
5170 memset(info, 0, sizeof(*info));
5171 if (!asoc) {
5172 struct sctp_sock *sp = sctp_sk(sk);
5173
5174 info->sctpi_s_autoclose = sp->autoclose;
5175 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5176 info->sctpi_s_pd_point = sp->pd_point;
5177 info->sctpi_s_nodelay = sp->nodelay;
5178 info->sctpi_s_disable_fragments = sp->disable_fragments;
5179 info->sctpi_s_v4mapped = sp->v4mapped;
5180 info->sctpi_s_frag_interleave = sp->frag_interleave;
5181 info->sctpi_s_type = sp->type;
5182
5183 return 0;
5184 }
5185
5186 info->sctpi_tag = asoc->c.my_vtag;
5187 info->sctpi_state = asoc->state;
5188 info->sctpi_rwnd = asoc->a_rwnd;
5189 info->sctpi_unackdata = asoc->unack_data;
5190 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5191 info->sctpi_instrms = asoc->stream.incnt;
5192 info->sctpi_outstrms = asoc->stream.outcnt;
5193 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5194 info->sctpi_inqueue++;
5195 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5196 info->sctpi_outqueue++;
5197 info->sctpi_overall_error = asoc->overall_error_count;
5198 info->sctpi_max_burst = asoc->max_burst;
5199 info->sctpi_maxseg = asoc->frag_point;
5200 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5201 info->sctpi_peer_tag = asoc->c.peer_vtag;
5202
5203 mask = asoc->peer.intl_capable << 1;
5204 mask = (mask | asoc->peer.ecn_capable) << 1;
5205 mask = (mask | asoc->peer.ipv4_address) << 1;
5206 mask = (mask | asoc->peer.ipv6_address) << 1;
5207 mask = (mask | asoc->peer.reconf_capable) << 1;
5208 mask = (mask | asoc->peer.asconf_capable) << 1;
5209 mask = (mask | asoc->peer.prsctp_capable) << 1;
5210 mask = (mask | asoc->peer.auth_capable);
5211 info->sctpi_peer_capable = mask;
5212 mask = asoc->peer.sack_needed << 1;
5213 mask = (mask | asoc->peer.sack_generation) << 1;
5214 mask = (mask | asoc->peer.zero_window_announced);
5215 info->sctpi_peer_sack = mask;
5216
5217 info->sctpi_isacks = asoc->stats.isacks;
5218 info->sctpi_osacks = asoc->stats.osacks;
5219 info->sctpi_opackets = asoc->stats.opackets;
5220 info->sctpi_ipackets = asoc->stats.ipackets;
5221 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5222 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5223 info->sctpi_idupchunks = asoc->stats.idupchunks;
5224 info->sctpi_gapcnt = asoc->stats.gapcnt;
5225 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5226 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5227 info->sctpi_oodchunks = asoc->stats.oodchunks;
5228 info->sctpi_iodchunks = asoc->stats.iodchunks;
5229 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5230 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5231
5232 prim = asoc->peer.primary_path;
5233 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5234 info->sctpi_p_state = prim->state;
5235 info->sctpi_p_cwnd = prim->cwnd;
5236 info->sctpi_p_srtt = prim->srtt;
5237 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5238 info->sctpi_p_hbinterval = prim->hbinterval;
5239 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5240 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5241 info->sctpi_p_ssthresh = prim->ssthresh;
5242 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5243 info->sctpi_p_flight_size = prim->flight_size;
5244 info->sctpi_p_error = prim->error_count;
5245
5246 return 0;
5247 }
5248 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5249
5250 /* use callback to avoid exporting the core structure */
sctp_transport_walk_start(struct rhashtable_iter * iter)5251 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5252 {
5253 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5254
5255 rhashtable_walk_start(iter);
5256 }
5257
sctp_transport_walk_stop(struct rhashtable_iter * iter)5258 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5259 {
5260 rhashtable_walk_stop(iter);
5261 rhashtable_walk_exit(iter);
5262 }
5263
sctp_transport_get_next(struct net * net,struct rhashtable_iter * iter)5264 struct sctp_transport *sctp_transport_get_next(struct net *net,
5265 struct rhashtable_iter *iter)
5266 {
5267 struct sctp_transport *t;
5268
5269 t = rhashtable_walk_next(iter);
5270 for (; t; t = rhashtable_walk_next(iter)) {
5271 if (IS_ERR(t)) {
5272 if (PTR_ERR(t) == -EAGAIN)
5273 continue;
5274 break;
5275 }
5276
5277 if (!sctp_transport_hold(t))
5278 continue;
5279
5280 if (net_eq(t->asoc->base.net, net) &&
5281 t->asoc->peer.primary_path == t)
5282 break;
5283
5284 sctp_transport_put(t);
5285 }
5286
5287 return t;
5288 }
5289
sctp_transport_get_idx(struct net * net,struct rhashtable_iter * iter,int pos)5290 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5291 struct rhashtable_iter *iter,
5292 int pos)
5293 {
5294 struct sctp_transport *t;
5295
5296 if (!pos)
5297 return SEQ_START_TOKEN;
5298
5299 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5300 if (!--pos)
5301 break;
5302 sctp_transport_put(t);
5303 }
5304
5305 return t;
5306 }
5307
sctp_for_each_endpoint(int (* cb)(struct sctp_endpoint *,void *),void * p)5308 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5309 void *p) {
5310 int err = 0;
5311 int hash = 0;
5312 struct sctp_endpoint *ep;
5313 struct sctp_hashbucket *head;
5314
5315 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5316 hash++, head++) {
5317 read_lock_bh(&head->lock);
5318 sctp_for_each_hentry(ep, &head->chain) {
5319 err = cb(ep, p);
5320 if (err)
5321 break;
5322 }
5323 read_unlock_bh(&head->lock);
5324 }
5325
5326 return err;
5327 }
5328 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5329
sctp_transport_lookup_process(sctp_callback_t cb,struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,void * p,int dif)5330 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5331 const union sctp_addr *laddr,
5332 const union sctp_addr *paddr, void *p, int dif)
5333 {
5334 struct sctp_transport *transport;
5335 struct sctp_endpoint *ep;
5336 int err = -ENOENT;
5337
5338 rcu_read_lock();
5339 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif);
5340 if (!transport) {
5341 rcu_read_unlock();
5342 return err;
5343 }
5344 ep = transport->asoc->ep;
5345 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5346 sctp_transport_put(transport);
5347 rcu_read_unlock();
5348 return err;
5349 }
5350 rcu_read_unlock();
5351
5352 err = cb(ep, transport, p);
5353 sctp_endpoint_put(ep);
5354 sctp_transport_put(transport);
5355 return err;
5356 }
5357 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5358
sctp_transport_traverse_process(sctp_callback_t cb,sctp_callback_t cb_done,struct net * net,int * pos,void * p)5359 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5360 struct net *net, int *pos, void *p)
5361 {
5362 struct rhashtable_iter hti;
5363 struct sctp_transport *tsp;
5364 struct sctp_endpoint *ep;
5365 int ret;
5366
5367 again:
5368 ret = 0;
5369 sctp_transport_walk_start(&hti);
5370
5371 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5372 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5373 ep = tsp->asoc->ep;
5374 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5375 ret = cb(ep, tsp, p);
5376 if (ret)
5377 break;
5378 sctp_endpoint_put(ep);
5379 }
5380 (*pos)++;
5381 sctp_transport_put(tsp);
5382 }
5383 sctp_transport_walk_stop(&hti);
5384
5385 if (ret) {
5386 if (cb_done && !cb_done(ep, tsp, p)) {
5387 (*pos)++;
5388 sctp_endpoint_put(ep);
5389 sctp_transport_put(tsp);
5390 goto again;
5391 }
5392 sctp_endpoint_put(ep);
5393 sctp_transport_put(tsp);
5394 }
5395
5396 return ret;
5397 }
5398 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5399
5400 /* 7.2.1 Association Status (SCTP_STATUS)
5401
5402 * Applications can retrieve current status information about an
5403 * association, including association state, peer receiver window size,
5404 * number of unacked data chunks, and number of data chunks pending
5405 * receipt. This information is read-only.
5406 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)5407 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5408 char __user *optval,
5409 int __user *optlen)
5410 {
5411 struct sctp_status status;
5412 struct sctp_association *asoc = NULL;
5413 struct sctp_transport *transport;
5414 sctp_assoc_t associd;
5415 int retval = 0;
5416
5417 if (len < sizeof(status)) {
5418 retval = -EINVAL;
5419 goto out;
5420 }
5421
5422 len = sizeof(status);
5423 if (copy_from_user(&status, optval, len)) {
5424 retval = -EFAULT;
5425 goto out;
5426 }
5427
5428 associd = status.sstat_assoc_id;
5429 asoc = sctp_id2assoc(sk, associd);
5430 if (!asoc) {
5431 retval = -EINVAL;
5432 goto out;
5433 }
5434
5435 transport = asoc->peer.primary_path;
5436
5437 status.sstat_assoc_id = sctp_assoc2id(asoc);
5438 status.sstat_state = sctp_assoc_to_state(asoc);
5439 status.sstat_rwnd = asoc->peer.rwnd;
5440 status.sstat_unackdata = asoc->unack_data;
5441
5442 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5443 status.sstat_instrms = asoc->stream.incnt;
5444 status.sstat_outstrms = asoc->stream.outcnt;
5445 status.sstat_fragmentation_point = asoc->frag_point;
5446 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5447 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5448 transport->af_specific->sockaddr_len);
5449 /* Map ipv4 address into v4-mapped-on-v6 address. */
5450 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5451 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5452 status.sstat_primary.spinfo_state = transport->state;
5453 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5454 status.sstat_primary.spinfo_srtt = transport->srtt;
5455 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5456 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5457
5458 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5459 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5460
5461 if (put_user(len, optlen)) {
5462 retval = -EFAULT;
5463 goto out;
5464 }
5465
5466 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5467 __func__, len, status.sstat_state, status.sstat_rwnd,
5468 status.sstat_assoc_id);
5469
5470 if (copy_to_user(optval, &status, len)) {
5471 retval = -EFAULT;
5472 goto out;
5473 }
5474
5475 out:
5476 return retval;
5477 }
5478
5479
5480 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5481 *
5482 * Applications can retrieve information about a specific peer address
5483 * of an association, including its reachability state, congestion
5484 * window, and retransmission timer values. This information is
5485 * read-only.
5486 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)5487 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5488 char __user *optval,
5489 int __user *optlen)
5490 {
5491 struct sctp_paddrinfo pinfo;
5492 struct sctp_transport *transport;
5493 int retval = 0;
5494
5495 if (len < sizeof(pinfo)) {
5496 retval = -EINVAL;
5497 goto out;
5498 }
5499
5500 len = sizeof(pinfo);
5501 if (copy_from_user(&pinfo, optval, len)) {
5502 retval = -EFAULT;
5503 goto out;
5504 }
5505
5506 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5507 pinfo.spinfo_assoc_id);
5508 if (!transport) {
5509 retval = -EINVAL;
5510 goto out;
5511 }
5512
5513 if (transport->state == SCTP_PF &&
5514 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5515 retval = -EACCES;
5516 goto out;
5517 }
5518
5519 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5520 pinfo.spinfo_state = transport->state;
5521 pinfo.spinfo_cwnd = transport->cwnd;
5522 pinfo.spinfo_srtt = transport->srtt;
5523 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5524 pinfo.spinfo_mtu = transport->pathmtu;
5525
5526 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5527 pinfo.spinfo_state = SCTP_ACTIVE;
5528
5529 if (put_user(len, optlen)) {
5530 retval = -EFAULT;
5531 goto out;
5532 }
5533
5534 if (copy_to_user(optval, &pinfo, len)) {
5535 retval = -EFAULT;
5536 goto out;
5537 }
5538
5539 out:
5540 return retval;
5541 }
5542
5543 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5544 *
5545 * This option is a on/off flag. If enabled no SCTP message
5546 * fragmentation will be performed. Instead if a message being sent
5547 * exceeds the current PMTU size, the message will NOT be sent and
5548 * instead a error will be indicated to the user.
5549 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)5550 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5551 char __user *optval, int __user *optlen)
5552 {
5553 int val;
5554
5555 if (len < sizeof(int))
5556 return -EINVAL;
5557
5558 len = sizeof(int);
5559 val = (sctp_sk(sk)->disable_fragments == 1);
5560 if (put_user(len, optlen))
5561 return -EFAULT;
5562 if (copy_to_user(optval, &val, len))
5563 return -EFAULT;
5564 return 0;
5565 }
5566
5567 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5568 *
5569 * This socket option is used to specify various notifications and
5570 * ancillary data the user wishes to receive.
5571 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)5572 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5573 int __user *optlen)
5574 {
5575 struct sctp_event_subscribe subscribe;
5576 __u8 *sn_type = (__u8 *)&subscribe;
5577 int i;
5578
5579 if (len == 0)
5580 return -EINVAL;
5581 if (len > sizeof(struct sctp_event_subscribe))
5582 len = sizeof(struct sctp_event_subscribe);
5583 if (put_user(len, optlen))
5584 return -EFAULT;
5585
5586 for (i = 0; i < len; i++)
5587 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5588 SCTP_SN_TYPE_BASE + i);
5589
5590 if (copy_to_user(optval, &subscribe, len))
5591 return -EFAULT;
5592
5593 return 0;
5594 }
5595
5596 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5597 *
5598 * This socket option is applicable to the UDP-style socket only. When
5599 * set it will cause associations that are idle for more than the
5600 * specified number of seconds to automatically close. An association
5601 * being idle is defined an association that has NOT sent or received
5602 * user data. The special value of '0' indicates that no automatic
5603 * close of any associations should be performed. The option expects an
5604 * integer defining the number of seconds of idle time before an
5605 * association is closed.
5606 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)5607 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5608 {
5609 /* Applicable to UDP-style socket only */
5610 if (sctp_style(sk, TCP))
5611 return -EOPNOTSUPP;
5612 if (len < sizeof(int))
5613 return -EINVAL;
5614 len = sizeof(int);
5615 if (put_user(len, optlen))
5616 return -EFAULT;
5617 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5618 return -EFAULT;
5619 return 0;
5620 }
5621
5622 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)5623 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5624 {
5625 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5626 struct sctp_sock *sp = sctp_sk(sk);
5627 struct socket *sock;
5628 int err = 0;
5629
5630 /* Do not peel off from one netns to another one. */
5631 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5632 return -EINVAL;
5633
5634 if (!asoc)
5635 return -EINVAL;
5636
5637 /* An association cannot be branched off from an already peeled-off
5638 * socket, nor is this supported for tcp style sockets.
5639 */
5640 if (!sctp_style(sk, UDP))
5641 return -EINVAL;
5642
5643 /* Create a new socket. */
5644 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5645 if (err < 0)
5646 return err;
5647
5648 sctp_copy_sock(sock->sk, sk, asoc);
5649
5650 /* Make peeled-off sockets more like 1-1 accepted sockets.
5651 * Set the daddr and initialize id to something more random and also
5652 * copy over any ip options.
5653 */
5654 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5655 sp->pf->copy_ip_options(sk, sock->sk);
5656
5657 /* Populate the fields of the newsk from the oldsk and migrate the
5658 * asoc to the newsk.
5659 */
5660 err = sctp_sock_migrate(sk, sock->sk, asoc,
5661 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5662 if (err) {
5663 sock_release(sock);
5664 sock = NULL;
5665 }
5666
5667 *sockp = sock;
5668
5669 return err;
5670 }
5671 EXPORT_SYMBOL(sctp_do_peeloff);
5672
sctp_getsockopt_peeloff_common(struct sock * sk,sctp_peeloff_arg_t * peeloff,struct file ** newfile,unsigned flags)5673 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5674 struct file **newfile, unsigned flags)
5675 {
5676 struct socket *newsock;
5677 int retval;
5678
5679 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5680 if (retval < 0)
5681 goto out;
5682
5683 /* Map the socket to an unused fd that can be returned to the user. */
5684 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5685 if (retval < 0) {
5686 sock_release(newsock);
5687 goto out;
5688 }
5689
5690 *newfile = sock_alloc_file(newsock, 0, NULL);
5691 if (IS_ERR(*newfile)) {
5692 put_unused_fd(retval);
5693 retval = PTR_ERR(*newfile);
5694 *newfile = NULL;
5695 return retval;
5696 }
5697
5698 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5699 retval);
5700
5701 peeloff->sd = retval;
5702
5703 if (flags & SOCK_NONBLOCK)
5704 (*newfile)->f_flags |= O_NONBLOCK;
5705 out:
5706 return retval;
5707 }
5708
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)5709 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5710 {
5711 sctp_peeloff_arg_t peeloff;
5712 struct file *newfile = NULL;
5713 int retval = 0;
5714
5715 if (len < sizeof(sctp_peeloff_arg_t))
5716 return -EINVAL;
5717 len = sizeof(sctp_peeloff_arg_t);
5718 if (copy_from_user(&peeloff, optval, len))
5719 return -EFAULT;
5720
5721 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5722 if (retval < 0)
5723 goto out;
5724
5725 /* Return the fd mapped to the new socket. */
5726 if (put_user(len, optlen)) {
5727 fput(newfile);
5728 put_unused_fd(retval);
5729 return -EFAULT;
5730 }
5731
5732 if (copy_to_user(optval, &peeloff, len)) {
5733 fput(newfile);
5734 put_unused_fd(retval);
5735 return -EFAULT;
5736 }
5737 fd_install(retval, newfile);
5738 out:
5739 return retval;
5740 }
5741
sctp_getsockopt_peeloff_flags(struct sock * sk,int len,char __user * optval,int __user * optlen)5742 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5743 char __user *optval, int __user *optlen)
5744 {
5745 sctp_peeloff_flags_arg_t peeloff;
5746 struct file *newfile = NULL;
5747 int retval = 0;
5748
5749 if (len < sizeof(sctp_peeloff_flags_arg_t))
5750 return -EINVAL;
5751 len = sizeof(sctp_peeloff_flags_arg_t);
5752 if (copy_from_user(&peeloff, optval, len))
5753 return -EFAULT;
5754
5755 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5756 &newfile, peeloff.flags);
5757 if (retval < 0)
5758 goto out;
5759
5760 /* Return the fd mapped to the new socket. */
5761 if (put_user(len, optlen)) {
5762 fput(newfile);
5763 put_unused_fd(retval);
5764 return -EFAULT;
5765 }
5766
5767 if (copy_to_user(optval, &peeloff, len)) {
5768 fput(newfile);
5769 put_unused_fd(retval);
5770 return -EFAULT;
5771 }
5772 fd_install(retval, newfile);
5773 out:
5774 return retval;
5775 }
5776
5777 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5778 *
5779 * Applications can enable or disable heartbeats for any peer address of
5780 * an association, modify an address's heartbeat interval, force a
5781 * heartbeat to be sent immediately, and adjust the address's maximum
5782 * number of retransmissions sent before an address is considered
5783 * unreachable. The following structure is used to access and modify an
5784 * address's parameters:
5785 *
5786 * struct sctp_paddrparams {
5787 * sctp_assoc_t spp_assoc_id;
5788 * struct sockaddr_storage spp_address;
5789 * uint32_t spp_hbinterval;
5790 * uint16_t spp_pathmaxrxt;
5791 * uint32_t spp_pathmtu;
5792 * uint32_t spp_sackdelay;
5793 * uint32_t spp_flags;
5794 * };
5795 *
5796 * spp_assoc_id - (one-to-many style socket) This is filled in the
5797 * application, and identifies the association for
5798 * this query.
5799 * spp_address - This specifies which address is of interest.
5800 * spp_hbinterval - This contains the value of the heartbeat interval,
5801 * in milliseconds. If a value of zero
5802 * is present in this field then no changes are to
5803 * be made to this parameter.
5804 * spp_pathmaxrxt - This contains the maximum number of
5805 * retransmissions before this address shall be
5806 * considered unreachable. If a value of zero
5807 * is present in this field then no changes are to
5808 * be made to this parameter.
5809 * spp_pathmtu - When Path MTU discovery is disabled the value
5810 * specified here will be the "fixed" path mtu.
5811 * Note that if the spp_address field is empty
5812 * then all associations on this address will
5813 * have this fixed path mtu set upon them.
5814 *
5815 * spp_sackdelay - When delayed sack is enabled, this value specifies
5816 * the number of milliseconds that sacks will be delayed
5817 * for. This value will apply to all addresses of an
5818 * association if the spp_address field is empty. Note
5819 * also, that if delayed sack is enabled and this
5820 * value is set to 0, no change is made to the last
5821 * recorded delayed sack timer value.
5822 *
5823 * spp_flags - These flags are used to control various features
5824 * on an association. The flag field may contain
5825 * zero or more of the following options.
5826 *
5827 * SPP_HB_ENABLE - Enable heartbeats on the
5828 * specified address. Note that if the address
5829 * field is empty all addresses for the association
5830 * have heartbeats enabled upon them.
5831 *
5832 * SPP_HB_DISABLE - Disable heartbeats on the
5833 * speicifed address. Note that if the address
5834 * field is empty all addresses for the association
5835 * will have their heartbeats disabled. Note also
5836 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5837 * mutually exclusive, only one of these two should
5838 * be specified. Enabling both fields will have
5839 * undetermined results.
5840 *
5841 * SPP_HB_DEMAND - Request a user initiated heartbeat
5842 * to be made immediately.
5843 *
5844 * SPP_PMTUD_ENABLE - This field will enable PMTU
5845 * discovery upon the specified address. Note that
5846 * if the address feild is empty then all addresses
5847 * on the association are effected.
5848 *
5849 * SPP_PMTUD_DISABLE - This field will disable PMTU
5850 * discovery upon the specified address. Note that
5851 * if the address feild is empty then all addresses
5852 * on the association are effected. Not also that
5853 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5854 * exclusive. Enabling both will have undetermined
5855 * results.
5856 *
5857 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5858 * on delayed sack. The time specified in spp_sackdelay
5859 * is used to specify the sack delay for this address. Note
5860 * that if spp_address is empty then all addresses will
5861 * enable delayed sack and take on the sack delay
5862 * value specified in spp_sackdelay.
5863 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5864 * off delayed sack. If the spp_address field is blank then
5865 * delayed sack is disabled for the entire association. Note
5866 * also that this field is mutually exclusive to
5867 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5868 * results.
5869 *
5870 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5871 * setting of the IPV6 flow label value. The value is
5872 * contained in the spp_ipv6_flowlabel field.
5873 * Upon retrieval, this flag will be set to indicate that
5874 * the spp_ipv6_flowlabel field has a valid value returned.
5875 * If a specific destination address is set (in the
5876 * spp_address field), then the value returned is that of
5877 * the address. If just an association is specified (and
5878 * no address), then the association's default flow label
5879 * is returned. If neither an association nor a destination
5880 * is specified, then the socket's default flow label is
5881 * returned. For non-IPv6 sockets, this flag will be left
5882 * cleared.
5883 *
5884 * SPP_DSCP: Setting this flag enables the setting of the
5885 * Differentiated Services Code Point (DSCP) value
5886 * associated with either the association or a specific
5887 * address. The value is obtained in the spp_dscp field.
5888 * Upon retrieval, this flag will be set to indicate that
5889 * the spp_dscp field has a valid value returned. If a
5890 * specific destination address is set when called (in the
5891 * spp_address field), then that specific destination
5892 * address's DSCP value is returned. If just an association
5893 * is specified, then the association's default DSCP is
5894 * returned. If neither an association nor a destination is
5895 * specified, then the socket's default DSCP is returned.
5896 *
5897 * spp_ipv6_flowlabel
5898 * - This field is used in conjunction with the
5899 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5900 * The 20 least significant bits are used for the flow
5901 * label. This setting has precedence over any IPv6-layer
5902 * setting.
5903 *
5904 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5905 * and contains the DSCP. The 6 most significant bits are
5906 * used for the DSCP. This setting has precedence over any
5907 * IPv4- or IPv6- layer setting.
5908 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)5909 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5910 char __user *optval, int __user *optlen)
5911 {
5912 struct sctp_paddrparams params;
5913 struct sctp_transport *trans = NULL;
5914 struct sctp_association *asoc = NULL;
5915 struct sctp_sock *sp = sctp_sk(sk);
5916
5917 if (len >= sizeof(params))
5918 len = sizeof(params);
5919 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5920 spp_ipv6_flowlabel), 4))
5921 len = ALIGN(offsetof(struct sctp_paddrparams,
5922 spp_ipv6_flowlabel), 4);
5923 else
5924 return -EINVAL;
5925
5926 if (copy_from_user(¶ms, optval, len))
5927 return -EFAULT;
5928
5929 /* If an address other than INADDR_ANY is specified, and
5930 * no transport is found, then the request is invalid.
5931 */
5932 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5933 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5934 params.spp_assoc_id);
5935 if (!trans) {
5936 pr_debug("%s: failed no transport\n", __func__);
5937 return -EINVAL;
5938 }
5939 }
5940
5941 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5942 * socket is a one to many style socket, and an association
5943 * was not found, then the id was invalid.
5944 */
5945 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5946 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5947 sctp_style(sk, UDP)) {
5948 pr_debug("%s: failed no association\n", __func__);
5949 return -EINVAL;
5950 }
5951
5952 if (trans) {
5953 /* Fetch transport values. */
5954 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5955 params.spp_pathmtu = trans->pathmtu;
5956 params.spp_pathmaxrxt = trans->pathmaxrxt;
5957 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5958
5959 /*draft-11 doesn't say what to return in spp_flags*/
5960 params.spp_flags = trans->param_flags;
5961 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5962 params.spp_ipv6_flowlabel = trans->flowlabel &
5963 SCTP_FLOWLABEL_VAL_MASK;
5964 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5965 }
5966 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5967 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5968 params.spp_flags |= SPP_DSCP;
5969 }
5970 } else if (asoc) {
5971 /* Fetch association values. */
5972 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5973 params.spp_pathmtu = asoc->pathmtu;
5974 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5975 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5976
5977 /*draft-11 doesn't say what to return in spp_flags*/
5978 params.spp_flags = asoc->param_flags;
5979 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5980 params.spp_ipv6_flowlabel = asoc->flowlabel &
5981 SCTP_FLOWLABEL_VAL_MASK;
5982 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5983 }
5984 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5985 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5986 params.spp_flags |= SPP_DSCP;
5987 }
5988 } else {
5989 /* Fetch socket values. */
5990 params.spp_hbinterval = sp->hbinterval;
5991 params.spp_pathmtu = sp->pathmtu;
5992 params.spp_sackdelay = sp->sackdelay;
5993 params.spp_pathmaxrxt = sp->pathmaxrxt;
5994
5995 /*draft-11 doesn't say what to return in spp_flags*/
5996 params.spp_flags = sp->param_flags;
5997 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5998 params.spp_ipv6_flowlabel = sp->flowlabel &
5999 SCTP_FLOWLABEL_VAL_MASK;
6000 params.spp_flags |= SPP_IPV6_FLOWLABEL;
6001 }
6002 if (sp->dscp & SCTP_DSCP_SET_MASK) {
6003 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
6004 params.spp_flags |= SPP_DSCP;
6005 }
6006 }
6007
6008 if (copy_to_user(optval, ¶ms, len))
6009 return -EFAULT;
6010
6011 if (put_user(len, optlen))
6012 return -EFAULT;
6013
6014 return 0;
6015 }
6016
6017 /*
6018 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
6019 *
6020 * This option will effect the way delayed acks are performed. This
6021 * option allows you to get or set the delayed ack time, in
6022 * milliseconds. It also allows changing the delayed ack frequency.
6023 * Changing the frequency to 1 disables the delayed sack algorithm. If
6024 * the assoc_id is 0, then this sets or gets the endpoints default
6025 * values. If the assoc_id field is non-zero, then the set or get
6026 * effects the specified association for the one to many model (the
6027 * assoc_id field is ignored by the one to one model). Note that if
6028 * sack_delay or sack_freq are 0 when setting this option, then the
6029 * current values will remain unchanged.
6030 *
6031 * struct sctp_sack_info {
6032 * sctp_assoc_t sack_assoc_id;
6033 * uint32_t sack_delay;
6034 * uint32_t sack_freq;
6035 * };
6036 *
6037 * sack_assoc_id - This parameter, indicates which association the user
6038 * is performing an action upon. Note that if this field's value is
6039 * zero then the endpoints default value is changed (effecting future
6040 * associations only).
6041 *
6042 * sack_delay - This parameter contains the number of milliseconds that
6043 * the user is requesting the delayed ACK timer be set to. Note that
6044 * this value is defined in the standard to be between 200 and 500
6045 * milliseconds.
6046 *
6047 * sack_freq - This parameter contains the number of packets that must
6048 * be received before a sack is sent without waiting for the delay
6049 * timer to expire. The default value for this is 2, setting this
6050 * value to 1 will disable the delayed sack algorithm.
6051 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)6052 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6053 char __user *optval,
6054 int __user *optlen)
6055 {
6056 struct sctp_sack_info params;
6057 struct sctp_association *asoc = NULL;
6058 struct sctp_sock *sp = sctp_sk(sk);
6059
6060 if (len >= sizeof(struct sctp_sack_info)) {
6061 len = sizeof(struct sctp_sack_info);
6062
6063 if (copy_from_user(¶ms, optval, len))
6064 return -EFAULT;
6065 } else if (len == sizeof(struct sctp_assoc_value)) {
6066 pr_warn_ratelimited(DEPRECATED
6067 "%s (pid %d) "
6068 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6069 "Use struct sctp_sack_info instead\n",
6070 current->comm, task_pid_nr(current));
6071 if (copy_from_user(¶ms, optval, len))
6072 return -EFAULT;
6073 } else
6074 return -EINVAL;
6075
6076 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6077 * socket is a one to many style socket, and an association
6078 * was not found, then the id was invalid.
6079 */
6080 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6081 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6082 sctp_style(sk, UDP))
6083 return -EINVAL;
6084
6085 if (asoc) {
6086 /* Fetch association values. */
6087 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6088 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6089 params.sack_freq = asoc->sackfreq;
6090
6091 } else {
6092 params.sack_delay = 0;
6093 params.sack_freq = 1;
6094 }
6095 } else {
6096 /* Fetch socket values. */
6097 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6098 params.sack_delay = sp->sackdelay;
6099 params.sack_freq = sp->sackfreq;
6100 } else {
6101 params.sack_delay = 0;
6102 params.sack_freq = 1;
6103 }
6104 }
6105
6106 if (copy_to_user(optval, ¶ms, len))
6107 return -EFAULT;
6108
6109 if (put_user(len, optlen))
6110 return -EFAULT;
6111
6112 return 0;
6113 }
6114
6115 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6116 *
6117 * Applications can specify protocol parameters for the default association
6118 * initialization. The option name argument to setsockopt() and getsockopt()
6119 * is SCTP_INITMSG.
6120 *
6121 * Setting initialization parameters is effective only on an unconnected
6122 * socket (for UDP-style sockets only future associations are effected
6123 * by the change). With TCP-style sockets, this option is inherited by
6124 * sockets derived from a listener socket.
6125 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)6126 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6127 {
6128 if (len < sizeof(struct sctp_initmsg))
6129 return -EINVAL;
6130 len = sizeof(struct sctp_initmsg);
6131 if (put_user(len, optlen))
6132 return -EFAULT;
6133 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6134 return -EFAULT;
6135 return 0;
6136 }
6137
6138
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6139 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6140 char __user *optval, int __user *optlen)
6141 {
6142 struct sctp_association *asoc;
6143 int cnt = 0;
6144 struct sctp_getaddrs getaddrs;
6145 struct sctp_transport *from;
6146 void __user *to;
6147 union sctp_addr temp;
6148 struct sctp_sock *sp = sctp_sk(sk);
6149 int addrlen;
6150 size_t space_left;
6151 int bytes_copied;
6152
6153 if (len < sizeof(struct sctp_getaddrs))
6154 return -EINVAL;
6155
6156 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6157 return -EFAULT;
6158
6159 /* For UDP-style sockets, id specifies the association to query. */
6160 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6161 if (!asoc)
6162 return -EINVAL;
6163
6164 to = optval + offsetof(struct sctp_getaddrs, addrs);
6165 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6166
6167 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6168 transports) {
6169 memcpy(&temp, &from->ipaddr, sizeof(temp));
6170 addrlen = sctp_get_pf_specific(sk->sk_family)
6171 ->addr_to_user(sp, &temp);
6172 if (space_left < addrlen)
6173 return -ENOMEM;
6174 if (copy_to_user(to, &temp, addrlen))
6175 return -EFAULT;
6176 to += addrlen;
6177 cnt++;
6178 space_left -= addrlen;
6179 }
6180
6181 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6182 return -EFAULT;
6183 bytes_copied = ((char __user *)to) - optval;
6184 if (put_user(bytes_copied, optlen))
6185 return -EFAULT;
6186
6187 return 0;
6188 }
6189
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)6190 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6191 size_t space_left, int *bytes_copied)
6192 {
6193 struct sctp_sockaddr_entry *addr;
6194 union sctp_addr temp;
6195 int cnt = 0;
6196 int addrlen;
6197 struct net *net = sock_net(sk);
6198
6199 rcu_read_lock();
6200 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6201 if (!addr->valid)
6202 continue;
6203
6204 if ((PF_INET == sk->sk_family) &&
6205 (AF_INET6 == addr->a.sa.sa_family))
6206 continue;
6207 if ((PF_INET6 == sk->sk_family) &&
6208 inet_v6_ipv6only(sk) &&
6209 (AF_INET == addr->a.sa.sa_family))
6210 continue;
6211 memcpy(&temp, &addr->a, sizeof(temp));
6212 if (!temp.v4.sin_port)
6213 temp.v4.sin_port = htons(port);
6214
6215 addrlen = sctp_get_pf_specific(sk->sk_family)
6216 ->addr_to_user(sctp_sk(sk), &temp);
6217
6218 if (space_left < addrlen) {
6219 cnt = -ENOMEM;
6220 break;
6221 }
6222 memcpy(to, &temp, addrlen);
6223
6224 to += addrlen;
6225 cnt++;
6226 space_left -= addrlen;
6227 *bytes_copied += addrlen;
6228 }
6229 rcu_read_unlock();
6230
6231 return cnt;
6232 }
6233
6234
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6235 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6236 char __user *optval, int __user *optlen)
6237 {
6238 struct sctp_bind_addr *bp;
6239 struct sctp_association *asoc;
6240 int cnt = 0;
6241 struct sctp_getaddrs getaddrs;
6242 struct sctp_sockaddr_entry *addr;
6243 void __user *to;
6244 union sctp_addr temp;
6245 struct sctp_sock *sp = sctp_sk(sk);
6246 int addrlen;
6247 int err = 0;
6248 size_t space_left;
6249 int bytes_copied = 0;
6250 void *addrs;
6251 void *buf;
6252
6253 if (len < sizeof(struct sctp_getaddrs))
6254 return -EINVAL;
6255
6256 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6257 return -EFAULT;
6258
6259 /*
6260 * For UDP-style sockets, id specifies the association to query.
6261 * If the id field is set to the value '0' then the locally bound
6262 * addresses are returned without regard to any particular
6263 * association.
6264 */
6265 if (0 == getaddrs.assoc_id) {
6266 bp = &sctp_sk(sk)->ep->base.bind_addr;
6267 } else {
6268 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6269 if (!asoc)
6270 return -EINVAL;
6271 bp = &asoc->base.bind_addr;
6272 }
6273
6274 to = optval + offsetof(struct sctp_getaddrs, addrs);
6275 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6276
6277 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6278 if (!addrs)
6279 return -ENOMEM;
6280
6281 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6282 * addresses from the global local address list.
6283 */
6284 if (sctp_list_single_entry(&bp->address_list)) {
6285 addr = list_entry(bp->address_list.next,
6286 struct sctp_sockaddr_entry, list);
6287 if (sctp_is_any(sk, &addr->a)) {
6288 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6289 space_left, &bytes_copied);
6290 if (cnt < 0) {
6291 err = cnt;
6292 goto out;
6293 }
6294 goto copy_getaddrs;
6295 }
6296 }
6297
6298 buf = addrs;
6299 /* Protection on the bound address list is not needed since
6300 * in the socket option context we hold a socket lock and
6301 * thus the bound address list can't change.
6302 */
6303 list_for_each_entry(addr, &bp->address_list, list) {
6304 memcpy(&temp, &addr->a, sizeof(temp));
6305 addrlen = sctp_get_pf_specific(sk->sk_family)
6306 ->addr_to_user(sp, &temp);
6307 if (space_left < addrlen) {
6308 err = -ENOMEM; /*fixme: right error?*/
6309 goto out;
6310 }
6311 memcpy(buf, &temp, addrlen);
6312 buf += addrlen;
6313 bytes_copied += addrlen;
6314 cnt++;
6315 space_left -= addrlen;
6316 }
6317
6318 copy_getaddrs:
6319 if (copy_to_user(to, addrs, bytes_copied)) {
6320 err = -EFAULT;
6321 goto out;
6322 }
6323 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6324 err = -EFAULT;
6325 goto out;
6326 }
6327 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6328 * but we can't change it anymore.
6329 */
6330 if (put_user(bytes_copied, optlen))
6331 err = -EFAULT;
6332 out:
6333 kfree(addrs);
6334 return err;
6335 }
6336
6337 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6338 *
6339 * Requests that the local SCTP stack use the enclosed peer address as
6340 * the association primary. The enclosed address must be one of the
6341 * association peer's addresses.
6342 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)6343 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6344 char __user *optval, int __user *optlen)
6345 {
6346 struct sctp_prim prim;
6347 struct sctp_association *asoc;
6348 struct sctp_sock *sp = sctp_sk(sk);
6349
6350 if (len < sizeof(struct sctp_prim))
6351 return -EINVAL;
6352
6353 len = sizeof(struct sctp_prim);
6354
6355 if (copy_from_user(&prim, optval, len))
6356 return -EFAULT;
6357
6358 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6359 if (!asoc)
6360 return -EINVAL;
6361
6362 if (!asoc->peer.primary_path)
6363 return -ENOTCONN;
6364
6365 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6366 asoc->peer.primary_path->af_specific->sockaddr_len);
6367
6368 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6369 (union sctp_addr *)&prim.ssp_addr);
6370
6371 if (put_user(len, optlen))
6372 return -EFAULT;
6373 if (copy_to_user(optval, &prim, len))
6374 return -EFAULT;
6375
6376 return 0;
6377 }
6378
6379 /*
6380 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6381 *
6382 * Requests that the local endpoint set the specified Adaptation Layer
6383 * Indication parameter for all future INIT and INIT-ACK exchanges.
6384 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)6385 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6386 char __user *optval, int __user *optlen)
6387 {
6388 struct sctp_setadaptation adaptation;
6389
6390 if (len < sizeof(struct sctp_setadaptation))
6391 return -EINVAL;
6392
6393 len = sizeof(struct sctp_setadaptation);
6394
6395 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6396
6397 if (put_user(len, optlen))
6398 return -EFAULT;
6399 if (copy_to_user(optval, &adaptation, len))
6400 return -EFAULT;
6401
6402 return 0;
6403 }
6404
6405 /*
6406 *
6407 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6408 *
6409 * Applications that wish to use the sendto() system call may wish to
6410 * specify a default set of parameters that would normally be supplied
6411 * through the inclusion of ancillary data. This socket option allows
6412 * such an application to set the default sctp_sndrcvinfo structure.
6413
6414
6415 * The application that wishes to use this socket option simply passes
6416 * in to this call the sctp_sndrcvinfo structure defined in Section
6417 * 5.2.2) The input parameters accepted by this call include
6418 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6419 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6420 * to this call if the caller is using the UDP model.
6421 *
6422 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6423 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)6424 static int sctp_getsockopt_default_send_param(struct sock *sk,
6425 int len, char __user *optval,
6426 int __user *optlen)
6427 {
6428 struct sctp_sock *sp = sctp_sk(sk);
6429 struct sctp_association *asoc;
6430 struct sctp_sndrcvinfo info;
6431
6432 if (len < sizeof(info))
6433 return -EINVAL;
6434
6435 len = sizeof(info);
6436
6437 if (copy_from_user(&info, optval, len))
6438 return -EFAULT;
6439
6440 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6441 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6442 sctp_style(sk, UDP))
6443 return -EINVAL;
6444
6445 if (asoc) {
6446 info.sinfo_stream = asoc->default_stream;
6447 info.sinfo_flags = asoc->default_flags;
6448 info.sinfo_ppid = asoc->default_ppid;
6449 info.sinfo_context = asoc->default_context;
6450 info.sinfo_timetolive = asoc->default_timetolive;
6451 } else {
6452 info.sinfo_stream = sp->default_stream;
6453 info.sinfo_flags = sp->default_flags;
6454 info.sinfo_ppid = sp->default_ppid;
6455 info.sinfo_context = sp->default_context;
6456 info.sinfo_timetolive = sp->default_timetolive;
6457 }
6458
6459 if (put_user(len, optlen))
6460 return -EFAULT;
6461 if (copy_to_user(optval, &info, len))
6462 return -EFAULT;
6463
6464 return 0;
6465 }
6466
6467 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6468 * (SCTP_DEFAULT_SNDINFO)
6469 */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6470 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6471 char __user *optval,
6472 int __user *optlen)
6473 {
6474 struct sctp_sock *sp = sctp_sk(sk);
6475 struct sctp_association *asoc;
6476 struct sctp_sndinfo info;
6477
6478 if (len < sizeof(info))
6479 return -EINVAL;
6480
6481 len = sizeof(info);
6482
6483 if (copy_from_user(&info, optval, len))
6484 return -EFAULT;
6485
6486 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6487 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6488 sctp_style(sk, UDP))
6489 return -EINVAL;
6490
6491 if (asoc) {
6492 info.snd_sid = asoc->default_stream;
6493 info.snd_flags = asoc->default_flags;
6494 info.snd_ppid = asoc->default_ppid;
6495 info.snd_context = asoc->default_context;
6496 } else {
6497 info.snd_sid = sp->default_stream;
6498 info.snd_flags = sp->default_flags;
6499 info.snd_ppid = sp->default_ppid;
6500 info.snd_context = sp->default_context;
6501 }
6502
6503 if (put_user(len, optlen))
6504 return -EFAULT;
6505 if (copy_to_user(optval, &info, len))
6506 return -EFAULT;
6507
6508 return 0;
6509 }
6510
6511 /*
6512 *
6513 * 7.1.5 SCTP_NODELAY
6514 *
6515 * Turn on/off any Nagle-like algorithm. This means that packets are
6516 * generally sent as soon as possible and no unnecessary delays are
6517 * introduced, at the cost of more packets in the network. Expects an
6518 * integer boolean flag.
6519 */
6520
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)6521 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6522 char __user *optval, int __user *optlen)
6523 {
6524 int val;
6525
6526 if (len < sizeof(int))
6527 return -EINVAL;
6528
6529 len = sizeof(int);
6530 val = (sctp_sk(sk)->nodelay == 1);
6531 if (put_user(len, optlen))
6532 return -EFAULT;
6533 if (copy_to_user(optval, &val, len))
6534 return -EFAULT;
6535 return 0;
6536 }
6537
6538 /*
6539 *
6540 * 7.1.1 SCTP_RTOINFO
6541 *
6542 * The protocol parameters used to initialize and bound retransmission
6543 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6544 * and modify these parameters.
6545 * All parameters are time values, in milliseconds. A value of 0, when
6546 * modifying the parameters, indicates that the current value should not
6547 * be changed.
6548 *
6549 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6550 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6551 char __user *optval,
6552 int __user *optlen) {
6553 struct sctp_rtoinfo rtoinfo;
6554 struct sctp_association *asoc;
6555
6556 if (len < sizeof (struct sctp_rtoinfo))
6557 return -EINVAL;
6558
6559 len = sizeof(struct sctp_rtoinfo);
6560
6561 if (copy_from_user(&rtoinfo, optval, len))
6562 return -EFAULT;
6563
6564 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6565
6566 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6567 sctp_style(sk, UDP))
6568 return -EINVAL;
6569
6570 /* Values corresponding to the specific association. */
6571 if (asoc) {
6572 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6573 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6574 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6575 } else {
6576 /* Values corresponding to the endpoint. */
6577 struct sctp_sock *sp = sctp_sk(sk);
6578
6579 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6580 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6581 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6582 }
6583
6584 if (put_user(len, optlen))
6585 return -EFAULT;
6586
6587 if (copy_to_user(optval, &rtoinfo, len))
6588 return -EFAULT;
6589
6590 return 0;
6591 }
6592
6593 /*
6594 *
6595 * 7.1.2 SCTP_ASSOCINFO
6596 *
6597 * This option is used to tune the maximum retransmission attempts
6598 * of the association.
6599 * Returns an error if the new association retransmission value is
6600 * greater than the sum of the retransmission value of the peer.
6601 * See [SCTP] for more information.
6602 *
6603 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6604 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6605 char __user *optval,
6606 int __user *optlen)
6607 {
6608
6609 struct sctp_assocparams assocparams;
6610 struct sctp_association *asoc;
6611 struct list_head *pos;
6612 int cnt = 0;
6613
6614 if (len < sizeof (struct sctp_assocparams))
6615 return -EINVAL;
6616
6617 len = sizeof(struct sctp_assocparams);
6618
6619 if (copy_from_user(&assocparams, optval, len))
6620 return -EFAULT;
6621
6622 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6623
6624 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6625 sctp_style(sk, UDP))
6626 return -EINVAL;
6627
6628 /* Values correspoinding to the specific association */
6629 if (asoc) {
6630 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6631 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6632 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6633 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6634
6635 list_for_each(pos, &asoc->peer.transport_addr_list) {
6636 cnt++;
6637 }
6638
6639 assocparams.sasoc_number_peer_destinations = cnt;
6640 } else {
6641 /* Values corresponding to the endpoint */
6642 struct sctp_sock *sp = sctp_sk(sk);
6643
6644 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6645 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6646 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6647 assocparams.sasoc_cookie_life =
6648 sp->assocparams.sasoc_cookie_life;
6649 assocparams.sasoc_number_peer_destinations =
6650 sp->assocparams.
6651 sasoc_number_peer_destinations;
6652 }
6653
6654 if (put_user(len, optlen))
6655 return -EFAULT;
6656
6657 if (copy_to_user(optval, &assocparams, len))
6658 return -EFAULT;
6659
6660 return 0;
6661 }
6662
6663 /*
6664 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6665 *
6666 * This socket option is a boolean flag which turns on or off mapped V4
6667 * addresses. If this option is turned on and the socket is type
6668 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6669 * If this option is turned off, then no mapping will be done of V4
6670 * addresses and a user will receive both PF_INET6 and PF_INET type
6671 * addresses on the socket.
6672 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)6673 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6674 char __user *optval, int __user *optlen)
6675 {
6676 int val;
6677 struct sctp_sock *sp = sctp_sk(sk);
6678
6679 if (len < sizeof(int))
6680 return -EINVAL;
6681
6682 len = sizeof(int);
6683 val = sp->v4mapped;
6684 if (put_user(len, optlen))
6685 return -EFAULT;
6686 if (copy_to_user(optval, &val, len))
6687 return -EFAULT;
6688
6689 return 0;
6690 }
6691
6692 /*
6693 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6694 * (chapter and verse is quoted at sctp_setsockopt_context())
6695 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)6696 static int sctp_getsockopt_context(struct sock *sk, int len,
6697 char __user *optval, int __user *optlen)
6698 {
6699 struct sctp_assoc_value params;
6700 struct sctp_association *asoc;
6701
6702 if (len < sizeof(struct sctp_assoc_value))
6703 return -EINVAL;
6704
6705 len = sizeof(struct sctp_assoc_value);
6706
6707 if (copy_from_user(¶ms, optval, len))
6708 return -EFAULT;
6709
6710 asoc = sctp_id2assoc(sk, params.assoc_id);
6711 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6712 sctp_style(sk, UDP))
6713 return -EINVAL;
6714
6715 params.assoc_value = asoc ? asoc->default_rcv_context
6716 : sctp_sk(sk)->default_rcv_context;
6717
6718 if (put_user(len, optlen))
6719 return -EFAULT;
6720 if (copy_to_user(optval, ¶ms, len))
6721 return -EFAULT;
6722
6723 return 0;
6724 }
6725
6726 /*
6727 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6728 * This option will get or set the maximum size to put in any outgoing
6729 * SCTP DATA chunk. If a message is larger than this size it will be
6730 * fragmented by SCTP into the specified size. Note that the underlying
6731 * SCTP implementation may fragment into smaller sized chunks when the
6732 * PMTU of the underlying association is smaller than the value set by
6733 * the user. The default value for this option is '0' which indicates
6734 * the user is NOT limiting fragmentation and only the PMTU will effect
6735 * SCTP's choice of DATA chunk size. Note also that values set larger
6736 * than the maximum size of an IP datagram will effectively let SCTP
6737 * control fragmentation (i.e. the same as setting this option to 0).
6738 *
6739 * The following structure is used to access and modify this parameter:
6740 *
6741 * struct sctp_assoc_value {
6742 * sctp_assoc_t assoc_id;
6743 * uint32_t assoc_value;
6744 * };
6745 *
6746 * assoc_id: This parameter is ignored for one-to-one style sockets.
6747 * For one-to-many style sockets this parameter indicates which
6748 * association the user is performing an action upon. Note that if
6749 * this field's value is zero then the endpoints default value is
6750 * changed (effecting future associations only).
6751 * assoc_value: This parameter specifies the maximum size in bytes.
6752 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)6753 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6754 char __user *optval, int __user *optlen)
6755 {
6756 struct sctp_assoc_value params;
6757 struct sctp_association *asoc;
6758
6759 if (len == sizeof(int)) {
6760 pr_warn_ratelimited(DEPRECATED
6761 "%s (pid %d) "
6762 "Use of int in maxseg socket option.\n"
6763 "Use struct sctp_assoc_value instead\n",
6764 current->comm, task_pid_nr(current));
6765 params.assoc_id = SCTP_FUTURE_ASSOC;
6766 } else if (len >= sizeof(struct sctp_assoc_value)) {
6767 len = sizeof(struct sctp_assoc_value);
6768 if (copy_from_user(¶ms, optval, len))
6769 return -EFAULT;
6770 } else
6771 return -EINVAL;
6772
6773 asoc = sctp_id2assoc(sk, params.assoc_id);
6774 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6775 sctp_style(sk, UDP))
6776 return -EINVAL;
6777
6778 if (asoc)
6779 params.assoc_value = asoc->frag_point;
6780 else
6781 params.assoc_value = sctp_sk(sk)->user_frag;
6782
6783 if (put_user(len, optlen))
6784 return -EFAULT;
6785 if (len == sizeof(int)) {
6786 if (copy_to_user(optval, ¶ms.assoc_value, len))
6787 return -EFAULT;
6788 } else {
6789 if (copy_to_user(optval, ¶ms, len))
6790 return -EFAULT;
6791 }
6792
6793 return 0;
6794 }
6795
6796 /*
6797 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6798 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6799 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)6800 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6801 char __user *optval, int __user *optlen)
6802 {
6803 int val;
6804
6805 if (len < sizeof(int))
6806 return -EINVAL;
6807
6808 len = sizeof(int);
6809
6810 val = sctp_sk(sk)->frag_interleave;
6811 if (put_user(len, optlen))
6812 return -EFAULT;
6813 if (copy_to_user(optval, &val, len))
6814 return -EFAULT;
6815
6816 return 0;
6817 }
6818
6819 /*
6820 * 7.1.25. Set or Get the sctp partial delivery point
6821 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6822 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)6823 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6824 char __user *optval,
6825 int __user *optlen)
6826 {
6827 u32 val;
6828
6829 if (len < sizeof(u32))
6830 return -EINVAL;
6831
6832 len = sizeof(u32);
6833
6834 val = sctp_sk(sk)->pd_point;
6835 if (put_user(len, optlen))
6836 return -EFAULT;
6837 if (copy_to_user(optval, &val, len))
6838 return -EFAULT;
6839
6840 return 0;
6841 }
6842
6843 /*
6844 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6845 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6846 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)6847 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6848 char __user *optval,
6849 int __user *optlen)
6850 {
6851 struct sctp_assoc_value params;
6852 struct sctp_association *asoc;
6853
6854 if (len == sizeof(int)) {
6855 pr_warn_ratelimited(DEPRECATED
6856 "%s (pid %d) "
6857 "Use of int in max_burst socket option.\n"
6858 "Use struct sctp_assoc_value instead\n",
6859 current->comm, task_pid_nr(current));
6860 params.assoc_id = SCTP_FUTURE_ASSOC;
6861 } else if (len >= sizeof(struct sctp_assoc_value)) {
6862 len = sizeof(struct sctp_assoc_value);
6863 if (copy_from_user(¶ms, optval, len))
6864 return -EFAULT;
6865 } else
6866 return -EINVAL;
6867
6868 asoc = sctp_id2assoc(sk, params.assoc_id);
6869 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6870 sctp_style(sk, UDP))
6871 return -EINVAL;
6872
6873 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6874
6875 if (len == sizeof(int)) {
6876 if (copy_to_user(optval, ¶ms.assoc_value, len))
6877 return -EFAULT;
6878 } else {
6879 if (copy_to_user(optval, ¶ms, len))
6880 return -EFAULT;
6881 }
6882
6883 return 0;
6884
6885 }
6886
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)6887 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6888 char __user *optval, int __user *optlen)
6889 {
6890 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6891 struct sctp_hmacalgo __user *p = (void __user *)optval;
6892 struct sctp_hmac_algo_param *hmacs;
6893 __u16 data_len = 0;
6894 u32 num_idents;
6895 int i;
6896
6897 if (!ep->auth_enable)
6898 return -EACCES;
6899
6900 hmacs = ep->auth_hmacs_list;
6901 data_len = ntohs(hmacs->param_hdr.length) -
6902 sizeof(struct sctp_paramhdr);
6903
6904 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6905 return -EINVAL;
6906
6907 len = sizeof(struct sctp_hmacalgo) + data_len;
6908 num_idents = data_len / sizeof(u16);
6909
6910 if (put_user(len, optlen))
6911 return -EFAULT;
6912 if (put_user(num_idents, &p->shmac_num_idents))
6913 return -EFAULT;
6914 for (i = 0; i < num_idents; i++) {
6915 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6916
6917 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6918 return -EFAULT;
6919 }
6920 return 0;
6921 }
6922
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)6923 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6924 char __user *optval, int __user *optlen)
6925 {
6926 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6927 struct sctp_authkeyid val;
6928 struct sctp_association *asoc;
6929
6930 if (len < sizeof(struct sctp_authkeyid))
6931 return -EINVAL;
6932
6933 len = sizeof(struct sctp_authkeyid);
6934 if (copy_from_user(&val, optval, len))
6935 return -EFAULT;
6936
6937 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6938 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6939 return -EINVAL;
6940
6941 if (asoc) {
6942 if (!asoc->peer.auth_capable)
6943 return -EACCES;
6944 val.scact_keynumber = asoc->active_key_id;
6945 } else {
6946 if (!ep->auth_enable)
6947 return -EACCES;
6948 val.scact_keynumber = ep->active_key_id;
6949 }
6950
6951 if (put_user(len, optlen))
6952 return -EFAULT;
6953 if (copy_to_user(optval, &val, len))
6954 return -EFAULT;
6955
6956 return 0;
6957 }
6958
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6959 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6960 char __user *optval, int __user *optlen)
6961 {
6962 struct sctp_authchunks __user *p = (void __user *)optval;
6963 struct sctp_authchunks val;
6964 struct sctp_association *asoc;
6965 struct sctp_chunks_param *ch;
6966 u32 num_chunks = 0;
6967 char __user *to;
6968
6969 if (len < sizeof(struct sctp_authchunks))
6970 return -EINVAL;
6971
6972 if (copy_from_user(&val, optval, sizeof(val)))
6973 return -EFAULT;
6974
6975 to = p->gauth_chunks;
6976 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6977 if (!asoc)
6978 return -EINVAL;
6979
6980 if (!asoc->peer.auth_capable)
6981 return -EACCES;
6982
6983 ch = asoc->peer.peer_chunks;
6984 if (!ch)
6985 goto num;
6986
6987 /* See if the user provided enough room for all the data */
6988 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6989 if (len < num_chunks)
6990 return -EINVAL;
6991
6992 if (copy_to_user(to, ch->chunks, num_chunks))
6993 return -EFAULT;
6994 num:
6995 len = sizeof(struct sctp_authchunks) + num_chunks;
6996 if (put_user(len, optlen))
6997 return -EFAULT;
6998 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6999 return -EFAULT;
7000 return 0;
7001 }
7002
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)7003 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
7004 char __user *optval, int __user *optlen)
7005 {
7006 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7007 struct sctp_authchunks __user *p = (void __user *)optval;
7008 struct sctp_authchunks val;
7009 struct sctp_association *asoc;
7010 struct sctp_chunks_param *ch;
7011 u32 num_chunks = 0;
7012 char __user *to;
7013
7014 if (len < sizeof(struct sctp_authchunks))
7015 return -EINVAL;
7016
7017 if (copy_from_user(&val, optval, sizeof(val)))
7018 return -EFAULT;
7019
7020 to = p->gauth_chunks;
7021 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7022 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7023 sctp_style(sk, UDP))
7024 return -EINVAL;
7025
7026 if (asoc) {
7027 if (!asoc->peer.auth_capable)
7028 return -EACCES;
7029 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7030 } else {
7031 if (!ep->auth_enable)
7032 return -EACCES;
7033 ch = ep->auth_chunk_list;
7034 }
7035 if (!ch)
7036 goto num;
7037
7038 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7039 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7040 return -EINVAL;
7041
7042 if (copy_to_user(to, ch->chunks, num_chunks))
7043 return -EFAULT;
7044 num:
7045 len = sizeof(struct sctp_authchunks) + num_chunks;
7046 if (put_user(len, optlen))
7047 return -EFAULT;
7048 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7049 return -EFAULT;
7050
7051 return 0;
7052 }
7053
7054 /*
7055 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7056 * This option gets the current number of associations that are attached
7057 * to a one-to-many style socket. The option value is an uint32_t.
7058 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)7059 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7060 char __user *optval, int __user *optlen)
7061 {
7062 struct sctp_sock *sp = sctp_sk(sk);
7063 struct sctp_association *asoc;
7064 u32 val = 0;
7065
7066 if (sctp_style(sk, TCP))
7067 return -EOPNOTSUPP;
7068
7069 if (len < sizeof(u32))
7070 return -EINVAL;
7071
7072 len = sizeof(u32);
7073
7074 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7075 val++;
7076 }
7077
7078 if (put_user(len, optlen))
7079 return -EFAULT;
7080 if (copy_to_user(optval, &val, len))
7081 return -EFAULT;
7082
7083 return 0;
7084 }
7085
7086 /*
7087 * 8.1.23 SCTP_AUTO_ASCONF
7088 * See the corresponding setsockopt entry as description
7089 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)7090 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7091 char __user *optval, int __user *optlen)
7092 {
7093 int val = 0;
7094
7095 if (len < sizeof(int))
7096 return -EINVAL;
7097
7098 len = sizeof(int);
7099 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7100 val = 1;
7101 if (put_user(len, optlen))
7102 return -EFAULT;
7103 if (copy_to_user(optval, &val, len))
7104 return -EFAULT;
7105 return 0;
7106 }
7107
7108 /*
7109 * 8.2.6. Get the Current Identifiers of Associations
7110 * (SCTP_GET_ASSOC_ID_LIST)
7111 *
7112 * This option gets the current list of SCTP association identifiers of
7113 * the SCTP associations handled by a one-to-many style socket.
7114 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)7115 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7116 char __user *optval, int __user *optlen)
7117 {
7118 struct sctp_sock *sp = sctp_sk(sk);
7119 struct sctp_association *asoc;
7120 struct sctp_assoc_ids *ids;
7121 u32 num = 0;
7122
7123 if (sctp_style(sk, TCP))
7124 return -EOPNOTSUPP;
7125
7126 if (len < sizeof(struct sctp_assoc_ids))
7127 return -EINVAL;
7128
7129 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7130 num++;
7131 }
7132
7133 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7134 return -EINVAL;
7135
7136 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7137
7138 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7139 if (unlikely(!ids))
7140 return -ENOMEM;
7141
7142 ids->gaids_number_of_ids = num;
7143 num = 0;
7144 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7145 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7146 }
7147
7148 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7149 kfree(ids);
7150 return -EFAULT;
7151 }
7152
7153 kfree(ids);
7154 return 0;
7155 }
7156
7157 /*
7158 * SCTP_PEER_ADDR_THLDS
7159 *
7160 * This option allows us to fetch the partially failed threshold for one or all
7161 * transports in an association. See Section 6.1 of:
7162 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7163 */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen,bool v2)7164 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7165 char __user *optval, int len,
7166 int __user *optlen, bool v2)
7167 {
7168 struct sctp_paddrthlds_v2 val;
7169 struct sctp_transport *trans;
7170 struct sctp_association *asoc;
7171 int min;
7172
7173 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7174 if (len < min)
7175 return -EINVAL;
7176 len = min;
7177 if (copy_from_user(&val, optval, len))
7178 return -EFAULT;
7179
7180 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7181 trans = sctp_addr_id2transport(sk, &val.spt_address,
7182 val.spt_assoc_id);
7183 if (!trans)
7184 return -ENOENT;
7185
7186 val.spt_pathmaxrxt = trans->pathmaxrxt;
7187 val.spt_pathpfthld = trans->pf_retrans;
7188 val.spt_pathcpthld = trans->ps_retrans;
7189
7190 goto out;
7191 }
7192
7193 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7194 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7195 sctp_style(sk, UDP))
7196 return -EINVAL;
7197
7198 if (asoc) {
7199 val.spt_pathpfthld = asoc->pf_retrans;
7200 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7201 val.spt_pathcpthld = asoc->ps_retrans;
7202 } else {
7203 struct sctp_sock *sp = sctp_sk(sk);
7204
7205 val.spt_pathpfthld = sp->pf_retrans;
7206 val.spt_pathmaxrxt = sp->pathmaxrxt;
7207 val.spt_pathcpthld = sp->ps_retrans;
7208 }
7209
7210 out:
7211 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7212 return -EFAULT;
7213
7214 return 0;
7215 }
7216
7217 /*
7218 * SCTP_GET_ASSOC_STATS
7219 *
7220 * This option retrieves local per endpoint statistics. It is modeled
7221 * after OpenSolaris' implementation
7222 */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)7223 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7224 char __user *optval,
7225 int __user *optlen)
7226 {
7227 struct sctp_assoc_stats sas;
7228 struct sctp_association *asoc = NULL;
7229
7230 /* User must provide at least the assoc id */
7231 if (len < sizeof(sctp_assoc_t))
7232 return -EINVAL;
7233
7234 /* Allow the struct to grow and fill in as much as possible */
7235 len = min_t(size_t, len, sizeof(sas));
7236
7237 if (copy_from_user(&sas, optval, len))
7238 return -EFAULT;
7239
7240 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7241 if (!asoc)
7242 return -EINVAL;
7243
7244 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7245 sas.sas_gapcnt = asoc->stats.gapcnt;
7246 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7247 sas.sas_osacks = asoc->stats.osacks;
7248 sas.sas_isacks = asoc->stats.isacks;
7249 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7250 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7251 sas.sas_oodchunks = asoc->stats.oodchunks;
7252 sas.sas_iodchunks = asoc->stats.iodchunks;
7253 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7254 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7255 sas.sas_idupchunks = asoc->stats.idupchunks;
7256 sas.sas_opackets = asoc->stats.opackets;
7257 sas.sas_ipackets = asoc->stats.ipackets;
7258
7259 /* New high max rto observed, will return 0 if not a single
7260 * RTO update took place. obs_rto_ipaddr will be bogus
7261 * in such a case
7262 */
7263 sas.sas_maxrto = asoc->stats.max_obs_rto;
7264 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7265 sizeof(struct sockaddr_storage));
7266
7267 /* Mark beginning of a new observation period */
7268 asoc->stats.max_obs_rto = asoc->rto_min;
7269
7270 if (put_user(len, optlen))
7271 return -EFAULT;
7272
7273 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7274
7275 if (copy_to_user(optval, &sas, len))
7276 return -EFAULT;
7277
7278 return 0;
7279 }
7280
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7281 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7282 char __user *optval,
7283 int __user *optlen)
7284 {
7285 int val = 0;
7286
7287 if (len < sizeof(int))
7288 return -EINVAL;
7289
7290 len = sizeof(int);
7291 if (sctp_sk(sk)->recvrcvinfo)
7292 val = 1;
7293 if (put_user(len, optlen))
7294 return -EFAULT;
7295 if (copy_to_user(optval, &val, len))
7296 return -EFAULT;
7297
7298 return 0;
7299 }
7300
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7301 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7302 char __user *optval,
7303 int __user *optlen)
7304 {
7305 int val = 0;
7306
7307 if (len < sizeof(int))
7308 return -EINVAL;
7309
7310 len = sizeof(int);
7311 if (sctp_sk(sk)->recvnxtinfo)
7312 val = 1;
7313 if (put_user(len, optlen))
7314 return -EFAULT;
7315 if (copy_to_user(optval, &val, len))
7316 return -EFAULT;
7317
7318 return 0;
7319 }
7320
sctp_getsockopt_pr_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7321 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7322 char __user *optval,
7323 int __user *optlen)
7324 {
7325 struct sctp_assoc_value params;
7326 struct sctp_association *asoc;
7327 int retval = -EFAULT;
7328
7329 if (len < sizeof(params)) {
7330 retval = -EINVAL;
7331 goto out;
7332 }
7333
7334 len = sizeof(params);
7335 if (copy_from_user(¶ms, optval, len))
7336 goto out;
7337
7338 asoc = sctp_id2assoc(sk, params.assoc_id);
7339 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7340 sctp_style(sk, UDP)) {
7341 retval = -EINVAL;
7342 goto out;
7343 }
7344
7345 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7346 : sctp_sk(sk)->ep->prsctp_enable;
7347
7348 if (put_user(len, optlen))
7349 goto out;
7350
7351 if (copy_to_user(optval, ¶ms, len))
7352 goto out;
7353
7354 retval = 0;
7355
7356 out:
7357 return retval;
7358 }
7359
sctp_getsockopt_default_prinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7360 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7361 char __user *optval,
7362 int __user *optlen)
7363 {
7364 struct sctp_default_prinfo info;
7365 struct sctp_association *asoc;
7366 int retval = -EFAULT;
7367
7368 if (len < sizeof(info)) {
7369 retval = -EINVAL;
7370 goto out;
7371 }
7372
7373 len = sizeof(info);
7374 if (copy_from_user(&info, optval, len))
7375 goto out;
7376
7377 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7378 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7379 sctp_style(sk, UDP)) {
7380 retval = -EINVAL;
7381 goto out;
7382 }
7383
7384 if (asoc) {
7385 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7386 info.pr_value = asoc->default_timetolive;
7387 } else {
7388 struct sctp_sock *sp = sctp_sk(sk);
7389
7390 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7391 info.pr_value = sp->default_timetolive;
7392 }
7393
7394 if (put_user(len, optlen))
7395 goto out;
7396
7397 if (copy_to_user(optval, &info, len))
7398 goto out;
7399
7400 retval = 0;
7401
7402 out:
7403 return retval;
7404 }
7405
sctp_getsockopt_pr_assocstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7406 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7407 char __user *optval,
7408 int __user *optlen)
7409 {
7410 struct sctp_prstatus params;
7411 struct sctp_association *asoc;
7412 int policy;
7413 int retval = -EINVAL;
7414
7415 if (len < sizeof(params))
7416 goto out;
7417
7418 len = sizeof(params);
7419 if (copy_from_user(¶ms, optval, len)) {
7420 retval = -EFAULT;
7421 goto out;
7422 }
7423
7424 policy = params.sprstat_policy;
7425 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7426 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7427 goto out;
7428
7429 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7430 if (!asoc)
7431 goto out;
7432
7433 if (policy == SCTP_PR_SCTP_ALL) {
7434 params.sprstat_abandoned_unsent = 0;
7435 params.sprstat_abandoned_sent = 0;
7436 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7437 params.sprstat_abandoned_unsent +=
7438 asoc->abandoned_unsent[policy];
7439 params.sprstat_abandoned_sent +=
7440 asoc->abandoned_sent[policy];
7441 }
7442 } else {
7443 params.sprstat_abandoned_unsent =
7444 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7445 params.sprstat_abandoned_sent =
7446 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7447 }
7448
7449 if (put_user(len, optlen)) {
7450 retval = -EFAULT;
7451 goto out;
7452 }
7453
7454 if (copy_to_user(optval, ¶ms, len)) {
7455 retval = -EFAULT;
7456 goto out;
7457 }
7458
7459 retval = 0;
7460
7461 out:
7462 return retval;
7463 }
7464
sctp_getsockopt_pr_streamstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7465 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7466 char __user *optval,
7467 int __user *optlen)
7468 {
7469 struct sctp_stream_out_ext *streamoute;
7470 struct sctp_association *asoc;
7471 struct sctp_prstatus params;
7472 int retval = -EINVAL;
7473 int policy;
7474
7475 if (len < sizeof(params))
7476 goto out;
7477
7478 len = sizeof(params);
7479 if (copy_from_user(¶ms, optval, len)) {
7480 retval = -EFAULT;
7481 goto out;
7482 }
7483
7484 policy = params.sprstat_policy;
7485 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7486 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7487 goto out;
7488
7489 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7490 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7491 goto out;
7492
7493 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7494 if (!streamoute) {
7495 /* Not allocated yet, means all stats are 0 */
7496 params.sprstat_abandoned_unsent = 0;
7497 params.sprstat_abandoned_sent = 0;
7498 retval = 0;
7499 goto out;
7500 }
7501
7502 if (policy == SCTP_PR_SCTP_ALL) {
7503 params.sprstat_abandoned_unsent = 0;
7504 params.sprstat_abandoned_sent = 0;
7505 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7506 params.sprstat_abandoned_unsent +=
7507 streamoute->abandoned_unsent[policy];
7508 params.sprstat_abandoned_sent +=
7509 streamoute->abandoned_sent[policy];
7510 }
7511 } else {
7512 params.sprstat_abandoned_unsent =
7513 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7514 params.sprstat_abandoned_sent =
7515 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7516 }
7517
7518 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7519 retval = -EFAULT;
7520 goto out;
7521 }
7522
7523 retval = 0;
7524
7525 out:
7526 return retval;
7527 }
7528
sctp_getsockopt_reconfig_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7529 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7530 char __user *optval,
7531 int __user *optlen)
7532 {
7533 struct sctp_assoc_value params;
7534 struct sctp_association *asoc;
7535 int retval = -EFAULT;
7536
7537 if (len < sizeof(params)) {
7538 retval = -EINVAL;
7539 goto out;
7540 }
7541
7542 len = sizeof(params);
7543 if (copy_from_user(¶ms, optval, len))
7544 goto out;
7545
7546 asoc = sctp_id2assoc(sk, params.assoc_id);
7547 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7548 sctp_style(sk, UDP)) {
7549 retval = -EINVAL;
7550 goto out;
7551 }
7552
7553 params.assoc_value = asoc ? asoc->peer.reconf_capable
7554 : sctp_sk(sk)->ep->reconf_enable;
7555
7556 if (put_user(len, optlen))
7557 goto out;
7558
7559 if (copy_to_user(optval, ¶ms, len))
7560 goto out;
7561
7562 retval = 0;
7563
7564 out:
7565 return retval;
7566 }
7567
sctp_getsockopt_enable_strreset(struct sock * sk,int len,char __user * optval,int __user * optlen)7568 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7569 char __user *optval,
7570 int __user *optlen)
7571 {
7572 struct sctp_assoc_value params;
7573 struct sctp_association *asoc;
7574 int retval = -EFAULT;
7575
7576 if (len < sizeof(params)) {
7577 retval = -EINVAL;
7578 goto out;
7579 }
7580
7581 len = sizeof(params);
7582 if (copy_from_user(¶ms, optval, len))
7583 goto out;
7584
7585 asoc = sctp_id2assoc(sk, params.assoc_id);
7586 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7587 sctp_style(sk, UDP)) {
7588 retval = -EINVAL;
7589 goto out;
7590 }
7591
7592 params.assoc_value = asoc ? asoc->strreset_enable
7593 : sctp_sk(sk)->ep->strreset_enable;
7594
7595 if (put_user(len, optlen))
7596 goto out;
7597
7598 if (copy_to_user(optval, ¶ms, len))
7599 goto out;
7600
7601 retval = 0;
7602
7603 out:
7604 return retval;
7605 }
7606
sctp_getsockopt_scheduler(struct sock * sk,int len,char __user * optval,int __user * optlen)7607 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7608 char __user *optval,
7609 int __user *optlen)
7610 {
7611 struct sctp_assoc_value params;
7612 struct sctp_association *asoc;
7613 int retval = -EFAULT;
7614
7615 if (len < sizeof(params)) {
7616 retval = -EINVAL;
7617 goto out;
7618 }
7619
7620 len = sizeof(params);
7621 if (copy_from_user(¶ms, optval, len))
7622 goto out;
7623
7624 asoc = sctp_id2assoc(sk, params.assoc_id);
7625 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7626 sctp_style(sk, UDP)) {
7627 retval = -EINVAL;
7628 goto out;
7629 }
7630
7631 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7632 : sctp_sk(sk)->default_ss;
7633
7634 if (put_user(len, optlen))
7635 goto out;
7636
7637 if (copy_to_user(optval, ¶ms, len))
7638 goto out;
7639
7640 retval = 0;
7641
7642 out:
7643 return retval;
7644 }
7645
sctp_getsockopt_scheduler_value(struct sock * sk,int len,char __user * optval,int __user * optlen)7646 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7647 char __user *optval,
7648 int __user *optlen)
7649 {
7650 struct sctp_stream_value params;
7651 struct sctp_association *asoc;
7652 int retval = -EFAULT;
7653
7654 if (len < sizeof(params)) {
7655 retval = -EINVAL;
7656 goto out;
7657 }
7658
7659 len = sizeof(params);
7660 if (copy_from_user(¶ms, optval, len))
7661 goto out;
7662
7663 asoc = sctp_id2assoc(sk, params.assoc_id);
7664 if (!asoc) {
7665 retval = -EINVAL;
7666 goto out;
7667 }
7668
7669 retval = sctp_sched_get_value(asoc, params.stream_id,
7670 ¶ms.stream_value);
7671 if (retval)
7672 goto out;
7673
7674 if (put_user(len, optlen)) {
7675 retval = -EFAULT;
7676 goto out;
7677 }
7678
7679 if (copy_to_user(optval, ¶ms, len)) {
7680 retval = -EFAULT;
7681 goto out;
7682 }
7683
7684 out:
7685 return retval;
7686 }
7687
sctp_getsockopt_interleaving_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7688 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7689 char __user *optval,
7690 int __user *optlen)
7691 {
7692 struct sctp_assoc_value params;
7693 struct sctp_association *asoc;
7694 int retval = -EFAULT;
7695
7696 if (len < sizeof(params)) {
7697 retval = -EINVAL;
7698 goto out;
7699 }
7700
7701 len = sizeof(params);
7702 if (copy_from_user(¶ms, optval, len))
7703 goto out;
7704
7705 asoc = sctp_id2assoc(sk, params.assoc_id);
7706 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7707 sctp_style(sk, UDP)) {
7708 retval = -EINVAL;
7709 goto out;
7710 }
7711
7712 params.assoc_value = asoc ? asoc->peer.intl_capable
7713 : sctp_sk(sk)->ep->intl_enable;
7714
7715 if (put_user(len, optlen))
7716 goto out;
7717
7718 if (copy_to_user(optval, ¶ms, len))
7719 goto out;
7720
7721 retval = 0;
7722
7723 out:
7724 return retval;
7725 }
7726
sctp_getsockopt_reuse_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7727 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7728 char __user *optval,
7729 int __user *optlen)
7730 {
7731 int val;
7732
7733 if (len < sizeof(int))
7734 return -EINVAL;
7735
7736 len = sizeof(int);
7737 val = sctp_sk(sk)->reuse;
7738 if (put_user(len, optlen))
7739 return -EFAULT;
7740
7741 if (copy_to_user(optval, &val, len))
7742 return -EFAULT;
7743
7744 return 0;
7745 }
7746
sctp_getsockopt_event(struct sock * sk,int len,char __user * optval,int __user * optlen)7747 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7748 int __user *optlen)
7749 {
7750 struct sctp_association *asoc;
7751 struct sctp_event param;
7752 __u16 subscribe;
7753
7754 if (len < sizeof(param))
7755 return -EINVAL;
7756
7757 len = sizeof(param);
7758 if (copy_from_user(¶m, optval, len))
7759 return -EFAULT;
7760
7761 if (param.se_type < SCTP_SN_TYPE_BASE ||
7762 param.se_type > SCTP_SN_TYPE_MAX)
7763 return -EINVAL;
7764
7765 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7766 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7767 sctp_style(sk, UDP))
7768 return -EINVAL;
7769
7770 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7771 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7772
7773 if (put_user(len, optlen))
7774 return -EFAULT;
7775
7776 if (copy_to_user(optval, ¶m, len))
7777 return -EFAULT;
7778
7779 return 0;
7780 }
7781
sctp_getsockopt_asconf_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7782 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7783 char __user *optval,
7784 int __user *optlen)
7785 {
7786 struct sctp_assoc_value params;
7787 struct sctp_association *asoc;
7788 int retval = -EFAULT;
7789
7790 if (len < sizeof(params)) {
7791 retval = -EINVAL;
7792 goto out;
7793 }
7794
7795 len = sizeof(params);
7796 if (copy_from_user(¶ms, optval, len))
7797 goto out;
7798
7799 asoc = sctp_id2assoc(sk, params.assoc_id);
7800 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7801 sctp_style(sk, UDP)) {
7802 retval = -EINVAL;
7803 goto out;
7804 }
7805
7806 params.assoc_value = asoc ? asoc->peer.asconf_capable
7807 : sctp_sk(sk)->ep->asconf_enable;
7808
7809 if (put_user(len, optlen))
7810 goto out;
7811
7812 if (copy_to_user(optval, ¶ms, len))
7813 goto out;
7814
7815 retval = 0;
7816
7817 out:
7818 return retval;
7819 }
7820
sctp_getsockopt_auth_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7821 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7822 char __user *optval,
7823 int __user *optlen)
7824 {
7825 struct sctp_assoc_value params;
7826 struct sctp_association *asoc;
7827 int retval = -EFAULT;
7828
7829 if (len < sizeof(params)) {
7830 retval = -EINVAL;
7831 goto out;
7832 }
7833
7834 len = sizeof(params);
7835 if (copy_from_user(¶ms, optval, len))
7836 goto out;
7837
7838 asoc = sctp_id2assoc(sk, params.assoc_id);
7839 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7840 sctp_style(sk, UDP)) {
7841 retval = -EINVAL;
7842 goto out;
7843 }
7844
7845 params.assoc_value = asoc ? asoc->peer.auth_capable
7846 : sctp_sk(sk)->ep->auth_enable;
7847
7848 if (put_user(len, optlen))
7849 goto out;
7850
7851 if (copy_to_user(optval, ¶ms, len))
7852 goto out;
7853
7854 retval = 0;
7855
7856 out:
7857 return retval;
7858 }
7859
sctp_getsockopt_ecn_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7860 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7861 char __user *optval,
7862 int __user *optlen)
7863 {
7864 struct sctp_assoc_value params;
7865 struct sctp_association *asoc;
7866 int retval = -EFAULT;
7867
7868 if (len < sizeof(params)) {
7869 retval = -EINVAL;
7870 goto out;
7871 }
7872
7873 len = sizeof(params);
7874 if (copy_from_user(¶ms, optval, len))
7875 goto out;
7876
7877 asoc = sctp_id2assoc(sk, params.assoc_id);
7878 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7879 sctp_style(sk, UDP)) {
7880 retval = -EINVAL;
7881 goto out;
7882 }
7883
7884 params.assoc_value = asoc ? asoc->peer.ecn_capable
7885 : sctp_sk(sk)->ep->ecn_enable;
7886
7887 if (put_user(len, optlen))
7888 goto out;
7889
7890 if (copy_to_user(optval, ¶ms, len))
7891 goto out;
7892
7893 retval = 0;
7894
7895 out:
7896 return retval;
7897 }
7898
sctp_getsockopt_pf_expose(struct sock * sk,int len,char __user * optval,int __user * optlen)7899 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7900 char __user *optval,
7901 int __user *optlen)
7902 {
7903 struct sctp_assoc_value params;
7904 struct sctp_association *asoc;
7905 int retval = -EFAULT;
7906
7907 if (len < sizeof(params)) {
7908 retval = -EINVAL;
7909 goto out;
7910 }
7911
7912 len = sizeof(params);
7913 if (copy_from_user(¶ms, optval, len))
7914 goto out;
7915
7916 asoc = sctp_id2assoc(sk, params.assoc_id);
7917 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7918 sctp_style(sk, UDP)) {
7919 retval = -EINVAL;
7920 goto out;
7921 }
7922
7923 params.assoc_value = asoc ? asoc->pf_expose
7924 : sctp_sk(sk)->pf_expose;
7925
7926 if (put_user(len, optlen))
7927 goto out;
7928
7929 if (copy_to_user(optval, ¶ms, len))
7930 goto out;
7931
7932 retval = 0;
7933
7934 out:
7935 return retval;
7936 }
7937
sctp_getsockopt_encap_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7938 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7939 char __user *optval, int __user *optlen)
7940 {
7941 struct sctp_association *asoc;
7942 struct sctp_udpencaps encap;
7943 struct sctp_transport *t;
7944 __be16 encap_port;
7945
7946 if (len < sizeof(encap))
7947 return -EINVAL;
7948
7949 len = sizeof(encap);
7950 if (copy_from_user(&encap, optval, len))
7951 return -EFAULT;
7952
7953 /* If an address other than INADDR_ANY is specified, and
7954 * no transport is found, then the request is invalid.
7955 */
7956 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7957 t = sctp_addr_id2transport(sk, &encap.sue_address,
7958 encap.sue_assoc_id);
7959 if (!t) {
7960 pr_debug("%s: failed no transport\n", __func__);
7961 return -EINVAL;
7962 }
7963
7964 encap_port = t->encap_port;
7965 goto out;
7966 }
7967
7968 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7969 * socket is a one to many style socket, and an association
7970 * was not found, then the id was invalid.
7971 */
7972 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7973 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7974 sctp_style(sk, UDP)) {
7975 pr_debug("%s: failed no association\n", __func__);
7976 return -EINVAL;
7977 }
7978
7979 if (asoc) {
7980 encap_port = asoc->encap_port;
7981 goto out;
7982 }
7983
7984 encap_port = sctp_sk(sk)->encap_port;
7985
7986 out:
7987 encap.sue_port = (__force uint16_t)encap_port;
7988 if (copy_to_user(optval, &encap, len))
7989 return -EFAULT;
7990
7991 if (put_user(len, optlen))
7992 return -EFAULT;
7993
7994 return 0;
7995 }
7996
sctp_getsockopt_probe_interval(struct sock * sk,int len,char __user * optval,int __user * optlen)7997 static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7998 char __user *optval,
7999 int __user *optlen)
8000 {
8001 struct sctp_probeinterval params;
8002 struct sctp_association *asoc;
8003 struct sctp_transport *t;
8004 __u32 probe_interval;
8005
8006 if (len < sizeof(params))
8007 return -EINVAL;
8008
8009 len = sizeof(params);
8010 if (copy_from_user(¶ms, optval, len))
8011 return -EFAULT;
8012
8013 /* If an address other than INADDR_ANY is specified, and
8014 * no transport is found, then the request is invalid.
8015 */
8016 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) {
8017 t = sctp_addr_id2transport(sk, ¶ms.spi_address,
8018 params.spi_assoc_id);
8019 if (!t) {
8020 pr_debug("%s: failed no transport\n", __func__);
8021 return -EINVAL;
8022 }
8023
8024 probe_interval = jiffies_to_msecs(t->probe_interval);
8025 goto out;
8026 }
8027
8028 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8029 * socket is a one to many style socket, and an association
8030 * was not found, then the id was invalid.
8031 */
8032 asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8033 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8034 sctp_style(sk, UDP)) {
8035 pr_debug("%s: failed no association\n", __func__);
8036 return -EINVAL;
8037 }
8038
8039 if (asoc) {
8040 probe_interval = jiffies_to_msecs(asoc->probe_interval);
8041 goto out;
8042 }
8043
8044 probe_interval = sctp_sk(sk)->probe_interval;
8045
8046 out:
8047 params.spi_interval = probe_interval;
8048 if (copy_to_user(optval, ¶ms, len))
8049 return -EFAULT;
8050
8051 if (put_user(len, optlen))
8052 return -EFAULT;
8053
8054 return 0;
8055 }
8056
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)8057 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8058 char __user *optval, int __user *optlen)
8059 {
8060 int retval = 0;
8061 int len;
8062
8063 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8064
8065 /* I can hardly begin to describe how wrong this is. This is
8066 * so broken as to be worse than useless. The API draft
8067 * REALLY is NOT helpful here... I am not convinced that the
8068 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8069 * are at all well-founded.
8070 */
8071 if (level != SOL_SCTP) {
8072 struct sctp_af *af = sctp_sk(sk)->pf->af;
8073
8074 retval = af->getsockopt(sk, level, optname, optval, optlen);
8075 return retval;
8076 }
8077
8078 if (get_user(len, optlen))
8079 return -EFAULT;
8080
8081 if (len < 0)
8082 return -EINVAL;
8083
8084 lock_sock(sk);
8085
8086 switch (optname) {
8087 case SCTP_STATUS:
8088 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8089 break;
8090 case SCTP_DISABLE_FRAGMENTS:
8091 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8092 optlen);
8093 break;
8094 case SCTP_EVENTS:
8095 retval = sctp_getsockopt_events(sk, len, optval, optlen);
8096 break;
8097 case SCTP_AUTOCLOSE:
8098 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8099 break;
8100 case SCTP_SOCKOPT_PEELOFF:
8101 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8102 break;
8103 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8104 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8105 break;
8106 case SCTP_PEER_ADDR_PARAMS:
8107 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8108 optlen);
8109 break;
8110 case SCTP_DELAYED_SACK:
8111 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8112 optlen);
8113 break;
8114 case SCTP_INITMSG:
8115 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8116 break;
8117 case SCTP_GET_PEER_ADDRS:
8118 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8119 optlen);
8120 break;
8121 case SCTP_GET_LOCAL_ADDRS:
8122 retval = sctp_getsockopt_local_addrs(sk, len, optval,
8123 optlen);
8124 break;
8125 case SCTP_SOCKOPT_CONNECTX3:
8126 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8127 break;
8128 case SCTP_DEFAULT_SEND_PARAM:
8129 retval = sctp_getsockopt_default_send_param(sk, len,
8130 optval, optlen);
8131 break;
8132 case SCTP_DEFAULT_SNDINFO:
8133 retval = sctp_getsockopt_default_sndinfo(sk, len,
8134 optval, optlen);
8135 break;
8136 case SCTP_PRIMARY_ADDR:
8137 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8138 break;
8139 case SCTP_NODELAY:
8140 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8141 break;
8142 case SCTP_RTOINFO:
8143 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8144 break;
8145 case SCTP_ASSOCINFO:
8146 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8147 break;
8148 case SCTP_I_WANT_MAPPED_V4_ADDR:
8149 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8150 break;
8151 case SCTP_MAXSEG:
8152 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8153 break;
8154 case SCTP_GET_PEER_ADDR_INFO:
8155 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8156 optlen);
8157 break;
8158 case SCTP_ADAPTATION_LAYER:
8159 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8160 optlen);
8161 break;
8162 case SCTP_CONTEXT:
8163 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8164 break;
8165 case SCTP_FRAGMENT_INTERLEAVE:
8166 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8167 optlen);
8168 break;
8169 case SCTP_PARTIAL_DELIVERY_POINT:
8170 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8171 optlen);
8172 break;
8173 case SCTP_MAX_BURST:
8174 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8175 break;
8176 case SCTP_AUTH_KEY:
8177 case SCTP_AUTH_CHUNK:
8178 case SCTP_AUTH_DELETE_KEY:
8179 case SCTP_AUTH_DEACTIVATE_KEY:
8180 retval = -EOPNOTSUPP;
8181 break;
8182 case SCTP_HMAC_IDENT:
8183 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8184 break;
8185 case SCTP_AUTH_ACTIVE_KEY:
8186 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8187 break;
8188 case SCTP_PEER_AUTH_CHUNKS:
8189 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8190 optlen);
8191 break;
8192 case SCTP_LOCAL_AUTH_CHUNKS:
8193 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8194 optlen);
8195 break;
8196 case SCTP_GET_ASSOC_NUMBER:
8197 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8198 break;
8199 case SCTP_GET_ASSOC_ID_LIST:
8200 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8201 break;
8202 case SCTP_AUTO_ASCONF:
8203 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8204 break;
8205 case SCTP_PEER_ADDR_THLDS:
8206 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8207 optlen, false);
8208 break;
8209 case SCTP_PEER_ADDR_THLDS_V2:
8210 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8211 optlen, true);
8212 break;
8213 case SCTP_GET_ASSOC_STATS:
8214 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8215 break;
8216 case SCTP_RECVRCVINFO:
8217 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8218 break;
8219 case SCTP_RECVNXTINFO:
8220 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8221 break;
8222 case SCTP_PR_SUPPORTED:
8223 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8224 break;
8225 case SCTP_DEFAULT_PRINFO:
8226 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8227 optlen);
8228 break;
8229 case SCTP_PR_ASSOC_STATUS:
8230 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8231 optlen);
8232 break;
8233 case SCTP_PR_STREAM_STATUS:
8234 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8235 optlen);
8236 break;
8237 case SCTP_RECONFIG_SUPPORTED:
8238 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8239 optlen);
8240 break;
8241 case SCTP_ENABLE_STREAM_RESET:
8242 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8243 optlen);
8244 break;
8245 case SCTP_STREAM_SCHEDULER:
8246 retval = sctp_getsockopt_scheduler(sk, len, optval,
8247 optlen);
8248 break;
8249 case SCTP_STREAM_SCHEDULER_VALUE:
8250 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8251 optlen);
8252 break;
8253 case SCTP_INTERLEAVING_SUPPORTED:
8254 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8255 optlen);
8256 break;
8257 case SCTP_REUSE_PORT:
8258 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8259 break;
8260 case SCTP_EVENT:
8261 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8262 break;
8263 case SCTP_ASCONF_SUPPORTED:
8264 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8265 optlen);
8266 break;
8267 case SCTP_AUTH_SUPPORTED:
8268 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8269 optlen);
8270 break;
8271 case SCTP_ECN_SUPPORTED:
8272 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8273 break;
8274 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8275 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8276 break;
8277 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8278 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8279 break;
8280 case SCTP_PLPMTUD_PROBE_INTERVAL:
8281 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8282 break;
8283 default:
8284 retval = -ENOPROTOOPT;
8285 break;
8286 }
8287
8288 release_sock(sk);
8289 return retval;
8290 }
8291
sctp_bpf_bypass_getsockopt(int level,int optname)8292 static bool sctp_bpf_bypass_getsockopt(int level, int optname)
8293 {
8294 if (level == SOL_SCTP) {
8295 switch (optname) {
8296 case SCTP_SOCKOPT_PEELOFF:
8297 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8298 case SCTP_SOCKOPT_CONNECTX3:
8299 return true;
8300 default:
8301 return false;
8302 }
8303 }
8304
8305 return false;
8306 }
8307
sctp_hash(struct sock * sk)8308 static int sctp_hash(struct sock *sk)
8309 {
8310 /* STUB */
8311 return 0;
8312 }
8313
sctp_unhash(struct sock * sk)8314 static void sctp_unhash(struct sock *sk)
8315 {
8316 /* STUB */
8317 }
8318
8319 /* Check if port is acceptable. Possibly find first available port.
8320 *
8321 * The port hash table (contained in the 'global' SCTP protocol storage
8322 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8323 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8324 * list (the list number is the port number hashed out, so as you
8325 * would expect from a hash function, all the ports in a given list have
8326 * such a number that hashes out to the same list number; you were
8327 * expecting that, right?); so each list has a set of ports, with a
8328 * link to the socket (struct sock) that uses it, the port number and
8329 * a fastreuse flag (FIXME: NPI ipg).
8330 */
8331 static struct sctp_bind_bucket *sctp_bucket_create(
8332 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8333
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)8334 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8335 {
8336 struct sctp_sock *sp = sctp_sk(sk);
8337 bool reuse = (sk->sk_reuse || sp->reuse);
8338 struct sctp_bind_hashbucket *head; /* hash list */
8339 struct net *net = sock_net(sk);
8340 kuid_t uid = sock_i_uid(sk);
8341 struct sctp_bind_bucket *pp;
8342 unsigned short snum;
8343 int ret;
8344
8345 snum = ntohs(addr->v4.sin_port);
8346
8347 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8348
8349 if (snum == 0) {
8350 /* Search for an available port. */
8351 int low, high, remaining, index;
8352 unsigned int rover;
8353
8354 inet_sk_get_local_port_range(sk, &low, &high);
8355 remaining = (high - low) + 1;
8356 rover = get_random_u32_below(remaining) + low;
8357
8358 do {
8359 rover++;
8360 if ((rover < low) || (rover > high))
8361 rover = low;
8362 if (inet_is_local_reserved_port(net, rover))
8363 continue;
8364 index = sctp_phashfn(net, rover);
8365 head = &sctp_port_hashtable[index];
8366 spin_lock_bh(&head->lock);
8367 sctp_for_each_hentry(pp, &head->chain)
8368 if ((pp->port == rover) &&
8369 net_eq(net, pp->net))
8370 goto next;
8371 break;
8372 next:
8373 spin_unlock_bh(&head->lock);
8374 cond_resched();
8375 } while (--remaining > 0);
8376
8377 /* Exhausted local port range during search? */
8378 ret = 1;
8379 if (remaining <= 0)
8380 return ret;
8381
8382 /* OK, here is the one we will use. HEAD (the port
8383 * hash table list entry) is non-NULL and we hold it's
8384 * mutex.
8385 */
8386 snum = rover;
8387 } else {
8388 /* We are given an specific port number; we verify
8389 * that it is not being used. If it is used, we will
8390 * exahust the search in the hash list corresponding
8391 * to the port number (snum) - we detect that with the
8392 * port iterator, pp being NULL.
8393 */
8394 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8395 spin_lock_bh(&head->lock);
8396 sctp_for_each_hentry(pp, &head->chain) {
8397 if ((pp->port == snum) && net_eq(pp->net, net))
8398 goto pp_found;
8399 }
8400 }
8401 pp = NULL;
8402 goto pp_not_found;
8403 pp_found:
8404 if (!hlist_empty(&pp->owner)) {
8405 /* We had a port hash table hit - there is an
8406 * available port (pp != NULL) and it is being
8407 * used by other socket (pp->owner not empty); that other
8408 * socket is going to be sk2.
8409 */
8410 struct sock *sk2;
8411
8412 pr_debug("%s: found a possible match\n", __func__);
8413
8414 if ((pp->fastreuse && reuse &&
8415 sk->sk_state != SCTP_SS_LISTENING) ||
8416 (pp->fastreuseport && sk->sk_reuseport &&
8417 uid_eq(pp->fastuid, uid)))
8418 goto success;
8419
8420 /* Run through the list of sockets bound to the port
8421 * (pp->port) [via the pointers bind_next and
8422 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8423 * we get the endpoint they describe and run through
8424 * the endpoint's list of IP (v4 or v6) addresses,
8425 * comparing each of the addresses with the address of
8426 * the socket sk. If we find a match, then that means
8427 * that this port/socket (sk) combination are already
8428 * in an endpoint.
8429 */
8430 sk_for_each_bound(sk2, &pp->owner) {
8431 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
8432 struct sctp_sock *sp2 = sctp_sk(sk2);
8433 struct sctp_endpoint *ep2 = sp2->ep;
8434
8435 if (sk == sk2 ||
8436 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8437 sk2->sk_state != SCTP_SS_LISTENING) ||
8438 (sk->sk_reuseport && sk2->sk_reuseport &&
8439 uid_eq(uid, sock_i_uid(sk2))))
8440 continue;
8441
8442 if ((!sk->sk_bound_dev_if || !bound_dev_if2 ||
8443 sk->sk_bound_dev_if == bound_dev_if2) &&
8444 sctp_bind_addr_conflict(&ep2->base.bind_addr,
8445 addr, sp2, sp)) {
8446 ret = 1;
8447 goto fail_unlock;
8448 }
8449 }
8450
8451 pr_debug("%s: found a match\n", __func__);
8452 }
8453 pp_not_found:
8454 /* If there was a hash table miss, create a new port. */
8455 ret = 1;
8456 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8457 goto fail_unlock;
8458
8459 /* In either case (hit or miss), make sure fastreuse is 1 only
8460 * if sk->sk_reuse is too (that is, if the caller requested
8461 * SO_REUSEADDR on this socket -sk-).
8462 */
8463 if (hlist_empty(&pp->owner)) {
8464 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8465 pp->fastreuse = 1;
8466 else
8467 pp->fastreuse = 0;
8468
8469 if (sk->sk_reuseport) {
8470 pp->fastreuseport = 1;
8471 pp->fastuid = uid;
8472 } else {
8473 pp->fastreuseport = 0;
8474 }
8475 } else {
8476 if (pp->fastreuse &&
8477 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8478 pp->fastreuse = 0;
8479
8480 if (pp->fastreuseport &&
8481 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8482 pp->fastreuseport = 0;
8483 }
8484
8485 /* We are set, so fill up all the data in the hash table
8486 * entry, tie the socket list information with the rest of the
8487 * sockets FIXME: Blurry, NPI (ipg).
8488 */
8489 success:
8490 if (!sp->bind_hash) {
8491 inet_sk(sk)->inet_num = snum;
8492 sk_add_bind_node(sk, &pp->owner);
8493 sp->bind_hash = pp;
8494 }
8495 ret = 0;
8496
8497 fail_unlock:
8498 spin_unlock_bh(&head->lock);
8499 return ret;
8500 }
8501
8502 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8503 * port is requested.
8504 */
sctp_get_port(struct sock * sk,unsigned short snum)8505 static int sctp_get_port(struct sock *sk, unsigned short snum)
8506 {
8507 union sctp_addr addr;
8508 struct sctp_af *af = sctp_sk(sk)->pf->af;
8509
8510 /* Set up a dummy address struct from the sk. */
8511 af->from_sk(&addr, sk);
8512 addr.v4.sin_port = htons(snum);
8513
8514 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8515 return sctp_get_port_local(sk, &addr);
8516 }
8517
8518 /*
8519 * Move a socket to LISTENING state.
8520 */
sctp_listen_start(struct sock * sk,int backlog)8521 static int sctp_listen_start(struct sock *sk, int backlog)
8522 {
8523 struct sctp_sock *sp = sctp_sk(sk);
8524 struct sctp_endpoint *ep = sp->ep;
8525 struct crypto_shash *tfm = NULL;
8526 char alg[32];
8527
8528 /* Allocate HMAC for generating cookie. */
8529 if (!sp->hmac && sp->sctp_hmac_alg) {
8530 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8531 tfm = crypto_alloc_shash(alg, 0, 0);
8532 if (IS_ERR(tfm)) {
8533 net_info_ratelimited("failed to load transform for %s: %ld\n",
8534 sp->sctp_hmac_alg, PTR_ERR(tfm));
8535 return -ENOSYS;
8536 }
8537 sctp_sk(sk)->hmac = tfm;
8538 }
8539
8540 /*
8541 * If a bind() or sctp_bindx() is not called prior to a listen()
8542 * call that allows new associations to be accepted, the system
8543 * picks an ephemeral port and will choose an address set equivalent
8544 * to binding with a wildcard address.
8545 *
8546 * This is not currently spelled out in the SCTP sockets
8547 * extensions draft, but follows the practice as seen in TCP
8548 * sockets.
8549 *
8550 */
8551 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8552 if (!ep->base.bind_addr.port) {
8553 if (sctp_autobind(sk))
8554 return -EAGAIN;
8555 } else {
8556 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8557 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8558 return -EADDRINUSE;
8559 }
8560 }
8561
8562 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8563 return sctp_hash_endpoint(ep);
8564 }
8565
8566 /*
8567 * 4.1.3 / 5.1.3 listen()
8568 *
8569 * By default, new associations are not accepted for UDP style sockets.
8570 * An application uses listen() to mark a socket as being able to
8571 * accept new associations.
8572 *
8573 * On TCP style sockets, applications use listen() to ready the SCTP
8574 * endpoint for accepting inbound associations.
8575 *
8576 * On both types of endpoints a backlog of '0' disables listening.
8577 *
8578 * Move a socket to LISTENING state.
8579 */
sctp_inet_listen(struct socket * sock,int backlog)8580 int sctp_inet_listen(struct socket *sock, int backlog)
8581 {
8582 struct sock *sk = sock->sk;
8583 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8584 int err = -EINVAL;
8585
8586 if (unlikely(backlog < 0))
8587 return err;
8588
8589 lock_sock(sk);
8590
8591 /* Peeled-off sockets are not allowed to listen(). */
8592 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8593 goto out;
8594
8595 if (sock->state != SS_UNCONNECTED)
8596 goto out;
8597
8598 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8599 goto out;
8600
8601 /* If backlog is zero, disable listening. */
8602 if (!backlog) {
8603 if (sctp_sstate(sk, CLOSED))
8604 goto out;
8605
8606 err = 0;
8607 sctp_unhash_endpoint(ep);
8608 sk->sk_state = SCTP_SS_CLOSED;
8609 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8610 sctp_sk(sk)->bind_hash->fastreuse = 1;
8611 goto out;
8612 }
8613
8614 /* If we are already listening, just update the backlog */
8615 if (sctp_sstate(sk, LISTENING))
8616 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8617 else {
8618 err = sctp_listen_start(sk, backlog);
8619 if (err)
8620 goto out;
8621 }
8622
8623 err = 0;
8624 out:
8625 release_sock(sk);
8626 return err;
8627 }
8628
8629 /*
8630 * This function is done by modeling the current datagram_poll() and the
8631 * tcp_poll(). Note that, based on these implementations, we don't
8632 * lock the socket in this function, even though it seems that,
8633 * ideally, locking or some other mechanisms can be used to ensure
8634 * the integrity of the counters (sndbuf and wmem_alloc) used
8635 * in this place. We assume that we don't need locks either until proven
8636 * otherwise.
8637 *
8638 * Another thing to note is that we include the Async I/O support
8639 * here, again, by modeling the current TCP/UDP code. We don't have
8640 * a good way to test with it yet.
8641 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)8642 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8643 {
8644 struct sock *sk = sock->sk;
8645 struct sctp_sock *sp = sctp_sk(sk);
8646 __poll_t mask;
8647
8648 poll_wait(file, sk_sleep(sk), wait);
8649
8650 sock_rps_record_flow(sk);
8651
8652 /* A TCP-style listening socket becomes readable when the accept queue
8653 * is not empty.
8654 */
8655 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8656 return (!list_empty(&sp->ep->asocs)) ?
8657 (EPOLLIN | EPOLLRDNORM) : 0;
8658
8659 mask = 0;
8660
8661 /* Is there any exceptional events? */
8662 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8663 mask |= EPOLLERR |
8664 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8665 if (sk->sk_shutdown & RCV_SHUTDOWN)
8666 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8667 if (sk->sk_shutdown == SHUTDOWN_MASK)
8668 mask |= EPOLLHUP;
8669
8670 /* Is it readable? Reconsider this code with TCP-style support. */
8671 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8672 mask |= EPOLLIN | EPOLLRDNORM;
8673
8674 /* The association is either gone or not ready. */
8675 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8676 return mask;
8677
8678 /* Is it writable? */
8679 if (sctp_writeable(sk)) {
8680 mask |= EPOLLOUT | EPOLLWRNORM;
8681 } else {
8682 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8683 /*
8684 * Since the socket is not locked, the buffer
8685 * might be made available after the writeable check and
8686 * before the bit is set. This could cause a lost I/O
8687 * signal. tcp_poll() has a race breaker for this race
8688 * condition. Based on their implementation, we put
8689 * in the following code to cover it as well.
8690 */
8691 if (sctp_writeable(sk))
8692 mask |= EPOLLOUT | EPOLLWRNORM;
8693 }
8694 return mask;
8695 }
8696
8697 /********************************************************************
8698 * 2nd Level Abstractions
8699 ********************************************************************/
8700
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)8701 static struct sctp_bind_bucket *sctp_bucket_create(
8702 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8703 {
8704 struct sctp_bind_bucket *pp;
8705
8706 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8707 if (pp) {
8708 SCTP_DBG_OBJCNT_INC(bind_bucket);
8709 pp->port = snum;
8710 pp->fastreuse = 0;
8711 INIT_HLIST_HEAD(&pp->owner);
8712 pp->net = net;
8713 hlist_add_head(&pp->node, &head->chain);
8714 }
8715 return pp;
8716 }
8717
8718 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)8719 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8720 {
8721 if (pp && hlist_empty(&pp->owner)) {
8722 __hlist_del(&pp->node);
8723 kmem_cache_free(sctp_bucket_cachep, pp);
8724 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8725 }
8726 }
8727
8728 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)8729 static inline void __sctp_put_port(struct sock *sk)
8730 {
8731 struct sctp_bind_hashbucket *head =
8732 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8733 inet_sk(sk)->inet_num)];
8734 struct sctp_bind_bucket *pp;
8735
8736 spin_lock(&head->lock);
8737 pp = sctp_sk(sk)->bind_hash;
8738 __sk_del_bind_node(sk);
8739 sctp_sk(sk)->bind_hash = NULL;
8740 inet_sk(sk)->inet_num = 0;
8741 sctp_bucket_destroy(pp);
8742 spin_unlock(&head->lock);
8743 }
8744
sctp_put_port(struct sock * sk)8745 void sctp_put_port(struct sock *sk)
8746 {
8747 local_bh_disable();
8748 __sctp_put_port(sk);
8749 local_bh_enable();
8750 }
8751
8752 /*
8753 * The system picks an ephemeral port and choose an address set equivalent
8754 * to binding with a wildcard address.
8755 * One of those addresses will be the primary address for the association.
8756 * This automatically enables the multihoming capability of SCTP.
8757 */
sctp_autobind(struct sock * sk)8758 static int sctp_autobind(struct sock *sk)
8759 {
8760 union sctp_addr autoaddr;
8761 struct sctp_af *af;
8762 __be16 port;
8763
8764 /* Initialize a local sockaddr structure to INADDR_ANY. */
8765 af = sctp_sk(sk)->pf->af;
8766
8767 port = htons(inet_sk(sk)->inet_num);
8768 af->inaddr_any(&autoaddr, port);
8769
8770 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8771 }
8772
8773 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8774 *
8775 * From RFC 2292
8776 * 4.2 The cmsghdr Structure *
8777 *
8778 * When ancillary data is sent or received, any number of ancillary data
8779 * objects can be specified by the msg_control and msg_controllen members of
8780 * the msghdr structure, because each object is preceded by
8781 * a cmsghdr structure defining the object's length (the cmsg_len member).
8782 * Historically Berkeley-derived implementations have passed only one object
8783 * at a time, but this API allows multiple objects to be
8784 * passed in a single call to sendmsg() or recvmsg(). The following example
8785 * shows two ancillary data objects in a control buffer.
8786 *
8787 * |<--------------------------- msg_controllen -------------------------->|
8788 * | |
8789 *
8790 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8791 *
8792 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8793 * | | |
8794 *
8795 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8796 *
8797 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8798 * | | | | |
8799 *
8800 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8801 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8802 *
8803 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8804 *
8805 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8806 * ^
8807 * |
8808 *
8809 * msg_control
8810 * points here
8811 */
sctp_msghdr_parse(const struct msghdr * msg,struct sctp_cmsgs * cmsgs)8812 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8813 {
8814 struct msghdr *my_msg = (struct msghdr *)msg;
8815 struct cmsghdr *cmsg;
8816
8817 for_each_cmsghdr(cmsg, my_msg) {
8818 if (!CMSG_OK(my_msg, cmsg))
8819 return -EINVAL;
8820
8821 /* Should we parse this header or ignore? */
8822 if (cmsg->cmsg_level != IPPROTO_SCTP)
8823 continue;
8824
8825 /* Strictly check lengths following example in SCM code. */
8826 switch (cmsg->cmsg_type) {
8827 case SCTP_INIT:
8828 /* SCTP Socket API Extension
8829 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8830 *
8831 * This cmsghdr structure provides information for
8832 * initializing new SCTP associations with sendmsg().
8833 * The SCTP_INITMSG socket option uses this same data
8834 * structure. This structure is not used for
8835 * recvmsg().
8836 *
8837 * cmsg_level cmsg_type cmsg_data[]
8838 * ------------ ------------ ----------------------
8839 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8840 */
8841 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8842 return -EINVAL;
8843
8844 cmsgs->init = CMSG_DATA(cmsg);
8845 break;
8846
8847 case SCTP_SNDRCV:
8848 /* SCTP Socket API Extension
8849 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8850 *
8851 * This cmsghdr structure specifies SCTP options for
8852 * sendmsg() and describes SCTP header information
8853 * about a received message through recvmsg().
8854 *
8855 * cmsg_level cmsg_type cmsg_data[]
8856 * ------------ ------------ ----------------------
8857 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8858 */
8859 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8860 return -EINVAL;
8861
8862 cmsgs->srinfo = CMSG_DATA(cmsg);
8863
8864 if (cmsgs->srinfo->sinfo_flags &
8865 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8866 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8867 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8868 return -EINVAL;
8869 break;
8870
8871 case SCTP_SNDINFO:
8872 /* SCTP Socket API Extension
8873 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8874 *
8875 * This cmsghdr structure specifies SCTP options for
8876 * sendmsg(). This structure and SCTP_RCVINFO replaces
8877 * SCTP_SNDRCV which has been deprecated.
8878 *
8879 * cmsg_level cmsg_type cmsg_data[]
8880 * ------------ ------------ ---------------------
8881 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8882 */
8883 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8884 return -EINVAL;
8885
8886 cmsgs->sinfo = CMSG_DATA(cmsg);
8887
8888 if (cmsgs->sinfo->snd_flags &
8889 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8890 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8891 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8892 return -EINVAL;
8893 break;
8894 case SCTP_PRINFO:
8895 /* SCTP Socket API Extension
8896 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8897 *
8898 * This cmsghdr structure specifies SCTP options for sendmsg().
8899 *
8900 * cmsg_level cmsg_type cmsg_data[]
8901 * ------------ ------------ ---------------------
8902 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8903 */
8904 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8905 return -EINVAL;
8906
8907 cmsgs->prinfo = CMSG_DATA(cmsg);
8908 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8909 return -EINVAL;
8910
8911 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8912 cmsgs->prinfo->pr_value = 0;
8913 break;
8914 case SCTP_AUTHINFO:
8915 /* SCTP Socket API Extension
8916 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8917 *
8918 * This cmsghdr structure specifies SCTP options for sendmsg().
8919 *
8920 * cmsg_level cmsg_type cmsg_data[]
8921 * ------------ ------------ ---------------------
8922 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8923 */
8924 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8925 return -EINVAL;
8926
8927 cmsgs->authinfo = CMSG_DATA(cmsg);
8928 break;
8929 case SCTP_DSTADDRV4:
8930 case SCTP_DSTADDRV6:
8931 /* SCTP Socket API Extension
8932 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8933 *
8934 * This cmsghdr structure specifies SCTP options for sendmsg().
8935 *
8936 * cmsg_level cmsg_type cmsg_data[]
8937 * ------------ ------------ ---------------------
8938 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8939 * ------------ ------------ ---------------------
8940 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8941 */
8942 cmsgs->addrs_msg = my_msg;
8943 break;
8944 default:
8945 return -EINVAL;
8946 }
8947 }
8948
8949 return 0;
8950 }
8951
8952 /*
8953 * Wait for a packet..
8954 * Note: This function is the same function as in core/datagram.c
8955 * with a few modifications to make lksctp work.
8956 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)8957 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8958 {
8959 int error;
8960 DEFINE_WAIT(wait);
8961
8962 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8963
8964 /* Socket errors? */
8965 error = sock_error(sk);
8966 if (error)
8967 goto out;
8968
8969 if (!skb_queue_empty(&sk->sk_receive_queue))
8970 goto ready;
8971
8972 /* Socket shut down? */
8973 if (sk->sk_shutdown & RCV_SHUTDOWN)
8974 goto out;
8975
8976 /* Sequenced packets can come disconnected. If so we report the
8977 * problem.
8978 */
8979 error = -ENOTCONN;
8980
8981 /* Is there a good reason to think that we may receive some data? */
8982 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8983 goto out;
8984
8985 /* Handle signals. */
8986 if (signal_pending(current))
8987 goto interrupted;
8988
8989 /* Let another process have a go. Since we are going to sleep
8990 * anyway. Note: This may cause odd behaviors if the message
8991 * does not fit in the user's buffer, but this seems to be the
8992 * only way to honor MSG_DONTWAIT realistically.
8993 */
8994 release_sock(sk);
8995 *timeo_p = schedule_timeout(*timeo_p);
8996 lock_sock(sk);
8997
8998 ready:
8999 finish_wait(sk_sleep(sk), &wait);
9000 return 0;
9001
9002 interrupted:
9003 error = sock_intr_errno(*timeo_p);
9004
9005 out:
9006 finish_wait(sk_sleep(sk), &wait);
9007 *err = error;
9008 return error;
9009 }
9010
9011 /* Receive a datagram.
9012 * Note: This is pretty much the same routine as in core/datagram.c
9013 * with a few changes to make lksctp work.
9014 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int * err)9015 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
9016 {
9017 int error;
9018 struct sk_buff *skb;
9019 long timeo;
9020
9021 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
9022
9023 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
9024 MAX_SCHEDULE_TIMEOUT);
9025
9026 do {
9027 /* Again only user level code calls this function,
9028 * so nothing interrupt level
9029 * will suddenly eat the receive_queue.
9030 *
9031 * Look at current nfs client by the way...
9032 * However, this function was correct in any case. 8)
9033 */
9034 if (flags & MSG_PEEK) {
9035 skb = skb_peek(&sk->sk_receive_queue);
9036 if (skb)
9037 refcount_inc(&skb->users);
9038 } else {
9039 skb = __skb_dequeue(&sk->sk_receive_queue);
9040 }
9041
9042 if (skb)
9043 return skb;
9044
9045 /* Caller is allowed not to check sk->sk_err before calling. */
9046 error = sock_error(sk);
9047 if (error)
9048 goto no_packet;
9049
9050 if (sk->sk_shutdown & RCV_SHUTDOWN)
9051 break;
9052
9053
9054 /* User doesn't want to wait. */
9055 error = -EAGAIN;
9056 if (!timeo)
9057 goto no_packet;
9058 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9059
9060 return NULL;
9061
9062 no_packet:
9063 *err = error;
9064 return NULL;
9065 }
9066
9067 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)9068 static void __sctp_write_space(struct sctp_association *asoc)
9069 {
9070 struct sock *sk = asoc->base.sk;
9071
9072 if (sctp_wspace(asoc) <= 0)
9073 return;
9074
9075 if (waitqueue_active(&asoc->wait))
9076 wake_up_interruptible(&asoc->wait);
9077
9078 if (sctp_writeable(sk)) {
9079 struct socket_wq *wq;
9080
9081 rcu_read_lock();
9082 wq = rcu_dereference(sk->sk_wq);
9083 if (wq) {
9084 if (waitqueue_active(&wq->wait))
9085 wake_up_interruptible(&wq->wait);
9086
9087 /* Note that we try to include the Async I/O support
9088 * here by modeling from the current TCP/UDP code.
9089 * We have not tested with it yet.
9090 */
9091 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9092 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9093 }
9094 rcu_read_unlock();
9095 }
9096 }
9097
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)9098 static void sctp_wake_up_waiters(struct sock *sk,
9099 struct sctp_association *asoc)
9100 {
9101 struct sctp_association *tmp = asoc;
9102
9103 /* We do accounting for the sndbuf space per association,
9104 * so we only need to wake our own association.
9105 */
9106 if (asoc->ep->sndbuf_policy)
9107 return __sctp_write_space(asoc);
9108
9109 /* If association goes down and is just flushing its
9110 * outq, then just normally notify others.
9111 */
9112 if (asoc->base.dead)
9113 return sctp_write_space(sk);
9114
9115 /* Accounting for the sndbuf space is per socket, so we
9116 * need to wake up others, try to be fair and in case of
9117 * other associations, let them have a go first instead
9118 * of just doing a sctp_write_space() call.
9119 *
9120 * Note that we reach sctp_wake_up_waiters() only when
9121 * associations free up queued chunks, thus we are under
9122 * lock and the list of associations on a socket is
9123 * guaranteed not to change.
9124 */
9125 for (tmp = list_next_entry(tmp, asocs); 1;
9126 tmp = list_next_entry(tmp, asocs)) {
9127 /* Manually skip the head element. */
9128 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9129 continue;
9130 /* Wake up association. */
9131 __sctp_write_space(tmp);
9132 /* We've reached the end. */
9133 if (tmp == asoc)
9134 break;
9135 }
9136 }
9137
9138 /* Do accounting for the sndbuf space.
9139 * Decrement the used sndbuf space of the corresponding association by the
9140 * data size which was just transmitted(freed).
9141 */
sctp_wfree(struct sk_buff * skb)9142 static void sctp_wfree(struct sk_buff *skb)
9143 {
9144 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9145 struct sctp_association *asoc = chunk->asoc;
9146 struct sock *sk = asoc->base.sk;
9147
9148 sk_mem_uncharge(sk, skb->truesize);
9149 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk)));
9150 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9151 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9152 &sk->sk_wmem_alloc));
9153
9154 if (chunk->shkey) {
9155 struct sctp_shared_key *shkey = chunk->shkey;
9156
9157 /* refcnt == 2 and !list_empty mean after this release, it's
9158 * not being used anywhere, and it's time to notify userland
9159 * that this shkey can be freed if it's been deactivated.
9160 */
9161 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9162 refcount_read(&shkey->refcnt) == 2) {
9163 struct sctp_ulpevent *ev;
9164
9165 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9166 SCTP_AUTH_FREE_KEY,
9167 GFP_KERNEL);
9168 if (ev)
9169 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9170 }
9171 sctp_auth_shkey_release(chunk->shkey);
9172 }
9173
9174 sock_wfree(skb);
9175 sctp_wake_up_waiters(sk, asoc);
9176
9177 sctp_association_put(asoc);
9178 }
9179
9180 /* Do accounting for the receive space on the socket.
9181 * Accounting for the association is done in ulpevent.c
9182 * We set this as a destructor for the cloned data skbs so that
9183 * accounting is done at the correct time.
9184 */
sctp_sock_rfree(struct sk_buff * skb)9185 void sctp_sock_rfree(struct sk_buff *skb)
9186 {
9187 struct sock *sk = skb->sk;
9188 struct sctp_ulpevent *event = sctp_skb2event(skb);
9189
9190 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9191
9192 /*
9193 * Mimic the behavior of sock_rfree
9194 */
9195 sk_mem_uncharge(sk, event->rmem_len);
9196 }
9197
9198
9199 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)9200 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9201 size_t msg_len)
9202 {
9203 struct sock *sk = asoc->base.sk;
9204 long current_timeo = *timeo_p;
9205 DEFINE_WAIT(wait);
9206 int err = 0;
9207
9208 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9209 *timeo_p, msg_len);
9210
9211 /* Increment the association's refcnt. */
9212 sctp_association_hold(asoc);
9213
9214 /* Wait on the association specific sndbuf space. */
9215 for (;;) {
9216 prepare_to_wait_exclusive(&asoc->wait, &wait,
9217 TASK_INTERRUPTIBLE);
9218 if (asoc->base.dead)
9219 goto do_dead;
9220 if (!*timeo_p)
9221 goto do_nonblock;
9222 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9223 goto do_error;
9224 if (signal_pending(current))
9225 goto do_interrupted;
9226 if ((int)msg_len <= sctp_wspace(asoc) &&
9227 sk_wmem_schedule(sk, msg_len))
9228 break;
9229
9230 /* Let another process have a go. Since we are going
9231 * to sleep anyway.
9232 */
9233 release_sock(sk);
9234 current_timeo = schedule_timeout(current_timeo);
9235 lock_sock(sk);
9236 if (sk != asoc->base.sk)
9237 goto do_error;
9238
9239 *timeo_p = current_timeo;
9240 }
9241
9242 out:
9243 finish_wait(&asoc->wait, &wait);
9244
9245 /* Release the association's refcnt. */
9246 sctp_association_put(asoc);
9247
9248 return err;
9249
9250 do_dead:
9251 err = -ESRCH;
9252 goto out;
9253
9254 do_error:
9255 err = -EPIPE;
9256 goto out;
9257
9258 do_interrupted:
9259 err = sock_intr_errno(*timeo_p);
9260 goto out;
9261
9262 do_nonblock:
9263 err = -EAGAIN;
9264 goto out;
9265 }
9266
sctp_data_ready(struct sock * sk)9267 void sctp_data_ready(struct sock *sk)
9268 {
9269 struct socket_wq *wq;
9270
9271 trace_sk_data_ready(sk);
9272
9273 rcu_read_lock();
9274 wq = rcu_dereference(sk->sk_wq);
9275 if (skwq_has_sleeper(wq))
9276 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9277 EPOLLRDNORM | EPOLLRDBAND);
9278 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9279 rcu_read_unlock();
9280 }
9281
9282 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)9283 void sctp_write_space(struct sock *sk)
9284 {
9285 struct sctp_association *asoc;
9286
9287 /* Wake up the tasks in each wait queue. */
9288 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9289 __sctp_write_space(asoc);
9290 }
9291 }
9292
9293 /* Is there any sndbuf space available on the socket?
9294 *
9295 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9296 * associations on the same socket. For a UDP-style socket with
9297 * multiple associations, it is possible for it to be "unwriteable"
9298 * prematurely. I assume that this is acceptable because
9299 * a premature "unwriteable" is better than an accidental "writeable" which
9300 * would cause an unwanted block under certain circumstances. For the 1-1
9301 * UDP-style sockets or TCP-style sockets, this code should work.
9302 * - Daisy
9303 */
sctp_writeable(const struct sock * sk)9304 static bool sctp_writeable(const struct sock *sk)
9305 {
9306 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued);
9307 }
9308
9309 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9310 * returns immediately with EINPROGRESS.
9311 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)9312 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9313 {
9314 struct sock *sk = asoc->base.sk;
9315 int err = 0;
9316 long current_timeo = *timeo_p;
9317 DEFINE_WAIT(wait);
9318
9319 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9320
9321 /* Increment the association's refcnt. */
9322 sctp_association_hold(asoc);
9323
9324 for (;;) {
9325 prepare_to_wait_exclusive(&asoc->wait, &wait,
9326 TASK_INTERRUPTIBLE);
9327 if (!*timeo_p)
9328 goto do_nonblock;
9329 if (sk->sk_shutdown & RCV_SHUTDOWN)
9330 break;
9331 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9332 asoc->base.dead)
9333 goto do_error;
9334 if (signal_pending(current))
9335 goto do_interrupted;
9336
9337 if (sctp_state(asoc, ESTABLISHED))
9338 break;
9339
9340 /* Let another process have a go. Since we are going
9341 * to sleep anyway.
9342 */
9343 release_sock(sk);
9344 current_timeo = schedule_timeout(current_timeo);
9345 lock_sock(sk);
9346
9347 *timeo_p = current_timeo;
9348 }
9349
9350 out:
9351 finish_wait(&asoc->wait, &wait);
9352
9353 /* Release the association's refcnt. */
9354 sctp_association_put(asoc);
9355
9356 return err;
9357
9358 do_error:
9359 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9360 err = -ETIMEDOUT;
9361 else
9362 err = -ECONNREFUSED;
9363 goto out;
9364
9365 do_interrupted:
9366 err = sock_intr_errno(*timeo_p);
9367 goto out;
9368
9369 do_nonblock:
9370 err = -EINPROGRESS;
9371 goto out;
9372 }
9373
sctp_wait_for_accept(struct sock * sk,long timeo)9374 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9375 {
9376 struct sctp_endpoint *ep;
9377 int err = 0;
9378 DEFINE_WAIT(wait);
9379
9380 ep = sctp_sk(sk)->ep;
9381
9382
9383 for (;;) {
9384 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9385 TASK_INTERRUPTIBLE);
9386
9387 if (list_empty(&ep->asocs)) {
9388 release_sock(sk);
9389 timeo = schedule_timeout(timeo);
9390 lock_sock(sk);
9391 }
9392
9393 err = -EINVAL;
9394 if (!sctp_sstate(sk, LISTENING))
9395 break;
9396
9397 err = 0;
9398 if (!list_empty(&ep->asocs))
9399 break;
9400
9401 err = sock_intr_errno(timeo);
9402 if (signal_pending(current))
9403 break;
9404
9405 err = -EAGAIN;
9406 if (!timeo)
9407 break;
9408 }
9409
9410 finish_wait(sk_sleep(sk), &wait);
9411
9412 return err;
9413 }
9414
sctp_wait_for_close(struct sock * sk,long timeout)9415 static void sctp_wait_for_close(struct sock *sk, long timeout)
9416 {
9417 DEFINE_WAIT(wait);
9418
9419 do {
9420 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9421 if (list_empty(&sctp_sk(sk)->ep->asocs))
9422 break;
9423 release_sock(sk);
9424 timeout = schedule_timeout(timeout);
9425 lock_sock(sk);
9426 } while (!signal_pending(current) && timeout);
9427
9428 finish_wait(sk_sleep(sk), &wait);
9429 }
9430
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)9431 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9432 {
9433 struct sk_buff *frag;
9434
9435 if (!skb->data_len)
9436 goto done;
9437
9438 /* Don't forget the fragments. */
9439 skb_walk_frags(skb, frag)
9440 sctp_skb_set_owner_r_frag(frag, sk);
9441
9442 done:
9443 sctp_skb_set_owner_r(skb, sk);
9444 }
9445
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)9446 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9447 struct sctp_association *asoc)
9448 {
9449 struct inet_sock *inet = inet_sk(sk);
9450 struct inet_sock *newinet;
9451 struct sctp_sock *sp = sctp_sk(sk);
9452
9453 newsk->sk_type = sk->sk_type;
9454 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9455 newsk->sk_flags = sk->sk_flags;
9456 newsk->sk_tsflags = sk->sk_tsflags;
9457 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9458 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9459 newsk->sk_reuse = sk->sk_reuse;
9460 sctp_sk(newsk)->reuse = sp->reuse;
9461
9462 newsk->sk_shutdown = sk->sk_shutdown;
9463 newsk->sk_destruct = sk->sk_destruct;
9464 newsk->sk_family = sk->sk_family;
9465 newsk->sk_protocol = IPPROTO_SCTP;
9466 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9467 newsk->sk_sndbuf = sk->sk_sndbuf;
9468 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9469 newsk->sk_lingertime = sk->sk_lingertime;
9470 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9471 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9472 newsk->sk_rxhash = sk->sk_rxhash;
9473
9474 newinet = inet_sk(newsk);
9475
9476 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9477 * getsockname() and getpeername()
9478 */
9479 newinet->inet_sport = inet->inet_sport;
9480 newinet->inet_saddr = inet->inet_saddr;
9481 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9482 newinet->inet_dport = htons(asoc->peer.port);
9483 newinet->pmtudisc = inet->pmtudisc;
9484 atomic_set(&newinet->inet_id, get_random_u16());
9485
9486 newinet->uc_ttl = inet->uc_ttl;
9487 inet_set_bit(MC_LOOP, newsk);
9488 newinet->mc_ttl = 1;
9489 newinet->mc_index = 0;
9490 newinet->mc_list = NULL;
9491
9492 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9493 net_enable_timestamp();
9494
9495 /* Set newsk security attributes from original sk and connection
9496 * security attribute from asoc.
9497 */
9498 security_sctp_sk_clone(asoc, sk, newsk);
9499 }
9500
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)9501 static inline void sctp_copy_descendant(struct sock *sk_to,
9502 const struct sock *sk_from)
9503 {
9504 size_t ancestor_size = sizeof(struct inet_sock);
9505
9506 ancestor_size += sk_from->sk_prot->obj_size;
9507 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9508 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9509 }
9510
9511 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9512 * and its messages to the newsk.
9513 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,enum sctp_socket_type type)9514 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9515 struct sctp_association *assoc,
9516 enum sctp_socket_type type)
9517 {
9518 struct sctp_sock *oldsp = sctp_sk(oldsk);
9519 struct sctp_sock *newsp = sctp_sk(newsk);
9520 struct sctp_bind_bucket *pp; /* hash list port iterator */
9521 struct sctp_endpoint *newep = newsp->ep;
9522 struct sk_buff *skb, *tmp;
9523 struct sctp_ulpevent *event;
9524 struct sctp_bind_hashbucket *head;
9525 int err;
9526
9527 /* Migrate socket buffer sizes and all the socket level options to the
9528 * new socket.
9529 */
9530 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9531 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9532 /* Brute force copy old sctp opt. */
9533 sctp_copy_descendant(newsk, oldsk);
9534
9535 /* Restore the ep value that was overwritten with the above structure
9536 * copy.
9537 */
9538 newsp->ep = newep;
9539 newsp->hmac = NULL;
9540
9541 /* Hook this new socket in to the bind_hash list. */
9542 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9543 inet_sk(oldsk)->inet_num)];
9544 spin_lock_bh(&head->lock);
9545 pp = sctp_sk(oldsk)->bind_hash;
9546 sk_add_bind_node(newsk, &pp->owner);
9547 sctp_sk(newsk)->bind_hash = pp;
9548 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9549 spin_unlock_bh(&head->lock);
9550
9551 /* Copy the bind_addr list from the original endpoint to the new
9552 * endpoint so that we can handle restarts properly
9553 */
9554 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9555 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9556 if (err)
9557 return err;
9558
9559 /* New ep's auth_hmacs should be set if old ep's is set, in case
9560 * that net->sctp.auth_enable has been changed to 0 by users and
9561 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9562 */
9563 if (oldsp->ep->auth_hmacs) {
9564 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9565 if (err)
9566 return err;
9567 }
9568
9569 sctp_auto_asconf_init(newsp);
9570
9571 /* Move any messages in the old socket's receive queue that are for the
9572 * peeled off association to the new socket's receive queue.
9573 */
9574 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9575 event = sctp_skb2event(skb);
9576 if (event->asoc == assoc) {
9577 __skb_unlink(skb, &oldsk->sk_receive_queue);
9578 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9579 sctp_skb_set_owner_r_frag(skb, newsk);
9580 }
9581 }
9582
9583 /* Clean up any messages pending delivery due to partial
9584 * delivery. Three cases:
9585 * 1) No partial deliver; no work.
9586 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9587 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9588 */
9589 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9590
9591 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9592 struct sk_buff_head *queue;
9593
9594 /* Decide which queue to move pd_lobby skbs to. */
9595 if (assoc->ulpq.pd_mode) {
9596 queue = &newsp->pd_lobby;
9597 } else
9598 queue = &newsk->sk_receive_queue;
9599
9600 /* Walk through the pd_lobby, looking for skbs that
9601 * need moved to the new socket.
9602 */
9603 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9604 event = sctp_skb2event(skb);
9605 if (event->asoc == assoc) {
9606 __skb_unlink(skb, &oldsp->pd_lobby);
9607 __skb_queue_tail(queue, skb);
9608 sctp_skb_set_owner_r_frag(skb, newsk);
9609 }
9610 }
9611
9612 /* Clear up any skbs waiting for the partial
9613 * delivery to finish.
9614 */
9615 if (assoc->ulpq.pd_mode)
9616 sctp_clear_pd(oldsk, NULL);
9617
9618 }
9619
9620 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9621
9622 /* Set the type of socket to indicate that it is peeled off from the
9623 * original UDP-style socket or created with the accept() call on a
9624 * TCP-style socket..
9625 */
9626 newsp->type = type;
9627
9628 /* Mark the new socket "in-use" by the user so that any packets
9629 * that may arrive on the association after we've moved it are
9630 * queued to the backlog. This prevents a potential race between
9631 * backlog processing on the old socket and new-packet processing
9632 * on the new socket.
9633 *
9634 * The caller has just allocated newsk so we can guarantee that other
9635 * paths won't try to lock it and then oldsk.
9636 */
9637 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9638 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9639 sctp_assoc_migrate(assoc, newsk);
9640 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9641
9642 /* If the association on the newsk is already closed before accept()
9643 * is called, set RCV_SHUTDOWN flag.
9644 */
9645 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9646 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9647 newsk->sk_shutdown |= RCV_SHUTDOWN;
9648 } else {
9649 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9650 }
9651
9652 release_sock(newsk);
9653
9654 return 0;
9655 }
9656
9657
9658 /* This proto struct describes the ULP interface for SCTP. */
9659 struct proto sctp_prot = {
9660 .name = "SCTP",
9661 .owner = THIS_MODULE,
9662 .close = sctp_close,
9663 .disconnect = sctp_disconnect,
9664 .accept = sctp_accept,
9665 .ioctl = sctp_ioctl,
9666 .init = sctp_init_sock,
9667 .destroy = sctp_destroy_sock,
9668 .shutdown = sctp_shutdown,
9669 .setsockopt = sctp_setsockopt,
9670 .getsockopt = sctp_getsockopt,
9671 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9672 .sendmsg = sctp_sendmsg,
9673 .recvmsg = sctp_recvmsg,
9674 .bind = sctp_bind,
9675 .bind_add = sctp_bind_add,
9676 .backlog_rcv = sctp_backlog_rcv,
9677 .hash = sctp_hash,
9678 .unhash = sctp_unhash,
9679 .no_autobind = true,
9680 .obj_size = sizeof(struct sctp_sock),
9681 .useroffset = offsetof(struct sctp_sock, subscribe),
9682 .usersize = offsetof(struct sctp_sock, initmsg) -
9683 offsetof(struct sctp_sock, subscribe) +
9684 sizeof_field(struct sctp_sock, initmsg),
9685 .sysctl_mem = sysctl_sctp_mem,
9686 .sysctl_rmem = sysctl_sctp_rmem,
9687 .sysctl_wmem = sysctl_sctp_wmem,
9688 .memory_pressure = &sctp_memory_pressure,
9689 .enter_memory_pressure = sctp_enter_memory_pressure,
9690
9691 .memory_allocated = &sctp_memory_allocated,
9692 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9693
9694 .sockets_allocated = &sctp_sockets_allocated,
9695 };
9696
9697 #if IS_ENABLED(CONFIG_IPV6)
9698
sctp_v6_destruct_sock(struct sock * sk)9699 static void sctp_v6_destruct_sock(struct sock *sk)
9700 {
9701 sctp_destruct_common(sk);
9702 inet6_sock_destruct(sk);
9703 }
9704
sctp_v6_init_sock(struct sock * sk)9705 static int sctp_v6_init_sock(struct sock *sk)
9706 {
9707 int ret = sctp_init_sock(sk);
9708
9709 if (!ret)
9710 sk->sk_destruct = sctp_v6_destruct_sock;
9711
9712 return ret;
9713 }
9714
9715 struct proto sctpv6_prot = {
9716 .name = "SCTPv6",
9717 .owner = THIS_MODULE,
9718 .close = sctp_close,
9719 .disconnect = sctp_disconnect,
9720 .accept = sctp_accept,
9721 .ioctl = sctp_ioctl,
9722 .init = sctp_v6_init_sock,
9723 .destroy = sctp_destroy_sock,
9724 .shutdown = sctp_shutdown,
9725 .setsockopt = sctp_setsockopt,
9726 .getsockopt = sctp_getsockopt,
9727 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9728 .sendmsg = sctp_sendmsg,
9729 .recvmsg = sctp_recvmsg,
9730 .bind = sctp_bind,
9731 .bind_add = sctp_bind_add,
9732 .backlog_rcv = sctp_backlog_rcv,
9733 .hash = sctp_hash,
9734 .unhash = sctp_unhash,
9735 .no_autobind = true,
9736 .obj_size = sizeof(struct sctp6_sock),
9737 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6),
9738 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9739 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9740 offsetof(struct sctp6_sock, sctp.subscribe) +
9741 sizeof_field(struct sctp6_sock, sctp.initmsg),
9742 .sysctl_mem = sysctl_sctp_mem,
9743 .sysctl_rmem = sysctl_sctp_rmem,
9744 .sysctl_wmem = sysctl_sctp_wmem,
9745 .memory_pressure = &sctp_memory_pressure,
9746 .enter_memory_pressure = sctp_enter_memory_pressure,
9747
9748 .memory_allocated = &sctp_memory_allocated,
9749 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9750
9751 .sockets_allocated = &sctp_sockets_allocated,
9752 };
9753 #endif /* IS_ENABLED(CONFIG_IPV6) */
9754