1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97
sctp_enter_memory_pressure(struct sock * sk)98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 sctp_memory_pressure = 1;
101 }
102
103
104 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111 }
112
113 /* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
sctp_set_owner_w(struct sctp_chunk * chunk)122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143 }
144
sctp_clear_owner_w(struct sctp_chunk * chunk)145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 skb_orphan(chunk->skb);
148 }
149
150 #define traverse_and_process() \
151 do { \
152 msg = chunk->msg; \
153 if (msg == prev_msg) \
154 continue; \
155 list_for_each_entry(c, &msg->chunks, frag_list) { \
156 if ((clear && asoc->base.sk == c->skb->sk) || \
157 (!clear && asoc->base.sk != c->skb->sk)) \
158 cb(c); \
159 } \
160 prev_msg = msg; \
161 } while (0)
162
sctp_for_each_tx_datachunk(struct sctp_association * asoc,bool clear,void (* cb)(struct sctp_chunk *))163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 bool clear,
165 void (*cb)(struct sctp_chunk *))
166
167 {
168 struct sctp_datamsg *msg, *prev_msg = NULL;
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_chunk *chunk, *c;
171 struct sctp_transport *t;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 traverse_and_process();
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 traverse_and_process();
188 }
189
sctp_for_each_rx_skb(struct sctp_association * asoc,struct sock * sk,void (* cb)(struct sk_buff *,struct sock *))190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193 {
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204 }
205
206 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209 {
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225 }
226
227 /* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (id <= SCTP_ALL_ASSOC)
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261 }
262
263 /* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270 {
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294 }
295
296 /* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325 }
326
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328
329 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332 {
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358 }
359
sctp_auto_asconf_init(struct sctp_sock * sp)360 static void sctp_auto_asconf_init(struct sctp_sock *sp)
361 {
362 struct net *net = sock_net(&sp->inet.sk);
363
364 if (net->sctp.default_auto_asconf) {
365 spin_lock(&net->sctp.addr_wq_lock);
366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
367 spin_unlock(&net->sctp.addr_wq_lock);
368 sp->do_auto_asconf = 1;
369 }
370 }
371
372 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
374 {
375 struct net *net = sock_net(sk);
376 struct sctp_sock *sp = sctp_sk(sk);
377 struct sctp_endpoint *ep = sp->ep;
378 struct sctp_bind_addr *bp = &ep->base.bind_addr;
379 struct sctp_af *af;
380 unsigned short snum;
381 int ret = 0;
382
383 /* Common sockaddr verification. */
384 af = sctp_sockaddr_af(sp, addr, len);
385 if (!af) {
386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
387 __func__, sk, addr, len);
388 return -EINVAL;
389 }
390
391 snum = ntohs(addr->v4.sin_port);
392
393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
394 __func__, sk, &addr->sa, bp->port, snum, len);
395
396 /* PF specific bind() address verification. */
397 if (!sp->pf->bind_verify(sp, addr))
398 return -EADDRNOTAVAIL;
399
400 /* We must either be unbound, or bind to the same port.
401 * It's OK to allow 0 ports if we are already bound.
402 * We'll just inhert an already bound port in this case
403 */
404 if (bp->port) {
405 if (!snum)
406 snum = bp->port;
407 else if (snum != bp->port) {
408 pr_debug("%s: new port %d doesn't match existing port "
409 "%d\n", __func__, snum, bp->port);
410 return -EINVAL;
411 }
412 }
413
414 if (snum && inet_port_requires_bind_service(net, snum) &&
415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
416 return -EACCES;
417
418 /* See if the address matches any of the addresses we may have
419 * already bound before checking against other endpoints.
420 */
421 if (sctp_bind_addr_match(bp, addr, sp))
422 return -EINVAL;
423
424 /* Make sure we are allowed to bind here.
425 * The function sctp_get_port_local() does duplicate address
426 * detection.
427 */
428 addr->v4.sin_port = htons(snum);
429 if (sctp_get_port_local(sk, addr))
430 return -EADDRINUSE;
431
432 /* Refresh ephemeral port. */
433 if (!bp->port) {
434 bp->port = inet_sk(sk)->inet_num;
435 sctp_auto_asconf_init(sp);
436 }
437
438 /* Add the address to the bind address list.
439 * Use GFP_ATOMIC since BHs will be disabled.
440 */
441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
442 SCTP_ADDR_SRC, GFP_ATOMIC);
443
444 if (ret) {
445 sctp_put_port(sk);
446 return ret;
447 }
448 /* Copy back into socket for getsockname() use. */
449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
450 sp->pf->to_sk_saddr(addr, sk);
451
452 return ret;
453 }
454
455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
456 *
457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
458 * at any one time. If a sender, after sending an ASCONF chunk, decides
459 * it needs to transfer another ASCONF Chunk, it MUST wait until the
460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
461 * subsequent ASCONF. Note this restriction binds each side, so at any
462 * time two ASCONF may be in-transit on any given association (one sent
463 * from each endpoint).
464 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)465 static int sctp_send_asconf(struct sctp_association *asoc,
466 struct sctp_chunk *chunk)
467 {
468 int retval = 0;
469
470 /* If there is an outstanding ASCONF chunk, queue it for later
471 * transmission.
472 */
473 if (asoc->addip_last_asconf) {
474 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
475 goto out;
476 }
477
478 /* Hold the chunk until an ASCONF_ACK is received. */
479 sctp_chunk_hold(chunk);
480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
481 if (retval)
482 sctp_chunk_free(chunk);
483 else
484 asoc->addip_last_asconf = chunk;
485
486 out:
487 return retval;
488 }
489
490 /* Add a list of addresses as bind addresses to local endpoint or
491 * association.
492 *
493 * Basically run through each address specified in the addrs/addrcnt
494 * array/length pair, determine if it is IPv6 or IPv4 and call
495 * sctp_do_bind() on it.
496 *
497 * If any of them fails, then the operation will be reversed and the
498 * ones that were added will be removed.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
503 {
504 int cnt;
505 int retval = 0;
506 void *addr_buf;
507 struct sockaddr *sa_addr;
508 struct sctp_af *af;
509
510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
511 addrs, addrcnt);
512
513 addr_buf = addrs;
514 for (cnt = 0; cnt < addrcnt; cnt++) {
515 /* The list may contain either IPv4 or IPv6 address;
516 * determine the address length for walking thru the list.
517 */
518 sa_addr = addr_buf;
519 af = sctp_get_af_specific(sa_addr->sa_family);
520 if (!af) {
521 retval = -EINVAL;
522 goto err_bindx_add;
523 }
524
525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
526 af->sockaddr_len);
527
528 addr_buf += af->sockaddr_len;
529
530 err_bindx_add:
531 if (retval < 0) {
532 /* Failed. Cleanup the ones that have been added */
533 if (cnt > 0)
534 sctp_bindx_rem(sk, addrs, cnt);
535 return retval;
536 }
537 }
538
539 return retval;
540 }
541
542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
543 * associations that are part of the endpoint indicating that a list of local
544 * addresses are added to the endpoint.
545 *
546 * If any of the addresses is already in the bind address list of the
547 * association, we do not send the chunk for that association. But it will not
548 * affect other associations.
549 *
550 * Only sctp_setsockopt_bindx() is supposed to call this function.
551 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)552 static int sctp_send_asconf_add_ip(struct sock *sk,
553 struct sockaddr *addrs,
554 int addrcnt)
555 {
556 struct sctp_sock *sp;
557 struct sctp_endpoint *ep;
558 struct sctp_association *asoc;
559 struct sctp_bind_addr *bp;
560 struct sctp_chunk *chunk;
561 struct sctp_sockaddr_entry *laddr;
562 union sctp_addr *addr;
563 union sctp_addr saveaddr;
564 void *addr_buf;
565 struct sctp_af *af;
566 struct list_head *p;
567 int i;
568 int retval = 0;
569
570 sp = sctp_sk(sk);
571 ep = sp->ep;
572
573 if (!ep->asconf_enable)
574 return retval;
575
576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
577 __func__, sk, addrs, addrcnt);
578
579 list_for_each_entry(asoc, &ep->asocs, asocs) {
580 if (!asoc->peer.asconf_capable)
581 continue;
582
583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
584 continue;
585
586 if (!sctp_state(asoc, ESTABLISHED))
587 continue;
588
589 /* Check if any address in the packed array of addresses is
590 * in the bind address list of the association. If so,
591 * do not send the asconf chunk to its peer, but continue with
592 * other associations.
593 */
594 addr_buf = addrs;
595 for (i = 0; i < addrcnt; i++) {
596 addr = addr_buf;
597 af = sctp_get_af_specific(addr->v4.sin_family);
598 if (!af) {
599 retval = -EINVAL;
600 goto out;
601 }
602
603 if (sctp_assoc_lookup_laddr(asoc, addr))
604 break;
605
606 addr_buf += af->sockaddr_len;
607 }
608 if (i < addrcnt)
609 continue;
610
611 /* Use the first valid address in bind addr list of
612 * association as Address Parameter of ASCONF CHUNK.
613 */
614 bp = &asoc->base.bind_addr;
615 p = bp->address_list.next;
616 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
618 addrcnt, SCTP_PARAM_ADD_IP);
619 if (!chunk) {
620 retval = -ENOMEM;
621 goto out;
622 }
623
624 /* Add the new addresses to the bind address list with
625 * use_as_src set to 0.
626 */
627 addr_buf = addrs;
628 for (i = 0; i < addrcnt; i++) {
629 addr = addr_buf;
630 af = sctp_get_af_specific(addr->v4.sin_family);
631 memcpy(&saveaddr, addr, af->sockaddr_len);
632 retval = sctp_add_bind_addr(bp, &saveaddr,
633 sizeof(saveaddr),
634 SCTP_ADDR_NEW, GFP_ATOMIC);
635 addr_buf += af->sockaddr_len;
636 }
637 if (asoc->src_out_of_asoc_ok) {
638 struct sctp_transport *trans;
639
640 list_for_each_entry(trans,
641 &asoc->peer.transport_addr_list, transports) {
642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
643 2*asoc->pathmtu, 4380));
644 trans->ssthresh = asoc->peer.i.a_rwnd;
645 trans->rto = asoc->rto_initial;
646 sctp_max_rto(asoc, trans);
647 trans->rtt = trans->srtt = trans->rttvar = 0;
648 /* Clear the source and route cache */
649 sctp_transport_route(trans, NULL,
650 sctp_sk(asoc->base.sk));
651 }
652 }
653 retval = sctp_send_asconf(asoc, chunk);
654 }
655
656 out:
657 return retval;
658 }
659
660 /* Remove a list of addresses from bind addresses list. Do not remove the
661 * last address.
662 *
663 * Basically run through each address specified in the addrs/addrcnt
664 * array/length pair, determine if it is IPv6 or IPv4 and call
665 * sctp_del_bind() on it.
666 *
667 * If any of them fails, then the operation will be reversed and the
668 * ones that were removed will be added back.
669 *
670 * At least one address has to be left; if only one address is
671 * available, the operation will return -EBUSY.
672 *
673 * Only sctp_setsockopt_bindx() is supposed to call this function.
674 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
676 {
677 struct sctp_sock *sp = sctp_sk(sk);
678 struct sctp_endpoint *ep = sp->ep;
679 int cnt;
680 struct sctp_bind_addr *bp = &ep->base.bind_addr;
681 int retval = 0;
682 void *addr_buf;
683 union sctp_addr *sa_addr;
684 struct sctp_af *af;
685
686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
687 __func__, sk, addrs, addrcnt);
688
689 addr_buf = addrs;
690 for (cnt = 0; cnt < addrcnt; cnt++) {
691 /* If the bind address list is empty or if there is only one
692 * bind address, there is nothing more to be removed (we need
693 * at least one address here).
694 */
695 if (list_empty(&bp->address_list) ||
696 (sctp_list_single_entry(&bp->address_list))) {
697 retval = -EBUSY;
698 goto err_bindx_rem;
699 }
700
701 sa_addr = addr_buf;
702 af = sctp_get_af_specific(sa_addr->sa.sa_family);
703 if (!af) {
704 retval = -EINVAL;
705 goto err_bindx_rem;
706 }
707
708 if (!af->addr_valid(sa_addr, sp, NULL)) {
709 retval = -EADDRNOTAVAIL;
710 goto err_bindx_rem;
711 }
712
713 if (sa_addr->v4.sin_port &&
714 sa_addr->v4.sin_port != htons(bp->port)) {
715 retval = -EINVAL;
716 goto err_bindx_rem;
717 }
718
719 if (!sa_addr->v4.sin_port)
720 sa_addr->v4.sin_port = htons(bp->port);
721
722 /* FIXME - There is probably a need to check if sk->sk_saddr and
723 * sk->sk_rcv_addr are currently set to one of the addresses to
724 * be removed. This is something which needs to be looked into
725 * when we are fixing the outstanding issues with multi-homing
726 * socket routing and failover schemes. Refer to comments in
727 * sctp_do_bind(). -daisy
728 */
729 retval = sctp_del_bind_addr(bp, sa_addr);
730
731 addr_buf += af->sockaddr_len;
732 err_bindx_rem:
733 if (retval < 0) {
734 /* Failed. Add the ones that has been removed back */
735 if (cnt > 0)
736 sctp_bindx_add(sk, addrs, cnt);
737 return retval;
738 }
739 }
740
741 return retval;
742 }
743
744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
745 * the associations that are part of the endpoint indicating that a list of
746 * local addresses are removed from the endpoint.
747 *
748 * If any of the addresses is already in the bind address list of the
749 * association, we do not send the chunk for that association. But it will not
750 * affect other associations.
751 *
752 * Only sctp_setsockopt_bindx() is supposed to call this function.
753 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)754 static int sctp_send_asconf_del_ip(struct sock *sk,
755 struct sockaddr *addrs,
756 int addrcnt)
757 {
758 struct sctp_sock *sp;
759 struct sctp_endpoint *ep;
760 struct sctp_association *asoc;
761 struct sctp_transport *transport;
762 struct sctp_bind_addr *bp;
763 struct sctp_chunk *chunk;
764 union sctp_addr *laddr;
765 void *addr_buf;
766 struct sctp_af *af;
767 struct sctp_sockaddr_entry *saddr;
768 int i;
769 int retval = 0;
770 int stored = 0;
771
772 chunk = NULL;
773 sp = sctp_sk(sk);
774 ep = sp->ep;
775
776 if (!ep->asconf_enable)
777 return retval;
778
779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
780 __func__, sk, addrs, addrcnt);
781
782 list_for_each_entry(asoc, &ep->asocs, asocs) {
783
784 if (!asoc->peer.asconf_capable)
785 continue;
786
787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
788 continue;
789
790 if (!sctp_state(asoc, ESTABLISHED))
791 continue;
792
793 /* Check if any address in the packed array of addresses is
794 * not present in the bind address list of the association.
795 * If so, do not send the asconf chunk to its peer, but
796 * continue with other associations.
797 */
798 addr_buf = addrs;
799 for (i = 0; i < addrcnt; i++) {
800 laddr = addr_buf;
801 af = sctp_get_af_specific(laddr->v4.sin_family);
802 if (!af) {
803 retval = -EINVAL;
804 goto out;
805 }
806
807 if (!sctp_assoc_lookup_laddr(asoc, laddr))
808 break;
809
810 addr_buf += af->sockaddr_len;
811 }
812 if (i < addrcnt)
813 continue;
814
815 /* Find one address in the association's bind address list
816 * that is not in the packed array of addresses. This is to
817 * make sure that we do not delete all the addresses in the
818 * association.
819 */
820 bp = &asoc->base.bind_addr;
821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
822 addrcnt, sp);
823 if ((laddr == NULL) && (addrcnt == 1)) {
824 if (asoc->asconf_addr_del_pending)
825 continue;
826 asoc->asconf_addr_del_pending =
827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
828 if (asoc->asconf_addr_del_pending == NULL) {
829 retval = -ENOMEM;
830 goto out;
831 }
832 asoc->asconf_addr_del_pending->sa.sa_family =
833 addrs->sa_family;
834 asoc->asconf_addr_del_pending->v4.sin_port =
835 htons(bp->port);
836 if (addrs->sa_family == AF_INET) {
837 struct sockaddr_in *sin;
838
839 sin = (struct sockaddr_in *)addrs;
840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
841 } else if (addrs->sa_family == AF_INET6) {
842 struct sockaddr_in6 *sin6;
843
844 sin6 = (struct sockaddr_in6 *)addrs;
845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
846 }
847
848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
849 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
850 asoc->asconf_addr_del_pending);
851
852 asoc->src_out_of_asoc_ok = 1;
853 stored = 1;
854 goto skip_mkasconf;
855 }
856
857 if (laddr == NULL)
858 return -EINVAL;
859
860 /* We do not need RCU protection throughout this loop
861 * because this is done under a socket lock from the
862 * setsockopt call.
863 */
864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
865 SCTP_PARAM_DEL_IP);
866 if (!chunk) {
867 retval = -ENOMEM;
868 goto out;
869 }
870
871 skip_mkasconf:
872 /* Reset use_as_src flag for the addresses in the bind address
873 * list that are to be deleted.
874 */
875 addr_buf = addrs;
876 for (i = 0; i < addrcnt; i++) {
877 laddr = addr_buf;
878 af = sctp_get_af_specific(laddr->v4.sin_family);
879 list_for_each_entry(saddr, &bp->address_list, list) {
880 if (sctp_cmp_addr_exact(&saddr->a, laddr))
881 saddr->state = SCTP_ADDR_DEL;
882 }
883 addr_buf += af->sockaddr_len;
884 }
885
886 /* Update the route and saddr entries for all the transports
887 * as some of the addresses in the bind address list are
888 * about to be deleted and cannot be used as source addresses.
889 */
890 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
891 transports) {
892 sctp_transport_route(transport, NULL,
893 sctp_sk(asoc->base.sk));
894 }
895
896 if (stored)
897 /* We don't need to transmit ASCONF */
898 continue;
899 retval = sctp_send_asconf(asoc, chunk);
900 }
901 out:
902 return retval;
903 }
904
905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
907 {
908 struct sock *sk = sctp_opt2sk(sp);
909 union sctp_addr *addr;
910 struct sctp_af *af;
911
912 /* It is safe to write port space in caller. */
913 addr = &addrw->a;
914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
915 af = sctp_get_af_specific(addr->sa.sa_family);
916 if (!af)
917 return -EINVAL;
918 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
919 return -EINVAL;
920
921 if (addrw->state == SCTP_ADDR_NEW)
922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
923 else
924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
925 }
926
927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
928 *
929 * API 8.1
930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
931 * int flags);
932 *
933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
935 * or IPv6 addresses.
936 *
937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
938 * Section 3.1.2 for this usage.
939 *
940 * addrs is a pointer to an array of one or more socket addresses. Each
941 * address is contained in its appropriate structure (i.e. struct
942 * sockaddr_in or struct sockaddr_in6) the family of the address type
943 * must be used to distinguish the address length (note that this
944 * representation is termed a "packed array" of addresses). The caller
945 * specifies the number of addresses in the array with addrcnt.
946 *
947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
948 * -1, and sets errno to the appropriate error code.
949 *
950 * For SCTP, the port given in each socket address must be the same, or
951 * sctp_bindx() will fail, setting errno to EINVAL.
952 *
953 * The flags parameter is formed from the bitwise OR of zero or more of
954 * the following currently defined flags:
955 *
956 * SCTP_BINDX_ADD_ADDR
957 *
958 * SCTP_BINDX_REM_ADDR
959 *
960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
962 * addresses from the association. The two flags are mutually exclusive;
963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
964 * not remove all addresses from an association; sctp_bindx() will
965 * reject such an attempt with EINVAL.
966 *
967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
968 * additional addresses with an endpoint after calling bind(). Or use
969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
970 * socket is associated with so that no new association accepted will be
971 * associated with those addresses. If the endpoint supports dynamic
972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
973 * endpoint to send the appropriate message to the peer to change the
974 * peers address lists.
975 *
976 * Adding and removing addresses from a connected association is
977 * optional functionality. Implementations that do not support this
978 * functionality should return EOPNOTSUPP.
979 *
980 * Basically do nothing but copying the addresses from user to kernel
981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
983 * from userspace.
984 *
985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
986 * it.
987 *
988 * sk The sk of the socket
989 * addrs The pointer to the addresses
990 * addrssize Size of the addrs buffer
991 * op Operation to perform (add or remove, see the flags of
992 * sctp_bindx)
993 *
994 * Returns 0 if ok, <0 errno code on error.
995 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr * addrs,int addrs_size,int op)996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
997 int addrs_size, int op)
998 {
999 int err;
1000 int addrcnt = 0;
1001 int walk_size = 0;
1002 struct sockaddr *sa_addr;
1003 void *addr_buf = addrs;
1004 struct sctp_af *af;
1005
1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1007 __func__, sk, addr_buf, addrs_size, op);
1008
1009 if (unlikely(addrs_size <= 0))
1010 return -EINVAL;
1011
1012 /* Walk through the addrs buffer and count the number of addresses. */
1013 while (walk_size < addrs_size) {
1014 if (walk_size + sizeof(sa_family_t) > addrs_size)
1015 return -EINVAL;
1016
1017 sa_addr = addr_buf;
1018 af = sctp_get_af_specific(sa_addr->sa_family);
1019
1020 /* If the address family is not supported or if this address
1021 * causes the address buffer to overflow return EINVAL.
1022 */
1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1024 return -EINVAL;
1025 addrcnt++;
1026 addr_buf += af->sockaddr_len;
1027 walk_size += af->sockaddr_len;
1028 }
1029
1030 /* Do the work. */
1031 switch (op) {
1032 case SCTP_BINDX_ADD_ADDR:
1033 /* Allow security module to validate bindx addresses. */
1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1035 addrs, addrs_size);
1036 if (err)
1037 return err;
1038 err = sctp_bindx_add(sk, addrs, addrcnt);
1039 if (err)
1040 return err;
1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1042 case SCTP_BINDX_REM_ADDR:
1043 err = sctp_bindx_rem(sk, addrs, addrcnt);
1044 if (err)
1045 return err;
1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1047
1048 default:
1049 return -EINVAL;
1050 }
1051 }
1052
sctp_bind_add(struct sock * sk,struct sockaddr * addrs,int addrlen)1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1054 int addrlen)
1055 {
1056 int err;
1057
1058 lock_sock(sk);
1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1060 release_sock(sk);
1061 return err;
1062 }
1063
sctp_connect_new_asoc(struct sctp_endpoint * ep,const union sctp_addr * daddr,const struct sctp_initmsg * init,struct sctp_transport ** tp)1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1065 const union sctp_addr *daddr,
1066 const struct sctp_initmsg *init,
1067 struct sctp_transport **tp)
1068 {
1069 struct sctp_association *asoc;
1070 struct sock *sk = ep->base.sk;
1071 struct net *net = sock_net(sk);
1072 enum sctp_scope scope;
1073 int err;
1074
1075 if (sctp_endpoint_is_peeled_off(ep, daddr))
1076 return -EADDRNOTAVAIL;
1077
1078 if (!ep->base.bind_addr.port) {
1079 if (sctp_autobind(sk))
1080 return -EAGAIN;
1081 } else {
1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1084 return -EACCES;
1085 }
1086
1087 scope = sctp_scope(daddr);
1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1089 if (!asoc)
1090 return -ENOMEM;
1091
1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1093 if (err < 0)
1094 goto free;
1095
1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1097 if (!*tp) {
1098 err = -ENOMEM;
1099 goto free;
1100 }
1101
1102 if (!init)
1103 return 0;
1104
1105 if (init->sinit_num_ostreams) {
1106 __u16 outcnt = init->sinit_num_ostreams;
1107
1108 asoc->c.sinit_num_ostreams = outcnt;
1109 /* outcnt has been changed, need to re-init stream */
1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1111 if (err)
1112 goto free;
1113 }
1114
1115 if (init->sinit_max_instreams)
1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1117
1118 if (init->sinit_max_attempts)
1119 asoc->max_init_attempts = init->sinit_max_attempts;
1120
1121 if (init->sinit_max_init_timeo)
1122 asoc->max_init_timeo =
1123 msecs_to_jiffies(init->sinit_max_init_timeo);
1124
1125 return 0;
1126 free:
1127 sctp_association_free(asoc);
1128 return err;
1129 }
1130
sctp_connect_add_peer(struct sctp_association * asoc,union sctp_addr * daddr,int addr_len)1131 static int sctp_connect_add_peer(struct sctp_association *asoc,
1132 union sctp_addr *daddr, int addr_len)
1133 {
1134 struct sctp_endpoint *ep = asoc->ep;
1135 struct sctp_association *old;
1136 struct sctp_transport *t;
1137 int err;
1138
1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1140 if (err)
1141 return err;
1142
1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1144 if (old && old != asoc)
1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1146 : -EALREADY;
1147
1148 if (sctp_endpoint_is_peeled_off(ep, daddr))
1149 return -EADDRNOTAVAIL;
1150
1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1152 if (!t)
1153 return -ENOMEM;
1154
1155 return 0;
1156 }
1157
1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1159 *
1160 * Common routine for handling connect() and sctp_connectx().
1161 * Connect will come in with just a single address.
1162 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,int flags,sctp_assoc_t * assoc_id)1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1164 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1165 {
1166 struct sctp_sock *sp = sctp_sk(sk);
1167 struct sctp_endpoint *ep = sp->ep;
1168 struct sctp_transport *transport;
1169 struct sctp_association *asoc;
1170 void *addr_buf = kaddrs;
1171 union sctp_addr *daddr;
1172 struct sctp_af *af;
1173 int walk_size, err;
1174 long timeo;
1175
1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1178 return -EISCONN;
1179
1180 daddr = addr_buf;
1181 af = sctp_get_af_specific(daddr->sa.sa_family);
1182 if (!af || af->sockaddr_len > addrs_size)
1183 return -EINVAL;
1184
1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1186 if (err)
1187 return err;
1188
1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1190 if (asoc)
1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1192 : -EALREADY;
1193
1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1195 if (err)
1196 return err;
1197 asoc = transport->asoc;
1198
1199 addr_buf += af->sockaddr_len;
1200 walk_size = af->sockaddr_len;
1201 while (walk_size < addrs_size) {
1202 err = -EINVAL;
1203 if (walk_size + sizeof(sa_family_t) > addrs_size)
1204 goto out_free;
1205
1206 daddr = addr_buf;
1207 af = sctp_get_af_specific(daddr->sa.sa_family);
1208 if (!af || af->sockaddr_len + walk_size > addrs_size)
1209 goto out_free;
1210
1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1212 goto out_free;
1213
1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1215 if (err)
1216 goto out_free;
1217
1218 addr_buf += af->sockaddr_len;
1219 walk_size += af->sockaddr_len;
1220 }
1221
1222 /* In case the user of sctp_connectx() wants an association
1223 * id back, assign one now.
1224 */
1225 if (assoc_id) {
1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1227 if (err < 0)
1228 goto out_free;
1229 }
1230
1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1232 if (err < 0)
1233 goto out_free;
1234
1235 /* Initialize sk's dport and daddr for getpeername() */
1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 sp->pf->to_sk_daddr(daddr, sk);
1238 sk->sk_err = 0;
1239
1240 if (assoc_id)
1241 *assoc_id = asoc->assoc_id;
1242
1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1244 return sctp_wait_for_connect(asoc, &timeo);
1245
1246 out_free:
1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1248 __func__, asoc, kaddrs, err);
1249 sctp_association_free(asoc);
1250 return err;
1251 }
1252
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254 *
1255 * API 8.9
1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257 * sctp_assoc_t *asoc);
1258 *
1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261 * or IPv6 addresses.
1262 *
1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264 * Section 3.1.2 for this usage.
1265 *
1266 * addrs is a pointer to an array of one or more socket addresses. Each
1267 * address is contained in its appropriate structure (i.e. struct
1268 * sockaddr_in or struct sockaddr_in6) the family of the address type
1269 * must be used to distengish the address length (note that this
1270 * representation is termed a "packed array" of addresses). The caller
1271 * specifies the number of addresses in the array with addrcnt.
1272 *
1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274 * the association id of the new association. On failure, sctp_connectx()
1275 * returns -1, and sets errno to the appropriate error code. The assoc_id
1276 * is not touched by the kernel.
1277 *
1278 * For SCTP, the port given in each socket address must be the same, or
1279 * sctp_connectx() will fail, setting errno to EINVAL.
1280 *
1281 * An application can use sctp_connectx to initiate an association with
1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1283 * allows a caller to specify multiple addresses at which a peer can be
1284 * reached. The way the SCTP stack uses the list of addresses to set up
1285 * the association is implementation dependent. This function only
1286 * specifies that the stack will try to make use of all the addresses in
1287 * the list when needed.
1288 *
1289 * Note that the list of addresses passed in is only used for setting up
1290 * the association. It does not necessarily equal the set of addresses
1291 * the peer uses for the resulting association. If the caller wants to
1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293 * retrieve them after the association has been set up.
1294 *
1295 * Basically do nothing but copying the addresses from user to kernel
1296 * land and invoking either sctp_connectx(). This is used for tunneling
1297 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298 *
1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1300 * it.
1301 *
1302 * sk The sk of the socket
1303 * addrs The pointer to the addresses
1304 * addrssize Size of the addrs buffer
1305 *
1306 * Returns >=0 if ok, <0 errno code on error.
1307 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1309 int addrs_size, sctp_assoc_t *assoc_id)
1310 {
1311 int err = 0, flags = 0;
1312
1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1314 __func__, sk, kaddrs, addrs_size);
1315
1316 /* make sure the 1st addr's sa_family is accessible later */
1317 if (unlikely(addrs_size < sizeof(sa_family_t)))
1318 return -EINVAL;
1319
1320 /* Allow security module to validate connectx addresses. */
1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1322 (struct sockaddr *)kaddrs,
1323 addrs_size);
1324 if (err)
1325 return err;
1326
1327 /* in-kernel sockets don't generally have a file allocated to them
1328 * if all they do is call sock_create_kern().
1329 */
1330 if (sk->sk_socket->file)
1331 flags = sk->sk_socket->file->f_flags;
1332
1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1334 }
1335
1336 /*
1337 * This is an older interface. It's kept for backward compatibility
1338 * to the option that doesn't provide association id.
1339 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 struct sockaddr *kaddrs,
1342 int addrs_size)
1343 {
1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1345 }
1346
1347 /*
1348 * New interface for the API. The since the API is done with a socket
1349 * option, to make it simple we feed back the association id is as a return
1350 * indication to the call. Error is always negative and association id is
1351 * always positive.
1352 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 struct sockaddr *kaddrs,
1355 int addrs_size)
1356 {
1357 sctp_assoc_t assoc_id = 0;
1358 int err = 0;
1359
1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1361
1362 if (err)
1363 return err;
1364 else
1365 return assoc_id;
1366 }
1367
1368 /*
1369 * New (hopefully final) interface for the API.
1370 * We use the sctp_getaddrs_old structure so that use-space library
1371 * can avoid any unnecessary allocations. The only different part
1372 * is that we store the actual length of the address buffer into the
1373 * addrs_num structure member. That way we can re-use the existing
1374 * code.
1375 */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 sctp_assoc_t assoc_id;
1379 s32 addr_num;
1380 compat_uptr_t addrs; /* struct sockaddr * */
1381 };
1382 #endif
1383
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 char __user *optval,
1386 int __user *optlen)
1387 {
1388 struct sctp_getaddrs_old param;
1389 sctp_assoc_t assoc_id = 0;
1390 struct sockaddr *kaddrs;
1391 int err = 0;
1392
1393 #ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(¶m32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406 #endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(¶m, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 kaddrs = memdup_user(param.addrs, param.addr_num);
1415 if (IS_ERR(kaddrs))
1416 return PTR_ERR(kaddrs);
1417
1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1419 kfree(kaddrs);
1420 if (err == 0 || err == -EINPROGRESS) {
1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 return -EFAULT;
1423 if (put_user(sizeof(assoc_id), optlen))
1424 return -EFAULT;
1425 }
1426
1427 return err;
1428 }
1429
1430 /* API 3.1.4 close() - UDP Style Syntax
1431 * Applications use close() to perform graceful shutdown (as described in
1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433 * by a UDP-style socket.
1434 *
1435 * The syntax is
1436 *
1437 * ret = close(int sd);
1438 *
1439 * sd - the socket descriptor of the associations to be closed.
1440 *
1441 * To gracefully shutdown a specific association represented by the
1442 * UDP-style socket, an application should use the sendmsg() call,
1443 * passing no user data, but including the appropriate flag in the
1444 * ancillary data (see Section xxxx).
1445 *
1446 * If sd in the close() call is a branched-off socket representing only
1447 * one association, the shutdown is performed on that association only.
1448 *
1449 * 4.1.6 close() - TCP Style Syntax
1450 *
1451 * Applications use close() to gracefully close down an association.
1452 *
1453 * The syntax is:
1454 *
1455 * int close(int sd);
1456 *
1457 * sd - the socket descriptor of the association to be closed.
1458 *
1459 * After an application calls close() on a socket descriptor, no further
1460 * socket operations will succeed on that descriptor.
1461 *
1462 * API 7.1.4 SO_LINGER
1463 *
1464 * An application using the TCP-style socket can use this option to
1465 * perform the SCTP ABORT primitive. The linger option structure is:
1466 *
1467 * struct linger {
1468 * int l_onoff; // option on/off
1469 * int l_linger; // linger time
1470 * };
1471 *
1472 * To enable the option, set l_onoff to 1. If the l_linger value is set
1473 * to 0, calling close() is the same as the ABORT primitive. If the
1474 * value is set to a negative value, the setsockopt() call will return
1475 * an error. If the value is set to a positive value linger_time, the
1476 * close() can be blocked for at most linger_time ms. If the graceful
1477 * shutdown phase does not finish during this period, close() will
1478 * return but the graceful shutdown phase continues in the system.
1479 */
sctp_close(struct sock * sk,long timeout)1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 struct net *net = sock_net(sk);
1483 struct sctp_endpoint *ep;
1484 struct sctp_association *asoc;
1485 struct list_head *pos, *temp;
1486 unsigned int data_was_unread;
1487
1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489
1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1491 sk->sk_shutdown = SHUTDOWN_MASK;
1492 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1493
1494 ep = sctp_sk(sk)->ep;
1495
1496 /* Clean up any skbs sitting on the receive queue. */
1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499
1500 /* Walk all associations on an endpoint. */
1501 list_for_each_safe(pos, temp, &ep->asocs) {
1502 asoc = list_entry(pos, struct sctp_association, asocs);
1503
1504 if (sctp_style(sk, TCP)) {
1505 /* A closed association can still be in the list if
1506 * it belongs to a TCP-style listening socket that is
1507 * not yet accepted. If so, free it. If not, send an
1508 * ABORT or SHUTDOWN based on the linger options.
1509 */
1510 if (sctp_state(asoc, CLOSED)) {
1511 sctp_association_free(asoc);
1512 continue;
1513 }
1514 }
1515
1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1520 struct sctp_chunk *chunk;
1521
1522 chunk = sctp_make_abort_user(asoc, NULL, 0);
1523 sctp_primitive_ABORT(net, asoc, chunk);
1524 } else
1525 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1526 }
1527
1528 /* On a TCP-style socket, block for at most linger_time if set. */
1529 if (sctp_style(sk, TCP) && timeout)
1530 sctp_wait_for_close(sk, timeout);
1531
1532 /* This will run the backlog queue. */
1533 release_sock(sk);
1534
1535 /* Supposedly, no process has access to the socket, but
1536 * the net layers still may.
1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1538 * held and that should be grabbed before socket lock.
1539 */
1540 spin_lock_bh(&net->sctp.addr_wq_lock);
1541 bh_lock_sock_nested(sk);
1542
1543 /* Hold the sock, since sk_common_release() will put sock_put()
1544 * and we have just a little more cleanup.
1545 */
1546 sock_hold(sk);
1547 sk_common_release(sk);
1548
1549 bh_unlock_sock(sk);
1550 spin_unlock_bh(&net->sctp.addr_wq_lock);
1551
1552 sock_put(sk);
1553
1554 SCTP_DBG_OBJCNT_DEC(sock);
1555 }
1556
1557 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1558 static int sctp_error(struct sock *sk, int flags, int err)
1559 {
1560 if (err == -EPIPE)
1561 err = sock_error(sk) ? : -EPIPE;
1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1563 send_sig(SIGPIPE, current, 0);
1564 return err;
1565 }
1566
1567 /* API 3.1.3 sendmsg() - UDP Style Syntax
1568 *
1569 * An application uses sendmsg() and recvmsg() calls to transmit data to
1570 * and receive data from its peer.
1571 *
1572 * ssize_t sendmsg(int socket, const struct msghdr *message,
1573 * int flags);
1574 *
1575 * socket - the socket descriptor of the endpoint.
1576 * message - pointer to the msghdr structure which contains a single
1577 * user message and possibly some ancillary data.
1578 *
1579 * See Section 5 for complete description of the data
1580 * structures.
1581 *
1582 * flags - flags sent or received with the user message, see Section
1583 * 5 for complete description of the flags.
1584 *
1585 * Note: This function could use a rewrite especially when explicit
1586 * connect support comes in.
1587 */
1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1589
1590 static int sctp_msghdr_parse(const struct msghdr *msg,
1591 struct sctp_cmsgs *cmsgs);
1592
sctp_sendmsg_parse(struct sock * sk,struct sctp_cmsgs * cmsgs,struct sctp_sndrcvinfo * srinfo,const struct msghdr * msg,size_t msg_len)1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1594 struct sctp_sndrcvinfo *srinfo,
1595 const struct msghdr *msg, size_t msg_len)
1596 {
1597 __u16 sflags;
1598 int err;
1599
1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1601 return -EPIPE;
1602
1603 if (msg_len > sk->sk_sndbuf)
1604 return -EMSGSIZE;
1605
1606 memset(cmsgs, 0, sizeof(*cmsgs));
1607 err = sctp_msghdr_parse(msg, cmsgs);
1608 if (err) {
1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1610 return err;
1611 }
1612
1613 memset(srinfo, 0, sizeof(*srinfo));
1614 if (cmsgs->srinfo) {
1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1621 }
1622
1623 if (cmsgs->sinfo) {
1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1629 }
1630
1631 if (cmsgs->prinfo) {
1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1634 cmsgs->prinfo->pr_policy);
1635 }
1636
1637 sflags = srinfo->sinfo_flags;
1638 if (!sflags && msg_len)
1639 return 0;
1640
1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1642 return -EINVAL;
1643
1644 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1646 return -EINVAL;
1647
1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1649 return -EINVAL;
1650
1651 return 0;
1652 }
1653
sctp_sendmsg_new_asoc(struct sock * sk,__u16 sflags,struct sctp_cmsgs * cmsgs,union sctp_addr * daddr,struct sctp_transport ** tp)1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1655 struct sctp_cmsgs *cmsgs,
1656 union sctp_addr *daddr,
1657 struct sctp_transport **tp)
1658 {
1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1660 struct sctp_association *asoc;
1661 struct cmsghdr *cmsg;
1662 __be32 flowinfo = 0;
1663 struct sctp_af *af;
1664 int err;
1665
1666 *tp = NULL;
1667
1668 if (sflags & (SCTP_EOF | SCTP_ABORT))
1669 return -EINVAL;
1670
1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1672 sctp_sstate(sk, CLOSING)))
1673 return -EADDRNOTAVAIL;
1674
1675 /* Label connection socket for first association 1-to-many
1676 * style for client sequence socket()->sendmsg(). This
1677 * needs to be done before sctp_assoc_add_peer() as that will
1678 * set up the initial packet that needs to account for any
1679 * security ip options (CIPSO/CALIPSO) added to the packet.
1680 */
1681 af = sctp_get_af_specific(daddr->sa.sa_family);
1682 if (!af)
1683 return -EINVAL;
1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1685 (struct sockaddr *)daddr,
1686 af->sockaddr_len);
1687 if (err < 0)
1688 return err;
1689
1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1691 if (err)
1692 return err;
1693 asoc = (*tp)->asoc;
1694
1695 if (!cmsgs->addrs_msg)
1696 return 0;
1697
1698 if (daddr->sa.sa_family == AF_INET6)
1699 flowinfo = daddr->v6.sin6_flowinfo;
1700
1701 /* sendv addr list parse */
1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1703 union sctp_addr _daddr;
1704 int dlen;
1705
1706 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1708 cmsg->cmsg_type != SCTP_DSTADDRV6))
1709 continue;
1710
1711 daddr = &_daddr;
1712 memset(daddr, 0, sizeof(*daddr));
1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1715 if (dlen < sizeof(struct in_addr)) {
1716 err = -EINVAL;
1717 goto free;
1718 }
1719
1720 dlen = sizeof(struct in_addr);
1721 daddr->v4.sin_family = AF_INET;
1722 daddr->v4.sin_port = htons(asoc->peer.port);
1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1724 } else {
1725 if (dlen < sizeof(struct in6_addr)) {
1726 err = -EINVAL;
1727 goto free;
1728 }
1729
1730 dlen = sizeof(struct in6_addr);
1731 daddr->v6.sin6_flowinfo = flowinfo;
1732 daddr->v6.sin6_family = AF_INET6;
1733 daddr->v6.sin6_port = htons(asoc->peer.port);
1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1735 }
1736
1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1738 if (err)
1739 goto free;
1740 }
1741
1742 return 0;
1743
1744 free:
1745 sctp_association_free(asoc);
1746 return err;
1747 }
1748
sctp_sendmsg_check_sflags(struct sctp_association * asoc,__u16 sflags,struct msghdr * msg,size_t msg_len)1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1750 __u16 sflags, struct msghdr *msg,
1751 size_t msg_len)
1752 {
1753 struct sock *sk = asoc->base.sk;
1754 struct net *net = sock_net(sk);
1755
1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1757 return -EPIPE;
1758
1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1760 !sctp_state(asoc, ESTABLISHED))
1761 return 0;
1762
1763 if (sflags & SCTP_EOF) {
1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1765 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1766
1767 return 0;
1768 }
1769
1770 if (sflags & SCTP_ABORT) {
1771 struct sctp_chunk *chunk;
1772
1773 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1774 if (!chunk)
1775 return -ENOMEM;
1776
1777 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1778 sctp_primitive_ABORT(net, asoc, chunk);
1779 iov_iter_revert(&msg->msg_iter, msg_len);
1780
1781 return 0;
1782 }
1783
1784 return 1;
1785 }
1786
sctp_sendmsg_to_asoc(struct sctp_association * asoc,struct msghdr * msg,size_t msg_len,struct sctp_transport * transport,struct sctp_sndrcvinfo * sinfo)1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1788 struct msghdr *msg, size_t msg_len,
1789 struct sctp_transport *transport,
1790 struct sctp_sndrcvinfo *sinfo)
1791 {
1792 struct sock *sk = asoc->base.sk;
1793 struct sctp_sock *sp = sctp_sk(sk);
1794 struct net *net = sock_net(sk);
1795 struct sctp_datamsg *datamsg;
1796 bool wait_connect = false;
1797 struct sctp_chunk *chunk;
1798 long timeo;
1799 int err;
1800
1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1802 err = -EINVAL;
1803 goto err;
1804 }
1805
1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1808 if (err)
1809 goto err;
1810 }
1811
1812 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1813 err = -EMSGSIZE;
1814 goto err;
1815 }
1816
1817 if (asoc->pmtu_pending) {
1818 if (sp->param_flags & SPP_PMTUD_ENABLE)
1819 sctp_assoc_sync_pmtu(asoc);
1820 asoc->pmtu_pending = 0;
1821 }
1822
1823 if (sctp_wspace(asoc) < (int)msg_len)
1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1825
1826 if (sk_under_memory_pressure(sk))
1827 sk_mem_reclaim(sk);
1828
1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 if (err)
1833 goto err;
1834 }
1835
1836 if (sctp_state(asoc, CLOSED)) {
1837 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1838 if (err)
1839 goto err;
1840
1841 if (asoc->ep->intl_enable) {
1842 timeo = sock_sndtimeo(sk, 0);
1843 err = sctp_wait_for_connect(asoc, &timeo);
1844 if (err) {
1845 err = -ESRCH;
1846 goto err;
1847 }
1848 } else {
1849 wait_connect = true;
1850 }
1851
1852 pr_debug("%s: we associated primitively\n", __func__);
1853 }
1854
1855 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1856 if (IS_ERR(datamsg)) {
1857 err = PTR_ERR(datamsg);
1858 goto err;
1859 }
1860
1861 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1862
1863 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1864 sctp_chunk_hold(chunk);
1865 sctp_set_owner_w(chunk);
1866 chunk->transport = transport;
1867 }
1868
1869 err = sctp_primitive_SEND(net, asoc, datamsg);
1870 if (err) {
1871 sctp_datamsg_free(datamsg);
1872 goto err;
1873 }
1874
1875 pr_debug("%s: we sent primitively\n", __func__);
1876
1877 sctp_datamsg_put(datamsg);
1878
1879 if (unlikely(wait_connect)) {
1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 sctp_wait_for_connect(asoc, &timeo);
1882 }
1883
1884 err = msg_len;
1885
1886 err:
1887 return err;
1888 }
1889
sctp_sendmsg_get_daddr(struct sock * sk,const struct msghdr * msg,struct sctp_cmsgs * cmsgs)1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1891 const struct msghdr *msg,
1892 struct sctp_cmsgs *cmsgs)
1893 {
1894 union sctp_addr *daddr = NULL;
1895 int err;
1896
1897 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1898 int len = msg->msg_namelen;
1899
1900 if (len > sizeof(*daddr))
1901 len = sizeof(*daddr);
1902
1903 daddr = (union sctp_addr *)msg->msg_name;
1904
1905 err = sctp_verify_addr(sk, daddr, len);
1906 if (err)
1907 return ERR_PTR(err);
1908 }
1909
1910 return daddr;
1911 }
1912
sctp_sendmsg_update_sinfo(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct sctp_cmsgs * cmsgs)1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1914 struct sctp_sndrcvinfo *sinfo,
1915 struct sctp_cmsgs *cmsgs)
1916 {
1917 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1918 sinfo->sinfo_stream = asoc->default_stream;
1919 sinfo->sinfo_ppid = asoc->default_ppid;
1920 sinfo->sinfo_context = asoc->default_context;
1921 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1922
1923 if (!cmsgs->prinfo)
1924 sinfo->sinfo_flags = asoc->default_flags;
1925 }
1926
1927 if (!cmsgs->srinfo && !cmsgs->prinfo)
1928 sinfo->sinfo_timetolive = asoc->default_timetolive;
1929
1930 if (cmsgs->authinfo) {
1931 /* Reuse sinfo_tsn to indicate that authinfo was set and
1932 * sinfo_ssn to save the keyid on tx path.
1933 */
1934 sinfo->sinfo_tsn = 1;
1935 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1936 }
1937 }
1938
sctp_sendmsg(struct sock * sk,struct msghdr * msg,size_t msg_len)1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1940 {
1941 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1942 struct sctp_transport *transport = NULL;
1943 struct sctp_sndrcvinfo _sinfo, *sinfo;
1944 struct sctp_association *asoc, *tmp;
1945 struct sctp_cmsgs cmsgs;
1946 union sctp_addr *daddr;
1947 bool new = false;
1948 __u16 sflags;
1949 int err;
1950
1951 /* Parse and get snd_info */
1952 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1953 if (err)
1954 goto out;
1955
1956 sinfo = &_sinfo;
1957 sflags = sinfo->sinfo_flags;
1958
1959 /* Get daddr from msg */
1960 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1961 if (IS_ERR(daddr)) {
1962 err = PTR_ERR(daddr);
1963 goto out;
1964 }
1965
1966 lock_sock(sk);
1967
1968 /* SCTP_SENDALL process */
1969 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1970 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1971 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1972 msg_len);
1973 if (err == 0)
1974 continue;
1975 if (err < 0)
1976 goto out_unlock;
1977
1978 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1979
1980 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1981 NULL, sinfo);
1982 if (err < 0)
1983 goto out_unlock;
1984
1985 iov_iter_revert(&msg->msg_iter, err);
1986 }
1987
1988 goto out_unlock;
1989 }
1990
1991 /* Get and check or create asoc */
1992 if (daddr) {
1993 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1994 if (asoc) {
1995 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1996 msg_len);
1997 if (err <= 0)
1998 goto out_unlock;
1999 } else {
2000 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2001 &transport);
2002 if (err)
2003 goto out_unlock;
2004
2005 asoc = transport->asoc;
2006 new = true;
2007 }
2008
2009 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2010 transport = NULL;
2011 } else {
2012 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2013 if (!asoc) {
2014 err = -EPIPE;
2015 goto out_unlock;
2016 }
2017
2018 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2019 if (err <= 0)
2020 goto out_unlock;
2021 }
2022
2023 /* Update snd_info with the asoc */
2024 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2025
2026 /* Send msg to the asoc */
2027 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2028 if (err < 0 && err != -ESRCH && new)
2029 sctp_association_free(asoc);
2030
2031 out_unlock:
2032 release_sock(sk);
2033 out:
2034 return sctp_error(sk, msg->msg_flags, err);
2035 }
2036
2037 /* This is an extended version of skb_pull() that removes the data from the
2038 * start of a skb even when data is spread across the list of skb's in the
2039 * frag_list. len specifies the total amount of data that needs to be removed.
2040 * when 'len' bytes could be removed from the skb, it returns 0.
2041 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2042 * could not be removed.
2043 */
sctp_skb_pull(struct sk_buff * skb,int len)2044 static int sctp_skb_pull(struct sk_buff *skb, int len)
2045 {
2046 struct sk_buff *list;
2047 int skb_len = skb_headlen(skb);
2048 int rlen;
2049
2050 if (len <= skb_len) {
2051 __skb_pull(skb, len);
2052 return 0;
2053 }
2054 len -= skb_len;
2055 __skb_pull(skb, skb_len);
2056
2057 skb_walk_frags(skb, list) {
2058 rlen = sctp_skb_pull(list, len);
2059 skb->len -= (len-rlen);
2060 skb->data_len -= (len-rlen);
2061
2062 if (!rlen)
2063 return 0;
2064
2065 len = rlen;
2066 }
2067
2068 return len;
2069 }
2070
2071 /* API 3.1.3 recvmsg() - UDP Style Syntax
2072 *
2073 * ssize_t recvmsg(int socket, struct msghdr *message,
2074 * int flags);
2075 *
2076 * socket - the socket descriptor of the endpoint.
2077 * message - pointer to the msghdr structure which contains a single
2078 * user message and possibly some ancillary data.
2079 *
2080 * See Section 5 for complete description of the data
2081 * structures.
2082 *
2083 * flags - flags sent or received with the user message, see Section
2084 * 5 for complete description of the flags.
2085 */
sctp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 int flags, int *addr_len)
2088 {
2089 struct sctp_ulpevent *event = NULL;
2090 struct sctp_sock *sp = sctp_sk(sk);
2091 struct sk_buff *skb, *head_skb;
2092 int copied;
2093 int err = 0;
2094 int skb_len;
2095
2096 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2097 __func__, sk, msg, len, flags, addr_len);
2098
2099 lock_sock(sk);
2100
2101 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2102 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2103 err = -ENOTCONN;
2104 goto out;
2105 }
2106
2107 skb = sctp_skb_recv_datagram(sk, flags, &err);
2108 if (!skb)
2109 goto out;
2110
2111 /* Get the total length of the skb including any skb's in the
2112 * frag_list.
2113 */
2114 skb_len = skb->len;
2115
2116 copied = skb_len;
2117 if (copied > len)
2118 copied = len;
2119
2120 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2121
2122 event = sctp_skb2event(skb);
2123
2124 if (err)
2125 goto out_free;
2126
2127 if (event->chunk && event->chunk->head_skb)
2128 head_skb = event->chunk->head_skb;
2129 else
2130 head_skb = skb;
2131 sock_recv_cmsgs(msg, sk, head_skb);
2132 if (sctp_ulpevent_is_notification(event)) {
2133 msg->msg_flags |= MSG_NOTIFICATION;
2134 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2135 } else {
2136 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2137 }
2138
2139 /* Check if we allow SCTP_NXTINFO. */
2140 if (sp->recvnxtinfo)
2141 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2142 /* Check if we allow SCTP_RCVINFO. */
2143 if (sp->recvrcvinfo)
2144 sctp_ulpevent_read_rcvinfo(event, msg);
2145 /* Check if we allow SCTP_SNDRCVINFO. */
2146 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2147 sctp_ulpevent_read_sndrcvinfo(event, msg);
2148
2149 err = copied;
2150
2151 /* If skb's length exceeds the user's buffer, update the skb and
2152 * push it back to the receive_queue so that the next call to
2153 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2154 */
2155 if (skb_len > copied) {
2156 msg->msg_flags &= ~MSG_EOR;
2157 if (flags & MSG_PEEK)
2158 goto out_free;
2159 sctp_skb_pull(skb, copied);
2160 skb_queue_head(&sk->sk_receive_queue, skb);
2161
2162 /* When only partial message is copied to the user, increase
2163 * rwnd by that amount. If all the data in the skb is read,
2164 * rwnd is updated when the event is freed.
2165 */
2166 if (!sctp_ulpevent_is_notification(event))
2167 sctp_assoc_rwnd_increase(event->asoc, copied);
2168 goto out;
2169 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2170 (event->msg_flags & MSG_EOR))
2171 msg->msg_flags |= MSG_EOR;
2172 else
2173 msg->msg_flags &= ~MSG_EOR;
2174
2175 out_free:
2176 if (flags & MSG_PEEK) {
2177 /* Release the skb reference acquired after peeking the skb in
2178 * sctp_skb_recv_datagram().
2179 */
2180 kfree_skb(skb);
2181 } else {
2182 /* Free the event which includes releasing the reference to
2183 * the owner of the skb, freeing the skb and updating the
2184 * rwnd.
2185 */
2186 sctp_ulpevent_free(event);
2187 }
2188 out:
2189 release_sock(sk);
2190 return err;
2191 }
2192
2193 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2194 *
2195 * This option is a on/off flag. If enabled no SCTP message
2196 * fragmentation will be performed. Instead if a message being sent
2197 * exceeds the current PMTU size, the message will NOT be sent and
2198 * instead a error will be indicated to the user.
2199 */
sctp_setsockopt_disable_fragments(struct sock * sk,int * val,unsigned int optlen)2200 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2201 unsigned int optlen)
2202 {
2203 if (optlen < sizeof(int))
2204 return -EINVAL;
2205 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2206 return 0;
2207 }
2208
sctp_setsockopt_events(struct sock * sk,__u8 * sn_type,unsigned int optlen)2209 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2210 unsigned int optlen)
2211 {
2212 struct sctp_sock *sp = sctp_sk(sk);
2213 struct sctp_association *asoc;
2214 int i;
2215
2216 if (optlen > sizeof(struct sctp_event_subscribe))
2217 return -EINVAL;
2218
2219 for (i = 0; i < optlen; i++)
2220 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2221 sn_type[i]);
2222
2223 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2224 asoc->subscribe = sctp_sk(sk)->subscribe;
2225
2226 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2227 * if there is no data to be sent or retransmit, the stack will
2228 * immediately send up this notification.
2229 */
2230 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2231 struct sctp_ulpevent *event;
2232
2233 asoc = sctp_id2assoc(sk, 0);
2234 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2235 event = sctp_ulpevent_make_sender_dry_event(asoc,
2236 GFP_USER | __GFP_NOWARN);
2237 if (!event)
2238 return -ENOMEM;
2239
2240 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2241 }
2242 }
2243
2244 return 0;
2245 }
2246
2247 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2248 *
2249 * This socket option is applicable to the UDP-style socket only. When
2250 * set it will cause associations that are idle for more than the
2251 * specified number of seconds to automatically close. An association
2252 * being idle is defined an association that has NOT sent or received
2253 * user data. The special value of '0' indicates that no automatic
2254 * close of any associations should be performed. The option expects an
2255 * integer defining the number of seconds of idle time before an
2256 * association is closed.
2257 */
sctp_setsockopt_autoclose(struct sock * sk,u32 * optval,unsigned int optlen)2258 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2259 unsigned int optlen)
2260 {
2261 struct sctp_sock *sp = sctp_sk(sk);
2262 struct net *net = sock_net(sk);
2263
2264 /* Applicable to UDP-style socket only */
2265 if (sctp_style(sk, TCP))
2266 return -EOPNOTSUPP;
2267 if (optlen != sizeof(int))
2268 return -EINVAL;
2269
2270 sp->autoclose = *optval;
2271 if (sp->autoclose > net->sctp.max_autoclose)
2272 sp->autoclose = net->sctp.max_autoclose;
2273
2274 return 0;
2275 }
2276
2277 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2278 *
2279 * Applications can enable or disable heartbeats for any peer address of
2280 * an association, modify an address's heartbeat interval, force a
2281 * heartbeat to be sent immediately, and adjust the address's maximum
2282 * number of retransmissions sent before an address is considered
2283 * unreachable. The following structure is used to access and modify an
2284 * address's parameters:
2285 *
2286 * struct sctp_paddrparams {
2287 * sctp_assoc_t spp_assoc_id;
2288 * struct sockaddr_storage spp_address;
2289 * uint32_t spp_hbinterval;
2290 * uint16_t spp_pathmaxrxt;
2291 * uint32_t spp_pathmtu;
2292 * uint32_t spp_sackdelay;
2293 * uint32_t spp_flags;
2294 * uint32_t spp_ipv6_flowlabel;
2295 * uint8_t spp_dscp;
2296 * };
2297 *
2298 * spp_assoc_id - (one-to-many style socket) This is filled in the
2299 * application, and identifies the association for
2300 * this query.
2301 * spp_address - This specifies which address is of interest.
2302 * spp_hbinterval - This contains the value of the heartbeat interval,
2303 * in milliseconds. If a value of zero
2304 * is present in this field then no changes are to
2305 * be made to this parameter.
2306 * spp_pathmaxrxt - This contains the maximum number of
2307 * retransmissions before this address shall be
2308 * considered unreachable. If a value of zero
2309 * is present in this field then no changes are to
2310 * be made to this parameter.
2311 * spp_pathmtu - When Path MTU discovery is disabled the value
2312 * specified here will be the "fixed" path mtu.
2313 * Note that if the spp_address field is empty
2314 * then all associations on this address will
2315 * have this fixed path mtu set upon them.
2316 *
2317 * spp_sackdelay - When delayed sack is enabled, this value specifies
2318 * the number of milliseconds that sacks will be delayed
2319 * for. This value will apply to all addresses of an
2320 * association if the spp_address field is empty. Note
2321 * also, that if delayed sack is enabled and this
2322 * value is set to 0, no change is made to the last
2323 * recorded delayed sack timer value.
2324 *
2325 * spp_flags - These flags are used to control various features
2326 * on an association. The flag field may contain
2327 * zero or more of the following options.
2328 *
2329 * SPP_HB_ENABLE - Enable heartbeats on the
2330 * specified address. Note that if the address
2331 * field is empty all addresses for the association
2332 * have heartbeats enabled upon them.
2333 *
2334 * SPP_HB_DISABLE - Disable heartbeats on the
2335 * speicifed address. Note that if the address
2336 * field is empty all addresses for the association
2337 * will have their heartbeats disabled. Note also
2338 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2339 * mutually exclusive, only one of these two should
2340 * be specified. Enabling both fields will have
2341 * undetermined results.
2342 *
2343 * SPP_HB_DEMAND - Request a user initiated heartbeat
2344 * to be made immediately.
2345 *
2346 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2347 * heartbeat delayis to be set to the value of 0
2348 * milliseconds.
2349 *
2350 * SPP_PMTUD_ENABLE - This field will enable PMTU
2351 * discovery upon the specified address. Note that
2352 * if the address feild is empty then all addresses
2353 * on the association are effected.
2354 *
2355 * SPP_PMTUD_DISABLE - This field will disable PMTU
2356 * discovery upon the specified address. Note that
2357 * if the address feild is empty then all addresses
2358 * on the association are effected. Not also that
2359 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2360 * exclusive. Enabling both will have undetermined
2361 * results.
2362 *
2363 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2364 * on delayed sack. The time specified in spp_sackdelay
2365 * is used to specify the sack delay for this address. Note
2366 * that if spp_address is empty then all addresses will
2367 * enable delayed sack and take on the sack delay
2368 * value specified in spp_sackdelay.
2369 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2370 * off delayed sack. If the spp_address field is blank then
2371 * delayed sack is disabled for the entire association. Note
2372 * also that this field is mutually exclusive to
2373 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2374 * results.
2375 *
2376 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2377 * setting of the IPV6 flow label value. The value is
2378 * contained in the spp_ipv6_flowlabel field.
2379 * Upon retrieval, this flag will be set to indicate that
2380 * the spp_ipv6_flowlabel field has a valid value returned.
2381 * If a specific destination address is set (in the
2382 * spp_address field), then the value returned is that of
2383 * the address. If just an association is specified (and
2384 * no address), then the association's default flow label
2385 * is returned. If neither an association nor a destination
2386 * is specified, then the socket's default flow label is
2387 * returned. For non-IPv6 sockets, this flag will be left
2388 * cleared.
2389 *
2390 * SPP_DSCP: Setting this flag enables the setting of the
2391 * Differentiated Services Code Point (DSCP) value
2392 * associated with either the association or a specific
2393 * address. The value is obtained in the spp_dscp field.
2394 * Upon retrieval, this flag will be set to indicate that
2395 * the spp_dscp field has a valid value returned. If a
2396 * specific destination address is set when called (in the
2397 * spp_address field), then that specific destination
2398 * address's DSCP value is returned. If just an association
2399 * is specified, then the association's default DSCP is
2400 * returned. If neither an association nor a destination is
2401 * specified, then the socket's default DSCP is returned.
2402 *
2403 * spp_ipv6_flowlabel
2404 * - This field is used in conjunction with the
2405 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2406 * The 20 least significant bits are used for the flow
2407 * label. This setting has precedence over any IPv6-layer
2408 * setting.
2409 *
2410 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2411 * and contains the DSCP. The 6 most significant bits are
2412 * used for the DSCP. This setting has precedence over any
2413 * IPv4- or IPv6- layer setting.
2414 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2415 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2416 struct sctp_transport *trans,
2417 struct sctp_association *asoc,
2418 struct sctp_sock *sp,
2419 int hb_change,
2420 int pmtud_change,
2421 int sackdelay_change)
2422 {
2423 int error;
2424
2425 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2426 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2427 trans->asoc, trans);
2428 if (error)
2429 return error;
2430 }
2431
2432 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2433 * this field is ignored. Note also that a value of zero indicates
2434 * the current setting should be left unchanged.
2435 */
2436 if (params->spp_flags & SPP_HB_ENABLE) {
2437
2438 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2439 * set. This lets us use 0 value when this flag
2440 * is set.
2441 */
2442 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2443 params->spp_hbinterval = 0;
2444
2445 if (params->spp_hbinterval ||
2446 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2447 if (trans) {
2448 trans->hbinterval =
2449 msecs_to_jiffies(params->spp_hbinterval);
2450 } else if (asoc) {
2451 asoc->hbinterval =
2452 msecs_to_jiffies(params->spp_hbinterval);
2453 } else {
2454 sp->hbinterval = params->spp_hbinterval;
2455 }
2456 }
2457 }
2458
2459 if (hb_change) {
2460 if (trans) {
2461 trans->param_flags =
2462 (trans->param_flags & ~SPP_HB) | hb_change;
2463 } else if (asoc) {
2464 asoc->param_flags =
2465 (asoc->param_flags & ~SPP_HB) | hb_change;
2466 } else {
2467 sp->param_flags =
2468 (sp->param_flags & ~SPP_HB) | hb_change;
2469 }
2470 }
2471
2472 /* When Path MTU discovery is disabled the value specified here will
2473 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2474 * include the flag SPP_PMTUD_DISABLE for this field to have any
2475 * effect).
2476 */
2477 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2478 if (trans) {
2479 trans->pathmtu = params->spp_pathmtu;
2480 sctp_assoc_sync_pmtu(asoc);
2481 } else if (asoc) {
2482 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2483 } else {
2484 sp->pathmtu = params->spp_pathmtu;
2485 }
2486 }
2487
2488 if (pmtud_change) {
2489 if (trans) {
2490 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2491 (params->spp_flags & SPP_PMTUD_ENABLE);
2492 trans->param_flags =
2493 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2494 if (update) {
2495 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2496 sctp_assoc_sync_pmtu(asoc);
2497 }
2498 sctp_transport_pl_reset(trans);
2499 } else if (asoc) {
2500 asoc->param_flags =
2501 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2502 } else {
2503 sp->param_flags =
2504 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2505 }
2506 }
2507
2508 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2509 * value of this field is ignored. Note also that a value of zero
2510 * indicates the current setting should be left unchanged.
2511 */
2512 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2513 if (trans) {
2514 trans->sackdelay =
2515 msecs_to_jiffies(params->spp_sackdelay);
2516 } else if (asoc) {
2517 asoc->sackdelay =
2518 msecs_to_jiffies(params->spp_sackdelay);
2519 } else {
2520 sp->sackdelay = params->spp_sackdelay;
2521 }
2522 }
2523
2524 if (sackdelay_change) {
2525 if (trans) {
2526 trans->param_flags =
2527 (trans->param_flags & ~SPP_SACKDELAY) |
2528 sackdelay_change;
2529 } else if (asoc) {
2530 asoc->param_flags =
2531 (asoc->param_flags & ~SPP_SACKDELAY) |
2532 sackdelay_change;
2533 } else {
2534 sp->param_flags =
2535 (sp->param_flags & ~SPP_SACKDELAY) |
2536 sackdelay_change;
2537 }
2538 }
2539
2540 /* Note that a value of zero indicates the current setting should be
2541 left unchanged.
2542 */
2543 if (params->spp_pathmaxrxt) {
2544 if (trans) {
2545 trans->pathmaxrxt = params->spp_pathmaxrxt;
2546 } else if (asoc) {
2547 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2548 } else {
2549 sp->pathmaxrxt = params->spp_pathmaxrxt;
2550 }
2551 }
2552
2553 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2554 if (trans) {
2555 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2556 trans->flowlabel = params->spp_ipv6_flowlabel &
2557 SCTP_FLOWLABEL_VAL_MASK;
2558 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2559 }
2560 } else if (asoc) {
2561 struct sctp_transport *t;
2562
2563 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2564 transports) {
2565 if (t->ipaddr.sa.sa_family != AF_INET6)
2566 continue;
2567 t->flowlabel = params->spp_ipv6_flowlabel &
2568 SCTP_FLOWLABEL_VAL_MASK;
2569 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2570 }
2571 asoc->flowlabel = params->spp_ipv6_flowlabel &
2572 SCTP_FLOWLABEL_VAL_MASK;
2573 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2574 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2575 sp->flowlabel = params->spp_ipv6_flowlabel &
2576 SCTP_FLOWLABEL_VAL_MASK;
2577 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2578 }
2579 }
2580
2581 if (params->spp_flags & SPP_DSCP) {
2582 if (trans) {
2583 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 trans->dscp |= SCTP_DSCP_SET_MASK;
2585 } else if (asoc) {
2586 struct sctp_transport *t;
2587
2588 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2589 transports) {
2590 t->dscp = params->spp_dscp &
2591 SCTP_DSCP_VAL_MASK;
2592 t->dscp |= SCTP_DSCP_SET_MASK;
2593 }
2594 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2595 asoc->dscp |= SCTP_DSCP_SET_MASK;
2596 } else {
2597 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2598 sp->dscp |= SCTP_DSCP_SET_MASK;
2599 }
2600 }
2601
2602 return 0;
2603 }
2604
sctp_setsockopt_peer_addr_params(struct sock * sk,struct sctp_paddrparams * params,unsigned int optlen)2605 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2606 struct sctp_paddrparams *params,
2607 unsigned int optlen)
2608 {
2609 struct sctp_transport *trans = NULL;
2610 struct sctp_association *asoc = NULL;
2611 struct sctp_sock *sp = sctp_sk(sk);
2612 int error;
2613 int hb_change, pmtud_change, sackdelay_change;
2614
2615 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2616 spp_ipv6_flowlabel), 4)) {
2617 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2618 return -EINVAL;
2619 } else if (optlen != sizeof(*params)) {
2620 return -EINVAL;
2621 }
2622
2623 /* Validate flags and value parameters. */
2624 hb_change = params->spp_flags & SPP_HB;
2625 pmtud_change = params->spp_flags & SPP_PMTUD;
2626 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2627
2628 if (hb_change == SPP_HB ||
2629 pmtud_change == SPP_PMTUD ||
2630 sackdelay_change == SPP_SACKDELAY ||
2631 params->spp_sackdelay > 500 ||
2632 (params->spp_pathmtu &&
2633 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2634 return -EINVAL;
2635
2636 /* If an address other than INADDR_ANY is specified, and
2637 * no transport is found, then the request is invalid.
2638 */
2639 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2640 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2641 params->spp_assoc_id);
2642 if (!trans)
2643 return -EINVAL;
2644 }
2645
2646 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2647 * socket is a one to many style socket, and an association
2648 * was not found, then the id was invalid.
2649 */
2650 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2651 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2652 sctp_style(sk, UDP))
2653 return -EINVAL;
2654
2655 /* Heartbeat demand can only be sent on a transport or
2656 * association, but not a socket.
2657 */
2658 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2659 return -EINVAL;
2660
2661 /* Process parameters. */
2662 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2663 hb_change, pmtud_change,
2664 sackdelay_change);
2665
2666 if (error)
2667 return error;
2668
2669 /* If changes are for association, also apply parameters to each
2670 * transport.
2671 */
2672 if (!trans && asoc) {
2673 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2674 transports) {
2675 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2676 hb_change, pmtud_change,
2677 sackdelay_change);
2678 }
2679 }
2680
2681 return 0;
2682 }
2683
sctp_spp_sackdelay_enable(__u32 param_flags)2684 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2685 {
2686 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2687 }
2688
sctp_spp_sackdelay_disable(__u32 param_flags)2689 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2690 {
2691 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2692 }
2693
sctp_apply_asoc_delayed_ack(struct sctp_sack_info * params,struct sctp_association * asoc)2694 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2695 struct sctp_association *asoc)
2696 {
2697 struct sctp_transport *trans;
2698
2699 if (params->sack_delay) {
2700 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2701 asoc->param_flags =
2702 sctp_spp_sackdelay_enable(asoc->param_flags);
2703 }
2704 if (params->sack_freq == 1) {
2705 asoc->param_flags =
2706 sctp_spp_sackdelay_disable(asoc->param_flags);
2707 } else if (params->sack_freq > 1) {
2708 asoc->sackfreq = params->sack_freq;
2709 asoc->param_flags =
2710 sctp_spp_sackdelay_enable(asoc->param_flags);
2711 }
2712
2713 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2714 transports) {
2715 if (params->sack_delay) {
2716 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2717 trans->param_flags =
2718 sctp_spp_sackdelay_enable(trans->param_flags);
2719 }
2720 if (params->sack_freq == 1) {
2721 trans->param_flags =
2722 sctp_spp_sackdelay_disable(trans->param_flags);
2723 } else if (params->sack_freq > 1) {
2724 trans->sackfreq = params->sack_freq;
2725 trans->param_flags =
2726 sctp_spp_sackdelay_enable(trans->param_flags);
2727 }
2728 }
2729 }
2730
2731 /*
2732 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2733 *
2734 * This option will effect the way delayed acks are performed. This
2735 * option allows you to get or set the delayed ack time, in
2736 * milliseconds. It also allows changing the delayed ack frequency.
2737 * Changing the frequency to 1 disables the delayed sack algorithm. If
2738 * the assoc_id is 0, then this sets or gets the endpoints default
2739 * values. If the assoc_id field is non-zero, then the set or get
2740 * effects the specified association for the one to many model (the
2741 * assoc_id field is ignored by the one to one model). Note that if
2742 * sack_delay or sack_freq are 0 when setting this option, then the
2743 * current values will remain unchanged.
2744 *
2745 * struct sctp_sack_info {
2746 * sctp_assoc_t sack_assoc_id;
2747 * uint32_t sack_delay;
2748 * uint32_t sack_freq;
2749 * };
2750 *
2751 * sack_assoc_id - This parameter, indicates which association the user
2752 * is performing an action upon. Note that if this field's value is
2753 * zero then the endpoints default value is changed (effecting future
2754 * associations only).
2755 *
2756 * sack_delay - This parameter contains the number of milliseconds that
2757 * the user is requesting the delayed ACK timer be set to. Note that
2758 * this value is defined in the standard to be between 200 and 500
2759 * milliseconds.
2760 *
2761 * sack_freq - This parameter contains the number of packets that must
2762 * be received before a sack is sent without waiting for the delay
2763 * timer to expire. The default value for this is 2, setting this
2764 * value to 1 will disable the delayed sack algorithm.
2765 */
__sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params)2766 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2767 struct sctp_sack_info *params)
2768 {
2769 struct sctp_sock *sp = sctp_sk(sk);
2770 struct sctp_association *asoc;
2771
2772 /* Validate value parameter. */
2773 if (params->sack_delay > 500)
2774 return -EINVAL;
2775
2776 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2777 * socket is a one to many style socket, and an association
2778 * was not found, then the id was invalid.
2779 */
2780 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2781 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2782 sctp_style(sk, UDP))
2783 return -EINVAL;
2784
2785 if (asoc) {
2786 sctp_apply_asoc_delayed_ack(params, asoc);
2787
2788 return 0;
2789 }
2790
2791 if (sctp_style(sk, TCP))
2792 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2793
2794 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2795 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2796 if (params->sack_delay) {
2797 sp->sackdelay = params->sack_delay;
2798 sp->param_flags =
2799 sctp_spp_sackdelay_enable(sp->param_flags);
2800 }
2801 if (params->sack_freq == 1) {
2802 sp->param_flags =
2803 sctp_spp_sackdelay_disable(sp->param_flags);
2804 } else if (params->sack_freq > 1) {
2805 sp->sackfreq = params->sack_freq;
2806 sp->param_flags =
2807 sctp_spp_sackdelay_enable(sp->param_flags);
2808 }
2809 }
2810
2811 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2812 params->sack_assoc_id == SCTP_ALL_ASSOC)
2813 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2814 sctp_apply_asoc_delayed_ack(params, asoc);
2815
2816 return 0;
2817 }
2818
sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params,unsigned int optlen)2819 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2820 struct sctp_sack_info *params,
2821 unsigned int optlen)
2822 {
2823 if (optlen == sizeof(struct sctp_assoc_value)) {
2824 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2825 struct sctp_sack_info p;
2826
2827 pr_warn_ratelimited(DEPRECATED
2828 "%s (pid %d) "
2829 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2830 "Use struct sctp_sack_info instead\n",
2831 current->comm, task_pid_nr(current));
2832
2833 p.sack_assoc_id = v->assoc_id;
2834 p.sack_delay = v->assoc_value;
2835 p.sack_freq = v->assoc_value ? 0 : 1;
2836 return __sctp_setsockopt_delayed_ack(sk, &p);
2837 }
2838
2839 if (optlen != sizeof(struct sctp_sack_info))
2840 return -EINVAL;
2841 if (params->sack_delay == 0 && params->sack_freq == 0)
2842 return 0;
2843 return __sctp_setsockopt_delayed_ack(sk, params);
2844 }
2845
2846 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2847 *
2848 * Applications can specify protocol parameters for the default association
2849 * initialization. The option name argument to setsockopt() and getsockopt()
2850 * is SCTP_INITMSG.
2851 *
2852 * Setting initialization parameters is effective only on an unconnected
2853 * socket (for UDP-style sockets only future associations are effected
2854 * by the change). With TCP-style sockets, this option is inherited by
2855 * sockets derived from a listener socket.
2856 */
sctp_setsockopt_initmsg(struct sock * sk,struct sctp_initmsg * sinit,unsigned int optlen)2857 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2858 unsigned int optlen)
2859 {
2860 struct sctp_sock *sp = sctp_sk(sk);
2861
2862 if (optlen != sizeof(struct sctp_initmsg))
2863 return -EINVAL;
2864
2865 if (sinit->sinit_num_ostreams)
2866 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2867 if (sinit->sinit_max_instreams)
2868 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2869 if (sinit->sinit_max_attempts)
2870 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2871 if (sinit->sinit_max_init_timeo)
2872 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2873
2874 return 0;
2875 }
2876
2877 /*
2878 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2879 *
2880 * Applications that wish to use the sendto() system call may wish to
2881 * specify a default set of parameters that would normally be supplied
2882 * through the inclusion of ancillary data. This socket option allows
2883 * such an application to set the default sctp_sndrcvinfo structure.
2884 * The application that wishes to use this socket option simply passes
2885 * in to this call the sctp_sndrcvinfo structure defined in Section
2886 * 5.2.2) The input parameters accepted by this call include
2887 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2888 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2889 * to this call if the caller is using the UDP model.
2890 */
sctp_setsockopt_default_send_param(struct sock * sk,struct sctp_sndrcvinfo * info,unsigned int optlen)2891 static int sctp_setsockopt_default_send_param(struct sock *sk,
2892 struct sctp_sndrcvinfo *info,
2893 unsigned int optlen)
2894 {
2895 struct sctp_sock *sp = sctp_sk(sk);
2896 struct sctp_association *asoc;
2897
2898 if (optlen != sizeof(*info))
2899 return -EINVAL;
2900 if (info->sinfo_flags &
2901 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2902 SCTP_ABORT | SCTP_EOF))
2903 return -EINVAL;
2904
2905 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2906 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2907 sctp_style(sk, UDP))
2908 return -EINVAL;
2909
2910 if (asoc) {
2911 asoc->default_stream = info->sinfo_stream;
2912 asoc->default_flags = info->sinfo_flags;
2913 asoc->default_ppid = info->sinfo_ppid;
2914 asoc->default_context = info->sinfo_context;
2915 asoc->default_timetolive = info->sinfo_timetolive;
2916
2917 return 0;
2918 }
2919
2920 if (sctp_style(sk, TCP))
2921 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2922
2923 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2924 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2925 sp->default_stream = info->sinfo_stream;
2926 sp->default_flags = info->sinfo_flags;
2927 sp->default_ppid = info->sinfo_ppid;
2928 sp->default_context = info->sinfo_context;
2929 sp->default_timetolive = info->sinfo_timetolive;
2930 }
2931
2932 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2933 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2934 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2935 asoc->default_stream = info->sinfo_stream;
2936 asoc->default_flags = info->sinfo_flags;
2937 asoc->default_ppid = info->sinfo_ppid;
2938 asoc->default_context = info->sinfo_context;
2939 asoc->default_timetolive = info->sinfo_timetolive;
2940 }
2941 }
2942
2943 return 0;
2944 }
2945
2946 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2947 * (SCTP_DEFAULT_SNDINFO)
2948 */
sctp_setsockopt_default_sndinfo(struct sock * sk,struct sctp_sndinfo * info,unsigned int optlen)2949 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2950 struct sctp_sndinfo *info,
2951 unsigned int optlen)
2952 {
2953 struct sctp_sock *sp = sctp_sk(sk);
2954 struct sctp_association *asoc;
2955
2956 if (optlen != sizeof(*info))
2957 return -EINVAL;
2958 if (info->snd_flags &
2959 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2960 SCTP_ABORT | SCTP_EOF))
2961 return -EINVAL;
2962
2963 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2964 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2965 sctp_style(sk, UDP))
2966 return -EINVAL;
2967
2968 if (asoc) {
2969 asoc->default_stream = info->snd_sid;
2970 asoc->default_flags = info->snd_flags;
2971 asoc->default_ppid = info->snd_ppid;
2972 asoc->default_context = info->snd_context;
2973
2974 return 0;
2975 }
2976
2977 if (sctp_style(sk, TCP))
2978 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2979
2980 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2981 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2982 sp->default_stream = info->snd_sid;
2983 sp->default_flags = info->snd_flags;
2984 sp->default_ppid = info->snd_ppid;
2985 sp->default_context = info->snd_context;
2986 }
2987
2988 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2989 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2990 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2991 asoc->default_stream = info->snd_sid;
2992 asoc->default_flags = info->snd_flags;
2993 asoc->default_ppid = info->snd_ppid;
2994 asoc->default_context = info->snd_context;
2995 }
2996 }
2997
2998 return 0;
2999 }
3000
3001 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3002 *
3003 * Requests that the local SCTP stack use the enclosed peer address as
3004 * the association primary. The enclosed address must be one of the
3005 * association peer's addresses.
3006 */
sctp_setsockopt_primary_addr(struct sock * sk,struct sctp_prim * prim,unsigned int optlen)3007 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3008 unsigned int optlen)
3009 {
3010 struct sctp_transport *trans;
3011 struct sctp_af *af;
3012 int err;
3013
3014 if (optlen != sizeof(struct sctp_prim))
3015 return -EINVAL;
3016
3017 /* Allow security module to validate address but need address len. */
3018 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3019 if (!af)
3020 return -EINVAL;
3021
3022 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3023 (struct sockaddr *)&prim->ssp_addr,
3024 af->sockaddr_len);
3025 if (err)
3026 return err;
3027
3028 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3029 if (!trans)
3030 return -EINVAL;
3031
3032 sctp_assoc_set_primary(trans->asoc, trans);
3033
3034 return 0;
3035 }
3036
3037 /*
3038 * 7.1.5 SCTP_NODELAY
3039 *
3040 * Turn on/off any Nagle-like algorithm. This means that packets are
3041 * generally sent as soon as possible and no unnecessary delays are
3042 * introduced, at the cost of more packets in the network. Expects an
3043 * integer boolean flag.
3044 */
sctp_setsockopt_nodelay(struct sock * sk,int * val,unsigned int optlen)3045 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3046 unsigned int optlen)
3047 {
3048 if (optlen < sizeof(int))
3049 return -EINVAL;
3050 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3051 return 0;
3052 }
3053
3054 /*
3055 *
3056 * 7.1.1 SCTP_RTOINFO
3057 *
3058 * The protocol parameters used to initialize and bound retransmission
3059 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3060 * and modify these parameters.
3061 * All parameters are time values, in milliseconds. A value of 0, when
3062 * modifying the parameters, indicates that the current value should not
3063 * be changed.
3064 *
3065 */
sctp_setsockopt_rtoinfo(struct sock * sk,struct sctp_rtoinfo * rtoinfo,unsigned int optlen)3066 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3067 struct sctp_rtoinfo *rtoinfo,
3068 unsigned int optlen)
3069 {
3070 struct sctp_association *asoc;
3071 unsigned long rto_min, rto_max;
3072 struct sctp_sock *sp = sctp_sk(sk);
3073
3074 if (optlen != sizeof (struct sctp_rtoinfo))
3075 return -EINVAL;
3076
3077 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3078
3079 /* Set the values to the specific association */
3080 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3081 sctp_style(sk, UDP))
3082 return -EINVAL;
3083
3084 rto_max = rtoinfo->srto_max;
3085 rto_min = rtoinfo->srto_min;
3086
3087 if (rto_max)
3088 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3089 else
3090 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3091
3092 if (rto_min)
3093 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3094 else
3095 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3096
3097 if (rto_min > rto_max)
3098 return -EINVAL;
3099
3100 if (asoc) {
3101 if (rtoinfo->srto_initial != 0)
3102 asoc->rto_initial =
3103 msecs_to_jiffies(rtoinfo->srto_initial);
3104 asoc->rto_max = rto_max;
3105 asoc->rto_min = rto_min;
3106 } else {
3107 /* If there is no association or the association-id = 0
3108 * set the values to the endpoint.
3109 */
3110 if (rtoinfo->srto_initial != 0)
3111 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3112 sp->rtoinfo.srto_max = rto_max;
3113 sp->rtoinfo.srto_min = rto_min;
3114 }
3115
3116 return 0;
3117 }
3118
3119 /*
3120 *
3121 * 7.1.2 SCTP_ASSOCINFO
3122 *
3123 * This option is used to tune the maximum retransmission attempts
3124 * of the association.
3125 * Returns an error if the new association retransmission value is
3126 * greater than the sum of the retransmission value of the peer.
3127 * See [SCTP] for more information.
3128 *
3129 */
sctp_setsockopt_associnfo(struct sock * sk,struct sctp_assocparams * assocparams,unsigned int optlen)3130 static int sctp_setsockopt_associnfo(struct sock *sk,
3131 struct sctp_assocparams *assocparams,
3132 unsigned int optlen)
3133 {
3134
3135 struct sctp_association *asoc;
3136
3137 if (optlen != sizeof(struct sctp_assocparams))
3138 return -EINVAL;
3139
3140 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3141
3142 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3143 sctp_style(sk, UDP))
3144 return -EINVAL;
3145
3146 /* Set the values to the specific association */
3147 if (asoc) {
3148 if (assocparams->sasoc_asocmaxrxt != 0) {
3149 __u32 path_sum = 0;
3150 int paths = 0;
3151 struct sctp_transport *peer_addr;
3152
3153 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3154 transports) {
3155 path_sum += peer_addr->pathmaxrxt;
3156 paths++;
3157 }
3158
3159 /* Only validate asocmaxrxt if we have more than
3160 * one path/transport. We do this because path
3161 * retransmissions are only counted when we have more
3162 * then one path.
3163 */
3164 if (paths > 1 &&
3165 assocparams->sasoc_asocmaxrxt > path_sum)
3166 return -EINVAL;
3167
3168 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3169 }
3170
3171 if (assocparams->sasoc_cookie_life != 0)
3172 asoc->cookie_life =
3173 ms_to_ktime(assocparams->sasoc_cookie_life);
3174 } else {
3175 /* Set the values to the endpoint */
3176 struct sctp_sock *sp = sctp_sk(sk);
3177
3178 if (assocparams->sasoc_asocmaxrxt != 0)
3179 sp->assocparams.sasoc_asocmaxrxt =
3180 assocparams->sasoc_asocmaxrxt;
3181 if (assocparams->sasoc_cookie_life != 0)
3182 sp->assocparams.sasoc_cookie_life =
3183 assocparams->sasoc_cookie_life;
3184 }
3185 return 0;
3186 }
3187
3188 /*
3189 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3190 *
3191 * This socket option is a boolean flag which turns on or off mapped V4
3192 * addresses. If this option is turned on and the socket is type
3193 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3194 * If this option is turned off, then no mapping will be done of V4
3195 * addresses and a user will receive both PF_INET6 and PF_INET type
3196 * addresses on the socket.
3197 */
sctp_setsockopt_mappedv4(struct sock * sk,int * val,unsigned int optlen)3198 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3199 unsigned int optlen)
3200 {
3201 struct sctp_sock *sp = sctp_sk(sk);
3202
3203 if (optlen < sizeof(int))
3204 return -EINVAL;
3205 if (*val)
3206 sp->v4mapped = 1;
3207 else
3208 sp->v4mapped = 0;
3209
3210 return 0;
3211 }
3212
3213 /*
3214 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3215 * This option will get or set the maximum size to put in any outgoing
3216 * SCTP DATA chunk. If a message is larger than this size it will be
3217 * fragmented by SCTP into the specified size. Note that the underlying
3218 * SCTP implementation may fragment into smaller sized chunks when the
3219 * PMTU of the underlying association is smaller than the value set by
3220 * the user. The default value for this option is '0' which indicates
3221 * the user is NOT limiting fragmentation and only the PMTU will effect
3222 * SCTP's choice of DATA chunk size. Note also that values set larger
3223 * than the maximum size of an IP datagram will effectively let SCTP
3224 * control fragmentation (i.e. the same as setting this option to 0).
3225 *
3226 * The following structure is used to access and modify this parameter:
3227 *
3228 * struct sctp_assoc_value {
3229 * sctp_assoc_t assoc_id;
3230 * uint32_t assoc_value;
3231 * };
3232 *
3233 * assoc_id: This parameter is ignored for one-to-one style sockets.
3234 * For one-to-many style sockets this parameter indicates which
3235 * association the user is performing an action upon. Note that if
3236 * this field's value is zero then the endpoints default value is
3237 * changed (effecting future associations only).
3238 * assoc_value: This parameter specifies the maximum size in bytes.
3239 */
sctp_setsockopt_maxseg(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3240 static int sctp_setsockopt_maxseg(struct sock *sk,
3241 struct sctp_assoc_value *params,
3242 unsigned int optlen)
3243 {
3244 struct sctp_sock *sp = sctp_sk(sk);
3245 struct sctp_association *asoc;
3246 sctp_assoc_t assoc_id;
3247 int val;
3248
3249 if (optlen == sizeof(int)) {
3250 pr_warn_ratelimited(DEPRECATED
3251 "%s (pid %d) "
3252 "Use of int in maxseg socket option.\n"
3253 "Use struct sctp_assoc_value instead\n",
3254 current->comm, task_pid_nr(current));
3255 assoc_id = SCTP_FUTURE_ASSOC;
3256 val = *(int *)params;
3257 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3258 assoc_id = params->assoc_id;
3259 val = params->assoc_value;
3260 } else {
3261 return -EINVAL;
3262 }
3263
3264 asoc = sctp_id2assoc(sk, assoc_id);
3265 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3266 sctp_style(sk, UDP))
3267 return -EINVAL;
3268
3269 if (val) {
3270 int min_len, max_len;
3271 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3272 sizeof(struct sctp_data_chunk);
3273
3274 min_len = sctp_min_frag_point(sp, datasize);
3275 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3276
3277 if (val < min_len || val > max_len)
3278 return -EINVAL;
3279 }
3280
3281 if (asoc) {
3282 asoc->user_frag = val;
3283 sctp_assoc_update_frag_point(asoc);
3284 } else {
3285 sp->user_frag = val;
3286 }
3287
3288 return 0;
3289 }
3290
3291
3292 /*
3293 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3294 *
3295 * Requests that the peer mark the enclosed address as the association
3296 * primary. The enclosed address must be one of the association's
3297 * locally bound addresses. The following structure is used to make a
3298 * set primary request:
3299 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,struct sctp_setpeerprim * prim,unsigned int optlen)3300 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3301 struct sctp_setpeerprim *prim,
3302 unsigned int optlen)
3303 {
3304 struct sctp_sock *sp;
3305 struct sctp_association *asoc = NULL;
3306 struct sctp_chunk *chunk;
3307 struct sctp_af *af;
3308 int err;
3309
3310 sp = sctp_sk(sk);
3311
3312 if (!sp->ep->asconf_enable)
3313 return -EPERM;
3314
3315 if (optlen != sizeof(struct sctp_setpeerprim))
3316 return -EINVAL;
3317
3318 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3319 if (!asoc)
3320 return -EINVAL;
3321
3322 if (!asoc->peer.asconf_capable)
3323 return -EPERM;
3324
3325 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3326 return -EPERM;
3327
3328 if (!sctp_state(asoc, ESTABLISHED))
3329 return -ENOTCONN;
3330
3331 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3332 if (!af)
3333 return -EINVAL;
3334
3335 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3336 return -EADDRNOTAVAIL;
3337
3338 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3339 return -EADDRNOTAVAIL;
3340
3341 /* Allow security module to validate address. */
3342 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3343 (struct sockaddr *)&prim->sspp_addr,
3344 af->sockaddr_len);
3345 if (err)
3346 return err;
3347
3348 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3349 chunk = sctp_make_asconf_set_prim(asoc,
3350 (union sctp_addr *)&prim->sspp_addr);
3351 if (!chunk)
3352 return -ENOMEM;
3353
3354 err = sctp_send_asconf(asoc, chunk);
3355
3356 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3357
3358 return err;
3359 }
3360
sctp_setsockopt_adaptation_layer(struct sock * sk,struct sctp_setadaptation * adapt,unsigned int optlen)3361 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3362 struct sctp_setadaptation *adapt,
3363 unsigned int optlen)
3364 {
3365 if (optlen != sizeof(struct sctp_setadaptation))
3366 return -EINVAL;
3367
3368 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3369
3370 return 0;
3371 }
3372
3373 /*
3374 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3375 *
3376 * The context field in the sctp_sndrcvinfo structure is normally only
3377 * used when a failed message is retrieved holding the value that was
3378 * sent down on the actual send call. This option allows the setting of
3379 * a default context on an association basis that will be received on
3380 * reading messages from the peer. This is especially helpful in the
3381 * one-2-many model for an application to keep some reference to an
3382 * internal state machine that is processing messages on the
3383 * association. Note that the setting of this value only effects
3384 * received messages from the peer and does not effect the value that is
3385 * saved with outbound messages.
3386 */
sctp_setsockopt_context(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3387 static int sctp_setsockopt_context(struct sock *sk,
3388 struct sctp_assoc_value *params,
3389 unsigned int optlen)
3390 {
3391 struct sctp_sock *sp = sctp_sk(sk);
3392 struct sctp_association *asoc;
3393
3394 if (optlen != sizeof(struct sctp_assoc_value))
3395 return -EINVAL;
3396
3397 asoc = sctp_id2assoc(sk, params->assoc_id);
3398 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3399 sctp_style(sk, UDP))
3400 return -EINVAL;
3401
3402 if (asoc) {
3403 asoc->default_rcv_context = params->assoc_value;
3404
3405 return 0;
3406 }
3407
3408 if (sctp_style(sk, TCP))
3409 params->assoc_id = SCTP_FUTURE_ASSOC;
3410
3411 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3412 params->assoc_id == SCTP_ALL_ASSOC)
3413 sp->default_rcv_context = params->assoc_value;
3414
3415 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3416 params->assoc_id == SCTP_ALL_ASSOC)
3417 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3418 asoc->default_rcv_context = params->assoc_value;
3419
3420 return 0;
3421 }
3422
3423 /*
3424 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3425 *
3426 * This options will at a minimum specify if the implementation is doing
3427 * fragmented interleave. Fragmented interleave, for a one to many
3428 * socket, is when subsequent calls to receive a message may return
3429 * parts of messages from different associations. Some implementations
3430 * may allow you to turn this value on or off. If so, when turned off,
3431 * no fragment interleave will occur (which will cause a head of line
3432 * blocking amongst multiple associations sharing the same one to many
3433 * socket). When this option is turned on, then each receive call may
3434 * come from a different association (thus the user must receive data
3435 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3436 * association each receive belongs to.
3437 *
3438 * This option takes a boolean value. A non-zero value indicates that
3439 * fragmented interleave is on. A value of zero indicates that
3440 * fragmented interleave is off.
3441 *
3442 * Note that it is important that an implementation that allows this
3443 * option to be turned on, have it off by default. Otherwise an unaware
3444 * application using the one to many model may become confused and act
3445 * incorrectly.
3446 */
sctp_setsockopt_fragment_interleave(struct sock * sk,int * val,unsigned int optlen)3447 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3448 unsigned int optlen)
3449 {
3450 if (optlen != sizeof(int))
3451 return -EINVAL;
3452
3453 sctp_sk(sk)->frag_interleave = !!*val;
3454
3455 if (!sctp_sk(sk)->frag_interleave)
3456 sctp_sk(sk)->ep->intl_enable = 0;
3457
3458 return 0;
3459 }
3460
3461 /*
3462 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3463 * (SCTP_PARTIAL_DELIVERY_POINT)
3464 *
3465 * This option will set or get the SCTP partial delivery point. This
3466 * point is the size of a message where the partial delivery API will be
3467 * invoked to help free up rwnd space for the peer. Setting this to a
3468 * lower value will cause partial deliveries to happen more often. The
3469 * calls argument is an integer that sets or gets the partial delivery
3470 * point. Note also that the call will fail if the user attempts to set
3471 * this value larger than the socket receive buffer size.
3472 *
3473 * Note that any single message having a length smaller than or equal to
3474 * the SCTP partial delivery point will be delivered in one single read
3475 * call as long as the user provided buffer is large enough to hold the
3476 * message.
3477 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,u32 * val,unsigned int optlen)3478 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3479 unsigned int optlen)
3480 {
3481 if (optlen != sizeof(u32))
3482 return -EINVAL;
3483
3484 /* Note: We double the receive buffer from what the user sets
3485 * it to be, also initial rwnd is based on rcvbuf/2.
3486 */
3487 if (*val > (sk->sk_rcvbuf >> 1))
3488 return -EINVAL;
3489
3490 sctp_sk(sk)->pd_point = *val;
3491
3492 return 0; /* is this the right error code? */
3493 }
3494
3495 /*
3496 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3497 *
3498 * This option will allow a user to change the maximum burst of packets
3499 * that can be emitted by this association. Note that the default value
3500 * is 4, and some implementations may restrict this setting so that it
3501 * can only be lowered.
3502 *
3503 * NOTE: This text doesn't seem right. Do this on a socket basis with
3504 * future associations inheriting the socket value.
3505 */
sctp_setsockopt_maxburst(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3506 static int sctp_setsockopt_maxburst(struct sock *sk,
3507 struct sctp_assoc_value *params,
3508 unsigned int optlen)
3509 {
3510 struct sctp_sock *sp = sctp_sk(sk);
3511 struct sctp_association *asoc;
3512 sctp_assoc_t assoc_id;
3513 u32 assoc_value;
3514
3515 if (optlen == sizeof(int)) {
3516 pr_warn_ratelimited(DEPRECATED
3517 "%s (pid %d) "
3518 "Use of int in max_burst socket option deprecated.\n"
3519 "Use struct sctp_assoc_value instead\n",
3520 current->comm, task_pid_nr(current));
3521 assoc_id = SCTP_FUTURE_ASSOC;
3522 assoc_value = *((int *)params);
3523 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3524 assoc_id = params->assoc_id;
3525 assoc_value = params->assoc_value;
3526 } else
3527 return -EINVAL;
3528
3529 asoc = sctp_id2assoc(sk, assoc_id);
3530 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3531 return -EINVAL;
3532
3533 if (asoc) {
3534 asoc->max_burst = assoc_value;
3535
3536 return 0;
3537 }
3538
3539 if (sctp_style(sk, TCP))
3540 assoc_id = SCTP_FUTURE_ASSOC;
3541
3542 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3543 sp->max_burst = assoc_value;
3544
3545 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3546 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3547 asoc->max_burst = assoc_value;
3548
3549 return 0;
3550 }
3551
3552 /*
3553 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3554 *
3555 * This set option adds a chunk type that the user is requesting to be
3556 * received only in an authenticated way. Changes to the list of chunks
3557 * will only effect future associations on the socket.
3558 */
sctp_setsockopt_auth_chunk(struct sock * sk,struct sctp_authchunk * val,unsigned int optlen)3559 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3560 struct sctp_authchunk *val,
3561 unsigned int optlen)
3562 {
3563 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3564
3565 if (!ep->auth_enable)
3566 return -EACCES;
3567
3568 if (optlen != sizeof(struct sctp_authchunk))
3569 return -EINVAL;
3570
3571 switch (val->sauth_chunk) {
3572 case SCTP_CID_INIT:
3573 case SCTP_CID_INIT_ACK:
3574 case SCTP_CID_SHUTDOWN_COMPLETE:
3575 case SCTP_CID_AUTH:
3576 return -EINVAL;
3577 }
3578
3579 /* add this chunk id to the endpoint */
3580 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3581 }
3582
3583 /*
3584 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3585 *
3586 * This option gets or sets the list of HMAC algorithms that the local
3587 * endpoint requires the peer to use.
3588 */
sctp_setsockopt_hmac_ident(struct sock * sk,struct sctp_hmacalgo * hmacs,unsigned int optlen)3589 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3590 struct sctp_hmacalgo *hmacs,
3591 unsigned int optlen)
3592 {
3593 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3594 u32 idents;
3595
3596 if (!ep->auth_enable)
3597 return -EACCES;
3598
3599 if (optlen < sizeof(struct sctp_hmacalgo))
3600 return -EINVAL;
3601 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3602 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3603
3604 idents = hmacs->shmac_num_idents;
3605 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3606 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3607 return -EINVAL;
3608
3609 return sctp_auth_ep_set_hmacs(ep, hmacs);
3610 }
3611
3612 /*
3613 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3614 *
3615 * This option will set a shared secret key which is used to build an
3616 * association shared key.
3617 */
sctp_setsockopt_auth_key(struct sock * sk,struct sctp_authkey * authkey,unsigned int optlen)3618 static int sctp_setsockopt_auth_key(struct sock *sk,
3619 struct sctp_authkey *authkey,
3620 unsigned int optlen)
3621 {
3622 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3623 struct sctp_association *asoc;
3624 int ret = -EINVAL;
3625
3626 if (optlen <= sizeof(struct sctp_authkey))
3627 return -EINVAL;
3628 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3629 * this.
3630 */
3631 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3632
3633 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3634 goto out;
3635
3636 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3637 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3638 sctp_style(sk, UDP))
3639 goto out;
3640
3641 if (asoc) {
3642 ret = sctp_auth_set_key(ep, asoc, authkey);
3643 goto out;
3644 }
3645
3646 if (sctp_style(sk, TCP))
3647 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3648
3649 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3650 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3651 ret = sctp_auth_set_key(ep, asoc, authkey);
3652 if (ret)
3653 goto out;
3654 }
3655
3656 ret = 0;
3657
3658 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3659 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3660 list_for_each_entry(asoc, &ep->asocs, asocs) {
3661 int res = sctp_auth_set_key(ep, asoc, authkey);
3662
3663 if (res && !ret)
3664 ret = res;
3665 }
3666 }
3667
3668 out:
3669 memzero_explicit(authkey, optlen);
3670 return ret;
3671 }
3672
3673 /*
3674 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3675 *
3676 * This option will get or set the active shared key to be used to build
3677 * the association shared key.
3678 */
sctp_setsockopt_active_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3679 static int sctp_setsockopt_active_key(struct sock *sk,
3680 struct sctp_authkeyid *val,
3681 unsigned int optlen)
3682 {
3683 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3684 struct sctp_association *asoc;
3685 int ret = 0;
3686
3687 if (optlen != sizeof(struct sctp_authkeyid))
3688 return -EINVAL;
3689
3690 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3691 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3692 sctp_style(sk, UDP))
3693 return -EINVAL;
3694
3695 if (asoc)
3696 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3697
3698 if (sctp_style(sk, TCP))
3699 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3700
3701 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3702 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3703 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3704 if (ret)
3705 return ret;
3706 }
3707
3708 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3709 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3710 list_for_each_entry(asoc, &ep->asocs, asocs) {
3711 int res = sctp_auth_set_active_key(ep, asoc,
3712 val->scact_keynumber);
3713
3714 if (res && !ret)
3715 ret = res;
3716 }
3717 }
3718
3719 return ret;
3720 }
3721
3722 /*
3723 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3724 *
3725 * This set option will delete a shared secret key from use.
3726 */
sctp_setsockopt_del_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3727 static int sctp_setsockopt_del_key(struct sock *sk,
3728 struct sctp_authkeyid *val,
3729 unsigned int optlen)
3730 {
3731 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3732 struct sctp_association *asoc;
3733 int ret = 0;
3734
3735 if (optlen != sizeof(struct sctp_authkeyid))
3736 return -EINVAL;
3737
3738 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3739 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3740 sctp_style(sk, UDP))
3741 return -EINVAL;
3742
3743 if (asoc)
3744 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3745
3746 if (sctp_style(sk, TCP))
3747 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3748
3749 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3750 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3751 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3752 if (ret)
3753 return ret;
3754 }
3755
3756 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3757 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3758 list_for_each_entry(asoc, &ep->asocs, asocs) {
3759 int res = sctp_auth_del_key_id(ep, asoc,
3760 val->scact_keynumber);
3761
3762 if (res && !ret)
3763 ret = res;
3764 }
3765 }
3766
3767 return ret;
3768 }
3769
3770 /*
3771 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3772 *
3773 * This set option will deactivate a shared secret key.
3774 */
sctp_setsockopt_deactivate_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3775 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3776 struct sctp_authkeyid *val,
3777 unsigned int optlen)
3778 {
3779 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3780 struct sctp_association *asoc;
3781 int ret = 0;
3782
3783 if (optlen != sizeof(struct sctp_authkeyid))
3784 return -EINVAL;
3785
3786 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3787 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3788 sctp_style(sk, UDP))
3789 return -EINVAL;
3790
3791 if (asoc)
3792 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3793
3794 if (sctp_style(sk, TCP))
3795 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3796
3797 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3798 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3799 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3800 if (ret)
3801 return ret;
3802 }
3803
3804 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3805 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3806 list_for_each_entry(asoc, &ep->asocs, asocs) {
3807 int res = sctp_auth_deact_key_id(ep, asoc,
3808 val->scact_keynumber);
3809
3810 if (res && !ret)
3811 ret = res;
3812 }
3813 }
3814
3815 return ret;
3816 }
3817
3818 /*
3819 * 8.1.23 SCTP_AUTO_ASCONF
3820 *
3821 * This option will enable or disable the use of the automatic generation of
3822 * ASCONF chunks to add and delete addresses to an existing association. Note
3823 * that this option has two caveats namely: a) it only affects sockets that
3824 * are bound to all addresses available to the SCTP stack, and b) the system
3825 * administrator may have an overriding control that turns the ASCONF feature
3826 * off no matter what setting the socket option may have.
3827 * This option expects an integer boolean flag, where a non-zero value turns on
3828 * the option, and a zero value turns off the option.
3829 * Note. In this implementation, socket operation overrides default parameter
3830 * being set by sysctl as well as FreeBSD implementation
3831 */
sctp_setsockopt_auto_asconf(struct sock * sk,int * val,unsigned int optlen)3832 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3833 unsigned int optlen)
3834 {
3835 struct sctp_sock *sp = sctp_sk(sk);
3836
3837 if (optlen < sizeof(int))
3838 return -EINVAL;
3839 if (!sctp_is_ep_boundall(sk) && *val)
3840 return -EINVAL;
3841 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3842 return 0;
3843
3844 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3845 if (*val == 0 && sp->do_auto_asconf) {
3846 list_del(&sp->auto_asconf_list);
3847 sp->do_auto_asconf = 0;
3848 } else if (*val && !sp->do_auto_asconf) {
3849 list_add_tail(&sp->auto_asconf_list,
3850 &sock_net(sk)->sctp.auto_asconf_splist);
3851 sp->do_auto_asconf = 1;
3852 }
3853 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3854 return 0;
3855 }
3856
3857 /*
3858 * SCTP_PEER_ADDR_THLDS
3859 *
3860 * This option allows us to alter the partially failed threshold for one or all
3861 * transports in an association. See Section 6.1 of:
3862 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3863 */
sctp_setsockopt_paddr_thresholds(struct sock * sk,struct sctp_paddrthlds_v2 * val,unsigned int optlen,bool v2)3864 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3865 struct sctp_paddrthlds_v2 *val,
3866 unsigned int optlen, bool v2)
3867 {
3868 struct sctp_transport *trans;
3869 struct sctp_association *asoc;
3870 int len;
3871
3872 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3873 if (optlen < len)
3874 return -EINVAL;
3875
3876 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3877 return -EINVAL;
3878
3879 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3880 trans = sctp_addr_id2transport(sk, &val->spt_address,
3881 val->spt_assoc_id);
3882 if (!trans)
3883 return -ENOENT;
3884
3885 if (val->spt_pathmaxrxt)
3886 trans->pathmaxrxt = val->spt_pathmaxrxt;
3887 if (v2)
3888 trans->ps_retrans = val->spt_pathcpthld;
3889 trans->pf_retrans = val->spt_pathpfthld;
3890
3891 return 0;
3892 }
3893
3894 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3895 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3896 sctp_style(sk, UDP))
3897 return -EINVAL;
3898
3899 if (asoc) {
3900 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3901 transports) {
3902 if (val->spt_pathmaxrxt)
3903 trans->pathmaxrxt = val->spt_pathmaxrxt;
3904 if (v2)
3905 trans->ps_retrans = val->spt_pathcpthld;
3906 trans->pf_retrans = val->spt_pathpfthld;
3907 }
3908
3909 if (val->spt_pathmaxrxt)
3910 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3911 if (v2)
3912 asoc->ps_retrans = val->spt_pathcpthld;
3913 asoc->pf_retrans = val->spt_pathpfthld;
3914 } else {
3915 struct sctp_sock *sp = sctp_sk(sk);
3916
3917 if (val->spt_pathmaxrxt)
3918 sp->pathmaxrxt = val->spt_pathmaxrxt;
3919 if (v2)
3920 sp->ps_retrans = val->spt_pathcpthld;
3921 sp->pf_retrans = val->spt_pathpfthld;
3922 }
3923
3924 return 0;
3925 }
3926
sctp_setsockopt_recvrcvinfo(struct sock * sk,int * val,unsigned int optlen)3927 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3928 unsigned int optlen)
3929 {
3930 if (optlen < sizeof(int))
3931 return -EINVAL;
3932
3933 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3934
3935 return 0;
3936 }
3937
sctp_setsockopt_recvnxtinfo(struct sock * sk,int * val,unsigned int optlen)3938 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3939 unsigned int optlen)
3940 {
3941 if (optlen < sizeof(int))
3942 return -EINVAL;
3943
3944 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3945
3946 return 0;
3947 }
3948
sctp_setsockopt_pr_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3949 static int sctp_setsockopt_pr_supported(struct sock *sk,
3950 struct sctp_assoc_value *params,
3951 unsigned int optlen)
3952 {
3953 struct sctp_association *asoc;
3954
3955 if (optlen != sizeof(*params))
3956 return -EINVAL;
3957
3958 asoc = sctp_id2assoc(sk, params->assoc_id);
3959 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3960 sctp_style(sk, UDP))
3961 return -EINVAL;
3962
3963 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3964
3965 return 0;
3966 }
3967
sctp_setsockopt_default_prinfo(struct sock * sk,struct sctp_default_prinfo * info,unsigned int optlen)3968 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3969 struct sctp_default_prinfo *info,
3970 unsigned int optlen)
3971 {
3972 struct sctp_sock *sp = sctp_sk(sk);
3973 struct sctp_association *asoc;
3974 int retval = -EINVAL;
3975
3976 if (optlen != sizeof(*info))
3977 goto out;
3978
3979 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3980 goto out;
3981
3982 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3983 info->pr_value = 0;
3984
3985 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3986 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3987 sctp_style(sk, UDP))
3988 goto out;
3989
3990 retval = 0;
3991
3992 if (asoc) {
3993 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3994 asoc->default_timetolive = info->pr_value;
3995 goto out;
3996 }
3997
3998 if (sctp_style(sk, TCP))
3999 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4000
4001 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4002 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4003 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4004 sp->default_timetolive = info->pr_value;
4005 }
4006
4007 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4008 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4009 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4010 SCTP_PR_SET_POLICY(asoc->default_flags,
4011 info->pr_policy);
4012 asoc->default_timetolive = info->pr_value;
4013 }
4014 }
4015
4016 out:
4017 return retval;
4018 }
4019
sctp_setsockopt_reconfig_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4020 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4021 struct sctp_assoc_value *params,
4022 unsigned int optlen)
4023 {
4024 struct sctp_association *asoc;
4025 int retval = -EINVAL;
4026
4027 if (optlen != sizeof(*params))
4028 goto out;
4029
4030 asoc = sctp_id2assoc(sk, params->assoc_id);
4031 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4032 sctp_style(sk, UDP))
4033 goto out;
4034
4035 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4036
4037 retval = 0;
4038
4039 out:
4040 return retval;
4041 }
4042
sctp_setsockopt_enable_strreset(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4043 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4044 struct sctp_assoc_value *params,
4045 unsigned int optlen)
4046 {
4047 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4048 struct sctp_association *asoc;
4049 int retval = -EINVAL;
4050
4051 if (optlen != sizeof(*params))
4052 goto out;
4053
4054 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4055 goto out;
4056
4057 asoc = sctp_id2assoc(sk, params->assoc_id);
4058 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4059 sctp_style(sk, UDP))
4060 goto out;
4061
4062 retval = 0;
4063
4064 if (asoc) {
4065 asoc->strreset_enable = params->assoc_value;
4066 goto out;
4067 }
4068
4069 if (sctp_style(sk, TCP))
4070 params->assoc_id = SCTP_FUTURE_ASSOC;
4071
4072 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4073 params->assoc_id == SCTP_ALL_ASSOC)
4074 ep->strreset_enable = params->assoc_value;
4075
4076 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4077 params->assoc_id == SCTP_ALL_ASSOC)
4078 list_for_each_entry(asoc, &ep->asocs, asocs)
4079 asoc->strreset_enable = params->assoc_value;
4080
4081 out:
4082 return retval;
4083 }
4084
sctp_setsockopt_reset_streams(struct sock * sk,struct sctp_reset_streams * params,unsigned int optlen)4085 static int sctp_setsockopt_reset_streams(struct sock *sk,
4086 struct sctp_reset_streams *params,
4087 unsigned int optlen)
4088 {
4089 struct sctp_association *asoc;
4090
4091 if (optlen < sizeof(*params))
4092 return -EINVAL;
4093 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4094 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4095 sizeof(__u16) * sizeof(*params));
4096
4097 if (params->srs_number_streams * sizeof(__u16) >
4098 optlen - sizeof(*params))
4099 return -EINVAL;
4100
4101 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4102 if (!asoc)
4103 return -EINVAL;
4104
4105 return sctp_send_reset_streams(asoc, params);
4106 }
4107
sctp_setsockopt_reset_assoc(struct sock * sk,sctp_assoc_t * associd,unsigned int optlen)4108 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4109 unsigned int optlen)
4110 {
4111 struct sctp_association *asoc;
4112
4113 if (optlen != sizeof(*associd))
4114 return -EINVAL;
4115
4116 asoc = sctp_id2assoc(sk, *associd);
4117 if (!asoc)
4118 return -EINVAL;
4119
4120 return sctp_send_reset_assoc(asoc);
4121 }
4122
sctp_setsockopt_add_streams(struct sock * sk,struct sctp_add_streams * params,unsigned int optlen)4123 static int sctp_setsockopt_add_streams(struct sock *sk,
4124 struct sctp_add_streams *params,
4125 unsigned int optlen)
4126 {
4127 struct sctp_association *asoc;
4128
4129 if (optlen != sizeof(*params))
4130 return -EINVAL;
4131
4132 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4133 if (!asoc)
4134 return -EINVAL;
4135
4136 return sctp_send_add_streams(asoc, params);
4137 }
4138
sctp_setsockopt_scheduler(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4139 static int sctp_setsockopt_scheduler(struct sock *sk,
4140 struct sctp_assoc_value *params,
4141 unsigned int optlen)
4142 {
4143 struct sctp_sock *sp = sctp_sk(sk);
4144 struct sctp_association *asoc;
4145 int retval = 0;
4146
4147 if (optlen < sizeof(*params))
4148 return -EINVAL;
4149
4150 if (params->assoc_value > SCTP_SS_MAX)
4151 return -EINVAL;
4152
4153 asoc = sctp_id2assoc(sk, params->assoc_id);
4154 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4155 sctp_style(sk, UDP))
4156 return -EINVAL;
4157
4158 if (asoc)
4159 return sctp_sched_set_sched(asoc, params->assoc_value);
4160
4161 if (sctp_style(sk, TCP))
4162 params->assoc_id = SCTP_FUTURE_ASSOC;
4163
4164 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4165 params->assoc_id == SCTP_ALL_ASSOC)
4166 sp->default_ss = params->assoc_value;
4167
4168 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4169 params->assoc_id == SCTP_ALL_ASSOC) {
4170 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4171 int ret = sctp_sched_set_sched(asoc,
4172 params->assoc_value);
4173
4174 if (ret && !retval)
4175 retval = ret;
4176 }
4177 }
4178
4179 return retval;
4180 }
4181
sctp_setsockopt_scheduler_value(struct sock * sk,struct sctp_stream_value * params,unsigned int optlen)4182 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4183 struct sctp_stream_value *params,
4184 unsigned int optlen)
4185 {
4186 struct sctp_association *asoc;
4187 int retval = -EINVAL;
4188
4189 if (optlen < sizeof(*params))
4190 goto out;
4191
4192 asoc = sctp_id2assoc(sk, params->assoc_id);
4193 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4194 sctp_style(sk, UDP))
4195 goto out;
4196
4197 if (asoc) {
4198 retval = sctp_sched_set_value(asoc, params->stream_id,
4199 params->stream_value, GFP_KERNEL);
4200 goto out;
4201 }
4202
4203 retval = 0;
4204
4205 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4206 int ret = sctp_sched_set_value(asoc, params->stream_id,
4207 params->stream_value,
4208 GFP_KERNEL);
4209 if (ret && !retval) /* try to return the 1st error. */
4210 retval = ret;
4211 }
4212
4213 out:
4214 return retval;
4215 }
4216
sctp_setsockopt_interleaving_supported(struct sock * sk,struct sctp_assoc_value * p,unsigned int optlen)4217 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4218 struct sctp_assoc_value *p,
4219 unsigned int optlen)
4220 {
4221 struct sctp_sock *sp = sctp_sk(sk);
4222 struct sctp_association *asoc;
4223
4224 if (optlen < sizeof(*p))
4225 return -EINVAL;
4226
4227 asoc = sctp_id2assoc(sk, p->assoc_id);
4228 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4229 return -EINVAL;
4230
4231 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4232 return -EPERM;
4233 }
4234
4235 sp->ep->intl_enable = !!p->assoc_value;
4236 return 0;
4237 }
4238
sctp_setsockopt_reuse_port(struct sock * sk,int * val,unsigned int optlen)4239 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4240 unsigned int optlen)
4241 {
4242 if (!sctp_style(sk, TCP))
4243 return -EOPNOTSUPP;
4244
4245 if (sctp_sk(sk)->ep->base.bind_addr.port)
4246 return -EFAULT;
4247
4248 if (optlen < sizeof(int))
4249 return -EINVAL;
4250
4251 sctp_sk(sk)->reuse = !!*val;
4252
4253 return 0;
4254 }
4255
sctp_assoc_ulpevent_type_set(struct sctp_event * param,struct sctp_association * asoc)4256 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4257 struct sctp_association *asoc)
4258 {
4259 struct sctp_ulpevent *event;
4260
4261 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4262
4263 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4264 if (sctp_outq_is_empty(&asoc->outqueue)) {
4265 event = sctp_ulpevent_make_sender_dry_event(asoc,
4266 GFP_USER | __GFP_NOWARN);
4267 if (!event)
4268 return -ENOMEM;
4269
4270 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4271 }
4272 }
4273
4274 return 0;
4275 }
4276
sctp_setsockopt_event(struct sock * sk,struct sctp_event * param,unsigned int optlen)4277 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4278 unsigned int optlen)
4279 {
4280 struct sctp_sock *sp = sctp_sk(sk);
4281 struct sctp_association *asoc;
4282 int retval = 0;
4283
4284 if (optlen < sizeof(*param))
4285 return -EINVAL;
4286
4287 if (param->se_type < SCTP_SN_TYPE_BASE ||
4288 param->se_type > SCTP_SN_TYPE_MAX)
4289 return -EINVAL;
4290
4291 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4292 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4293 sctp_style(sk, UDP))
4294 return -EINVAL;
4295
4296 if (asoc)
4297 return sctp_assoc_ulpevent_type_set(param, asoc);
4298
4299 if (sctp_style(sk, TCP))
4300 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4301
4302 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4303 param->se_assoc_id == SCTP_ALL_ASSOC)
4304 sctp_ulpevent_type_set(&sp->subscribe,
4305 param->se_type, param->se_on);
4306
4307 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4308 param->se_assoc_id == SCTP_ALL_ASSOC) {
4309 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4310 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4311
4312 if (ret && !retval)
4313 retval = ret;
4314 }
4315 }
4316
4317 return retval;
4318 }
4319
sctp_setsockopt_asconf_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4320 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4321 struct sctp_assoc_value *params,
4322 unsigned int optlen)
4323 {
4324 struct sctp_association *asoc;
4325 struct sctp_endpoint *ep;
4326 int retval = -EINVAL;
4327
4328 if (optlen != sizeof(*params))
4329 goto out;
4330
4331 asoc = sctp_id2assoc(sk, params->assoc_id);
4332 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4333 sctp_style(sk, UDP))
4334 goto out;
4335
4336 ep = sctp_sk(sk)->ep;
4337 ep->asconf_enable = !!params->assoc_value;
4338
4339 if (ep->asconf_enable && ep->auth_enable) {
4340 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4341 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4342 }
4343
4344 retval = 0;
4345
4346 out:
4347 return retval;
4348 }
4349
sctp_setsockopt_auth_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4350 static int sctp_setsockopt_auth_supported(struct sock *sk,
4351 struct sctp_assoc_value *params,
4352 unsigned int optlen)
4353 {
4354 struct sctp_association *asoc;
4355 struct sctp_endpoint *ep;
4356 int retval = -EINVAL;
4357
4358 if (optlen != sizeof(*params))
4359 goto out;
4360
4361 asoc = sctp_id2assoc(sk, params->assoc_id);
4362 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4363 sctp_style(sk, UDP))
4364 goto out;
4365
4366 ep = sctp_sk(sk)->ep;
4367 if (params->assoc_value) {
4368 retval = sctp_auth_init(ep, GFP_KERNEL);
4369 if (retval)
4370 goto out;
4371 if (ep->asconf_enable) {
4372 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4373 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4374 }
4375 }
4376
4377 ep->auth_enable = !!params->assoc_value;
4378 retval = 0;
4379
4380 out:
4381 return retval;
4382 }
4383
sctp_setsockopt_ecn_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4384 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4385 struct sctp_assoc_value *params,
4386 unsigned int optlen)
4387 {
4388 struct sctp_association *asoc;
4389 int retval = -EINVAL;
4390
4391 if (optlen != sizeof(*params))
4392 goto out;
4393
4394 asoc = sctp_id2assoc(sk, params->assoc_id);
4395 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4396 sctp_style(sk, UDP))
4397 goto out;
4398
4399 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4400 retval = 0;
4401
4402 out:
4403 return retval;
4404 }
4405
sctp_setsockopt_pf_expose(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4406 static int sctp_setsockopt_pf_expose(struct sock *sk,
4407 struct sctp_assoc_value *params,
4408 unsigned int optlen)
4409 {
4410 struct sctp_association *asoc;
4411 int retval = -EINVAL;
4412
4413 if (optlen != sizeof(*params))
4414 goto out;
4415
4416 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4417 goto out;
4418
4419 asoc = sctp_id2assoc(sk, params->assoc_id);
4420 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4421 sctp_style(sk, UDP))
4422 goto out;
4423
4424 if (asoc)
4425 asoc->pf_expose = params->assoc_value;
4426 else
4427 sctp_sk(sk)->pf_expose = params->assoc_value;
4428 retval = 0;
4429
4430 out:
4431 return retval;
4432 }
4433
sctp_setsockopt_encap_port(struct sock * sk,struct sctp_udpencaps * encap,unsigned int optlen)4434 static int sctp_setsockopt_encap_port(struct sock *sk,
4435 struct sctp_udpencaps *encap,
4436 unsigned int optlen)
4437 {
4438 struct sctp_association *asoc;
4439 struct sctp_transport *t;
4440 __be16 encap_port;
4441
4442 if (optlen != sizeof(*encap))
4443 return -EINVAL;
4444
4445 /* If an address other than INADDR_ANY is specified, and
4446 * no transport is found, then the request is invalid.
4447 */
4448 encap_port = (__force __be16)encap->sue_port;
4449 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4450 t = sctp_addr_id2transport(sk, &encap->sue_address,
4451 encap->sue_assoc_id);
4452 if (!t)
4453 return -EINVAL;
4454
4455 t->encap_port = encap_port;
4456 return 0;
4457 }
4458
4459 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4460 * socket is a one to many style socket, and an association
4461 * was not found, then the id was invalid.
4462 */
4463 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4464 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4465 sctp_style(sk, UDP))
4466 return -EINVAL;
4467
4468 /* If changes are for association, also apply encap_port to
4469 * each transport.
4470 */
4471 if (asoc) {
4472 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4473 transports)
4474 t->encap_port = encap_port;
4475
4476 asoc->encap_port = encap_port;
4477 return 0;
4478 }
4479
4480 sctp_sk(sk)->encap_port = encap_port;
4481 return 0;
4482 }
4483
sctp_setsockopt_probe_interval(struct sock * sk,struct sctp_probeinterval * params,unsigned int optlen)4484 static int sctp_setsockopt_probe_interval(struct sock *sk,
4485 struct sctp_probeinterval *params,
4486 unsigned int optlen)
4487 {
4488 struct sctp_association *asoc;
4489 struct sctp_transport *t;
4490 __u32 probe_interval;
4491
4492 if (optlen != sizeof(*params))
4493 return -EINVAL;
4494
4495 probe_interval = params->spi_interval;
4496 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4497 return -EINVAL;
4498
4499 /* If an address other than INADDR_ANY is specified, and
4500 * no transport is found, then the request is invalid.
4501 */
4502 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) {
4503 t = sctp_addr_id2transport(sk, ¶ms->spi_address,
4504 params->spi_assoc_id);
4505 if (!t)
4506 return -EINVAL;
4507
4508 t->probe_interval = msecs_to_jiffies(probe_interval);
4509 sctp_transport_pl_reset(t);
4510 return 0;
4511 }
4512
4513 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4514 * socket is a one to many style socket, and an association
4515 * was not found, then the id was invalid.
4516 */
4517 asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4518 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4519 sctp_style(sk, UDP))
4520 return -EINVAL;
4521
4522 /* If changes are for association, also apply probe_interval to
4523 * each transport.
4524 */
4525 if (asoc) {
4526 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4527 t->probe_interval = msecs_to_jiffies(probe_interval);
4528 sctp_transport_pl_reset(t);
4529 }
4530
4531 asoc->probe_interval = msecs_to_jiffies(probe_interval);
4532 return 0;
4533 }
4534
4535 sctp_sk(sk)->probe_interval = probe_interval;
4536 return 0;
4537 }
4538
4539 /* API 6.2 setsockopt(), getsockopt()
4540 *
4541 * Applications use setsockopt() and getsockopt() to set or retrieve
4542 * socket options. Socket options are used to change the default
4543 * behavior of sockets calls. They are described in Section 7.
4544 *
4545 * The syntax is:
4546 *
4547 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4548 * int __user *optlen);
4549 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4550 * int optlen);
4551 *
4552 * sd - the socket descript.
4553 * level - set to IPPROTO_SCTP for all SCTP options.
4554 * optname - the option name.
4555 * optval - the buffer to store the value of the option.
4556 * optlen - the size of the buffer.
4557 */
sctp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4558 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4559 sockptr_t optval, unsigned int optlen)
4560 {
4561 void *kopt = NULL;
4562 int retval = 0;
4563
4564 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4565
4566 /* I can hardly begin to describe how wrong this is. This is
4567 * so broken as to be worse than useless. The API draft
4568 * REALLY is NOT helpful here... I am not convinced that the
4569 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4570 * are at all well-founded.
4571 */
4572 if (level != SOL_SCTP) {
4573 struct sctp_af *af = sctp_sk(sk)->pf->af;
4574
4575 return af->setsockopt(sk, level, optname, optval, optlen);
4576 }
4577
4578 if (optlen > 0) {
4579 /* Trim it to the biggest size sctp sockopt may need if necessary */
4580 optlen = min_t(unsigned int, optlen,
4581 PAGE_ALIGN(USHRT_MAX +
4582 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4583 kopt = memdup_sockptr(optval, optlen);
4584 if (IS_ERR(kopt))
4585 return PTR_ERR(kopt);
4586 }
4587
4588 lock_sock(sk);
4589
4590 switch (optname) {
4591 case SCTP_SOCKOPT_BINDX_ADD:
4592 /* 'optlen' is the size of the addresses buffer. */
4593 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4594 SCTP_BINDX_ADD_ADDR);
4595 break;
4596
4597 case SCTP_SOCKOPT_BINDX_REM:
4598 /* 'optlen' is the size of the addresses buffer. */
4599 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4600 SCTP_BINDX_REM_ADDR);
4601 break;
4602
4603 case SCTP_SOCKOPT_CONNECTX_OLD:
4604 /* 'optlen' is the size of the addresses buffer. */
4605 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4606 break;
4607
4608 case SCTP_SOCKOPT_CONNECTX:
4609 /* 'optlen' is the size of the addresses buffer. */
4610 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4611 break;
4612
4613 case SCTP_DISABLE_FRAGMENTS:
4614 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4615 break;
4616
4617 case SCTP_EVENTS:
4618 retval = sctp_setsockopt_events(sk, kopt, optlen);
4619 break;
4620
4621 case SCTP_AUTOCLOSE:
4622 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4623 break;
4624
4625 case SCTP_PEER_ADDR_PARAMS:
4626 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4627 break;
4628
4629 case SCTP_DELAYED_SACK:
4630 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4631 break;
4632 case SCTP_PARTIAL_DELIVERY_POINT:
4633 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4634 break;
4635
4636 case SCTP_INITMSG:
4637 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4638 break;
4639 case SCTP_DEFAULT_SEND_PARAM:
4640 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4641 break;
4642 case SCTP_DEFAULT_SNDINFO:
4643 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4644 break;
4645 case SCTP_PRIMARY_ADDR:
4646 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4647 break;
4648 case SCTP_SET_PEER_PRIMARY_ADDR:
4649 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4650 break;
4651 case SCTP_NODELAY:
4652 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4653 break;
4654 case SCTP_RTOINFO:
4655 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4656 break;
4657 case SCTP_ASSOCINFO:
4658 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4659 break;
4660 case SCTP_I_WANT_MAPPED_V4_ADDR:
4661 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4662 break;
4663 case SCTP_MAXSEG:
4664 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4665 break;
4666 case SCTP_ADAPTATION_LAYER:
4667 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4668 break;
4669 case SCTP_CONTEXT:
4670 retval = sctp_setsockopt_context(sk, kopt, optlen);
4671 break;
4672 case SCTP_FRAGMENT_INTERLEAVE:
4673 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4674 break;
4675 case SCTP_MAX_BURST:
4676 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4677 break;
4678 case SCTP_AUTH_CHUNK:
4679 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4680 break;
4681 case SCTP_HMAC_IDENT:
4682 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4683 break;
4684 case SCTP_AUTH_KEY:
4685 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4686 break;
4687 case SCTP_AUTH_ACTIVE_KEY:
4688 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4689 break;
4690 case SCTP_AUTH_DELETE_KEY:
4691 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4692 break;
4693 case SCTP_AUTH_DEACTIVATE_KEY:
4694 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4695 break;
4696 case SCTP_AUTO_ASCONF:
4697 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4698 break;
4699 case SCTP_PEER_ADDR_THLDS:
4700 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4701 false);
4702 break;
4703 case SCTP_PEER_ADDR_THLDS_V2:
4704 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4705 true);
4706 break;
4707 case SCTP_RECVRCVINFO:
4708 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4709 break;
4710 case SCTP_RECVNXTINFO:
4711 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4712 break;
4713 case SCTP_PR_SUPPORTED:
4714 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4715 break;
4716 case SCTP_DEFAULT_PRINFO:
4717 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4718 break;
4719 case SCTP_RECONFIG_SUPPORTED:
4720 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4721 break;
4722 case SCTP_ENABLE_STREAM_RESET:
4723 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4724 break;
4725 case SCTP_RESET_STREAMS:
4726 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4727 break;
4728 case SCTP_RESET_ASSOC:
4729 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4730 break;
4731 case SCTP_ADD_STREAMS:
4732 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4733 break;
4734 case SCTP_STREAM_SCHEDULER:
4735 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4736 break;
4737 case SCTP_STREAM_SCHEDULER_VALUE:
4738 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4739 break;
4740 case SCTP_INTERLEAVING_SUPPORTED:
4741 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4742 optlen);
4743 break;
4744 case SCTP_REUSE_PORT:
4745 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4746 break;
4747 case SCTP_EVENT:
4748 retval = sctp_setsockopt_event(sk, kopt, optlen);
4749 break;
4750 case SCTP_ASCONF_SUPPORTED:
4751 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4752 break;
4753 case SCTP_AUTH_SUPPORTED:
4754 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4755 break;
4756 case SCTP_ECN_SUPPORTED:
4757 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4758 break;
4759 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4760 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4761 break;
4762 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4763 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4764 break;
4765 case SCTP_PLPMTUD_PROBE_INTERVAL:
4766 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4767 break;
4768 default:
4769 retval = -ENOPROTOOPT;
4770 break;
4771 }
4772
4773 release_sock(sk);
4774 kfree(kopt);
4775 return retval;
4776 }
4777
4778 /* API 3.1.6 connect() - UDP Style Syntax
4779 *
4780 * An application may use the connect() call in the UDP model to initiate an
4781 * association without sending data.
4782 *
4783 * The syntax is:
4784 *
4785 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4786 *
4787 * sd: the socket descriptor to have a new association added to.
4788 *
4789 * nam: the address structure (either struct sockaddr_in or struct
4790 * sockaddr_in6 defined in RFC2553 [7]).
4791 *
4792 * len: the size of the address.
4793 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len,int flags)4794 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4795 int addr_len, int flags)
4796 {
4797 struct sctp_af *af;
4798 int err = -EINVAL;
4799
4800 lock_sock(sk);
4801 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4802 addr, addr_len);
4803
4804 /* Validate addr_len before calling common connect/connectx routine. */
4805 af = sctp_get_af_specific(addr->sa_family);
4806 if (af && addr_len >= af->sockaddr_len)
4807 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4808
4809 release_sock(sk);
4810 return err;
4811 }
4812
sctp_inet_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)4813 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4814 int addr_len, int flags)
4815 {
4816 if (addr_len < sizeof(uaddr->sa_family))
4817 return -EINVAL;
4818
4819 if (uaddr->sa_family == AF_UNSPEC)
4820 return -EOPNOTSUPP;
4821
4822 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4823 }
4824
4825 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)4826 static int sctp_disconnect(struct sock *sk, int flags)
4827 {
4828 return -EOPNOTSUPP; /* STUB */
4829 }
4830
4831 /* 4.1.4 accept() - TCP Style Syntax
4832 *
4833 * Applications use accept() call to remove an established SCTP
4834 * association from the accept queue of the endpoint. A new socket
4835 * descriptor will be returned from accept() to represent the newly
4836 * formed association.
4837 */
sctp_accept(struct sock * sk,int flags,int * err,bool kern)4838 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4839 {
4840 struct sctp_sock *sp;
4841 struct sctp_endpoint *ep;
4842 struct sock *newsk = NULL;
4843 struct sctp_association *asoc;
4844 long timeo;
4845 int error = 0;
4846
4847 lock_sock(sk);
4848
4849 sp = sctp_sk(sk);
4850 ep = sp->ep;
4851
4852 if (!sctp_style(sk, TCP)) {
4853 error = -EOPNOTSUPP;
4854 goto out;
4855 }
4856
4857 if (!sctp_sstate(sk, LISTENING)) {
4858 error = -EINVAL;
4859 goto out;
4860 }
4861
4862 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4863
4864 error = sctp_wait_for_accept(sk, timeo);
4865 if (error)
4866 goto out;
4867
4868 /* We treat the list of associations on the endpoint as the accept
4869 * queue and pick the first association on the list.
4870 */
4871 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4872
4873 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4874 if (!newsk) {
4875 error = -ENOMEM;
4876 goto out;
4877 }
4878
4879 /* Populate the fields of the newsk from the oldsk and migrate the
4880 * asoc to the newsk.
4881 */
4882 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4883 if (error) {
4884 sk_common_release(newsk);
4885 newsk = NULL;
4886 }
4887
4888 out:
4889 release_sock(sk);
4890 *err = error;
4891 return newsk;
4892 }
4893
4894 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)4895 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4896 {
4897 int rc = -ENOTCONN;
4898
4899 lock_sock(sk);
4900
4901 /*
4902 * SEQPACKET-style sockets in LISTENING state are valid, for
4903 * SCTP, so only discard TCP-style sockets in LISTENING state.
4904 */
4905 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4906 goto out;
4907
4908 switch (cmd) {
4909 case SIOCINQ: {
4910 struct sk_buff *skb;
4911 unsigned int amount = 0;
4912
4913 skb = skb_peek(&sk->sk_receive_queue);
4914 if (skb != NULL) {
4915 /*
4916 * We will only return the amount of this packet since
4917 * that is all that will be read.
4918 */
4919 amount = skb->len;
4920 }
4921 rc = put_user(amount, (int __user *)arg);
4922 break;
4923 }
4924 default:
4925 rc = -ENOIOCTLCMD;
4926 break;
4927 }
4928 out:
4929 release_sock(sk);
4930 return rc;
4931 }
4932
4933 /* This is the function which gets called during socket creation to
4934 * initialized the SCTP-specific portion of the sock.
4935 * The sock structure should already be zero-filled memory.
4936 */
sctp_init_sock(struct sock * sk)4937 static int sctp_init_sock(struct sock *sk)
4938 {
4939 struct net *net = sock_net(sk);
4940 struct sctp_sock *sp;
4941
4942 pr_debug("%s: sk:%p\n", __func__, sk);
4943
4944 sp = sctp_sk(sk);
4945
4946 /* Initialize the SCTP per socket area. */
4947 switch (sk->sk_type) {
4948 case SOCK_SEQPACKET:
4949 sp->type = SCTP_SOCKET_UDP;
4950 break;
4951 case SOCK_STREAM:
4952 sp->type = SCTP_SOCKET_TCP;
4953 break;
4954 default:
4955 return -ESOCKTNOSUPPORT;
4956 }
4957
4958 sk->sk_gso_type = SKB_GSO_SCTP;
4959
4960 /* Initialize default send parameters. These parameters can be
4961 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4962 */
4963 sp->default_stream = 0;
4964 sp->default_ppid = 0;
4965 sp->default_flags = 0;
4966 sp->default_context = 0;
4967 sp->default_timetolive = 0;
4968
4969 sp->default_rcv_context = 0;
4970 sp->max_burst = net->sctp.max_burst;
4971
4972 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4973
4974 /* Initialize default setup parameters. These parameters
4975 * can be modified with the SCTP_INITMSG socket option or
4976 * overridden by the SCTP_INIT CMSG.
4977 */
4978 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4979 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4980 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4981 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4982
4983 /* Initialize default RTO related parameters. These parameters can
4984 * be modified for with the SCTP_RTOINFO socket option.
4985 */
4986 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4987 sp->rtoinfo.srto_max = net->sctp.rto_max;
4988 sp->rtoinfo.srto_min = net->sctp.rto_min;
4989
4990 /* Initialize default association related parameters. These parameters
4991 * can be modified with the SCTP_ASSOCINFO socket option.
4992 */
4993 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4994 sp->assocparams.sasoc_number_peer_destinations = 0;
4995 sp->assocparams.sasoc_peer_rwnd = 0;
4996 sp->assocparams.sasoc_local_rwnd = 0;
4997 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4998
4999 /* Initialize default event subscriptions. By default, all the
5000 * options are off.
5001 */
5002 sp->subscribe = 0;
5003
5004 /* Default Peer Address Parameters. These defaults can
5005 * be modified via SCTP_PEER_ADDR_PARAMS
5006 */
5007 sp->hbinterval = net->sctp.hb_interval;
5008 sp->udp_port = htons(net->sctp.udp_port);
5009 sp->encap_port = htons(net->sctp.encap_port);
5010 sp->pathmaxrxt = net->sctp.max_retrans_path;
5011 sp->pf_retrans = net->sctp.pf_retrans;
5012 sp->ps_retrans = net->sctp.ps_retrans;
5013 sp->pf_expose = net->sctp.pf_expose;
5014 sp->pathmtu = 0; /* allow default discovery */
5015 sp->sackdelay = net->sctp.sack_timeout;
5016 sp->sackfreq = 2;
5017 sp->param_flags = SPP_HB_ENABLE |
5018 SPP_PMTUD_ENABLE |
5019 SPP_SACKDELAY_ENABLE;
5020 sp->default_ss = SCTP_SS_DEFAULT;
5021
5022 /* If enabled no SCTP message fragmentation will be performed.
5023 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5024 */
5025 sp->disable_fragments = 0;
5026
5027 /* Enable Nagle algorithm by default. */
5028 sp->nodelay = 0;
5029
5030 sp->recvrcvinfo = 0;
5031 sp->recvnxtinfo = 0;
5032
5033 /* Enable by default. */
5034 sp->v4mapped = 1;
5035
5036 /* Auto-close idle associations after the configured
5037 * number of seconds. A value of 0 disables this
5038 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5039 * for UDP-style sockets only.
5040 */
5041 sp->autoclose = 0;
5042
5043 /* User specified fragmentation limit. */
5044 sp->user_frag = 0;
5045
5046 sp->adaptation_ind = 0;
5047
5048 sp->pf = sctp_get_pf_specific(sk->sk_family);
5049
5050 /* Control variables for partial data delivery. */
5051 atomic_set(&sp->pd_mode, 0);
5052 skb_queue_head_init(&sp->pd_lobby);
5053 sp->frag_interleave = 0;
5054 sp->probe_interval = net->sctp.probe_interval;
5055
5056 /* Create a per socket endpoint structure. Even if we
5057 * change the data structure relationships, this may still
5058 * be useful for storing pre-connect address information.
5059 */
5060 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5061 if (!sp->ep)
5062 return -ENOMEM;
5063
5064 sp->hmac = NULL;
5065
5066 sk->sk_destruct = sctp_destruct_sock;
5067
5068 SCTP_DBG_OBJCNT_INC(sock);
5069
5070 sk_sockets_allocated_inc(sk);
5071 sock_prot_inuse_add(net, sk->sk_prot, 1);
5072
5073 return 0;
5074 }
5075
5076 /* Cleanup any SCTP per socket resources. Must be called with
5077 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5078 */
sctp_destroy_sock(struct sock * sk)5079 static void sctp_destroy_sock(struct sock *sk)
5080 {
5081 struct sctp_sock *sp;
5082
5083 pr_debug("%s: sk:%p\n", __func__, sk);
5084
5085 /* Release our hold on the endpoint. */
5086 sp = sctp_sk(sk);
5087 /* This could happen during socket init, thus we bail out
5088 * early, since the rest of the below is not setup either.
5089 */
5090 if (sp->ep == NULL)
5091 return;
5092
5093 if (sp->do_auto_asconf) {
5094 sp->do_auto_asconf = 0;
5095 list_del(&sp->auto_asconf_list);
5096 }
5097 sctp_endpoint_free(sp->ep);
5098 sk_sockets_allocated_dec(sk);
5099 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5100 }
5101
5102 /* Triggered when there are no references on the socket anymore */
sctp_destruct_sock(struct sock * sk)5103 static void sctp_destruct_sock(struct sock *sk)
5104 {
5105 struct sctp_sock *sp = sctp_sk(sk);
5106
5107 /* Free up the HMAC transform. */
5108 crypto_free_shash(sp->hmac);
5109
5110 inet_sock_destruct(sk);
5111 }
5112
5113 /* API 4.1.7 shutdown() - TCP Style Syntax
5114 * int shutdown(int socket, int how);
5115 *
5116 * sd - the socket descriptor of the association to be closed.
5117 * how - Specifies the type of shutdown. The values are
5118 * as follows:
5119 * SHUT_RD
5120 * Disables further receive operations. No SCTP
5121 * protocol action is taken.
5122 * SHUT_WR
5123 * Disables further send operations, and initiates
5124 * the SCTP shutdown sequence.
5125 * SHUT_RDWR
5126 * Disables further send and receive operations
5127 * and initiates the SCTP shutdown sequence.
5128 */
sctp_shutdown(struct sock * sk,int how)5129 static void sctp_shutdown(struct sock *sk, int how)
5130 {
5131 struct net *net = sock_net(sk);
5132 struct sctp_endpoint *ep;
5133
5134 if (!sctp_style(sk, TCP))
5135 return;
5136
5137 ep = sctp_sk(sk)->ep;
5138 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5139 struct sctp_association *asoc;
5140
5141 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5142 asoc = list_entry(ep->asocs.next,
5143 struct sctp_association, asocs);
5144 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5145 }
5146 }
5147
sctp_get_sctp_info(struct sock * sk,struct sctp_association * asoc,struct sctp_info * info)5148 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5149 struct sctp_info *info)
5150 {
5151 struct sctp_transport *prim;
5152 struct list_head *pos;
5153 int mask;
5154
5155 memset(info, 0, sizeof(*info));
5156 if (!asoc) {
5157 struct sctp_sock *sp = sctp_sk(sk);
5158
5159 info->sctpi_s_autoclose = sp->autoclose;
5160 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5161 info->sctpi_s_pd_point = sp->pd_point;
5162 info->sctpi_s_nodelay = sp->nodelay;
5163 info->sctpi_s_disable_fragments = sp->disable_fragments;
5164 info->sctpi_s_v4mapped = sp->v4mapped;
5165 info->sctpi_s_frag_interleave = sp->frag_interleave;
5166 info->sctpi_s_type = sp->type;
5167
5168 return 0;
5169 }
5170
5171 info->sctpi_tag = asoc->c.my_vtag;
5172 info->sctpi_state = asoc->state;
5173 info->sctpi_rwnd = asoc->a_rwnd;
5174 info->sctpi_unackdata = asoc->unack_data;
5175 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5176 info->sctpi_instrms = asoc->stream.incnt;
5177 info->sctpi_outstrms = asoc->stream.outcnt;
5178 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5179 info->sctpi_inqueue++;
5180 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5181 info->sctpi_outqueue++;
5182 info->sctpi_overall_error = asoc->overall_error_count;
5183 info->sctpi_max_burst = asoc->max_burst;
5184 info->sctpi_maxseg = asoc->frag_point;
5185 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5186 info->sctpi_peer_tag = asoc->c.peer_vtag;
5187
5188 mask = asoc->peer.ecn_capable << 1;
5189 mask = (mask | asoc->peer.ipv4_address) << 1;
5190 mask = (mask | asoc->peer.ipv6_address) << 1;
5191 mask = (mask | asoc->peer.hostname_address) << 1;
5192 mask = (mask | asoc->peer.asconf_capable) << 1;
5193 mask = (mask | asoc->peer.prsctp_capable) << 1;
5194 mask = (mask | asoc->peer.auth_capable);
5195 info->sctpi_peer_capable = mask;
5196 mask = asoc->peer.sack_needed << 1;
5197 mask = (mask | asoc->peer.sack_generation) << 1;
5198 mask = (mask | asoc->peer.zero_window_announced);
5199 info->sctpi_peer_sack = mask;
5200
5201 info->sctpi_isacks = asoc->stats.isacks;
5202 info->sctpi_osacks = asoc->stats.osacks;
5203 info->sctpi_opackets = asoc->stats.opackets;
5204 info->sctpi_ipackets = asoc->stats.ipackets;
5205 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5206 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5207 info->sctpi_idupchunks = asoc->stats.idupchunks;
5208 info->sctpi_gapcnt = asoc->stats.gapcnt;
5209 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5210 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5211 info->sctpi_oodchunks = asoc->stats.oodchunks;
5212 info->sctpi_iodchunks = asoc->stats.iodchunks;
5213 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5214 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5215
5216 prim = asoc->peer.primary_path;
5217 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5218 info->sctpi_p_state = prim->state;
5219 info->sctpi_p_cwnd = prim->cwnd;
5220 info->sctpi_p_srtt = prim->srtt;
5221 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5222 info->sctpi_p_hbinterval = prim->hbinterval;
5223 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5224 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5225 info->sctpi_p_ssthresh = prim->ssthresh;
5226 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5227 info->sctpi_p_flight_size = prim->flight_size;
5228 info->sctpi_p_error = prim->error_count;
5229
5230 return 0;
5231 }
5232 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5233
5234 /* use callback to avoid exporting the core structure */
sctp_transport_walk_start(struct rhashtable_iter * iter)5235 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5236 {
5237 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5238
5239 rhashtable_walk_start(iter);
5240 }
5241
sctp_transport_walk_stop(struct rhashtable_iter * iter)5242 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5243 {
5244 rhashtable_walk_stop(iter);
5245 rhashtable_walk_exit(iter);
5246 }
5247
sctp_transport_get_next(struct net * net,struct rhashtable_iter * iter)5248 struct sctp_transport *sctp_transport_get_next(struct net *net,
5249 struct rhashtable_iter *iter)
5250 {
5251 struct sctp_transport *t;
5252
5253 t = rhashtable_walk_next(iter);
5254 for (; t; t = rhashtable_walk_next(iter)) {
5255 if (IS_ERR(t)) {
5256 if (PTR_ERR(t) == -EAGAIN)
5257 continue;
5258 break;
5259 }
5260
5261 if (!sctp_transport_hold(t))
5262 continue;
5263
5264 if (net_eq(t->asoc->base.net, net) &&
5265 t->asoc->peer.primary_path == t)
5266 break;
5267
5268 sctp_transport_put(t);
5269 }
5270
5271 return t;
5272 }
5273
sctp_transport_get_idx(struct net * net,struct rhashtable_iter * iter,int pos)5274 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5275 struct rhashtable_iter *iter,
5276 int pos)
5277 {
5278 struct sctp_transport *t;
5279
5280 if (!pos)
5281 return SEQ_START_TOKEN;
5282
5283 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5284 if (!--pos)
5285 break;
5286 sctp_transport_put(t);
5287 }
5288
5289 return t;
5290 }
5291
sctp_for_each_endpoint(int (* cb)(struct sctp_endpoint *,void *),void * p)5292 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5293 void *p) {
5294 int err = 0;
5295 int hash = 0;
5296 struct sctp_endpoint *ep;
5297 struct sctp_hashbucket *head;
5298
5299 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5300 hash++, head++) {
5301 read_lock_bh(&head->lock);
5302 sctp_for_each_hentry(ep, &head->chain) {
5303 err = cb(ep, p);
5304 if (err)
5305 break;
5306 }
5307 read_unlock_bh(&head->lock);
5308 }
5309
5310 return err;
5311 }
5312 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5313
sctp_transport_lookup_process(sctp_callback_t cb,struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,void * p)5314 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5315 const union sctp_addr *laddr,
5316 const union sctp_addr *paddr, void *p)
5317 {
5318 struct sctp_transport *transport;
5319 struct sctp_endpoint *ep;
5320 int err = -ENOENT;
5321
5322 rcu_read_lock();
5323 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5324 if (!transport) {
5325 rcu_read_unlock();
5326 return err;
5327 }
5328 ep = transport->asoc->ep;
5329 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5330 sctp_transport_put(transport);
5331 rcu_read_unlock();
5332 return err;
5333 }
5334 rcu_read_unlock();
5335
5336 err = cb(ep, transport, p);
5337 sctp_endpoint_put(ep);
5338 sctp_transport_put(transport);
5339 return err;
5340 }
5341 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5342
sctp_transport_traverse_process(sctp_callback_t cb,sctp_callback_t cb_done,struct net * net,int * pos,void * p)5343 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5344 struct net *net, int *pos, void *p)
5345 {
5346 struct rhashtable_iter hti;
5347 struct sctp_transport *tsp;
5348 struct sctp_endpoint *ep;
5349 int ret;
5350
5351 again:
5352 ret = 0;
5353 sctp_transport_walk_start(&hti);
5354
5355 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5356 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5357 ep = tsp->asoc->ep;
5358 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5359 ret = cb(ep, tsp, p);
5360 if (ret)
5361 break;
5362 sctp_endpoint_put(ep);
5363 }
5364 (*pos)++;
5365 sctp_transport_put(tsp);
5366 }
5367 sctp_transport_walk_stop(&hti);
5368
5369 if (ret) {
5370 if (cb_done && !cb_done(ep, tsp, p)) {
5371 (*pos)++;
5372 sctp_endpoint_put(ep);
5373 sctp_transport_put(tsp);
5374 goto again;
5375 }
5376 sctp_endpoint_put(ep);
5377 sctp_transport_put(tsp);
5378 }
5379
5380 return ret;
5381 }
5382 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5383
5384 /* 7.2.1 Association Status (SCTP_STATUS)
5385
5386 * Applications can retrieve current status information about an
5387 * association, including association state, peer receiver window size,
5388 * number of unacked data chunks, and number of data chunks pending
5389 * receipt. This information is read-only.
5390 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)5391 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5392 char __user *optval,
5393 int __user *optlen)
5394 {
5395 struct sctp_status status;
5396 struct sctp_association *asoc = NULL;
5397 struct sctp_transport *transport;
5398 sctp_assoc_t associd;
5399 int retval = 0;
5400
5401 if (len < sizeof(status)) {
5402 retval = -EINVAL;
5403 goto out;
5404 }
5405
5406 len = sizeof(status);
5407 if (copy_from_user(&status, optval, len)) {
5408 retval = -EFAULT;
5409 goto out;
5410 }
5411
5412 associd = status.sstat_assoc_id;
5413 asoc = sctp_id2assoc(sk, associd);
5414 if (!asoc) {
5415 retval = -EINVAL;
5416 goto out;
5417 }
5418
5419 transport = asoc->peer.primary_path;
5420
5421 status.sstat_assoc_id = sctp_assoc2id(asoc);
5422 status.sstat_state = sctp_assoc_to_state(asoc);
5423 status.sstat_rwnd = asoc->peer.rwnd;
5424 status.sstat_unackdata = asoc->unack_data;
5425
5426 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5427 status.sstat_instrms = asoc->stream.incnt;
5428 status.sstat_outstrms = asoc->stream.outcnt;
5429 status.sstat_fragmentation_point = asoc->frag_point;
5430 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5431 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5432 transport->af_specific->sockaddr_len);
5433 /* Map ipv4 address into v4-mapped-on-v6 address. */
5434 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5435 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5436 status.sstat_primary.spinfo_state = transport->state;
5437 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5438 status.sstat_primary.spinfo_srtt = transport->srtt;
5439 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5440 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5441
5442 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5443 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5444
5445 if (put_user(len, optlen)) {
5446 retval = -EFAULT;
5447 goto out;
5448 }
5449
5450 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5451 __func__, len, status.sstat_state, status.sstat_rwnd,
5452 status.sstat_assoc_id);
5453
5454 if (copy_to_user(optval, &status, len)) {
5455 retval = -EFAULT;
5456 goto out;
5457 }
5458
5459 out:
5460 return retval;
5461 }
5462
5463
5464 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5465 *
5466 * Applications can retrieve information about a specific peer address
5467 * of an association, including its reachability state, congestion
5468 * window, and retransmission timer values. This information is
5469 * read-only.
5470 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)5471 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5472 char __user *optval,
5473 int __user *optlen)
5474 {
5475 struct sctp_paddrinfo pinfo;
5476 struct sctp_transport *transport;
5477 int retval = 0;
5478
5479 if (len < sizeof(pinfo)) {
5480 retval = -EINVAL;
5481 goto out;
5482 }
5483
5484 len = sizeof(pinfo);
5485 if (copy_from_user(&pinfo, optval, len)) {
5486 retval = -EFAULT;
5487 goto out;
5488 }
5489
5490 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5491 pinfo.spinfo_assoc_id);
5492 if (!transport) {
5493 retval = -EINVAL;
5494 goto out;
5495 }
5496
5497 if (transport->state == SCTP_PF &&
5498 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5499 retval = -EACCES;
5500 goto out;
5501 }
5502
5503 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5504 pinfo.spinfo_state = transport->state;
5505 pinfo.spinfo_cwnd = transport->cwnd;
5506 pinfo.spinfo_srtt = transport->srtt;
5507 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5508 pinfo.spinfo_mtu = transport->pathmtu;
5509
5510 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5511 pinfo.spinfo_state = SCTP_ACTIVE;
5512
5513 if (put_user(len, optlen)) {
5514 retval = -EFAULT;
5515 goto out;
5516 }
5517
5518 if (copy_to_user(optval, &pinfo, len)) {
5519 retval = -EFAULT;
5520 goto out;
5521 }
5522
5523 out:
5524 return retval;
5525 }
5526
5527 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5528 *
5529 * This option is a on/off flag. If enabled no SCTP message
5530 * fragmentation will be performed. Instead if a message being sent
5531 * exceeds the current PMTU size, the message will NOT be sent and
5532 * instead a error will be indicated to the user.
5533 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)5534 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5535 char __user *optval, int __user *optlen)
5536 {
5537 int val;
5538
5539 if (len < sizeof(int))
5540 return -EINVAL;
5541
5542 len = sizeof(int);
5543 val = (sctp_sk(sk)->disable_fragments == 1);
5544 if (put_user(len, optlen))
5545 return -EFAULT;
5546 if (copy_to_user(optval, &val, len))
5547 return -EFAULT;
5548 return 0;
5549 }
5550
5551 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5552 *
5553 * This socket option is used to specify various notifications and
5554 * ancillary data the user wishes to receive.
5555 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)5556 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5557 int __user *optlen)
5558 {
5559 struct sctp_event_subscribe subscribe;
5560 __u8 *sn_type = (__u8 *)&subscribe;
5561 int i;
5562
5563 if (len == 0)
5564 return -EINVAL;
5565 if (len > sizeof(struct sctp_event_subscribe))
5566 len = sizeof(struct sctp_event_subscribe);
5567 if (put_user(len, optlen))
5568 return -EFAULT;
5569
5570 for (i = 0; i < len; i++)
5571 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5572 SCTP_SN_TYPE_BASE + i);
5573
5574 if (copy_to_user(optval, &subscribe, len))
5575 return -EFAULT;
5576
5577 return 0;
5578 }
5579
5580 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5581 *
5582 * This socket option is applicable to the UDP-style socket only. When
5583 * set it will cause associations that are idle for more than the
5584 * specified number of seconds to automatically close. An association
5585 * being idle is defined an association that has NOT sent or received
5586 * user data. The special value of '0' indicates that no automatic
5587 * close of any associations should be performed. The option expects an
5588 * integer defining the number of seconds of idle time before an
5589 * association is closed.
5590 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)5591 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5592 {
5593 /* Applicable to UDP-style socket only */
5594 if (sctp_style(sk, TCP))
5595 return -EOPNOTSUPP;
5596 if (len < sizeof(int))
5597 return -EINVAL;
5598 len = sizeof(int);
5599 if (put_user(len, optlen))
5600 return -EFAULT;
5601 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5602 return -EFAULT;
5603 return 0;
5604 }
5605
5606 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)5607 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5608 {
5609 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5610 struct sctp_sock *sp = sctp_sk(sk);
5611 struct socket *sock;
5612 int err = 0;
5613
5614 /* Do not peel off from one netns to another one. */
5615 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5616 return -EINVAL;
5617
5618 if (!asoc)
5619 return -EINVAL;
5620
5621 /* An association cannot be branched off from an already peeled-off
5622 * socket, nor is this supported for tcp style sockets.
5623 */
5624 if (!sctp_style(sk, UDP))
5625 return -EINVAL;
5626
5627 /* Create a new socket. */
5628 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5629 if (err < 0)
5630 return err;
5631
5632 sctp_copy_sock(sock->sk, sk, asoc);
5633
5634 /* Make peeled-off sockets more like 1-1 accepted sockets.
5635 * Set the daddr and initialize id to something more random and also
5636 * copy over any ip options.
5637 */
5638 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5639 sp->pf->copy_ip_options(sk, sock->sk);
5640
5641 /* Populate the fields of the newsk from the oldsk and migrate the
5642 * asoc to the newsk.
5643 */
5644 err = sctp_sock_migrate(sk, sock->sk, asoc,
5645 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5646 if (err) {
5647 sock_release(sock);
5648 sock = NULL;
5649 }
5650
5651 *sockp = sock;
5652
5653 return err;
5654 }
5655 EXPORT_SYMBOL(sctp_do_peeloff);
5656
sctp_getsockopt_peeloff_common(struct sock * sk,sctp_peeloff_arg_t * peeloff,struct file ** newfile,unsigned flags)5657 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5658 struct file **newfile, unsigned flags)
5659 {
5660 struct socket *newsock;
5661 int retval;
5662
5663 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5664 if (retval < 0)
5665 goto out;
5666
5667 /* Map the socket to an unused fd that can be returned to the user. */
5668 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5669 if (retval < 0) {
5670 sock_release(newsock);
5671 goto out;
5672 }
5673
5674 *newfile = sock_alloc_file(newsock, 0, NULL);
5675 if (IS_ERR(*newfile)) {
5676 put_unused_fd(retval);
5677 retval = PTR_ERR(*newfile);
5678 *newfile = NULL;
5679 return retval;
5680 }
5681
5682 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5683 retval);
5684
5685 peeloff->sd = retval;
5686
5687 if (flags & SOCK_NONBLOCK)
5688 (*newfile)->f_flags |= O_NONBLOCK;
5689 out:
5690 return retval;
5691 }
5692
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)5693 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5694 {
5695 sctp_peeloff_arg_t peeloff;
5696 struct file *newfile = NULL;
5697 int retval = 0;
5698
5699 if (len < sizeof(sctp_peeloff_arg_t))
5700 return -EINVAL;
5701 len = sizeof(sctp_peeloff_arg_t);
5702 if (copy_from_user(&peeloff, optval, len))
5703 return -EFAULT;
5704
5705 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5706 if (retval < 0)
5707 goto out;
5708
5709 /* Return the fd mapped to the new socket. */
5710 if (put_user(len, optlen)) {
5711 fput(newfile);
5712 put_unused_fd(retval);
5713 return -EFAULT;
5714 }
5715
5716 if (copy_to_user(optval, &peeloff, len)) {
5717 fput(newfile);
5718 put_unused_fd(retval);
5719 return -EFAULT;
5720 }
5721 fd_install(retval, newfile);
5722 out:
5723 return retval;
5724 }
5725
sctp_getsockopt_peeloff_flags(struct sock * sk,int len,char __user * optval,int __user * optlen)5726 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5727 char __user *optval, int __user *optlen)
5728 {
5729 sctp_peeloff_flags_arg_t peeloff;
5730 struct file *newfile = NULL;
5731 int retval = 0;
5732
5733 if (len < sizeof(sctp_peeloff_flags_arg_t))
5734 return -EINVAL;
5735 len = sizeof(sctp_peeloff_flags_arg_t);
5736 if (copy_from_user(&peeloff, optval, len))
5737 return -EFAULT;
5738
5739 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5740 &newfile, peeloff.flags);
5741 if (retval < 0)
5742 goto out;
5743
5744 /* Return the fd mapped to the new socket. */
5745 if (put_user(len, optlen)) {
5746 fput(newfile);
5747 put_unused_fd(retval);
5748 return -EFAULT;
5749 }
5750
5751 if (copy_to_user(optval, &peeloff, len)) {
5752 fput(newfile);
5753 put_unused_fd(retval);
5754 return -EFAULT;
5755 }
5756 fd_install(retval, newfile);
5757 out:
5758 return retval;
5759 }
5760
5761 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5762 *
5763 * Applications can enable or disable heartbeats for any peer address of
5764 * an association, modify an address's heartbeat interval, force a
5765 * heartbeat to be sent immediately, and adjust the address's maximum
5766 * number of retransmissions sent before an address is considered
5767 * unreachable. The following structure is used to access and modify an
5768 * address's parameters:
5769 *
5770 * struct sctp_paddrparams {
5771 * sctp_assoc_t spp_assoc_id;
5772 * struct sockaddr_storage spp_address;
5773 * uint32_t spp_hbinterval;
5774 * uint16_t spp_pathmaxrxt;
5775 * uint32_t spp_pathmtu;
5776 * uint32_t spp_sackdelay;
5777 * uint32_t spp_flags;
5778 * };
5779 *
5780 * spp_assoc_id - (one-to-many style socket) This is filled in the
5781 * application, and identifies the association for
5782 * this query.
5783 * spp_address - This specifies which address is of interest.
5784 * spp_hbinterval - This contains the value of the heartbeat interval,
5785 * in milliseconds. If a value of zero
5786 * is present in this field then no changes are to
5787 * be made to this parameter.
5788 * spp_pathmaxrxt - This contains the maximum number of
5789 * retransmissions before this address shall be
5790 * considered unreachable. If a value of zero
5791 * is present in this field then no changes are to
5792 * be made to this parameter.
5793 * spp_pathmtu - When Path MTU discovery is disabled the value
5794 * specified here will be the "fixed" path mtu.
5795 * Note that if the spp_address field is empty
5796 * then all associations on this address will
5797 * have this fixed path mtu set upon them.
5798 *
5799 * spp_sackdelay - When delayed sack is enabled, this value specifies
5800 * the number of milliseconds that sacks will be delayed
5801 * for. This value will apply to all addresses of an
5802 * association if the spp_address field is empty. Note
5803 * also, that if delayed sack is enabled and this
5804 * value is set to 0, no change is made to the last
5805 * recorded delayed sack timer value.
5806 *
5807 * spp_flags - These flags are used to control various features
5808 * on an association. The flag field may contain
5809 * zero or more of the following options.
5810 *
5811 * SPP_HB_ENABLE - Enable heartbeats on the
5812 * specified address. Note that if the address
5813 * field is empty all addresses for the association
5814 * have heartbeats enabled upon them.
5815 *
5816 * SPP_HB_DISABLE - Disable heartbeats on the
5817 * speicifed address. Note that if the address
5818 * field is empty all addresses for the association
5819 * will have their heartbeats disabled. Note also
5820 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5821 * mutually exclusive, only one of these two should
5822 * be specified. Enabling both fields will have
5823 * undetermined results.
5824 *
5825 * SPP_HB_DEMAND - Request a user initiated heartbeat
5826 * to be made immediately.
5827 *
5828 * SPP_PMTUD_ENABLE - This field will enable PMTU
5829 * discovery upon the specified address. Note that
5830 * if the address feild is empty then all addresses
5831 * on the association are effected.
5832 *
5833 * SPP_PMTUD_DISABLE - This field will disable PMTU
5834 * discovery upon the specified address. Note that
5835 * if the address feild is empty then all addresses
5836 * on the association are effected. Not also that
5837 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5838 * exclusive. Enabling both will have undetermined
5839 * results.
5840 *
5841 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5842 * on delayed sack. The time specified in spp_sackdelay
5843 * is used to specify the sack delay for this address. Note
5844 * that if spp_address is empty then all addresses will
5845 * enable delayed sack and take on the sack delay
5846 * value specified in spp_sackdelay.
5847 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5848 * off delayed sack. If the spp_address field is blank then
5849 * delayed sack is disabled for the entire association. Note
5850 * also that this field is mutually exclusive to
5851 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5852 * results.
5853 *
5854 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5855 * setting of the IPV6 flow label value. The value is
5856 * contained in the spp_ipv6_flowlabel field.
5857 * Upon retrieval, this flag will be set to indicate that
5858 * the spp_ipv6_flowlabel field has a valid value returned.
5859 * If a specific destination address is set (in the
5860 * spp_address field), then the value returned is that of
5861 * the address. If just an association is specified (and
5862 * no address), then the association's default flow label
5863 * is returned. If neither an association nor a destination
5864 * is specified, then the socket's default flow label is
5865 * returned. For non-IPv6 sockets, this flag will be left
5866 * cleared.
5867 *
5868 * SPP_DSCP: Setting this flag enables the setting of the
5869 * Differentiated Services Code Point (DSCP) value
5870 * associated with either the association or a specific
5871 * address. The value is obtained in the spp_dscp field.
5872 * Upon retrieval, this flag will be set to indicate that
5873 * the spp_dscp field has a valid value returned. If a
5874 * specific destination address is set when called (in the
5875 * spp_address field), then that specific destination
5876 * address's DSCP value is returned. If just an association
5877 * is specified, then the association's default DSCP is
5878 * returned. If neither an association nor a destination is
5879 * specified, then the socket's default DSCP is returned.
5880 *
5881 * spp_ipv6_flowlabel
5882 * - This field is used in conjunction with the
5883 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5884 * The 20 least significant bits are used for the flow
5885 * label. This setting has precedence over any IPv6-layer
5886 * setting.
5887 *
5888 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5889 * and contains the DSCP. The 6 most significant bits are
5890 * used for the DSCP. This setting has precedence over any
5891 * IPv4- or IPv6- layer setting.
5892 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)5893 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5894 char __user *optval, int __user *optlen)
5895 {
5896 struct sctp_paddrparams params;
5897 struct sctp_transport *trans = NULL;
5898 struct sctp_association *asoc = NULL;
5899 struct sctp_sock *sp = sctp_sk(sk);
5900
5901 if (len >= sizeof(params))
5902 len = sizeof(params);
5903 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5904 spp_ipv6_flowlabel), 4))
5905 len = ALIGN(offsetof(struct sctp_paddrparams,
5906 spp_ipv6_flowlabel), 4);
5907 else
5908 return -EINVAL;
5909
5910 if (copy_from_user(¶ms, optval, len))
5911 return -EFAULT;
5912
5913 /* If an address other than INADDR_ANY is specified, and
5914 * no transport is found, then the request is invalid.
5915 */
5916 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5917 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5918 params.spp_assoc_id);
5919 if (!trans) {
5920 pr_debug("%s: failed no transport\n", __func__);
5921 return -EINVAL;
5922 }
5923 }
5924
5925 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5926 * socket is a one to many style socket, and an association
5927 * was not found, then the id was invalid.
5928 */
5929 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5930 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5931 sctp_style(sk, UDP)) {
5932 pr_debug("%s: failed no association\n", __func__);
5933 return -EINVAL;
5934 }
5935
5936 if (trans) {
5937 /* Fetch transport values. */
5938 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5939 params.spp_pathmtu = trans->pathmtu;
5940 params.spp_pathmaxrxt = trans->pathmaxrxt;
5941 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5942
5943 /*draft-11 doesn't say what to return in spp_flags*/
5944 params.spp_flags = trans->param_flags;
5945 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5946 params.spp_ipv6_flowlabel = trans->flowlabel &
5947 SCTP_FLOWLABEL_VAL_MASK;
5948 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5949 }
5950 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5951 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5952 params.spp_flags |= SPP_DSCP;
5953 }
5954 } else if (asoc) {
5955 /* Fetch association values. */
5956 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5957 params.spp_pathmtu = asoc->pathmtu;
5958 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5959 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5960
5961 /*draft-11 doesn't say what to return in spp_flags*/
5962 params.spp_flags = asoc->param_flags;
5963 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5964 params.spp_ipv6_flowlabel = asoc->flowlabel &
5965 SCTP_FLOWLABEL_VAL_MASK;
5966 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5967 }
5968 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5969 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5970 params.spp_flags |= SPP_DSCP;
5971 }
5972 } else {
5973 /* Fetch socket values. */
5974 params.spp_hbinterval = sp->hbinterval;
5975 params.spp_pathmtu = sp->pathmtu;
5976 params.spp_sackdelay = sp->sackdelay;
5977 params.spp_pathmaxrxt = sp->pathmaxrxt;
5978
5979 /*draft-11 doesn't say what to return in spp_flags*/
5980 params.spp_flags = sp->param_flags;
5981 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5982 params.spp_ipv6_flowlabel = sp->flowlabel &
5983 SCTP_FLOWLABEL_VAL_MASK;
5984 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5985 }
5986 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5987 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5988 params.spp_flags |= SPP_DSCP;
5989 }
5990 }
5991
5992 if (copy_to_user(optval, ¶ms, len))
5993 return -EFAULT;
5994
5995 if (put_user(len, optlen))
5996 return -EFAULT;
5997
5998 return 0;
5999 }
6000
6001 /*
6002 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
6003 *
6004 * This option will effect the way delayed acks are performed. This
6005 * option allows you to get or set the delayed ack time, in
6006 * milliseconds. It also allows changing the delayed ack frequency.
6007 * Changing the frequency to 1 disables the delayed sack algorithm. If
6008 * the assoc_id is 0, then this sets or gets the endpoints default
6009 * values. If the assoc_id field is non-zero, then the set or get
6010 * effects the specified association for the one to many model (the
6011 * assoc_id field is ignored by the one to one model). Note that if
6012 * sack_delay or sack_freq are 0 when setting this option, then the
6013 * current values will remain unchanged.
6014 *
6015 * struct sctp_sack_info {
6016 * sctp_assoc_t sack_assoc_id;
6017 * uint32_t sack_delay;
6018 * uint32_t sack_freq;
6019 * };
6020 *
6021 * sack_assoc_id - This parameter, indicates which association the user
6022 * is performing an action upon. Note that if this field's value is
6023 * zero then the endpoints default value is changed (effecting future
6024 * associations only).
6025 *
6026 * sack_delay - This parameter contains the number of milliseconds that
6027 * the user is requesting the delayed ACK timer be set to. Note that
6028 * this value is defined in the standard to be between 200 and 500
6029 * milliseconds.
6030 *
6031 * sack_freq - This parameter contains the number of packets that must
6032 * be received before a sack is sent without waiting for the delay
6033 * timer to expire. The default value for this is 2, setting this
6034 * value to 1 will disable the delayed sack algorithm.
6035 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)6036 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6037 char __user *optval,
6038 int __user *optlen)
6039 {
6040 struct sctp_sack_info params;
6041 struct sctp_association *asoc = NULL;
6042 struct sctp_sock *sp = sctp_sk(sk);
6043
6044 if (len >= sizeof(struct sctp_sack_info)) {
6045 len = sizeof(struct sctp_sack_info);
6046
6047 if (copy_from_user(¶ms, optval, len))
6048 return -EFAULT;
6049 } else if (len == sizeof(struct sctp_assoc_value)) {
6050 pr_warn_ratelimited(DEPRECATED
6051 "%s (pid %d) "
6052 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6053 "Use struct sctp_sack_info instead\n",
6054 current->comm, task_pid_nr(current));
6055 if (copy_from_user(¶ms, optval, len))
6056 return -EFAULT;
6057 } else
6058 return -EINVAL;
6059
6060 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6061 * socket is a one to many style socket, and an association
6062 * was not found, then the id was invalid.
6063 */
6064 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6065 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6066 sctp_style(sk, UDP))
6067 return -EINVAL;
6068
6069 if (asoc) {
6070 /* Fetch association values. */
6071 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6072 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6073 params.sack_freq = asoc->sackfreq;
6074
6075 } else {
6076 params.sack_delay = 0;
6077 params.sack_freq = 1;
6078 }
6079 } else {
6080 /* Fetch socket values. */
6081 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6082 params.sack_delay = sp->sackdelay;
6083 params.sack_freq = sp->sackfreq;
6084 } else {
6085 params.sack_delay = 0;
6086 params.sack_freq = 1;
6087 }
6088 }
6089
6090 if (copy_to_user(optval, ¶ms, len))
6091 return -EFAULT;
6092
6093 if (put_user(len, optlen))
6094 return -EFAULT;
6095
6096 return 0;
6097 }
6098
6099 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6100 *
6101 * Applications can specify protocol parameters for the default association
6102 * initialization. The option name argument to setsockopt() and getsockopt()
6103 * is SCTP_INITMSG.
6104 *
6105 * Setting initialization parameters is effective only on an unconnected
6106 * socket (for UDP-style sockets only future associations are effected
6107 * by the change). With TCP-style sockets, this option is inherited by
6108 * sockets derived from a listener socket.
6109 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)6110 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6111 {
6112 if (len < sizeof(struct sctp_initmsg))
6113 return -EINVAL;
6114 len = sizeof(struct sctp_initmsg);
6115 if (put_user(len, optlen))
6116 return -EFAULT;
6117 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6118 return -EFAULT;
6119 return 0;
6120 }
6121
6122
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6123 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6124 char __user *optval, int __user *optlen)
6125 {
6126 struct sctp_association *asoc;
6127 int cnt = 0;
6128 struct sctp_getaddrs getaddrs;
6129 struct sctp_transport *from;
6130 void __user *to;
6131 union sctp_addr temp;
6132 struct sctp_sock *sp = sctp_sk(sk);
6133 int addrlen;
6134 size_t space_left;
6135 int bytes_copied;
6136
6137 if (len < sizeof(struct sctp_getaddrs))
6138 return -EINVAL;
6139
6140 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6141 return -EFAULT;
6142
6143 /* For UDP-style sockets, id specifies the association to query. */
6144 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6145 if (!asoc)
6146 return -EINVAL;
6147
6148 to = optval + offsetof(struct sctp_getaddrs, addrs);
6149 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6150
6151 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6152 transports) {
6153 memcpy(&temp, &from->ipaddr, sizeof(temp));
6154 addrlen = sctp_get_pf_specific(sk->sk_family)
6155 ->addr_to_user(sp, &temp);
6156 if (space_left < addrlen)
6157 return -ENOMEM;
6158 if (copy_to_user(to, &temp, addrlen))
6159 return -EFAULT;
6160 to += addrlen;
6161 cnt++;
6162 space_left -= addrlen;
6163 }
6164
6165 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6166 return -EFAULT;
6167 bytes_copied = ((char __user *)to) - optval;
6168 if (put_user(bytes_copied, optlen))
6169 return -EFAULT;
6170
6171 return 0;
6172 }
6173
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)6174 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6175 size_t space_left, int *bytes_copied)
6176 {
6177 struct sctp_sockaddr_entry *addr;
6178 union sctp_addr temp;
6179 int cnt = 0;
6180 int addrlen;
6181 struct net *net = sock_net(sk);
6182
6183 rcu_read_lock();
6184 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6185 if (!addr->valid)
6186 continue;
6187
6188 if ((PF_INET == sk->sk_family) &&
6189 (AF_INET6 == addr->a.sa.sa_family))
6190 continue;
6191 if ((PF_INET6 == sk->sk_family) &&
6192 inet_v6_ipv6only(sk) &&
6193 (AF_INET == addr->a.sa.sa_family))
6194 continue;
6195 memcpy(&temp, &addr->a, sizeof(temp));
6196 if (!temp.v4.sin_port)
6197 temp.v4.sin_port = htons(port);
6198
6199 addrlen = sctp_get_pf_specific(sk->sk_family)
6200 ->addr_to_user(sctp_sk(sk), &temp);
6201
6202 if (space_left < addrlen) {
6203 cnt = -ENOMEM;
6204 break;
6205 }
6206 memcpy(to, &temp, addrlen);
6207
6208 to += addrlen;
6209 cnt++;
6210 space_left -= addrlen;
6211 *bytes_copied += addrlen;
6212 }
6213 rcu_read_unlock();
6214
6215 return cnt;
6216 }
6217
6218
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6219 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6220 char __user *optval, int __user *optlen)
6221 {
6222 struct sctp_bind_addr *bp;
6223 struct sctp_association *asoc;
6224 int cnt = 0;
6225 struct sctp_getaddrs getaddrs;
6226 struct sctp_sockaddr_entry *addr;
6227 void __user *to;
6228 union sctp_addr temp;
6229 struct sctp_sock *sp = sctp_sk(sk);
6230 int addrlen;
6231 int err = 0;
6232 size_t space_left;
6233 int bytes_copied = 0;
6234 void *addrs;
6235 void *buf;
6236
6237 if (len < sizeof(struct sctp_getaddrs))
6238 return -EINVAL;
6239
6240 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6241 return -EFAULT;
6242
6243 /*
6244 * For UDP-style sockets, id specifies the association to query.
6245 * If the id field is set to the value '0' then the locally bound
6246 * addresses are returned without regard to any particular
6247 * association.
6248 */
6249 if (0 == getaddrs.assoc_id) {
6250 bp = &sctp_sk(sk)->ep->base.bind_addr;
6251 } else {
6252 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6253 if (!asoc)
6254 return -EINVAL;
6255 bp = &asoc->base.bind_addr;
6256 }
6257
6258 to = optval + offsetof(struct sctp_getaddrs, addrs);
6259 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6260
6261 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6262 if (!addrs)
6263 return -ENOMEM;
6264
6265 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6266 * addresses from the global local address list.
6267 */
6268 if (sctp_list_single_entry(&bp->address_list)) {
6269 addr = list_entry(bp->address_list.next,
6270 struct sctp_sockaddr_entry, list);
6271 if (sctp_is_any(sk, &addr->a)) {
6272 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6273 space_left, &bytes_copied);
6274 if (cnt < 0) {
6275 err = cnt;
6276 goto out;
6277 }
6278 goto copy_getaddrs;
6279 }
6280 }
6281
6282 buf = addrs;
6283 /* Protection on the bound address list is not needed since
6284 * in the socket option context we hold a socket lock and
6285 * thus the bound address list can't change.
6286 */
6287 list_for_each_entry(addr, &bp->address_list, list) {
6288 memcpy(&temp, &addr->a, sizeof(temp));
6289 addrlen = sctp_get_pf_specific(sk->sk_family)
6290 ->addr_to_user(sp, &temp);
6291 if (space_left < addrlen) {
6292 err = -ENOMEM; /*fixme: right error?*/
6293 goto out;
6294 }
6295 memcpy(buf, &temp, addrlen);
6296 buf += addrlen;
6297 bytes_copied += addrlen;
6298 cnt++;
6299 space_left -= addrlen;
6300 }
6301
6302 copy_getaddrs:
6303 if (copy_to_user(to, addrs, bytes_copied)) {
6304 err = -EFAULT;
6305 goto out;
6306 }
6307 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6308 err = -EFAULT;
6309 goto out;
6310 }
6311 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6312 * but we can't change it anymore.
6313 */
6314 if (put_user(bytes_copied, optlen))
6315 err = -EFAULT;
6316 out:
6317 kfree(addrs);
6318 return err;
6319 }
6320
6321 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6322 *
6323 * Requests that the local SCTP stack use the enclosed peer address as
6324 * the association primary. The enclosed address must be one of the
6325 * association peer's addresses.
6326 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)6327 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6328 char __user *optval, int __user *optlen)
6329 {
6330 struct sctp_prim prim;
6331 struct sctp_association *asoc;
6332 struct sctp_sock *sp = sctp_sk(sk);
6333
6334 if (len < sizeof(struct sctp_prim))
6335 return -EINVAL;
6336
6337 len = sizeof(struct sctp_prim);
6338
6339 if (copy_from_user(&prim, optval, len))
6340 return -EFAULT;
6341
6342 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6343 if (!asoc)
6344 return -EINVAL;
6345
6346 if (!asoc->peer.primary_path)
6347 return -ENOTCONN;
6348
6349 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6350 asoc->peer.primary_path->af_specific->sockaddr_len);
6351
6352 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6353 (union sctp_addr *)&prim.ssp_addr);
6354
6355 if (put_user(len, optlen))
6356 return -EFAULT;
6357 if (copy_to_user(optval, &prim, len))
6358 return -EFAULT;
6359
6360 return 0;
6361 }
6362
6363 /*
6364 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6365 *
6366 * Requests that the local endpoint set the specified Adaptation Layer
6367 * Indication parameter for all future INIT and INIT-ACK exchanges.
6368 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)6369 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6370 char __user *optval, int __user *optlen)
6371 {
6372 struct sctp_setadaptation adaptation;
6373
6374 if (len < sizeof(struct sctp_setadaptation))
6375 return -EINVAL;
6376
6377 len = sizeof(struct sctp_setadaptation);
6378
6379 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6380
6381 if (put_user(len, optlen))
6382 return -EFAULT;
6383 if (copy_to_user(optval, &adaptation, len))
6384 return -EFAULT;
6385
6386 return 0;
6387 }
6388
6389 /*
6390 *
6391 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6392 *
6393 * Applications that wish to use the sendto() system call may wish to
6394 * specify a default set of parameters that would normally be supplied
6395 * through the inclusion of ancillary data. This socket option allows
6396 * such an application to set the default sctp_sndrcvinfo structure.
6397
6398
6399 * The application that wishes to use this socket option simply passes
6400 * in to this call the sctp_sndrcvinfo structure defined in Section
6401 * 5.2.2) The input parameters accepted by this call include
6402 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6403 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6404 * to this call if the caller is using the UDP model.
6405 *
6406 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6407 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)6408 static int sctp_getsockopt_default_send_param(struct sock *sk,
6409 int len, char __user *optval,
6410 int __user *optlen)
6411 {
6412 struct sctp_sock *sp = sctp_sk(sk);
6413 struct sctp_association *asoc;
6414 struct sctp_sndrcvinfo info;
6415
6416 if (len < sizeof(info))
6417 return -EINVAL;
6418
6419 len = sizeof(info);
6420
6421 if (copy_from_user(&info, optval, len))
6422 return -EFAULT;
6423
6424 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6425 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6426 sctp_style(sk, UDP))
6427 return -EINVAL;
6428
6429 if (asoc) {
6430 info.sinfo_stream = asoc->default_stream;
6431 info.sinfo_flags = asoc->default_flags;
6432 info.sinfo_ppid = asoc->default_ppid;
6433 info.sinfo_context = asoc->default_context;
6434 info.sinfo_timetolive = asoc->default_timetolive;
6435 } else {
6436 info.sinfo_stream = sp->default_stream;
6437 info.sinfo_flags = sp->default_flags;
6438 info.sinfo_ppid = sp->default_ppid;
6439 info.sinfo_context = sp->default_context;
6440 info.sinfo_timetolive = sp->default_timetolive;
6441 }
6442
6443 if (put_user(len, optlen))
6444 return -EFAULT;
6445 if (copy_to_user(optval, &info, len))
6446 return -EFAULT;
6447
6448 return 0;
6449 }
6450
6451 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6452 * (SCTP_DEFAULT_SNDINFO)
6453 */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6454 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6455 char __user *optval,
6456 int __user *optlen)
6457 {
6458 struct sctp_sock *sp = sctp_sk(sk);
6459 struct sctp_association *asoc;
6460 struct sctp_sndinfo info;
6461
6462 if (len < sizeof(info))
6463 return -EINVAL;
6464
6465 len = sizeof(info);
6466
6467 if (copy_from_user(&info, optval, len))
6468 return -EFAULT;
6469
6470 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6471 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6472 sctp_style(sk, UDP))
6473 return -EINVAL;
6474
6475 if (asoc) {
6476 info.snd_sid = asoc->default_stream;
6477 info.snd_flags = asoc->default_flags;
6478 info.snd_ppid = asoc->default_ppid;
6479 info.snd_context = asoc->default_context;
6480 } else {
6481 info.snd_sid = sp->default_stream;
6482 info.snd_flags = sp->default_flags;
6483 info.snd_ppid = sp->default_ppid;
6484 info.snd_context = sp->default_context;
6485 }
6486
6487 if (put_user(len, optlen))
6488 return -EFAULT;
6489 if (copy_to_user(optval, &info, len))
6490 return -EFAULT;
6491
6492 return 0;
6493 }
6494
6495 /*
6496 *
6497 * 7.1.5 SCTP_NODELAY
6498 *
6499 * Turn on/off any Nagle-like algorithm. This means that packets are
6500 * generally sent as soon as possible and no unnecessary delays are
6501 * introduced, at the cost of more packets in the network. Expects an
6502 * integer boolean flag.
6503 */
6504
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)6505 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6506 char __user *optval, int __user *optlen)
6507 {
6508 int val;
6509
6510 if (len < sizeof(int))
6511 return -EINVAL;
6512
6513 len = sizeof(int);
6514 val = (sctp_sk(sk)->nodelay == 1);
6515 if (put_user(len, optlen))
6516 return -EFAULT;
6517 if (copy_to_user(optval, &val, len))
6518 return -EFAULT;
6519 return 0;
6520 }
6521
6522 /*
6523 *
6524 * 7.1.1 SCTP_RTOINFO
6525 *
6526 * The protocol parameters used to initialize and bound retransmission
6527 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6528 * and modify these parameters.
6529 * All parameters are time values, in milliseconds. A value of 0, when
6530 * modifying the parameters, indicates that the current value should not
6531 * be changed.
6532 *
6533 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6534 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6535 char __user *optval,
6536 int __user *optlen) {
6537 struct sctp_rtoinfo rtoinfo;
6538 struct sctp_association *asoc;
6539
6540 if (len < sizeof (struct sctp_rtoinfo))
6541 return -EINVAL;
6542
6543 len = sizeof(struct sctp_rtoinfo);
6544
6545 if (copy_from_user(&rtoinfo, optval, len))
6546 return -EFAULT;
6547
6548 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6549
6550 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6551 sctp_style(sk, UDP))
6552 return -EINVAL;
6553
6554 /* Values corresponding to the specific association. */
6555 if (asoc) {
6556 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6557 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6558 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6559 } else {
6560 /* Values corresponding to the endpoint. */
6561 struct sctp_sock *sp = sctp_sk(sk);
6562
6563 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6564 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6565 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6566 }
6567
6568 if (put_user(len, optlen))
6569 return -EFAULT;
6570
6571 if (copy_to_user(optval, &rtoinfo, len))
6572 return -EFAULT;
6573
6574 return 0;
6575 }
6576
6577 /*
6578 *
6579 * 7.1.2 SCTP_ASSOCINFO
6580 *
6581 * This option is used to tune the maximum retransmission attempts
6582 * of the association.
6583 * Returns an error if the new association retransmission value is
6584 * greater than the sum of the retransmission value of the peer.
6585 * See [SCTP] for more information.
6586 *
6587 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6588 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6589 char __user *optval,
6590 int __user *optlen)
6591 {
6592
6593 struct sctp_assocparams assocparams;
6594 struct sctp_association *asoc;
6595 struct list_head *pos;
6596 int cnt = 0;
6597
6598 if (len < sizeof (struct sctp_assocparams))
6599 return -EINVAL;
6600
6601 len = sizeof(struct sctp_assocparams);
6602
6603 if (copy_from_user(&assocparams, optval, len))
6604 return -EFAULT;
6605
6606 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6607
6608 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6609 sctp_style(sk, UDP))
6610 return -EINVAL;
6611
6612 /* Values correspoinding to the specific association */
6613 if (asoc) {
6614 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6615 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6616 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6617 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6618
6619 list_for_each(pos, &asoc->peer.transport_addr_list) {
6620 cnt++;
6621 }
6622
6623 assocparams.sasoc_number_peer_destinations = cnt;
6624 } else {
6625 /* Values corresponding to the endpoint */
6626 struct sctp_sock *sp = sctp_sk(sk);
6627
6628 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6629 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6630 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6631 assocparams.sasoc_cookie_life =
6632 sp->assocparams.sasoc_cookie_life;
6633 assocparams.sasoc_number_peer_destinations =
6634 sp->assocparams.
6635 sasoc_number_peer_destinations;
6636 }
6637
6638 if (put_user(len, optlen))
6639 return -EFAULT;
6640
6641 if (copy_to_user(optval, &assocparams, len))
6642 return -EFAULT;
6643
6644 return 0;
6645 }
6646
6647 /*
6648 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6649 *
6650 * This socket option is a boolean flag which turns on or off mapped V4
6651 * addresses. If this option is turned on and the socket is type
6652 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6653 * If this option is turned off, then no mapping will be done of V4
6654 * addresses and a user will receive both PF_INET6 and PF_INET type
6655 * addresses on the socket.
6656 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)6657 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6658 char __user *optval, int __user *optlen)
6659 {
6660 int val;
6661 struct sctp_sock *sp = sctp_sk(sk);
6662
6663 if (len < sizeof(int))
6664 return -EINVAL;
6665
6666 len = sizeof(int);
6667 val = sp->v4mapped;
6668 if (put_user(len, optlen))
6669 return -EFAULT;
6670 if (copy_to_user(optval, &val, len))
6671 return -EFAULT;
6672
6673 return 0;
6674 }
6675
6676 /*
6677 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6678 * (chapter and verse is quoted at sctp_setsockopt_context())
6679 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)6680 static int sctp_getsockopt_context(struct sock *sk, int len,
6681 char __user *optval, int __user *optlen)
6682 {
6683 struct sctp_assoc_value params;
6684 struct sctp_association *asoc;
6685
6686 if (len < sizeof(struct sctp_assoc_value))
6687 return -EINVAL;
6688
6689 len = sizeof(struct sctp_assoc_value);
6690
6691 if (copy_from_user(¶ms, optval, len))
6692 return -EFAULT;
6693
6694 asoc = sctp_id2assoc(sk, params.assoc_id);
6695 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6696 sctp_style(sk, UDP))
6697 return -EINVAL;
6698
6699 params.assoc_value = asoc ? asoc->default_rcv_context
6700 : sctp_sk(sk)->default_rcv_context;
6701
6702 if (put_user(len, optlen))
6703 return -EFAULT;
6704 if (copy_to_user(optval, ¶ms, len))
6705 return -EFAULT;
6706
6707 return 0;
6708 }
6709
6710 /*
6711 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6712 * This option will get or set the maximum size to put in any outgoing
6713 * SCTP DATA chunk. If a message is larger than this size it will be
6714 * fragmented by SCTP into the specified size. Note that the underlying
6715 * SCTP implementation may fragment into smaller sized chunks when the
6716 * PMTU of the underlying association is smaller than the value set by
6717 * the user. The default value for this option is '0' which indicates
6718 * the user is NOT limiting fragmentation and only the PMTU will effect
6719 * SCTP's choice of DATA chunk size. Note also that values set larger
6720 * than the maximum size of an IP datagram will effectively let SCTP
6721 * control fragmentation (i.e. the same as setting this option to 0).
6722 *
6723 * The following structure is used to access and modify this parameter:
6724 *
6725 * struct sctp_assoc_value {
6726 * sctp_assoc_t assoc_id;
6727 * uint32_t assoc_value;
6728 * };
6729 *
6730 * assoc_id: This parameter is ignored for one-to-one style sockets.
6731 * For one-to-many style sockets this parameter indicates which
6732 * association the user is performing an action upon. Note that if
6733 * this field's value is zero then the endpoints default value is
6734 * changed (effecting future associations only).
6735 * assoc_value: This parameter specifies the maximum size in bytes.
6736 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)6737 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6738 char __user *optval, int __user *optlen)
6739 {
6740 struct sctp_assoc_value params;
6741 struct sctp_association *asoc;
6742
6743 if (len == sizeof(int)) {
6744 pr_warn_ratelimited(DEPRECATED
6745 "%s (pid %d) "
6746 "Use of int in maxseg socket option.\n"
6747 "Use struct sctp_assoc_value instead\n",
6748 current->comm, task_pid_nr(current));
6749 params.assoc_id = SCTP_FUTURE_ASSOC;
6750 } else if (len >= sizeof(struct sctp_assoc_value)) {
6751 len = sizeof(struct sctp_assoc_value);
6752 if (copy_from_user(¶ms, optval, len))
6753 return -EFAULT;
6754 } else
6755 return -EINVAL;
6756
6757 asoc = sctp_id2assoc(sk, params.assoc_id);
6758 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6759 sctp_style(sk, UDP))
6760 return -EINVAL;
6761
6762 if (asoc)
6763 params.assoc_value = asoc->frag_point;
6764 else
6765 params.assoc_value = sctp_sk(sk)->user_frag;
6766
6767 if (put_user(len, optlen))
6768 return -EFAULT;
6769 if (len == sizeof(int)) {
6770 if (copy_to_user(optval, ¶ms.assoc_value, len))
6771 return -EFAULT;
6772 } else {
6773 if (copy_to_user(optval, ¶ms, len))
6774 return -EFAULT;
6775 }
6776
6777 return 0;
6778 }
6779
6780 /*
6781 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6782 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6783 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)6784 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6785 char __user *optval, int __user *optlen)
6786 {
6787 int val;
6788
6789 if (len < sizeof(int))
6790 return -EINVAL;
6791
6792 len = sizeof(int);
6793
6794 val = sctp_sk(sk)->frag_interleave;
6795 if (put_user(len, optlen))
6796 return -EFAULT;
6797 if (copy_to_user(optval, &val, len))
6798 return -EFAULT;
6799
6800 return 0;
6801 }
6802
6803 /*
6804 * 7.1.25. Set or Get the sctp partial delivery point
6805 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6806 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)6807 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6808 char __user *optval,
6809 int __user *optlen)
6810 {
6811 u32 val;
6812
6813 if (len < sizeof(u32))
6814 return -EINVAL;
6815
6816 len = sizeof(u32);
6817
6818 val = sctp_sk(sk)->pd_point;
6819 if (put_user(len, optlen))
6820 return -EFAULT;
6821 if (copy_to_user(optval, &val, len))
6822 return -EFAULT;
6823
6824 return 0;
6825 }
6826
6827 /*
6828 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6829 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6830 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)6831 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6832 char __user *optval,
6833 int __user *optlen)
6834 {
6835 struct sctp_assoc_value params;
6836 struct sctp_association *asoc;
6837
6838 if (len == sizeof(int)) {
6839 pr_warn_ratelimited(DEPRECATED
6840 "%s (pid %d) "
6841 "Use of int in max_burst socket option.\n"
6842 "Use struct sctp_assoc_value instead\n",
6843 current->comm, task_pid_nr(current));
6844 params.assoc_id = SCTP_FUTURE_ASSOC;
6845 } else if (len >= sizeof(struct sctp_assoc_value)) {
6846 len = sizeof(struct sctp_assoc_value);
6847 if (copy_from_user(¶ms, optval, len))
6848 return -EFAULT;
6849 } else
6850 return -EINVAL;
6851
6852 asoc = sctp_id2assoc(sk, params.assoc_id);
6853 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6854 sctp_style(sk, UDP))
6855 return -EINVAL;
6856
6857 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6858
6859 if (len == sizeof(int)) {
6860 if (copy_to_user(optval, ¶ms.assoc_value, len))
6861 return -EFAULT;
6862 } else {
6863 if (copy_to_user(optval, ¶ms, len))
6864 return -EFAULT;
6865 }
6866
6867 return 0;
6868
6869 }
6870
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)6871 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6872 char __user *optval, int __user *optlen)
6873 {
6874 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6875 struct sctp_hmacalgo __user *p = (void __user *)optval;
6876 struct sctp_hmac_algo_param *hmacs;
6877 __u16 data_len = 0;
6878 u32 num_idents;
6879 int i;
6880
6881 if (!ep->auth_enable)
6882 return -EACCES;
6883
6884 hmacs = ep->auth_hmacs_list;
6885 data_len = ntohs(hmacs->param_hdr.length) -
6886 sizeof(struct sctp_paramhdr);
6887
6888 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6889 return -EINVAL;
6890
6891 len = sizeof(struct sctp_hmacalgo) + data_len;
6892 num_idents = data_len / sizeof(u16);
6893
6894 if (put_user(len, optlen))
6895 return -EFAULT;
6896 if (put_user(num_idents, &p->shmac_num_idents))
6897 return -EFAULT;
6898 for (i = 0; i < num_idents; i++) {
6899 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6900
6901 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6902 return -EFAULT;
6903 }
6904 return 0;
6905 }
6906
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)6907 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6908 char __user *optval, int __user *optlen)
6909 {
6910 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6911 struct sctp_authkeyid val;
6912 struct sctp_association *asoc;
6913
6914 if (len < sizeof(struct sctp_authkeyid))
6915 return -EINVAL;
6916
6917 len = sizeof(struct sctp_authkeyid);
6918 if (copy_from_user(&val, optval, len))
6919 return -EFAULT;
6920
6921 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6922 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6923 return -EINVAL;
6924
6925 if (asoc) {
6926 if (!asoc->peer.auth_capable)
6927 return -EACCES;
6928 val.scact_keynumber = asoc->active_key_id;
6929 } else {
6930 if (!ep->auth_enable)
6931 return -EACCES;
6932 val.scact_keynumber = ep->active_key_id;
6933 }
6934
6935 if (put_user(len, optlen))
6936 return -EFAULT;
6937 if (copy_to_user(optval, &val, len))
6938 return -EFAULT;
6939
6940 return 0;
6941 }
6942
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6943 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6944 char __user *optval, int __user *optlen)
6945 {
6946 struct sctp_authchunks __user *p = (void __user *)optval;
6947 struct sctp_authchunks val;
6948 struct sctp_association *asoc;
6949 struct sctp_chunks_param *ch;
6950 u32 num_chunks = 0;
6951 char __user *to;
6952
6953 if (len < sizeof(struct sctp_authchunks))
6954 return -EINVAL;
6955
6956 if (copy_from_user(&val, optval, sizeof(val)))
6957 return -EFAULT;
6958
6959 to = p->gauth_chunks;
6960 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6961 if (!asoc)
6962 return -EINVAL;
6963
6964 if (!asoc->peer.auth_capable)
6965 return -EACCES;
6966
6967 ch = asoc->peer.peer_chunks;
6968 if (!ch)
6969 goto num;
6970
6971 /* See if the user provided enough room for all the data */
6972 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6973 if (len < num_chunks)
6974 return -EINVAL;
6975
6976 if (copy_to_user(to, ch->chunks, num_chunks))
6977 return -EFAULT;
6978 num:
6979 len = sizeof(struct sctp_authchunks) + num_chunks;
6980 if (put_user(len, optlen))
6981 return -EFAULT;
6982 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6983 return -EFAULT;
6984 return 0;
6985 }
6986
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6987 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6988 char __user *optval, int __user *optlen)
6989 {
6990 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6991 struct sctp_authchunks __user *p = (void __user *)optval;
6992 struct sctp_authchunks val;
6993 struct sctp_association *asoc;
6994 struct sctp_chunks_param *ch;
6995 u32 num_chunks = 0;
6996 char __user *to;
6997
6998 if (len < sizeof(struct sctp_authchunks))
6999 return -EINVAL;
7000
7001 if (copy_from_user(&val, optval, sizeof(val)))
7002 return -EFAULT;
7003
7004 to = p->gauth_chunks;
7005 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7006 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7007 sctp_style(sk, UDP))
7008 return -EINVAL;
7009
7010 if (asoc) {
7011 if (!asoc->peer.auth_capable)
7012 return -EACCES;
7013 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7014 } else {
7015 if (!ep->auth_enable)
7016 return -EACCES;
7017 ch = ep->auth_chunk_list;
7018 }
7019 if (!ch)
7020 goto num;
7021
7022 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7023 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7024 return -EINVAL;
7025
7026 if (copy_to_user(to, ch->chunks, num_chunks))
7027 return -EFAULT;
7028 num:
7029 len = sizeof(struct sctp_authchunks) + num_chunks;
7030 if (put_user(len, optlen))
7031 return -EFAULT;
7032 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7033 return -EFAULT;
7034
7035 return 0;
7036 }
7037
7038 /*
7039 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7040 * This option gets the current number of associations that are attached
7041 * to a one-to-many style socket. The option value is an uint32_t.
7042 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)7043 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7044 char __user *optval, int __user *optlen)
7045 {
7046 struct sctp_sock *sp = sctp_sk(sk);
7047 struct sctp_association *asoc;
7048 u32 val = 0;
7049
7050 if (sctp_style(sk, TCP))
7051 return -EOPNOTSUPP;
7052
7053 if (len < sizeof(u32))
7054 return -EINVAL;
7055
7056 len = sizeof(u32);
7057
7058 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7059 val++;
7060 }
7061
7062 if (put_user(len, optlen))
7063 return -EFAULT;
7064 if (copy_to_user(optval, &val, len))
7065 return -EFAULT;
7066
7067 return 0;
7068 }
7069
7070 /*
7071 * 8.1.23 SCTP_AUTO_ASCONF
7072 * See the corresponding setsockopt entry as description
7073 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)7074 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7075 char __user *optval, int __user *optlen)
7076 {
7077 int val = 0;
7078
7079 if (len < sizeof(int))
7080 return -EINVAL;
7081
7082 len = sizeof(int);
7083 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7084 val = 1;
7085 if (put_user(len, optlen))
7086 return -EFAULT;
7087 if (copy_to_user(optval, &val, len))
7088 return -EFAULT;
7089 return 0;
7090 }
7091
7092 /*
7093 * 8.2.6. Get the Current Identifiers of Associations
7094 * (SCTP_GET_ASSOC_ID_LIST)
7095 *
7096 * This option gets the current list of SCTP association identifiers of
7097 * the SCTP associations handled by a one-to-many style socket.
7098 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)7099 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7100 char __user *optval, int __user *optlen)
7101 {
7102 struct sctp_sock *sp = sctp_sk(sk);
7103 struct sctp_association *asoc;
7104 struct sctp_assoc_ids *ids;
7105 u32 num = 0;
7106
7107 if (sctp_style(sk, TCP))
7108 return -EOPNOTSUPP;
7109
7110 if (len < sizeof(struct sctp_assoc_ids))
7111 return -EINVAL;
7112
7113 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7114 num++;
7115 }
7116
7117 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7118 return -EINVAL;
7119
7120 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7121
7122 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7123 if (unlikely(!ids))
7124 return -ENOMEM;
7125
7126 ids->gaids_number_of_ids = num;
7127 num = 0;
7128 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7129 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7130 }
7131
7132 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7133 kfree(ids);
7134 return -EFAULT;
7135 }
7136
7137 kfree(ids);
7138 return 0;
7139 }
7140
7141 /*
7142 * SCTP_PEER_ADDR_THLDS
7143 *
7144 * This option allows us to fetch the partially failed threshold for one or all
7145 * transports in an association. See Section 6.1 of:
7146 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7147 */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen,bool v2)7148 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7149 char __user *optval, int len,
7150 int __user *optlen, bool v2)
7151 {
7152 struct sctp_paddrthlds_v2 val;
7153 struct sctp_transport *trans;
7154 struct sctp_association *asoc;
7155 int min;
7156
7157 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7158 if (len < min)
7159 return -EINVAL;
7160 len = min;
7161 if (copy_from_user(&val, optval, len))
7162 return -EFAULT;
7163
7164 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7165 trans = sctp_addr_id2transport(sk, &val.spt_address,
7166 val.spt_assoc_id);
7167 if (!trans)
7168 return -ENOENT;
7169
7170 val.spt_pathmaxrxt = trans->pathmaxrxt;
7171 val.spt_pathpfthld = trans->pf_retrans;
7172 val.spt_pathcpthld = trans->ps_retrans;
7173
7174 goto out;
7175 }
7176
7177 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7178 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7179 sctp_style(sk, UDP))
7180 return -EINVAL;
7181
7182 if (asoc) {
7183 val.spt_pathpfthld = asoc->pf_retrans;
7184 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7185 val.spt_pathcpthld = asoc->ps_retrans;
7186 } else {
7187 struct sctp_sock *sp = sctp_sk(sk);
7188
7189 val.spt_pathpfthld = sp->pf_retrans;
7190 val.spt_pathmaxrxt = sp->pathmaxrxt;
7191 val.spt_pathcpthld = sp->ps_retrans;
7192 }
7193
7194 out:
7195 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7196 return -EFAULT;
7197
7198 return 0;
7199 }
7200
7201 /*
7202 * SCTP_GET_ASSOC_STATS
7203 *
7204 * This option retrieves local per endpoint statistics. It is modeled
7205 * after OpenSolaris' implementation
7206 */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)7207 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7208 char __user *optval,
7209 int __user *optlen)
7210 {
7211 struct sctp_assoc_stats sas;
7212 struct sctp_association *asoc = NULL;
7213
7214 /* User must provide at least the assoc id */
7215 if (len < sizeof(sctp_assoc_t))
7216 return -EINVAL;
7217
7218 /* Allow the struct to grow and fill in as much as possible */
7219 len = min_t(size_t, len, sizeof(sas));
7220
7221 if (copy_from_user(&sas, optval, len))
7222 return -EFAULT;
7223
7224 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7225 if (!asoc)
7226 return -EINVAL;
7227
7228 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7229 sas.sas_gapcnt = asoc->stats.gapcnt;
7230 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7231 sas.sas_osacks = asoc->stats.osacks;
7232 sas.sas_isacks = asoc->stats.isacks;
7233 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7234 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7235 sas.sas_oodchunks = asoc->stats.oodchunks;
7236 sas.sas_iodchunks = asoc->stats.iodchunks;
7237 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7238 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7239 sas.sas_idupchunks = asoc->stats.idupchunks;
7240 sas.sas_opackets = asoc->stats.opackets;
7241 sas.sas_ipackets = asoc->stats.ipackets;
7242
7243 /* New high max rto observed, will return 0 if not a single
7244 * RTO update took place. obs_rto_ipaddr will be bogus
7245 * in such a case
7246 */
7247 sas.sas_maxrto = asoc->stats.max_obs_rto;
7248 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7249 sizeof(struct sockaddr_storage));
7250
7251 /* Mark beginning of a new observation period */
7252 asoc->stats.max_obs_rto = asoc->rto_min;
7253
7254 if (put_user(len, optlen))
7255 return -EFAULT;
7256
7257 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7258
7259 if (copy_to_user(optval, &sas, len))
7260 return -EFAULT;
7261
7262 return 0;
7263 }
7264
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7265 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7266 char __user *optval,
7267 int __user *optlen)
7268 {
7269 int val = 0;
7270
7271 if (len < sizeof(int))
7272 return -EINVAL;
7273
7274 len = sizeof(int);
7275 if (sctp_sk(sk)->recvrcvinfo)
7276 val = 1;
7277 if (put_user(len, optlen))
7278 return -EFAULT;
7279 if (copy_to_user(optval, &val, len))
7280 return -EFAULT;
7281
7282 return 0;
7283 }
7284
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7285 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7286 char __user *optval,
7287 int __user *optlen)
7288 {
7289 int val = 0;
7290
7291 if (len < sizeof(int))
7292 return -EINVAL;
7293
7294 len = sizeof(int);
7295 if (sctp_sk(sk)->recvnxtinfo)
7296 val = 1;
7297 if (put_user(len, optlen))
7298 return -EFAULT;
7299 if (copy_to_user(optval, &val, len))
7300 return -EFAULT;
7301
7302 return 0;
7303 }
7304
sctp_getsockopt_pr_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7305 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7306 char __user *optval,
7307 int __user *optlen)
7308 {
7309 struct sctp_assoc_value params;
7310 struct sctp_association *asoc;
7311 int retval = -EFAULT;
7312
7313 if (len < sizeof(params)) {
7314 retval = -EINVAL;
7315 goto out;
7316 }
7317
7318 len = sizeof(params);
7319 if (copy_from_user(¶ms, optval, len))
7320 goto out;
7321
7322 asoc = sctp_id2assoc(sk, params.assoc_id);
7323 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7324 sctp_style(sk, UDP)) {
7325 retval = -EINVAL;
7326 goto out;
7327 }
7328
7329 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7330 : sctp_sk(sk)->ep->prsctp_enable;
7331
7332 if (put_user(len, optlen))
7333 goto out;
7334
7335 if (copy_to_user(optval, ¶ms, len))
7336 goto out;
7337
7338 retval = 0;
7339
7340 out:
7341 return retval;
7342 }
7343
sctp_getsockopt_default_prinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7344 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7345 char __user *optval,
7346 int __user *optlen)
7347 {
7348 struct sctp_default_prinfo info;
7349 struct sctp_association *asoc;
7350 int retval = -EFAULT;
7351
7352 if (len < sizeof(info)) {
7353 retval = -EINVAL;
7354 goto out;
7355 }
7356
7357 len = sizeof(info);
7358 if (copy_from_user(&info, optval, len))
7359 goto out;
7360
7361 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7362 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7363 sctp_style(sk, UDP)) {
7364 retval = -EINVAL;
7365 goto out;
7366 }
7367
7368 if (asoc) {
7369 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7370 info.pr_value = asoc->default_timetolive;
7371 } else {
7372 struct sctp_sock *sp = sctp_sk(sk);
7373
7374 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7375 info.pr_value = sp->default_timetolive;
7376 }
7377
7378 if (put_user(len, optlen))
7379 goto out;
7380
7381 if (copy_to_user(optval, &info, len))
7382 goto out;
7383
7384 retval = 0;
7385
7386 out:
7387 return retval;
7388 }
7389
sctp_getsockopt_pr_assocstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7390 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7391 char __user *optval,
7392 int __user *optlen)
7393 {
7394 struct sctp_prstatus params;
7395 struct sctp_association *asoc;
7396 int policy;
7397 int retval = -EINVAL;
7398
7399 if (len < sizeof(params))
7400 goto out;
7401
7402 len = sizeof(params);
7403 if (copy_from_user(¶ms, optval, len)) {
7404 retval = -EFAULT;
7405 goto out;
7406 }
7407
7408 policy = params.sprstat_policy;
7409 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7410 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7411 goto out;
7412
7413 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7414 if (!asoc)
7415 goto out;
7416
7417 if (policy == SCTP_PR_SCTP_ALL) {
7418 params.sprstat_abandoned_unsent = 0;
7419 params.sprstat_abandoned_sent = 0;
7420 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7421 params.sprstat_abandoned_unsent +=
7422 asoc->abandoned_unsent[policy];
7423 params.sprstat_abandoned_sent +=
7424 asoc->abandoned_sent[policy];
7425 }
7426 } else {
7427 params.sprstat_abandoned_unsent =
7428 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7429 params.sprstat_abandoned_sent =
7430 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7431 }
7432
7433 if (put_user(len, optlen)) {
7434 retval = -EFAULT;
7435 goto out;
7436 }
7437
7438 if (copy_to_user(optval, ¶ms, len)) {
7439 retval = -EFAULT;
7440 goto out;
7441 }
7442
7443 retval = 0;
7444
7445 out:
7446 return retval;
7447 }
7448
sctp_getsockopt_pr_streamstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7449 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7450 char __user *optval,
7451 int __user *optlen)
7452 {
7453 struct sctp_stream_out_ext *streamoute;
7454 struct sctp_association *asoc;
7455 struct sctp_prstatus params;
7456 int retval = -EINVAL;
7457 int policy;
7458
7459 if (len < sizeof(params))
7460 goto out;
7461
7462 len = sizeof(params);
7463 if (copy_from_user(¶ms, optval, len)) {
7464 retval = -EFAULT;
7465 goto out;
7466 }
7467
7468 policy = params.sprstat_policy;
7469 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7470 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7471 goto out;
7472
7473 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7474 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7475 goto out;
7476
7477 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7478 if (!streamoute) {
7479 /* Not allocated yet, means all stats are 0 */
7480 params.sprstat_abandoned_unsent = 0;
7481 params.sprstat_abandoned_sent = 0;
7482 retval = 0;
7483 goto out;
7484 }
7485
7486 if (policy == SCTP_PR_SCTP_ALL) {
7487 params.sprstat_abandoned_unsent = 0;
7488 params.sprstat_abandoned_sent = 0;
7489 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7490 params.sprstat_abandoned_unsent +=
7491 streamoute->abandoned_unsent[policy];
7492 params.sprstat_abandoned_sent +=
7493 streamoute->abandoned_sent[policy];
7494 }
7495 } else {
7496 params.sprstat_abandoned_unsent =
7497 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7498 params.sprstat_abandoned_sent =
7499 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7500 }
7501
7502 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7503 retval = -EFAULT;
7504 goto out;
7505 }
7506
7507 retval = 0;
7508
7509 out:
7510 return retval;
7511 }
7512
sctp_getsockopt_reconfig_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7513 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7514 char __user *optval,
7515 int __user *optlen)
7516 {
7517 struct sctp_assoc_value params;
7518 struct sctp_association *asoc;
7519 int retval = -EFAULT;
7520
7521 if (len < sizeof(params)) {
7522 retval = -EINVAL;
7523 goto out;
7524 }
7525
7526 len = sizeof(params);
7527 if (copy_from_user(¶ms, optval, len))
7528 goto out;
7529
7530 asoc = sctp_id2assoc(sk, params.assoc_id);
7531 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7532 sctp_style(sk, UDP)) {
7533 retval = -EINVAL;
7534 goto out;
7535 }
7536
7537 params.assoc_value = asoc ? asoc->peer.reconf_capable
7538 : sctp_sk(sk)->ep->reconf_enable;
7539
7540 if (put_user(len, optlen))
7541 goto out;
7542
7543 if (copy_to_user(optval, ¶ms, len))
7544 goto out;
7545
7546 retval = 0;
7547
7548 out:
7549 return retval;
7550 }
7551
sctp_getsockopt_enable_strreset(struct sock * sk,int len,char __user * optval,int __user * optlen)7552 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7553 char __user *optval,
7554 int __user *optlen)
7555 {
7556 struct sctp_assoc_value params;
7557 struct sctp_association *asoc;
7558 int retval = -EFAULT;
7559
7560 if (len < sizeof(params)) {
7561 retval = -EINVAL;
7562 goto out;
7563 }
7564
7565 len = sizeof(params);
7566 if (copy_from_user(¶ms, optval, len))
7567 goto out;
7568
7569 asoc = sctp_id2assoc(sk, params.assoc_id);
7570 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7571 sctp_style(sk, UDP)) {
7572 retval = -EINVAL;
7573 goto out;
7574 }
7575
7576 params.assoc_value = asoc ? asoc->strreset_enable
7577 : sctp_sk(sk)->ep->strreset_enable;
7578
7579 if (put_user(len, optlen))
7580 goto out;
7581
7582 if (copy_to_user(optval, ¶ms, len))
7583 goto out;
7584
7585 retval = 0;
7586
7587 out:
7588 return retval;
7589 }
7590
sctp_getsockopt_scheduler(struct sock * sk,int len,char __user * optval,int __user * optlen)7591 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7592 char __user *optval,
7593 int __user *optlen)
7594 {
7595 struct sctp_assoc_value params;
7596 struct sctp_association *asoc;
7597 int retval = -EFAULT;
7598
7599 if (len < sizeof(params)) {
7600 retval = -EINVAL;
7601 goto out;
7602 }
7603
7604 len = sizeof(params);
7605 if (copy_from_user(¶ms, optval, len))
7606 goto out;
7607
7608 asoc = sctp_id2assoc(sk, params.assoc_id);
7609 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7610 sctp_style(sk, UDP)) {
7611 retval = -EINVAL;
7612 goto out;
7613 }
7614
7615 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7616 : sctp_sk(sk)->default_ss;
7617
7618 if (put_user(len, optlen))
7619 goto out;
7620
7621 if (copy_to_user(optval, ¶ms, len))
7622 goto out;
7623
7624 retval = 0;
7625
7626 out:
7627 return retval;
7628 }
7629
sctp_getsockopt_scheduler_value(struct sock * sk,int len,char __user * optval,int __user * optlen)7630 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7631 char __user *optval,
7632 int __user *optlen)
7633 {
7634 struct sctp_stream_value params;
7635 struct sctp_association *asoc;
7636 int retval = -EFAULT;
7637
7638 if (len < sizeof(params)) {
7639 retval = -EINVAL;
7640 goto out;
7641 }
7642
7643 len = sizeof(params);
7644 if (copy_from_user(¶ms, optval, len))
7645 goto out;
7646
7647 asoc = sctp_id2assoc(sk, params.assoc_id);
7648 if (!asoc) {
7649 retval = -EINVAL;
7650 goto out;
7651 }
7652
7653 retval = sctp_sched_get_value(asoc, params.stream_id,
7654 ¶ms.stream_value);
7655 if (retval)
7656 goto out;
7657
7658 if (put_user(len, optlen)) {
7659 retval = -EFAULT;
7660 goto out;
7661 }
7662
7663 if (copy_to_user(optval, ¶ms, len)) {
7664 retval = -EFAULT;
7665 goto out;
7666 }
7667
7668 out:
7669 return retval;
7670 }
7671
sctp_getsockopt_interleaving_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7672 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7673 char __user *optval,
7674 int __user *optlen)
7675 {
7676 struct sctp_assoc_value params;
7677 struct sctp_association *asoc;
7678 int retval = -EFAULT;
7679
7680 if (len < sizeof(params)) {
7681 retval = -EINVAL;
7682 goto out;
7683 }
7684
7685 len = sizeof(params);
7686 if (copy_from_user(¶ms, optval, len))
7687 goto out;
7688
7689 asoc = sctp_id2assoc(sk, params.assoc_id);
7690 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7691 sctp_style(sk, UDP)) {
7692 retval = -EINVAL;
7693 goto out;
7694 }
7695
7696 params.assoc_value = asoc ? asoc->peer.intl_capable
7697 : sctp_sk(sk)->ep->intl_enable;
7698
7699 if (put_user(len, optlen))
7700 goto out;
7701
7702 if (copy_to_user(optval, ¶ms, len))
7703 goto out;
7704
7705 retval = 0;
7706
7707 out:
7708 return retval;
7709 }
7710
sctp_getsockopt_reuse_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7711 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7712 char __user *optval,
7713 int __user *optlen)
7714 {
7715 int val;
7716
7717 if (len < sizeof(int))
7718 return -EINVAL;
7719
7720 len = sizeof(int);
7721 val = sctp_sk(sk)->reuse;
7722 if (put_user(len, optlen))
7723 return -EFAULT;
7724
7725 if (copy_to_user(optval, &val, len))
7726 return -EFAULT;
7727
7728 return 0;
7729 }
7730
sctp_getsockopt_event(struct sock * sk,int len,char __user * optval,int __user * optlen)7731 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7732 int __user *optlen)
7733 {
7734 struct sctp_association *asoc;
7735 struct sctp_event param;
7736 __u16 subscribe;
7737
7738 if (len < sizeof(param))
7739 return -EINVAL;
7740
7741 len = sizeof(param);
7742 if (copy_from_user(¶m, optval, len))
7743 return -EFAULT;
7744
7745 if (param.se_type < SCTP_SN_TYPE_BASE ||
7746 param.se_type > SCTP_SN_TYPE_MAX)
7747 return -EINVAL;
7748
7749 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7750 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7751 sctp_style(sk, UDP))
7752 return -EINVAL;
7753
7754 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7755 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7756
7757 if (put_user(len, optlen))
7758 return -EFAULT;
7759
7760 if (copy_to_user(optval, ¶m, len))
7761 return -EFAULT;
7762
7763 return 0;
7764 }
7765
sctp_getsockopt_asconf_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7766 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7767 char __user *optval,
7768 int __user *optlen)
7769 {
7770 struct sctp_assoc_value params;
7771 struct sctp_association *asoc;
7772 int retval = -EFAULT;
7773
7774 if (len < sizeof(params)) {
7775 retval = -EINVAL;
7776 goto out;
7777 }
7778
7779 len = sizeof(params);
7780 if (copy_from_user(¶ms, optval, len))
7781 goto out;
7782
7783 asoc = sctp_id2assoc(sk, params.assoc_id);
7784 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7785 sctp_style(sk, UDP)) {
7786 retval = -EINVAL;
7787 goto out;
7788 }
7789
7790 params.assoc_value = asoc ? asoc->peer.asconf_capable
7791 : sctp_sk(sk)->ep->asconf_enable;
7792
7793 if (put_user(len, optlen))
7794 goto out;
7795
7796 if (copy_to_user(optval, ¶ms, len))
7797 goto out;
7798
7799 retval = 0;
7800
7801 out:
7802 return retval;
7803 }
7804
sctp_getsockopt_auth_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7805 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7806 char __user *optval,
7807 int __user *optlen)
7808 {
7809 struct sctp_assoc_value params;
7810 struct sctp_association *asoc;
7811 int retval = -EFAULT;
7812
7813 if (len < sizeof(params)) {
7814 retval = -EINVAL;
7815 goto out;
7816 }
7817
7818 len = sizeof(params);
7819 if (copy_from_user(¶ms, optval, len))
7820 goto out;
7821
7822 asoc = sctp_id2assoc(sk, params.assoc_id);
7823 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7824 sctp_style(sk, UDP)) {
7825 retval = -EINVAL;
7826 goto out;
7827 }
7828
7829 params.assoc_value = asoc ? asoc->peer.auth_capable
7830 : sctp_sk(sk)->ep->auth_enable;
7831
7832 if (put_user(len, optlen))
7833 goto out;
7834
7835 if (copy_to_user(optval, ¶ms, len))
7836 goto out;
7837
7838 retval = 0;
7839
7840 out:
7841 return retval;
7842 }
7843
sctp_getsockopt_ecn_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7844 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7845 char __user *optval,
7846 int __user *optlen)
7847 {
7848 struct sctp_assoc_value params;
7849 struct sctp_association *asoc;
7850 int retval = -EFAULT;
7851
7852 if (len < sizeof(params)) {
7853 retval = -EINVAL;
7854 goto out;
7855 }
7856
7857 len = sizeof(params);
7858 if (copy_from_user(¶ms, optval, len))
7859 goto out;
7860
7861 asoc = sctp_id2assoc(sk, params.assoc_id);
7862 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7863 sctp_style(sk, UDP)) {
7864 retval = -EINVAL;
7865 goto out;
7866 }
7867
7868 params.assoc_value = asoc ? asoc->peer.ecn_capable
7869 : sctp_sk(sk)->ep->ecn_enable;
7870
7871 if (put_user(len, optlen))
7872 goto out;
7873
7874 if (copy_to_user(optval, ¶ms, len))
7875 goto out;
7876
7877 retval = 0;
7878
7879 out:
7880 return retval;
7881 }
7882
sctp_getsockopt_pf_expose(struct sock * sk,int len,char __user * optval,int __user * optlen)7883 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7884 char __user *optval,
7885 int __user *optlen)
7886 {
7887 struct sctp_assoc_value params;
7888 struct sctp_association *asoc;
7889 int retval = -EFAULT;
7890
7891 if (len < sizeof(params)) {
7892 retval = -EINVAL;
7893 goto out;
7894 }
7895
7896 len = sizeof(params);
7897 if (copy_from_user(¶ms, optval, len))
7898 goto out;
7899
7900 asoc = sctp_id2assoc(sk, params.assoc_id);
7901 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7902 sctp_style(sk, UDP)) {
7903 retval = -EINVAL;
7904 goto out;
7905 }
7906
7907 params.assoc_value = asoc ? asoc->pf_expose
7908 : sctp_sk(sk)->pf_expose;
7909
7910 if (put_user(len, optlen))
7911 goto out;
7912
7913 if (copy_to_user(optval, ¶ms, len))
7914 goto out;
7915
7916 retval = 0;
7917
7918 out:
7919 return retval;
7920 }
7921
sctp_getsockopt_encap_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7922 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7923 char __user *optval, int __user *optlen)
7924 {
7925 struct sctp_association *asoc;
7926 struct sctp_udpencaps encap;
7927 struct sctp_transport *t;
7928 __be16 encap_port;
7929
7930 if (len < sizeof(encap))
7931 return -EINVAL;
7932
7933 len = sizeof(encap);
7934 if (copy_from_user(&encap, optval, len))
7935 return -EFAULT;
7936
7937 /* If an address other than INADDR_ANY is specified, and
7938 * no transport is found, then the request is invalid.
7939 */
7940 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7941 t = sctp_addr_id2transport(sk, &encap.sue_address,
7942 encap.sue_assoc_id);
7943 if (!t) {
7944 pr_debug("%s: failed no transport\n", __func__);
7945 return -EINVAL;
7946 }
7947
7948 encap_port = t->encap_port;
7949 goto out;
7950 }
7951
7952 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7953 * socket is a one to many style socket, and an association
7954 * was not found, then the id was invalid.
7955 */
7956 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7957 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7958 sctp_style(sk, UDP)) {
7959 pr_debug("%s: failed no association\n", __func__);
7960 return -EINVAL;
7961 }
7962
7963 if (asoc) {
7964 encap_port = asoc->encap_port;
7965 goto out;
7966 }
7967
7968 encap_port = sctp_sk(sk)->encap_port;
7969
7970 out:
7971 encap.sue_port = (__force uint16_t)encap_port;
7972 if (copy_to_user(optval, &encap, len))
7973 return -EFAULT;
7974
7975 if (put_user(len, optlen))
7976 return -EFAULT;
7977
7978 return 0;
7979 }
7980
sctp_getsockopt_probe_interval(struct sock * sk,int len,char __user * optval,int __user * optlen)7981 static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7982 char __user *optval,
7983 int __user *optlen)
7984 {
7985 struct sctp_probeinterval params;
7986 struct sctp_association *asoc;
7987 struct sctp_transport *t;
7988 __u32 probe_interval;
7989
7990 if (len < sizeof(params))
7991 return -EINVAL;
7992
7993 len = sizeof(params);
7994 if (copy_from_user(¶ms, optval, len))
7995 return -EFAULT;
7996
7997 /* If an address other than INADDR_ANY is specified, and
7998 * no transport is found, then the request is invalid.
7999 */
8000 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) {
8001 t = sctp_addr_id2transport(sk, ¶ms.spi_address,
8002 params.spi_assoc_id);
8003 if (!t) {
8004 pr_debug("%s: failed no transport\n", __func__);
8005 return -EINVAL;
8006 }
8007
8008 probe_interval = jiffies_to_msecs(t->probe_interval);
8009 goto out;
8010 }
8011
8012 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8013 * socket is a one to many style socket, and an association
8014 * was not found, then the id was invalid.
8015 */
8016 asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8017 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8018 sctp_style(sk, UDP)) {
8019 pr_debug("%s: failed no association\n", __func__);
8020 return -EINVAL;
8021 }
8022
8023 if (asoc) {
8024 probe_interval = jiffies_to_msecs(asoc->probe_interval);
8025 goto out;
8026 }
8027
8028 probe_interval = sctp_sk(sk)->probe_interval;
8029
8030 out:
8031 params.spi_interval = probe_interval;
8032 if (copy_to_user(optval, ¶ms, len))
8033 return -EFAULT;
8034
8035 if (put_user(len, optlen))
8036 return -EFAULT;
8037
8038 return 0;
8039 }
8040
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)8041 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8042 char __user *optval, int __user *optlen)
8043 {
8044 int retval = 0;
8045 int len;
8046
8047 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8048
8049 /* I can hardly begin to describe how wrong this is. This is
8050 * so broken as to be worse than useless. The API draft
8051 * REALLY is NOT helpful here... I am not convinced that the
8052 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8053 * are at all well-founded.
8054 */
8055 if (level != SOL_SCTP) {
8056 struct sctp_af *af = sctp_sk(sk)->pf->af;
8057
8058 retval = af->getsockopt(sk, level, optname, optval, optlen);
8059 return retval;
8060 }
8061
8062 if (get_user(len, optlen))
8063 return -EFAULT;
8064
8065 if (len < 0)
8066 return -EINVAL;
8067
8068 lock_sock(sk);
8069
8070 switch (optname) {
8071 case SCTP_STATUS:
8072 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8073 break;
8074 case SCTP_DISABLE_FRAGMENTS:
8075 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8076 optlen);
8077 break;
8078 case SCTP_EVENTS:
8079 retval = sctp_getsockopt_events(sk, len, optval, optlen);
8080 break;
8081 case SCTP_AUTOCLOSE:
8082 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8083 break;
8084 case SCTP_SOCKOPT_PEELOFF:
8085 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8086 break;
8087 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8088 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8089 break;
8090 case SCTP_PEER_ADDR_PARAMS:
8091 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8092 optlen);
8093 break;
8094 case SCTP_DELAYED_SACK:
8095 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8096 optlen);
8097 break;
8098 case SCTP_INITMSG:
8099 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8100 break;
8101 case SCTP_GET_PEER_ADDRS:
8102 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8103 optlen);
8104 break;
8105 case SCTP_GET_LOCAL_ADDRS:
8106 retval = sctp_getsockopt_local_addrs(sk, len, optval,
8107 optlen);
8108 break;
8109 case SCTP_SOCKOPT_CONNECTX3:
8110 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8111 break;
8112 case SCTP_DEFAULT_SEND_PARAM:
8113 retval = sctp_getsockopt_default_send_param(sk, len,
8114 optval, optlen);
8115 break;
8116 case SCTP_DEFAULT_SNDINFO:
8117 retval = sctp_getsockopt_default_sndinfo(sk, len,
8118 optval, optlen);
8119 break;
8120 case SCTP_PRIMARY_ADDR:
8121 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8122 break;
8123 case SCTP_NODELAY:
8124 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8125 break;
8126 case SCTP_RTOINFO:
8127 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8128 break;
8129 case SCTP_ASSOCINFO:
8130 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8131 break;
8132 case SCTP_I_WANT_MAPPED_V4_ADDR:
8133 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8134 break;
8135 case SCTP_MAXSEG:
8136 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8137 break;
8138 case SCTP_GET_PEER_ADDR_INFO:
8139 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8140 optlen);
8141 break;
8142 case SCTP_ADAPTATION_LAYER:
8143 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8144 optlen);
8145 break;
8146 case SCTP_CONTEXT:
8147 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8148 break;
8149 case SCTP_FRAGMENT_INTERLEAVE:
8150 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8151 optlen);
8152 break;
8153 case SCTP_PARTIAL_DELIVERY_POINT:
8154 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8155 optlen);
8156 break;
8157 case SCTP_MAX_BURST:
8158 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8159 break;
8160 case SCTP_AUTH_KEY:
8161 case SCTP_AUTH_CHUNK:
8162 case SCTP_AUTH_DELETE_KEY:
8163 case SCTP_AUTH_DEACTIVATE_KEY:
8164 retval = -EOPNOTSUPP;
8165 break;
8166 case SCTP_HMAC_IDENT:
8167 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8168 break;
8169 case SCTP_AUTH_ACTIVE_KEY:
8170 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8171 break;
8172 case SCTP_PEER_AUTH_CHUNKS:
8173 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8174 optlen);
8175 break;
8176 case SCTP_LOCAL_AUTH_CHUNKS:
8177 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8178 optlen);
8179 break;
8180 case SCTP_GET_ASSOC_NUMBER:
8181 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8182 break;
8183 case SCTP_GET_ASSOC_ID_LIST:
8184 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8185 break;
8186 case SCTP_AUTO_ASCONF:
8187 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8188 break;
8189 case SCTP_PEER_ADDR_THLDS:
8190 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8191 optlen, false);
8192 break;
8193 case SCTP_PEER_ADDR_THLDS_V2:
8194 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8195 optlen, true);
8196 break;
8197 case SCTP_GET_ASSOC_STATS:
8198 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8199 break;
8200 case SCTP_RECVRCVINFO:
8201 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8202 break;
8203 case SCTP_RECVNXTINFO:
8204 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8205 break;
8206 case SCTP_PR_SUPPORTED:
8207 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8208 break;
8209 case SCTP_DEFAULT_PRINFO:
8210 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8211 optlen);
8212 break;
8213 case SCTP_PR_ASSOC_STATUS:
8214 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8215 optlen);
8216 break;
8217 case SCTP_PR_STREAM_STATUS:
8218 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8219 optlen);
8220 break;
8221 case SCTP_RECONFIG_SUPPORTED:
8222 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8223 optlen);
8224 break;
8225 case SCTP_ENABLE_STREAM_RESET:
8226 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8227 optlen);
8228 break;
8229 case SCTP_STREAM_SCHEDULER:
8230 retval = sctp_getsockopt_scheduler(sk, len, optval,
8231 optlen);
8232 break;
8233 case SCTP_STREAM_SCHEDULER_VALUE:
8234 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8235 optlen);
8236 break;
8237 case SCTP_INTERLEAVING_SUPPORTED:
8238 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8239 optlen);
8240 break;
8241 case SCTP_REUSE_PORT:
8242 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8243 break;
8244 case SCTP_EVENT:
8245 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8246 break;
8247 case SCTP_ASCONF_SUPPORTED:
8248 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8249 optlen);
8250 break;
8251 case SCTP_AUTH_SUPPORTED:
8252 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8253 optlen);
8254 break;
8255 case SCTP_ECN_SUPPORTED:
8256 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8257 break;
8258 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8259 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8260 break;
8261 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8262 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8263 break;
8264 case SCTP_PLPMTUD_PROBE_INTERVAL:
8265 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8266 break;
8267 default:
8268 retval = -ENOPROTOOPT;
8269 break;
8270 }
8271
8272 release_sock(sk);
8273 return retval;
8274 }
8275
sctp_hash(struct sock * sk)8276 static int sctp_hash(struct sock *sk)
8277 {
8278 /* STUB */
8279 return 0;
8280 }
8281
sctp_unhash(struct sock * sk)8282 static void sctp_unhash(struct sock *sk)
8283 {
8284 /* STUB */
8285 }
8286
8287 /* Check if port is acceptable. Possibly find first available port.
8288 *
8289 * The port hash table (contained in the 'global' SCTP protocol storage
8290 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8291 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8292 * list (the list number is the port number hashed out, so as you
8293 * would expect from a hash function, all the ports in a given list have
8294 * such a number that hashes out to the same list number; you were
8295 * expecting that, right?); so each list has a set of ports, with a
8296 * link to the socket (struct sock) that uses it, the port number and
8297 * a fastreuse flag (FIXME: NPI ipg).
8298 */
8299 static struct sctp_bind_bucket *sctp_bucket_create(
8300 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8301
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)8302 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8303 {
8304 struct sctp_sock *sp = sctp_sk(sk);
8305 bool reuse = (sk->sk_reuse || sp->reuse);
8306 struct sctp_bind_hashbucket *head; /* hash list */
8307 struct net *net = sock_net(sk);
8308 kuid_t uid = sock_i_uid(sk);
8309 struct sctp_bind_bucket *pp;
8310 unsigned short snum;
8311 int ret;
8312
8313 snum = ntohs(addr->v4.sin_port);
8314
8315 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8316
8317 if (snum == 0) {
8318 /* Search for an available port. */
8319 int low, high, remaining, index;
8320 unsigned int rover;
8321
8322 inet_get_local_port_range(net, &low, &high);
8323 remaining = (high - low) + 1;
8324 rover = prandom_u32() % remaining + low;
8325
8326 do {
8327 rover++;
8328 if ((rover < low) || (rover > high))
8329 rover = low;
8330 if (inet_is_local_reserved_port(net, rover))
8331 continue;
8332 index = sctp_phashfn(net, rover);
8333 head = &sctp_port_hashtable[index];
8334 spin_lock_bh(&head->lock);
8335 sctp_for_each_hentry(pp, &head->chain)
8336 if ((pp->port == rover) &&
8337 net_eq(net, pp->net))
8338 goto next;
8339 break;
8340 next:
8341 spin_unlock_bh(&head->lock);
8342 cond_resched();
8343 } while (--remaining > 0);
8344
8345 /* Exhausted local port range during search? */
8346 ret = 1;
8347 if (remaining <= 0)
8348 return ret;
8349
8350 /* OK, here is the one we will use. HEAD (the port
8351 * hash table list entry) is non-NULL and we hold it's
8352 * mutex.
8353 */
8354 snum = rover;
8355 } else {
8356 /* We are given an specific port number; we verify
8357 * that it is not being used. If it is used, we will
8358 * exahust the search in the hash list corresponding
8359 * to the port number (snum) - we detect that with the
8360 * port iterator, pp being NULL.
8361 */
8362 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8363 spin_lock_bh(&head->lock);
8364 sctp_for_each_hentry(pp, &head->chain) {
8365 if ((pp->port == snum) && net_eq(pp->net, net))
8366 goto pp_found;
8367 }
8368 }
8369 pp = NULL;
8370 goto pp_not_found;
8371 pp_found:
8372 if (!hlist_empty(&pp->owner)) {
8373 /* We had a port hash table hit - there is an
8374 * available port (pp != NULL) and it is being
8375 * used by other socket (pp->owner not empty); that other
8376 * socket is going to be sk2.
8377 */
8378 struct sock *sk2;
8379
8380 pr_debug("%s: found a possible match\n", __func__);
8381
8382 if ((pp->fastreuse && reuse &&
8383 sk->sk_state != SCTP_SS_LISTENING) ||
8384 (pp->fastreuseport && sk->sk_reuseport &&
8385 uid_eq(pp->fastuid, uid)))
8386 goto success;
8387
8388 /* Run through the list of sockets bound to the port
8389 * (pp->port) [via the pointers bind_next and
8390 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8391 * we get the endpoint they describe and run through
8392 * the endpoint's list of IP (v4 or v6) addresses,
8393 * comparing each of the addresses with the address of
8394 * the socket sk. If we find a match, then that means
8395 * that this port/socket (sk) combination are already
8396 * in an endpoint.
8397 */
8398 sk_for_each_bound(sk2, &pp->owner) {
8399 struct sctp_sock *sp2 = sctp_sk(sk2);
8400 struct sctp_endpoint *ep2 = sp2->ep;
8401
8402 if (sk == sk2 ||
8403 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8404 sk2->sk_state != SCTP_SS_LISTENING) ||
8405 (sk->sk_reuseport && sk2->sk_reuseport &&
8406 uid_eq(uid, sock_i_uid(sk2))))
8407 continue;
8408
8409 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8410 addr, sp2, sp)) {
8411 ret = 1;
8412 goto fail_unlock;
8413 }
8414 }
8415
8416 pr_debug("%s: found a match\n", __func__);
8417 }
8418 pp_not_found:
8419 /* If there was a hash table miss, create a new port. */
8420 ret = 1;
8421 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8422 goto fail_unlock;
8423
8424 /* In either case (hit or miss), make sure fastreuse is 1 only
8425 * if sk->sk_reuse is too (that is, if the caller requested
8426 * SO_REUSEADDR on this socket -sk-).
8427 */
8428 if (hlist_empty(&pp->owner)) {
8429 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8430 pp->fastreuse = 1;
8431 else
8432 pp->fastreuse = 0;
8433
8434 if (sk->sk_reuseport) {
8435 pp->fastreuseport = 1;
8436 pp->fastuid = uid;
8437 } else {
8438 pp->fastreuseport = 0;
8439 }
8440 } else {
8441 if (pp->fastreuse &&
8442 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8443 pp->fastreuse = 0;
8444
8445 if (pp->fastreuseport &&
8446 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8447 pp->fastreuseport = 0;
8448 }
8449
8450 /* We are set, so fill up all the data in the hash table
8451 * entry, tie the socket list information with the rest of the
8452 * sockets FIXME: Blurry, NPI (ipg).
8453 */
8454 success:
8455 if (!sp->bind_hash) {
8456 inet_sk(sk)->inet_num = snum;
8457 sk_add_bind_node(sk, &pp->owner);
8458 sp->bind_hash = pp;
8459 }
8460 ret = 0;
8461
8462 fail_unlock:
8463 spin_unlock_bh(&head->lock);
8464 return ret;
8465 }
8466
8467 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8468 * port is requested.
8469 */
sctp_get_port(struct sock * sk,unsigned short snum)8470 static int sctp_get_port(struct sock *sk, unsigned short snum)
8471 {
8472 union sctp_addr addr;
8473 struct sctp_af *af = sctp_sk(sk)->pf->af;
8474
8475 /* Set up a dummy address struct from the sk. */
8476 af->from_sk(&addr, sk);
8477 addr.v4.sin_port = htons(snum);
8478
8479 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8480 return sctp_get_port_local(sk, &addr);
8481 }
8482
8483 /*
8484 * Move a socket to LISTENING state.
8485 */
sctp_listen_start(struct sock * sk,int backlog)8486 static int sctp_listen_start(struct sock *sk, int backlog)
8487 {
8488 struct sctp_sock *sp = sctp_sk(sk);
8489 struct sctp_endpoint *ep = sp->ep;
8490 struct crypto_shash *tfm = NULL;
8491 char alg[32];
8492
8493 /* Allocate HMAC for generating cookie. */
8494 if (!sp->hmac && sp->sctp_hmac_alg) {
8495 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8496 tfm = crypto_alloc_shash(alg, 0, 0);
8497 if (IS_ERR(tfm)) {
8498 net_info_ratelimited("failed to load transform for %s: %ld\n",
8499 sp->sctp_hmac_alg, PTR_ERR(tfm));
8500 return -ENOSYS;
8501 }
8502 sctp_sk(sk)->hmac = tfm;
8503 }
8504
8505 /*
8506 * If a bind() or sctp_bindx() is not called prior to a listen()
8507 * call that allows new associations to be accepted, the system
8508 * picks an ephemeral port and will choose an address set equivalent
8509 * to binding with a wildcard address.
8510 *
8511 * This is not currently spelled out in the SCTP sockets
8512 * extensions draft, but follows the practice as seen in TCP
8513 * sockets.
8514 *
8515 */
8516 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8517 if (!ep->base.bind_addr.port) {
8518 if (sctp_autobind(sk))
8519 return -EAGAIN;
8520 } else {
8521 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8522 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8523 return -EADDRINUSE;
8524 }
8525 }
8526
8527 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8528 return sctp_hash_endpoint(ep);
8529 }
8530
8531 /*
8532 * 4.1.3 / 5.1.3 listen()
8533 *
8534 * By default, new associations are not accepted for UDP style sockets.
8535 * An application uses listen() to mark a socket as being able to
8536 * accept new associations.
8537 *
8538 * On TCP style sockets, applications use listen() to ready the SCTP
8539 * endpoint for accepting inbound associations.
8540 *
8541 * On both types of endpoints a backlog of '0' disables listening.
8542 *
8543 * Move a socket to LISTENING state.
8544 */
sctp_inet_listen(struct socket * sock,int backlog)8545 int sctp_inet_listen(struct socket *sock, int backlog)
8546 {
8547 struct sock *sk = sock->sk;
8548 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8549 int err = -EINVAL;
8550
8551 if (unlikely(backlog < 0))
8552 return err;
8553
8554 lock_sock(sk);
8555
8556 /* Peeled-off sockets are not allowed to listen(). */
8557 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8558 goto out;
8559
8560 if (sock->state != SS_UNCONNECTED)
8561 goto out;
8562
8563 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8564 goto out;
8565
8566 /* If backlog is zero, disable listening. */
8567 if (!backlog) {
8568 if (sctp_sstate(sk, CLOSED))
8569 goto out;
8570
8571 err = 0;
8572 sctp_unhash_endpoint(ep);
8573 sk->sk_state = SCTP_SS_CLOSED;
8574 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8575 sctp_sk(sk)->bind_hash->fastreuse = 1;
8576 goto out;
8577 }
8578
8579 /* If we are already listening, just update the backlog */
8580 if (sctp_sstate(sk, LISTENING))
8581 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8582 else {
8583 err = sctp_listen_start(sk, backlog);
8584 if (err)
8585 goto out;
8586 }
8587
8588 err = 0;
8589 out:
8590 release_sock(sk);
8591 return err;
8592 }
8593
8594 /*
8595 * This function is done by modeling the current datagram_poll() and the
8596 * tcp_poll(). Note that, based on these implementations, we don't
8597 * lock the socket in this function, even though it seems that,
8598 * ideally, locking or some other mechanisms can be used to ensure
8599 * the integrity of the counters (sndbuf and wmem_alloc) used
8600 * in this place. We assume that we don't need locks either until proven
8601 * otherwise.
8602 *
8603 * Another thing to note is that we include the Async I/O support
8604 * here, again, by modeling the current TCP/UDP code. We don't have
8605 * a good way to test with it yet.
8606 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)8607 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8608 {
8609 struct sock *sk = sock->sk;
8610 struct sctp_sock *sp = sctp_sk(sk);
8611 __poll_t mask;
8612
8613 poll_wait(file, sk_sleep(sk), wait);
8614
8615 sock_rps_record_flow(sk);
8616
8617 /* A TCP-style listening socket becomes readable when the accept queue
8618 * is not empty.
8619 */
8620 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8621 return (!list_empty(&sp->ep->asocs)) ?
8622 (EPOLLIN | EPOLLRDNORM) : 0;
8623
8624 mask = 0;
8625
8626 /* Is there any exceptional events? */
8627 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8628 mask |= EPOLLERR |
8629 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8630 if (sk->sk_shutdown & RCV_SHUTDOWN)
8631 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8632 if (sk->sk_shutdown == SHUTDOWN_MASK)
8633 mask |= EPOLLHUP;
8634
8635 /* Is it readable? Reconsider this code with TCP-style support. */
8636 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8637 mask |= EPOLLIN | EPOLLRDNORM;
8638
8639 /* The association is either gone or not ready. */
8640 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8641 return mask;
8642
8643 /* Is it writable? */
8644 if (sctp_writeable(sk)) {
8645 mask |= EPOLLOUT | EPOLLWRNORM;
8646 } else {
8647 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8648 /*
8649 * Since the socket is not locked, the buffer
8650 * might be made available after the writeable check and
8651 * before the bit is set. This could cause a lost I/O
8652 * signal. tcp_poll() has a race breaker for this race
8653 * condition. Based on their implementation, we put
8654 * in the following code to cover it as well.
8655 */
8656 if (sctp_writeable(sk))
8657 mask |= EPOLLOUT | EPOLLWRNORM;
8658 }
8659 return mask;
8660 }
8661
8662 /********************************************************************
8663 * 2nd Level Abstractions
8664 ********************************************************************/
8665
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)8666 static struct sctp_bind_bucket *sctp_bucket_create(
8667 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8668 {
8669 struct sctp_bind_bucket *pp;
8670
8671 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8672 if (pp) {
8673 SCTP_DBG_OBJCNT_INC(bind_bucket);
8674 pp->port = snum;
8675 pp->fastreuse = 0;
8676 INIT_HLIST_HEAD(&pp->owner);
8677 pp->net = net;
8678 hlist_add_head(&pp->node, &head->chain);
8679 }
8680 return pp;
8681 }
8682
8683 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)8684 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8685 {
8686 if (pp && hlist_empty(&pp->owner)) {
8687 __hlist_del(&pp->node);
8688 kmem_cache_free(sctp_bucket_cachep, pp);
8689 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8690 }
8691 }
8692
8693 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)8694 static inline void __sctp_put_port(struct sock *sk)
8695 {
8696 struct sctp_bind_hashbucket *head =
8697 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8698 inet_sk(sk)->inet_num)];
8699 struct sctp_bind_bucket *pp;
8700
8701 spin_lock(&head->lock);
8702 pp = sctp_sk(sk)->bind_hash;
8703 __sk_del_bind_node(sk);
8704 sctp_sk(sk)->bind_hash = NULL;
8705 inet_sk(sk)->inet_num = 0;
8706 sctp_bucket_destroy(pp);
8707 spin_unlock(&head->lock);
8708 }
8709
sctp_put_port(struct sock * sk)8710 void sctp_put_port(struct sock *sk)
8711 {
8712 local_bh_disable();
8713 __sctp_put_port(sk);
8714 local_bh_enable();
8715 }
8716
8717 /*
8718 * The system picks an ephemeral port and choose an address set equivalent
8719 * to binding with a wildcard address.
8720 * One of those addresses will be the primary address for the association.
8721 * This automatically enables the multihoming capability of SCTP.
8722 */
sctp_autobind(struct sock * sk)8723 static int sctp_autobind(struct sock *sk)
8724 {
8725 union sctp_addr autoaddr;
8726 struct sctp_af *af;
8727 __be16 port;
8728
8729 /* Initialize a local sockaddr structure to INADDR_ANY. */
8730 af = sctp_sk(sk)->pf->af;
8731
8732 port = htons(inet_sk(sk)->inet_num);
8733 af->inaddr_any(&autoaddr, port);
8734
8735 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8736 }
8737
8738 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8739 *
8740 * From RFC 2292
8741 * 4.2 The cmsghdr Structure *
8742 *
8743 * When ancillary data is sent or received, any number of ancillary data
8744 * objects can be specified by the msg_control and msg_controllen members of
8745 * the msghdr structure, because each object is preceded by
8746 * a cmsghdr structure defining the object's length (the cmsg_len member).
8747 * Historically Berkeley-derived implementations have passed only one object
8748 * at a time, but this API allows multiple objects to be
8749 * passed in a single call to sendmsg() or recvmsg(). The following example
8750 * shows two ancillary data objects in a control buffer.
8751 *
8752 * |<--------------------------- msg_controllen -------------------------->|
8753 * | |
8754 *
8755 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8756 *
8757 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8758 * | | |
8759 *
8760 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8761 *
8762 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8763 * | | | | |
8764 *
8765 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8766 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8767 *
8768 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8769 *
8770 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8771 * ^
8772 * |
8773 *
8774 * msg_control
8775 * points here
8776 */
sctp_msghdr_parse(const struct msghdr * msg,struct sctp_cmsgs * cmsgs)8777 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8778 {
8779 struct msghdr *my_msg = (struct msghdr *)msg;
8780 struct cmsghdr *cmsg;
8781
8782 for_each_cmsghdr(cmsg, my_msg) {
8783 if (!CMSG_OK(my_msg, cmsg))
8784 return -EINVAL;
8785
8786 /* Should we parse this header or ignore? */
8787 if (cmsg->cmsg_level != IPPROTO_SCTP)
8788 continue;
8789
8790 /* Strictly check lengths following example in SCM code. */
8791 switch (cmsg->cmsg_type) {
8792 case SCTP_INIT:
8793 /* SCTP Socket API Extension
8794 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8795 *
8796 * This cmsghdr structure provides information for
8797 * initializing new SCTP associations with sendmsg().
8798 * The SCTP_INITMSG socket option uses this same data
8799 * structure. This structure is not used for
8800 * recvmsg().
8801 *
8802 * cmsg_level cmsg_type cmsg_data[]
8803 * ------------ ------------ ----------------------
8804 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8805 */
8806 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8807 return -EINVAL;
8808
8809 cmsgs->init = CMSG_DATA(cmsg);
8810 break;
8811
8812 case SCTP_SNDRCV:
8813 /* SCTP Socket API Extension
8814 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8815 *
8816 * This cmsghdr structure specifies SCTP options for
8817 * sendmsg() and describes SCTP header information
8818 * about a received message through recvmsg().
8819 *
8820 * cmsg_level cmsg_type cmsg_data[]
8821 * ------------ ------------ ----------------------
8822 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8823 */
8824 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8825 return -EINVAL;
8826
8827 cmsgs->srinfo = CMSG_DATA(cmsg);
8828
8829 if (cmsgs->srinfo->sinfo_flags &
8830 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8831 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8832 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8833 return -EINVAL;
8834 break;
8835
8836 case SCTP_SNDINFO:
8837 /* SCTP Socket API Extension
8838 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8839 *
8840 * This cmsghdr structure specifies SCTP options for
8841 * sendmsg(). This structure and SCTP_RCVINFO replaces
8842 * SCTP_SNDRCV which has been deprecated.
8843 *
8844 * cmsg_level cmsg_type cmsg_data[]
8845 * ------------ ------------ ---------------------
8846 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8847 */
8848 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8849 return -EINVAL;
8850
8851 cmsgs->sinfo = CMSG_DATA(cmsg);
8852
8853 if (cmsgs->sinfo->snd_flags &
8854 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8855 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8856 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8857 return -EINVAL;
8858 break;
8859 case SCTP_PRINFO:
8860 /* SCTP Socket API Extension
8861 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8862 *
8863 * This cmsghdr structure specifies SCTP options for sendmsg().
8864 *
8865 * cmsg_level cmsg_type cmsg_data[]
8866 * ------------ ------------ ---------------------
8867 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8868 */
8869 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8870 return -EINVAL;
8871
8872 cmsgs->prinfo = CMSG_DATA(cmsg);
8873 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8874 return -EINVAL;
8875
8876 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8877 cmsgs->prinfo->pr_value = 0;
8878 break;
8879 case SCTP_AUTHINFO:
8880 /* SCTP Socket API Extension
8881 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8882 *
8883 * This cmsghdr structure specifies SCTP options for sendmsg().
8884 *
8885 * cmsg_level cmsg_type cmsg_data[]
8886 * ------------ ------------ ---------------------
8887 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8888 */
8889 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8890 return -EINVAL;
8891
8892 cmsgs->authinfo = CMSG_DATA(cmsg);
8893 break;
8894 case SCTP_DSTADDRV4:
8895 case SCTP_DSTADDRV6:
8896 /* SCTP Socket API Extension
8897 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8898 *
8899 * This cmsghdr structure specifies SCTP options for sendmsg().
8900 *
8901 * cmsg_level cmsg_type cmsg_data[]
8902 * ------------ ------------ ---------------------
8903 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8904 * ------------ ------------ ---------------------
8905 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8906 */
8907 cmsgs->addrs_msg = my_msg;
8908 break;
8909 default:
8910 return -EINVAL;
8911 }
8912 }
8913
8914 return 0;
8915 }
8916
8917 /*
8918 * Wait for a packet..
8919 * Note: This function is the same function as in core/datagram.c
8920 * with a few modifications to make lksctp work.
8921 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)8922 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8923 {
8924 int error;
8925 DEFINE_WAIT(wait);
8926
8927 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8928
8929 /* Socket errors? */
8930 error = sock_error(sk);
8931 if (error)
8932 goto out;
8933
8934 if (!skb_queue_empty(&sk->sk_receive_queue))
8935 goto ready;
8936
8937 /* Socket shut down? */
8938 if (sk->sk_shutdown & RCV_SHUTDOWN)
8939 goto out;
8940
8941 /* Sequenced packets can come disconnected. If so we report the
8942 * problem.
8943 */
8944 error = -ENOTCONN;
8945
8946 /* Is there a good reason to think that we may receive some data? */
8947 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8948 goto out;
8949
8950 /* Handle signals. */
8951 if (signal_pending(current))
8952 goto interrupted;
8953
8954 /* Let another process have a go. Since we are going to sleep
8955 * anyway. Note: This may cause odd behaviors if the message
8956 * does not fit in the user's buffer, but this seems to be the
8957 * only way to honor MSG_DONTWAIT realistically.
8958 */
8959 release_sock(sk);
8960 *timeo_p = schedule_timeout(*timeo_p);
8961 lock_sock(sk);
8962
8963 ready:
8964 finish_wait(sk_sleep(sk), &wait);
8965 return 0;
8966
8967 interrupted:
8968 error = sock_intr_errno(*timeo_p);
8969
8970 out:
8971 finish_wait(sk_sleep(sk), &wait);
8972 *err = error;
8973 return error;
8974 }
8975
8976 /* Receive a datagram.
8977 * Note: This is pretty much the same routine as in core/datagram.c
8978 * with a few changes to make lksctp work.
8979 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int * err)8980 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
8981 {
8982 int error;
8983 struct sk_buff *skb;
8984 long timeo;
8985
8986 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
8987
8988 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8989 MAX_SCHEDULE_TIMEOUT);
8990
8991 do {
8992 /* Again only user level code calls this function,
8993 * so nothing interrupt level
8994 * will suddenly eat the receive_queue.
8995 *
8996 * Look at current nfs client by the way...
8997 * However, this function was correct in any case. 8)
8998 */
8999 if (flags & MSG_PEEK) {
9000 skb = skb_peek(&sk->sk_receive_queue);
9001 if (skb)
9002 refcount_inc(&skb->users);
9003 } else {
9004 skb = __skb_dequeue(&sk->sk_receive_queue);
9005 }
9006
9007 if (skb)
9008 return skb;
9009
9010 /* Caller is allowed not to check sk->sk_err before calling. */
9011 error = sock_error(sk);
9012 if (error)
9013 goto no_packet;
9014
9015 if (sk->sk_shutdown & RCV_SHUTDOWN)
9016 break;
9017
9018 if (sk_can_busy_loop(sk)) {
9019 sk_busy_loop(sk, flags & MSG_DONTWAIT);
9020
9021 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9022 continue;
9023 }
9024
9025 /* User doesn't want to wait. */
9026 error = -EAGAIN;
9027 if (!timeo)
9028 goto no_packet;
9029 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9030
9031 return NULL;
9032
9033 no_packet:
9034 *err = error;
9035 return NULL;
9036 }
9037
9038 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)9039 static void __sctp_write_space(struct sctp_association *asoc)
9040 {
9041 struct sock *sk = asoc->base.sk;
9042
9043 if (sctp_wspace(asoc) <= 0)
9044 return;
9045
9046 if (waitqueue_active(&asoc->wait))
9047 wake_up_interruptible(&asoc->wait);
9048
9049 if (sctp_writeable(sk)) {
9050 struct socket_wq *wq;
9051
9052 rcu_read_lock();
9053 wq = rcu_dereference(sk->sk_wq);
9054 if (wq) {
9055 if (waitqueue_active(&wq->wait))
9056 wake_up_interruptible(&wq->wait);
9057
9058 /* Note that we try to include the Async I/O support
9059 * here by modeling from the current TCP/UDP code.
9060 * We have not tested with it yet.
9061 */
9062 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9063 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9064 }
9065 rcu_read_unlock();
9066 }
9067 }
9068
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)9069 static void sctp_wake_up_waiters(struct sock *sk,
9070 struct sctp_association *asoc)
9071 {
9072 struct sctp_association *tmp = asoc;
9073
9074 /* We do accounting for the sndbuf space per association,
9075 * so we only need to wake our own association.
9076 */
9077 if (asoc->ep->sndbuf_policy)
9078 return __sctp_write_space(asoc);
9079
9080 /* If association goes down and is just flushing its
9081 * outq, then just normally notify others.
9082 */
9083 if (asoc->base.dead)
9084 return sctp_write_space(sk);
9085
9086 /* Accounting for the sndbuf space is per socket, so we
9087 * need to wake up others, try to be fair and in case of
9088 * other associations, let them have a go first instead
9089 * of just doing a sctp_write_space() call.
9090 *
9091 * Note that we reach sctp_wake_up_waiters() only when
9092 * associations free up queued chunks, thus we are under
9093 * lock and the list of associations on a socket is
9094 * guaranteed not to change.
9095 */
9096 for (tmp = list_next_entry(tmp, asocs); 1;
9097 tmp = list_next_entry(tmp, asocs)) {
9098 /* Manually skip the head element. */
9099 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9100 continue;
9101 /* Wake up association. */
9102 __sctp_write_space(tmp);
9103 /* We've reached the end. */
9104 if (tmp == asoc)
9105 break;
9106 }
9107 }
9108
9109 /* Do accounting for the sndbuf space.
9110 * Decrement the used sndbuf space of the corresponding association by the
9111 * data size which was just transmitted(freed).
9112 */
sctp_wfree(struct sk_buff * skb)9113 static void sctp_wfree(struct sk_buff *skb)
9114 {
9115 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9116 struct sctp_association *asoc = chunk->asoc;
9117 struct sock *sk = asoc->base.sk;
9118
9119 sk_mem_uncharge(sk, skb->truesize);
9120 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
9121 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9122 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9123 &sk->sk_wmem_alloc));
9124
9125 if (chunk->shkey) {
9126 struct sctp_shared_key *shkey = chunk->shkey;
9127
9128 /* refcnt == 2 and !list_empty mean after this release, it's
9129 * not being used anywhere, and it's time to notify userland
9130 * that this shkey can be freed if it's been deactivated.
9131 */
9132 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9133 refcount_read(&shkey->refcnt) == 2) {
9134 struct sctp_ulpevent *ev;
9135
9136 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9137 SCTP_AUTH_FREE_KEY,
9138 GFP_KERNEL);
9139 if (ev)
9140 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9141 }
9142 sctp_auth_shkey_release(chunk->shkey);
9143 }
9144
9145 sock_wfree(skb);
9146 sctp_wake_up_waiters(sk, asoc);
9147
9148 sctp_association_put(asoc);
9149 }
9150
9151 /* Do accounting for the receive space on the socket.
9152 * Accounting for the association is done in ulpevent.c
9153 * We set this as a destructor for the cloned data skbs so that
9154 * accounting is done at the correct time.
9155 */
sctp_sock_rfree(struct sk_buff * skb)9156 void sctp_sock_rfree(struct sk_buff *skb)
9157 {
9158 struct sock *sk = skb->sk;
9159 struct sctp_ulpevent *event = sctp_skb2event(skb);
9160
9161 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9162
9163 /*
9164 * Mimic the behavior of sock_rfree
9165 */
9166 sk_mem_uncharge(sk, event->rmem_len);
9167 }
9168
9169
9170 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)9171 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9172 size_t msg_len)
9173 {
9174 struct sock *sk = asoc->base.sk;
9175 long current_timeo = *timeo_p;
9176 DEFINE_WAIT(wait);
9177 int err = 0;
9178
9179 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9180 *timeo_p, msg_len);
9181
9182 /* Increment the association's refcnt. */
9183 sctp_association_hold(asoc);
9184
9185 /* Wait on the association specific sndbuf space. */
9186 for (;;) {
9187 prepare_to_wait_exclusive(&asoc->wait, &wait,
9188 TASK_INTERRUPTIBLE);
9189 if (asoc->base.dead)
9190 goto do_dead;
9191 if (!*timeo_p)
9192 goto do_nonblock;
9193 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9194 goto do_error;
9195 if (signal_pending(current))
9196 goto do_interrupted;
9197 if (sk_under_memory_pressure(sk))
9198 sk_mem_reclaim(sk);
9199 if ((int)msg_len <= sctp_wspace(asoc) &&
9200 sk_wmem_schedule(sk, msg_len))
9201 break;
9202
9203 /* Let another process have a go. Since we are going
9204 * to sleep anyway.
9205 */
9206 release_sock(sk);
9207 current_timeo = schedule_timeout(current_timeo);
9208 lock_sock(sk);
9209 if (sk != asoc->base.sk)
9210 goto do_error;
9211
9212 *timeo_p = current_timeo;
9213 }
9214
9215 out:
9216 finish_wait(&asoc->wait, &wait);
9217
9218 /* Release the association's refcnt. */
9219 sctp_association_put(asoc);
9220
9221 return err;
9222
9223 do_dead:
9224 err = -ESRCH;
9225 goto out;
9226
9227 do_error:
9228 err = -EPIPE;
9229 goto out;
9230
9231 do_interrupted:
9232 err = sock_intr_errno(*timeo_p);
9233 goto out;
9234
9235 do_nonblock:
9236 err = -EAGAIN;
9237 goto out;
9238 }
9239
sctp_data_ready(struct sock * sk)9240 void sctp_data_ready(struct sock *sk)
9241 {
9242 struct socket_wq *wq;
9243
9244 rcu_read_lock();
9245 wq = rcu_dereference(sk->sk_wq);
9246 if (skwq_has_sleeper(wq))
9247 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9248 EPOLLRDNORM | EPOLLRDBAND);
9249 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9250 rcu_read_unlock();
9251 }
9252
9253 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)9254 void sctp_write_space(struct sock *sk)
9255 {
9256 struct sctp_association *asoc;
9257
9258 /* Wake up the tasks in each wait queue. */
9259 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9260 __sctp_write_space(asoc);
9261 }
9262 }
9263
9264 /* Is there any sndbuf space available on the socket?
9265 *
9266 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9267 * associations on the same socket. For a UDP-style socket with
9268 * multiple associations, it is possible for it to be "unwriteable"
9269 * prematurely. I assume that this is acceptable because
9270 * a premature "unwriteable" is better than an accidental "writeable" which
9271 * would cause an unwanted block under certain circumstances. For the 1-1
9272 * UDP-style sockets or TCP-style sockets, this code should work.
9273 * - Daisy
9274 */
sctp_writeable(struct sock * sk)9275 static bool sctp_writeable(struct sock *sk)
9276 {
9277 return sk->sk_sndbuf > sk->sk_wmem_queued;
9278 }
9279
9280 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9281 * returns immediately with EINPROGRESS.
9282 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)9283 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9284 {
9285 struct sock *sk = asoc->base.sk;
9286 int err = 0;
9287 long current_timeo = *timeo_p;
9288 DEFINE_WAIT(wait);
9289
9290 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9291
9292 /* Increment the association's refcnt. */
9293 sctp_association_hold(asoc);
9294
9295 for (;;) {
9296 prepare_to_wait_exclusive(&asoc->wait, &wait,
9297 TASK_INTERRUPTIBLE);
9298 if (!*timeo_p)
9299 goto do_nonblock;
9300 if (sk->sk_shutdown & RCV_SHUTDOWN)
9301 break;
9302 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9303 asoc->base.dead)
9304 goto do_error;
9305 if (signal_pending(current))
9306 goto do_interrupted;
9307
9308 if (sctp_state(asoc, ESTABLISHED))
9309 break;
9310
9311 /* Let another process have a go. Since we are going
9312 * to sleep anyway.
9313 */
9314 release_sock(sk);
9315 current_timeo = schedule_timeout(current_timeo);
9316 lock_sock(sk);
9317
9318 *timeo_p = current_timeo;
9319 }
9320
9321 out:
9322 finish_wait(&asoc->wait, &wait);
9323
9324 /* Release the association's refcnt. */
9325 sctp_association_put(asoc);
9326
9327 return err;
9328
9329 do_error:
9330 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9331 err = -ETIMEDOUT;
9332 else
9333 err = -ECONNREFUSED;
9334 goto out;
9335
9336 do_interrupted:
9337 err = sock_intr_errno(*timeo_p);
9338 goto out;
9339
9340 do_nonblock:
9341 err = -EINPROGRESS;
9342 goto out;
9343 }
9344
sctp_wait_for_accept(struct sock * sk,long timeo)9345 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9346 {
9347 struct sctp_endpoint *ep;
9348 int err = 0;
9349 DEFINE_WAIT(wait);
9350
9351 ep = sctp_sk(sk)->ep;
9352
9353
9354 for (;;) {
9355 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9356 TASK_INTERRUPTIBLE);
9357
9358 if (list_empty(&ep->asocs)) {
9359 release_sock(sk);
9360 timeo = schedule_timeout(timeo);
9361 lock_sock(sk);
9362 }
9363
9364 err = -EINVAL;
9365 if (!sctp_sstate(sk, LISTENING))
9366 break;
9367
9368 err = 0;
9369 if (!list_empty(&ep->asocs))
9370 break;
9371
9372 err = sock_intr_errno(timeo);
9373 if (signal_pending(current))
9374 break;
9375
9376 err = -EAGAIN;
9377 if (!timeo)
9378 break;
9379 }
9380
9381 finish_wait(sk_sleep(sk), &wait);
9382
9383 return err;
9384 }
9385
sctp_wait_for_close(struct sock * sk,long timeout)9386 static void sctp_wait_for_close(struct sock *sk, long timeout)
9387 {
9388 DEFINE_WAIT(wait);
9389
9390 do {
9391 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9392 if (list_empty(&sctp_sk(sk)->ep->asocs))
9393 break;
9394 release_sock(sk);
9395 timeout = schedule_timeout(timeout);
9396 lock_sock(sk);
9397 } while (!signal_pending(current) && timeout);
9398
9399 finish_wait(sk_sleep(sk), &wait);
9400 }
9401
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)9402 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9403 {
9404 struct sk_buff *frag;
9405
9406 if (!skb->data_len)
9407 goto done;
9408
9409 /* Don't forget the fragments. */
9410 skb_walk_frags(skb, frag)
9411 sctp_skb_set_owner_r_frag(frag, sk);
9412
9413 done:
9414 sctp_skb_set_owner_r(skb, sk);
9415 }
9416
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)9417 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9418 struct sctp_association *asoc)
9419 {
9420 struct inet_sock *inet = inet_sk(sk);
9421 struct inet_sock *newinet;
9422 struct sctp_sock *sp = sctp_sk(sk);
9423
9424 newsk->sk_type = sk->sk_type;
9425 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9426 newsk->sk_flags = sk->sk_flags;
9427 newsk->sk_tsflags = sk->sk_tsflags;
9428 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9429 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9430 newsk->sk_reuse = sk->sk_reuse;
9431 sctp_sk(newsk)->reuse = sp->reuse;
9432
9433 newsk->sk_shutdown = sk->sk_shutdown;
9434 newsk->sk_destruct = sctp_destruct_sock;
9435 newsk->sk_family = sk->sk_family;
9436 newsk->sk_protocol = IPPROTO_SCTP;
9437 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9438 newsk->sk_sndbuf = sk->sk_sndbuf;
9439 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9440 newsk->sk_lingertime = sk->sk_lingertime;
9441 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9442 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9443 newsk->sk_rxhash = sk->sk_rxhash;
9444
9445 newinet = inet_sk(newsk);
9446
9447 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9448 * getsockname() and getpeername()
9449 */
9450 newinet->inet_sport = inet->inet_sport;
9451 newinet->inet_saddr = inet->inet_saddr;
9452 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9453 newinet->inet_dport = htons(asoc->peer.port);
9454 newinet->pmtudisc = inet->pmtudisc;
9455 newinet->inet_id = prandom_u32();
9456
9457 newinet->uc_ttl = inet->uc_ttl;
9458 newinet->mc_loop = 1;
9459 newinet->mc_ttl = 1;
9460 newinet->mc_index = 0;
9461 newinet->mc_list = NULL;
9462
9463 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9464 net_enable_timestamp();
9465
9466 /* Set newsk security attributes from original sk and connection
9467 * security attribute from asoc.
9468 */
9469 security_sctp_sk_clone(asoc, sk, newsk);
9470 }
9471
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)9472 static inline void sctp_copy_descendant(struct sock *sk_to,
9473 const struct sock *sk_from)
9474 {
9475 size_t ancestor_size = sizeof(struct inet_sock);
9476
9477 ancestor_size += sk_from->sk_prot->obj_size;
9478 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9479 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9480 }
9481
9482 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9483 * and its messages to the newsk.
9484 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,enum sctp_socket_type type)9485 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9486 struct sctp_association *assoc,
9487 enum sctp_socket_type type)
9488 {
9489 struct sctp_sock *oldsp = sctp_sk(oldsk);
9490 struct sctp_sock *newsp = sctp_sk(newsk);
9491 struct sctp_bind_bucket *pp; /* hash list port iterator */
9492 struct sctp_endpoint *newep = newsp->ep;
9493 struct sk_buff *skb, *tmp;
9494 struct sctp_ulpevent *event;
9495 struct sctp_bind_hashbucket *head;
9496 int err;
9497
9498 /* Migrate socket buffer sizes and all the socket level options to the
9499 * new socket.
9500 */
9501 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9502 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9503 /* Brute force copy old sctp opt. */
9504 sctp_copy_descendant(newsk, oldsk);
9505
9506 /* Restore the ep value that was overwritten with the above structure
9507 * copy.
9508 */
9509 newsp->ep = newep;
9510 newsp->hmac = NULL;
9511
9512 /* Hook this new socket in to the bind_hash list. */
9513 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9514 inet_sk(oldsk)->inet_num)];
9515 spin_lock_bh(&head->lock);
9516 pp = sctp_sk(oldsk)->bind_hash;
9517 sk_add_bind_node(newsk, &pp->owner);
9518 sctp_sk(newsk)->bind_hash = pp;
9519 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9520 spin_unlock_bh(&head->lock);
9521
9522 /* Copy the bind_addr list from the original endpoint to the new
9523 * endpoint so that we can handle restarts properly
9524 */
9525 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9526 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9527 if (err)
9528 return err;
9529
9530 /* New ep's auth_hmacs should be set if old ep's is set, in case
9531 * that net->sctp.auth_enable has been changed to 0 by users and
9532 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9533 */
9534 if (oldsp->ep->auth_hmacs) {
9535 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9536 if (err)
9537 return err;
9538 }
9539
9540 sctp_auto_asconf_init(newsp);
9541
9542 /* Move any messages in the old socket's receive queue that are for the
9543 * peeled off association to the new socket's receive queue.
9544 */
9545 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9546 event = sctp_skb2event(skb);
9547 if (event->asoc == assoc) {
9548 __skb_unlink(skb, &oldsk->sk_receive_queue);
9549 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9550 sctp_skb_set_owner_r_frag(skb, newsk);
9551 }
9552 }
9553
9554 /* Clean up any messages pending delivery due to partial
9555 * delivery. Three cases:
9556 * 1) No partial deliver; no work.
9557 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9558 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9559 */
9560 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9561
9562 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9563 struct sk_buff_head *queue;
9564
9565 /* Decide which queue to move pd_lobby skbs to. */
9566 if (assoc->ulpq.pd_mode) {
9567 queue = &newsp->pd_lobby;
9568 } else
9569 queue = &newsk->sk_receive_queue;
9570
9571 /* Walk through the pd_lobby, looking for skbs that
9572 * need moved to the new socket.
9573 */
9574 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9575 event = sctp_skb2event(skb);
9576 if (event->asoc == assoc) {
9577 __skb_unlink(skb, &oldsp->pd_lobby);
9578 __skb_queue_tail(queue, skb);
9579 sctp_skb_set_owner_r_frag(skb, newsk);
9580 }
9581 }
9582
9583 /* Clear up any skbs waiting for the partial
9584 * delivery to finish.
9585 */
9586 if (assoc->ulpq.pd_mode)
9587 sctp_clear_pd(oldsk, NULL);
9588
9589 }
9590
9591 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9592
9593 /* Set the type of socket to indicate that it is peeled off from the
9594 * original UDP-style socket or created with the accept() call on a
9595 * TCP-style socket..
9596 */
9597 newsp->type = type;
9598
9599 /* Mark the new socket "in-use" by the user so that any packets
9600 * that may arrive on the association after we've moved it are
9601 * queued to the backlog. This prevents a potential race between
9602 * backlog processing on the old socket and new-packet processing
9603 * on the new socket.
9604 *
9605 * The caller has just allocated newsk so we can guarantee that other
9606 * paths won't try to lock it and then oldsk.
9607 */
9608 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9609 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9610 sctp_assoc_migrate(assoc, newsk);
9611 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9612
9613 /* If the association on the newsk is already closed before accept()
9614 * is called, set RCV_SHUTDOWN flag.
9615 */
9616 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9617 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9618 newsk->sk_shutdown |= RCV_SHUTDOWN;
9619 } else {
9620 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9621 }
9622
9623 release_sock(newsk);
9624
9625 return 0;
9626 }
9627
9628
9629 /* This proto struct describes the ULP interface for SCTP. */
9630 struct proto sctp_prot = {
9631 .name = "SCTP",
9632 .owner = THIS_MODULE,
9633 .close = sctp_close,
9634 .disconnect = sctp_disconnect,
9635 .accept = sctp_accept,
9636 .ioctl = sctp_ioctl,
9637 .init = sctp_init_sock,
9638 .destroy = sctp_destroy_sock,
9639 .shutdown = sctp_shutdown,
9640 .setsockopt = sctp_setsockopt,
9641 .getsockopt = sctp_getsockopt,
9642 .sendmsg = sctp_sendmsg,
9643 .recvmsg = sctp_recvmsg,
9644 .bind = sctp_bind,
9645 .bind_add = sctp_bind_add,
9646 .backlog_rcv = sctp_backlog_rcv,
9647 .hash = sctp_hash,
9648 .unhash = sctp_unhash,
9649 .no_autobind = true,
9650 .obj_size = sizeof(struct sctp_sock),
9651 .useroffset = offsetof(struct sctp_sock, subscribe),
9652 .usersize = offsetof(struct sctp_sock, initmsg) -
9653 offsetof(struct sctp_sock, subscribe) +
9654 sizeof_field(struct sctp_sock, initmsg),
9655 .sysctl_mem = sysctl_sctp_mem,
9656 .sysctl_rmem = sysctl_sctp_rmem,
9657 .sysctl_wmem = sysctl_sctp_wmem,
9658 .memory_pressure = &sctp_memory_pressure,
9659 .enter_memory_pressure = sctp_enter_memory_pressure,
9660 .memory_allocated = &sctp_memory_allocated,
9661 .sockets_allocated = &sctp_sockets_allocated,
9662 };
9663
9664 #if IS_ENABLED(CONFIG_IPV6)
9665
9666 #include <net/transp_v6.h>
sctp_v6_destroy_sock(struct sock * sk)9667 static void sctp_v6_destroy_sock(struct sock *sk)
9668 {
9669 sctp_destroy_sock(sk);
9670 inet6_destroy_sock(sk);
9671 }
9672
9673 struct proto sctpv6_prot = {
9674 .name = "SCTPv6",
9675 .owner = THIS_MODULE,
9676 .close = sctp_close,
9677 .disconnect = sctp_disconnect,
9678 .accept = sctp_accept,
9679 .ioctl = sctp_ioctl,
9680 .init = sctp_init_sock,
9681 .destroy = sctp_v6_destroy_sock,
9682 .shutdown = sctp_shutdown,
9683 .setsockopt = sctp_setsockopt,
9684 .getsockopt = sctp_getsockopt,
9685 .sendmsg = sctp_sendmsg,
9686 .recvmsg = sctp_recvmsg,
9687 .bind = sctp_bind,
9688 .bind_add = sctp_bind_add,
9689 .backlog_rcv = sctp_backlog_rcv,
9690 .hash = sctp_hash,
9691 .unhash = sctp_unhash,
9692 .no_autobind = true,
9693 .obj_size = sizeof(struct sctp6_sock),
9694 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9695 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9696 offsetof(struct sctp6_sock, sctp.subscribe) +
9697 sizeof_field(struct sctp6_sock, sctp.initmsg),
9698 .sysctl_mem = sysctl_sctp_mem,
9699 .sysctl_rmem = sysctl_sctp_rmem,
9700 .sysctl_wmem = sysctl_sctp_wmem,
9701 .memory_pressure = &sctp_memory_pressure,
9702 .enter_memory_pressure = sctp_enter_memory_pressure,
9703 .memory_allocated = &sctp_memory_allocated,
9704 .sockets_allocated = &sctp_sockets_allocated,
9705 };
9706 #endif /* IS_ENABLED(CONFIG_IPV6) */
9707