1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, write to
20  * the Free Software Foundation, 59 Temple Place - Suite 330,
21  * Boston, MA 02111-1307, USA.
22  *
23  * Please send any bug reports or fixes you make to the
24  * email address(es):
25  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
26  *
27  * Or submit a bug report through the following website:
28  *    http://www.sf.net/projects/lksctp
29  *
30  * Written or modified by:
31  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
32  *
33  * Any bugs reported given to us we will try to fix... any fixes shared will
34  * be incorporated into the next SCTP release.
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/crypto.h>
40 #include <linux/scatterlist.h>
41 #include <net/sctp/sctp.h>
42 #include <net/sctp/auth.h>
43 
44 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
45 	{
46 		/* id 0 is reserved.  as all 0 */
47 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
48 	},
49 	{
50 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
51 		.hmac_name="hmac(sha1)",
52 		.hmac_len = SCTP_SHA1_SIG_SIZE,
53 	},
54 	{
55 		/* id 2 is reserved as well */
56 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
57 	},
58 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
59 	{
60 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
61 		.hmac_name="hmac(sha256)",
62 		.hmac_len = SCTP_SHA256_SIG_SIZE,
63 	}
64 #endif
65 };
66 
67 
sctp_auth_key_put(struct sctp_auth_bytes * key)68 void sctp_auth_key_put(struct sctp_auth_bytes *key)
69 {
70 	if (!key)
71 		return;
72 
73 	if (atomic_dec_and_test(&key->refcnt)) {
74 		kfree(key);
75 		SCTP_DBG_OBJCNT_DEC(keys);
76 	}
77 }
78 
79 /* Create a new key structure of a given length */
sctp_auth_create_key(__u32 key_len,gfp_t gfp)80 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
81 {
82 	struct sctp_auth_bytes *key;
83 
84 	/* Verify that we are not going to overflow INT_MAX */
85 	if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes))
86 		return NULL;
87 
88 	/* Allocate the shared key */
89 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
90 	if (!key)
91 		return NULL;
92 
93 	key->len = key_len;
94 	atomic_set(&key->refcnt, 1);
95 	SCTP_DBG_OBJCNT_INC(keys);
96 
97 	return key;
98 }
99 
100 /* Create a new shared key container with a give key id */
sctp_auth_shkey_create(__u16 key_id,gfp_t gfp)101 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
102 {
103 	struct sctp_shared_key *new;
104 
105 	/* Allocate the shared key container */
106 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
107 	if (!new)
108 		return NULL;
109 
110 	INIT_LIST_HEAD(&new->key_list);
111 	new->key_id = key_id;
112 
113 	return new;
114 }
115 
116 /* Free the shared key structure */
sctp_auth_shkey_free(struct sctp_shared_key * sh_key)117 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
118 {
119 	BUG_ON(!list_empty(&sh_key->key_list));
120 	sctp_auth_key_put(sh_key->key);
121 	sh_key->key = NULL;
122 	kfree(sh_key);
123 }
124 
125 /* Destroy the entire key list.  This is done during the
126  * associon and endpoint free process.
127  */
sctp_auth_destroy_keys(struct list_head * keys)128 void sctp_auth_destroy_keys(struct list_head *keys)
129 {
130 	struct sctp_shared_key *ep_key;
131 	struct sctp_shared_key *tmp;
132 
133 	if (list_empty(keys))
134 		return;
135 
136 	key_for_each_safe(ep_key, tmp, keys) {
137 		list_del_init(&ep_key->key_list);
138 		sctp_auth_shkey_free(ep_key);
139 	}
140 }
141 
142 /* Compare two byte vectors as numbers.  Return values
143  * are:
144  * 	  0 - vectors are equal
145  * 	< 0 - vector 1 is smaller than vector2
146  * 	> 0 - vector 1 is greater than vector2
147  *
148  * Algorithm is:
149  * 	This is performed by selecting the numerically smaller key vector...
150  *	If the key vectors are equal as numbers but differ in length ...
151  *	the shorter vector is considered smaller
152  *
153  * Examples (with small values):
154  * 	000123456789 > 123456789 (first number is longer)
155  * 	000123456789 < 234567891 (second number is larger numerically)
156  * 	123456789 > 2345678 	 (first number is both larger & longer)
157  */
sctp_auth_compare_vectors(struct sctp_auth_bytes * vector1,struct sctp_auth_bytes * vector2)158 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
159 			      struct sctp_auth_bytes *vector2)
160 {
161 	int diff;
162 	int i;
163 	const __u8 *longer;
164 
165 	diff = vector1->len - vector2->len;
166 	if (diff) {
167 		longer = (diff > 0) ? vector1->data : vector2->data;
168 
169 		/* Check to see if the longer number is
170 		 * lead-zero padded.  If it is not, it
171 		 * is automatically larger numerically.
172 		 */
173 		for (i = 0; i < abs(diff); i++ ) {
174 			if (longer[i] != 0)
175 				return diff;
176 		}
177 	}
178 
179 	/* lengths are the same, compare numbers */
180 	return memcmp(vector1->data, vector2->data, vector1->len);
181 }
182 
183 /*
184  * Create a key vector as described in SCTP-AUTH, Section 6.1
185  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186  *    parameter sent by each endpoint are concatenated as byte vectors.
187  *    These parameters include the parameter type, parameter length, and
188  *    the parameter value, but padding is omitted; all padding MUST be
189  *    removed from this concatenation before proceeding with further
190  *    computation of keys.  Parameters which were not sent are simply
191  *    omitted from the concatenation process.  The resulting two vectors
192  *    are called the two key vectors.
193  */
sctp_auth_make_key_vector(sctp_random_param_t * random,sctp_chunks_param_t * chunks,sctp_hmac_algo_param_t * hmacs,gfp_t gfp)194 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
195 			sctp_random_param_t *random,
196 			sctp_chunks_param_t *chunks,
197 			sctp_hmac_algo_param_t *hmacs,
198 			gfp_t gfp)
199 {
200 	struct sctp_auth_bytes *new;
201 	__u32	len;
202 	__u32	offset = 0;
203 
204 	len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
205         if (chunks)
206 		len += ntohs(chunks->param_hdr.length);
207 
208 	new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
209 	if (!new)
210 		return NULL;
211 
212 	new->len = len;
213 
214 	memcpy(new->data, random, ntohs(random->param_hdr.length));
215 	offset += ntohs(random->param_hdr.length);
216 
217 	if (chunks) {
218 		memcpy(new->data + offset, chunks,
219 			ntohs(chunks->param_hdr.length));
220 		offset += ntohs(chunks->param_hdr.length);
221 	}
222 
223 	memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
224 
225 	return new;
226 }
227 
228 
229 /* Make a key vector based on our local parameters */
sctp_auth_make_local_vector(const struct sctp_association * asoc,gfp_t gfp)230 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
231 				    const struct sctp_association *asoc,
232 				    gfp_t gfp)
233 {
234 	return sctp_auth_make_key_vector(
235 				    (sctp_random_param_t*)asoc->c.auth_random,
236 				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
237 				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
238 				    gfp);
239 }
240 
241 /* Make a key vector based on peer's parameters */
sctp_auth_make_peer_vector(const struct sctp_association * asoc,gfp_t gfp)242 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
243 				    const struct sctp_association *asoc,
244 				    gfp_t gfp)
245 {
246 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
247 					 asoc->peer.peer_chunks,
248 					 asoc->peer.peer_hmacs,
249 					 gfp);
250 }
251 
252 
253 /* Set the value of the association shared key base on the parameters
254  * given.  The algorithm is:
255  *    From the endpoint pair shared keys and the key vectors the
256  *    association shared keys are computed.  This is performed by selecting
257  *    the numerically smaller key vector and concatenating it to the
258  *    endpoint pair shared key, and then concatenating the numerically
259  *    larger key vector to that.  The result of the concatenation is the
260  *    association shared key.
261  */
sctp_auth_asoc_set_secret(struct sctp_shared_key * ep_key,struct sctp_auth_bytes * first_vector,struct sctp_auth_bytes * last_vector,gfp_t gfp)262 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
263 			struct sctp_shared_key *ep_key,
264 			struct sctp_auth_bytes *first_vector,
265 			struct sctp_auth_bytes *last_vector,
266 			gfp_t gfp)
267 {
268 	struct sctp_auth_bytes *secret;
269 	__u32 offset = 0;
270 	__u32 auth_len;
271 
272 	auth_len = first_vector->len + last_vector->len;
273 	if (ep_key->key)
274 		auth_len += ep_key->key->len;
275 
276 	secret = sctp_auth_create_key(auth_len, gfp);
277 	if (!secret)
278 		return NULL;
279 
280 	if (ep_key->key) {
281 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
282 		offset += ep_key->key->len;
283 	}
284 
285 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
286 	offset += first_vector->len;
287 
288 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
289 
290 	return secret;
291 }
292 
293 /* Create an association shared key.  Follow the algorithm
294  * described in SCTP-AUTH, Section 6.1
295  */
sctp_auth_asoc_create_secret(const struct sctp_association * asoc,struct sctp_shared_key * ep_key,gfp_t gfp)296 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
297 				 const struct sctp_association *asoc,
298 				 struct sctp_shared_key *ep_key,
299 				 gfp_t gfp)
300 {
301 	struct sctp_auth_bytes *local_key_vector;
302 	struct sctp_auth_bytes *peer_key_vector;
303 	struct sctp_auth_bytes	*first_vector,
304 				*last_vector;
305 	struct sctp_auth_bytes	*secret = NULL;
306 	int	cmp;
307 
308 
309 	/* Now we need to build the key vectors
310 	 * SCTP-AUTH , Section 6.1
311 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
312 	 *    parameter sent by each endpoint are concatenated as byte vectors.
313 	 *    These parameters include the parameter type, parameter length, and
314 	 *    the parameter value, but padding is omitted; all padding MUST be
315 	 *    removed from this concatenation before proceeding with further
316 	 *    computation of keys.  Parameters which were not sent are simply
317 	 *    omitted from the concatenation process.  The resulting two vectors
318 	 *    are called the two key vectors.
319 	 */
320 
321 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
322 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
323 
324 	if (!peer_key_vector || !local_key_vector)
325 		goto out;
326 
327 	/* Figure out the order in which the key_vectors will be
328 	 * added to the endpoint shared key.
329 	 * SCTP-AUTH, Section 6.1:
330 	 *   This is performed by selecting the numerically smaller key
331 	 *   vector and concatenating it to the endpoint pair shared
332 	 *   key, and then concatenating the numerically larger key
333 	 *   vector to that.  If the key vectors are equal as numbers
334 	 *   but differ in length, then the concatenation order is the
335 	 *   endpoint shared key, followed by the shorter key vector,
336 	 *   followed by the longer key vector.  Otherwise, the key
337 	 *   vectors are identical, and may be concatenated to the
338 	 *   endpoint pair key in any order.
339 	 */
340 	cmp = sctp_auth_compare_vectors(local_key_vector,
341 					peer_key_vector);
342 	if (cmp < 0) {
343 		first_vector = local_key_vector;
344 		last_vector = peer_key_vector;
345 	} else {
346 		first_vector = peer_key_vector;
347 		last_vector = local_key_vector;
348 	}
349 
350 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
351 					    gfp);
352 out:
353 	kfree(local_key_vector);
354 	kfree(peer_key_vector);
355 
356 	return secret;
357 }
358 
359 /*
360  * Populate the association overlay list with the list
361  * from the endpoint.
362  */
sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint * ep,struct sctp_association * asoc,gfp_t gfp)363 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
364 				struct sctp_association *asoc,
365 				gfp_t gfp)
366 {
367 	struct sctp_shared_key *sh_key;
368 	struct sctp_shared_key *new;
369 
370 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
371 
372 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
373 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
374 		if (!new)
375 			goto nomem;
376 
377 		new->key = sh_key->key;
378 		sctp_auth_key_hold(new->key);
379 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
380 	}
381 
382 	return 0;
383 
384 nomem:
385 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
386 	return -ENOMEM;
387 }
388 
389 
390 /* Public interface to creat the association shared key.
391  * See code above for the algorithm.
392  */
sctp_auth_asoc_init_active_key(struct sctp_association * asoc,gfp_t gfp)393 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
394 {
395 	struct sctp_auth_bytes	*secret;
396 	struct sctp_shared_key *ep_key;
397 
398 	/* If we don't support AUTH, or peer is not capable
399 	 * we don't need to do anything.
400 	 */
401 	if (!sctp_auth_enable || !asoc->peer.auth_capable)
402 		return 0;
403 
404 	/* If the key_id is non-zero and we couldn't find an
405 	 * endpoint pair shared key, we can't compute the
406 	 * secret.
407 	 * For key_id 0, endpoint pair shared key is a NULL key.
408 	 */
409 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
410 	BUG_ON(!ep_key);
411 
412 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
413 	if (!secret)
414 		return -ENOMEM;
415 
416 	sctp_auth_key_put(asoc->asoc_shared_key);
417 	asoc->asoc_shared_key = secret;
418 
419 	return 0;
420 }
421 
422 
423 /* Find the endpoint pair shared key based on the key_id */
sctp_auth_get_shkey(const struct sctp_association * asoc,__u16 key_id)424 struct sctp_shared_key *sctp_auth_get_shkey(
425 				const struct sctp_association *asoc,
426 				__u16 key_id)
427 {
428 	struct sctp_shared_key *key;
429 
430 	/* First search associations set of endpoint pair shared keys */
431 	key_for_each(key, &asoc->endpoint_shared_keys) {
432 		if (key->key_id == key_id)
433 			return key;
434 	}
435 
436 	return NULL;
437 }
438 
439 /*
440  * Initialize all the possible digest transforms that we can use.  Right now
441  * now, the supported digests are SHA1 and SHA256.  We do this here once
442  * because of the restrictiong that transforms may only be allocated in
443  * user context.  This forces us to pre-allocated all possible transforms
444  * at the endpoint init time.
445  */
sctp_auth_init_hmacs(struct sctp_endpoint * ep,gfp_t gfp)446 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
447 {
448 	struct crypto_hash *tfm = NULL;
449 	__u16   id;
450 
451 	/* if the transforms are already allocted, we are done */
452 	if (!sctp_auth_enable) {
453 		ep->auth_hmacs = NULL;
454 		return 0;
455 	}
456 
457 	if (ep->auth_hmacs)
458 		return 0;
459 
460 	/* Allocated the array of pointers to transorms */
461 	ep->auth_hmacs = kzalloc(
462 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
463 			    gfp);
464 	if (!ep->auth_hmacs)
465 		return -ENOMEM;
466 
467 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
468 
469 		/* See is we support the id.  Supported IDs have name and
470 		 * length fields set, so that we can allocated and use
471 		 * them.  We can safely just check for name, for without the
472 		 * name, we can't allocate the TFM.
473 		 */
474 		if (!sctp_hmac_list[id].hmac_name)
475 			continue;
476 
477 		/* If this TFM has been allocated, we are all set */
478 		if (ep->auth_hmacs[id])
479 			continue;
480 
481 		/* Allocate the ID */
482 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
483 					CRYPTO_ALG_ASYNC);
484 		if (IS_ERR(tfm))
485 			goto out_err;
486 
487 		ep->auth_hmacs[id] = tfm;
488 	}
489 
490 	return 0;
491 
492 out_err:
493 	/* Clean up any successful allocations */
494 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
495 	return -ENOMEM;
496 }
497 
498 /* Destroy the hmac tfm array */
sctp_auth_destroy_hmacs(struct crypto_hash * auth_hmacs[])499 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
500 {
501 	int i;
502 
503 	if (!auth_hmacs)
504 		return;
505 
506 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
507 	{
508 		if (auth_hmacs[i])
509 			crypto_free_hash(auth_hmacs[i]);
510 	}
511 	kfree(auth_hmacs);
512 }
513 
514 
sctp_auth_get_hmac(__u16 hmac_id)515 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516 {
517 	return &sctp_hmac_list[hmac_id];
518 }
519 
520 /* Get an hmac description information that we can use to build
521  * the AUTH chunk
522  */
sctp_auth_asoc_get_hmac(const struct sctp_association * asoc)523 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524 {
525 	struct sctp_hmac_algo_param *hmacs;
526 	__u16 n_elt;
527 	__u16 id = 0;
528 	int i;
529 
530 	/* If we have a default entry, use it */
531 	if (asoc->default_hmac_id)
532 		return &sctp_hmac_list[asoc->default_hmac_id];
533 
534 	/* Since we do not have a default entry, find the first entry
535 	 * we support and return that.  Do not cache that id.
536 	 */
537 	hmacs = asoc->peer.peer_hmacs;
538 	if (!hmacs)
539 		return NULL;
540 
541 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
542 	for (i = 0; i < n_elt; i++) {
543 		id = ntohs(hmacs->hmac_ids[i]);
544 
545 		/* Check the id is in the supported range */
546 		if (id > SCTP_AUTH_HMAC_ID_MAX) {
547 			id = 0;
548 			continue;
549 		}
550 
551 		/* See is we support the id.  Supported IDs have name and
552 		 * length fields set, so that we can allocated and use
553 		 * them.  We can safely just check for name, for without the
554 		 * name, we can't allocate the TFM.
555 		 */
556 		if (!sctp_hmac_list[id].hmac_name) {
557 			id = 0;
558 			continue;
559 		}
560 
561 		break;
562 	}
563 
564 	if (id == 0)
565 		return NULL;
566 
567 	return &sctp_hmac_list[id];
568 }
569 
__sctp_auth_find_hmacid(__be16 * hmacs,int n_elts,__be16 hmac_id)570 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
571 {
572 	int  found = 0;
573 	int  i;
574 
575 	for (i = 0; i < n_elts; i++) {
576 		if (hmac_id == hmacs[i]) {
577 			found = 1;
578 			break;
579 		}
580 	}
581 
582 	return found;
583 }
584 
585 /* See if the HMAC_ID is one that we claim as supported */
sctp_auth_asoc_verify_hmac_id(const struct sctp_association * asoc,__be16 hmac_id)586 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
587 				    __be16 hmac_id)
588 {
589 	struct sctp_hmac_algo_param *hmacs;
590 	__u16 n_elt;
591 
592 	if (!asoc)
593 		return 0;
594 
595 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
596 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
597 
598 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
599 }
600 
601 
602 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
603  * Section 6.1:
604  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
605  *   algorithm it supports.
606  */
sctp_auth_asoc_set_default_hmac(struct sctp_association * asoc,struct sctp_hmac_algo_param * hmacs)607 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
608 				     struct sctp_hmac_algo_param *hmacs)
609 {
610 	struct sctp_endpoint *ep;
611 	__u16   id;
612 	int	i;
613 	int	n_params;
614 
615 	/* if the default id is already set, use it */
616 	if (asoc->default_hmac_id)
617 		return;
618 
619 	n_params = (ntohs(hmacs->param_hdr.length)
620 				- sizeof(sctp_paramhdr_t)) >> 1;
621 	ep = asoc->ep;
622 	for (i = 0; i < n_params; i++) {
623 		id = ntohs(hmacs->hmac_ids[i]);
624 
625 		/* Check the id is in the supported range */
626 		if (id > SCTP_AUTH_HMAC_ID_MAX)
627 			continue;
628 
629 		/* If this TFM has been allocated, use this id */
630 		if (ep->auth_hmacs[id]) {
631 			asoc->default_hmac_id = id;
632 			break;
633 		}
634 	}
635 }
636 
637 
638 /* Check to see if the given chunk is supposed to be authenticated */
__sctp_auth_cid(sctp_cid_t chunk,struct sctp_chunks_param * param)639 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
640 {
641 	unsigned short len;
642 	int found = 0;
643 	int i;
644 
645 	if (!param || param->param_hdr.length == 0)
646 		return 0;
647 
648 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
649 
650 	/* SCTP-AUTH, Section 3.2
651 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
652 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
653 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
654 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
655 	 */
656 	for (i = 0; !found && i < len; i++) {
657 		switch (param->chunks[i]) {
658 		    case SCTP_CID_INIT:
659 		    case SCTP_CID_INIT_ACK:
660 		    case SCTP_CID_SHUTDOWN_COMPLETE:
661 		    case SCTP_CID_AUTH:
662 			break;
663 
664 		    default:
665 			if (param->chunks[i] == chunk)
666 			    found = 1;
667 			break;
668 		}
669 	}
670 
671 	return found;
672 }
673 
674 /* Check if peer requested that this chunk is authenticated */
sctp_auth_send_cid(sctp_cid_t chunk,const struct sctp_association * asoc)675 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
676 {
677 	if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
678 		return 0;
679 
680 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
681 }
682 
683 /* Check if we requested that peer authenticate this chunk. */
sctp_auth_recv_cid(sctp_cid_t chunk,const struct sctp_association * asoc)684 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
685 {
686 	if (!sctp_auth_enable || !asoc)
687 		return 0;
688 
689 	return __sctp_auth_cid(chunk,
690 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
691 }
692 
693 /* SCTP-AUTH: Section 6.2:
694  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
695  *    the hash function H as described by the MAC Identifier and the shared
696  *    association key K based on the endpoint pair shared key described by
697  *    the shared key identifier.  The 'data' used for the computation of
698  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
699  *    zero (as shown in Figure 6) followed by all chunks that are placed
700  *    after the AUTH chunk in the SCTP packet.
701  */
sctp_auth_calculate_hmac(const struct sctp_association * asoc,struct sk_buff * skb,struct sctp_auth_chunk * auth,gfp_t gfp)702 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
703 			      struct sk_buff *skb,
704 			      struct sctp_auth_chunk *auth,
705 			      gfp_t gfp)
706 {
707 	struct scatterlist sg;
708 	struct hash_desc desc;
709 	struct sctp_auth_bytes *asoc_key;
710 	__u16 key_id, hmac_id;
711 	__u8 *digest;
712 	unsigned char *end;
713 	int free_key = 0;
714 
715 	/* Extract the info we need:
716 	 * - hmac id
717 	 * - key id
718 	 */
719 	key_id = ntohs(auth->auth_hdr.shkey_id);
720 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
721 
722 	if (key_id == asoc->active_key_id)
723 		asoc_key = asoc->asoc_shared_key;
724 	else {
725 		struct sctp_shared_key *ep_key;
726 
727 		ep_key = sctp_auth_get_shkey(asoc, key_id);
728 		if (!ep_key)
729 			return;
730 
731 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
732 		if (!asoc_key)
733 			return;
734 
735 		free_key = 1;
736 	}
737 
738 	/* set up scatter list */
739 	end = skb_tail_pointer(skb);
740 	sg_init_one(&sg, auth, end - (unsigned char *)auth);
741 
742 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
743 	desc.flags = 0;
744 
745 	digest = auth->auth_hdr.hmac;
746 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
747 		goto free;
748 
749 	crypto_hash_digest(&desc, &sg, sg.length, digest);
750 
751 free:
752 	if (free_key)
753 		sctp_auth_key_put(asoc_key);
754 }
755 
756 /* API Helpers */
757 
758 /* Add a chunk to the endpoint authenticated chunk list */
sctp_auth_ep_add_chunkid(struct sctp_endpoint * ep,__u8 chunk_id)759 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
760 {
761 	struct sctp_chunks_param *p = ep->auth_chunk_list;
762 	__u16 nchunks;
763 	__u16 param_len;
764 
765 	/* If this chunk is already specified, we are done */
766 	if (__sctp_auth_cid(chunk_id, p))
767 		return 0;
768 
769 	/* Check if we can add this chunk to the array */
770 	param_len = ntohs(p->param_hdr.length);
771 	nchunks = param_len - sizeof(sctp_paramhdr_t);
772 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
773 		return -EINVAL;
774 
775 	p->chunks[nchunks] = chunk_id;
776 	p->param_hdr.length = htons(param_len + 1);
777 	return 0;
778 }
779 
780 /* Add hmac identifires to the endpoint list of supported hmac ids */
sctp_auth_ep_set_hmacs(struct sctp_endpoint * ep,struct sctp_hmacalgo * hmacs)781 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
782 			   struct sctp_hmacalgo *hmacs)
783 {
784 	int has_sha1 = 0;
785 	__u16 id;
786 	int i;
787 
788 	/* Scan the list looking for unsupported id.  Also make sure that
789 	 * SHA1 is specified.
790 	 */
791 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
792 		id = hmacs->shmac_idents[i];
793 
794 		if (id > SCTP_AUTH_HMAC_ID_MAX)
795 			return -EOPNOTSUPP;
796 
797 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
798 			has_sha1 = 1;
799 
800 		if (!sctp_hmac_list[id].hmac_name)
801 			return -EOPNOTSUPP;
802 	}
803 
804 	if (!has_sha1)
805 		return -EINVAL;
806 
807 	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
808 		hmacs->shmac_num_idents * sizeof(__u16));
809 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
810 				hmacs->shmac_num_idents * sizeof(__u16));
811 	return 0;
812 }
813 
814 /* Set a new shared key on either endpoint or association.  If the
815  * the key with a same ID already exists, replace the key (remove the
816  * old key and add a new one).
817  */
sctp_auth_set_key(struct sctp_endpoint * ep,struct sctp_association * asoc,struct sctp_authkey * auth_key)818 int sctp_auth_set_key(struct sctp_endpoint *ep,
819 		      struct sctp_association *asoc,
820 		      struct sctp_authkey *auth_key)
821 {
822 	struct sctp_shared_key *cur_key = NULL;
823 	struct sctp_auth_bytes *key;
824 	struct list_head *sh_keys;
825 	int replace = 0;
826 
827 	/* Try to find the given key id to see if
828 	 * we are doing a replace, or adding a new key
829 	 */
830 	if (asoc)
831 		sh_keys = &asoc->endpoint_shared_keys;
832 	else
833 		sh_keys = &ep->endpoint_shared_keys;
834 
835 	key_for_each(cur_key, sh_keys) {
836 		if (cur_key->key_id == auth_key->sca_keynumber) {
837 			replace = 1;
838 			break;
839 		}
840 	}
841 
842 	/* If we are not replacing a key id, we need to allocate
843 	 * a shared key.
844 	 */
845 	if (!replace) {
846 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
847 						 GFP_KERNEL);
848 		if (!cur_key)
849 			return -ENOMEM;
850 	}
851 
852 	/* Create a new key data based on the info passed in */
853 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
854 	if (!key)
855 		goto nomem;
856 
857 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
858 
859 	/* If we are replacing, remove the old keys data from the
860 	 * key id.  If we are adding new key id, add it to the
861 	 * list.
862 	 */
863 	if (replace)
864 		sctp_auth_key_put(cur_key->key);
865 	else
866 		list_add(&cur_key->key_list, sh_keys);
867 
868 	cur_key->key = key;
869 	sctp_auth_key_hold(key);
870 
871 	return 0;
872 nomem:
873 	if (!replace)
874 		sctp_auth_shkey_free(cur_key);
875 
876 	return -ENOMEM;
877 }
878 
sctp_auth_set_active_key(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)879 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
880 			     struct sctp_association *asoc,
881 			     __u16  key_id)
882 {
883 	struct sctp_shared_key *key;
884 	struct list_head *sh_keys;
885 	int found = 0;
886 
887 	/* The key identifier MUST correst to an existing key */
888 	if (asoc)
889 		sh_keys = &asoc->endpoint_shared_keys;
890 	else
891 		sh_keys = &ep->endpoint_shared_keys;
892 
893 	key_for_each(key, sh_keys) {
894 		if (key->key_id == key_id) {
895 			found = 1;
896 			break;
897 		}
898 	}
899 
900 	if (!found)
901 		return -EINVAL;
902 
903 	if (asoc) {
904 		asoc->active_key_id = key_id;
905 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
906 	} else
907 		ep->active_key_id = key_id;
908 
909 	return 0;
910 }
911 
sctp_auth_del_key_id(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)912 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
913 			 struct sctp_association *asoc,
914 			 __u16  key_id)
915 {
916 	struct sctp_shared_key *key;
917 	struct list_head *sh_keys;
918 	int found = 0;
919 
920 	/* The key identifier MUST NOT be the current active key
921 	 * The key identifier MUST correst to an existing key
922 	 */
923 	if (asoc) {
924 		if (asoc->active_key_id == key_id)
925 			return -EINVAL;
926 
927 		sh_keys = &asoc->endpoint_shared_keys;
928 	} else {
929 		if (ep->active_key_id == key_id)
930 			return -EINVAL;
931 
932 		sh_keys = &ep->endpoint_shared_keys;
933 	}
934 
935 	key_for_each(key, sh_keys) {
936 		if (key->key_id == key_id) {
937 			found = 1;
938 			break;
939 		}
940 	}
941 
942 	if (!found)
943 		return -EINVAL;
944 
945 	/* Delete the shared key */
946 	list_del_init(&key->key_list);
947 	sctp_auth_shkey_free(key);
948 
949 	return 0;
950 }
951