1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 #include <linux/compat.h>
74
75 #include <net/ip.h>
76 #include <net/icmp.h>
77 #include <net/route.h>
78 #include <net/ipv6.h>
79 #include <net/inet_common.h>
80
81 #include <linux/socket.h> /* for sa_family_t */
82 #include <linux/export.h>
83 #include <net/sock.h>
84 #include <net/sctp/sctp.h>
85 #include <net/sctp/sm.h>
86
87 /* WARNING: Please do not remove the SCTP_STATIC attribute to
88 * any of the functions below as they are used to export functions
89 * used by a project regression testsuite.
90 */
91
92 /* Forward declarations for internal helper functions. */
93 static int sctp_writeable(struct sock *sk);
94 static void sctp_wfree(struct sk_buff *skb);
95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
96 size_t msg_len);
97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
99 static int sctp_wait_for_accept(struct sock *sk, long timeo);
100 static void sctp_wait_for_close(struct sock *sk, long timeo);
101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
102 union sctp_addr *addr, int len);
103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
107 static int sctp_send_asconf(struct sctp_association *asoc,
108 struct sctp_chunk *chunk);
109 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
110 static int sctp_autobind(struct sock *sk);
111 static void sctp_sock_migrate(struct sock *, struct sock *,
112 struct sctp_association *, sctp_socket_type_t);
113 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
114
115 extern struct kmem_cache *sctp_bucket_cachep;
116 extern long sysctl_sctp_mem[3];
117 extern int sysctl_sctp_rmem[3];
118 extern int sysctl_sctp_wmem[3];
119
120 static int sctp_memory_pressure;
121 static atomic_long_t sctp_memory_allocated;
122 struct percpu_counter sctp_sockets_allocated;
123
sctp_enter_memory_pressure(struct sock * sk)124 static void sctp_enter_memory_pressure(struct sock *sk)
125 {
126 sctp_memory_pressure = 1;
127 }
128
129
130 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)131 static inline int sctp_wspace(struct sctp_association *asoc)
132 {
133 int amt;
134
135 if (asoc->ep->sndbuf_policy)
136 amt = asoc->sndbuf_used;
137 else
138 amt = sk_wmem_alloc_get(asoc->base.sk);
139
140 if (amt >= asoc->base.sk->sk_sndbuf) {
141 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
142 amt = 0;
143 else {
144 amt = sk_stream_wspace(asoc->base.sk);
145 if (amt < 0)
146 amt = 0;
147 }
148 } else {
149 amt = asoc->base.sk->sk_sndbuf - amt;
150 }
151 return amt;
152 }
153
154 /* Increment the used sndbuf space count of the corresponding association by
155 * the size of the outgoing data chunk.
156 * Also, set the skb destructor for sndbuf accounting later.
157 *
158 * Since it is always 1-1 between chunk and skb, and also a new skb is always
159 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
160 * destructor in the data chunk skb for the purpose of the sndbuf space
161 * tracking.
162 */
sctp_set_owner_w(struct sctp_chunk * chunk)163 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
164 {
165 struct sctp_association *asoc = chunk->asoc;
166 struct sock *sk = asoc->base.sk;
167
168 /* The sndbuf space is tracked per association. */
169 sctp_association_hold(asoc);
170
171 skb_set_owner_w(chunk->skb, sk);
172
173 chunk->skb->destructor = sctp_wfree;
174 /* Save the chunk pointer in skb for sctp_wfree to use later. */
175 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
176
177 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
178 sizeof(struct sk_buff) +
179 sizeof(struct sctp_chunk);
180
181 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
182 sk->sk_wmem_queued += chunk->skb->truesize;
183 sk_mem_charge(sk, chunk->skb->truesize);
184 }
185
186 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)187 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
188 int len)
189 {
190 struct sctp_af *af;
191
192 /* Verify basic sockaddr. */
193 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
194 if (!af)
195 return -EINVAL;
196
197 /* Is this a valid SCTP address? */
198 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
199 return -EINVAL;
200
201 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
202 return -EINVAL;
203
204 return 0;
205 }
206
207 /* Look up the association by its id. If this is not a UDP-style
208 * socket, the ID field is always ignored.
209 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)210 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
211 {
212 struct sctp_association *asoc = NULL;
213
214 /* If this is not a UDP-style socket, assoc id should be ignored. */
215 if (!sctp_style(sk, UDP)) {
216 /* Return NULL if the socket state is not ESTABLISHED. It
217 * could be a TCP-style listening socket or a socket which
218 * hasn't yet called connect() to establish an association.
219 */
220 if (!sctp_sstate(sk, ESTABLISHED))
221 return NULL;
222
223 /* Get the first and the only association from the list. */
224 if (!list_empty(&sctp_sk(sk)->ep->asocs))
225 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
226 struct sctp_association, asocs);
227 return asoc;
228 }
229
230 /* Otherwise this is a UDP-style socket. */
231 if (!id || (id == (sctp_assoc_t)-1))
232 return NULL;
233
234 spin_lock_bh(&sctp_assocs_id_lock);
235 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
236 spin_unlock_bh(&sctp_assocs_id_lock);
237
238 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
239 return NULL;
240
241 return asoc;
242 }
243
244 /* Look up the transport from an address and an assoc id. If both address and
245 * id are specified, the associations matching the address and the id should be
246 * the same.
247 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)248 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
249 struct sockaddr_storage *addr,
250 sctp_assoc_t id)
251 {
252 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
253 struct sctp_transport *transport;
254 union sctp_addr *laddr = (union sctp_addr *)addr;
255
256 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
257 laddr,
258 &transport);
259
260 if (!addr_asoc)
261 return NULL;
262
263 id_asoc = sctp_id2assoc(sk, id);
264 if (id_asoc && (id_asoc != addr_asoc))
265 return NULL;
266
267 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
268 (union sctp_addr *)addr);
269
270 return transport;
271 }
272
273 /* API 3.1.2 bind() - UDP Style Syntax
274 * The syntax of bind() is,
275 *
276 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
277 *
278 * sd - the socket descriptor returned by socket().
279 * addr - the address structure (struct sockaddr_in or struct
280 * sockaddr_in6 [RFC 2553]),
281 * addr_len - the size of the address structure.
282 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)283 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
284 {
285 int retval = 0;
286
287 sctp_lock_sock(sk);
288
289 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
290 sk, addr, addr_len);
291
292 /* Disallow binding twice. */
293 if (!sctp_sk(sk)->ep->base.bind_addr.port)
294 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
295 addr_len);
296 else
297 retval = -EINVAL;
298
299 sctp_release_sock(sk);
300
301 return retval;
302 }
303
304 static long sctp_get_port_local(struct sock *, union sctp_addr *);
305
306 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)307 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
308 union sctp_addr *addr, int len)
309 {
310 struct sctp_af *af;
311
312 /* Check minimum size. */
313 if (len < sizeof (struct sockaddr))
314 return NULL;
315
316 /* V4 mapped address are really of AF_INET family */
317 if (addr->sa.sa_family == AF_INET6 &&
318 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
319 if (!opt->pf->af_supported(AF_INET, opt))
320 return NULL;
321 } else {
322 /* Does this PF support this AF? */
323 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
324 return NULL;
325 }
326
327 /* If we get this far, af is valid. */
328 af = sctp_get_af_specific(addr->sa.sa_family);
329
330 if (len < af->sockaddr_len)
331 return NULL;
332
333 return af;
334 }
335
336 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)337 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
338 {
339 struct sctp_sock *sp = sctp_sk(sk);
340 struct sctp_endpoint *ep = sp->ep;
341 struct sctp_bind_addr *bp = &ep->base.bind_addr;
342 struct sctp_af *af;
343 unsigned short snum;
344 int ret = 0;
345
346 /* Common sockaddr verification. */
347 af = sctp_sockaddr_af(sp, addr, len);
348 if (!af) {
349 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
350 sk, addr, len);
351 return -EINVAL;
352 }
353
354 snum = ntohs(addr->v4.sin_port);
355
356 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
357 ", port: %d, new port: %d, len: %d)\n",
358 sk,
359 addr,
360 bp->port, snum,
361 len);
362
363 /* PF specific bind() address verification. */
364 if (!sp->pf->bind_verify(sp, addr))
365 return -EADDRNOTAVAIL;
366
367 /* We must either be unbound, or bind to the same port.
368 * It's OK to allow 0 ports if we are already bound.
369 * We'll just inhert an already bound port in this case
370 */
371 if (bp->port) {
372 if (!snum)
373 snum = bp->port;
374 else if (snum != bp->port) {
375 SCTP_DEBUG_PRINTK("sctp_do_bind:"
376 " New port %d does not match existing port "
377 "%d.\n", snum, bp->port);
378 return -EINVAL;
379 }
380 }
381
382 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
383 return -EACCES;
384
385 /* See if the address matches any of the addresses we may have
386 * already bound before checking against other endpoints.
387 */
388 if (sctp_bind_addr_match(bp, addr, sp))
389 return -EINVAL;
390
391 /* Make sure we are allowed to bind here.
392 * The function sctp_get_port_local() does duplicate address
393 * detection.
394 */
395 addr->v4.sin_port = htons(snum);
396 if ((ret = sctp_get_port_local(sk, addr))) {
397 return -EADDRINUSE;
398 }
399
400 /* Refresh ephemeral port. */
401 if (!bp->port)
402 bp->port = inet_sk(sk)->inet_num;
403
404 /* Add the address to the bind address list.
405 * Use GFP_ATOMIC since BHs will be disabled.
406 */
407 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
408
409 /* Copy back into socket for getsockname() use. */
410 if (!ret) {
411 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
412 af->to_sk_saddr(addr, sk);
413 }
414
415 return ret;
416 }
417
418 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
419 *
420 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
421 * at any one time. If a sender, after sending an ASCONF chunk, decides
422 * it needs to transfer another ASCONF Chunk, it MUST wait until the
423 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
424 * subsequent ASCONF. Note this restriction binds each side, so at any
425 * time two ASCONF may be in-transit on any given association (one sent
426 * from each endpoint).
427 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)428 static int sctp_send_asconf(struct sctp_association *asoc,
429 struct sctp_chunk *chunk)
430 {
431 int retval = 0;
432
433 /* If there is an outstanding ASCONF chunk, queue it for later
434 * transmission.
435 */
436 if (asoc->addip_last_asconf) {
437 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
438 goto out;
439 }
440
441 /* Hold the chunk until an ASCONF_ACK is received. */
442 sctp_chunk_hold(chunk);
443 retval = sctp_primitive_ASCONF(asoc, chunk);
444 if (retval)
445 sctp_chunk_free(chunk);
446 else
447 asoc->addip_last_asconf = chunk;
448
449 out:
450 return retval;
451 }
452
453 /* Add a list of addresses as bind addresses to local endpoint or
454 * association.
455 *
456 * Basically run through each address specified in the addrs/addrcnt
457 * array/length pair, determine if it is IPv6 or IPv4 and call
458 * sctp_do_bind() on it.
459 *
460 * If any of them fails, then the operation will be reversed and the
461 * ones that were added will be removed.
462 *
463 * Only sctp_setsockopt_bindx() is supposed to call this function.
464 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)465 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
466 {
467 int cnt;
468 int retval = 0;
469 void *addr_buf;
470 struct sockaddr *sa_addr;
471 struct sctp_af *af;
472
473 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
474 sk, addrs, addrcnt);
475
476 addr_buf = addrs;
477 for (cnt = 0; cnt < addrcnt; cnt++) {
478 /* The list may contain either IPv4 or IPv6 address;
479 * determine the address length for walking thru the list.
480 */
481 sa_addr = addr_buf;
482 af = sctp_get_af_specific(sa_addr->sa_family);
483 if (!af) {
484 retval = -EINVAL;
485 goto err_bindx_add;
486 }
487
488 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
489 af->sockaddr_len);
490
491 addr_buf += af->sockaddr_len;
492
493 err_bindx_add:
494 if (retval < 0) {
495 /* Failed. Cleanup the ones that have been added */
496 if (cnt > 0)
497 sctp_bindx_rem(sk, addrs, cnt);
498 return retval;
499 }
500 }
501
502 return retval;
503 }
504
505 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
506 * associations that are part of the endpoint indicating that a list of local
507 * addresses are added to the endpoint.
508 *
509 * If any of the addresses is already in the bind address list of the
510 * association, we do not send the chunk for that association. But it will not
511 * affect other associations.
512 *
513 * Only sctp_setsockopt_bindx() is supposed to call this function.
514 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)515 static int sctp_send_asconf_add_ip(struct sock *sk,
516 struct sockaddr *addrs,
517 int addrcnt)
518 {
519 struct sctp_sock *sp;
520 struct sctp_endpoint *ep;
521 struct sctp_association *asoc;
522 struct sctp_bind_addr *bp;
523 struct sctp_chunk *chunk;
524 struct sctp_sockaddr_entry *laddr;
525 union sctp_addr *addr;
526 union sctp_addr saveaddr;
527 void *addr_buf;
528 struct sctp_af *af;
529 struct list_head *p;
530 int i;
531 int retval = 0;
532
533 if (!sctp_addip_enable)
534 return retval;
535
536 sp = sctp_sk(sk);
537 ep = sp->ep;
538
539 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
540 __func__, sk, addrs, addrcnt);
541
542 list_for_each_entry(asoc, &ep->asocs, asocs) {
543
544 if (!asoc->peer.asconf_capable)
545 continue;
546
547 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
548 continue;
549
550 if (!sctp_state(asoc, ESTABLISHED))
551 continue;
552
553 /* Check if any address in the packed array of addresses is
554 * in the bind address list of the association. If so,
555 * do not send the asconf chunk to its peer, but continue with
556 * other associations.
557 */
558 addr_buf = addrs;
559 for (i = 0; i < addrcnt; i++) {
560 addr = addr_buf;
561 af = sctp_get_af_specific(addr->v4.sin_family);
562 if (!af) {
563 retval = -EINVAL;
564 goto out;
565 }
566
567 if (sctp_assoc_lookup_laddr(asoc, addr))
568 break;
569
570 addr_buf += af->sockaddr_len;
571 }
572 if (i < addrcnt)
573 continue;
574
575 /* Use the first valid address in bind addr list of
576 * association as Address Parameter of ASCONF CHUNK.
577 */
578 bp = &asoc->base.bind_addr;
579 p = bp->address_list.next;
580 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
581 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
582 addrcnt, SCTP_PARAM_ADD_IP);
583 if (!chunk) {
584 retval = -ENOMEM;
585 goto out;
586 }
587
588 /* Add the new addresses to the bind address list with
589 * use_as_src set to 0.
590 */
591 addr_buf = addrs;
592 for (i = 0; i < addrcnt; i++) {
593 addr = addr_buf;
594 af = sctp_get_af_specific(addr->v4.sin_family);
595 memcpy(&saveaddr, addr, af->sockaddr_len);
596 retval = sctp_add_bind_addr(bp, &saveaddr,
597 SCTP_ADDR_NEW, GFP_ATOMIC);
598 addr_buf += af->sockaddr_len;
599 }
600 if (asoc->src_out_of_asoc_ok) {
601 struct sctp_transport *trans;
602
603 list_for_each_entry(trans,
604 &asoc->peer.transport_addr_list, transports) {
605 /* Clear the source and route cache */
606 dst_release(trans->dst);
607 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
608 2*asoc->pathmtu, 4380));
609 trans->ssthresh = asoc->peer.i.a_rwnd;
610 trans->rto = asoc->rto_initial;
611 trans->rtt = trans->srtt = trans->rttvar = 0;
612 sctp_transport_route(trans, NULL,
613 sctp_sk(asoc->base.sk));
614 }
615 }
616 retval = sctp_send_asconf(asoc, chunk);
617 }
618
619 out:
620 return retval;
621 }
622
623 /* Remove a list of addresses from bind addresses list. Do not remove the
624 * last address.
625 *
626 * Basically run through each address specified in the addrs/addrcnt
627 * array/length pair, determine if it is IPv6 or IPv4 and call
628 * sctp_del_bind() on it.
629 *
630 * If any of them fails, then the operation will be reversed and the
631 * ones that were removed will be added back.
632 *
633 * At least one address has to be left; if only one address is
634 * available, the operation will return -EBUSY.
635 *
636 * Only sctp_setsockopt_bindx() is supposed to call this function.
637 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)638 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
639 {
640 struct sctp_sock *sp = sctp_sk(sk);
641 struct sctp_endpoint *ep = sp->ep;
642 int cnt;
643 struct sctp_bind_addr *bp = &ep->base.bind_addr;
644 int retval = 0;
645 void *addr_buf;
646 union sctp_addr *sa_addr;
647 struct sctp_af *af;
648
649 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
650 sk, addrs, addrcnt);
651
652 addr_buf = addrs;
653 for (cnt = 0; cnt < addrcnt; cnt++) {
654 /* If the bind address list is empty or if there is only one
655 * bind address, there is nothing more to be removed (we need
656 * at least one address here).
657 */
658 if (list_empty(&bp->address_list) ||
659 (sctp_list_single_entry(&bp->address_list))) {
660 retval = -EBUSY;
661 goto err_bindx_rem;
662 }
663
664 sa_addr = addr_buf;
665 af = sctp_get_af_specific(sa_addr->sa.sa_family);
666 if (!af) {
667 retval = -EINVAL;
668 goto err_bindx_rem;
669 }
670
671 if (!af->addr_valid(sa_addr, sp, NULL)) {
672 retval = -EADDRNOTAVAIL;
673 goto err_bindx_rem;
674 }
675
676 if (sa_addr->v4.sin_port &&
677 sa_addr->v4.sin_port != htons(bp->port)) {
678 retval = -EINVAL;
679 goto err_bindx_rem;
680 }
681
682 if (!sa_addr->v4.sin_port)
683 sa_addr->v4.sin_port = htons(bp->port);
684
685 /* FIXME - There is probably a need to check if sk->sk_saddr and
686 * sk->sk_rcv_addr are currently set to one of the addresses to
687 * be removed. This is something which needs to be looked into
688 * when we are fixing the outstanding issues with multi-homing
689 * socket routing and failover schemes. Refer to comments in
690 * sctp_do_bind(). -daisy
691 */
692 retval = sctp_del_bind_addr(bp, sa_addr);
693
694 addr_buf += af->sockaddr_len;
695 err_bindx_rem:
696 if (retval < 0) {
697 /* Failed. Add the ones that has been removed back */
698 if (cnt > 0)
699 sctp_bindx_add(sk, addrs, cnt);
700 return retval;
701 }
702 }
703
704 return retval;
705 }
706
707 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
708 * the associations that are part of the endpoint indicating that a list of
709 * local addresses are removed from the endpoint.
710 *
711 * If any of the addresses is already in the bind address list of the
712 * association, we do not send the chunk for that association. But it will not
713 * affect other associations.
714 *
715 * Only sctp_setsockopt_bindx() is supposed to call this function.
716 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)717 static int sctp_send_asconf_del_ip(struct sock *sk,
718 struct sockaddr *addrs,
719 int addrcnt)
720 {
721 struct sctp_sock *sp;
722 struct sctp_endpoint *ep;
723 struct sctp_association *asoc;
724 struct sctp_transport *transport;
725 struct sctp_bind_addr *bp;
726 struct sctp_chunk *chunk;
727 union sctp_addr *laddr;
728 void *addr_buf;
729 struct sctp_af *af;
730 struct sctp_sockaddr_entry *saddr;
731 int i;
732 int retval = 0;
733 int stored = 0;
734
735 chunk = NULL;
736 if (!sctp_addip_enable)
737 return retval;
738
739 sp = sctp_sk(sk);
740 ep = sp->ep;
741
742 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
743 __func__, sk, addrs, addrcnt);
744
745 list_for_each_entry(asoc, &ep->asocs, asocs) {
746
747 if (!asoc->peer.asconf_capable)
748 continue;
749
750 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
751 continue;
752
753 if (!sctp_state(asoc, ESTABLISHED))
754 continue;
755
756 /* Check if any address in the packed array of addresses is
757 * not present in the bind address list of the association.
758 * If so, do not send the asconf chunk to its peer, but
759 * continue with other associations.
760 */
761 addr_buf = addrs;
762 for (i = 0; i < addrcnt; i++) {
763 laddr = addr_buf;
764 af = sctp_get_af_specific(laddr->v4.sin_family);
765 if (!af) {
766 retval = -EINVAL;
767 goto out;
768 }
769
770 if (!sctp_assoc_lookup_laddr(asoc, laddr))
771 break;
772
773 addr_buf += af->sockaddr_len;
774 }
775 if (i < addrcnt)
776 continue;
777
778 /* Find one address in the association's bind address list
779 * that is not in the packed array of addresses. This is to
780 * make sure that we do not delete all the addresses in the
781 * association.
782 */
783 bp = &asoc->base.bind_addr;
784 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
785 addrcnt, sp);
786 if ((laddr == NULL) && (addrcnt == 1)) {
787 if (asoc->asconf_addr_del_pending)
788 continue;
789 asoc->asconf_addr_del_pending =
790 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
791 if (asoc->asconf_addr_del_pending == NULL) {
792 retval = -ENOMEM;
793 goto out;
794 }
795 asoc->asconf_addr_del_pending->sa.sa_family =
796 addrs->sa_family;
797 asoc->asconf_addr_del_pending->v4.sin_port =
798 htons(bp->port);
799 if (addrs->sa_family == AF_INET) {
800 struct sockaddr_in *sin;
801
802 sin = (struct sockaddr_in *)addrs;
803 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
804 } else if (addrs->sa_family == AF_INET6) {
805 struct sockaddr_in6 *sin6;
806
807 sin6 = (struct sockaddr_in6 *)addrs;
808 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
809 }
810 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
811 " at %p\n", asoc, asoc->asconf_addr_del_pending,
812 asoc->asconf_addr_del_pending);
813 asoc->src_out_of_asoc_ok = 1;
814 stored = 1;
815 goto skip_mkasconf;
816 }
817
818 if (laddr == NULL)
819 return -EINVAL;
820
821 /* We do not need RCU protection throughout this loop
822 * because this is done under a socket lock from the
823 * setsockopt call.
824 */
825 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
826 SCTP_PARAM_DEL_IP);
827 if (!chunk) {
828 retval = -ENOMEM;
829 goto out;
830 }
831
832 skip_mkasconf:
833 /* Reset use_as_src flag for the addresses in the bind address
834 * list that are to be deleted.
835 */
836 addr_buf = addrs;
837 for (i = 0; i < addrcnt; i++) {
838 laddr = addr_buf;
839 af = sctp_get_af_specific(laddr->v4.sin_family);
840 list_for_each_entry(saddr, &bp->address_list, list) {
841 if (sctp_cmp_addr_exact(&saddr->a, laddr))
842 saddr->state = SCTP_ADDR_DEL;
843 }
844 addr_buf += af->sockaddr_len;
845 }
846
847 /* Update the route and saddr entries for all the transports
848 * as some of the addresses in the bind address list are
849 * about to be deleted and cannot be used as source addresses.
850 */
851 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
852 transports) {
853 dst_release(transport->dst);
854 sctp_transport_route(transport, NULL,
855 sctp_sk(asoc->base.sk));
856 }
857
858 if (stored)
859 /* We don't need to transmit ASCONF */
860 continue;
861 retval = sctp_send_asconf(asoc, chunk);
862 }
863 out:
864 return retval;
865 }
866
867 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)868 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
869 {
870 struct sock *sk = sctp_opt2sk(sp);
871 union sctp_addr *addr;
872 struct sctp_af *af;
873
874 /* It is safe to write port space in caller. */
875 addr = &addrw->a;
876 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
877 af = sctp_get_af_specific(addr->sa.sa_family);
878 if (!af)
879 return -EINVAL;
880 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
881 return -EINVAL;
882
883 if (addrw->state == SCTP_ADDR_NEW)
884 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
885 else
886 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
887 }
888
889 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
890 *
891 * API 8.1
892 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
893 * int flags);
894 *
895 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
896 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
897 * or IPv6 addresses.
898 *
899 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
900 * Section 3.1.2 for this usage.
901 *
902 * addrs is a pointer to an array of one or more socket addresses. Each
903 * address is contained in its appropriate structure (i.e. struct
904 * sockaddr_in or struct sockaddr_in6) the family of the address type
905 * must be used to distinguish the address length (note that this
906 * representation is termed a "packed array" of addresses). The caller
907 * specifies the number of addresses in the array with addrcnt.
908 *
909 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
910 * -1, and sets errno to the appropriate error code.
911 *
912 * For SCTP, the port given in each socket address must be the same, or
913 * sctp_bindx() will fail, setting errno to EINVAL.
914 *
915 * The flags parameter is formed from the bitwise OR of zero or more of
916 * the following currently defined flags:
917 *
918 * SCTP_BINDX_ADD_ADDR
919 *
920 * SCTP_BINDX_REM_ADDR
921 *
922 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
923 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
924 * addresses from the association. The two flags are mutually exclusive;
925 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
926 * not remove all addresses from an association; sctp_bindx() will
927 * reject such an attempt with EINVAL.
928 *
929 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
930 * additional addresses with an endpoint after calling bind(). Or use
931 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
932 * socket is associated with so that no new association accepted will be
933 * associated with those addresses. If the endpoint supports dynamic
934 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
935 * endpoint to send the appropriate message to the peer to change the
936 * peers address lists.
937 *
938 * Adding and removing addresses from a connected association is
939 * optional functionality. Implementations that do not support this
940 * functionality should return EOPNOTSUPP.
941 *
942 * Basically do nothing but copying the addresses from user to kernel
943 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
944 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
945 * from userspace.
946 *
947 * We don't use copy_from_user() for optimization: we first do the
948 * sanity checks (buffer size -fast- and access check-healthy
949 * pointer); if all of those succeed, then we can alloc the memory
950 * (expensive operation) needed to copy the data to kernel. Then we do
951 * the copying without checking the user space area
952 * (__copy_from_user()).
953 *
954 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
955 * it.
956 *
957 * sk The sk of the socket
958 * addrs The pointer to the addresses in user land
959 * addrssize Size of the addrs buffer
960 * op Operation to perform (add or remove, see the flags of
961 * sctp_bindx)
962 *
963 * Returns 0 if ok, <0 errno code on error.
964 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size,int op)965 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
966 struct sockaddr __user *addrs,
967 int addrs_size, int op)
968 {
969 struct sockaddr *kaddrs;
970 int err;
971 int addrcnt = 0;
972 int walk_size = 0;
973 struct sockaddr *sa_addr;
974 void *addr_buf;
975 struct sctp_af *af;
976
977 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
978 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
979
980 if (unlikely(addrs_size <= 0))
981 return -EINVAL;
982
983 /* Check the user passed a healthy pointer. */
984 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
985 return -EFAULT;
986
987 /* Alloc space for the address array in kernel memory. */
988 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
989 if (unlikely(!kaddrs))
990 return -ENOMEM;
991
992 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
993 kfree(kaddrs);
994 return -EFAULT;
995 }
996
997 /* Walk through the addrs buffer and count the number of addresses. */
998 addr_buf = kaddrs;
999 while (walk_size < addrs_size) {
1000 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1001 kfree(kaddrs);
1002 return -EINVAL;
1003 }
1004
1005 sa_addr = addr_buf;
1006 af = sctp_get_af_specific(sa_addr->sa_family);
1007
1008 /* If the address family is not supported or if this address
1009 * causes the address buffer to overflow return EINVAL.
1010 */
1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 kfree(kaddrs);
1013 return -EINVAL;
1014 }
1015 addrcnt++;
1016 addr_buf += af->sockaddr_len;
1017 walk_size += af->sockaddr_len;
1018 }
1019
1020 /* Do the work. */
1021 switch (op) {
1022 case SCTP_BINDX_ADD_ADDR:
1023 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1024 if (err)
1025 goto out;
1026 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1027 break;
1028
1029 case SCTP_BINDX_REM_ADDR:
1030 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1031 if (err)
1032 goto out;
1033 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1034 break;
1035
1036 default:
1037 err = -EINVAL;
1038 break;
1039 }
1040
1041 out:
1042 kfree(kaddrs);
1043
1044 return err;
1045 }
1046
1047 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1048 *
1049 * Common routine for handling connect() and sctp_connectx().
1050 * Connect will come in with just a single address.
1051 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1052 static int __sctp_connect(struct sock* sk,
1053 struct sockaddr *kaddrs,
1054 int addrs_size,
1055 sctp_assoc_t *assoc_id)
1056 {
1057 struct sctp_sock *sp;
1058 struct sctp_endpoint *ep;
1059 struct sctp_association *asoc = NULL;
1060 struct sctp_association *asoc2;
1061 struct sctp_transport *transport;
1062 union sctp_addr to;
1063 struct sctp_af *af;
1064 sctp_scope_t scope;
1065 long timeo;
1066 int err = 0;
1067 int addrcnt = 0;
1068 int walk_size = 0;
1069 union sctp_addr *sa_addr = NULL;
1070 void *addr_buf;
1071 unsigned short port;
1072 unsigned int f_flags = 0;
1073
1074 sp = sctp_sk(sk);
1075 ep = sp->ep;
1076
1077 /* connect() cannot be done on a socket that is already in ESTABLISHED
1078 * state - UDP-style peeled off socket or a TCP-style socket that
1079 * is already connected.
1080 * It cannot be done even on a TCP-style listening socket.
1081 */
1082 if (sctp_sstate(sk, ESTABLISHED) ||
1083 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1084 err = -EISCONN;
1085 goto out_free;
1086 }
1087
1088 /* Walk through the addrs buffer and count the number of addresses. */
1089 addr_buf = kaddrs;
1090 while (walk_size < addrs_size) {
1091 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1092 err = -EINVAL;
1093 goto out_free;
1094 }
1095
1096 sa_addr = addr_buf;
1097 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1098
1099 /* If the address family is not supported or if this address
1100 * causes the address buffer to overflow return EINVAL.
1101 */
1102 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1103 err = -EINVAL;
1104 goto out_free;
1105 }
1106
1107 port = ntohs(sa_addr->v4.sin_port);
1108
1109 /* Save current address so we can work with it */
1110 memcpy(&to, sa_addr, af->sockaddr_len);
1111
1112 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1113 if (err)
1114 goto out_free;
1115
1116 /* Make sure the destination port is correctly set
1117 * in all addresses.
1118 */
1119 if (asoc && asoc->peer.port && asoc->peer.port != port)
1120 goto out_free;
1121
1122
1123 /* Check if there already is a matching association on the
1124 * endpoint (other than the one created here).
1125 */
1126 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1127 if (asoc2 && asoc2 != asoc) {
1128 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1129 err = -EISCONN;
1130 else
1131 err = -EALREADY;
1132 goto out_free;
1133 }
1134
1135 /* If we could not find a matching association on the endpoint,
1136 * make sure that there is no peeled-off association matching
1137 * the peer address even on another socket.
1138 */
1139 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1140 err = -EADDRNOTAVAIL;
1141 goto out_free;
1142 }
1143
1144 if (!asoc) {
1145 /* If a bind() or sctp_bindx() is not called prior to
1146 * an sctp_connectx() call, the system picks an
1147 * ephemeral port and will choose an address set
1148 * equivalent to binding with a wildcard address.
1149 */
1150 if (!ep->base.bind_addr.port) {
1151 if (sctp_autobind(sk)) {
1152 err = -EAGAIN;
1153 goto out_free;
1154 }
1155 } else {
1156 /*
1157 * If an unprivileged user inherits a 1-many
1158 * style socket with open associations on a
1159 * privileged port, it MAY be permitted to
1160 * accept new associations, but it SHOULD NOT
1161 * be permitted to open new associations.
1162 */
1163 if (ep->base.bind_addr.port < PROT_SOCK &&
1164 !capable(CAP_NET_BIND_SERVICE)) {
1165 err = -EACCES;
1166 goto out_free;
1167 }
1168 }
1169
1170 scope = sctp_scope(&to);
1171 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1172 if (!asoc) {
1173 err = -ENOMEM;
1174 goto out_free;
1175 }
1176
1177 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1178 GFP_KERNEL);
1179 if (err < 0) {
1180 goto out_free;
1181 }
1182
1183 }
1184
1185 /* Prime the peer's transport structures. */
1186 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1187 SCTP_UNKNOWN);
1188 if (!transport) {
1189 err = -ENOMEM;
1190 goto out_free;
1191 }
1192
1193 addrcnt++;
1194 addr_buf += af->sockaddr_len;
1195 walk_size += af->sockaddr_len;
1196 }
1197
1198 /* In case the user of sctp_connectx() wants an association
1199 * id back, assign one now.
1200 */
1201 if (assoc_id) {
1202 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1203 if (err < 0)
1204 goto out_free;
1205 }
1206
1207 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1208 if (err < 0) {
1209 goto out_free;
1210 }
1211
1212 /* Initialize sk's dport and daddr for getpeername() */
1213 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1214 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1215 af->to_sk_daddr(sa_addr, sk);
1216 sk->sk_err = 0;
1217
1218 /* in-kernel sockets don't generally have a file allocated to them
1219 * if all they do is call sock_create_kern().
1220 */
1221 if (sk->sk_socket->file)
1222 f_flags = sk->sk_socket->file->f_flags;
1223
1224 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1225
1226 err = sctp_wait_for_connect(asoc, &timeo);
1227 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1228 *assoc_id = asoc->assoc_id;
1229
1230 /* Don't free association on exit. */
1231 asoc = NULL;
1232
1233 out_free:
1234
1235 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1236 " kaddrs: %p err: %d\n",
1237 asoc, kaddrs, err);
1238 if (asoc) {
1239 /* sctp_primitive_ASSOCIATE may have added this association
1240 * To the hash table, try to unhash it, just in case, its a noop
1241 * if it wasn't hashed so we're safe
1242 */
1243 sctp_unhash_established(asoc);
1244 sctp_association_free(asoc);
1245 }
1246 return err;
1247 }
1248
1249 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1250 *
1251 * API 8.9
1252 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1253 * sctp_assoc_t *asoc);
1254 *
1255 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1256 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1257 * or IPv6 addresses.
1258 *
1259 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1260 * Section 3.1.2 for this usage.
1261 *
1262 * addrs is a pointer to an array of one or more socket addresses. Each
1263 * address is contained in its appropriate structure (i.e. struct
1264 * sockaddr_in or struct sockaddr_in6) the family of the address type
1265 * must be used to distengish the address length (note that this
1266 * representation is termed a "packed array" of addresses). The caller
1267 * specifies the number of addresses in the array with addrcnt.
1268 *
1269 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1270 * the association id of the new association. On failure, sctp_connectx()
1271 * returns -1, and sets errno to the appropriate error code. The assoc_id
1272 * is not touched by the kernel.
1273 *
1274 * For SCTP, the port given in each socket address must be the same, or
1275 * sctp_connectx() will fail, setting errno to EINVAL.
1276 *
1277 * An application can use sctp_connectx to initiate an association with
1278 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1279 * allows a caller to specify multiple addresses at which a peer can be
1280 * reached. The way the SCTP stack uses the list of addresses to set up
1281 * the association is implementation dependent. This function only
1282 * specifies that the stack will try to make use of all the addresses in
1283 * the list when needed.
1284 *
1285 * Note that the list of addresses passed in is only used for setting up
1286 * the association. It does not necessarily equal the set of addresses
1287 * the peer uses for the resulting association. If the caller wants to
1288 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1289 * retrieve them after the association has been set up.
1290 *
1291 * Basically do nothing but copying the addresses from user to kernel
1292 * land and invoking either sctp_connectx(). This is used for tunneling
1293 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1294 *
1295 * We don't use copy_from_user() for optimization: we first do the
1296 * sanity checks (buffer size -fast- and access check-healthy
1297 * pointer); if all of those succeed, then we can alloc the memory
1298 * (expensive operation) needed to copy the data to kernel. Then we do
1299 * the copying without checking the user space area
1300 * (__copy_from_user()).
1301 *
1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1303 * it.
1304 *
1305 * sk The sk of the socket
1306 * addrs The pointer to the addresses in user land
1307 * addrssize Size of the addrs buffer
1308 *
1309 * Returns >=0 if ok, <0 errno code on error.
1310 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size,sctp_assoc_t * assoc_id)1311 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1312 struct sockaddr __user *addrs,
1313 int addrs_size,
1314 sctp_assoc_t *assoc_id)
1315 {
1316 int err = 0;
1317 struct sockaddr *kaddrs;
1318
1319 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1320 __func__, sk, addrs, addrs_size);
1321
1322 if (unlikely(addrs_size <= 0))
1323 return -EINVAL;
1324
1325 /* Check the user passed a healthy pointer. */
1326 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1327 return -EFAULT;
1328
1329 /* Alloc space for the address array in kernel memory. */
1330 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1331 if (unlikely(!kaddrs))
1332 return -ENOMEM;
1333
1334 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1335 err = -EFAULT;
1336 } else {
1337 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1338 }
1339
1340 kfree(kaddrs);
1341
1342 return err;
1343 }
1344
1345 /*
1346 * This is an older interface. It's kept for backward compatibility
1347 * to the option that doesn't provide association id.
1348 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr __user * addrs,int addrs_size)1349 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1350 struct sockaddr __user *addrs,
1351 int addrs_size)
1352 {
1353 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1354 }
1355
1356 /*
1357 * New interface for the API. The since the API is done with a socket
1358 * option, to make it simple we feed back the association id is as a return
1359 * indication to the call. Error is always negative and association id is
1360 * always positive.
1361 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size)1362 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1363 struct sockaddr __user *addrs,
1364 int addrs_size)
1365 {
1366 sctp_assoc_t assoc_id = 0;
1367 int err = 0;
1368
1369 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1370
1371 if (err)
1372 return err;
1373 else
1374 return assoc_id;
1375 }
1376
1377 /*
1378 * New (hopefully final) interface for the API.
1379 * We use the sctp_getaddrs_old structure so that use-space library
1380 * can avoid any unnecessary allocations. The only different part
1381 * is that we store the actual length of the address buffer into the
1382 * addrs_num structure member. That way we can re-use the existing
1383 * code.
1384 */
1385 #ifdef CONFIG_COMPAT
1386 struct compat_sctp_getaddrs_old {
1387 sctp_assoc_t assoc_id;
1388 s32 addr_num;
1389 compat_uptr_t addrs; /* struct sockaddr * */
1390 };
1391 #endif
1392
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1393 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1394 char __user *optval,
1395 int __user *optlen)
1396 {
1397 struct sctp_getaddrs_old param;
1398 sctp_assoc_t assoc_id = 0;
1399 int err = 0;
1400
1401 #ifdef CONFIG_COMPAT
1402 if (is_compat_task()) {
1403 struct compat_sctp_getaddrs_old param32;
1404
1405 if (len < sizeof(param32))
1406 return -EINVAL;
1407 if (copy_from_user(¶m32, optval, sizeof(param32)))
1408 return -EFAULT;
1409
1410 param.assoc_id = param32.assoc_id;
1411 param.addr_num = param32.addr_num;
1412 param.addrs = compat_ptr(param32.addrs);
1413 } else
1414 #endif
1415 {
1416 if (len < sizeof(param))
1417 return -EINVAL;
1418 if (copy_from_user(¶m, optval, sizeof(param)))
1419 return -EFAULT;
1420 }
1421
1422 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1423 param.addrs, param.addr_num,
1424 &assoc_id);
1425 if (err == 0 || err == -EINPROGRESS) {
1426 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1427 return -EFAULT;
1428 if (put_user(sizeof(assoc_id), optlen))
1429 return -EFAULT;
1430 }
1431
1432 return err;
1433 }
1434
1435 /* API 3.1.4 close() - UDP Style Syntax
1436 * Applications use close() to perform graceful shutdown (as described in
1437 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1438 * by a UDP-style socket.
1439 *
1440 * The syntax is
1441 *
1442 * ret = close(int sd);
1443 *
1444 * sd - the socket descriptor of the associations to be closed.
1445 *
1446 * To gracefully shutdown a specific association represented by the
1447 * UDP-style socket, an application should use the sendmsg() call,
1448 * passing no user data, but including the appropriate flag in the
1449 * ancillary data (see Section xxxx).
1450 *
1451 * If sd in the close() call is a branched-off socket representing only
1452 * one association, the shutdown is performed on that association only.
1453 *
1454 * 4.1.6 close() - TCP Style Syntax
1455 *
1456 * Applications use close() to gracefully close down an association.
1457 *
1458 * The syntax is:
1459 *
1460 * int close(int sd);
1461 *
1462 * sd - the socket descriptor of the association to be closed.
1463 *
1464 * After an application calls close() on a socket descriptor, no further
1465 * socket operations will succeed on that descriptor.
1466 *
1467 * API 7.1.4 SO_LINGER
1468 *
1469 * An application using the TCP-style socket can use this option to
1470 * perform the SCTP ABORT primitive. The linger option structure is:
1471 *
1472 * struct linger {
1473 * int l_onoff; // option on/off
1474 * int l_linger; // linger time
1475 * };
1476 *
1477 * To enable the option, set l_onoff to 1. If the l_linger value is set
1478 * to 0, calling close() is the same as the ABORT primitive. If the
1479 * value is set to a negative value, the setsockopt() call will return
1480 * an error. If the value is set to a positive value linger_time, the
1481 * close() can be blocked for at most linger_time ms. If the graceful
1482 * shutdown phase does not finish during this period, close() will
1483 * return but the graceful shutdown phase continues in the system.
1484 */
sctp_close(struct sock * sk,long timeout)1485 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1486 {
1487 struct sctp_endpoint *ep;
1488 struct sctp_association *asoc;
1489 struct list_head *pos, *temp;
1490 unsigned int data_was_unread;
1491
1492 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1493
1494 sctp_lock_sock(sk);
1495 sk->sk_shutdown = SHUTDOWN_MASK;
1496 sk->sk_state = SCTP_SS_CLOSING;
1497
1498 ep = sctp_sk(sk)->ep;
1499
1500 /* Clean up any skbs sitting on the receive queue. */
1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1503
1504 /* Walk all associations on an endpoint. */
1505 list_for_each_safe(pos, temp, &ep->asocs) {
1506 asoc = list_entry(pos, struct sctp_association, asocs);
1507
1508 if (sctp_style(sk, TCP)) {
1509 /* A closed association can still be in the list if
1510 * it belongs to a TCP-style listening socket that is
1511 * not yet accepted. If so, free it. If not, send an
1512 * ABORT or SHUTDOWN based on the linger options.
1513 */
1514 if (sctp_state(asoc, CLOSED)) {
1515 sctp_unhash_established(asoc);
1516 sctp_association_free(asoc);
1517 continue;
1518 }
1519 }
1520
1521 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1522 !skb_queue_empty(&asoc->ulpq.reasm) ||
1523 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1524 struct sctp_chunk *chunk;
1525
1526 chunk = sctp_make_abort_user(asoc, NULL, 0);
1527 if (chunk)
1528 sctp_primitive_ABORT(asoc, chunk);
1529 } else
1530 sctp_primitive_SHUTDOWN(asoc, NULL);
1531 }
1532
1533 /* On a TCP-style socket, block for at most linger_time if set. */
1534 if (sctp_style(sk, TCP) && timeout)
1535 sctp_wait_for_close(sk, timeout);
1536
1537 /* This will run the backlog queue. */
1538 sctp_release_sock(sk);
1539
1540 /* Supposedly, no process has access to the socket, but
1541 * the net layers still may.
1542 */
1543 sctp_local_bh_disable();
1544 sctp_bh_lock_sock(sk);
1545
1546 /* Hold the sock, since sk_common_release() will put sock_put()
1547 * and we have just a little more cleanup.
1548 */
1549 sock_hold(sk);
1550 sk_common_release(sk);
1551
1552 sctp_bh_unlock_sock(sk);
1553 sctp_local_bh_enable();
1554
1555 sock_put(sk);
1556
1557 SCTP_DBG_OBJCNT_DEC(sock);
1558 }
1559
1560 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1561 static int sctp_error(struct sock *sk, int flags, int err)
1562 {
1563 if (err == -EPIPE)
1564 err = sock_error(sk) ? : -EPIPE;
1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1566 send_sig(SIGPIPE, current, 0);
1567 return err;
1568 }
1569
1570 /* API 3.1.3 sendmsg() - UDP Style Syntax
1571 *
1572 * An application uses sendmsg() and recvmsg() calls to transmit data to
1573 * and receive data from its peer.
1574 *
1575 * ssize_t sendmsg(int socket, const struct msghdr *message,
1576 * int flags);
1577 *
1578 * socket - the socket descriptor of the endpoint.
1579 * message - pointer to the msghdr structure which contains a single
1580 * user message and possibly some ancillary data.
1581 *
1582 * See Section 5 for complete description of the data
1583 * structures.
1584 *
1585 * flags - flags sent or received with the user message, see Section
1586 * 5 for complete description of the flags.
1587 *
1588 * Note: This function could use a rewrite especially when explicit
1589 * connect support comes in.
1590 */
1591 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1592
1593 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1594
sctp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t msg_len)1595 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1596 struct msghdr *msg, size_t msg_len)
1597 {
1598 struct sctp_sock *sp;
1599 struct sctp_endpoint *ep;
1600 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1601 struct sctp_transport *transport, *chunk_tp;
1602 struct sctp_chunk *chunk;
1603 union sctp_addr to;
1604 struct sockaddr *msg_name = NULL;
1605 struct sctp_sndrcvinfo default_sinfo;
1606 struct sctp_sndrcvinfo *sinfo;
1607 struct sctp_initmsg *sinit;
1608 sctp_assoc_t associd = 0;
1609 sctp_cmsgs_t cmsgs = { NULL };
1610 int err;
1611 sctp_scope_t scope;
1612 long timeo;
1613 __u16 sinfo_flags = 0;
1614 struct sctp_datamsg *datamsg;
1615 int msg_flags = msg->msg_flags;
1616
1617 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1618 sk, msg, msg_len);
1619
1620 err = 0;
1621 sp = sctp_sk(sk);
1622 ep = sp->ep;
1623
1624 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1625
1626 /* We cannot send a message over a TCP-style listening socket. */
1627 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1628 err = -EPIPE;
1629 goto out_nounlock;
1630 }
1631
1632 /* Parse out the SCTP CMSGs. */
1633 err = sctp_msghdr_parse(msg, &cmsgs);
1634
1635 if (err) {
1636 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1637 goto out_nounlock;
1638 }
1639
1640 /* Fetch the destination address for this packet. This
1641 * address only selects the association--it is not necessarily
1642 * the address we will send to.
1643 * For a peeled-off socket, msg_name is ignored.
1644 */
1645 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1646 int msg_namelen = msg->msg_namelen;
1647
1648 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1649 msg_namelen);
1650 if (err)
1651 return err;
1652
1653 if (msg_namelen > sizeof(to))
1654 msg_namelen = sizeof(to);
1655 memcpy(&to, msg->msg_name, msg_namelen);
1656 msg_name = msg->msg_name;
1657 }
1658
1659 sinfo = cmsgs.info;
1660 sinit = cmsgs.init;
1661
1662 /* Did the user specify SNDRCVINFO? */
1663 if (sinfo) {
1664 sinfo_flags = sinfo->sinfo_flags;
1665 associd = sinfo->sinfo_assoc_id;
1666 }
1667
1668 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1669 msg_len, sinfo_flags);
1670
1671 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1672 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1673 err = -EINVAL;
1674 goto out_nounlock;
1675 }
1676
1677 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1678 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1679 * If SCTP_ABORT is set, the message length could be non zero with
1680 * the msg_iov set to the user abort reason.
1681 */
1682 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1683 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1684 err = -EINVAL;
1685 goto out_nounlock;
1686 }
1687
1688 /* If SCTP_ADDR_OVER is set, there must be an address
1689 * specified in msg_name.
1690 */
1691 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1692 err = -EINVAL;
1693 goto out_nounlock;
1694 }
1695
1696 transport = NULL;
1697
1698 SCTP_DEBUG_PRINTK("About to look up association.\n");
1699
1700 sctp_lock_sock(sk);
1701
1702 /* If a msg_name has been specified, assume this is to be used. */
1703 if (msg_name) {
1704 /* Look for a matching association on the endpoint. */
1705 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1706 if (!asoc) {
1707 /* If we could not find a matching association on the
1708 * endpoint, make sure that it is not a TCP-style
1709 * socket that already has an association or there is
1710 * no peeled-off association on another socket.
1711 */
1712 if ((sctp_style(sk, TCP) &&
1713 sctp_sstate(sk, ESTABLISHED)) ||
1714 sctp_endpoint_is_peeled_off(ep, &to)) {
1715 err = -EADDRNOTAVAIL;
1716 goto out_unlock;
1717 }
1718 }
1719 } else {
1720 asoc = sctp_id2assoc(sk, associd);
1721 if (!asoc) {
1722 err = -EPIPE;
1723 goto out_unlock;
1724 }
1725 }
1726
1727 if (asoc) {
1728 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1729
1730 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1731 * socket that has an association in CLOSED state. This can
1732 * happen when an accepted socket has an association that is
1733 * already CLOSED.
1734 */
1735 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1736 err = -EPIPE;
1737 goto out_unlock;
1738 }
1739
1740 if (sinfo_flags & SCTP_EOF) {
1741 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1742 asoc);
1743 sctp_primitive_SHUTDOWN(asoc, NULL);
1744 err = 0;
1745 goto out_unlock;
1746 }
1747 if (sinfo_flags & SCTP_ABORT) {
1748
1749 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1750 if (!chunk) {
1751 err = -ENOMEM;
1752 goto out_unlock;
1753 }
1754
1755 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1756 sctp_primitive_ABORT(asoc, chunk);
1757 err = 0;
1758 goto out_unlock;
1759 }
1760 }
1761
1762 /* Do we need to create the association? */
1763 if (!asoc) {
1764 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1765
1766 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1767 err = -EINVAL;
1768 goto out_unlock;
1769 }
1770
1771 /* Check for invalid stream against the stream counts,
1772 * either the default or the user specified stream counts.
1773 */
1774 if (sinfo) {
1775 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1776 /* Check against the defaults. */
1777 if (sinfo->sinfo_stream >=
1778 sp->initmsg.sinit_num_ostreams) {
1779 err = -EINVAL;
1780 goto out_unlock;
1781 }
1782 } else {
1783 /* Check against the requested. */
1784 if (sinfo->sinfo_stream >=
1785 sinit->sinit_num_ostreams) {
1786 err = -EINVAL;
1787 goto out_unlock;
1788 }
1789 }
1790 }
1791
1792 /*
1793 * API 3.1.2 bind() - UDP Style Syntax
1794 * If a bind() or sctp_bindx() is not called prior to a
1795 * sendmsg() call that initiates a new association, the
1796 * system picks an ephemeral port and will choose an address
1797 * set equivalent to binding with a wildcard address.
1798 */
1799 if (!ep->base.bind_addr.port) {
1800 if (sctp_autobind(sk)) {
1801 err = -EAGAIN;
1802 goto out_unlock;
1803 }
1804 } else {
1805 /*
1806 * If an unprivileged user inherits a one-to-many
1807 * style socket with open associations on a privileged
1808 * port, it MAY be permitted to accept new associations,
1809 * but it SHOULD NOT be permitted to open new
1810 * associations.
1811 */
1812 if (ep->base.bind_addr.port < PROT_SOCK &&
1813 !capable(CAP_NET_BIND_SERVICE)) {
1814 err = -EACCES;
1815 goto out_unlock;
1816 }
1817 }
1818
1819 scope = sctp_scope(&to);
1820 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1821 if (!new_asoc) {
1822 err = -ENOMEM;
1823 goto out_unlock;
1824 }
1825 asoc = new_asoc;
1826 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1827 if (err < 0) {
1828 err = -ENOMEM;
1829 goto out_free;
1830 }
1831
1832 /* If the SCTP_INIT ancillary data is specified, set all
1833 * the association init values accordingly.
1834 */
1835 if (sinit) {
1836 if (sinit->sinit_num_ostreams) {
1837 asoc->c.sinit_num_ostreams =
1838 sinit->sinit_num_ostreams;
1839 }
1840 if (sinit->sinit_max_instreams) {
1841 asoc->c.sinit_max_instreams =
1842 sinit->sinit_max_instreams;
1843 }
1844 if (sinit->sinit_max_attempts) {
1845 asoc->max_init_attempts
1846 = sinit->sinit_max_attempts;
1847 }
1848 if (sinit->sinit_max_init_timeo) {
1849 asoc->max_init_timeo =
1850 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1851 }
1852 }
1853
1854 /* Prime the peer's transport structures. */
1855 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1856 if (!transport) {
1857 err = -ENOMEM;
1858 goto out_free;
1859 }
1860 }
1861
1862 /* ASSERT: we have a valid association at this point. */
1863 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1864
1865 if (!sinfo) {
1866 /* If the user didn't specify SNDRCVINFO, make up one with
1867 * some defaults.
1868 */
1869 memset(&default_sinfo, 0, sizeof(default_sinfo));
1870 default_sinfo.sinfo_stream = asoc->default_stream;
1871 default_sinfo.sinfo_flags = asoc->default_flags;
1872 default_sinfo.sinfo_ppid = asoc->default_ppid;
1873 default_sinfo.sinfo_context = asoc->default_context;
1874 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1875 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1876 sinfo = &default_sinfo;
1877 }
1878
1879 /* API 7.1.7, the sndbuf size per association bounds the
1880 * maximum size of data that can be sent in a single send call.
1881 */
1882 if (msg_len > sk->sk_sndbuf) {
1883 err = -EMSGSIZE;
1884 goto out_free;
1885 }
1886
1887 if (asoc->pmtu_pending)
1888 sctp_assoc_pending_pmtu(asoc);
1889
1890 /* If fragmentation is disabled and the message length exceeds the
1891 * association fragmentation point, return EMSGSIZE. The I-D
1892 * does not specify what this error is, but this looks like
1893 * a great fit.
1894 */
1895 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1896 err = -EMSGSIZE;
1897 goto out_free;
1898 }
1899
1900 /* Check for invalid stream. */
1901 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1902 err = -EINVAL;
1903 goto out_free;
1904 }
1905
1906 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1907 if (!sctp_wspace(asoc)) {
1908 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1909 if (err)
1910 goto out_free;
1911 }
1912
1913 /* If an address is passed with the sendto/sendmsg call, it is used
1914 * to override the primary destination address in the TCP model, or
1915 * when SCTP_ADDR_OVER flag is set in the UDP model.
1916 */
1917 if ((sctp_style(sk, TCP) && msg_name) ||
1918 (sinfo_flags & SCTP_ADDR_OVER)) {
1919 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1920 if (!chunk_tp) {
1921 err = -EINVAL;
1922 goto out_free;
1923 }
1924 } else
1925 chunk_tp = NULL;
1926
1927 /* Auto-connect, if we aren't connected already. */
1928 if (sctp_state(asoc, CLOSED)) {
1929 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1930 if (err < 0)
1931 goto out_free;
1932 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1933 }
1934
1935 /* Break the message into multiple chunks of maximum size. */
1936 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1937 if (IS_ERR(datamsg)) {
1938 err = PTR_ERR(datamsg);
1939 goto out_free;
1940 }
1941
1942 /* Now send the (possibly) fragmented message. */
1943 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1944 sctp_chunk_hold(chunk);
1945
1946 /* Do accounting for the write space. */
1947 sctp_set_owner_w(chunk);
1948
1949 chunk->transport = chunk_tp;
1950 }
1951
1952 /* Send it to the lower layers. Note: all chunks
1953 * must either fail or succeed. The lower layer
1954 * works that way today. Keep it that way or this
1955 * breaks.
1956 */
1957 err = sctp_primitive_SEND(asoc, datamsg);
1958 /* Did the lower layer accept the chunk? */
1959 if (err)
1960 sctp_datamsg_free(datamsg);
1961 else
1962 sctp_datamsg_put(datamsg);
1963
1964 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1965
1966 if (err)
1967 goto out_free;
1968 else
1969 err = msg_len;
1970
1971 /* If we are already past ASSOCIATE, the lower
1972 * layers are responsible for association cleanup.
1973 */
1974 goto out_unlock;
1975
1976 out_free:
1977 if (new_asoc) {
1978 sctp_unhash_established(asoc);
1979 sctp_association_free(asoc);
1980 }
1981 out_unlock:
1982 sctp_release_sock(sk);
1983
1984 out_nounlock:
1985 return sctp_error(sk, msg_flags, err);
1986
1987 #if 0
1988 do_sock_err:
1989 if (msg_len)
1990 err = msg_len;
1991 else
1992 err = sock_error(sk);
1993 goto out;
1994
1995 do_interrupted:
1996 if (msg_len)
1997 err = msg_len;
1998 goto out;
1999 #endif /* 0 */
2000 }
2001
2002 /* This is an extended version of skb_pull() that removes the data from the
2003 * start of a skb even when data is spread across the list of skb's in the
2004 * frag_list. len specifies the total amount of data that needs to be removed.
2005 * when 'len' bytes could be removed from the skb, it returns 0.
2006 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2007 * could not be removed.
2008 */
sctp_skb_pull(struct sk_buff * skb,int len)2009 static int sctp_skb_pull(struct sk_buff *skb, int len)
2010 {
2011 struct sk_buff *list;
2012 int skb_len = skb_headlen(skb);
2013 int rlen;
2014
2015 if (len <= skb_len) {
2016 __skb_pull(skb, len);
2017 return 0;
2018 }
2019 len -= skb_len;
2020 __skb_pull(skb, skb_len);
2021
2022 skb_walk_frags(skb, list) {
2023 rlen = sctp_skb_pull(list, len);
2024 skb->len -= (len-rlen);
2025 skb->data_len -= (len-rlen);
2026
2027 if (!rlen)
2028 return 0;
2029
2030 len = rlen;
2031 }
2032
2033 return len;
2034 }
2035
2036 /* API 3.1.3 recvmsg() - UDP Style Syntax
2037 *
2038 * ssize_t recvmsg(int socket, struct msghdr *message,
2039 * int flags);
2040 *
2041 * socket - the socket descriptor of the endpoint.
2042 * message - pointer to the msghdr structure which contains a single
2043 * user message and possibly some ancillary data.
2044 *
2045 * See Section 5 for complete description of the data
2046 * structures.
2047 *
2048 * flags - flags sent or received with the user message, see Section
2049 * 5 for complete description of the flags.
2050 */
2051 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2052
sctp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)2053 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2054 struct msghdr *msg, size_t len, int noblock,
2055 int flags, int *addr_len)
2056 {
2057 struct sctp_ulpevent *event = NULL;
2058 struct sctp_sock *sp = sctp_sk(sk);
2059 struct sk_buff *skb;
2060 int copied;
2061 int err = 0;
2062 int skb_len;
2063
2064 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2065 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2066 "len", len, "knoblauch", noblock,
2067 "flags", flags, "addr_len", addr_len);
2068
2069 sctp_lock_sock(sk);
2070
2071 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2072 err = -ENOTCONN;
2073 goto out;
2074 }
2075
2076 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2077 if (!skb)
2078 goto out;
2079
2080 /* Get the total length of the skb including any skb's in the
2081 * frag_list.
2082 */
2083 skb_len = skb->len;
2084
2085 copied = skb_len;
2086 if (copied > len)
2087 copied = len;
2088
2089 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2090
2091 event = sctp_skb2event(skb);
2092
2093 if (err)
2094 goto out_free;
2095
2096 sock_recv_ts_and_drops(msg, sk, skb);
2097 if (sctp_ulpevent_is_notification(event)) {
2098 msg->msg_flags |= MSG_NOTIFICATION;
2099 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2100 } else {
2101 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2102 }
2103
2104 /* Check if we allow SCTP_SNDRCVINFO. */
2105 if (sp->subscribe.sctp_data_io_event)
2106 sctp_ulpevent_read_sndrcvinfo(event, msg);
2107 #if 0
2108 /* FIXME: we should be calling IP/IPv6 layers. */
2109 if (sk->sk_protinfo.af_inet.cmsg_flags)
2110 ip_cmsg_recv(msg, skb);
2111 #endif
2112
2113 err = copied;
2114
2115 /* If skb's length exceeds the user's buffer, update the skb and
2116 * push it back to the receive_queue so that the next call to
2117 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2118 */
2119 if (skb_len > copied) {
2120 msg->msg_flags &= ~MSG_EOR;
2121 if (flags & MSG_PEEK)
2122 goto out_free;
2123 sctp_skb_pull(skb, copied);
2124 skb_queue_head(&sk->sk_receive_queue, skb);
2125
2126 /* When only partial message is copied to the user, increase
2127 * rwnd by that amount. If all the data in the skb is read,
2128 * rwnd is updated when the event is freed.
2129 */
2130 if (!sctp_ulpevent_is_notification(event))
2131 sctp_assoc_rwnd_increase(event->asoc, copied);
2132 goto out;
2133 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2134 (event->msg_flags & MSG_EOR))
2135 msg->msg_flags |= MSG_EOR;
2136 else
2137 msg->msg_flags &= ~MSG_EOR;
2138
2139 out_free:
2140 if (flags & MSG_PEEK) {
2141 /* Release the skb reference acquired after peeking the skb in
2142 * sctp_skb_recv_datagram().
2143 */
2144 kfree_skb(skb);
2145 } else {
2146 /* Free the event which includes releasing the reference to
2147 * the owner of the skb, freeing the skb and updating the
2148 * rwnd.
2149 */
2150 sctp_ulpevent_free(event);
2151 }
2152 out:
2153 sctp_release_sock(sk);
2154 return err;
2155 }
2156
2157 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2158 *
2159 * This option is a on/off flag. If enabled no SCTP message
2160 * fragmentation will be performed. Instead if a message being sent
2161 * exceeds the current PMTU size, the message will NOT be sent and
2162 * instead a error will be indicated to the user.
2163 */
sctp_setsockopt_disable_fragments(struct sock * sk,char __user * optval,unsigned int optlen)2164 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2165 char __user *optval,
2166 unsigned int optlen)
2167 {
2168 int val;
2169
2170 if (optlen < sizeof(int))
2171 return -EINVAL;
2172
2173 if (get_user(val, (int __user *)optval))
2174 return -EFAULT;
2175
2176 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2177
2178 return 0;
2179 }
2180
sctp_setsockopt_events(struct sock * sk,char __user * optval,unsigned int optlen)2181 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2182 unsigned int optlen)
2183 {
2184 struct sctp_association *asoc;
2185 struct sctp_ulpevent *event;
2186
2187 if (optlen > sizeof(struct sctp_event_subscribe))
2188 return -EINVAL;
2189 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2190 return -EFAULT;
2191
2192 /*
2193 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2194 * if there is no data to be sent or retransmit, the stack will
2195 * immediately send up this notification.
2196 */
2197 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2198 &sctp_sk(sk)->subscribe)) {
2199 asoc = sctp_id2assoc(sk, 0);
2200
2201 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2202 event = sctp_ulpevent_make_sender_dry_event(asoc,
2203 GFP_ATOMIC);
2204 if (!event)
2205 return -ENOMEM;
2206
2207 sctp_ulpq_tail_event(&asoc->ulpq, event);
2208 }
2209 }
2210
2211 return 0;
2212 }
2213
2214 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2215 *
2216 * This socket option is applicable to the UDP-style socket only. When
2217 * set it will cause associations that are idle for more than the
2218 * specified number of seconds to automatically close. An association
2219 * being idle is defined an association that has NOT sent or received
2220 * user data. The special value of '0' indicates that no automatic
2221 * close of any associations should be performed. The option expects an
2222 * integer defining the number of seconds of idle time before an
2223 * association is closed.
2224 */
sctp_setsockopt_autoclose(struct sock * sk,char __user * optval,unsigned int optlen)2225 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2226 unsigned int optlen)
2227 {
2228 struct sctp_sock *sp = sctp_sk(sk);
2229
2230 /* Applicable to UDP-style socket only */
2231 if (sctp_style(sk, TCP))
2232 return -EOPNOTSUPP;
2233 if (optlen != sizeof(int))
2234 return -EINVAL;
2235 if (copy_from_user(&sp->autoclose, optval, optlen))
2236 return -EFAULT;
2237
2238 return 0;
2239 }
2240
2241 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2242 *
2243 * Applications can enable or disable heartbeats for any peer address of
2244 * an association, modify an address's heartbeat interval, force a
2245 * heartbeat to be sent immediately, and adjust the address's maximum
2246 * number of retransmissions sent before an address is considered
2247 * unreachable. The following structure is used to access and modify an
2248 * address's parameters:
2249 *
2250 * struct sctp_paddrparams {
2251 * sctp_assoc_t spp_assoc_id;
2252 * struct sockaddr_storage spp_address;
2253 * uint32_t spp_hbinterval;
2254 * uint16_t spp_pathmaxrxt;
2255 * uint32_t spp_pathmtu;
2256 * uint32_t spp_sackdelay;
2257 * uint32_t spp_flags;
2258 * };
2259 *
2260 * spp_assoc_id - (one-to-many style socket) This is filled in the
2261 * application, and identifies the association for
2262 * this query.
2263 * spp_address - This specifies which address is of interest.
2264 * spp_hbinterval - This contains the value of the heartbeat interval,
2265 * in milliseconds. If a value of zero
2266 * is present in this field then no changes are to
2267 * be made to this parameter.
2268 * spp_pathmaxrxt - This contains the maximum number of
2269 * retransmissions before this address shall be
2270 * considered unreachable. If a value of zero
2271 * is present in this field then no changes are to
2272 * be made to this parameter.
2273 * spp_pathmtu - When Path MTU discovery is disabled the value
2274 * specified here will be the "fixed" path mtu.
2275 * Note that if the spp_address field is empty
2276 * then all associations on this address will
2277 * have this fixed path mtu set upon them.
2278 *
2279 * spp_sackdelay - When delayed sack is enabled, this value specifies
2280 * the number of milliseconds that sacks will be delayed
2281 * for. This value will apply to all addresses of an
2282 * association if the spp_address field is empty. Note
2283 * also, that if delayed sack is enabled and this
2284 * value is set to 0, no change is made to the last
2285 * recorded delayed sack timer value.
2286 *
2287 * spp_flags - These flags are used to control various features
2288 * on an association. The flag field may contain
2289 * zero or more of the following options.
2290 *
2291 * SPP_HB_ENABLE - Enable heartbeats on the
2292 * specified address. Note that if the address
2293 * field is empty all addresses for the association
2294 * have heartbeats enabled upon them.
2295 *
2296 * SPP_HB_DISABLE - Disable heartbeats on the
2297 * speicifed address. Note that if the address
2298 * field is empty all addresses for the association
2299 * will have their heartbeats disabled. Note also
2300 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2301 * mutually exclusive, only one of these two should
2302 * be specified. Enabling both fields will have
2303 * undetermined results.
2304 *
2305 * SPP_HB_DEMAND - Request a user initiated heartbeat
2306 * to be made immediately.
2307 *
2308 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2309 * heartbeat delayis to be set to the value of 0
2310 * milliseconds.
2311 *
2312 * SPP_PMTUD_ENABLE - This field will enable PMTU
2313 * discovery upon the specified address. Note that
2314 * if the address feild is empty then all addresses
2315 * on the association are effected.
2316 *
2317 * SPP_PMTUD_DISABLE - This field will disable PMTU
2318 * discovery upon the specified address. Note that
2319 * if the address feild is empty then all addresses
2320 * on the association are effected. Not also that
2321 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2322 * exclusive. Enabling both will have undetermined
2323 * results.
2324 *
2325 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2326 * on delayed sack. The time specified in spp_sackdelay
2327 * is used to specify the sack delay for this address. Note
2328 * that if spp_address is empty then all addresses will
2329 * enable delayed sack and take on the sack delay
2330 * value specified in spp_sackdelay.
2331 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2332 * off delayed sack. If the spp_address field is blank then
2333 * delayed sack is disabled for the entire association. Note
2334 * also that this field is mutually exclusive to
2335 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2336 * results.
2337 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2338 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2339 struct sctp_transport *trans,
2340 struct sctp_association *asoc,
2341 struct sctp_sock *sp,
2342 int hb_change,
2343 int pmtud_change,
2344 int sackdelay_change)
2345 {
2346 int error;
2347
2348 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2349 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2350 if (error)
2351 return error;
2352 }
2353
2354 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2355 * this field is ignored. Note also that a value of zero indicates
2356 * the current setting should be left unchanged.
2357 */
2358 if (params->spp_flags & SPP_HB_ENABLE) {
2359
2360 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2361 * set. This lets us use 0 value when this flag
2362 * is set.
2363 */
2364 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2365 params->spp_hbinterval = 0;
2366
2367 if (params->spp_hbinterval ||
2368 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2369 if (trans) {
2370 trans->hbinterval =
2371 msecs_to_jiffies(params->spp_hbinterval);
2372 } else if (asoc) {
2373 asoc->hbinterval =
2374 msecs_to_jiffies(params->spp_hbinterval);
2375 } else {
2376 sp->hbinterval = params->spp_hbinterval;
2377 }
2378 }
2379 }
2380
2381 if (hb_change) {
2382 if (trans) {
2383 trans->param_flags =
2384 (trans->param_flags & ~SPP_HB) | hb_change;
2385 } else if (asoc) {
2386 asoc->param_flags =
2387 (asoc->param_flags & ~SPP_HB) | hb_change;
2388 } else {
2389 sp->param_flags =
2390 (sp->param_flags & ~SPP_HB) | hb_change;
2391 }
2392 }
2393
2394 /* When Path MTU discovery is disabled the value specified here will
2395 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2396 * include the flag SPP_PMTUD_DISABLE for this field to have any
2397 * effect).
2398 */
2399 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2400 if (trans) {
2401 trans->pathmtu = params->spp_pathmtu;
2402 sctp_assoc_sync_pmtu(asoc);
2403 } else if (asoc) {
2404 asoc->pathmtu = params->spp_pathmtu;
2405 sctp_frag_point(asoc, params->spp_pathmtu);
2406 } else {
2407 sp->pathmtu = params->spp_pathmtu;
2408 }
2409 }
2410
2411 if (pmtud_change) {
2412 if (trans) {
2413 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2414 (params->spp_flags & SPP_PMTUD_ENABLE);
2415 trans->param_flags =
2416 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2417 if (update) {
2418 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2419 sctp_assoc_sync_pmtu(asoc);
2420 }
2421 } else if (asoc) {
2422 asoc->param_flags =
2423 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2424 } else {
2425 sp->param_flags =
2426 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2427 }
2428 }
2429
2430 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2431 * value of this field is ignored. Note also that a value of zero
2432 * indicates the current setting should be left unchanged.
2433 */
2434 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2435 if (trans) {
2436 trans->sackdelay =
2437 msecs_to_jiffies(params->spp_sackdelay);
2438 } else if (asoc) {
2439 asoc->sackdelay =
2440 msecs_to_jiffies(params->spp_sackdelay);
2441 } else {
2442 sp->sackdelay = params->spp_sackdelay;
2443 }
2444 }
2445
2446 if (sackdelay_change) {
2447 if (trans) {
2448 trans->param_flags =
2449 (trans->param_flags & ~SPP_SACKDELAY) |
2450 sackdelay_change;
2451 } else if (asoc) {
2452 asoc->param_flags =
2453 (asoc->param_flags & ~SPP_SACKDELAY) |
2454 sackdelay_change;
2455 } else {
2456 sp->param_flags =
2457 (sp->param_flags & ~SPP_SACKDELAY) |
2458 sackdelay_change;
2459 }
2460 }
2461
2462 /* Note that a value of zero indicates the current setting should be
2463 left unchanged.
2464 */
2465 if (params->spp_pathmaxrxt) {
2466 if (trans) {
2467 trans->pathmaxrxt = params->spp_pathmaxrxt;
2468 } else if (asoc) {
2469 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2470 } else {
2471 sp->pathmaxrxt = params->spp_pathmaxrxt;
2472 }
2473 }
2474
2475 return 0;
2476 }
2477
sctp_setsockopt_peer_addr_params(struct sock * sk,char __user * optval,unsigned int optlen)2478 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2479 char __user *optval,
2480 unsigned int optlen)
2481 {
2482 struct sctp_paddrparams params;
2483 struct sctp_transport *trans = NULL;
2484 struct sctp_association *asoc = NULL;
2485 struct sctp_sock *sp = sctp_sk(sk);
2486 int error;
2487 int hb_change, pmtud_change, sackdelay_change;
2488
2489 if (optlen != sizeof(struct sctp_paddrparams))
2490 return - EINVAL;
2491
2492 if (copy_from_user(¶ms, optval, optlen))
2493 return -EFAULT;
2494
2495 /* Validate flags and value parameters. */
2496 hb_change = params.spp_flags & SPP_HB;
2497 pmtud_change = params.spp_flags & SPP_PMTUD;
2498 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2499
2500 if (hb_change == SPP_HB ||
2501 pmtud_change == SPP_PMTUD ||
2502 sackdelay_change == SPP_SACKDELAY ||
2503 params.spp_sackdelay > 500 ||
2504 (params.spp_pathmtu &&
2505 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2506 return -EINVAL;
2507
2508 /* If an address other than INADDR_ANY is specified, and
2509 * no transport is found, then the request is invalid.
2510 */
2511 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) {
2512 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2513 params.spp_assoc_id);
2514 if (!trans)
2515 return -EINVAL;
2516 }
2517
2518 /* Get association, if assoc_id != 0 and the socket is a one
2519 * to many style socket, and an association was not found, then
2520 * the id was invalid.
2521 */
2522 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2523 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2524 return -EINVAL;
2525
2526 /* Heartbeat demand can only be sent on a transport or
2527 * association, but not a socket.
2528 */
2529 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2530 return -EINVAL;
2531
2532 /* Process parameters. */
2533 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2534 hb_change, pmtud_change,
2535 sackdelay_change);
2536
2537 if (error)
2538 return error;
2539
2540 /* If changes are for association, also apply parameters to each
2541 * transport.
2542 */
2543 if (!trans && asoc) {
2544 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2545 transports) {
2546 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2547 hb_change, pmtud_change,
2548 sackdelay_change);
2549 }
2550 }
2551
2552 return 0;
2553 }
2554
2555 /*
2556 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2557 *
2558 * This option will effect the way delayed acks are performed. This
2559 * option allows you to get or set the delayed ack time, in
2560 * milliseconds. It also allows changing the delayed ack frequency.
2561 * Changing the frequency to 1 disables the delayed sack algorithm. If
2562 * the assoc_id is 0, then this sets or gets the endpoints default
2563 * values. If the assoc_id field is non-zero, then the set or get
2564 * effects the specified association for the one to many model (the
2565 * assoc_id field is ignored by the one to one model). Note that if
2566 * sack_delay or sack_freq are 0 when setting this option, then the
2567 * current values will remain unchanged.
2568 *
2569 * struct sctp_sack_info {
2570 * sctp_assoc_t sack_assoc_id;
2571 * uint32_t sack_delay;
2572 * uint32_t sack_freq;
2573 * };
2574 *
2575 * sack_assoc_id - This parameter, indicates which association the user
2576 * is performing an action upon. Note that if this field's value is
2577 * zero then the endpoints default value is changed (effecting future
2578 * associations only).
2579 *
2580 * sack_delay - This parameter contains the number of milliseconds that
2581 * the user is requesting the delayed ACK timer be set to. Note that
2582 * this value is defined in the standard to be between 200 and 500
2583 * milliseconds.
2584 *
2585 * sack_freq - This parameter contains the number of packets that must
2586 * be received before a sack is sent without waiting for the delay
2587 * timer to expire. The default value for this is 2, setting this
2588 * value to 1 will disable the delayed sack algorithm.
2589 */
2590
sctp_setsockopt_delayed_ack(struct sock * sk,char __user * optval,unsigned int optlen)2591 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2592 char __user *optval, unsigned int optlen)
2593 {
2594 struct sctp_sack_info params;
2595 struct sctp_transport *trans = NULL;
2596 struct sctp_association *asoc = NULL;
2597 struct sctp_sock *sp = sctp_sk(sk);
2598
2599 if (optlen == sizeof(struct sctp_sack_info)) {
2600 if (copy_from_user(¶ms, optval, optlen))
2601 return -EFAULT;
2602
2603 if (params.sack_delay == 0 && params.sack_freq == 0)
2604 return 0;
2605 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2606 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2607 pr_warn("Use struct sctp_sack_info instead\n");
2608 if (copy_from_user(¶ms, optval, optlen))
2609 return -EFAULT;
2610
2611 if (params.sack_delay == 0)
2612 params.sack_freq = 1;
2613 else
2614 params.sack_freq = 0;
2615 } else
2616 return - EINVAL;
2617
2618 /* Validate value parameter. */
2619 if (params.sack_delay > 500)
2620 return -EINVAL;
2621
2622 /* Get association, if sack_assoc_id != 0 and the socket is a one
2623 * to many style socket, and an association was not found, then
2624 * the id was invalid.
2625 */
2626 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2627 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2628 return -EINVAL;
2629
2630 if (params.sack_delay) {
2631 if (asoc) {
2632 asoc->sackdelay =
2633 msecs_to_jiffies(params.sack_delay);
2634 asoc->param_flags =
2635 (asoc->param_flags & ~SPP_SACKDELAY) |
2636 SPP_SACKDELAY_ENABLE;
2637 } else {
2638 sp->sackdelay = params.sack_delay;
2639 sp->param_flags =
2640 (sp->param_flags & ~SPP_SACKDELAY) |
2641 SPP_SACKDELAY_ENABLE;
2642 }
2643 }
2644
2645 if (params.sack_freq == 1) {
2646 if (asoc) {
2647 asoc->param_flags =
2648 (asoc->param_flags & ~SPP_SACKDELAY) |
2649 SPP_SACKDELAY_DISABLE;
2650 } else {
2651 sp->param_flags =
2652 (sp->param_flags & ~SPP_SACKDELAY) |
2653 SPP_SACKDELAY_DISABLE;
2654 }
2655 } else if (params.sack_freq > 1) {
2656 if (asoc) {
2657 asoc->sackfreq = params.sack_freq;
2658 asoc->param_flags =
2659 (asoc->param_flags & ~SPP_SACKDELAY) |
2660 SPP_SACKDELAY_ENABLE;
2661 } else {
2662 sp->sackfreq = params.sack_freq;
2663 sp->param_flags =
2664 (sp->param_flags & ~SPP_SACKDELAY) |
2665 SPP_SACKDELAY_ENABLE;
2666 }
2667 }
2668
2669 /* If change is for association, also apply to each transport. */
2670 if (asoc) {
2671 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2672 transports) {
2673 if (params.sack_delay) {
2674 trans->sackdelay =
2675 msecs_to_jiffies(params.sack_delay);
2676 trans->param_flags =
2677 (trans->param_flags & ~SPP_SACKDELAY) |
2678 SPP_SACKDELAY_ENABLE;
2679 }
2680 if (params.sack_freq == 1) {
2681 trans->param_flags =
2682 (trans->param_flags & ~SPP_SACKDELAY) |
2683 SPP_SACKDELAY_DISABLE;
2684 } else if (params.sack_freq > 1) {
2685 trans->sackfreq = params.sack_freq;
2686 trans->param_flags =
2687 (trans->param_flags & ~SPP_SACKDELAY) |
2688 SPP_SACKDELAY_ENABLE;
2689 }
2690 }
2691 }
2692
2693 return 0;
2694 }
2695
2696 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2697 *
2698 * Applications can specify protocol parameters for the default association
2699 * initialization. The option name argument to setsockopt() and getsockopt()
2700 * is SCTP_INITMSG.
2701 *
2702 * Setting initialization parameters is effective only on an unconnected
2703 * socket (for UDP-style sockets only future associations are effected
2704 * by the change). With TCP-style sockets, this option is inherited by
2705 * sockets derived from a listener socket.
2706 */
sctp_setsockopt_initmsg(struct sock * sk,char __user * optval,unsigned int optlen)2707 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2708 {
2709 struct sctp_initmsg sinit;
2710 struct sctp_sock *sp = sctp_sk(sk);
2711
2712 if (optlen != sizeof(struct sctp_initmsg))
2713 return -EINVAL;
2714 if (copy_from_user(&sinit, optval, optlen))
2715 return -EFAULT;
2716
2717 if (sinit.sinit_num_ostreams)
2718 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2719 if (sinit.sinit_max_instreams)
2720 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2721 if (sinit.sinit_max_attempts)
2722 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2723 if (sinit.sinit_max_init_timeo)
2724 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2725
2726 return 0;
2727 }
2728
2729 /*
2730 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2731 *
2732 * Applications that wish to use the sendto() system call may wish to
2733 * specify a default set of parameters that would normally be supplied
2734 * through the inclusion of ancillary data. This socket option allows
2735 * such an application to set the default sctp_sndrcvinfo structure.
2736 * The application that wishes to use this socket option simply passes
2737 * in to this call the sctp_sndrcvinfo structure defined in Section
2738 * 5.2.2) The input parameters accepted by this call include
2739 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2740 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2741 * to this call if the caller is using the UDP model.
2742 */
sctp_setsockopt_default_send_param(struct sock * sk,char __user * optval,unsigned int optlen)2743 static int sctp_setsockopt_default_send_param(struct sock *sk,
2744 char __user *optval,
2745 unsigned int optlen)
2746 {
2747 struct sctp_sndrcvinfo info;
2748 struct sctp_association *asoc;
2749 struct sctp_sock *sp = sctp_sk(sk);
2750
2751 if (optlen != sizeof(struct sctp_sndrcvinfo))
2752 return -EINVAL;
2753 if (copy_from_user(&info, optval, optlen))
2754 return -EFAULT;
2755
2756 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2757 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2758 return -EINVAL;
2759
2760 if (asoc) {
2761 asoc->default_stream = info.sinfo_stream;
2762 asoc->default_flags = info.sinfo_flags;
2763 asoc->default_ppid = info.sinfo_ppid;
2764 asoc->default_context = info.sinfo_context;
2765 asoc->default_timetolive = info.sinfo_timetolive;
2766 } else {
2767 sp->default_stream = info.sinfo_stream;
2768 sp->default_flags = info.sinfo_flags;
2769 sp->default_ppid = info.sinfo_ppid;
2770 sp->default_context = info.sinfo_context;
2771 sp->default_timetolive = info.sinfo_timetolive;
2772 }
2773
2774 return 0;
2775 }
2776
2777 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2778 *
2779 * Requests that the local SCTP stack use the enclosed peer address as
2780 * the association primary. The enclosed address must be one of the
2781 * association peer's addresses.
2782 */
sctp_setsockopt_primary_addr(struct sock * sk,char __user * optval,unsigned int optlen)2783 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2784 unsigned int optlen)
2785 {
2786 struct sctp_prim prim;
2787 struct sctp_transport *trans;
2788
2789 if (optlen != sizeof(struct sctp_prim))
2790 return -EINVAL;
2791
2792 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2793 return -EFAULT;
2794
2795 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2796 if (!trans)
2797 return -EINVAL;
2798
2799 sctp_assoc_set_primary(trans->asoc, trans);
2800
2801 return 0;
2802 }
2803
2804 /*
2805 * 7.1.5 SCTP_NODELAY
2806 *
2807 * Turn on/off any Nagle-like algorithm. This means that packets are
2808 * generally sent as soon as possible and no unnecessary delays are
2809 * introduced, at the cost of more packets in the network. Expects an
2810 * integer boolean flag.
2811 */
sctp_setsockopt_nodelay(struct sock * sk,char __user * optval,unsigned int optlen)2812 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2813 unsigned int optlen)
2814 {
2815 int val;
2816
2817 if (optlen < sizeof(int))
2818 return -EINVAL;
2819 if (get_user(val, (int __user *)optval))
2820 return -EFAULT;
2821
2822 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2823 return 0;
2824 }
2825
2826 /*
2827 *
2828 * 7.1.1 SCTP_RTOINFO
2829 *
2830 * The protocol parameters used to initialize and bound retransmission
2831 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2832 * and modify these parameters.
2833 * All parameters are time values, in milliseconds. A value of 0, when
2834 * modifying the parameters, indicates that the current value should not
2835 * be changed.
2836 *
2837 */
sctp_setsockopt_rtoinfo(struct sock * sk,char __user * optval,unsigned int optlen)2838 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2839 {
2840 struct sctp_rtoinfo rtoinfo;
2841 struct sctp_association *asoc;
2842
2843 if (optlen != sizeof (struct sctp_rtoinfo))
2844 return -EINVAL;
2845
2846 if (copy_from_user(&rtoinfo, optval, optlen))
2847 return -EFAULT;
2848
2849 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2850
2851 /* Set the values to the specific association */
2852 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2853 return -EINVAL;
2854
2855 if (asoc) {
2856 if (rtoinfo.srto_initial != 0)
2857 asoc->rto_initial =
2858 msecs_to_jiffies(rtoinfo.srto_initial);
2859 if (rtoinfo.srto_max != 0)
2860 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2861 if (rtoinfo.srto_min != 0)
2862 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2863 } else {
2864 /* If there is no association or the association-id = 0
2865 * set the values to the endpoint.
2866 */
2867 struct sctp_sock *sp = sctp_sk(sk);
2868
2869 if (rtoinfo.srto_initial != 0)
2870 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2871 if (rtoinfo.srto_max != 0)
2872 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2873 if (rtoinfo.srto_min != 0)
2874 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2875 }
2876
2877 return 0;
2878 }
2879
2880 /*
2881 *
2882 * 7.1.2 SCTP_ASSOCINFO
2883 *
2884 * This option is used to tune the maximum retransmission attempts
2885 * of the association.
2886 * Returns an error if the new association retransmission value is
2887 * greater than the sum of the retransmission value of the peer.
2888 * See [SCTP] for more information.
2889 *
2890 */
sctp_setsockopt_associnfo(struct sock * sk,char __user * optval,unsigned int optlen)2891 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2892 {
2893
2894 struct sctp_assocparams assocparams;
2895 struct sctp_association *asoc;
2896
2897 if (optlen != sizeof(struct sctp_assocparams))
2898 return -EINVAL;
2899 if (copy_from_user(&assocparams, optval, optlen))
2900 return -EFAULT;
2901
2902 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2903
2904 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2905 return -EINVAL;
2906
2907 /* Set the values to the specific association */
2908 if (asoc) {
2909 if (assocparams.sasoc_asocmaxrxt != 0) {
2910 __u32 path_sum = 0;
2911 int paths = 0;
2912 struct sctp_transport *peer_addr;
2913
2914 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2915 transports) {
2916 path_sum += peer_addr->pathmaxrxt;
2917 paths++;
2918 }
2919
2920 /* Only validate asocmaxrxt if we have more than
2921 * one path/transport. We do this because path
2922 * retransmissions are only counted when we have more
2923 * then one path.
2924 */
2925 if (paths > 1 &&
2926 assocparams.sasoc_asocmaxrxt > path_sum)
2927 return -EINVAL;
2928
2929 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2930 }
2931
2932 if (assocparams.sasoc_cookie_life != 0) {
2933 asoc->cookie_life.tv_sec =
2934 assocparams.sasoc_cookie_life / 1000;
2935 asoc->cookie_life.tv_usec =
2936 (assocparams.sasoc_cookie_life % 1000)
2937 * 1000;
2938 }
2939 } else {
2940 /* Set the values to the endpoint */
2941 struct sctp_sock *sp = sctp_sk(sk);
2942
2943 if (assocparams.sasoc_asocmaxrxt != 0)
2944 sp->assocparams.sasoc_asocmaxrxt =
2945 assocparams.sasoc_asocmaxrxt;
2946 if (assocparams.sasoc_cookie_life != 0)
2947 sp->assocparams.sasoc_cookie_life =
2948 assocparams.sasoc_cookie_life;
2949 }
2950 return 0;
2951 }
2952
2953 /*
2954 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2955 *
2956 * This socket option is a boolean flag which turns on or off mapped V4
2957 * addresses. If this option is turned on and the socket is type
2958 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2959 * If this option is turned off, then no mapping will be done of V4
2960 * addresses and a user will receive both PF_INET6 and PF_INET type
2961 * addresses on the socket.
2962 */
sctp_setsockopt_mappedv4(struct sock * sk,char __user * optval,unsigned int optlen)2963 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2964 {
2965 int val;
2966 struct sctp_sock *sp = sctp_sk(sk);
2967
2968 if (optlen < sizeof(int))
2969 return -EINVAL;
2970 if (get_user(val, (int __user *)optval))
2971 return -EFAULT;
2972 if (val)
2973 sp->v4mapped = 1;
2974 else
2975 sp->v4mapped = 0;
2976
2977 return 0;
2978 }
2979
2980 /*
2981 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2982 * This option will get or set the maximum size to put in any outgoing
2983 * SCTP DATA chunk. If a message is larger than this size it will be
2984 * fragmented by SCTP into the specified size. Note that the underlying
2985 * SCTP implementation may fragment into smaller sized chunks when the
2986 * PMTU of the underlying association is smaller than the value set by
2987 * the user. The default value for this option is '0' which indicates
2988 * the user is NOT limiting fragmentation and only the PMTU will effect
2989 * SCTP's choice of DATA chunk size. Note also that values set larger
2990 * than the maximum size of an IP datagram will effectively let SCTP
2991 * control fragmentation (i.e. the same as setting this option to 0).
2992 *
2993 * The following structure is used to access and modify this parameter:
2994 *
2995 * struct sctp_assoc_value {
2996 * sctp_assoc_t assoc_id;
2997 * uint32_t assoc_value;
2998 * };
2999 *
3000 * assoc_id: This parameter is ignored for one-to-one style sockets.
3001 * For one-to-many style sockets this parameter indicates which
3002 * association the user is performing an action upon. Note that if
3003 * this field's value is zero then the endpoints default value is
3004 * changed (effecting future associations only).
3005 * assoc_value: This parameter specifies the maximum size in bytes.
3006 */
sctp_setsockopt_maxseg(struct sock * sk,char __user * optval,unsigned int optlen)3007 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3008 {
3009 struct sctp_assoc_value params;
3010 struct sctp_association *asoc;
3011 struct sctp_sock *sp = sctp_sk(sk);
3012 int val;
3013
3014 if (optlen == sizeof(int)) {
3015 pr_warn("Use of int in maxseg socket option deprecated\n");
3016 pr_warn("Use struct sctp_assoc_value instead\n");
3017 if (copy_from_user(&val, optval, optlen))
3018 return -EFAULT;
3019 params.assoc_id = 0;
3020 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3021 if (copy_from_user(¶ms, optval, optlen))
3022 return -EFAULT;
3023 val = params.assoc_value;
3024 } else
3025 return -EINVAL;
3026
3027 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3028 return -EINVAL;
3029
3030 asoc = sctp_id2assoc(sk, params.assoc_id);
3031 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3032 return -EINVAL;
3033
3034 if (asoc) {
3035 if (val == 0) {
3036 val = asoc->pathmtu;
3037 val -= sp->pf->af->net_header_len;
3038 val -= sizeof(struct sctphdr) +
3039 sizeof(struct sctp_data_chunk);
3040 }
3041 asoc->user_frag = val;
3042 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3043 } else {
3044 sp->user_frag = val;
3045 }
3046
3047 return 0;
3048 }
3049
3050
3051 /*
3052 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3053 *
3054 * Requests that the peer mark the enclosed address as the association
3055 * primary. The enclosed address must be one of the association's
3056 * locally bound addresses. The following structure is used to make a
3057 * set primary request:
3058 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,char __user * optval,unsigned int optlen)3059 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3060 unsigned int optlen)
3061 {
3062 struct sctp_sock *sp;
3063 struct sctp_association *asoc = NULL;
3064 struct sctp_setpeerprim prim;
3065 struct sctp_chunk *chunk;
3066 struct sctp_af *af;
3067 int err;
3068
3069 sp = sctp_sk(sk);
3070
3071 if (!sctp_addip_enable)
3072 return -EPERM;
3073
3074 if (optlen != sizeof(struct sctp_setpeerprim))
3075 return -EINVAL;
3076
3077 if (copy_from_user(&prim, optval, optlen))
3078 return -EFAULT;
3079
3080 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3081 if (!asoc)
3082 return -EINVAL;
3083
3084 if (!asoc->peer.asconf_capable)
3085 return -EPERM;
3086
3087 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3088 return -EPERM;
3089
3090 if (!sctp_state(asoc, ESTABLISHED))
3091 return -ENOTCONN;
3092
3093 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3094 if (!af)
3095 return -EINVAL;
3096
3097 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3098 return -EADDRNOTAVAIL;
3099
3100 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3101 return -EADDRNOTAVAIL;
3102
3103 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3104 chunk = sctp_make_asconf_set_prim(asoc,
3105 (union sctp_addr *)&prim.sspp_addr);
3106 if (!chunk)
3107 return -ENOMEM;
3108
3109 err = sctp_send_asconf(asoc, chunk);
3110
3111 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3112
3113 return err;
3114 }
3115
sctp_setsockopt_adaptation_layer(struct sock * sk,char __user * optval,unsigned int optlen)3116 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3117 unsigned int optlen)
3118 {
3119 struct sctp_setadaptation adaptation;
3120
3121 if (optlen != sizeof(struct sctp_setadaptation))
3122 return -EINVAL;
3123 if (copy_from_user(&adaptation, optval, optlen))
3124 return -EFAULT;
3125
3126 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3127
3128 return 0;
3129 }
3130
3131 /*
3132 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3133 *
3134 * The context field in the sctp_sndrcvinfo structure is normally only
3135 * used when a failed message is retrieved holding the value that was
3136 * sent down on the actual send call. This option allows the setting of
3137 * a default context on an association basis that will be received on
3138 * reading messages from the peer. This is especially helpful in the
3139 * one-2-many model for an application to keep some reference to an
3140 * internal state machine that is processing messages on the
3141 * association. Note that the setting of this value only effects
3142 * received messages from the peer and does not effect the value that is
3143 * saved with outbound messages.
3144 */
sctp_setsockopt_context(struct sock * sk,char __user * optval,unsigned int optlen)3145 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3146 unsigned int optlen)
3147 {
3148 struct sctp_assoc_value params;
3149 struct sctp_sock *sp;
3150 struct sctp_association *asoc;
3151
3152 if (optlen != sizeof(struct sctp_assoc_value))
3153 return -EINVAL;
3154 if (copy_from_user(¶ms, optval, optlen))
3155 return -EFAULT;
3156
3157 sp = sctp_sk(sk);
3158
3159 if (params.assoc_id != 0) {
3160 asoc = sctp_id2assoc(sk, params.assoc_id);
3161 if (!asoc)
3162 return -EINVAL;
3163 asoc->default_rcv_context = params.assoc_value;
3164 } else {
3165 sp->default_rcv_context = params.assoc_value;
3166 }
3167
3168 return 0;
3169 }
3170
3171 /*
3172 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3173 *
3174 * This options will at a minimum specify if the implementation is doing
3175 * fragmented interleave. Fragmented interleave, for a one to many
3176 * socket, is when subsequent calls to receive a message may return
3177 * parts of messages from different associations. Some implementations
3178 * may allow you to turn this value on or off. If so, when turned off,
3179 * no fragment interleave will occur (which will cause a head of line
3180 * blocking amongst multiple associations sharing the same one to many
3181 * socket). When this option is turned on, then each receive call may
3182 * come from a different association (thus the user must receive data
3183 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3184 * association each receive belongs to.
3185 *
3186 * This option takes a boolean value. A non-zero value indicates that
3187 * fragmented interleave is on. A value of zero indicates that
3188 * fragmented interleave is off.
3189 *
3190 * Note that it is important that an implementation that allows this
3191 * option to be turned on, have it off by default. Otherwise an unaware
3192 * application using the one to many model may become confused and act
3193 * incorrectly.
3194 */
sctp_setsockopt_fragment_interleave(struct sock * sk,char __user * optval,unsigned int optlen)3195 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3196 char __user *optval,
3197 unsigned int optlen)
3198 {
3199 int val;
3200
3201 if (optlen != sizeof(int))
3202 return -EINVAL;
3203 if (get_user(val, (int __user *)optval))
3204 return -EFAULT;
3205
3206 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3207
3208 return 0;
3209 }
3210
3211 /*
3212 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3213 * (SCTP_PARTIAL_DELIVERY_POINT)
3214 *
3215 * This option will set or get the SCTP partial delivery point. This
3216 * point is the size of a message where the partial delivery API will be
3217 * invoked to help free up rwnd space for the peer. Setting this to a
3218 * lower value will cause partial deliveries to happen more often. The
3219 * calls argument is an integer that sets or gets the partial delivery
3220 * point. Note also that the call will fail if the user attempts to set
3221 * this value larger than the socket receive buffer size.
3222 *
3223 * Note that any single message having a length smaller than or equal to
3224 * the SCTP partial delivery point will be delivered in one single read
3225 * call as long as the user provided buffer is large enough to hold the
3226 * message.
3227 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,char __user * optval,unsigned int optlen)3228 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3229 char __user *optval,
3230 unsigned int optlen)
3231 {
3232 u32 val;
3233
3234 if (optlen != sizeof(u32))
3235 return -EINVAL;
3236 if (get_user(val, (int __user *)optval))
3237 return -EFAULT;
3238
3239 /* Note: We double the receive buffer from what the user sets
3240 * it to be, also initial rwnd is based on rcvbuf/2.
3241 */
3242 if (val > (sk->sk_rcvbuf >> 1))
3243 return -EINVAL;
3244
3245 sctp_sk(sk)->pd_point = val;
3246
3247 return 0; /* is this the right error code? */
3248 }
3249
3250 /*
3251 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3252 *
3253 * This option will allow a user to change the maximum burst of packets
3254 * that can be emitted by this association. Note that the default value
3255 * is 4, and some implementations may restrict this setting so that it
3256 * can only be lowered.
3257 *
3258 * NOTE: This text doesn't seem right. Do this on a socket basis with
3259 * future associations inheriting the socket value.
3260 */
sctp_setsockopt_maxburst(struct sock * sk,char __user * optval,unsigned int optlen)3261 static int sctp_setsockopt_maxburst(struct sock *sk,
3262 char __user *optval,
3263 unsigned int optlen)
3264 {
3265 struct sctp_assoc_value params;
3266 struct sctp_sock *sp;
3267 struct sctp_association *asoc;
3268 int val;
3269 int assoc_id = 0;
3270
3271 if (optlen == sizeof(int)) {
3272 pr_warn("Use of int in max_burst socket option deprecated\n");
3273 pr_warn("Use struct sctp_assoc_value instead\n");
3274 if (copy_from_user(&val, optval, optlen))
3275 return -EFAULT;
3276 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3277 if (copy_from_user(¶ms, optval, optlen))
3278 return -EFAULT;
3279 val = params.assoc_value;
3280 assoc_id = params.assoc_id;
3281 } else
3282 return -EINVAL;
3283
3284 sp = sctp_sk(sk);
3285
3286 if (assoc_id != 0) {
3287 asoc = sctp_id2assoc(sk, assoc_id);
3288 if (!asoc)
3289 return -EINVAL;
3290 asoc->max_burst = val;
3291 } else
3292 sp->max_burst = val;
3293
3294 return 0;
3295 }
3296
3297 /*
3298 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3299 *
3300 * This set option adds a chunk type that the user is requesting to be
3301 * received only in an authenticated way. Changes to the list of chunks
3302 * will only effect future associations on the socket.
3303 */
sctp_setsockopt_auth_chunk(struct sock * sk,char __user * optval,unsigned int optlen)3304 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3305 char __user *optval,
3306 unsigned int optlen)
3307 {
3308 struct sctp_authchunk val;
3309
3310 if (!sctp_auth_enable)
3311 return -EACCES;
3312
3313 if (optlen != sizeof(struct sctp_authchunk))
3314 return -EINVAL;
3315 if (copy_from_user(&val, optval, optlen))
3316 return -EFAULT;
3317
3318 switch (val.sauth_chunk) {
3319 case SCTP_CID_INIT:
3320 case SCTP_CID_INIT_ACK:
3321 case SCTP_CID_SHUTDOWN_COMPLETE:
3322 case SCTP_CID_AUTH:
3323 return -EINVAL;
3324 }
3325
3326 /* add this chunk id to the endpoint */
3327 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3328 }
3329
3330 /*
3331 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3332 *
3333 * This option gets or sets the list of HMAC algorithms that the local
3334 * endpoint requires the peer to use.
3335 */
sctp_setsockopt_hmac_ident(struct sock * sk,char __user * optval,unsigned int optlen)3336 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3337 char __user *optval,
3338 unsigned int optlen)
3339 {
3340 struct sctp_hmacalgo *hmacs;
3341 u32 idents;
3342 int err;
3343
3344 if (!sctp_auth_enable)
3345 return -EACCES;
3346
3347 if (optlen < sizeof(struct sctp_hmacalgo))
3348 return -EINVAL;
3349
3350 hmacs= memdup_user(optval, optlen);
3351 if (IS_ERR(hmacs))
3352 return PTR_ERR(hmacs);
3353
3354 idents = hmacs->shmac_num_idents;
3355 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3356 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3357 err = -EINVAL;
3358 goto out;
3359 }
3360
3361 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3362 out:
3363 kfree(hmacs);
3364 return err;
3365 }
3366
3367 /*
3368 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3369 *
3370 * This option will set a shared secret key which is used to build an
3371 * association shared key.
3372 */
sctp_setsockopt_auth_key(struct sock * sk,char __user * optval,unsigned int optlen)3373 static int sctp_setsockopt_auth_key(struct sock *sk,
3374 char __user *optval,
3375 unsigned int optlen)
3376 {
3377 struct sctp_authkey *authkey;
3378 struct sctp_association *asoc;
3379 int ret;
3380
3381 if (!sctp_auth_enable)
3382 return -EACCES;
3383
3384 if (optlen <= sizeof(struct sctp_authkey))
3385 return -EINVAL;
3386
3387 authkey= memdup_user(optval, optlen);
3388 if (IS_ERR(authkey))
3389 return PTR_ERR(authkey);
3390
3391 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3392 ret = -EINVAL;
3393 goto out;
3394 }
3395
3396 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3397 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3398 ret = -EINVAL;
3399 goto out;
3400 }
3401
3402 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3403 out:
3404 kzfree(authkey);
3405 return ret;
3406 }
3407
3408 /*
3409 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3410 *
3411 * This option will get or set the active shared key to be used to build
3412 * the association shared key.
3413 */
sctp_setsockopt_active_key(struct sock * sk,char __user * optval,unsigned int optlen)3414 static int sctp_setsockopt_active_key(struct sock *sk,
3415 char __user *optval,
3416 unsigned int optlen)
3417 {
3418 struct sctp_authkeyid val;
3419 struct sctp_association *asoc;
3420
3421 if (!sctp_auth_enable)
3422 return -EACCES;
3423
3424 if (optlen != sizeof(struct sctp_authkeyid))
3425 return -EINVAL;
3426 if (copy_from_user(&val, optval, optlen))
3427 return -EFAULT;
3428
3429 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3430 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3431 return -EINVAL;
3432
3433 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3434 val.scact_keynumber);
3435 }
3436
3437 /*
3438 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3439 *
3440 * This set option will delete a shared secret key from use.
3441 */
sctp_setsockopt_del_key(struct sock * sk,char __user * optval,unsigned int optlen)3442 static int sctp_setsockopt_del_key(struct sock *sk,
3443 char __user *optval,
3444 unsigned int optlen)
3445 {
3446 struct sctp_authkeyid val;
3447 struct sctp_association *asoc;
3448
3449 if (!sctp_auth_enable)
3450 return -EACCES;
3451
3452 if (optlen != sizeof(struct sctp_authkeyid))
3453 return -EINVAL;
3454 if (copy_from_user(&val, optval, optlen))
3455 return -EFAULT;
3456
3457 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3458 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3459 return -EINVAL;
3460
3461 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3462 val.scact_keynumber);
3463
3464 }
3465
3466 /*
3467 * 8.1.23 SCTP_AUTO_ASCONF
3468 *
3469 * This option will enable or disable the use of the automatic generation of
3470 * ASCONF chunks to add and delete addresses to an existing association. Note
3471 * that this option has two caveats namely: a) it only affects sockets that
3472 * are bound to all addresses available to the SCTP stack, and b) the system
3473 * administrator may have an overriding control that turns the ASCONF feature
3474 * off no matter what setting the socket option may have.
3475 * This option expects an integer boolean flag, where a non-zero value turns on
3476 * the option, and a zero value turns off the option.
3477 * Note. In this implementation, socket operation overrides default parameter
3478 * being set by sysctl as well as FreeBSD implementation
3479 */
sctp_setsockopt_auto_asconf(struct sock * sk,char __user * optval,unsigned int optlen)3480 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3481 unsigned int optlen)
3482 {
3483 int val;
3484 struct sctp_sock *sp = sctp_sk(sk);
3485
3486 if (optlen < sizeof(int))
3487 return -EINVAL;
3488 if (get_user(val, (int __user *)optval))
3489 return -EFAULT;
3490 if (!sctp_is_ep_boundall(sk) && val)
3491 return -EINVAL;
3492 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3493 return 0;
3494
3495 if (val == 0 && sp->do_auto_asconf) {
3496 list_del(&sp->auto_asconf_list);
3497 sp->do_auto_asconf = 0;
3498 } else if (val && !sp->do_auto_asconf) {
3499 list_add_tail(&sp->auto_asconf_list,
3500 &sctp_auto_asconf_splist);
3501 sp->do_auto_asconf = 1;
3502 }
3503 return 0;
3504 }
3505
3506
3507 /* API 6.2 setsockopt(), getsockopt()
3508 *
3509 * Applications use setsockopt() and getsockopt() to set or retrieve
3510 * socket options. Socket options are used to change the default
3511 * behavior of sockets calls. They are described in Section 7.
3512 *
3513 * The syntax is:
3514 *
3515 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3516 * int __user *optlen);
3517 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3518 * int optlen);
3519 *
3520 * sd - the socket descript.
3521 * level - set to IPPROTO_SCTP for all SCTP options.
3522 * optname - the option name.
3523 * optval - the buffer to store the value of the option.
3524 * optlen - the size of the buffer.
3525 */
sctp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3526 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3527 char __user *optval, unsigned int optlen)
3528 {
3529 int retval = 0;
3530
3531 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3532 sk, optname);
3533
3534 /* I can hardly begin to describe how wrong this is. This is
3535 * so broken as to be worse than useless. The API draft
3536 * REALLY is NOT helpful here... I am not convinced that the
3537 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3538 * are at all well-founded.
3539 */
3540 if (level != SOL_SCTP) {
3541 struct sctp_af *af = sctp_sk(sk)->pf->af;
3542 retval = af->setsockopt(sk, level, optname, optval, optlen);
3543 goto out_nounlock;
3544 }
3545
3546 sctp_lock_sock(sk);
3547
3548 switch (optname) {
3549 case SCTP_SOCKOPT_BINDX_ADD:
3550 /* 'optlen' is the size of the addresses buffer. */
3551 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3552 optlen, SCTP_BINDX_ADD_ADDR);
3553 break;
3554
3555 case SCTP_SOCKOPT_BINDX_REM:
3556 /* 'optlen' is the size of the addresses buffer. */
3557 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3558 optlen, SCTP_BINDX_REM_ADDR);
3559 break;
3560
3561 case SCTP_SOCKOPT_CONNECTX_OLD:
3562 /* 'optlen' is the size of the addresses buffer. */
3563 retval = sctp_setsockopt_connectx_old(sk,
3564 (struct sockaddr __user *)optval,
3565 optlen);
3566 break;
3567
3568 case SCTP_SOCKOPT_CONNECTX:
3569 /* 'optlen' is the size of the addresses buffer. */
3570 retval = sctp_setsockopt_connectx(sk,
3571 (struct sockaddr __user *)optval,
3572 optlen);
3573 break;
3574
3575 case SCTP_DISABLE_FRAGMENTS:
3576 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3577 break;
3578
3579 case SCTP_EVENTS:
3580 retval = sctp_setsockopt_events(sk, optval, optlen);
3581 break;
3582
3583 case SCTP_AUTOCLOSE:
3584 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3585 break;
3586
3587 case SCTP_PEER_ADDR_PARAMS:
3588 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3589 break;
3590
3591 case SCTP_DELAYED_SACK:
3592 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3593 break;
3594 case SCTP_PARTIAL_DELIVERY_POINT:
3595 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3596 break;
3597
3598 case SCTP_INITMSG:
3599 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3600 break;
3601 case SCTP_DEFAULT_SEND_PARAM:
3602 retval = sctp_setsockopt_default_send_param(sk, optval,
3603 optlen);
3604 break;
3605 case SCTP_PRIMARY_ADDR:
3606 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3607 break;
3608 case SCTP_SET_PEER_PRIMARY_ADDR:
3609 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3610 break;
3611 case SCTP_NODELAY:
3612 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3613 break;
3614 case SCTP_RTOINFO:
3615 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3616 break;
3617 case SCTP_ASSOCINFO:
3618 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3619 break;
3620 case SCTP_I_WANT_MAPPED_V4_ADDR:
3621 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3622 break;
3623 case SCTP_MAXSEG:
3624 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3625 break;
3626 case SCTP_ADAPTATION_LAYER:
3627 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3628 break;
3629 case SCTP_CONTEXT:
3630 retval = sctp_setsockopt_context(sk, optval, optlen);
3631 break;
3632 case SCTP_FRAGMENT_INTERLEAVE:
3633 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3634 break;
3635 case SCTP_MAX_BURST:
3636 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3637 break;
3638 case SCTP_AUTH_CHUNK:
3639 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3640 break;
3641 case SCTP_HMAC_IDENT:
3642 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3643 break;
3644 case SCTP_AUTH_KEY:
3645 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3646 break;
3647 case SCTP_AUTH_ACTIVE_KEY:
3648 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3649 break;
3650 case SCTP_AUTH_DELETE_KEY:
3651 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3652 break;
3653 case SCTP_AUTO_ASCONF:
3654 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3655 break;
3656 default:
3657 retval = -ENOPROTOOPT;
3658 break;
3659 }
3660
3661 sctp_release_sock(sk);
3662
3663 out_nounlock:
3664 return retval;
3665 }
3666
3667 /* API 3.1.6 connect() - UDP Style Syntax
3668 *
3669 * An application may use the connect() call in the UDP model to initiate an
3670 * association without sending data.
3671 *
3672 * The syntax is:
3673 *
3674 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3675 *
3676 * sd: the socket descriptor to have a new association added to.
3677 *
3678 * nam: the address structure (either struct sockaddr_in or struct
3679 * sockaddr_in6 defined in RFC2553 [7]).
3680 *
3681 * len: the size of the address.
3682 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len)3683 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3684 int addr_len)
3685 {
3686 int err = 0;
3687 struct sctp_af *af;
3688
3689 sctp_lock_sock(sk);
3690
3691 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3692 __func__, sk, addr, addr_len);
3693
3694 /* Validate addr_len before calling common connect/connectx routine. */
3695 af = sctp_get_af_specific(addr->sa_family);
3696 if (!af || addr_len < af->sockaddr_len) {
3697 err = -EINVAL;
3698 } else {
3699 /* Pass correct addr len to common routine (so it knows there
3700 * is only one address being passed.
3701 */
3702 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3703 }
3704
3705 sctp_release_sock(sk);
3706 return err;
3707 }
3708
3709 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)3710 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3711 {
3712 return -EOPNOTSUPP; /* STUB */
3713 }
3714
3715 /* 4.1.4 accept() - TCP Style Syntax
3716 *
3717 * Applications use accept() call to remove an established SCTP
3718 * association from the accept queue of the endpoint. A new socket
3719 * descriptor will be returned from accept() to represent the newly
3720 * formed association.
3721 */
sctp_accept(struct sock * sk,int flags,int * err)3722 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3723 {
3724 struct sctp_sock *sp;
3725 struct sctp_endpoint *ep;
3726 struct sock *newsk = NULL;
3727 struct sctp_association *asoc;
3728 long timeo;
3729 int error = 0;
3730
3731 sctp_lock_sock(sk);
3732
3733 sp = sctp_sk(sk);
3734 ep = sp->ep;
3735
3736 if (!sctp_style(sk, TCP)) {
3737 error = -EOPNOTSUPP;
3738 goto out;
3739 }
3740
3741 if (!sctp_sstate(sk, LISTENING)) {
3742 error = -EINVAL;
3743 goto out;
3744 }
3745
3746 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3747
3748 error = sctp_wait_for_accept(sk, timeo);
3749 if (error)
3750 goto out;
3751
3752 /* We treat the list of associations on the endpoint as the accept
3753 * queue and pick the first association on the list.
3754 */
3755 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3756
3757 newsk = sp->pf->create_accept_sk(sk, asoc);
3758 if (!newsk) {
3759 error = -ENOMEM;
3760 goto out;
3761 }
3762
3763 /* Populate the fields of the newsk from the oldsk and migrate the
3764 * asoc to the newsk.
3765 */
3766 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3767
3768 out:
3769 sctp_release_sock(sk);
3770 *err = error;
3771 return newsk;
3772 }
3773
3774 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)3775 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3776 {
3777 int rc = -ENOTCONN;
3778
3779 sctp_lock_sock(sk);
3780
3781 /*
3782 * SEQPACKET-style sockets in LISTENING state are valid, for
3783 * SCTP, so only discard TCP-style sockets in LISTENING state.
3784 */
3785 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3786 goto out;
3787
3788 switch (cmd) {
3789 case SIOCINQ: {
3790 struct sk_buff *skb;
3791 unsigned int amount = 0;
3792
3793 skb = skb_peek(&sk->sk_receive_queue);
3794 if (skb != NULL) {
3795 /*
3796 * We will only return the amount of this packet since
3797 * that is all that will be read.
3798 */
3799 amount = skb->len;
3800 }
3801 rc = put_user(amount, (int __user *)arg);
3802 break;
3803 }
3804 default:
3805 rc = -ENOIOCTLCMD;
3806 break;
3807 }
3808 out:
3809 sctp_release_sock(sk);
3810 return rc;
3811 }
3812
3813 /* This is the function which gets called during socket creation to
3814 * initialized the SCTP-specific portion of the sock.
3815 * The sock structure should already be zero-filled memory.
3816 */
sctp_init_sock(struct sock * sk)3817 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3818 {
3819 struct sctp_endpoint *ep;
3820 struct sctp_sock *sp;
3821
3822 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3823
3824 sp = sctp_sk(sk);
3825
3826 /* Initialize the SCTP per socket area. */
3827 switch (sk->sk_type) {
3828 case SOCK_SEQPACKET:
3829 sp->type = SCTP_SOCKET_UDP;
3830 break;
3831 case SOCK_STREAM:
3832 sp->type = SCTP_SOCKET_TCP;
3833 break;
3834 default:
3835 return -ESOCKTNOSUPPORT;
3836 }
3837
3838 /* Initialize default send parameters. These parameters can be
3839 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3840 */
3841 sp->default_stream = 0;
3842 sp->default_ppid = 0;
3843 sp->default_flags = 0;
3844 sp->default_context = 0;
3845 sp->default_timetolive = 0;
3846
3847 sp->default_rcv_context = 0;
3848 sp->max_burst = sctp_max_burst;
3849
3850 /* Initialize default setup parameters. These parameters
3851 * can be modified with the SCTP_INITMSG socket option or
3852 * overridden by the SCTP_INIT CMSG.
3853 */
3854 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3855 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3856 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3857 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3858
3859 /* Initialize default RTO related parameters. These parameters can
3860 * be modified for with the SCTP_RTOINFO socket option.
3861 */
3862 sp->rtoinfo.srto_initial = sctp_rto_initial;
3863 sp->rtoinfo.srto_max = sctp_rto_max;
3864 sp->rtoinfo.srto_min = sctp_rto_min;
3865
3866 /* Initialize default association related parameters. These parameters
3867 * can be modified with the SCTP_ASSOCINFO socket option.
3868 */
3869 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3870 sp->assocparams.sasoc_number_peer_destinations = 0;
3871 sp->assocparams.sasoc_peer_rwnd = 0;
3872 sp->assocparams.sasoc_local_rwnd = 0;
3873 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3874
3875 /* Initialize default event subscriptions. By default, all the
3876 * options are off.
3877 */
3878 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3879
3880 /* Default Peer Address Parameters. These defaults can
3881 * be modified via SCTP_PEER_ADDR_PARAMS
3882 */
3883 sp->hbinterval = sctp_hb_interval;
3884 sp->pathmaxrxt = sctp_max_retrans_path;
3885 sp->pathmtu = 0; // allow default discovery
3886 sp->sackdelay = sctp_sack_timeout;
3887 sp->sackfreq = 2;
3888 sp->param_flags = SPP_HB_ENABLE |
3889 SPP_PMTUD_ENABLE |
3890 SPP_SACKDELAY_ENABLE;
3891
3892 /* If enabled no SCTP message fragmentation will be performed.
3893 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3894 */
3895 sp->disable_fragments = 0;
3896
3897 /* Enable Nagle algorithm by default. */
3898 sp->nodelay = 0;
3899
3900 /* Enable by default. */
3901 sp->v4mapped = 1;
3902
3903 /* Auto-close idle associations after the configured
3904 * number of seconds. A value of 0 disables this
3905 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3906 * for UDP-style sockets only.
3907 */
3908 sp->autoclose = 0;
3909
3910 /* User specified fragmentation limit. */
3911 sp->user_frag = 0;
3912
3913 sp->adaptation_ind = 0;
3914
3915 sp->pf = sctp_get_pf_specific(sk->sk_family);
3916
3917 /* Control variables for partial data delivery. */
3918 atomic_set(&sp->pd_mode, 0);
3919 skb_queue_head_init(&sp->pd_lobby);
3920 sp->frag_interleave = 0;
3921
3922 /* Create a per socket endpoint structure. Even if we
3923 * change the data structure relationships, this may still
3924 * be useful for storing pre-connect address information.
3925 */
3926 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3927 if (!ep)
3928 return -ENOMEM;
3929
3930 sp->ep = ep;
3931 sp->hmac = NULL;
3932
3933 SCTP_DBG_OBJCNT_INC(sock);
3934
3935 local_bh_disable();
3936 percpu_counter_inc(&sctp_sockets_allocated);
3937 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3938 if (sctp_default_auto_asconf) {
3939 list_add_tail(&sp->auto_asconf_list,
3940 &sctp_auto_asconf_splist);
3941 sp->do_auto_asconf = 1;
3942 } else
3943 sp->do_auto_asconf = 0;
3944 local_bh_enable();
3945
3946 return 0;
3947 }
3948
3949 /* Cleanup any SCTP per socket resources. */
sctp_destroy_sock(struct sock * sk)3950 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3951 {
3952 struct sctp_sock *sp;
3953
3954 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3955
3956 /* Release our hold on the endpoint. */
3957 sp = sctp_sk(sk);
3958 /* This could happen during socket init, thus we bail out
3959 * early, since the rest of the below is not setup either.
3960 */
3961 if (sp->ep == NULL)
3962 return;
3963
3964 if (sp->do_auto_asconf) {
3965 sp->do_auto_asconf = 0;
3966 list_del(&sp->auto_asconf_list);
3967 }
3968 sctp_endpoint_free(sp->ep);
3969 local_bh_disable();
3970 percpu_counter_dec(&sctp_sockets_allocated);
3971 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3972 local_bh_enable();
3973 }
3974
3975 /* API 4.1.7 shutdown() - TCP Style Syntax
3976 * int shutdown(int socket, int how);
3977 *
3978 * sd - the socket descriptor of the association to be closed.
3979 * how - Specifies the type of shutdown. The values are
3980 * as follows:
3981 * SHUT_RD
3982 * Disables further receive operations. No SCTP
3983 * protocol action is taken.
3984 * SHUT_WR
3985 * Disables further send operations, and initiates
3986 * the SCTP shutdown sequence.
3987 * SHUT_RDWR
3988 * Disables further send and receive operations
3989 * and initiates the SCTP shutdown sequence.
3990 */
sctp_shutdown(struct sock * sk,int how)3991 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3992 {
3993 struct sctp_endpoint *ep;
3994 struct sctp_association *asoc;
3995
3996 if (!sctp_style(sk, TCP))
3997 return;
3998
3999 if (how & SEND_SHUTDOWN) {
4000 ep = sctp_sk(sk)->ep;
4001 if (!list_empty(&ep->asocs)) {
4002 asoc = list_entry(ep->asocs.next,
4003 struct sctp_association, asocs);
4004 sctp_primitive_SHUTDOWN(asoc, NULL);
4005 }
4006 }
4007 }
4008
4009 /* 7.2.1 Association Status (SCTP_STATUS)
4010
4011 * Applications can retrieve current status information about an
4012 * association, including association state, peer receiver window size,
4013 * number of unacked data chunks, and number of data chunks pending
4014 * receipt. This information is read-only.
4015 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)4016 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4017 char __user *optval,
4018 int __user *optlen)
4019 {
4020 struct sctp_status status;
4021 struct sctp_association *asoc = NULL;
4022 struct sctp_transport *transport;
4023 sctp_assoc_t associd;
4024 int retval = 0;
4025
4026 if (len < sizeof(status)) {
4027 retval = -EINVAL;
4028 goto out;
4029 }
4030
4031 len = sizeof(status);
4032 if (copy_from_user(&status, optval, len)) {
4033 retval = -EFAULT;
4034 goto out;
4035 }
4036
4037 associd = status.sstat_assoc_id;
4038 asoc = sctp_id2assoc(sk, associd);
4039 if (!asoc) {
4040 retval = -EINVAL;
4041 goto out;
4042 }
4043
4044 transport = asoc->peer.primary_path;
4045
4046 status.sstat_assoc_id = sctp_assoc2id(asoc);
4047 status.sstat_state = asoc->state;
4048 status.sstat_rwnd = asoc->peer.rwnd;
4049 status.sstat_unackdata = asoc->unack_data;
4050
4051 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4052 status.sstat_instrms = asoc->c.sinit_max_instreams;
4053 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4054 status.sstat_fragmentation_point = asoc->frag_point;
4055 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4056 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4057 transport->af_specific->sockaddr_len);
4058 /* Map ipv4 address into v4-mapped-on-v6 address. */
4059 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4060 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4061 status.sstat_primary.spinfo_state = transport->state;
4062 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4063 status.sstat_primary.spinfo_srtt = transport->srtt;
4064 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4065 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4066
4067 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4068 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4069
4070 if (put_user(len, optlen)) {
4071 retval = -EFAULT;
4072 goto out;
4073 }
4074
4075 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4076 len, status.sstat_state, status.sstat_rwnd,
4077 status.sstat_assoc_id);
4078
4079 if (copy_to_user(optval, &status, len)) {
4080 retval = -EFAULT;
4081 goto out;
4082 }
4083
4084 out:
4085 return retval;
4086 }
4087
4088
4089 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4090 *
4091 * Applications can retrieve information about a specific peer address
4092 * of an association, including its reachability state, congestion
4093 * window, and retransmission timer values. This information is
4094 * read-only.
4095 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)4096 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4097 char __user *optval,
4098 int __user *optlen)
4099 {
4100 struct sctp_paddrinfo pinfo;
4101 struct sctp_transport *transport;
4102 int retval = 0;
4103
4104 if (len < sizeof(pinfo)) {
4105 retval = -EINVAL;
4106 goto out;
4107 }
4108
4109 len = sizeof(pinfo);
4110 if (copy_from_user(&pinfo, optval, len)) {
4111 retval = -EFAULT;
4112 goto out;
4113 }
4114
4115 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4116 pinfo.spinfo_assoc_id);
4117 if (!transport)
4118 return -EINVAL;
4119
4120 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4121 pinfo.spinfo_state = transport->state;
4122 pinfo.spinfo_cwnd = transport->cwnd;
4123 pinfo.spinfo_srtt = transport->srtt;
4124 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4125 pinfo.spinfo_mtu = transport->pathmtu;
4126
4127 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4128 pinfo.spinfo_state = SCTP_ACTIVE;
4129
4130 if (put_user(len, optlen)) {
4131 retval = -EFAULT;
4132 goto out;
4133 }
4134
4135 if (copy_to_user(optval, &pinfo, len)) {
4136 retval = -EFAULT;
4137 goto out;
4138 }
4139
4140 out:
4141 return retval;
4142 }
4143
4144 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4145 *
4146 * This option is a on/off flag. If enabled no SCTP message
4147 * fragmentation will be performed. Instead if a message being sent
4148 * exceeds the current PMTU size, the message will NOT be sent and
4149 * instead a error will be indicated to the user.
4150 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)4151 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4152 char __user *optval, int __user *optlen)
4153 {
4154 int val;
4155
4156 if (len < sizeof(int))
4157 return -EINVAL;
4158
4159 len = sizeof(int);
4160 val = (sctp_sk(sk)->disable_fragments == 1);
4161 if (put_user(len, optlen))
4162 return -EFAULT;
4163 if (copy_to_user(optval, &val, len))
4164 return -EFAULT;
4165 return 0;
4166 }
4167
4168 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4169 *
4170 * This socket option is used to specify various notifications and
4171 * ancillary data the user wishes to receive.
4172 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)4173 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4174 int __user *optlen)
4175 {
4176 if (len <= 0)
4177 return -EINVAL;
4178 if (len > sizeof(struct sctp_event_subscribe))
4179 len = sizeof(struct sctp_event_subscribe);
4180 if (put_user(len, optlen))
4181 return -EFAULT;
4182 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4183 return -EFAULT;
4184 return 0;
4185 }
4186
4187 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4188 *
4189 * This socket option is applicable to the UDP-style socket only. When
4190 * set it will cause associations that are idle for more than the
4191 * specified number of seconds to automatically close. An association
4192 * being idle is defined an association that has NOT sent or received
4193 * user data. The special value of '0' indicates that no automatic
4194 * close of any associations should be performed. The option expects an
4195 * integer defining the number of seconds of idle time before an
4196 * association is closed.
4197 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)4198 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4199 {
4200 /* Applicable to UDP-style socket only */
4201 if (sctp_style(sk, TCP))
4202 return -EOPNOTSUPP;
4203 if (len < sizeof(int))
4204 return -EINVAL;
4205 len = sizeof(int);
4206 if (put_user(len, optlen))
4207 return -EFAULT;
4208 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4209 return -EFAULT;
4210 return 0;
4211 }
4212
4213 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)4214 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4215 {
4216 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4217 struct socket *sock;
4218 struct sctp_af *af;
4219 int err = 0;
4220
4221 if (!asoc)
4222 return -EINVAL;
4223
4224 /* An association cannot be branched off from an already peeled-off
4225 * socket, nor is this supported for tcp style sockets.
4226 */
4227 if (!sctp_style(sk, UDP))
4228 return -EINVAL;
4229
4230 /* Create a new socket. */
4231 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4232 if (err < 0)
4233 return err;
4234
4235 sctp_copy_sock(sock->sk, sk, asoc);
4236
4237 /* Make peeled-off sockets more like 1-1 accepted sockets.
4238 * Set the daddr and initialize id to something more random
4239 */
4240 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4241 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4242
4243 /* Populate the fields of the newsk from the oldsk and migrate the
4244 * asoc to the newsk.
4245 */
4246 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4247
4248 *sockp = sock;
4249
4250 return err;
4251 }
4252 EXPORT_SYMBOL(sctp_do_peeloff);
4253
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)4254 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4255 {
4256 sctp_peeloff_arg_t peeloff;
4257 struct socket *newsock;
4258 int retval = 0;
4259
4260 if (len < sizeof(sctp_peeloff_arg_t))
4261 return -EINVAL;
4262 len = sizeof(sctp_peeloff_arg_t);
4263 if (copy_from_user(&peeloff, optval, len))
4264 return -EFAULT;
4265
4266 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4267 if (retval < 0)
4268 goto out;
4269
4270 /* Map the socket to an unused fd that can be returned to the user. */
4271 retval = sock_map_fd(newsock, 0);
4272 if (retval < 0) {
4273 sock_release(newsock);
4274 goto out;
4275 }
4276
4277 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4278 __func__, sk, newsock->sk, retval);
4279
4280 /* Return the fd mapped to the new socket. */
4281 peeloff.sd = retval;
4282 if (put_user(len, optlen))
4283 return -EFAULT;
4284 if (copy_to_user(optval, &peeloff, len))
4285 retval = -EFAULT;
4286
4287 out:
4288 return retval;
4289 }
4290
4291 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4292 *
4293 * Applications can enable or disable heartbeats for any peer address of
4294 * an association, modify an address's heartbeat interval, force a
4295 * heartbeat to be sent immediately, and adjust the address's maximum
4296 * number of retransmissions sent before an address is considered
4297 * unreachable. The following structure is used to access and modify an
4298 * address's parameters:
4299 *
4300 * struct sctp_paddrparams {
4301 * sctp_assoc_t spp_assoc_id;
4302 * struct sockaddr_storage spp_address;
4303 * uint32_t spp_hbinterval;
4304 * uint16_t spp_pathmaxrxt;
4305 * uint32_t spp_pathmtu;
4306 * uint32_t spp_sackdelay;
4307 * uint32_t spp_flags;
4308 * };
4309 *
4310 * spp_assoc_id - (one-to-many style socket) This is filled in the
4311 * application, and identifies the association for
4312 * this query.
4313 * spp_address - This specifies which address is of interest.
4314 * spp_hbinterval - This contains the value of the heartbeat interval,
4315 * in milliseconds. If a value of zero
4316 * is present in this field then no changes are to
4317 * be made to this parameter.
4318 * spp_pathmaxrxt - This contains the maximum number of
4319 * retransmissions before this address shall be
4320 * considered unreachable. If a value of zero
4321 * is present in this field then no changes are to
4322 * be made to this parameter.
4323 * spp_pathmtu - When Path MTU discovery is disabled the value
4324 * specified here will be the "fixed" path mtu.
4325 * Note that if the spp_address field is empty
4326 * then all associations on this address will
4327 * have this fixed path mtu set upon them.
4328 *
4329 * spp_sackdelay - When delayed sack is enabled, this value specifies
4330 * the number of milliseconds that sacks will be delayed
4331 * for. This value will apply to all addresses of an
4332 * association if the spp_address field is empty. Note
4333 * also, that if delayed sack is enabled and this
4334 * value is set to 0, no change is made to the last
4335 * recorded delayed sack timer value.
4336 *
4337 * spp_flags - These flags are used to control various features
4338 * on an association. The flag field may contain
4339 * zero or more of the following options.
4340 *
4341 * SPP_HB_ENABLE - Enable heartbeats on the
4342 * specified address. Note that if the address
4343 * field is empty all addresses for the association
4344 * have heartbeats enabled upon them.
4345 *
4346 * SPP_HB_DISABLE - Disable heartbeats on the
4347 * speicifed address. Note that if the address
4348 * field is empty all addresses for the association
4349 * will have their heartbeats disabled. Note also
4350 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4351 * mutually exclusive, only one of these two should
4352 * be specified. Enabling both fields will have
4353 * undetermined results.
4354 *
4355 * SPP_HB_DEMAND - Request a user initiated heartbeat
4356 * to be made immediately.
4357 *
4358 * SPP_PMTUD_ENABLE - This field will enable PMTU
4359 * discovery upon the specified address. Note that
4360 * if the address feild is empty then all addresses
4361 * on the association are effected.
4362 *
4363 * SPP_PMTUD_DISABLE - This field will disable PMTU
4364 * discovery upon the specified address. Note that
4365 * if the address feild is empty then all addresses
4366 * on the association are effected. Not also that
4367 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4368 * exclusive. Enabling both will have undetermined
4369 * results.
4370 *
4371 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4372 * on delayed sack. The time specified in spp_sackdelay
4373 * is used to specify the sack delay for this address. Note
4374 * that if spp_address is empty then all addresses will
4375 * enable delayed sack and take on the sack delay
4376 * value specified in spp_sackdelay.
4377 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4378 * off delayed sack. If the spp_address field is blank then
4379 * delayed sack is disabled for the entire association. Note
4380 * also that this field is mutually exclusive to
4381 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4382 * results.
4383 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)4384 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4385 char __user *optval, int __user *optlen)
4386 {
4387 struct sctp_paddrparams params;
4388 struct sctp_transport *trans = NULL;
4389 struct sctp_association *asoc = NULL;
4390 struct sctp_sock *sp = sctp_sk(sk);
4391
4392 if (len < sizeof(struct sctp_paddrparams))
4393 return -EINVAL;
4394 len = sizeof(struct sctp_paddrparams);
4395 if (copy_from_user(¶ms, optval, len))
4396 return -EFAULT;
4397
4398 /* If an address other than INADDR_ANY is specified, and
4399 * no transport is found, then the request is invalid.
4400 */
4401 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) {
4402 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
4403 params.spp_assoc_id);
4404 if (!trans) {
4405 SCTP_DEBUG_PRINTK("Failed no transport\n");
4406 return -EINVAL;
4407 }
4408 }
4409
4410 /* Get association, if assoc_id != 0 and the socket is a one
4411 * to many style socket, and an association was not found, then
4412 * the id was invalid.
4413 */
4414 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4415 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4416 SCTP_DEBUG_PRINTK("Failed no association\n");
4417 return -EINVAL;
4418 }
4419
4420 if (trans) {
4421 /* Fetch transport values. */
4422 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4423 params.spp_pathmtu = trans->pathmtu;
4424 params.spp_pathmaxrxt = trans->pathmaxrxt;
4425 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4426
4427 /*draft-11 doesn't say what to return in spp_flags*/
4428 params.spp_flags = trans->param_flags;
4429 } else if (asoc) {
4430 /* Fetch association values. */
4431 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4432 params.spp_pathmtu = asoc->pathmtu;
4433 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4434 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4435
4436 /*draft-11 doesn't say what to return in spp_flags*/
4437 params.spp_flags = asoc->param_flags;
4438 } else {
4439 /* Fetch socket values. */
4440 params.spp_hbinterval = sp->hbinterval;
4441 params.spp_pathmtu = sp->pathmtu;
4442 params.spp_sackdelay = sp->sackdelay;
4443 params.spp_pathmaxrxt = sp->pathmaxrxt;
4444
4445 /*draft-11 doesn't say what to return in spp_flags*/
4446 params.spp_flags = sp->param_flags;
4447 }
4448
4449 if (copy_to_user(optval, ¶ms, len))
4450 return -EFAULT;
4451
4452 if (put_user(len, optlen))
4453 return -EFAULT;
4454
4455 return 0;
4456 }
4457
4458 /*
4459 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4460 *
4461 * This option will effect the way delayed acks are performed. This
4462 * option allows you to get or set the delayed ack time, in
4463 * milliseconds. It also allows changing the delayed ack frequency.
4464 * Changing the frequency to 1 disables the delayed sack algorithm. If
4465 * the assoc_id is 0, then this sets or gets the endpoints default
4466 * values. If the assoc_id field is non-zero, then the set or get
4467 * effects the specified association for the one to many model (the
4468 * assoc_id field is ignored by the one to one model). Note that if
4469 * sack_delay or sack_freq are 0 when setting this option, then the
4470 * current values will remain unchanged.
4471 *
4472 * struct sctp_sack_info {
4473 * sctp_assoc_t sack_assoc_id;
4474 * uint32_t sack_delay;
4475 * uint32_t sack_freq;
4476 * };
4477 *
4478 * sack_assoc_id - This parameter, indicates which association the user
4479 * is performing an action upon. Note that if this field's value is
4480 * zero then the endpoints default value is changed (effecting future
4481 * associations only).
4482 *
4483 * sack_delay - This parameter contains the number of milliseconds that
4484 * the user is requesting the delayed ACK timer be set to. Note that
4485 * this value is defined in the standard to be between 200 and 500
4486 * milliseconds.
4487 *
4488 * sack_freq - This parameter contains the number of packets that must
4489 * be received before a sack is sent without waiting for the delay
4490 * timer to expire. The default value for this is 2, setting this
4491 * value to 1 will disable the delayed sack algorithm.
4492 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)4493 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4494 char __user *optval,
4495 int __user *optlen)
4496 {
4497 struct sctp_sack_info params;
4498 struct sctp_association *asoc = NULL;
4499 struct sctp_sock *sp = sctp_sk(sk);
4500
4501 if (len >= sizeof(struct sctp_sack_info)) {
4502 len = sizeof(struct sctp_sack_info);
4503
4504 if (copy_from_user(¶ms, optval, len))
4505 return -EFAULT;
4506 } else if (len == sizeof(struct sctp_assoc_value)) {
4507 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4508 pr_warn("Use struct sctp_sack_info instead\n");
4509 if (copy_from_user(¶ms, optval, len))
4510 return -EFAULT;
4511 } else
4512 return - EINVAL;
4513
4514 /* Get association, if sack_assoc_id != 0 and the socket is a one
4515 * to many style socket, and an association was not found, then
4516 * the id was invalid.
4517 */
4518 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4519 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4520 return -EINVAL;
4521
4522 if (asoc) {
4523 /* Fetch association values. */
4524 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4525 params.sack_delay = jiffies_to_msecs(
4526 asoc->sackdelay);
4527 params.sack_freq = asoc->sackfreq;
4528
4529 } else {
4530 params.sack_delay = 0;
4531 params.sack_freq = 1;
4532 }
4533 } else {
4534 /* Fetch socket values. */
4535 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4536 params.sack_delay = sp->sackdelay;
4537 params.sack_freq = sp->sackfreq;
4538 } else {
4539 params.sack_delay = 0;
4540 params.sack_freq = 1;
4541 }
4542 }
4543
4544 if (copy_to_user(optval, ¶ms, len))
4545 return -EFAULT;
4546
4547 if (put_user(len, optlen))
4548 return -EFAULT;
4549
4550 return 0;
4551 }
4552
4553 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4554 *
4555 * Applications can specify protocol parameters for the default association
4556 * initialization. The option name argument to setsockopt() and getsockopt()
4557 * is SCTP_INITMSG.
4558 *
4559 * Setting initialization parameters is effective only on an unconnected
4560 * socket (for UDP-style sockets only future associations are effected
4561 * by the change). With TCP-style sockets, this option is inherited by
4562 * sockets derived from a listener socket.
4563 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)4564 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4565 {
4566 if (len < sizeof(struct sctp_initmsg))
4567 return -EINVAL;
4568 len = sizeof(struct sctp_initmsg);
4569 if (put_user(len, optlen))
4570 return -EFAULT;
4571 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4572 return -EFAULT;
4573 return 0;
4574 }
4575
4576
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)4577 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4578 char __user *optval, int __user *optlen)
4579 {
4580 struct sctp_association *asoc;
4581 int cnt = 0;
4582 struct sctp_getaddrs getaddrs;
4583 struct sctp_transport *from;
4584 void __user *to;
4585 union sctp_addr temp;
4586 struct sctp_sock *sp = sctp_sk(sk);
4587 int addrlen;
4588 size_t space_left;
4589 int bytes_copied;
4590
4591 if (len < sizeof(struct sctp_getaddrs))
4592 return -EINVAL;
4593
4594 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4595 return -EFAULT;
4596
4597 /* For UDP-style sockets, id specifies the association to query. */
4598 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4599 if (!asoc)
4600 return -EINVAL;
4601
4602 to = optval + offsetof(struct sctp_getaddrs,addrs);
4603 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4604
4605 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4606 transports) {
4607 memcpy(&temp, &from->ipaddr, sizeof(temp));
4608 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4609 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4610 if (space_left < addrlen)
4611 return -ENOMEM;
4612 if (copy_to_user(to, &temp, addrlen))
4613 return -EFAULT;
4614 to += addrlen;
4615 cnt++;
4616 space_left -= addrlen;
4617 }
4618
4619 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4620 return -EFAULT;
4621 bytes_copied = ((char __user *)to) - optval;
4622 if (put_user(bytes_copied, optlen))
4623 return -EFAULT;
4624
4625 return 0;
4626 }
4627
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)4628 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4629 size_t space_left, int *bytes_copied)
4630 {
4631 struct sctp_sockaddr_entry *addr;
4632 union sctp_addr temp;
4633 int cnt = 0;
4634 int addrlen;
4635
4636 rcu_read_lock();
4637 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4638 if (!addr->valid)
4639 continue;
4640
4641 if ((PF_INET == sk->sk_family) &&
4642 (AF_INET6 == addr->a.sa.sa_family))
4643 continue;
4644 if ((PF_INET6 == sk->sk_family) &&
4645 inet_v6_ipv6only(sk) &&
4646 (AF_INET == addr->a.sa.sa_family))
4647 continue;
4648 memcpy(&temp, &addr->a, sizeof(temp));
4649 if (!temp.v4.sin_port)
4650 temp.v4.sin_port = htons(port);
4651
4652 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4653 &temp);
4654 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4655 if (space_left < addrlen) {
4656 cnt = -ENOMEM;
4657 break;
4658 }
4659 memcpy(to, &temp, addrlen);
4660
4661 to += addrlen;
4662 cnt ++;
4663 space_left -= addrlen;
4664 *bytes_copied += addrlen;
4665 }
4666 rcu_read_unlock();
4667
4668 return cnt;
4669 }
4670
4671
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)4672 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4673 char __user *optval, int __user *optlen)
4674 {
4675 struct sctp_bind_addr *bp;
4676 struct sctp_association *asoc;
4677 int cnt = 0;
4678 struct sctp_getaddrs getaddrs;
4679 struct sctp_sockaddr_entry *addr;
4680 void __user *to;
4681 union sctp_addr temp;
4682 struct sctp_sock *sp = sctp_sk(sk);
4683 int addrlen;
4684 int err = 0;
4685 size_t space_left;
4686 int bytes_copied = 0;
4687 void *addrs;
4688 void *buf;
4689
4690 if (len < sizeof(struct sctp_getaddrs))
4691 return -EINVAL;
4692
4693 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4694 return -EFAULT;
4695
4696 /*
4697 * For UDP-style sockets, id specifies the association to query.
4698 * If the id field is set to the value '0' then the locally bound
4699 * addresses are returned without regard to any particular
4700 * association.
4701 */
4702 if (0 == getaddrs.assoc_id) {
4703 bp = &sctp_sk(sk)->ep->base.bind_addr;
4704 } else {
4705 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4706 if (!asoc)
4707 return -EINVAL;
4708 bp = &asoc->base.bind_addr;
4709 }
4710
4711 to = optval + offsetof(struct sctp_getaddrs,addrs);
4712 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4713
4714 addrs = kmalloc(space_left, GFP_KERNEL);
4715 if (!addrs)
4716 return -ENOMEM;
4717
4718 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4719 * addresses from the global local address list.
4720 */
4721 if (sctp_list_single_entry(&bp->address_list)) {
4722 addr = list_entry(bp->address_list.next,
4723 struct sctp_sockaddr_entry, list);
4724 if (sctp_is_any(sk, &addr->a)) {
4725 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4726 space_left, &bytes_copied);
4727 if (cnt < 0) {
4728 err = cnt;
4729 goto out;
4730 }
4731 goto copy_getaddrs;
4732 }
4733 }
4734
4735 buf = addrs;
4736 /* Protection on the bound address list is not needed since
4737 * in the socket option context we hold a socket lock and
4738 * thus the bound address list can't change.
4739 */
4740 list_for_each_entry(addr, &bp->address_list, list) {
4741 memcpy(&temp, &addr->a, sizeof(temp));
4742 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4743 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4744 if (space_left < addrlen) {
4745 err = -ENOMEM; /*fixme: right error?*/
4746 goto out;
4747 }
4748 memcpy(buf, &temp, addrlen);
4749 buf += addrlen;
4750 bytes_copied += addrlen;
4751 cnt ++;
4752 space_left -= addrlen;
4753 }
4754
4755 copy_getaddrs:
4756 if (copy_to_user(to, addrs, bytes_copied)) {
4757 err = -EFAULT;
4758 goto out;
4759 }
4760 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4761 err = -EFAULT;
4762 goto out;
4763 }
4764 if (put_user(bytes_copied, optlen))
4765 err = -EFAULT;
4766 out:
4767 kfree(addrs);
4768 return err;
4769 }
4770
4771 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4772 *
4773 * Requests that the local SCTP stack use the enclosed peer address as
4774 * the association primary. The enclosed address must be one of the
4775 * association peer's addresses.
4776 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)4777 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4778 char __user *optval, int __user *optlen)
4779 {
4780 struct sctp_prim prim;
4781 struct sctp_association *asoc;
4782 struct sctp_sock *sp = sctp_sk(sk);
4783
4784 if (len < sizeof(struct sctp_prim))
4785 return -EINVAL;
4786
4787 len = sizeof(struct sctp_prim);
4788
4789 if (copy_from_user(&prim, optval, len))
4790 return -EFAULT;
4791
4792 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4793 if (!asoc)
4794 return -EINVAL;
4795
4796 if (!asoc->peer.primary_path)
4797 return -ENOTCONN;
4798
4799 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4800 asoc->peer.primary_path->af_specific->sockaddr_len);
4801
4802 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4803 (union sctp_addr *)&prim.ssp_addr);
4804
4805 if (put_user(len, optlen))
4806 return -EFAULT;
4807 if (copy_to_user(optval, &prim, len))
4808 return -EFAULT;
4809
4810 return 0;
4811 }
4812
4813 /*
4814 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4815 *
4816 * Requests that the local endpoint set the specified Adaptation Layer
4817 * Indication parameter for all future INIT and INIT-ACK exchanges.
4818 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)4819 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4820 char __user *optval, int __user *optlen)
4821 {
4822 struct sctp_setadaptation adaptation;
4823
4824 if (len < sizeof(struct sctp_setadaptation))
4825 return -EINVAL;
4826
4827 len = sizeof(struct sctp_setadaptation);
4828
4829 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4830
4831 if (put_user(len, optlen))
4832 return -EFAULT;
4833 if (copy_to_user(optval, &adaptation, len))
4834 return -EFAULT;
4835
4836 return 0;
4837 }
4838
4839 /*
4840 *
4841 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4842 *
4843 * Applications that wish to use the sendto() system call may wish to
4844 * specify a default set of parameters that would normally be supplied
4845 * through the inclusion of ancillary data. This socket option allows
4846 * such an application to set the default sctp_sndrcvinfo structure.
4847
4848
4849 * The application that wishes to use this socket option simply passes
4850 * in to this call the sctp_sndrcvinfo structure defined in Section
4851 * 5.2.2) The input parameters accepted by this call include
4852 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4853 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4854 * to this call if the caller is using the UDP model.
4855 *
4856 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4857 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)4858 static int sctp_getsockopt_default_send_param(struct sock *sk,
4859 int len, char __user *optval,
4860 int __user *optlen)
4861 {
4862 struct sctp_sndrcvinfo info;
4863 struct sctp_association *asoc;
4864 struct sctp_sock *sp = sctp_sk(sk);
4865
4866 if (len < sizeof(struct sctp_sndrcvinfo))
4867 return -EINVAL;
4868
4869 len = sizeof(struct sctp_sndrcvinfo);
4870
4871 if (copy_from_user(&info, optval, len))
4872 return -EFAULT;
4873
4874 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4875 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4876 return -EINVAL;
4877
4878 if (asoc) {
4879 info.sinfo_stream = asoc->default_stream;
4880 info.sinfo_flags = asoc->default_flags;
4881 info.sinfo_ppid = asoc->default_ppid;
4882 info.sinfo_context = asoc->default_context;
4883 info.sinfo_timetolive = asoc->default_timetolive;
4884 } else {
4885 info.sinfo_stream = sp->default_stream;
4886 info.sinfo_flags = sp->default_flags;
4887 info.sinfo_ppid = sp->default_ppid;
4888 info.sinfo_context = sp->default_context;
4889 info.sinfo_timetolive = sp->default_timetolive;
4890 }
4891
4892 if (put_user(len, optlen))
4893 return -EFAULT;
4894 if (copy_to_user(optval, &info, len))
4895 return -EFAULT;
4896
4897 return 0;
4898 }
4899
4900 /*
4901 *
4902 * 7.1.5 SCTP_NODELAY
4903 *
4904 * Turn on/off any Nagle-like algorithm. This means that packets are
4905 * generally sent as soon as possible and no unnecessary delays are
4906 * introduced, at the cost of more packets in the network. Expects an
4907 * integer boolean flag.
4908 */
4909
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)4910 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4911 char __user *optval, int __user *optlen)
4912 {
4913 int val;
4914
4915 if (len < sizeof(int))
4916 return -EINVAL;
4917
4918 len = sizeof(int);
4919 val = (sctp_sk(sk)->nodelay == 1);
4920 if (put_user(len, optlen))
4921 return -EFAULT;
4922 if (copy_to_user(optval, &val, len))
4923 return -EFAULT;
4924 return 0;
4925 }
4926
4927 /*
4928 *
4929 * 7.1.1 SCTP_RTOINFO
4930 *
4931 * The protocol parameters used to initialize and bound retransmission
4932 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4933 * and modify these parameters.
4934 * All parameters are time values, in milliseconds. A value of 0, when
4935 * modifying the parameters, indicates that the current value should not
4936 * be changed.
4937 *
4938 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)4939 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4940 char __user *optval,
4941 int __user *optlen) {
4942 struct sctp_rtoinfo rtoinfo;
4943 struct sctp_association *asoc;
4944
4945 if (len < sizeof (struct sctp_rtoinfo))
4946 return -EINVAL;
4947
4948 len = sizeof(struct sctp_rtoinfo);
4949
4950 if (copy_from_user(&rtoinfo, optval, len))
4951 return -EFAULT;
4952
4953 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4954
4955 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4956 return -EINVAL;
4957
4958 /* Values corresponding to the specific association. */
4959 if (asoc) {
4960 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4961 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4962 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4963 } else {
4964 /* Values corresponding to the endpoint. */
4965 struct sctp_sock *sp = sctp_sk(sk);
4966
4967 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4968 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4969 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4970 }
4971
4972 if (put_user(len, optlen))
4973 return -EFAULT;
4974
4975 if (copy_to_user(optval, &rtoinfo, len))
4976 return -EFAULT;
4977
4978 return 0;
4979 }
4980
4981 /*
4982 *
4983 * 7.1.2 SCTP_ASSOCINFO
4984 *
4985 * This option is used to tune the maximum retransmission attempts
4986 * of the association.
4987 * Returns an error if the new association retransmission value is
4988 * greater than the sum of the retransmission value of the peer.
4989 * See [SCTP] for more information.
4990 *
4991 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)4992 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4993 char __user *optval,
4994 int __user *optlen)
4995 {
4996
4997 struct sctp_assocparams assocparams;
4998 struct sctp_association *asoc;
4999 struct list_head *pos;
5000 int cnt = 0;
5001
5002 if (len < sizeof (struct sctp_assocparams))
5003 return -EINVAL;
5004
5005 len = sizeof(struct sctp_assocparams);
5006
5007 if (copy_from_user(&assocparams, optval, len))
5008 return -EFAULT;
5009
5010 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5011
5012 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5013 return -EINVAL;
5014
5015 /* Values correspoinding to the specific association */
5016 if (asoc) {
5017 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5018 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5019 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5020 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5021 * 1000) +
5022 (asoc->cookie_life.tv_usec
5023 / 1000);
5024
5025 list_for_each(pos, &asoc->peer.transport_addr_list) {
5026 cnt ++;
5027 }
5028
5029 assocparams.sasoc_number_peer_destinations = cnt;
5030 } else {
5031 /* Values corresponding to the endpoint */
5032 struct sctp_sock *sp = sctp_sk(sk);
5033
5034 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5035 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5036 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5037 assocparams.sasoc_cookie_life =
5038 sp->assocparams.sasoc_cookie_life;
5039 assocparams.sasoc_number_peer_destinations =
5040 sp->assocparams.
5041 sasoc_number_peer_destinations;
5042 }
5043
5044 if (put_user(len, optlen))
5045 return -EFAULT;
5046
5047 if (copy_to_user(optval, &assocparams, len))
5048 return -EFAULT;
5049
5050 return 0;
5051 }
5052
5053 /*
5054 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5055 *
5056 * This socket option is a boolean flag which turns on or off mapped V4
5057 * addresses. If this option is turned on and the socket is type
5058 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5059 * If this option is turned off, then no mapping will be done of V4
5060 * addresses and a user will receive both PF_INET6 and PF_INET type
5061 * addresses on the socket.
5062 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)5063 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5064 char __user *optval, int __user *optlen)
5065 {
5066 int val;
5067 struct sctp_sock *sp = sctp_sk(sk);
5068
5069 if (len < sizeof(int))
5070 return -EINVAL;
5071
5072 len = sizeof(int);
5073 val = sp->v4mapped;
5074 if (put_user(len, optlen))
5075 return -EFAULT;
5076 if (copy_to_user(optval, &val, len))
5077 return -EFAULT;
5078
5079 return 0;
5080 }
5081
5082 /*
5083 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5084 * (chapter and verse is quoted at sctp_setsockopt_context())
5085 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)5086 static int sctp_getsockopt_context(struct sock *sk, int len,
5087 char __user *optval, int __user *optlen)
5088 {
5089 struct sctp_assoc_value params;
5090 struct sctp_sock *sp;
5091 struct sctp_association *asoc;
5092
5093 if (len < sizeof(struct sctp_assoc_value))
5094 return -EINVAL;
5095
5096 len = sizeof(struct sctp_assoc_value);
5097
5098 if (copy_from_user(¶ms, optval, len))
5099 return -EFAULT;
5100
5101 sp = sctp_sk(sk);
5102
5103 if (params.assoc_id != 0) {
5104 asoc = sctp_id2assoc(sk, params.assoc_id);
5105 if (!asoc)
5106 return -EINVAL;
5107 params.assoc_value = asoc->default_rcv_context;
5108 } else {
5109 params.assoc_value = sp->default_rcv_context;
5110 }
5111
5112 if (put_user(len, optlen))
5113 return -EFAULT;
5114 if (copy_to_user(optval, ¶ms, len))
5115 return -EFAULT;
5116
5117 return 0;
5118 }
5119
5120 /*
5121 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5122 * This option will get or set the maximum size to put in any outgoing
5123 * SCTP DATA chunk. If a message is larger than this size it will be
5124 * fragmented by SCTP into the specified size. Note that the underlying
5125 * SCTP implementation may fragment into smaller sized chunks when the
5126 * PMTU of the underlying association is smaller than the value set by
5127 * the user. The default value for this option is '0' which indicates
5128 * the user is NOT limiting fragmentation and only the PMTU will effect
5129 * SCTP's choice of DATA chunk size. Note also that values set larger
5130 * than the maximum size of an IP datagram will effectively let SCTP
5131 * control fragmentation (i.e. the same as setting this option to 0).
5132 *
5133 * The following structure is used to access and modify this parameter:
5134 *
5135 * struct sctp_assoc_value {
5136 * sctp_assoc_t assoc_id;
5137 * uint32_t assoc_value;
5138 * };
5139 *
5140 * assoc_id: This parameter is ignored for one-to-one style sockets.
5141 * For one-to-many style sockets this parameter indicates which
5142 * association the user is performing an action upon. Note that if
5143 * this field's value is zero then the endpoints default value is
5144 * changed (effecting future associations only).
5145 * assoc_value: This parameter specifies the maximum size in bytes.
5146 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)5147 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5148 char __user *optval, int __user *optlen)
5149 {
5150 struct sctp_assoc_value params;
5151 struct sctp_association *asoc;
5152
5153 if (len == sizeof(int)) {
5154 pr_warn("Use of int in maxseg socket option deprecated\n");
5155 pr_warn("Use struct sctp_assoc_value instead\n");
5156 params.assoc_id = 0;
5157 } else if (len >= sizeof(struct sctp_assoc_value)) {
5158 len = sizeof(struct sctp_assoc_value);
5159 if (copy_from_user(¶ms, optval, sizeof(params)))
5160 return -EFAULT;
5161 } else
5162 return -EINVAL;
5163
5164 asoc = sctp_id2assoc(sk, params.assoc_id);
5165 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5166 return -EINVAL;
5167
5168 if (asoc)
5169 params.assoc_value = asoc->frag_point;
5170 else
5171 params.assoc_value = sctp_sk(sk)->user_frag;
5172
5173 if (put_user(len, optlen))
5174 return -EFAULT;
5175 if (len == sizeof(int)) {
5176 if (copy_to_user(optval, ¶ms.assoc_value, len))
5177 return -EFAULT;
5178 } else {
5179 if (copy_to_user(optval, ¶ms, len))
5180 return -EFAULT;
5181 }
5182
5183 return 0;
5184 }
5185
5186 /*
5187 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5188 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5189 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)5190 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5191 char __user *optval, int __user *optlen)
5192 {
5193 int val;
5194
5195 if (len < sizeof(int))
5196 return -EINVAL;
5197
5198 len = sizeof(int);
5199
5200 val = sctp_sk(sk)->frag_interleave;
5201 if (put_user(len, optlen))
5202 return -EFAULT;
5203 if (copy_to_user(optval, &val, len))
5204 return -EFAULT;
5205
5206 return 0;
5207 }
5208
5209 /*
5210 * 7.1.25. Set or Get the sctp partial delivery point
5211 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5212 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)5213 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5214 char __user *optval,
5215 int __user *optlen)
5216 {
5217 u32 val;
5218
5219 if (len < sizeof(u32))
5220 return -EINVAL;
5221
5222 len = sizeof(u32);
5223
5224 val = sctp_sk(sk)->pd_point;
5225 if (put_user(len, optlen))
5226 return -EFAULT;
5227 if (copy_to_user(optval, &val, len))
5228 return -EFAULT;
5229
5230 return 0;
5231 }
5232
5233 /*
5234 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5235 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5236 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)5237 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5238 char __user *optval,
5239 int __user *optlen)
5240 {
5241 struct sctp_assoc_value params;
5242 struct sctp_sock *sp;
5243 struct sctp_association *asoc;
5244
5245 if (len == sizeof(int)) {
5246 pr_warn("Use of int in max_burst socket option deprecated\n");
5247 pr_warn("Use struct sctp_assoc_value instead\n");
5248 params.assoc_id = 0;
5249 } else if (len >= sizeof(struct sctp_assoc_value)) {
5250 len = sizeof(struct sctp_assoc_value);
5251 if (copy_from_user(¶ms, optval, len))
5252 return -EFAULT;
5253 } else
5254 return -EINVAL;
5255
5256 sp = sctp_sk(sk);
5257
5258 if (params.assoc_id != 0) {
5259 asoc = sctp_id2assoc(sk, params.assoc_id);
5260 if (!asoc)
5261 return -EINVAL;
5262 params.assoc_value = asoc->max_burst;
5263 } else
5264 params.assoc_value = sp->max_burst;
5265
5266 if (len == sizeof(int)) {
5267 if (copy_to_user(optval, ¶ms.assoc_value, len))
5268 return -EFAULT;
5269 } else {
5270 if (copy_to_user(optval, ¶ms, len))
5271 return -EFAULT;
5272 }
5273
5274 return 0;
5275
5276 }
5277
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)5278 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5279 char __user *optval, int __user *optlen)
5280 {
5281 struct sctp_hmacalgo __user *p = (void __user *)optval;
5282 struct sctp_hmac_algo_param *hmacs;
5283 __u16 data_len = 0;
5284 u32 num_idents;
5285
5286 if (!sctp_auth_enable)
5287 return -EACCES;
5288
5289 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5290 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5291
5292 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5293 return -EINVAL;
5294
5295 len = sizeof(struct sctp_hmacalgo) + data_len;
5296 num_idents = data_len / sizeof(u16);
5297
5298 if (put_user(len, optlen))
5299 return -EFAULT;
5300 if (put_user(num_idents, &p->shmac_num_idents))
5301 return -EFAULT;
5302 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5303 return -EFAULT;
5304 return 0;
5305 }
5306
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)5307 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5308 char __user *optval, int __user *optlen)
5309 {
5310 struct sctp_authkeyid val;
5311 struct sctp_association *asoc;
5312
5313 if (!sctp_auth_enable)
5314 return -EACCES;
5315
5316 if (len < sizeof(struct sctp_authkeyid))
5317 return -EINVAL;
5318 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5319 return -EFAULT;
5320
5321 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5322 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5323 return -EINVAL;
5324
5325 if (asoc)
5326 val.scact_keynumber = asoc->active_key_id;
5327 else
5328 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5329
5330 len = sizeof(struct sctp_authkeyid);
5331 if (put_user(len, optlen))
5332 return -EFAULT;
5333 if (copy_to_user(optval, &val, len))
5334 return -EFAULT;
5335
5336 return 0;
5337 }
5338
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)5339 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5340 char __user *optval, int __user *optlen)
5341 {
5342 struct sctp_authchunks __user *p = (void __user *)optval;
5343 struct sctp_authchunks val;
5344 struct sctp_association *asoc;
5345 struct sctp_chunks_param *ch;
5346 u32 num_chunks = 0;
5347 char __user *to;
5348
5349 if (!sctp_auth_enable)
5350 return -EACCES;
5351
5352 if (len < sizeof(struct sctp_authchunks))
5353 return -EINVAL;
5354
5355 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5356 return -EFAULT;
5357
5358 to = p->gauth_chunks;
5359 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5360 if (!asoc)
5361 return -EINVAL;
5362
5363 ch = asoc->peer.peer_chunks;
5364 if (!ch)
5365 goto num;
5366
5367 /* See if the user provided enough room for all the data */
5368 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5369 if (len < num_chunks)
5370 return -EINVAL;
5371
5372 if (copy_to_user(to, ch->chunks, num_chunks))
5373 return -EFAULT;
5374 num:
5375 len = sizeof(struct sctp_authchunks) + num_chunks;
5376 if (put_user(len, optlen)) return -EFAULT;
5377 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5378 return -EFAULT;
5379 return 0;
5380 }
5381
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)5382 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5383 char __user *optval, int __user *optlen)
5384 {
5385 struct sctp_authchunks __user *p = (void __user *)optval;
5386 struct sctp_authchunks val;
5387 struct sctp_association *asoc;
5388 struct sctp_chunks_param *ch;
5389 u32 num_chunks = 0;
5390 char __user *to;
5391
5392 if (!sctp_auth_enable)
5393 return -EACCES;
5394
5395 if (len < sizeof(struct sctp_authchunks))
5396 return -EINVAL;
5397
5398 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5399 return -EFAULT;
5400
5401 to = p->gauth_chunks;
5402 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5403 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5404 return -EINVAL;
5405
5406 if (asoc)
5407 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5408 else
5409 ch = sctp_sk(sk)->ep->auth_chunk_list;
5410
5411 if (!ch)
5412 goto num;
5413
5414 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5415 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5416 return -EINVAL;
5417
5418 if (copy_to_user(to, ch->chunks, num_chunks))
5419 return -EFAULT;
5420 num:
5421 len = sizeof(struct sctp_authchunks) + num_chunks;
5422 if (put_user(len, optlen))
5423 return -EFAULT;
5424 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5425 return -EFAULT;
5426
5427 return 0;
5428 }
5429
5430 /*
5431 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5432 * This option gets the current number of associations that are attached
5433 * to a one-to-many style socket. The option value is an uint32_t.
5434 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)5435 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5436 char __user *optval, int __user *optlen)
5437 {
5438 struct sctp_sock *sp = sctp_sk(sk);
5439 struct sctp_association *asoc;
5440 u32 val = 0;
5441
5442 if (sctp_style(sk, TCP))
5443 return -EOPNOTSUPP;
5444
5445 if (len < sizeof(u32))
5446 return -EINVAL;
5447
5448 len = sizeof(u32);
5449
5450 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5451 val++;
5452 }
5453
5454 if (put_user(len, optlen))
5455 return -EFAULT;
5456 if (copy_to_user(optval, &val, len))
5457 return -EFAULT;
5458
5459 return 0;
5460 }
5461
5462 /*
5463 * 8.1.23 SCTP_AUTO_ASCONF
5464 * See the corresponding setsockopt entry as description
5465 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)5466 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5467 char __user *optval, int __user *optlen)
5468 {
5469 int val = 0;
5470
5471 if (len < sizeof(int))
5472 return -EINVAL;
5473
5474 len = sizeof(int);
5475 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5476 val = 1;
5477 if (put_user(len, optlen))
5478 return -EFAULT;
5479 if (copy_to_user(optval, &val, len))
5480 return -EFAULT;
5481 return 0;
5482 }
5483
5484 /*
5485 * 8.2.6. Get the Current Identifiers of Associations
5486 * (SCTP_GET_ASSOC_ID_LIST)
5487 *
5488 * This option gets the current list of SCTP association identifiers of
5489 * the SCTP associations handled by a one-to-many style socket.
5490 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)5491 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5492 char __user *optval, int __user *optlen)
5493 {
5494 struct sctp_sock *sp = sctp_sk(sk);
5495 struct sctp_association *asoc;
5496 struct sctp_assoc_ids *ids;
5497 u32 num = 0;
5498
5499 if (sctp_style(sk, TCP))
5500 return -EOPNOTSUPP;
5501
5502 if (len < sizeof(struct sctp_assoc_ids))
5503 return -EINVAL;
5504
5505 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5506 num++;
5507 }
5508
5509 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5510 return -EINVAL;
5511
5512 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5513
5514 ids = kmalloc(len, GFP_KERNEL);
5515 if (unlikely(!ids))
5516 return -ENOMEM;
5517
5518 ids->gaids_number_of_ids = num;
5519 num = 0;
5520 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5521 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5522 }
5523
5524 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5525 kfree(ids);
5526 return -EFAULT;
5527 }
5528
5529 kfree(ids);
5530 return 0;
5531 }
5532
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)5533 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5534 char __user *optval, int __user *optlen)
5535 {
5536 int retval = 0;
5537 int len;
5538
5539 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5540 sk, optname);
5541
5542 /* I can hardly begin to describe how wrong this is. This is
5543 * so broken as to be worse than useless. The API draft
5544 * REALLY is NOT helpful here... I am not convinced that the
5545 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5546 * are at all well-founded.
5547 */
5548 if (level != SOL_SCTP) {
5549 struct sctp_af *af = sctp_sk(sk)->pf->af;
5550
5551 retval = af->getsockopt(sk, level, optname, optval, optlen);
5552 return retval;
5553 }
5554
5555 if (get_user(len, optlen))
5556 return -EFAULT;
5557
5558 sctp_lock_sock(sk);
5559
5560 switch (optname) {
5561 case SCTP_STATUS:
5562 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5563 break;
5564 case SCTP_DISABLE_FRAGMENTS:
5565 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5566 optlen);
5567 break;
5568 case SCTP_EVENTS:
5569 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5570 break;
5571 case SCTP_AUTOCLOSE:
5572 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5573 break;
5574 case SCTP_SOCKOPT_PEELOFF:
5575 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5576 break;
5577 case SCTP_PEER_ADDR_PARAMS:
5578 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5579 optlen);
5580 break;
5581 case SCTP_DELAYED_SACK:
5582 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5583 optlen);
5584 break;
5585 case SCTP_INITMSG:
5586 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5587 break;
5588 case SCTP_GET_PEER_ADDRS:
5589 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5590 optlen);
5591 break;
5592 case SCTP_GET_LOCAL_ADDRS:
5593 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5594 optlen);
5595 break;
5596 case SCTP_SOCKOPT_CONNECTX3:
5597 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5598 break;
5599 case SCTP_DEFAULT_SEND_PARAM:
5600 retval = sctp_getsockopt_default_send_param(sk, len,
5601 optval, optlen);
5602 break;
5603 case SCTP_PRIMARY_ADDR:
5604 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5605 break;
5606 case SCTP_NODELAY:
5607 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5608 break;
5609 case SCTP_RTOINFO:
5610 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5611 break;
5612 case SCTP_ASSOCINFO:
5613 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5614 break;
5615 case SCTP_I_WANT_MAPPED_V4_ADDR:
5616 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5617 break;
5618 case SCTP_MAXSEG:
5619 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5620 break;
5621 case SCTP_GET_PEER_ADDR_INFO:
5622 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5623 optlen);
5624 break;
5625 case SCTP_ADAPTATION_LAYER:
5626 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5627 optlen);
5628 break;
5629 case SCTP_CONTEXT:
5630 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5631 break;
5632 case SCTP_FRAGMENT_INTERLEAVE:
5633 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5634 optlen);
5635 break;
5636 case SCTP_PARTIAL_DELIVERY_POINT:
5637 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5638 optlen);
5639 break;
5640 case SCTP_MAX_BURST:
5641 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5642 break;
5643 case SCTP_AUTH_KEY:
5644 case SCTP_AUTH_CHUNK:
5645 case SCTP_AUTH_DELETE_KEY:
5646 retval = -EOPNOTSUPP;
5647 break;
5648 case SCTP_HMAC_IDENT:
5649 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5650 break;
5651 case SCTP_AUTH_ACTIVE_KEY:
5652 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5653 break;
5654 case SCTP_PEER_AUTH_CHUNKS:
5655 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5656 optlen);
5657 break;
5658 case SCTP_LOCAL_AUTH_CHUNKS:
5659 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5660 optlen);
5661 break;
5662 case SCTP_GET_ASSOC_NUMBER:
5663 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5664 break;
5665 case SCTP_GET_ASSOC_ID_LIST:
5666 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5667 break;
5668 case SCTP_AUTO_ASCONF:
5669 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5670 break;
5671 default:
5672 retval = -ENOPROTOOPT;
5673 break;
5674 }
5675
5676 sctp_release_sock(sk);
5677 return retval;
5678 }
5679
sctp_hash(struct sock * sk)5680 static void sctp_hash(struct sock *sk)
5681 {
5682 /* STUB */
5683 }
5684
sctp_unhash(struct sock * sk)5685 static void sctp_unhash(struct sock *sk)
5686 {
5687 /* STUB */
5688 }
5689
5690 /* Check if port is acceptable. Possibly find first available port.
5691 *
5692 * The port hash table (contained in the 'global' SCTP protocol storage
5693 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5694 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5695 * list (the list number is the port number hashed out, so as you
5696 * would expect from a hash function, all the ports in a given list have
5697 * such a number that hashes out to the same list number; you were
5698 * expecting that, right?); so each list has a set of ports, with a
5699 * link to the socket (struct sock) that uses it, the port number and
5700 * a fastreuse flag (FIXME: NPI ipg).
5701 */
5702 static struct sctp_bind_bucket *sctp_bucket_create(
5703 struct sctp_bind_hashbucket *head, unsigned short snum);
5704
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)5705 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5706 {
5707 struct sctp_bind_hashbucket *head; /* hash list */
5708 struct sctp_bind_bucket *pp; /* hash list port iterator */
5709 struct hlist_node *node;
5710 unsigned short snum;
5711 int ret;
5712
5713 snum = ntohs(addr->v4.sin_port);
5714
5715 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5716 sctp_local_bh_disable();
5717
5718 if (snum == 0) {
5719 /* Search for an available port. */
5720 int low, high, remaining, index;
5721 unsigned int rover;
5722
5723 inet_get_local_port_range(&low, &high);
5724 remaining = (high - low) + 1;
5725 rover = net_random() % remaining + low;
5726
5727 do {
5728 rover++;
5729 if ((rover < low) || (rover > high))
5730 rover = low;
5731 if (inet_is_reserved_local_port(rover))
5732 continue;
5733 index = sctp_phashfn(rover);
5734 head = &sctp_port_hashtable[index];
5735 sctp_spin_lock(&head->lock);
5736 sctp_for_each_hentry(pp, node, &head->chain)
5737 if (pp->port == rover)
5738 goto next;
5739 break;
5740 next:
5741 sctp_spin_unlock(&head->lock);
5742 } while (--remaining > 0);
5743
5744 /* Exhausted local port range during search? */
5745 ret = 1;
5746 if (remaining <= 0)
5747 goto fail;
5748
5749 /* OK, here is the one we will use. HEAD (the port
5750 * hash table list entry) is non-NULL and we hold it's
5751 * mutex.
5752 */
5753 snum = rover;
5754 } else {
5755 /* We are given an specific port number; we verify
5756 * that it is not being used. If it is used, we will
5757 * exahust the search in the hash list corresponding
5758 * to the port number (snum) - we detect that with the
5759 * port iterator, pp being NULL.
5760 */
5761 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5762 sctp_spin_lock(&head->lock);
5763 sctp_for_each_hentry(pp, node, &head->chain) {
5764 if (pp->port == snum)
5765 goto pp_found;
5766 }
5767 }
5768 pp = NULL;
5769 goto pp_not_found;
5770 pp_found:
5771 if (!hlist_empty(&pp->owner)) {
5772 /* We had a port hash table hit - there is an
5773 * available port (pp != NULL) and it is being
5774 * used by other socket (pp->owner not empty); that other
5775 * socket is going to be sk2.
5776 */
5777 int reuse = sk->sk_reuse;
5778 struct sock *sk2;
5779
5780 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5781 if (pp->fastreuse && sk->sk_reuse &&
5782 sk->sk_state != SCTP_SS_LISTENING)
5783 goto success;
5784
5785 /* Run through the list of sockets bound to the port
5786 * (pp->port) [via the pointers bind_next and
5787 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5788 * we get the endpoint they describe and run through
5789 * the endpoint's list of IP (v4 or v6) addresses,
5790 * comparing each of the addresses with the address of
5791 * the socket sk. If we find a match, then that means
5792 * that this port/socket (sk) combination are already
5793 * in an endpoint.
5794 */
5795 sk_for_each_bound(sk2, node, &pp->owner) {
5796 struct sctp_endpoint *ep2;
5797 ep2 = sctp_sk(sk2)->ep;
5798
5799 if (sk == sk2 ||
5800 (reuse && sk2->sk_reuse &&
5801 sk2->sk_state != SCTP_SS_LISTENING))
5802 continue;
5803
5804 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5805 sctp_sk(sk2), sctp_sk(sk))) {
5806 ret = (long)sk2;
5807 goto fail_unlock;
5808 }
5809 }
5810 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5811 }
5812 pp_not_found:
5813 /* If there was a hash table miss, create a new port. */
5814 ret = 1;
5815 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5816 goto fail_unlock;
5817
5818 /* In either case (hit or miss), make sure fastreuse is 1 only
5819 * if sk->sk_reuse is too (that is, if the caller requested
5820 * SO_REUSEADDR on this socket -sk-).
5821 */
5822 if (hlist_empty(&pp->owner)) {
5823 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5824 pp->fastreuse = 1;
5825 else
5826 pp->fastreuse = 0;
5827 } else if (pp->fastreuse &&
5828 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5829 pp->fastreuse = 0;
5830
5831 /* We are set, so fill up all the data in the hash table
5832 * entry, tie the socket list information with the rest of the
5833 * sockets FIXME: Blurry, NPI (ipg).
5834 */
5835 success:
5836 if (!sctp_sk(sk)->bind_hash) {
5837 inet_sk(sk)->inet_num = snum;
5838 sk_add_bind_node(sk, &pp->owner);
5839 sctp_sk(sk)->bind_hash = pp;
5840 }
5841 ret = 0;
5842
5843 fail_unlock:
5844 sctp_spin_unlock(&head->lock);
5845
5846 fail:
5847 sctp_local_bh_enable();
5848 return ret;
5849 }
5850
5851 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5852 * port is requested.
5853 */
sctp_get_port(struct sock * sk,unsigned short snum)5854 static int sctp_get_port(struct sock *sk, unsigned short snum)
5855 {
5856 long ret;
5857 union sctp_addr addr;
5858 struct sctp_af *af = sctp_sk(sk)->pf->af;
5859
5860 /* Set up a dummy address struct from the sk. */
5861 af->from_sk(&addr, sk);
5862 addr.v4.sin_port = htons(snum);
5863
5864 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5865 ret = sctp_get_port_local(sk, &addr);
5866
5867 return ret ? 1 : 0;
5868 }
5869
5870 /*
5871 * Move a socket to LISTENING state.
5872 */
sctp_listen_start(struct sock * sk,int backlog)5873 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5874 {
5875 struct sctp_sock *sp = sctp_sk(sk);
5876 struct sctp_endpoint *ep = sp->ep;
5877 struct crypto_hash *tfm = NULL;
5878
5879 /* Allocate HMAC for generating cookie. */
5880 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5881 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5882 if (IS_ERR(tfm)) {
5883 if (net_ratelimit()) {
5884 pr_info("failed to load transform for %s: %ld\n",
5885 sctp_hmac_alg, PTR_ERR(tfm));
5886 }
5887 return -ENOSYS;
5888 }
5889 sctp_sk(sk)->hmac = tfm;
5890 }
5891
5892 /*
5893 * If a bind() or sctp_bindx() is not called prior to a listen()
5894 * call that allows new associations to be accepted, the system
5895 * picks an ephemeral port and will choose an address set equivalent
5896 * to binding with a wildcard address.
5897 *
5898 * This is not currently spelled out in the SCTP sockets
5899 * extensions draft, but follows the practice as seen in TCP
5900 * sockets.
5901 *
5902 */
5903 sk->sk_state = SCTP_SS_LISTENING;
5904 if (!ep->base.bind_addr.port) {
5905 if (sctp_autobind(sk))
5906 return -EAGAIN;
5907 } else {
5908 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5909 sk->sk_state = SCTP_SS_CLOSED;
5910 return -EADDRINUSE;
5911 }
5912 }
5913
5914 sk->sk_max_ack_backlog = backlog;
5915 sctp_hash_endpoint(ep);
5916 return 0;
5917 }
5918
5919 /*
5920 * 4.1.3 / 5.1.3 listen()
5921 *
5922 * By default, new associations are not accepted for UDP style sockets.
5923 * An application uses listen() to mark a socket as being able to
5924 * accept new associations.
5925 *
5926 * On TCP style sockets, applications use listen() to ready the SCTP
5927 * endpoint for accepting inbound associations.
5928 *
5929 * On both types of endpoints a backlog of '0' disables listening.
5930 *
5931 * Move a socket to LISTENING state.
5932 */
sctp_inet_listen(struct socket * sock,int backlog)5933 int sctp_inet_listen(struct socket *sock, int backlog)
5934 {
5935 struct sock *sk = sock->sk;
5936 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5937 int err = -EINVAL;
5938
5939 if (unlikely(backlog < 0))
5940 return err;
5941
5942 sctp_lock_sock(sk);
5943
5944 /* Peeled-off sockets are not allowed to listen(). */
5945 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5946 goto out;
5947
5948 if (sock->state != SS_UNCONNECTED)
5949 goto out;
5950
5951 /* If backlog is zero, disable listening. */
5952 if (!backlog) {
5953 if (sctp_sstate(sk, CLOSED))
5954 goto out;
5955
5956 err = 0;
5957 sctp_unhash_endpoint(ep);
5958 sk->sk_state = SCTP_SS_CLOSED;
5959 if (sk->sk_reuse)
5960 sctp_sk(sk)->bind_hash->fastreuse = 1;
5961 goto out;
5962 }
5963
5964 /* If we are already listening, just update the backlog */
5965 if (sctp_sstate(sk, LISTENING))
5966 sk->sk_max_ack_backlog = backlog;
5967 else {
5968 err = sctp_listen_start(sk, backlog);
5969 if (err)
5970 goto out;
5971 }
5972
5973 err = 0;
5974 out:
5975 sctp_release_sock(sk);
5976 return err;
5977 }
5978
5979 /*
5980 * This function is done by modeling the current datagram_poll() and the
5981 * tcp_poll(). Note that, based on these implementations, we don't
5982 * lock the socket in this function, even though it seems that,
5983 * ideally, locking or some other mechanisms can be used to ensure
5984 * the integrity of the counters (sndbuf and wmem_alloc) used
5985 * in this place. We assume that we don't need locks either until proven
5986 * otherwise.
5987 *
5988 * Another thing to note is that we include the Async I/O support
5989 * here, again, by modeling the current TCP/UDP code. We don't have
5990 * a good way to test with it yet.
5991 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)5992 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5993 {
5994 struct sock *sk = sock->sk;
5995 struct sctp_sock *sp = sctp_sk(sk);
5996 unsigned int mask;
5997
5998 poll_wait(file, sk_sleep(sk), wait);
5999
6000 /* A TCP-style listening socket becomes readable when the accept queue
6001 * is not empty.
6002 */
6003 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6004 return (!list_empty(&sp->ep->asocs)) ?
6005 (POLLIN | POLLRDNORM) : 0;
6006
6007 mask = 0;
6008
6009 /* Is there any exceptional events? */
6010 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6011 mask |= POLLERR;
6012 if (sk->sk_shutdown & RCV_SHUTDOWN)
6013 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6014 if (sk->sk_shutdown == SHUTDOWN_MASK)
6015 mask |= POLLHUP;
6016
6017 /* Is it readable? Reconsider this code with TCP-style support. */
6018 if (!skb_queue_empty(&sk->sk_receive_queue))
6019 mask |= POLLIN | POLLRDNORM;
6020
6021 /* The association is either gone or not ready. */
6022 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6023 return mask;
6024
6025 /* Is it writable? */
6026 if (sctp_writeable(sk)) {
6027 mask |= POLLOUT | POLLWRNORM;
6028 } else {
6029 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6030 /*
6031 * Since the socket is not locked, the buffer
6032 * might be made available after the writeable check and
6033 * before the bit is set. This could cause a lost I/O
6034 * signal. tcp_poll() has a race breaker for this race
6035 * condition. Based on their implementation, we put
6036 * in the following code to cover it as well.
6037 */
6038 if (sctp_writeable(sk))
6039 mask |= POLLOUT | POLLWRNORM;
6040 }
6041 return mask;
6042 }
6043
6044 /********************************************************************
6045 * 2nd Level Abstractions
6046 ********************************************************************/
6047
sctp_bucket_create(struct sctp_bind_hashbucket * head,unsigned short snum)6048 static struct sctp_bind_bucket *sctp_bucket_create(
6049 struct sctp_bind_hashbucket *head, unsigned short snum)
6050 {
6051 struct sctp_bind_bucket *pp;
6052
6053 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6054 if (pp) {
6055 SCTP_DBG_OBJCNT_INC(bind_bucket);
6056 pp->port = snum;
6057 pp->fastreuse = 0;
6058 INIT_HLIST_HEAD(&pp->owner);
6059 hlist_add_head(&pp->node, &head->chain);
6060 }
6061 return pp;
6062 }
6063
6064 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)6065 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6066 {
6067 if (pp && hlist_empty(&pp->owner)) {
6068 __hlist_del(&pp->node);
6069 kmem_cache_free(sctp_bucket_cachep, pp);
6070 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6071 }
6072 }
6073
6074 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)6075 static inline void __sctp_put_port(struct sock *sk)
6076 {
6077 struct sctp_bind_hashbucket *head =
6078 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6079 struct sctp_bind_bucket *pp;
6080
6081 sctp_spin_lock(&head->lock);
6082 pp = sctp_sk(sk)->bind_hash;
6083 __sk_del_bind_node(sk);
6084 sctp_sk(sk)->bind_hash = NULL;
6085 inet_sk(sk)->inet_num = 0;
6086 sctp_bucket_destroy(pp);
6087 sctp_spin_unlock(&head->lock);
6088 }
6089
sctp_put_port(struct sock * sk)6090 void sctp_put_port(struct sock *sk)
6091 {
6092 sctp_local_bh_disable();
6093 __sctp_put_port(sk);
6094 sctp_local_bh_enable();
6095 }
6096
6097 /*
6098 * The system picks an ephemeral port and choose an address set equivalent
6099 * to binding with a wildcard address.
6100 * One of those addresses will be the primary address for the association.
6101 * This automatically enables the multihoming capability of SCTP.
6102 */
sctp_autobind(struct sock * sk)6103 static int sctp_autobind(struct sock *sk)
6104 {
6105 union sctp_addr autoaddr;
6106 struct sctp_af *af;
6107 __be16 port;
6108
6109 /* Initialize a local sockaddr structure to INADDR_ANY. */
6110 af = sctp_sk(sk)->pf->af;
6111
6112 port = htons(inet_sk(sk)->inet_num);
6113 af->inaddr_any(&autoaddr, port);
6114
6115 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6116 }
6117
6118 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6119 *
6120 * From RFC 2292
6121 * 4.2 The cmsghdr Structure *
6122 *
6123 * When ancillary data is sent or received, any number of ancillary data
6124 * objects can be specified by the msg_control and msg_controllen members of
6125 * the msghdr structure, because each object is preceded by
6126 * a cmsghdr structure defining the object's length (the cmsg_len member).
6127 * Historically Berkeley-derived implementations have passed only one object
6128 * at a time, but this API allows multiple objects to be
6129 * passed in a single call to sendmsg() or recvmsg(). The following example
6130 * shows two ancillary data objects in a control buffer.
6131 *
6132 * |<--------------------------- msg_controllen -------------------------->|
6133 * | |
6134 *
6135 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6136 *
6137 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6138 * | | |
6139 *
6140 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6141 *
6142 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6143 * | | | | |
6144 *
6145 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6146 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6147 *
6148 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6149 *
6150 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6151 * ^
6152 * |
6153 *
6154 * msg_control
6155 * points here
6156 */
sctp_msghdr_parse(const struct msghdr * msg,sctp_cmsgs_t * cmsgs)6157 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6158 sctp_cmsgs_t *cmsgs)
6159 {
6160 struct cmsghdr *cmsg;
6161 struct msghdr *my_msg = (struct msghdr *)msg;
6162
6163 for (cmsg = CMSG_FIRSTHDR(msg);
6164 cmsg != NULL;
6165 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6166 if (!CMSG_OK(my_msg, cmsg))
6167 return -EINVAL;
6168
6169 /* Should we parse this header or ignore? */
6170 if (cmsg->cmsg_level != IPPROTO_SCTP)
6171 continue;
6172
6173 /* Strictly check lengths following example in SCM code. */
6174 switch (cmsg->cmsg_type) {
6175 case SCTP_INIT:
6176 /* SCTP Socket API Extension
6177 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6178 *
6179 * This cmsghdr structure provides information for
6180 * initializing new SCTP associations with sendmsg().
6181 * The SCTP_INITMSG socket option uses this same data
6182 * structure. This structure is not used for
6183 * recvmsg().
6184 *
6185 * cmsg_level cmsg_type cmsg_data[]
6186 * ------------ ------------ ----------------------
6187 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6188 */
6189 if (cmsg->cmsg_len !=
6190 CMSG_LEN(sizeof(struct sctp_initmsg)))
6191 return -EINVAL;
6192 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6193 break;
6194
6195 case SCTP_SNDRCV:
6196 /* SCTP Socket API Extension
6197 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6198 *
6199 * This cmsghdr structure specifies SCTP options for
6200 * sendmsg() and describes SCTP header information
6201 * about a received message through recvmsg().
6202 *
6203 * cmsg_level cmsg_type cmsg_data[]
6204 * ------------ ------------ ----------------------
6205 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6206 */
6207 if (cmsg->cmsg_len !=
6208 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6209 return -EINVAL;
6210
6211 cmsgs->info =
6212 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6213
6214 /* Minimally, validate the sinfo_flags. */
6215 if (cmsgs->info->sinfo_flags &
6216 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6217 SCTP_ABORT | SCTP_EOF))
6218 return -EINVAL;
6219 break;
6220
6221 default:
6222 return -EINVAL;
6223 }
6224 }
6225 return 0;
6226 }
6227
6228 /*
6229 * Wait for a packet..
6230 * Note: This function is the same function as in core/datagram.c
6231 * with a few modifications to make lksctp work.
6232 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)6233 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6234 {
6235 int error;
6236 DEFINE_WAIT(wait);
6237
6238 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6239
6240 /* Socket errors? */
6241 error = sock_error(sk);
6242 if (error)
6243 goto out;
6244
6245 if (!skb_queue_empty(&sk->sk_receive_queue))
6246 goto ready;
6247
6248 /* Socket shut down? */
6249 if (sk->sk_shutdown & RCV_SHUTDOWN)
6250 goto out;
6251
6252 /* Sequenced packets can come disconnected. If so we report the
6253 * problem.
6254 */
6255 error = -ENOTCONN;
6256
6257 /* Is there a good reason to think that we may receive some data? */
6258 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6259 goto out;
6260
6261 /* Handle signals. */
6262 if (signal_pending(current))
6263 goto interrupted;
6264
6265 /* Let another process have a go. Since we are going to sleep
6266 * anyway. Note: This may cause odd behaviors if the message
6267 * does not fit in the user's buffer, but this seems to be the
6268 * only way to honor MSG_DONTWAIT realistically.
6269 */
6270 sctp_release_sock(sk);
6271 *timeo_p = schedule_timeout(*timeo_p);
6272 sctp_lock_sock(sk);
6273
6274 ready:
6275 finish_wait(sk_sleep(sk), &wait);
6276 return 0;
6277
6278 interrupted:
6279 error = sock_intr_errno(*timeo_p);
6280
6281 out:
6282 finish_wait(sk_sleep(sk), &wait);
6283 *err = error;
6284 return error;
6285 }
6286
6287 /* Receive a datagram.
6288 * Note: This is pretty much the same routine as in core/datagram.c
6289 * with a few changes to make lksctp work.
6290 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int noblock,int * err)6291 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6292 int noblock, int *err)
6293 {
6294 int error;
6295 struct sk_buff *skb;
6296 long timeo;
6297
6298 timeo = sock_rcvtimeo(sk, noblock);
6299
6300 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6301 timeo, MAX_SCHEDULE_TIMEOUT);
6302
6303 do {
6304 /* Again only user level code calls this function,
6305 * so nothing interrupt level
6306 * will suddenly eat the receive_queue.
6307 *
6308 * Look at current nfs client by the way...
6309 * However, this function was correct in any case. 8)
6310 */
6311 if (flags & MSG_PEEK) {
6312 spin_lock_bh(&sk->sk_receive_queue.lock);
6313 skb = skb_peek(&sk->sk_receive_queue);
6314 if (skb)
6315 atomic_inc(&skb->users);
6316 spin_unlock_bh(&sk->sk_receive_queue.lock);
6317 } else {
6318 skb = skb_dequeue(&sk->sk_receive_queue);
6319 }
6320
6321 if (skb)
6322 return skb;
6323
6324 /* Caller is allowed not to check sk->sk_err before calling. */
6325 error = sock_error(sk);
6326 if (error)
6327 goto no_packet;
6328
6329 if (sk->sk_shutdown & RCV_SHUTDOWN)
6330 break;
6331
6332 /* User doesn't want to wait. */
6333 error = -EAGAIN;
6334 if (!timeo)
6335 goto no_packet;
6336 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6337
6338 return NULL;
6339
6340 no_packet:
6341 *err = error;
6342 return NULL;
6343 }
6344
6345 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)6346 static void __sctp_write_space(struct sctp_association *asoc)
6347 {
6348 struct sock *sk = asoc->base.sk;
6349 struct socket *sock = sk->sk_socket;
6350
6351 if ((sctp_wspace(asoc) > 0) && sock) {
6352 if (waitqueue_active(&asoc->wait))
6353 wake_up_interruptible(&asoc->wait);
6354
6355 if (sctp_writeable(sk)) {
6356 wait_queue_head_t *wq = sk_sleep(sk);
6357
6358 if (wq && waitqueue_active(wq))
6359 wake_up_interruptible(wq);
6360
6361 /* Note that we try to include the Async I/O support
6362 * here by modeling from the current TCP/UDP code.
6363 * We have not tested with it yet.
6364 */
6365 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6366 sock_wake_async(sock,
6367 SOCK_WAKE_SPACE, POLL_OUT);
6368 }
6369 }
6370 }
6371
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)6372 static void sctp_wake_up_waiters(struct sock *sk,
6373 struct sctp_association *asoc)
6374 {
6375 struct sctp_association *tmp = asoc;
6376
6377 /* We do accounting for the sndbuf space per association,
6378 * so we only need to wake our own association.
6379 */
6380 if (asoc->ep->sndbuf_policy)
6381 return __sctp_write_space(asoc);
6382
6383 /* If association goes down and is just flushing its
6384 * outq, then just normally notify others.
6385 */
6386 if (asoc->base.dead)
6387 return sctp_write_space(sk);
6388
6389 /* Accounting for the sndbuf space is per socket, so we
6390 * need to wake up others, try to be fair and in case of
6391 * other associations, let them have a go first instead
6392 * of just doing a sctp_write_space() call.
6393 *
6394 * Note that we reach sctp_wake_up_waiters() only when
6395 * associations free up queued chunks, thus we are under
6396 * lock and the list of associations on a socket is
6397 * guaranteed not to change.
6398 */
6399 for (tmp = list_next_entry(tmp, asocs); 1;
6400 tmp = list_next_entry(tmp, asocs)) {
6401 /* Manually skip the head element. */
6402 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6403 continue;
6404 /* Wake up association. */
6405 __sctp_write_space(tmp);
6406 /* We've reached the end. */
6407 if (tmp == asoc)
6408 break;
6409 }
6410 }
6411
6412 /* Do accounting for the sndbuf space.
6413 * Decrement the used sndbuf space of the corresponding association by the
6414 * data size which was just transmitted(freed).
6415 */
sctp_wfree(struct sk_buff * skb)6416 static void sctp_wfree(struct sk_buff *skb)
6417 {
6418 struct sctp_association *asoc;
6419 struct sctp_chunk *chunk;
6420 struct sock *sk;
6421
6422 /* Get the saved chunk pointer. */
6423 chunk = *((struct sctp_chunk **)(skb->cb));
6424 asoc = chunk->asoc;
6425 sk = asoc->base.sk;
6426 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6427 sizeof(struct sk_buff) +
6428 sizeof(struct sctp_chunk);
6429
6430 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6431
6432 /*
6433 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6434 */
6435 sk->sk_wmem_queued -= skb->truesize;
6436 sk_mem_uncharge(sk, skb->truesize);
6437
6438 sock_wfree(skb);
6439 sctp_wake_up_waiters(sk, asoc);
6440
6441 sctp_association_put(asoc);
6442 }
6443
6444 /* Do accounting for the receive space on the socket.
6445 * Accounting for the association is done in ulpevent.c
6446 * We set this as a destructor for the cloned data skbs so that
6447 * accounting is done at the correct time.
6448 */
sctp_sock_rfree(struct sk_buff * skb)6449 void sctp_sock_rfree(struct sk_buff *skb)
6450 {
6451 struct sock *sk = skb->sk;
6452 struct sctp_ulpevent *event = sctp_skb2event(skb);
6453
6454 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6455
6456 /*
6457 * Mimic the behavior of sock_rfree
6458 */
6459 sk_mem_uncharge(sk, event->rmem_len);
6460 }
6461
6462
6463 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)6464 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6465 size_t msg_len)
6466 {
6467 struct sock *sk = asoc->base.sk;
6468 int err = 0;
6469 long current_timeo = *timeo_p;
6470 DEFINE_WAIT(wait);
6471
6472 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6473 asoc, (long)(*timeo_p), msg_len);
6474
6475 /* Increment the association's refcnt. */
6476 sctp_association_hold(asoc);
6477
6478 /* Wait on the association specific sndbuf space. */
6479 for (;;) {
6480 prepare_to_wait_exclusive(&asoc->wait, &wait,
6481 TASK_INTERRUPTIBLE);
6482 if (!*timeo_p)
6483 goto do_nonblock;
6484 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6485 asoc->base.dead)
6486 goto do_error;
6487 if (signal_pending(current))
6488 goto do_interrupted;
6489 if (msg_len <= sctp_wspace(asoc))
6490 break;
6491
6492 /* Let another process have a go. Since we are going
6493 * to sleep anyway.
6494 */
6495 sctp_release_sock(sk);
6496 current_timeo = schedule_timeout(current_timeo);
6497 BUG_ON(sk != asoc->base.sk);
6498 sctp_lock_sock(sk);
6499
6500 *timeo_p = current_timeo;
6501 }
6502
6503 out:
6504 finish_wait(&asoc->wait, &wait);
6505
6506 /* Release the association's refcnt. */
6507 sctp_association_put(asoc);
6508
6509 return err;
6510
6511 do_error:
6512 err = -EPIPE;
6513 goto out;
6514
6515 do_interrupted:
6516 err = sock_intr_errno(*timeo_p);
6517 goto out;
6518
6519 do_nonblock:
6520 err = -EAGAIN;
6521 goto out;
6522 }
6523
sctp_data_ready(struct sock * sk,int len)6524 void sctp_data_ready(struct sock *sk, int len)
6525 {
6526 struct socket_wq *wq;
6527
6528 rcu_read_lock();
6529 wq = rcu_dereference(sk->sk_wq);
6530 if (wq_has_sleeper(wq))
6531 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6532 POLLRDNORM | POLLRDBAND);
6533 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6534 rcu_read_unlock();
6535 }
6536
6537 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)6538 void sctp_write_space(struct sock *sk)
6539 {
6540 struct sctp_association *asoc;
6541
6542 /* Wake up the tasks in each wait queue. */
6543 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6544 __sctp_write_space(asoc);
6545 }
6546 }
6547
6548 /* Is there any sndbuf space available on the socket?
6549 *
6550 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6551 * associations on the same socket. For a UDP-style socket with
6552 * multiple associations, it is possible for it to be "unwriteable"
6553 * prematurely. I assume that this is acceptable because
6554 * a premature "unwriteable" is better than an accidental "writeable" which
6555 * would cause an unwanted block under certain circumstances. For the 1-1
6556 * UDP-style sockets or TCP-style sockets, this code should work.
6557 * - Daisy
6558 */
sctp_writeable(struct sock * sk)6559 static int sctp_writeable(struct sock *sk)
6560 {
6561 int amt = 0;
6562
6563 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6564 if (amt < 0)
6565 amt = 0;
6566 return amt;
6567 }
6568
6569 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6570 * returns immediately with EINPROGRESS.
6571 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)6572 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6573 {
6574 struct sock *sk = asoc->base.sk;
6575 int err = 0;
6576 long current_timeo = *timeo_p;
6577 DEFINE_WAIT(wait);
6578
6579 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6580 (long)(*timeo_p));
6581
6582 /* Increment the association's refcnt. */
6583 sctp_association_hold(asoc);
6584
6585 for (;;) {
6586 prepare_to_wait_exclusive(&asoc->wait, &wait,
6587 TASK_INTERRUPTIBLE);
6588 if (!*timeo_p)
6589 goto do_nonblock;
6590 if (sk->sk_shutdown & RCV_SHUTDOWN)
6591 break;
6592 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6593 asoc->base.dead)
6594 goto do_error;
6595 if (signal_pending(current))
6596 goto do_interrupted;
6597
6598 if (sctp_state(asoc, ESTABLISHED))
6599 break;
6600
6601 /* Let another process have a go. Since we are going
6602 * to sleep anyway.
6603 */
6604 sctp_release_sock(sk);
6605 current_timeo = schedule_timeout(current_timeo);
6606 sctp_lock_sock(sk);
6607
6608 *timeo_p = current_timeo;
6609 }
6610
6611 out:
6612 finish_wait(&asoc->wait, &wait);
6613
6614 /* Release the association's refcnt. */
6615 sctp_association_put(asoc);
6616
6617 return err;
6618
6619 do_error:
6620 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6621 err = -ETIMEDOUT;
6622 else
6623 err = -ECONNREFUSED;
6624 goto out;
6625
6626 do_interrupted:
6627 err = sock_intr_errno(*timeo_p);
6628 goto out;
6629
6630 do_nonblock:
6631 err = -EINPROGRESS;
6632 goto out;
6633 }
6634
sctp_wait_for_accept(struct sock * sk,long timeo)6635 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6636 {
6637 struct sctp_endpoint *ep;
6638 int err = 0;
6639 DEFINE_WAIT(wait);
6640
6641 ep = sctp_sk(sk)->ep;
6642
6643
6644 for (;;) {
6645 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6646 TASK_INTERRUPTIBLE);
6647
6648 if (list_empty(&ep->asocs)) {
6649 sctp_release_sock(sk);
6650 timeo = schedule_timeout(timeo);
6651 sctp_lock_sock(sk);
6652 }
6653
6654 err = -EINVAL;
6655 if (!sctp_sstate(sk, LISTENING))
6656 break;
6657
6658 err = 0;
6659 if (!list_empty(&ep->asocs))
6660 break;
6661
6662 err = sock_intr_errno(timeo);
6663 if (signal_pending(current))
6664 break;
6665
6666 err = -EAGAIN;
6667 if (!timeo)
6668 break;
6669 }
6670
6671 finish_wait(sk_sleep(sk), &wait);
6672
6673 return err;
6674 }
6675
sctp_wait_for_close(struct sock * sk,long timeout)6676 static void sctp_wait_for_close(struct sock *sk, long timeout)
6677 {
6678 DEFINE_WAIT(wait);
6679
6680 do {
6681 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6682 if (list_empty(&sctp_sk(sk)->ep->asocs))
6683 break;
6684 sctp_release_sock(sk);
6685 timeout = schedule_timeout(timeout);
6686 sctp_lock_sock(sk);
6687 } while (!signal_pending(current) && timeout);
6688
6689 finish_wait(sk_sleep(sk), &wait);
6690 }
6691
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)6692 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6693 {
6694 struct sk_buff *frag;
6695
6696 if (!skb->data_len)
6697 goto done;
6698
6699 /* Don't forget the fragments. */
6700 skb_walk_frags(skb, frag)
6701 sctp_skb_set_owner_r_frag(frag, sk);
6702
6703 done:
6704 sctp_skb_set_owner_r(skb, sk);
6705 }
6706
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)6707 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6708 struct sctp_association *asoc)
6709 {
6710 struct inet_sock *inet = inet_sk(sk);
6711 struct inet_sock *newinet;
6712
6713 newsk->sk_type = sk->sk_type;
6714 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6715 newsk->sk_flags = sk->sk_flags;
6716 newsk->sk_no_check = sk->sk_no_check;
6717 newsk->sk_reuse = sk->sk_reuse;
6718
6719 newsk->sk_shutdown = sk->sk_shutdown;
6720 newsk->sk_destruct = inet_sock_destruct;
6721 newsk->sk_family = sk->sk_family;
6722 newsk->sk_protocol = IPPROTO_SCTP;
6723 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6724 newsk->sk_sndbuf = sk->sk_sndbuf;
6725 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6726 newsk->sk_lingertime = sk->sk_lingertime;
6727 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6728 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6729
6730 newinet = inet_sk(newsk);
6731
6732 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6733 * getsockname() and getpeername()
6734 */
6735 newinet->inet_sport = inet->inet_sport;
6736 newinet->inet_saddr = inet->inet_saddr;
6737 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6738 newinet->inet_dport = htons(asoc->peer.port);
6739 newinet->pmtudisc = inet->pmtudisc;
6740 newinet->inet_id = asoc->next_tsn ^ jiffies;
6741
6742 newinet->uc_ttl = inet->uc_ttl;
6743 newinet->mc_loop = 1;
6744 newinet->mc_ttl = 1;
6745 newinet->mc_index = 0;
6746 newinet->mc_list = NULL;
6747 }
6748
6749 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6750 * and its messages to the newsk.
6751 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,sctp_socket_type_t type)6752 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6753 struct sctp_association *assoc,
6754 sctp_socket_type_t type)
6755 {
6756 struct sctp_sock *oldsp = sctp_sk(oldsk);
6757 struct sctp_sock *newsp = sctp_sk(newsk);
6758 struct sctp_bind_bucket *pp; /* hash list port iterator */
6759 struct sctp_endpoint *newep = newsp->ep;
6760 struct sk_buff *skb, *tmp;
6761 struct sctp_ulpevent *event;
6762 struct sctp_bind_hashbucket *head;
6763 struct list_head tmplist;
6764
6765 /* Migrate socket buffer sizes and all the socket level options to the
6766 * new socket.
6767 */
6768 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6769 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6770 /* Brute force copy old sctp opt. */
6771 if (oldsp->do_auto_asconf) {
6772 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6773 inet_sk_copy_descendant(newsk, oldsk);
6774 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6775 } else
6776 inet_sk_copy_descendant(newsk, oldsk);
6777
6778 /* Restore the ep value that was overwritten with the above structure
6779 * copy.
6780 */
6781 newsp->ep = newep;
6782 newsp->hmac = NULL;
6783
6784 /* Hook this new socket in to the bind_hash list. */
6785 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6786 sctp_local_bh_disable();
6787 sctp_spin_lock(&head->lock);
6788 pp = sctp_sk(oldsk)->bind_hash;
6789 sk_add_bind_node(newsk, &pp->owner);
6790 sctp_sk(newsk)->bind_hash = pp;
6791 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6792 sctp_spin_unlock(&head->lock);
6793 sctp_local_bh_enable();
6794
6795 /* Copy the bind_addr list from the original endpoint to the new
6796 * endpoint so that we can handle restarts properly
6797 */
6798 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6799 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6800
6801 /* Move any messages in the old socket's receive queue that are for the
6802 * peeled off association to the new socket's receive queue.
6803 */
6804 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6805 event = sctp_skb2event(skb);
6806 if (event->asoc == assoc) {
6807 __skb_unlink(skb, &oldsk->sk_receive_queue);
6808 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6809 sctp_skb_set_owner_r_frag(skb, newsk);
6810 }
6811 }
6812
6813 /* Clean up any messages pending delivery due to partial
6814 * delivery. Three cases:
6815 * 1) No partial deliver; no work.
6816 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6817 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6818 */
6819 skb_queue_head_init(&newsp->pd_lobby);
6820 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6821
6822 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6823 struct sk_buff_head *queue;
6824
6825 /* Decide which queue to move pd_lobby skbs to. */
6826 if (assoc->ulpq.pd_mode) {
6827 queue = &newsp->pd_lobby;
6828 } else
6829 queue = &newsk->sk_receive_queue;
6830
6831 /* Walk through the pd_lobby, looking for skbs that
6832 * need moved to the new socket.
6833 */
6834 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6835 event = sctp_skb2event(skb);
6836 if (event->asoc == assoc) {
6837 __skb_unlink(skb, &oldsp->pd_lobby);
6838 __skb_queue_tail(queue, skb);
6839 sctp_skb_set_owner_r_frag(skb, newsk);
6840 }
6841 }
6842
6843 /* Clear up any skbs waiting for the partial
6844 * delivery to finish.
6845 */
6846 if (assoc->ulpq.pd_mode)
6847 sctp_clear_pd(oldsk, NULL);
6848
6849 }
6850
6851 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6852 sctp_skb_set_owner_r_frag(skb, newsk);
6853
6854 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6855 sctp_skb_set_owner_r_frag(skb, newsk);
6856
6857 /* Set the type of socket to indicate that it is peeled off from the
6858 * original UDP-style socket or created with the accept() call on a
6859 * TCP-style socket..
6860 */
6861 newsp->type = type;
6862
6863 /* Mark the new socket "in-use" by the user so that any packets
6864 * that may arrive on the association after we've moved it are
6865 * queued to the backlog. This prevents a potential race between
6866 * backlog processing on the old socket and new-packet processing
6867 * on the new socket.
6868 *
6869 * The caller has just allocated newsk so we can guarantee that other
6870 * paths won't try to lock it and then oldsk.
6871 */
6872 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6873 sctp_assoc_migrate(assoc, newsk);
6874
6875 /* If the association on the newsk is already closed before accept()
6876 * is called, set RCV_SHUTDOWN flag.
6877 */
6878 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6879 newsk->sk_shutdown |= RCV_SHUTDOWN;
6880
6881 newsk->sk_state = SCTP_SS_ESTABLISHED;
6882 sctp_release_sock(newsk);
6883 }
6884
6885
6886 /* This proto struct describes the ULP interface for SCTP. */
6887 struct proto sctp_prot = {
6888 .name = "SCTP",
6889 .owner = THIS_MODULE,
6890 .close = sctp_close,
6891 .connect = sctp_connect,
6892 .disconnect = sctp_disconnect,
6893 .accept = sctp_accept,
6894 .ioctl = sctp_ioctl,
6895 .init = sctp_init_sock,
6896 .destroy = sctp_destroy_sock,
6897 .shutdown = sctp_shutdown,
6898 .setsockopt = sctp_setsockopt,
6899 .getsockopt = sctp_getsockopt,
6900 .sendmsg = sctp_sendmsg,
6901 .recvmsg = sctp_recvmsg,
6902 .bind = sctp_bind,
6903 .backlog_rcv = sctp_backlog_rcv,
6904 .hash = sctp_hash,
6905 .unhash = sctp_unhash,
6906 .get_port = sctp_get_port,
6907 .obj_size = sizeof(struct sctp_sock),
6908 .sysctl_mem = sysctl_sctp_mem,
6909 .sysctl_rmem = sysctl_sctp_rmem,
6910 .sysctl_wmem = sysctl_sctp_wmem,
6911 .memory_pressure = &sctp_memory_pressure,
6912 .enter_memory_pressure = sctp_enter_memory_pressure,
6913 .memory_allocated = &sctp_memory_allocated,
6914 .sockets_allocated = &sctp_sockets_allocated,
6915 };
6916
6917 #if IS_ENABLED(CONFIG_IPV6)
6918
6919 struct proto sctpv6_prot = {
6920 .name = "SCTPv6",
6921 .owner = THIS_MODULE,
6922 .close = sctp_close,
6923 .connect = sctp_connect,
6924 .disconnect = sctp_disconnect,
6925 .accept = sctp_accept,
6926 .ioctl = sctp_ioctl,
6927 .init = sctp_init_sock,
6928 .destroy = sctp_destroy_sock,
6929 .shutdown = sctp_shutdown,
6930 .setsockopt = sctp_setsockopt,
6931 .getsockopt = sctp_getsockopt,
6932 .sendmsg = sctp_sendmsg,
6933 .recvmsg = sctp_recvmsg,
6934 .bind = sctp_bind,
6935 .backlog_rcv = sctp_backlog_rcv,
6936 .hash = sctp_hash,
6937 .unhash = sctp_unhash,
6938 .get_port = sctp_get_port,
6939 .obj_size = sizeof(struct sctp6_sock),
6940 .sysctl_mem = sysctl_sctp_mem,
6941 .sysctl_rmem = sysctl_sctp_rmem,
6942 .sysctl_wmem = sysctl_sctp_wmem,
6943 .memory_pressure = &sctp_memory_pressure,
6944 .enter_memory_pressure = sctp_enter_memory_pressure,
6945 .memory_allocated = &sctp_memory_allocated,
6946 .sockets_allocated = &sctp_sockets_allocated,
6947 };
6948 #endif /* IS_ENABLED(CONFIG_IPV6) */
6949