1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	blk_mq_requeue_request(rq, false);
126 	if (!scsi_host_in_recovery(cmd->device->host))
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129 
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 	struct scsi_device *device = cmd->device;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device, cmd);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_mq_destroy_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 
166 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 			       !scsi_host_in_recovery(cmd->device->host));
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 /**
188  * scsi_execute_cmd - insert request and wait for the result
189  * @sdev:	scsi_device
190  * @cmd:	scsi command
191  * @opf:	block layer request cmd_flags
192  * @buffer:	data buffer
193  * @bufflen:	len of buffer
194  * @timeout:	request timeout in HZ
195  * @retries:	number of times to retry request
196  * @args:	Optional args. See struct definition for field descriptions
197  *
198  * Returns the scsi_cmnd result field if a command was executed, or a negative
199  * Linux error code if we didn't get that far.
200  */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
203 		     int timeout, int retries,
204 		     const struct scsi_exec_args *args)
205 {
206 	static const struct scsi_exec_args default_args;
207 	struct request *req;
208 	struct scsi_cmnd *scmd;
209 	int ret;
210 
211 	if (!args)
212 		args = &default_args;
213 	else if (WARN_ON_ONCE(args->sense &&
214 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
215 		return -EINVAL;
216 
217 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218 	if (IS_ERR(req))
219 		return PTR_ERR(req);
220 
221 	if (bufflen) {
222 		ret = blk_rq_map_kern(sdev->request_queue, req,
223 				      buffer, bufflen, GFP_NOIO);
224 		if (ret)
225 			goto out;
226 	}
227 	scmd = blk_mq_rq_to_pdu(req);
228 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230 	scmd->allowed = retries;
231 	scmd->flags |= args->scmd_flags;
232 	req->timeout = timeout;
233 	req->rq_flags |= RQF_QUIET;
234 
235 	/*
236 	 * head injection *required* here otherwise quiesce won't work
237 	 */
238 	blk_execute_rq(req, true);
239 
240 	/*
241 	 * Some devices (USB mass-storage in particular) may transfer
242 	 * garbage data together with a residue indicating that the data
243 	 * is invalid.  Prevent the garbage from being misinterpreted
244 	 * and prevent security leaks by zeroing out the excess data.
245 	 */
246 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248 
249 	if (args->resid)
250 		*args->resid = scmd->resid_len;
251 	if (args->sense)
252 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253 	if (args->sshdr)
254 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255 				     args->sshdr);
256 
257 	ret = scmd->result;
258  out:
259 	blk_mq_free_request(req);
260 
261 	return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute_cmd);
264 
265 /*
266  * Wake up the error handler if necessary. Avoid as follows that the error
267  * handler is not woken up if host in-flight requests number ==
268  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269  * with an RCU read lock in this function to ensure that this function in
270  * its entirety either finishes before scsi_eh_scmd_add() increases the
271  * host_failed counter or that it notices the shost state change made by
272  * scsi_eh_scmd_add().
273  */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275 {
276 	unsigned long flags;
277 
278 	rcu_read_lock();
279 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280 	if (unlikely(scsi_host_in_recovery(shost))) {
281 		unsigned int busy = scsi_host_busy(shost);
282 
283 		spin_lock_irqsave(shost->host_lock, flags);
284 		if (shost->host_failed || shost->host_eh_scheduled)
285 			scsi_eh_wakeup(shost, busy);
286 		spin_unlock_irqrestore(shost->host_lock, flags);
287 	}
288 	rcu_read_unlock();
289 }
290 
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
292 {
293 	struct Scsi_Host *shost = sdev->host;
294 	struct scsi_target *starget = scsi_target(sdev);
295 
296 	scsi_dec_host_busy(shost, cmd);
297 
298 	if (starget->can_queue > 0)
299 		atomic_dec(&starget->target_busy);
300 
301 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
302 	cmd->budget_token = -1;
303 }
304 
305 /*
306  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
307  * interrupts disabled.
308  */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)309 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
310 {
311 	struct scsi_device *current_sdev = data;
312 
313 	if (sdev != current_sdev)
314 		blk_mq_run_hw_queues(sdev->request_queue, true);
315 }
316 
317 /*
318  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
319  * and call blk_run_queue for all the scsi_devices on the target -
320  * including current_sdev first.
321  *
322  * Called with *no* scsi locks held.
323  */
scsi_single_lun_run(struct scsi_device * current_sdev)324 static void scsi_single_lun_run(struct scsi_device *current_sdev)
325 {
326 	struct Scsi_Host *shost = current_sdev->host;
327 	struct scsi_target *starget = scsi_target(current_sdev);
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(shost->host_lock, flags);
331 	starget->starget_sdev_user = NULL;
332 	spin_unlock_irqrestore(shost->host_lock, flags);
333 
334 	/*
335 	 * Call blk_run_queue for all LUNs on the target, starting with
336 	 * current_sdev. We race with others (to set starget_sdev_user),
337 	 * but in most cases, we will be first. Ideally, each LU on the
338 	 * target would get some limited time or requests on the target.
339 	 */
340 	blk_mq_run_hw_queues(current_sdev->request_queue,
341 			     shost->queuecommand_may_block);
342 
343 	spin_lock_irqsave(shost->host_lock, flags);
344 	if (!starget->starget_sdev_user)
345 		__starget_for_each_device(starget, current_sdev,
346 					  scsi_kick_sdev_queue);
347 	spin_unlock_irqrestore(shost->host_lock, flags);
348 }
349 
scsi_device_is_busy(struct scsi_device * sdev)350 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
351 {
352 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
353 		return true;
354 	if (atomic_read(&sdev->device_blocked) > 0)
355 		return true;
356 	return false;
357 }
358 
scsi_target_is_busy(struct scsi_target * starget)359 static inline bool scsi_target_is_busy(struct scsi_target *starget)
360 {
361 	if (starget->can_queue > 0) {
362 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
363 			return true;
364 		if (atomic_read(&starget->target_blocked) > 0)
365 			return true;
366 	}
367 	return false;
368 }
369 
scsi_host_is_busy(struct Scsi_Host * shost)370 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
371 {
372 	if (atomic_read(&shost->host_blocked) > 0)
373 		return true;
374 	if (shost->host_self_blocked)
375 		return true;
376 	return false;
377 }
378 
scsi_starved_list_run(struct Scsi_Host * shost)379 static void scsi_starved_list_run(struct Scsi_Host *shost)
380 {
381 	LIST_HEAD(starved_list);
382 	struct scsi_device *sdev;
383 	unsigned long flags;
384 
385 	spin_lock_irqsave(shost->host_lock, flags);
386 	list_splice_init(&shost->starved_list, &starved_list);
387 
388 	while (!list_empty(&starved_list)) {
389 		struct request_queue *slq;
390 
391 		/*
392 		 * As long as shost is accepting commands and we have
393 		 * starved queues, call blk_run_queue. scsi_request_fn
394 		 * drops the queue_lock and can add us back to the
395 		 * starved_list.
396 		 *
397 		 * host_lock protects the starved_list and starved_entry.
398 		 * scsi_request_fn must get the host_lock before checking
399 		 * or modifying starved_list or starved_entry.
400 		 */
401 		if (scsi_host_is_busy(shost))
402 			break;
403 
404 		sdev = list_entry(starved_list.next,
405 				  struct scsi_device, starved_entry);
406 		list_del_init(&sdev->starved_entry);
407 		if (scsi_target_is_busy(scsi_target(sdev))) {
408 			list_move_tail(&sdev->starved_entry,
409 				       &shost->starved_list);
410 			continue;
411 		}
412 
413 		/*
414 		 * Once we drop the host lock, a racing scsi_remove_device()
415 		 * call may remove the sdev from the starved list and destroy
416 		 * it and the queue.  Mitigate by taking a reference to the
417 		 * queue and never touching the sdev again after we drop the
418 		 * host lock.  Note: if __scsi_remove_device() invokes
419 		 * blk_mq_destroy_queue() before the queue is run from this
420 		 * function then blk_run_queue() will return immediately since
421 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
422 		 */
423 		slq = sdev->request_queue;
424 		if (!blk_get_queue(slq))
425 			continue;
426 		spin_unlock_irqrestore(shost->host_lock, flags);
427 
428 		blk_mq_run_hw_queues(slq, false);
429 		blk_put_queue(slq);
430 
431 		spin_lock_irqsave(shost->host_lock, flags);
432 	}
433 	/* put any unprocessed entries back */
434 	list_splice(&starved_list, &shost->starved_list);
435 	spin_unlock_irqrestore(shost->host_lock, flags);
436 }
437 
438 /**
439  * scsi_run_queue - Select a proper request queue to serve next.
440  * @q:  last request's queue
441  *
442  * The previous command was completely finished, start a new one if possible.
443  */
scsi_run_queue(struct request_queue * q)444 static void scsi_run_queue(struct request_queue *q)
445 {
446 	struct scsi_device *sdev = q->queuedata;
447 
448 	if (scsi_target(sdev)->single_lun)
449 		scsi_single_lun_run(sdev);
450 	if (!list_empty(&sdev->host->starved_list))
451 		scsi_starved_list_run(sdev->host);
452 
453 	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
454 	blk_mq_kick_requeue_list(q);
455 }
456 
scsi_requeue_run_queue(struct work_struct * work)457 void scsi_requeue_run_queue(struct work_struct *work)
458 {
459 	struct scsi_device *sdev;
460 	struct request_queue *q;
461 
462 	sdev = container_of(work, struct scsi_device, requeue_work);
463 	q = sdev->request_queue;
464 	scsi_run_queue(q);
465 }
466 
scsi_run_host_queues(struct Scsi_Host * shost)467 void scsi_run_host_queues(struct Scsi_Host *shost)
468 {
469 	struct scsi_device *sdev;
470 
471 	shost_for_each_device(sdev, shost)
472 		scsi_run_queue(sdev->request_queue);
473 }
474 
scsi_uninit_cmd(struct scsi_cmnd * cmd)475 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
476 {
477 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
478 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
479 
480 		if (drv->uninit_command)
481 			drv->uninit_command(cmd);
482 	}
483 }
484 
scsi_free_sgtables(struct scsi_cmnd * cmd)485 void scsi_free_sgtables(struct scsi_cmnd *cmd)
486 {
487 	if (cmd->sdb.table.nents)
488 		sg_free_table_chained(&cmd->sdb.table,
489 				SCSI_INLINE_SG_CNT);
490 	if (scsi_prot_sg_count(cmd))
491 		sg_free_table_chained(&cmd->prot_sdb->table,
492 				SCSI_INLINE_PROT_SG_CNT);
493 }
494 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
495 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)496 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
497 {
498 	scsi_free_sgtables(cmd);
499 	scsi_uninit_cmd(cmd);
500 }
501 
scsi_run_queue_async(struct scsi_device * sdev)502 static void scsi_run_queue_async(struct scsi_device *sdev)
503 {
504 	if (scsi_host_in_recovery(sdev->host))
505 		return;
506 
507 	if (scsi_target(sdev)->single_lun ||
508 	    !list_empty(&sdev->host->starved_list)) {
509 		kblockd_schedule_work(&sdev->requeue_work);
510 	} else {
511 		/*
512 		 * smp_mb() present in sbitmap_queue_clear() or implied in
513 		 * .end_io is for ordering writing .device_busy in
514 		 * scsi_device_unbusy() and reading sdev->restarts.
515 		 */
516 		int old = atomic_read(&sdev->restarts);
517 
518 		/*
519 		 * ->restarts has to be kept as non-zero if new budget
520 		 *  contention occurs.
521 		 *
522 		 *  No need to run queue when either another re-run
523 		 *  queue wins in updating ->restarts or a new budget
524 		 *  contention occurs.
525 		 */
526 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
527 			blk_mq_run_hw_queues(sdev->request_queue, true);
528 	}
529 }
530 
531 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)532 static bool scsi_end_request(struct request *req, blk_status_t error,
533 		unsigned int bytes)
534 {
535 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
536 	struct scsi_device *sdev = cmd->device;
537 	struct request_queue *q = sdev->request_queue;
538 
539 	if (blk_update_request(req, error, bytes))
540 		return true;
541 
542 	// XXX:
543 	if (blk_queue_add_random(q))
544 		add_disk_randomness(req->q->disk);
545 
546 	if (!blk_rq_is_passthrough(req)) {
547 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
548 		cmd->flags &= ~SCMD_INITIALIZED;
549 	}
550 
551 	/*
552 	 * Calling rcu_barrier() is not necessary here because the
553 	 * SCSI error handler guarantees that the function called by
554 	 * call_rcu() has been called before scsi_end_request() is
555 	 * called.
556 	 */
557 	destroy_rcu_head(&cmd->rcu);
558 
559 	/*
560 	 * In the MQ case the command gets freed by __blk_mq_end_request,
561 	 * so we have to do all cleanup that depends on it earlier.
562 	 *
563 	 * We also can't kick the queues from irq context, so we
564 	 * will have to defer it to a workqueue.
565 	 */
566 	scsi_mq_uninit_cmd(cmd);
567 
568 	/*
569 	 * queue is still alive, so grab the ref for preventing it
570 	 * from being cleaned up during running queue.
571 	 */
572 	percpu_ref_get(&q->q_usage_counter);
573 
574 	__blk_mq_end_request(req, error);
575 
576 	scsi_run_queue_async(sdev);
577 
578 	percpu_ref_put(&q->q_usage_counter);
579 	return false;
580 }
581 
582 /**
583  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
584  * @result:	scsi error code
585  *
586  * Translate a SCSI result code into a blk_status_t value.
587  */
scsi_result_to_blk_status(int result)588 static blk_status_t scsi_result_to_blk_status(int result)
589 {
590 	/*
591 	 * Check the scsi-ml byte first in case we converted a host or status
592 	 * byte.
593 	 */
594 	switch (scsi_ml_byte(result)) {
595 	case SCSIML_STAT_OK:
596 		break;
597 	case SCSIML_STAT_RESV_CONFLICT:
598 		return BLK_STS_RESV_CONFLICT;
599 	case SCSIML_STAT_NOSPC:
600 		return BLK_STS_NOSPC;
601 	case SCSIML_STAT_MED_ERROR:
602 		return BLK_STS_MEDIUM;
603 	case SCSIML_STAT_TGT_FAILURE:
604 		return BLK_STS_TARGET;
605 	case SCSIML_STAT_DL_TIMEOUT:
606 		return BLK_STS_DURATION_LIMIT;
607 	}
608 
609 	switch (host_byte(result)) {
610 	case DID_OK:
611 		if (scsi_status_is_good(result))
612 			return BLK_STS_OK;
613 		return BLK_STS_IOERR;
614 	case DID_TRANSPORT_FAILFAST:
615 	case DID_TRANSPORT_MARGINAL:
616 		return BLK_STS_TRANSPORT;
617 	default:
618 		return BLK_STS_IOERR;
619 	}
620 }
621 
622 /**
623  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
624  * @rq: request to examine
625  *
626  * Description:
627  *     A request could be merge of IOs which require different failure
628  *     handling.  This function determines the number of bytes which
629  *     can be failed from the beginning of the request without
630  *     crossing into area which need to be retried further.
631  *
632  * Return:
633  *     The number of bytes to fail.
634  */
scsi_rq_err_bytes(const struct request * rq)635 static unsigned int scsi_rq_err_bytes(const struct request *rq)
636 {
637 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
638 	unsigned int bytes = 0;
639 	struct bio *bio;
640 
641 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
642 		return blk_rq_bytes(rq);
643 
644 	/*
645 	 * Currently the only 'mixing' which can happen is between
646 	 * different fastfail types.  We can safely fail portions
647 	 * which have all the failfast bits that the first one has -
648 	 * the ones which are at least as eager to fail as the first
649 	 * one.
650 	 */
651 	for (bio = rq->bio; bio; bio = bio->bi_next) {
652 		if ((bio->bi_opf & ff) != ff)
653 			break;
654 		bytes += bio->bi_iter.bi_size;
655 	}
656 
657 	/* this could lead to infinite loop */
658 	BUG_ON(blk_rq_bytes(rq) && !bytes);
659 	return bytes;
660 }
661 
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)662 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
663 {
664 	struct request *req = scsi_cmd_to_rq(cmd);
665 	unsigned long wait_for;
666 
667 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
668 		return false;
669 
670 	wait_for = (cmd->allowed + 1) * req->timeout;
671 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
672 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
673 			    wait_for/HZ);
674 		return true;
675 	}
676 	return false;
677 }
678 
679 /*
680  * When ALUA transition state is returned, reprep the cmd to
681  * use the ALUA handler's transition timeout. Delay the reprep
682  * 1 sec to avoid aggressive retries of the target in that
683  * state.
684  */
685 #define ALUA_TRANSITION_REPREP_DELAY	1000
686 
687 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)688 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
689 {
690 	struct request *req = scsi_cmd_to_rq(cmd);
691 	int level = 0;
692 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
693 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
694 	struct scsi_sense_hdr sshdr;
695 	bool sense_valid;
696 	bool sense_current = true;      /* false implies "deferred sense" */
697 	blk_status_t blk_stat;
698 
699 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
700 	if (sense_valid)
701 		sense_current = !scsi_sense_is_deferred(&sshdr);
702 
703 	blk_stat = scsi_result_to_blk_status(result);
704 
705 	if (host_byte(result) == DID_RESET) {
706 		/* Third party bus reset or reset for error recovery
707 		 * reasons.  Just retry the command and see what
708 		 * happens.
709 		 */
710 		action = ACTION_RETRY;
711 	} else if (sense_valid && sense_current) {
712 		switch (sshdr.sense_key) {
713 		case UNIT_ATTENTION:
714 			if (cmd->device->removable) {
715 				/* Detected disc change.  Set a bit
716 				 * and quietly refuse further access.
717 				 */
718 				cmd->device->changed = 1;
719 				action = ACTION_FAIL;
720 			} else {
721 				/* Must have been a power glitch, or a
722 				 * bus reset.  Could not have been a
723 				 * media change, so we just retry the
724 				 * command and see what happens.
725 				 */
726 				action = ACTION_RETRY;
727 			}
728 			break;
729 		case ILLEGAL_REQUEST:
730 			/* If we had an ILLEGAL REQUEST returned, then
731 			 * we may have performed an unsupported
732 			 * command.  The only thing this should be
733 			 * would be a ten byte read where only a six
734 			 * byte read was supported.  Also, on a system
735 			 * where READ CAPACITY failed, we may have
736 			 * read past the end of the disk.
737 			 */
738 			if ((cmd->device->use_10_for_rw &&
739 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
740 			    (cmd->cmnd[0] == READ_10 ||
741 			     cmd->cmnd[0] == WRITE_10)) {
742 				/* This will issue a new 6-byte command. */
743 				cmd->device->use_10_for_rw = 0;
744 				action = ACTION_REPREP;
745 			} else if (sshdr.asc == 0x10) /* DIX */ {
746 				action = ACTION_FAIL;
747 				blk_stat = BLK_STS_PROTECTION;
748 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
749 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
750 				action = ACTION_FAIL;
751 				blk_stat = BLK_STS_TARGET;
752 			} else
753 				action = ACTION_FAIL;
754 			break;
755 		case ABORTED_COMMAND:
756 			action = ACTION_FAIL;
757 			if (sshdr.asc == 0x10) /* DIF */
758 				blk_stat = BLK_STS_PROTECTION;
759 			break;
760 		case NOT_READY:
761 			/* If the device is in the process of becoming
762 			 * ready, or has a temporary blockage, retry.
763 			 */
764 			if (sshdr.asc == 0x04) {
765 				switch (sshdr.ascq) {
766 				case 0x01: /* becoming ready */
767 				case 0x04: /* format in progress */
768 				case 0x05: /* rebuild in progress */
769 				case 0x06: /* recalculation in progress */
770 				case 0x07: /* operation in progress */
771 				case 0x08: /* Long write in progress */
772 				case 0x09: /* self test in progress */
773 				case 0x11: /* notify (enable spinup) required */
774 				case 0x14: /* space allocation in progress */
775 				case 0x1a: /* start stop unit in progress */
776 				case 0x1b: /* sanitize in progress */
777 				case 0x1d: /* configuration in progress */
778 				case 0x24: /* depopulation in progress */
779 					action = ACTION_DELAYED_RETRY;
780 					break;
781 				case 0x0a: /* ALUA state transition */
782 					action = ACTION_DELAYED_REPREP;
783 					break;
784 				default:
785 					action = ACTION_FAIL;
786 					break;
787 				}
788 			} else
789 				action = ACTION_FAIL;
790 			break;
791 		case VOLUME_OVERFLOW:
792 			/* See SSC3rXX or current. */
793 			action = ACTION_FAIL;
794 			break;
795 		case DATA_PROTECT:
796 			action = ACTION_FAIL;
797 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
798 			    (sshdr.asc == 0x55 &&
799 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
800 				/* Insufficient zone resources */
801 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
802 			}
803 			break;
804 		case COMPLETED:
805 			fallthrough;
806 		default:
807 			action = ACTION_FAIL;
808 			break;
809 		}
810 	} else
811 		action = ACTION_FAIL;
812 
813 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
814 		action = ACTION_FAIL;
815 
816 	switch (action) {
817 	case ACTION_FAIL:
818 		/* Give up and fail the remainder of the request */
819 		if (!(req->rq_flags & RQF_QUIET)) {
820 			static DEFINE_RATELIMIT_STATE(_rs,
821 					DEFAULT_RATELIMIT_INTERVAL,
822 					DEFAULT_RATELIMIT_BURST);
823 
824 			if (unlikely(scsi_logging_level))
825 				level =
826 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
827 						    SCSI_LOG_MLCOMPLETE_BITS);
828 
829 			/*
830 			 * if logging is enabled the failure will be printed
831 			 * in scsi_log_completion(), so avoid duplicate messages
832 			 */
833 			if (!level && __ratelimit(&_rs)) {
834 				scsi_print_result(cmd, NULL, FAILED);
835 				if (sense_valid)
836 					scsi_print_sense(cmd);
837 				scsi_print_command(cmd);
838 			}
839 		}
840 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
841 			return;
842 		fallthrough;
843 	case ACTION_REPREP:
844 		scsi_mq_requeue_cmd(cmd, 0);
845 		break;
846 	case ACTION_DELAYED_REPREP:
847 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
848 		break;
849 	case ACTION_RETRY:
850 		/* Retry the same command immediately */
851 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
852 		break;
853 	case ACTION_DELAYED_RETRY:
854 		/* Retry the same command after a delay */
855 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
856 		break;
857 	}
858 }
859 
860 /*
861  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
862  * new result that may suppress further error checking. Also modifies
863  * *blk_statp in some cases.
864  */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)865 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
866 					blk_status_t *blk_statp)
867 {
868 	bool sense_valid;
869 	bool sense_current = true;	/* false implies "deferred sense" */
870 	struct request *req = scsi_cmd_to_rq(cmd);
871 	struct scsi_sense_hdr sshdr;
872 
873 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
874 	if (sense_valid)
875 		sense_current = !scsi_sense_is_deferred(&sshdr);
876 
877 	if (blk_rq_is_passthrough(req)) {
878 		if (sense_valid) {
879 			/*
880 			 * SG_IO wants current and deferred errors
881 			 */
882 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
883 					     SCSI_SENSE_BUFFERSIZE);
884 		}
885 		if (sense_current)
886 			*blk_statp = scsi_result_to_blk_status(result);
887 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
888 		/*
889 		 * Flush commands do not transfers any data, and thus cannot use
890 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
891 		 * This sets *blk_statp explicitly for the problem case.
892 		 */
893 		*blk_statp = scsi_result_to_blk_status(result);
894 	}
895 	/*
896 	 * Recovered errors need reporting, but they're always treated as
897 	 * success, so fiddle the result code here.  For passthrough requests
898 	 * we already took a copy of the original into sreq->result which
899 	 * is what gets returned to the user
900 	 */
901 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
902 		bool do_print = true;
903 		/*
904 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
905 		 * skip print since caller wants ATA registers. Only occurs
906 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
907 		 */
908 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
909 			do_print = false;
910 		else if (req->rq_flags & RQF_QUIET)
911 			do_print = false;
912 		if (do_print)
913 			scsi_print_sense(cmd);
914 		result = 0;
915 		/* for passthrough, *blk_statp may be set */
916 		*blk_statp = BLK_STS_OK;
917 	}
918 	/*
919 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
920 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
921 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
922 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
923 	 * intermediate statuses (both obsolete in SAM-4) as good.
924 	 */
925 	if ((result & 0xff) && scsi_status_is_good(result)) {
926 		result = 0;
927 		*blk_statp = BLK_STS_OK;
928 	}
929 	return result;
930 }
931 
932 /**
933  * scsi_io_completion - Completion processing for SCSI commands.
934  * @cmd:	command that is finished.
935  * @good_bytes:	number of processed bytes.
936  *
937  * We will finish off the specified number of sectors. If we are done, the
938  * command block will be released and the queue function will be goosed. If we
939  * are not done then we have to figure out what to do next:
940  *
941  *   a) We can call scsi_mq_requeue_cmd().  The request will be
942  *	unprepared and put back on the queue.  Then a new command will
943  *	be created for it.  This should be used if we made forward
944  *	progress, or if we want to switch from READ(10) to READ(6) for
945  *	example.
946  *
947  *   b) We can call scsi_io_completion_action().  The request will be
948  *	put back on the queue and retried using the same command as
949  *	before, possibly after a delay.
950  *
951  *   c) We can call scsi_end_request() with blk_stat other than
952  *	BLK_STS_OK, to fail the remainder of the request.
953  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)954 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
955 {
956 	int result = cmd->result;
957 	struct request *req = scsi_cmd_to_rq(cmd);
958 	blk_status_t blk_stat = BLK_STS_OK;
959 
960 	if (unlikely(result))	/* a nz result may or may not be an error */
961 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
962 
963 	/*
964 	 * Next deal with any sectors which we were able to correctly
965 	 * handle.
966 	 */
967 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
968 		"%u sectors total, %d bytes done.\n",
969 		blk_rq_sectors(req), good_bytes));
970 
971 	/*
972 	 * Failed, zero length commands always need to drop down
973 	 * to retry code. Fast path should return in this block.
974 	 */
975 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
976 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
977 			return; /* no bytes remaining */
978 	}
979 
980 	/* Kill remainder if no retries. */
981 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
982 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
983 			WARN_ONCE(true,
984 			    "Bytes remaining after failed, no-retry command");
985 		return;
986 	}
987 
988 	/*
989 	 * If there had been no error, but we have leftover bytes in the
990 	 * request just queue the command up again.
991 	 */
992 	if (likely(result == 0))
993 		scsi_mq_requeue_cmd(cmd, 0);
994 	else
995 		scsi_io_completion_action(cmd, result);
996 }
997 
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)998 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
999 		struct request *rq)
1000 {
1001 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1002 	       !op_is_write(req_op(rq)) &&
1003 	       sdev->host->hostt->dma_need_drain(rq);
1004 }
1005 
1006 /**
1007  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1008  * @cmd: SCSI command data structure to initialize.
1009  *
1010  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1011  * for @cmd.
1012  *
1013  * Returns:
1014  * * BLK_STS_OK       - on success
1015  * * BLK_STS_RESOURCE - if the failure is retryable
1016  * * BLK_STS_IOERR    - if the failure is fatal
1017  */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1018 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1019 {
1020 	struct scsi_device *sdev = cmd->device;
1021 	struct request *rq = scsi_cmd_to_rq(cmd);
1022 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1023 	struct scatterlist *last_sg = NULL;
1024 	blk_status_t ret;
1025 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1026 	int count;
1027 
1028 	if (WARN_ON_ONCE(!nr_segs))
1029 		return BLK_STS_IOERR;
1030 
1031 	/*
1032 	 * Make sure there is space for the drain.  The driver must adjust
1033 	 * max_hw_segments to be prepared for this.
1034 	 */
1035 	if (need_drain)
1036 		nr_segs++;
1037 
1038 	/*
1039 	 * If sg table allocation fails, requeue request later.
1040 	 */
1041 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1042 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1043 		return BLK_STS_RESOURCE;
1044 
1045 	/*
1046 	 * Next, walk the list, and fill in the addresses and sizes of
1047 	 * each segment.
1048 	 */
1049 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1050 
1051 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1052 		unsigned int pad_len =
1053 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1054 
1055 		last_sg->length += pad_len;
1056 		cmd->extra_len += pad_len;
1057 	}
1058 
1059 	if (need_drain) {
1060 		sg_unmark_end(last_sg);
1061 		last_sg = sg_next(last_sg);
1062 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1063 		sg_mark_end(last_sg);
1064 
1065 		cmd->extra_len += sdev->dma_drain_len;
1066 		count++;
1067 	}
1068 
1069 	BUG_ON(count > cmd->sdb.table.nents);
1070 	cmd->sdb.table.nents = count;
1071 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1072 
1073 	if (blk_integrity_rq(rq)) {
1074 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1075 		int ivecs;
1076 
1077 		if (WARN_ON_ONCE(!prot_sdb)) {
1078 			/*
1079 			 * This can happen if someone (e.g. multipath)
1080 			 * queues a command to a device on an adapter
1081 			 * that does not support DIX.
1082 			 */
1083 			ret = BLK_STS_IOERR;
1084 			goto out_free_sgtables;
1085 		}
1086 
1087 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1088 
1089 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1090 				prot_sdb->table.sgl,
1091 				SCSI_INLINE_PROT_SG_CNT)) {
1092 			ret = BLK_STS_RESOURCE;
1093 			goto out_free_sgtables;
1094 		}
1095 
1096 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1097 						prot_sdb->table.sgl);
1098 		BUG_ON(count > ivecs);
1099 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1100 
1101 		cmd->prot_sdb = prot_sdb;
1102 		cmd->prot_sdb->table.nents = count;
1103 	}
1104 
1105 	return BLK_STS_OK;
1106 out_free_sgtables:
1107 	scsi_free_sgtables(cmd);
1108 	return ret;
1109 }
1110 EXPORT_SYMBOL(scsi_alloc_sgtables);
1111 
1112 /**
1113  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1114  * @rq: Request associated with the SCSI command to be initialized.
1115  *
1116  * This function initializes the members of struct scsi_cmnd that must be
1117  * initialized before request processing starts and that won't be
1118  * reinitialized if a SCSI command is requeued.
1119  */
scsi_initialize_rq(struct request * rq)1120 static void scsi_initialize_rq(struct request *rq)
1121 {
1122 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1123 
1124 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1125 	cmd->cmd_len = MAX_COMMAND_SIZE;
1126 	cmd->sense_len = 0;
1127 	init_rcu_head(&cmd->rcu);
1128 	cmd->jiffies_at_alloc = jiffies;
1129 	cmd->retries = 0;
1130 }
1131 
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1132 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1133 				   blk_mq_req_flags_t flags)
1134 {
1135 	struct request *rq;
1136 
1137 	rq = blk_mq_alloc_request(q, opf, flags);
1138 	if (!IS_ERR(rq))
1139 		scsi_initialize_rq(rq);
1140 	return rq;
1141 }
1142 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1143 
1144 /*
1145  * Only called when the request isn't completed by SCSI, and not freed by
1146  * SCSI
1147  */
scsi_cleanup_rq(struct request * rq)1148 static void scsi_cleanup_rq(struct request *rq)
1149 {
1150 	if (rq->rq_flags & RQF_DONTPREP) {
1151 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1152 		rq->rq_flags &= ~RQF_DONTPREP;
1153 	}
1154 }
1155 
1156 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1157 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1158 {
1159 	struct request *rq = scsi_cmd_to_rq(cmd);
1160 
1161 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1162 		cmd->flags |= SCMD_INITIALIZED;
1163 		scsi_initialize_rq(rq);
1164 	}
1165 
1166 	cmd->device = dev;
1167 	INIT_LIST_HEAD(&cmd->eh_entry);
1168 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169 }
1170 
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1171 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1172 		struct request *req)
1173 {
1174 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1175 
1176 	/*
1177 	 * Passthrough requests may transfer data, in which case they must
1178 	 * a bio attached to them.  Or they might contain a SCSI command
1179 	 * that does not transfer data, in which case they may optionally
1180 	 * submit a request without an attached bio.
1181 	 */
1182 	if (req->bio) {
1183 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1184 		if (unlikely(ret != BLK_STS_OK))
1185 			return ret;
1186 	} else {
1187 		BUG_ON(blk_rq_bytes(req));
1188 
1189 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1190 	}
1191 
1192 	cmd->transfersize = blk_rq_bytes(req);
1193 	return BLK_STS_OK;
1194 }
1195 
1196 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1197 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1198 {
1199 	switch (sdev->sdev_state) {
1200 	case SDEV_CREATED:
1201 		return BLK_STS_OK;
1202 	case SDEV_OFFLINE:
1203 	case SDEV_TRANSPORT_OFFLINE:
1204 		/*
1205 		 * If the device is offline we refuse to process any
1206 		 * commands.  The device must be brought online
1207 		 * before trying any recovery commands.
1208 		 */
1209 		if (!sdev->offline_already) {
1210 			sdev->offline_already = true;
1211 			sdev_printk(KERN_ERR, sdev,
1212 				    "rejecting I/O to offline device\n");
1213 		}
1214 		return BLK_STS_IOERR;
1215 	case SDEV_DEL:
1216 		/*
1217 		 * If the device is fully deleted, we refuse to
1218 		 * process any commands as well.
1219 		 */
1220 		sdev_printk(KERN_ERR, sdev,
1221 			    "rejecting I/O to dead device\n");
1222 		return BLK_STS_IOERR;
1223 	case SDEV_BLOCK:
1224 	case SDEV_CREATED_BLOCK:
1225 		return BLK_STS_RESOURCE;
1226 	case SDEV_QUIESCE:
1227 		/*
1228 		 * If the device is blocked we only accept power management
1229 		 * commands.
1230 		 */
1231 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1232 			return BLK_STS_RESOURCE;
1233 		return BLK_STS_OK;
1234 	default:
1235 		/*
1236 		 * For any other not fully online state we only allow
1237 		 * power management commands.
1238 		 */
1239 		if (req && !(req->rq_flags & RQF_PM))
1240 			return BLK_STS_OFFLINE;
1241 		return BLK_STS_OK;
1242 	}
1243 }
1244 
1245 /*
1246  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1247  * and return the token else return -1.
1248  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1249 static inline int scsi_dev_queue_ready(struct request_queue *q,
1250 				  struct scsi_device *sdev)
1251 {
1252 	int token;
1253 
1254 	token = sbitmap_get(&sdev->budget_map);
1255 	if (atomic_read(&sdev->device_blocked)) {
1256 		if (token < 0)
1257 			goto out;
1258 
1259 		if (scsi_device_busy(sdev) > 1)
1260 			goto out_dec;
1261 
1262 		/*
1263 		 * unblock after device_blocked iterates to zero
1264 		 */
1265 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1266 			goto out_dec;
1267 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1268 				   "unblocking device at zero depth\n"));
1269 	}
1270 
1271 	return token;
1272 out_dec:
1273 	if (token >= 0)
1274 		sbitmap_put(&sdev->budget_map, token);
1275 out:
1276 	return -1;
1277 }
1278 
1279 /*
1280  * scsi_target_queue_ready: checks if there we can send commands to target
1281  * @sdev: scsi device on starget to check.
1282  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1283 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1284 					   struct scsi_device *sdev)
1285 {
1286 	struct scsi_target *starget = scsi_target(sdev);
1287 	unsigned int busy;
1288 
1289 	if (starget->single_lun) {
1290 		spin_lock_irq(shost->host_lock);
1291 		if (starget->starget_sdev_user &&
1292 		    starget->starget_sdev_user != sdev) {
1293 			spin_unlock_irq(shost->host_lock);
1294 			return 0;
1295 		}
1296 		starget->starget_sdev_user = sdev;
1297 		spin_unlock_irq(shost->host_lock);
1298 	}
1299 
1300 	if (starget->can_queue <= 0)
1301 		return 1;
1302 
1303 	busy = atomic_inc_return(&starget->target_busy) - 1;
1304 	if (atomic_read(&starget->target_blocked) > 0) {
1305 		if (busy)
1306 			goto starved;
1307 
1308 		/*
1309 		 * unblock after target_blocked iterates to zero
1310 		 */
1311 		if (atomic_dec_return(&starget->target_blocked) > 0)
1312 			goto out_dec;
1313 
1314 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1315 				 "unblocking target at zero depth\n"));
1316 	}
1317 
1318 	if (busy >= starget->can_queue)
1319 		goto starved;
1320 
1321 	return 1;
1322 
1323 starved:
1324 	spin_lock_irq(shost->host_lock);
1325 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1326 	spin_unlock_irq(shost->host_lock);
1327 out_dec:
1328 	if (starget->can_queue > 0)
1329 		atomic_dec(&starget->target_busy);
1330 	return 0;
1331 }
1332 
1333 /*
1334  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1335  * return 0. We must end up running the queue again whenever 0 is
1336  * returned, else IO can hang.
1337  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1338 static inline int scsi_host_queue_ready(struct request_queue *q,
1339 				   struct Scsi_Host *shost,
1340 				   struct scsi_device *sdev,
1341 				   struct scsi_cmnd *cmd)
1342 {
1343 	if (atomic_read(&shost->host_blocked) > 0) {
1344 		if (scsi_host_busy(shost) > 0)
1345 			goto starved;
1346 
1347 		/*
1348 		 * unblock after host_blocked iterates to zero
1349 		 */
1350 		if (atomic_dec_return(&shost->host_blocked) > 0)
1351 			goto out_dec;
1352 
1353 		SCSI_LOG_MLQUEUE(3,
1354 			shost_printk(KERN_INFO, shost,
1355 				     "unblocking host at zero depth\n"));
1356 	}
1357 
1358 	if (shost->host_self_blocked)
1359 		goto starved;
1360 
1361 	/* We're OK to process the command, so we can't be starved */
1362 	if (!list_empty(&sdev->starved_entry)) {
1363 		spin_lock_irq(shost->host_lock);
1364 		if (!list_empty(&sdev->starved_entry))
1365 			list_del_init(&sdev->starved_entry);
1366 		spin_unlock_irq(shost->host_lock);
1367 	}
1368 
1369 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1370 
1371 	return 1;
1372 
1373 starved:
1374 	spin_lock_irq(shost->host_lock);
1375 	if (list_empty(&sdev->starved_entry))
1376 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1377 	spin_unlock_irq(shost->host_lock);
1378 out_dec:
1379 	scsi_dec_host_busy(shost, cmd);
1380 	return 0;
1381 }
1382 
1383 /*
1384  * Busy state exporting function for request stacking drivers.
1385  *
1386  * For efficiency, no lock is taken to check the busy state of
1387  * shost/starget/sdev, since the returned value is not guaranteed and
1388  * may be changed after request stacking drivers call the function,
1389  * regardless of taking lock or not.
1390  *
1391  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1392  * needs to return 'not busy'. Otherwise, request stacking drivers
1393  * may hold requests forever.
1394  */
scsi_mq_lld_busy(struct request_queue * q)1395 static bool scsi_mq_lld_busy(struct request_queue *q)
1396 {
1397 	struct scsi_device *sdev = q->queuedata;
1398 	struct Scsi_Host *shost;
1399 
1400 	if (blk_queue_dying(q))
1401 		return false;
1402 
1403 	shost = sdev->host;
1404 
1405 	/*
1406 	 * Ignore host/starget busy state.
1407 	 * Since block layer does not have a concept of fairness across
1408 	 * multiple queues, congestion of host/starget needs to be handled
1409 	 * in SCSI layer.
1410 	 */
1411 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1412 		return true;
1413 
1414 	return false;
1415 }
1416 
1417 /*
1418  * Block layer request completion callback. May be called from interrupt
1419  * context.
1420  */
scsi_complete(struct request * rq)1421 static void scsi_complete(struct request *rq)
1422 {
1423 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1424 	enum scsi_disposition disposition;
1425 
1426 	INIT_LIST_HEAD(&cmd->eh_entry);
1427 
1428 	atomic_inc(&cmd->device->iodone_cnt);
1429 	if (cmd->result)
1430 		atomic_inc(&cmd->device->ioerr_cnt);
1431 
1432 	disposition = scsi_decide_disposition(cmd);
1433 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1434 		disposition = SUCCESS;
1435 
1436 	scsi_log_completion(cmd, disposition);
1437 
1438 	switch (disposition) {
1439 	case SUCCESS:
1440 		scsi_finish_command(cmd);
1441 		break;
1442 	case NEEDS_RETRY:
1443 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1444 		break;
1445 	case ADD_TO_MLQUEUE:
1446 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1447 		break;
1448 	default:
1449 		scsi_eh_scmd_add(cmd);
1450 		break;
1451 	}
1452 }
1453 
1454 /**
1455  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1456  * @cmd: command block we are dispatching.
1457  *
1458  * Return: nonzero return request was rejected and device's queue needs to be
1459  * plugged.
1460  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1461 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1462 {
1463 	struct Scsi_Host *host = cmd->device->host;
1464 	int rtn = 0;
1465 
1466 	atomic_inc(&cmd->device->iorequest_cnt);
1467 
1468 	/* check if the device is still usable */
1469 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1470 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1471 		 * returns an immediate error upwards, and signals
1472 		 * that the device is no longer present */
1473 		cmd->result = DID_NO_CONNECT << 16;
1474 		goto done;
1475 	}
1476 
1477 	/* Check to see if the scsi lld made this device blocked. */
1478 	if (unlikely(scsi_device_blocked(cmd->device))) {
1479 		/*
1480 		 * in blocked state, the command is just put back on
1481 		 * the device queue.  The suspend state has already
1482 		 * blocked the queue so future requests should not
1483 		 * occur until the device transitions out of the
1484 		 * suspend state.
1485 		 */
1486 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1487 			"queuecommand : device blocked\n"));
1488 		atomic_dec(&cmd->device->iorequest_cnt);
1489 		return SCSI_MLQUEUE_DEVICE_BUSY;
1490 	}
1491 
1492 	/* Store the LUN value in cmnd, if needed. */
1493 	if (cmd->device->lun_in_cdb)
1494 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1495 			       (cmd->device->lun << 5 & 0xe0);
1496 
1497 	scsi_log_send(cmd);
1498 
1499 	/*
1500 	 * Before we queue this command, check if the command
1501 	 * length exceeds what the host adapter can handle.
1502 	 */
1503 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1504 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1505 			       "queuecommand : command too long. "
1506 			       "cdb_size=%d host->max_cmd_len=%d\n",
1507 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1508 		cmd->result = (DID_ABORT << 16);
1509 		goto done;
1510 	}
1511 
1512 	if (unlikely(host->shost_state == SHOST_DEL)) {
1513 		cmd->result = (DID_NO_CONNECT << 16);
1514 		goto done;
1515 
1516 	}
1517 
1518 	trace_scsi_dispatch_cmd_start(cmd);
1519 	rtn = host->hostt->queuecommand(host, cmd);
1520 	if (rtn) {
1521 		atomic_dec(&cmd->device->iorequest_cnt);
1522 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1523 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1524 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1525 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1526 
1527 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1528 			"queuecommand : request rejected\n"));
1529 	}
1530 
1531 	return rtn;
1532  done:
1533 	scsi_done(cmd);
1534 	return 0;
1535 }
1536 
1537 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1538 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1539 {
1540 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1541 		sizeof(struct scatterlist);
1542 }
1543 
scsi_prepare_cmd(struct request * req)1544 static blk_status_t scsi_prepare_cmd(struct request *req)
1545 {
1546 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1547 	struct scsi_device *sdev = req->q->queuedata;
1548 	struct Scsi_Host *shost = sdev->host;
1549 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1550 	struct scatterlist *sg;
1551 
1552 	scsi_init_command(sdev, cmd);
1553 
1554 	cmd->eh_eflags = 0;
1555 	cmd->prot_type = 0;
1556 	cmd->prot_flags = 0;
1557 	cmd->submitter = 0;
1558 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1559 	cmd->underflow = 0;
1560 	cmd->transfersize = 0;
1561 	cmd->host_scribble = NULL;
1562 	cmd->result = 0;
1563 	cmd->extra_len = 0;
1564 	cmd->state = 0;
1565 	if (in_flight)
1566 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1567 
1568 	/*
1569 	 * Only clear the driver-private command data if the LLD does not supply
1570 	 * a function to initialize that data.
1571 	 */
1572 	if (!shost->hostt->init_cmd_priv)
1573 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1574 
1575 	cmd->prot_op = SCSI_PROT_NORMAL;
1576 	if (blk_rq_bytes(req))
1577 		cmd->sc_data_direction = rq_dma_dir(req);
1578 	else
1579 		cmd->sc_data_direction = DMA_NONE;
1580 
1581 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1582 	cmd->sdb.table.sgl = sg;
1583 
1584 	if (scsi_host_get_prot(shost)) {
1585 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1586 
1587 		cmd->prot_sdb->table.sgl =
1588 			(struct scatterlist *)(cmd->prot_sdb + 1);
1589 	}
1590 
1591 	/*
1592 	 * Special handling for passthrough commands, which don't go to the ULP
1593 	 * at all:
1594 	 */
1595 	if (blk_rq_is_passthrough(req))
1596 		return scsi_setup_scsi_cmnd(sdev, req);
1597 
1598 	if (sdev->handler && sdev->handler->prep_fn) {
1599 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1600 
1601 		if (ret != BLK_STS_OK)
1602 			return ret;
1603 	}
1604 
1605 	/* Usually overridden by the ULP */
1606 	cmd->allowed = 0;
1607 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1608 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1609 }
1610 
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1611 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1612 {
1613 	struct request *req = scsi_cmd_to_rq(cmd);
1614 
1615 	switch (cmd->submitter) {
1616 	case SUBMITTED_BY_BLOCK_LAYER:
1617 		break;
1618 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1619 		return scsi_eh_done(cmd);
1620 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1621 		return;
1622 	}
1623 
1624 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1625 		return;
1626 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1627 		return;
1628 	trace_scsi_dispatch_cmd_done(cmd);
1629 
1630 	if (complete_directly)
1631 		blk_mq_complete_request_direct(req, scsi_complete);
1632 	else
1633 		blk_mq_complete_request(req);
1634 }
1635 
scsi_done(struct scsi_cmnd * cmd)1636 void scsi_done(struct scsi_cmnd *cmd)
1637 {
1638 	scsi_done_internal(cmd, false);
1639 }
1640 EXPORT_SYMBOL(scsi_done);
1641 
scsi_done_direct(struct scsi_cmnd * cmd)1642 void scsi_done_direct(struct scsi_cmnd *cmd)
1643 {
1644 	scsi_done_internal(cmd, true);
1645 }
1646 EXPORT_SYMBOL(scsi_done_direct);
1647 
scsi_mq_put_budget(struct request_queue * q,int budget_token)1648 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1649 {
1650 	struct scsi_device *sdev = q->queuedata;
1651 
1652 	sbitmap_put(&sdev->budget_map, budget_token);
1653 }
1654 
1655 /*
1656  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1657  * not change behaviour from the previous unplug mechanism, experimentation
1658  * may prove this needs changing.
1659  */
1660 #define SCSI_QUEUE_DELAY 3
1661 
scsi_mq_get_budget(struct request_queue * q)1662 static int scsi_mq_get_budget(struct request_queue *q)
1663 {
1664 	struct scsi_device *sdev = q->queuedata;
1665 	int token = scsi_dev_queue_ready(q, sdev);
1666 
1667 	if (token >= 0)
1668 		return token;
1669 
1670 	atomic_inc(&sdev->restarts);
1671 
1672 	/*
1673 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1674 	 * .restarts must be incremented before .device_busy is read because the
1675 	 * code in scsi_run_queue_async() depends on the order of these operations.
1676 	 */
1677 	smp_mb__after_atomic();
1678 
1679 	/*
1680 	 * If all in-flight requests originated from this LUN are completed
1681 	 * before reading .device_busy, sdev->device_busy will be observed as
1682 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1683 	 * soon. Otherwise, completion of one of these requests will observe
1684 	 * the .restarts flag, and the request queue will be run for handling
1685 	 * this request, see scsi_end_request().
1686 	 */
1687 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1688 				!scsi_device_blocked(sdev)))
1689 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1690 	return -1;
1691 }
1692 
scsi_mq_set_rq_budget_token(struct request * req,int token)1693 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1694 {
1695 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1696 
1697 	cmd->budget_token = token;
1698 }
1699 
scsi_mq_get_rq_budget_token(struct request * req)1700 static int scsi_mq_get_rq_budget_token(struct request *req)
1701 {
1702 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1703 
1704 	return cmd->budget_token;
1705 }
1706 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1707 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1708 			 const struct blk_mq_queue_data *bd)
1709 {
1710 	struct request *req = bd->rq;
1711 	struct request_queue *q = req->q;
1712 	struct scsi_device *sdev = q->queuedata;
1713 	struct Scsi_Host *shost = sdev->host;
1714 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1715 	blk_status_t ret;
1716 	int reason;
1717 
1718 	WARN_ON_ONCE(cmd->budget_token < 0);
1719 
1720 	/*
1721 	 * If the device is not in running state we will reject some or all
1722 	 * commands.
1723 	 */
1724 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1725 		ret = scsi_device_state_check(sdev, req);
1726 		if (ret != BLK_STS_OK)
1727 			goto out_put_budget;
1728 	}
1729 
1730 	ret = BLK_STS_RESOURCE;
1731 	if (!scsi_target_queue_ready(shost, sdev))
1732 		goto out_put_budget;
1733 	if (unlikely(scsi_host_in_recovery(shost))) {
1734 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1735 			ret = BLK_STS_OFFLINE;
1736 		goto out_dec_target_busy;
1737 	}
1738 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1739 		goto out_dec_target_busy;
1740 
1741 	if (!(req->rq_flags & RQF_DONTPREP)) {
1742 		ret = scsi_prepare_cmd(req);
1743 		if (ret != BLK_STS_OK)
1744 			goto out_dec_host_busy;
1745 		req->rq_flags |= RQF_DONTPREP;
1746 	} else {
1747 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1748 	}
1749 
1750 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1751 	if (sdev->simple_tags)
1752 		cmd->flags |= SCMD_TAGGED;
1753 	if (bd->last)
1754 		cmd->flags |= SCMD_LAST;
1755 
1756 	scsi_set_resid(cmd, 0);
1757 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1758 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1759 
1760 	blk_mq_start_request(req);
1761 	reason = scsi_dispatch_cmd(cmd);
1762 	if (reason) {
1763 		scsi_set_blocked(cmd, reason);
1764 		ret = BLK_STS_RESOURCE;
1765 		goto out_dec_host_busy;
1766 	}
1767 
1768 	return BLK_STS_OK;
1769 
1770 out_dec_host_busy:
1771 	scsi_dec_host_busy(shost, cmd);
1772 out_dec_target_busy:
1773 	if (scsi_target(sdev)->can_queue > 0)
1774 		atomic_dec(&scsi_target(sdev)->target_busy);
1775 out_put_budget:
1776 	scsi_mq_put_budget(q, cmd->budget_token);
1777 	cmd->budget_token = -1;
1778 	switch (ret) {
1779 	case BLK_STS_OK:
1780 		break;
1781 	case BLK_STS_RESOURCE:
1782 	case BLK_STS_ZONE_RESOURCE:
1783 		if (scsi_device_blocked(sdev))
1784 			ret = BLK_STS_DEV_RESOURCE;
1785 		break;
1786 	case BLK_STS_AGAIN:
1787 		cmd->result = DID_BUS_BUSY << 16;
1788 		if (req->rq_flags & RQF_DONTPREP)
1789 			scsi_mq_uninit_cmd(cmd);
1790 		break;
1791 	default:
1792 		if (unlikely(!scsi_device_online(sdev)))
1793 			cmd->result = DID_NO_CONNECT << 16;
1794 		else
1795 			cmd->result = DID_ERROR << 16;
1796 		/*
1797 		 * Make sure to release all allocated resources when
1798 		 * we hit an error, as we will never see this command
1799 		 * again.
1800 		 */
1801 		if (req->rq_flags & RQF_DONTPREP)
1802 			scsi_mq_uninit_cmd(cmd);
1803 		scsi_run_queue_async(sdev);
1804 		break;
1805 	}
1806 	return ret;
1807 }
1808 
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1809 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1810 				unsigned int hctx_idx, unsigned int numa_node)
1811 {
1812 	struct Scsi_Host *shost = set->driver_data;
1813 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1814 	struct scatterlist *sg;
1815 	int ret = 0;
1816 
1817 	cmd->sense_buffer =
1818 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1819 	if (!cmd->sense_buffer)
1820 		return -ENOMEM;
1821 
1822 	if (scsi_host_get_prot(shost)) {
1823 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1824 			shost->hostt->cmd_size;
1825 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1826 	}
1827 
1828 	if (shost->hostt->init_cmd_priv) {
1829 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1830 		if (ret < 0)
1831 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1832 	}
1833 
1834 	return ret;
1835 }
1836 
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1837 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1838 				 unsigned int hctx_idx)
1839 {
1840 	struct Scsi_Host *shost = set->driver_data;
1841 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1842 
1843 	if (shost->hostt->exit_cmd_priv)
1844 		shost->hostt->exit_cmd_priv(shost, cmd);
1845 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1846 }
1847 
1848 
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1849 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1850 {
1851 	struct Scsi_Host *shost = hctx->driver_data;
1852 
1853 	if (shost->hostt->mq_poll)
1854 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1855 
1856 	return 0;
1857 }
1858 
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1859 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1860 			  unsigned int hctx_idx)
1861 {
1862 	struct Scsi_Host *shost = data;
1863 
1864 	hctx->driver_data = shost;
1865 	return 0;
1866 }
1867 
scsi_map_queues(struct blk_mq_tag_set * set)1868 static void scsi_map_queues(struct blk_mq_tag_set *set)
1869 {
1870 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1871 
1872 	if (shost->hostt->map_queues)
1873 		return shost->hostt->map_queues(shost);
1874 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1875 }
1876 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1877 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1878 {
1879 	struct device *dev = shost->dma_dev;
1880 
1881 	/*
1882 	 * this limit is imposed by hardware restrictions
1883 	 */
1884 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1885 					SG_MAX_SEGMENTS));
1886 
1887 	if (scsi_host_prot_dma(shost)) {
1888 		shost->sg_prot_tablesize =
1889 			min_not_zero(shost->sg_prot_tablesize,
1890 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1891 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1892 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1893 	}
1894 
1895 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1896 	blk_queue_segment_boundary(q, shost->dma_boundary);
1897 	dma_set_seg_boundary(dev, shost->dma_boundary);
1898 
1899 	blk_queue_max_segment_size(q, shost->max_segment_size);
1900 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1901 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1902 
1903 	/*
1904 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1905 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1906 	 * which is set by the platform.
1907 	 *
1908 	 * Devices that require a bigger alignment can increase it later.
1909 	 */
1910 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1911 }
1912 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1913 
1914 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1915 	.get_budget	= scsi_mq_get_budget,
1916 	.put_budget	= scsi_mq_put_budget,
1917 	.queue_rq	= scsi_queue_rq,
1918 	.complete	= scsi_complete,
1919 	.timeout	= scsi_timeout,
1920 #ifdef CONFIG_BLK_DEBUG_FS
1921 	.show_rq	= scsi_show_rq,
1922 #endif
1923 	.init_request	= scsi_mq_init_request,
1924 	.exit_request	= scsi_mq_exit_request,
1925 	.cleanup_rq	= scsi_cleanup_rq,
1926 	.busy		= scsi_mq_lld_busy,
1927 	.map_queues	= scsi_map_queues,
1928 	.init_hctx	= scsi_init_hctx,
1929 	.poll		= scsi_mq_poll,
1930 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1931 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1932 };
1933 
1934 
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1935 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1936 {
1937 	struct Scsi_Host *shost = hctx->driver_data;
1938 
1939 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1940 }
1941 
1942 static const struct blk_mq_ops scsi_mq_ops = {
1943 	.get_budget	= scsi_mq_get_budget,
1944 	.put_budget	= scsi_mq_put_budget,
1945 	.queue_rq	= scsi_queue_rq,
1946 	.commit_rqs	= scsi_commit_rqs,
1947 	.complete	= scsi_complete,
1948 	.timeout	= scsi_timeout,
1949 #ifdef CONFIG_BLK_DEBUG_FS
1950 	.show_rq	= scsi_show_rq,
1951 #endif
1952 	.init_request	= scsi_mq_init_request,
1953 	.exit_request	= scsi_mq_exit_request,
1954 	.cleanup_rq	= scsi_cleanup_rq,
1955 	.busy		= scsi_mq_lld_busy,
1956 	.map_queues	= scsi_map_queues,
1957 	.init_hctx	= scsi_init_hctx,
1958 	.poll		= scsi_mq_poll,
1959 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1960 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1961 };
1962 
scsi_mq_setup_tags(struct Scsi_Host * shost)1963 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1964 {
1965 	unsigned int cmd_size, sgl_size;
1966 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1967 
1968 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1969 				scsi_mq_inline_sgl_size(shost));
1970 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1971 	if (scsi_host_get_prot(shost))
1972 		cmd_size += sizeof(struct scsi_data_buffer) +
1973 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1974 
1975 	memset(tag_set, 0, sizeof(*tag_set));
1976 	if (shost->hostt->commit_rqs)
1977 		tag_set->ops = &scsi_mq_ops;
1978 	else
1979 		tag_set->ops = &scsi_mq_ops_no_commit;
1980 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1981 	tag_set->nr_maps = shost->nr_maps ? : 1;
1982 	tag_set->queue_depth = shost->can_queue;
1983 	tag_set->cmd_size = cmd_size;
1984 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1985 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1986 	tag_set->flags |=
1987 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1988 	if (shost->queuecommand_may_block)
1989 		tag_set->flags |= BLK_MQ_F_BLOCKING;
1990 	tag_set->driver_data = shost;
1991 	if (shost->host_tagset)
1992 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1993 
1994 	return blk_mq_alloc_tag_set(tag_set);
1995 }
1996 
scsi_mq_free_tags(struct kref * kref)1997 void scsi_mq_free_tags(struct kref *kref)
1998 {
1999 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2000 					       tagset_refcnt);
2001 
2002 	blk_mq_free_tag_set(&shost->tag_set);
2003 	complete(&shost->tagset_freed);
2004 }
2005 
2006 /**
2007  * scsi_device_from_queue - return sdev associated with a request_queue
2008  * @q: The request queue to return the sdev from
2009  *
2010  * Return the sdev associated with a request queue or NULL if the
2011  * request_queue does not reference a SCSI device.
2012  */
scsi_device_from_queue(struct request_queue * q)2013 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2014 {
2015 	struct scsi_device *sdev = NULL;
2016 
2017 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2018 	    q->mq_ops == &scsi_mq_ops)
2019 		sdev = q->queuedata;
2020 	if (!sdev || !get_device(&sdev->sdev_gendev))
2021 		sdev = NULL;
2022 
2023 	return sdev;
2024 }
2025 /*
2026  * pktcdvd should have been integrated into the SCSI layers, but for historical
2027  * reasons like the old IDE driver it isn't.  This export allows it to safely
2028  * probe if a given device is a SCSI one and only attach to that.
2029  */
2030 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2031 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2032 #endif
2033 
2034 /**
2035  * scsi_block_requests - Utility function used by low-level drivers to prevent
2036  * further commands from being queued to the device.
2037  * @shost:  host in question
2038  *
2039  * There is no timer nor any other means by which the requests get unblocked
2040  * other than the low-level driver calling scsi_unblock_requests().
2041  */
scsi_block_requests(struct Scsi_Host * shost)2042 void scsi_block_requests(struct Scsi_Host *shost)
2043 {
2044 	shost->host_self_blocked = 1;
2045 }
2046 EXPORT_SYMBOL(scsi_block_requests);
2047 
2048 /**
2049  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2050  * further commands to be queued to the device.
2051  * @shost:  host in question
2052  *
2053  * There is no timer nor any other means by which the requests get unblocked
2054  * other than the low-level driver calling scsi_unblock_requests(). This is done
2055  * as an API function so that changes to the internals of the scsi mid-layer
2056  * won't require wholesale changes to drivers that use this feature.
2057  */
scsi_unblock_requests(struct Scsi_Host * shost)2058 void scsi_unblock_requests(struct Scsi_Host *shost)
2059 {
2060 	shost->host_self_blocked = 0;
2061 	scsi_run_host_queues(shost);
2062 }
2063 EXPORT_SYMBOL(scsi_unblock_requests);
2064 
scsi_exit_queue(void)2065 void scsi_exit_queue(void)
2066 {
2067 	kmem_cache_destroy(scsi_sense_cache);
2068 }
2069 
2070 /**
2071  *	scsi_mode_select - issue a mode select
2072  *	@sdev:	SCSI device to be queried
2073  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2074  *	@sp:	Save page bit (0 == don't save, 1 == save)
2075  *	@buffer: request buffer (may not be smaller than eight bytes)
2076  *	@len:	length of request buffer.
2077  *	@timeout: command timeout
2078  *	@retries: number of retries before failing
2079  *	@data: returns a structure abstracting the mode header data
2080  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2081  *		must be SCSI_SENSE_BUFFERSIZE big.
2082  *
2083  *	Returns zero if successful; negative error number or scsi
2084  *	status on error
2085  *
2086  */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2087 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2088 		     unsigned char *buffer, int len, int timeout, int retries,
2089 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090 {
2091 	unsigned char cmd[10];
2092 	unsigned char *real_buffer;
2093 	const struct scsi_exec_args exec_args = {
2094 		.sshdr = sshdr,
2095 	};
2096 	int ret;
2097 
2098 	memset(cmd, 0, sizeof(cmd));
2099 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2100 
2101 	/*
2102 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2103 	 * and the mode select header cannot fit within the maximumm 255 bytes
2104 	 * of the MODE SELECT(6) command.
2105 	 */
2106 	if (sdev->use_10_for_ms ||
2107 	    len + 4 > 255 ||
2108 	    data->block_descriptor_length > 255) {
2109 		if (len > 65535 - 8)
2110 			return -EINVAL;
2111 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2112 		if (!real_buffer)
2113 			return -ENOMEM;
2114 		memcpy(real_buffer + 8, buffer, len);
2115 		len += 8;
2116 		real_buffer[0] = 0;
2117 		real_buffer[1] = 0;
2118 		real_buffer[2] = data->medium_type;
2119 		real_buffer[3] = data->device_specific;
2120 		real_buffer[4] = data->longlba ? 0x01 : 0;
2121 		real_buffer[5] = 0;
2122 		put_unaligned_be16(data->block_descriptor_length,
2123 				   &real_buffer[6]);
2124 
2125 		cmd[0] = MODE_SELECT_10;
2126 		put_unaligned_be16(len, &cmd[7]);
2127 	} else {
2128 		if (data->longlba)
2129 			return -EINVAL;
2130 
2131 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2132 		if (!real_buffer)
2133 			return -ENOMEM;
2134 		memcpy(real_buffer + 4, buffer, len);
2135 		len += 4;
2136 		real_buffer[0] = 0;
2137 		real_buffer[1] = data->medium_type;
2138 		real_buffer[2] = data->device_specific;
2139 		real_buffer[3] = data->block_descriptor_length;
2140 
2141 		cmd[0] = MODE_SELECT;
2142 		cmd[4] = len;
2143 	}
2144 
2145 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2146 			       timeout, retries, &exec_args);
2147 	kfree(real_buffer);
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL_GPL(scsi_mode_select);
2151 
2152 /**
2153  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2154  *	@sdev:	SCSI device to be queried
2155  *	@dbd:	set to prevent mode sense from returning block descriptors
2156  *	@modepage: mode page being requested
2157  *	@subpage: sub-page of the mode page being requested
2158  *	@buffer: request buffer (may not be smaller than eight bytes)
2159  *	@len:	length of request buffer.
2160  *	@timeout: command timeout
2161  *	@retries: number of retries before failing
2162  *	@data: returns a structure abstracting the mode header data
2163  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2164  *		must be SCSI_SENSE_BUFFERSIZE big.
2165  *
2166  *	Returns zero if successful, or a negative error number on failure
2167  */
2168 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2169 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2170 		  unsigned char *buffer, int len, int timeout, int retries,
2171 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2172 {
2173 	unsigned char cmd[12];
2174 	int use_10_for_ms;
2175 	int header_length;
2176 	int result, retry_count = retries;
2177 	struct scsi_sense_hdr my_sshdr;
2178 	const struct scsi_exec_args exec_args = {
2179 		/* caller might not be interested in sense, but we need it */
2180 		.sshdr = sshdr ? : &my_sshdr,
2181 	};
2182 
2183 	memset(data, 0, sizeof(*data));
2184 	memset(&cmd[0], 0, 12);
2185 
2186 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2187 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2188 	cmd[2] = modepage;
2189 	cmd[3] = subpage;
2190 
2191 	sshdr = exec_args.sshdr;
2192 
2193  retry:
2194 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2195 
2196 	if (use_10_for_ms) {
2197 		if (len < 8 || len > 65535)
2198 			return -EINVAL;
2199 
2200 		cmd[0] = MODE_SENSE_10;
2201 		put_unaligned_be16(len, &cmd[7]);
2202 		header_length = 8;
2203 	} else {
2204 		if (len < 4)
2205 			return -EINVAL;
2206 
2207 		cmd[0] = MODE_SENSE;
2208 		cmd[4] = len;
2209 		header_length = 4;
2210 	}
2211 
2212 	memset(buffer, 0, len);
2213 
2214 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2215 				  timeout, retries, &exec_args);
2216 	if (result < 0)
2217 		return result;
2218 
2219 	/* This code looks awful: what it's doing is making sure an
2220 	 * ILLEGAL REQUEST sense return identifies the actual command
2221 	 * byte as the problem.  MODE_SENSE commands can return
2222 	 * ILLEGAL REQUEST if the code page isn't supported */
2223 
2224 	if (!scsi_status_is_good(result)) {
2225 		if (scsi_sense_valid(sshdr)) {
2226 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2227 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2228 				/*
2229 				 * Invalid command operation code: retry using
2230 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2231 				 * request, except if the request mode page is
2232 				 * too large for MODE SENSE single byte
2233 				 * allocation length field.
2234 				 */
2235 				if (use_10_for_ms) {
2236 					if (len > 255)
2237 						return -EIO;
2238 					sdev->use_10_for_ms = 0;
2239 					goto retry;
2240 				}
2241 			}
2242 			if (scsi_status_is_check_condition(result) &&
2243 			    sshdr->sense_key == UNIT_ATTENTION &&
2244 			    retry_count) {
2245 				retry_count--;
2246 				goto retry;
2247 			}
2248 		}
2249 		return -EIO;
2250 	}
2251 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2252 		     (modepage == 6 || modepage == 8))) {
2253 		/* Initio breakage? */
2254 		header_length = 0;
2255 		data->length = 13;
2256 		data->medium_type = 0;
2257 		data->device_specific = 0;
2258 		data->longlba = 0;
2259 		data->block_descriptor_length = 0;
2260 	} else if (use_10_for_ms) {
2261 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2262 		data->medium_type = buffer[2];
2263 		data->device_specific = buffer[3];
2264 		data->longlba = buffer[4] & 0x01;
2265 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2266 	} else {
2267 		data->length = buffer[0] + 1;
2268 		data->medium_type = buffer[1];
2269 		data->device_specific = buffer[2];
2270 		data->block_descriptor_length = buffer[3];
2271 	}
2272 	data->header_length = header_length;
2273 
2274 	return 0;
2275 }
2276 EXPORT_SYMBOL(scsi_mode_sense);
2277 
2278 /**
2279  *	scsi_test_unit_ready - test if unit is ready
2280  *	@sdev:	scsi device to change the state of.
2281  *	@timeout: command timeout
2282  *	@retries: number of retries before failing
2283  *	@sshdr: outpout pointer for decoded sense information.
2284  *
2285  *	Returns zero if unsuccessful or an error if TUR failed.  For
2286  *	removable media, UNIT_ATTENTION sets ->changed flag.
2287  **/
2288 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2289 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2290 		     struct scsi_sense_hdr *sshdr)
2291 {
2292 	char cmd[] = {
2293 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2294 	};
2295 	const struct scsi_exec_args exec_args = {
2296 		.sshdr = sshdr,
2297 	};
2298 	int result;
2299 
2300 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2301 	do {
2302 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2303 					  timeout, 1, &exec_args);
2304 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2305 		    sshdr->sense_key == UNIT_ATTENTION)
2306 			sdev->changed = 1;
2307 	} while (scsi_sense_valid(sshdr) &&
2308 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2309 
2310 	return result;
2311 }
2312 EXPORT_SYMBOL(scsi_test_unit_ready);
2313 
2314 /**
2315  *	scsi_device_set_state - Take the given device through the device state model.
2316  *	@sdev:	scsi device to change the state of.
2317  *	@state:	state to change to.
2318  *
2319  *	Returns zero if successful or an error if the requested
2320  *	transition is illegal.
2321  */
2322 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2323 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2324 {
2325 	enum scsi_device_state oldstate = sdev->sdev_state;
2326 
2327 	if (state == oldstate)
2328 		return 0;
2329 
2330 	switch (state) {
2331 	case SDEV_CREATED:
2332 		switch (oldstate) {
2333 		case SDEV_CREATED_BLOCK:
2334 			break;
2335 		default:
2336 			goto illegal;
2337 		}
2338 		break;
2339 
2340 	case SDEV_RUNNING:
2341 		switch (oldstate) {
2342 		case SDEV_CREATED:
2343 		case SDEV_OFFLINE:
2344 		case SDEV_TRANSPORT_OFFLINE:
2345 		case SDEV_QUIESCE:
2346 		case SDEV_BLOCK:
2347 			break;
2348 		default:
2349 			goto illegal;
2350 		}
2351 		break;
2352 
2353 	case SDEV_QUIESCE:
2354 		switch (oldstate) {
2355 		case SDEV_RUNNING:
2356 		case SDEV_OFFLINE:
2357 		case SDEV_TRANSPORT_OFFLINE:
2358 			break;
2359 		default:
2360 			goto illegal;
2361 		}
2362 		break;
2363 
2364 	case SDEV_OFFLINE:
2365 	case SDEV_TRANSPORT_OFFLINE:
2366 		switch (oldstate) {
2367 		case SDEV_CREATED:
2368 		case SDEV_RUNNING:
2369 		case SDEV_QUIESCE:
2370 		case SDEV_BLOCK:
2371 			break;
2372 		default:
2373 			goto illegal;
2374 		}
2375 		break;
2376 
2377 	case SDEV_BLOCK:
2378 		switch (oldstate) {
2379 		case SDEV_RUNNING:
2380 		case SDEV_CREATED_BLOCK:
2381 		case SDEV_QUIESCE:
2382 		case SDEV_OFFLINE:
2383 			break;
2384 		default:
2385 			goto illegal;
2386 		}
2387 		break;
2388 
2389 	case SDEV_CREATED_BLOCK:
2390 		switch (oldstate) {
2391 		case SDEV_CREATED:
2392 			break;
2393 		default:
2394 			goto illegal;
2395 		}
2396 		break;
2397 
2398 	case SDEV_CANCEL:
2399 		switch (oldstate) {
2400 		case SDEV_CREATED:
2401 		case SDEV_RUNNING:
2402 		case SDEV_QUIESCE:
2403 		case SDEV_OFFLINE:
2404 		case SDEV_TRANSPORT_OFFLINE:
2405 			break;
2406 		default:
2407 			goto illegal;
2408 		}
2409 		break;
2410 
2411 	case SDEV_DEL:
2412 		switch (oldstate) {
2413 		case SDEV_CREATED:
2414 		case SDEV_RUNNING:
2415 		case SDEV_OFFLINE:
2416 		case SDEV_TRANSPORT_OFFLINE:
2417 		case SDEV_CANCEL:
2418 		case SDEV_BLOCK:
2419 		case SDEV_CREATED_BLOCK:
2420 			break;
2421 		default:
2422 			goto illegal;
2423 		}
2424 		break;
2425 
2426 	}
2427 	sdev->offline_already = false;
2428 	sdev->sdev_state = state;
2429 	return 0;
2430 
2431  illegal:
2432 	SCSI_LOG_ERROR_RECOVERY(1,
2433 				sdev_printk(KERN_ERR, sdev,
2434 					    "Illegal state transition %s->%s",
2435 					    scsi_device_state_name(oldstate),
2436 					    scsi_device_state_name(state))
2437 				);
2438 	return -EINVAL;
2439 }
2440 EXPORT_SYMBOL(scsi_device_set_state);
2441 
2442 /**
2443  *	scsi_evt_emit - emit a single SCSI device uevent
2444  *	@sdev: associated SCSI device
2445  *	@evt: event to emit
2446  *
2447  *	Send a single uevent (scsi_event) to the associated scsi_device.
2448  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2449 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2450 {
2451 	int idx = 0;
2452 	char *envp[3];
2453 
2454 	switch (evt->evt_type) {
2455 	case SDEV_EVT_MEDIA_CHANGE:
2456 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2457 		break;
2458 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2459 		scsi_rescan_device(sdev);
2460 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2461 		break;
2462 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2463 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2464 		break;
2465 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2466 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2467 		break;
2468 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2469 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2470 		break;
2471 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2472 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2473 		break;
2474 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2475 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2476 		break;
2477 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2478 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2479 		break;
2480 	default:
2481 		/* do nothing */
2482 		break;
2483 	}
2484 
2485 	envp[idx++] = NULL;
2486 
2487 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2488 }
2489 
2490 /**
2491  *	scsi_evt_thread - send a uevent for each scsi event
2492  *	@work: work struct for scsi_device
2493  *
2494  *	Dispatch queued events to their associated scsi_device kobjects
2495  *	as uevents.
2496  */
scsi_evt_thread(struct work_struct * work)2497 void scsi_evt_thread(struct work_struct *work)
2498 {
2499 	struct scsi_device *sdev;
2500 	enum scsi_device_event evt_type;
2501 	LIST_HEAD(event_list);
2502 
2503 	sdev = container_of(work, struct scsi_device, event_work);
2504 
2505 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2506 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2507 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2508 
2509 	while (1) {
2510 		struct scsi_event *evt;
2511 		struct list_head *this, *tmp;
2512 		unsigned long flags;
2513 
2514 		spin_lock_irqsave(&sdev->list_lock, flags);
2515 		list_splice_init(&sdev->event_list, &event_list);
2516 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2517 
2518 		if (list_empty(&event_list))
2519 			break;
2520 
2521 		list_for_each_safe(this, tmp, &event_list) {
2522 			evt = list_entry(this, struct scsi_event, node);
2523 			list_del(&evt->node);
2524 			scsi_evt_emit(sdev, evt);
2525 			kfree(evt);
2526 		}
2527 	}
2528 }
2529 
2530 /**
2531  * 	sdev_evt_send - send asserted event to uevent thread
2532  *	@sdev: scsi_device event occurred on
2533  *	@evt: event to send
2534  *
2535  *	Assert scsi device event asynchronously.
2536  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2537 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2538 {
2539 	unsigned long flags;
2540 
2541 #if 0
2542 	/* FIXME: currently this check eliminates all media change events
2543 	 * for polled devices.  Need to update to discriminate between AN
2544 	 * and polled events */
2545 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2546 		kfree(evt);
2547 		return;
2548 	}
2549 #endif
2550 
2551 	spin_lock_irqsave(&sdev->list_lock, flags);
2552 	list_add_tail(&evt->node, &sdev->event_list);
2553 	schedule_work(&sdev->event_work);
2554 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2555 }
2556 EXPORT_SYMBOL_GPL(sdev_evt_send);
2557 
2558 /**
2559  * 	sdev_evt_alloc - allocate a new scsi event
2560  *	@evt_type: type of event to allocate
2561  *	@gfpflags: GFP flags for allocation
2562  *
2563  *	Allocates and returns a new scsi_event.
2564  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2565 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2566 				  gfp_t gfpflags)
2567 {
2568 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2569 	if (!evt)
2570 		return NULL;
2571 
2572 	evt->evt_type = evt_type;
2573 	INIT_LIST_HEAD(&evt->node);
2574 
2575 	/* evt_type-specific initialization, if any */
2576 	switch (evt_type) {
2577 	case SDEV_EVT_MEDIA_CHANGE:
2578 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2579 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2580 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2581 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2582 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2583 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2584 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2585 	default:
2586 		/* do nothing */
2587 		break;
2588 	}
2589 
2590 	return evt;
2591 }
2592 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2593 
2594 /**
2595  * 	sdev_evt_send_simple - send asserted event to uevent thread
2596  *	@sdev: scsi_device event occurred on
2597  *	@evt_type: type of event to send
2598  *	@gfpflags: GFP flags for allocation
2599  *
2600  *	Assert scsi device event asynchronously, given an event type.
2601  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2602 void sdev_evt_send_simple(struct scsi_device *sdev,
2603 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2604 {
2605 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2606 	if (!evt) {
2607 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2608 			    evt_type);
2609 		return;
2610 	}
2611 
2612 	sdev_evt_send(sdev, evt);
2613 }
2614 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2615 
2616 /**
2617  *	scsi_device_quiesce - Block all commands except power management.
2618  *	@sdev:	scsi device to quiesce.
2619  *
2620  *	This works by trying to transition to the SDEV_QUIESCE state
2621  *	(which must be a legal transition).  When the device is in this
2622  *	state, only power management requests will be accepted, all others will
2623  *	be deferred.
2624  *
2625  *	Must be called with user context, may sleep.
2626  *
2627  *	Returns zero if unsuccessful or an error if not.
2628  */
2629 int
scsi_device_quiesce(struct scsi_device * sdev)2630 scsi_device_quiesce(struct scsi_device *sdev)
2631 {
2632 	struct request_queue *q = sdev->request_queue;
2633 	int err;
2634 
2635 	/*
2636 	 * It is allowed to call scsi_device_quiesce() multiple times from
2637 	 * the same context but concurrent scsi_device_quiesce() calls are
2638 	 * not allowed.
2639 	 */
2640 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2641 
2642 	if (sdev->quiesced_by == current)
2643 		return 0;
2644 
2645 	blk_set_pm_only(q);
2646 
2647 	blk_mq_freeze_queue(q);
2648 	/*
2649 	 * Ensure that the effect of blk_set_pm_only() will be visible
2650 	 * for percpu_ref_tryget() callers that occur after the queue
2651 	 * unfreeze even if the queue was already frozen before this function
2652 	 * was called. See also https://lwn.net/Articles/573497/.
2653 	 */
2654 	synchronize_rcu();
2655 	blk_mq_unfreeze_queue(q);
2656 
2657 	mutex_lock(&sdev->state_mutex);
2658 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2659 	if (err == 0)
2660 		sdev->quiesced_by = current;
2661 	else
2662 		blk_clear_pm_only(q);
2663 	mutex_unlock(&sdev->state_mutex);
2664 
2665 	return err;
2666 }
2667 EXPORT_SYMBOL(scsi_device_quiesce);
2668 
2669 /**
2670  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2671  *	@sdev:	scsi device to resume.
2672  *
2673  *	Moves the device from quiesced back to running and restarts the
2674  *	queues.
2675  *
2676  *	Must be called with user context, may sleep.
2677  */
scsi_device_resume(struct scsi_device * sdev)2678 void scsi_device_resume(struct scsi_device *sdev)
2679 {
2680 	/* check if the device state was mutated prior to resume, and if
2681 	 * so assume the state is being managed elsewhere (for example
2682 	 * device deleted during suspend)
2683 	 */
2684 	mutex_lock(&sdev->state_mutex);
2685 	if (sdev->sdev_state == SDEV_QUIESCE)
2686 		scsi_device_set_state(sdev, SDEV_RUNNING);
2687 	if (sdev->quiesced_by) {
2688 		sdev->quiesced_by = NULL;
2689 		blk_clear_pm_only(sdev->request_queue);
2690 	}
2691 	mutex_unlock(&sdev->state_mutex);
2692 }
2693 EXPORT_SYMBOL(scsi_device_resume);
2694 
2695 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2696 device_quiesce_fn(struct scsi_device *sdev, void *data)
2697 {
2698 	scsi_device_quiesce(sdev);
2699 }
2700 
2701 void
scsi_target_quiesce(struct scsi_target * starget)2702 scsi_target_quiesce(struct scsi_target *starget)
2703 {
2704 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2705 }
2706 EXPORT_SYMBOL(scsi_target_quiesce);
2707 
2708 static void
device_resume_fn(struct scsi_device * sdev,void * data)2709 device_resume_fn(struct scsi_device *sdev, void *data)
2710 {
2711 	scsi_device_resume(sdev);
2712 }
2713 
2714 void
scsi_target_resume(struct scsi_target * starget)2715 scsi_target_resume(struct scsi_target *starget)
2716 {
2717 	starget_for_each_device(starget, NULL, device_resume_fn);
2718 }
2719 EXPORT_SYMBOL(scsi_target_resume);
2720 
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2721 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2722 {
2723 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2724 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2725 
2726 	return 0;
2727 }
2728 
scsi_start_queue(struct scsi_device * sdev)2729 void scsi_start_queue(struct scsi_device *sdev)
2730 {
2731 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2732 		blk_mq_unquiesce_queue(sdev->request_queue);
2733 }
2734 
scsi_stop_queue(struct scsi_device * sdev)2735 static void scsi_stop_queue(struct scsi_device *sdev)
2736 {
2737 	/*
2738 	 * The atomic variable of ->queue_stopped covers that
2739 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2740 	 *
2741 	 * The caller needs to wait until quiesce is done.
2742 	 */
2743 	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2744 		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2745 }
2746 
2747 /**
2748  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2749  * @sdev: device to block
2750  *
2751  * Pause SCSI command processing on the specified device. Does not sleep.
2752  *
2753  * Returns zero if successful or a negative error code upon failure.
2754  *
2755  * Notes:
2756  * This routine transitions the device to the SDEV_BLOCK state (which must be
2757  * a legal transition). When the device is in this state, command processing
2758  * is paused until the device leaves the SDEV_BLOCK state. See also
2759  * scsi_internal_device_unblock_nowait().
2760  */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2761 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2762 {
2763 	int ret = __scsi_internal_device_block_nowait(sdev);
2764 
2765 	/*
2766 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2767 	 * block layer from calling the midlayer with this device's
2768 	 * request queue.
2769 	 */
2770 	if (!ret)
2771 		scsi_stop_queue(sdev);
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2775 
2776 /**
2777  * scsi_device_block - try to transition to the SDEV_BLOCK state
2778  * @sdev: device to block
2779  * @data: dummy argument, ignored
2780  *
2781  * Pause SCSI command processing on the specified device. Callers must wait
2782  * until all ongoing scsi_queue_rq() calls have finished after this function
2783  * returns.
2784  *
2785  * Note:
2786  * This routine transitions the device to the SDEV_BLOCK state (which must be
2787  * a legal transition). When the device is in this state, command processing
2788  * is paused until the device leaves the SDEV_BLOCK state. See also
2789  * scsi_internal_device_unblock().
2790  */
scsi_device_block(struct scsi_device * sdev,void * data)2791 static void scsi_device_block(struct scsi_device *sdev, void *data)
2792 {
2793 	int err;
2794 	enum scsi_device_state state;
2795 
2796 	mutex_lock(&sdev->state_mutex);
2797 	err = __scsi_internal_device_block_nowait(sdev);
2798 	state = sdev->sdev_state;
2799 	if (err == 0)
2800 		/*
2801 		 * scsi_stop_queue() must be called with the state_mutex
2802 		 * held. Otherwise a simultaneous scsi_start_queue() call
2803 		 * might unquiesce the queue before we quiesce it.
2804 		 */
2805 		scsi_stop_queue(sdev);
2806 
2807 	mutex_unlock(&sdev->state_mutex);
2808 
2809 	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2810 		  __func__, dev_name(&sdev->sdev_gendev), state);
2811 }
2812 
2813 /**
2814  * scsi_internal_device_unblock_nowait - resume a device after a block request
2815  * @sdev:	device to resume
2816  * @new_state:	state to set the device to after unblocking
2817  *
2818  * Restart the device queue for a previously suspended SCSI device. Does not
2819  * sleep.
2820  *
2821  * Returns zero if successful or a negative error code upon failure.
2822  *
2823  * Notes:
2824  * This routine transitions the device to the SDEV_RUNNING state or to one of
2825  * the offline states (which must be a legal transition) allowing the midlayer
2826  * to goose the queue for this device.
2827  */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2828 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2829 					enum scsi_device_state new_state)
2830 {
2831 	switch (new_state) {
2832 	case SDEV_RUNNING:
2833 	case SDEV_TRANSPORT_OFFLINE:
2834 		break;
2835 	default:
2836 		return -EINVAL;
2837 	}
2838 
2839 	/*
2840 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2841 	 * offlined states and goose the device queue if successful.
2842 	 */
2843 	switch (sdev->sdev_state) {
2844 	case SDEV_BLOCK:
2845 	case SDEV_TRANSPORT_OFFLINE:
2846 		sdev->sdev_state = new_state;
2847 		break;
2848 	case SDEV_CREATED_BLOCK:
2849 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2850 		    new_state == SDEV_OFFLINE)
2851 			sdev->sdev_state = new_state;
2852 		else
2853 			sdev->sdev_state = SDEV_CREATED;
2854 		break;
2855 	case SDEV_CANCEL:
2856 	case SDEV_OFFLINE:
2857 		break;
2858 	default:
2859 		return -EINVAL;
2860 	}
2861 	scsi_start_queue(sdev);
2862 
2863 	return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2866 
2867 /**
2868  * scsi_internal_device_unblock - resume a device after a block request
2869  * @sdev:	device to resume
2870  * @new_state:	state to set the device to after unblocking
2871  *
2872  * Restart the device queue for a previously suspended SCSI device. May sleep.
2873  *
2874  * Returns zero if successful or a negative error code upon failure.
2875  *
2876  * Notes:
2877  * This routine transitions the device to the SDEV_RUNNING state or to one of
2878  * the offline states (which must be a legal transition) allowing the midlayer
2879  * to goose the queue for this device.
2880  */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2881 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2882 					enum scsi_device_state new_state)
2883 {
2884 	int ret;
2885 
2886 	mutex_lock(&sdev->state_mutex);
2887 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2888 	mutex_unlock(&sdev->state_mutex);
2889 
2890 	return ret;
2891 }
2892 
2893 static int
target_block(struct device * dev,void * data)2894 target_block(struct device *dev, void *data)
2895 {
2896 	if (scsi_is_target_device(dev))
2897 		starget_for_each_device(to_scsi_target(dev), NULL,
2898 					scsi_device_block);
2899 	return 0;
2900 }
2901 
2902 /**
2903  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2904  * @dev: a parent device of one or more scsi_target devices
2905  * @shost: the Scsi_Host to which this device belongs
2906  *
2907  * Iterate over all children of @dev, which should be scsi_target devices,
2908  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2909  * ongoing scsi_queue_rq() calls to finish. May sleep.
2910  *
2911  * Note:
2912  * @dev must not itself be a scsi_target device.
2913  */
2914 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)2915 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2916 {
2917 	WARN_ON_ONCE(scsi_is_target_device(dev));
2918 	device_for_each_child(dev, NULL, target_block);
2919 	blk_mq_wait_quiesce_done(&shost->tag_set);
2920 }
2921 EXPORT_SYMBOL_GPL(scsi_block_targets);
2922 
2923 static void
device_unblock(struct scsi_device * sdev,void * data)2924 device_unblock(struct scsi_device *sdev, void *data)
2925 {
2926 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2927 }
2928 
2929 static int
target_unblock(struct device * dev,void * data)2930 target_unblock(struct device *dev, void *data)
2931 {
2932 	if (scsi_is_target_device(dev))
2933 		starget_for_each_device(to_scsi_target(dev), data,
2934 					device_unblock);
2935 	return 0;
2936 }
2937 
2938 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2939 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2940 {
2941 	if (scsi_is_target_device(dev))
2942 		starget_for_each_device(to_scsi_target(dev), &new_state,
2943 					device_unblock);
2944 	else
2945 		device_for_each_child(dev, &new_state, target_unblock);
2946 }
2947 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2948 
2949 /**
2950  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2951  * @shost: device to block
2952  *
2953  * Pause SCSI command processing for all logical units associated with the SCSI
2954  * host and wait until pending scsi_queue_rq() calls have finished.
2955  *
2956  * Returns zero if successful or a negative error code upon failure.
2957  */
2958 int
scsi_host_block(struct Scsi_Host * shost)2959 scsi_host_block(struct Scsi_Host *shost)
2960 {
2961 	struct scsi_device *sdev;
2962 	int ret;
2963 
2964 	/*
2965 	 * Call scsi_internal_device_block_nowait so we can avoid
2966 	 * calling synchronize_rcu() for each LUN.
2967 	 */
2968 	shost_for_each_device(sdev, shost) {
2969 		mutex_lock(&sdev->state_mutex);
2970 		ret = scsi_internal_device_block_nowait(sdev);
2971 		mutex_unlock(&sdev->state_mutex);
2972 		if (ret) {
2973 			scsi_device_put(sdev);
2974 			return ret;
2975 		}
2976 	}
2977 
2978 	/* Wait for ongoing scsi_queue_rq() calls to finish. */
2979 	blk_mq_wait_quiesce_done(&shost->tag_set);
2980 
2981 	return 0;
2982 }
2983 EXPORT_SYMBOL_GPL(scsi_host_block);
2984 
2985 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2986 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2987 {
2988 	struct scsi_device *sdev;
2989 	int ret = 0;
2990 
2991 	shost_for_each_device(sdev, shost) {
2992 		ret = scsi_internal_device_unblock(sdev, new_state);
2993 		if (ret) {
2994 			scsi_device_put(sdev);
2995 			break;
2996 		}
2997 	}
2998 	return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3001 
3002 /**
3003  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3004  * @sgl:	scatter-gather list
3005  * @sg_count:	number of segments in sg
3006  * @offset:	offset in bytes into sg, on return offset into the mapped area
3007  * @len:	bytes to map, on return number of bytes mapped
3008  *
3009  * Returns virtual address of the start of the mapped page
3010  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3011 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3012 			  size_t *offset, size_t *len)
3013 {
3014 	int i;
3015 	size_t sg_len = 0, len_complete = 0;
3016 	struct scatterlist *sg;
3017 	struct page *page;
3018 
3019 	WARN_ON(!irqs_disabled());
3020 
3021 	for_each_sg(sgl, sg, sg_count, i) {
3022 		len_complete = sg_len; /* Complete sg-entries */
3023 		sg_len += sg->length;
3024 		if (sg_len > *offset)
3025 			break;
3026 	}
3027 
3028 	if (unlikely(i == sg_count)) {
3029 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3030 			"elements %d\n",
3031 		       __func__, sg_len, *offset, sg_count);
3032 		WARN_ON(1);
3033 		return NULL;
3034 	}
3035 
3036 	/* Offset starting from the beginning of first page in this sg-entry */
3037 	*offset = *offset - len_complete + sg->offset;
3038 
3039 	/* Assumption: contiguous pages can be accessed as "page + i" */
3040 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3041 	*offset &= ~PAGE_MASK;
3042 
3043 	/* Bytes in this sg-entry from *offset to the end of the page */
3044 	sg_len = PAGE_SIZE - *offset;
3045 	if (*len > sg_len)
3046 		*len = sg_len;
3047 
3048 	return kmap_atomic(page);
3049 }
3050 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3051 
3052 /**
3053  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3054  * @virt:	virtual address to be unmapped
3055  */
scsi_kunmap_atomic_sg(void * virt)3056 void scsi_kunmap_atomic_sg(void *virt)
3057 {
3058 	kunmap_atomic(virt);
3059 }
3060 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3061 
sdev_disable_disk_events(struct scsi_device * sdev)3062 void sdev_disable_disk_events(struct scsi_device *sdev)
3063 {
3064 	atomic_inc(&sdev->disk_events_disable_depth);
3065 }
3066 EXPORT_SYMBOL(sdev_disable_disk_events);
3067 
sdev_enable_disk_events(struct scsi_device * sdev)3068 void sdev_enable_disk_events(struct scsi_device *sdev)
3069 {
3070 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3071 		return;
3072 	atomic_dec(&sdev->disk_events_disable_depth);
3073 }
3074 EXPORT_SYMBOL(sdev_enable_disk_events);
3075 
designator_prio(const unsigned char * d)3076 static unsigned char designator_prio(const unsigned char *d)
3077 {
3078 	if (d[1] & 0x30)
3079 		/* not associated with LUN */
3080 		return 0;
3081 
3082 	if (d[3] == 0)
3083 		/* invalid length */
3084 		return 0;
3085 
3086 	/*
3087 	 * Order of preference for lun descriptor:
3088 	 * - SCSI name string
3089 	 * - NAA IEEE Registered Extended
3090 	 * - EUI-64 based 16-byte
3091 	 * - EUI-64 based 12-byte
3092 	 * - NAA IEEE Registered
3093 	 * - NAA IEEE Extended
3094 	 * - EUI-64 based 8-byte
3095 	 * - SCSI name string (truncated)
3096 	 * - T10 Vendor ID
3097 	 * as longer descriptors reduce the likelyhood
3098 	 * of identification clashes.
3099 	 */
3100 
3101 	switch (d[1] & 0xf) {
3102 	case 8:
3103 		/* SCSI name string, variable-length UTF-8 */
3104 		return 9;
3105 	case 3:
3106 		switch (d[4] >> 4) {
3107 		case 6:
3108 			/* NAA registered extended */
3109 			return 8;
3110 		case 5:
3111 			/* NAA registered */
3112 			return 5;
3113 		case 4:
3114 			/* NAA extended */
3115 			return 4;
3116 		case 3:
3117 			/* NAA locally assigned */
3118 			return 1;
3119 		default:
3120 			break;
3121 		}
3122 		break;
3123 	case 2:
3124 		switch (d[3]) {
3125 		case 16:
3126 			/* EUI64-based, 16 byte */
3127 			return 7;
3128 		case 12:
3129 			/* EUI64-based, 12 byte */
3130 			return 6;
3131 		case 8:
3132 			/* EUI64-based, 8 byte */
3133 			return 3;
3134 		default:
3135 			break;
3136 		}
3137 		break;
3138 	case 1:
3139 		/* T10 vendor ID */
3140 		return 1;
3141 	default:
3142 		break;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 /**
3149  * scsi_vpd_lun_id - return a unique device identification
3150  * @sdev: SCSI device
3151  * @id:   buffer for the identification
3152  * @id_len:  length of the buffer
3153  *
3154  * Copies a unique device identification into @id based
3155  * on the information in the VPD page 0x83 of the device.
3156  * The string will be formatted as a SCSI name string.
3157  *
3158  * Returns the length of the identification or error on failure.
3159  * If the identifier is longer than the supplied buffer the actual
3160  * identifier length is returned and the buffer is not zero-padded.
3161  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3162 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3163 {
3164 	u8 cur_id_prio = 0;
3165 	u8 cur_id_size = 0;
3166 	const unsigned char *d, *cur_id_str;
3167 	const struct scsi_vpd *vpd_pg83;
3168 	int id_size = -EINVAL;
3169 
3170 	rcu_read_lock();
3171 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3172 	if (!vpd_pg83) {
3173 		rcu_read_unlock();
3174 		return -ENXIO;
3175 	}
3176 
3177 	/* The id string must be at least 20 bytes + terminating NULL byte */
3178 	if (id_len < 21) {
3179 		rcu_read_unlock();
3180 		return -EINVAL;
3181 	}
3182 
3183 	memset(id, 0, id_len);
3184 	for (d = vpd_pg83->data + 4;
3185 	     d < vpd_pg83->data + vpd_pg83->len;
3186 	     d += d[3] + 4) {
3187 		u8 prio = designator_prio(d);
3188 
3189 		if (prio == 0 || cur_id_prio > prio)
3190 			continue;
3191 
3192 		switch (d[1] & 0xf) {
3193 		case 0x1:
3194 			/* T10 Vendor ID */
3195 			if (cur_id_size > d[3])
3196 				break;
3197 			cur_id_prio = prio;
3198 			cur_id_size = d[3];
3199 			if (cur_id_size + 4 > id_len)
3200 				cur_id_size = id_len - 4;
3201 			cur_id_str = d + 4;
3202 			id_size = snprintf(id, id_len, "t10.%*pE",
3203 					   cur_id_size, cur_id_str);
3204 			break;
3205 		case 0x2:
3206 			/* EUI-64 */
3207 			cur_id_prio = prio;
3208 			cur_id_size = d[3];
3209 			cur_id_str = d + 4;
3210 			switch (cur_id_size) {
3211 			case 8:
3212 				id_size = snprintf(id, id_len,
3213 						   "eui.%8phN",
3214 						   cur_id_str);
3215 				break;
3216 			case 12:
3217 				id_size = snprintf(id, id_len,
3218 						   "eui.%12phN",
3219 						   cur_id_str);
3220 				break;
3221 			case 16:
3222 				id_size = snprintf(id, id_len,
3223 						   "eui.%16phN",
3224 						   cur_id_str);
3225 				break;
3226 			default:
3227 				break;
3228 			}
3229 			break;
3230 		case 0x3:
3231 			/* NAA */
3232 			cur_id_prio = prio;
3233 			cur_id_size = d[3];
3234 			cur_id_str = d + 4;
3235 			switch (cur_id_size) {
3236 			case 8:
3237 				id_size = snprintf(id, id_len,
3238 						   "naa.%8phN",
3239 						   cur_id_str);
3240 				break;
3241 			case 16:
3242 				id_size = snprintf(id, id_len,
3243 						   "naa.%16phN",
3244 						   cur_id_str);
3245 				break;
3246 			default:
3247 				break;
3248 			}
3249 			break;
3250 		case 0x8:
3251 			/* SCSI name string */
3252 			if (cur_id_size > d[3])
3253 				break;
3254 			/* Prefer others for truncated descriptor */
3255 			if (d[3] > id_len) {
3256 				prio = 2;
3257 				if (cur_id_prio > prio)
3258 					break;
3259 			}
3260 			cur_id_prio = prio;
3261 			cur_id_size = id_size = d[3];
3262 			cur_id_str = d + 4;
3263 			if (cur_id_size >= id_len)
3264 				cur_id_size = id_len - 1;
3265 			memcpy(id, cur_id_str, cur_id_size);
3266 			break;
3267 		default:
3268 			break;
3269 		}
3270 	}
3271 	rcu_read_unlock();
3272 
3273 	return id_size;
3274 }
3275 EXPORT_SYMBOL(scsi_vpd_lun_id);
3276 
3277 /*
3278  * scsi_vpd_tpg_id - return a target port group identifier
3279  * @sdev: SCSI device
3280  *
3281  * Returns the Target Port Group identifier from the information
3282  * froom VPD page 0x83 of the device.
3283  *
3284  * Returns the identifier or error on failure.
3285  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3286 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3287 {
3288 	const unsigned char *d;
3289 	const struct scsi_vpd *vpd_pg83;
3290 	int group_id = -EAGAIN, rel_port = -1;
3291 
3292 	rcu_read_lock();
3293 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3294 	if (!vpd_pg83) {
3295 		rcu_read_unlock();
3296 		return -ENXIO;
3297 	}
3298 
3299 	d = vpd_pg83->data + 4;
3300 	while (d < vpd_pg83->data + vpd_pg83->len) {
3301 		switch (d[1] & 0xf) {
3302 		case 0x4:
3303 			/* Relative target port */
3304 			rel_port = get_unaligned_be16(&d[6]);
3305 			break;
3306 		case 0x5:
3307 			/* Target port group */
3308 			group_id = get_unaligned_be16(&d[6]);
3309 			break;
3310 		default:
3311 			break;
3312 		}
3313 		d += d[3] + 4;
3314 	}
3315 	rcu_read_unlock();
3316 
3317 	if (group_id >= 0 && rel_id && rel_port != -1)
3318 		*rel_id = rel_port;
3319 
3320 	return group_id;
3321 }
3322 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3323 
3324 /**
3325  * scsi_build_sense - build sense data for a command
3326  * @scmd:	scsi command for which the sense should be formatted
3327  * @desc:	Sense format (non-zero == descriptor format,
3328  *              0 == fixed format)
3329  * @key:	Sense key
3330  * @asc:	Additional sense code
3331  * @ascq:	Additional sense code qualifier
3332  *
3333  **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3334 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3335 {
3336 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3337 	scmd->result = SAM_STAT_CHECK_CONDITION;
3338 }
3339 EXPORT_SYMBOL_GPL(scsi_build_sense);
3340