1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, false);
126 if (!scsi_host_in_recovery(cmd->device->host))
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188 * scsi_execute_cmd - insert request and wait for the result
189 * @sdev: scsi_device
190 * @cmd: scsi command
191 * @opf: block layer request cmd_flags
192 * @buffer: data buffer
193 * @bufflen: len of buffer
194 * @timeout: request timeout in HZ
195 * @retries: number of times to retry request
196 * @args: Optional args. See struct definition for field descriptions
197 *
198 * Returns the scsi_cmnd result field if a command was executed, or a negative
199 * Linux error code if we didn't get that far.
200 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202 blk_opf_t opf, void *buffer, unsigned int bufflen,
203 int timeout, int retries,
204 const struct scsi_exec_args *args)
205 {
206 static const struct scsi_exec_args default_args;
207 struct request *req;
208 struct scsi_cmnd *scmd;
209 int ret;
210
211 if (!args)
212 args = &default_args;
213 else if (WARN_ON_ONCE(args->sense &&
214 args->sense_len != SCSI_SENSE_BUFFERSIZE))
215 return -EINVAL;
216
217 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218 if (IS_ERR(req))
219 return PTR_ERR(req);
220
221 if (bufflen) {
222 ret = blk_rq_map_kern(sdev->request_queue, req,
223 buffer, bufflen, GFP_NOIO);
224 if (ret)
225 goto out;
226 }
227 scmd = blk_mq_rq_to_pdu(req);
228 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230 scmd->allowed = retries;
231 scmd->flags |= args->scmd_flags;
232 req->timeout = timeout;
233 req->rq_flags |= RQF_QUIET;
234
235 /*
236 * head injection *required* here otherwise quiesce won't work
237 */
238 blk_execute_rq(req, true);
239
240 /*
241 * Some devices (USB mass-storage in particular) may transfer
242 * garbage data together with a residue indicating that the data
243 * is invalid. Prevent the garbage from being misinterpreted
244 * and prevent security leaks by zeroing out the excess data.
245 */
246 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248
249 if (args->resid)
250 *args->resid = scmd->resid_len;
251 if (args->sense)
252 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253 if (args->sshdr)
254 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255 args->sshdr);
256
257 ret = scmd->result;
258 out:
259 blk_mq_free_request(req);
260
261 return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute_cmd);
264
265 /*
266 * Wake up the error handler if necessary. Avoid as follows that the error
267 * handler is not woken up if host in-flight requests number ==
268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269 * with an RCU read lock in this function to ensure that this function in
270 * its entirety either finishes before scsi_eh_scmd_add() increases the
271 * host_failed counter or that it notices the shost state change made by
272 * scsi_eh_scmd_add().
273 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275 {
276 unsigned long flags;
277
278 rcu_read_lock();
279 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280 if (unlikely(scsi_host_in_recovery(shost))) {
281 unsigned int busy = scsi_host_busy(shost);
282
283 spin_lock_irqsave(shost->host_lock, flags);
284 if (shost->host_failed || shost->host_eh_scheduled)
285 scsi_eh_wakeup(shost, busy);
286 spin_unlock_irqrestore(shost->host_lock, flags);
287 }
288 rcu_read_unlock();
289 }
290
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
292 {
293 struct Scsi_Host *shost = sdev->host;
294 struct scsi_target *starget = scsi_target(sdev);
295
296 scsi_dec_host_busy(shost, cmd);
297
298 if (starget->can_queue > 0)
299 atomic_dec(&starget->target_busy);
300
301 sbitmap_put(&sdev->budget_map, cmd->budget_token);
302 cmd->budget_token = -1;
303 }
304
305 /*
306 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
307 * interrupts disabled.
308 */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)309 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
310 {
311 struct scsi_device *current_sdev = data;
312
313 if (sdev != current_sdev)
314 blk_mq_run_hw_queues(sdev->request_queue, true);
315 }
316
317 /*
318 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
319 * and call blk_run_queue for all the scsi_devices on the target -
320 * including current_sdev first.
321 *
322 * Called with *no* scsi locks held.
323 */
scsi_single_lun_run(struct scsi_device * current_sdev)324 static void scsi_single_lun_run(struct scsi_device *current_sdev)
325 {
326 struct Scsi_Host *shost = current_sdev->host;
327 struct scsi_target *starget = scsi_target(current_sdev);
328 unsigned long flags;
329
330 spin_lock_irqsave(shost->host_lock, flags);
331 starget->starget_sdev_user = NULL;
332 spin_unlock_irqrestore(shost->host_lock, flags);
333
334 /*
335 * Call blk_run_queue for all LUNs on the target, starting with
336 * current_sdev. We race with others (to set starget_sdev_user),
337 * but in most cases, we will be first. Ideally, each LU on the
338 * target would get some limited time or requests on the target.
339 */
340 blk_mq_run_hw_queues(current_sdev->request_queue,
341 shost->queuecommand_may_block);
342
343 spin_lock_irqsave(shost->host_lock, flags);
344 if (!starget->starget_sdev_user)
345 __starget_for_each_device(starget, current_sdev,
346 scsi_kick_sdev_queue);
347 spin_unlock_irqrestore(shost->host_lock, flags);
348 }
349
scsi_device_is_busy(struct scsi_device * sdev)350 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
351 {
352 if (scsi_device_busy(sdev) >= sdev->queue_depth)
353 return true;
354 if (atomic_read(&sdev->device_blocked) > 0)
355 return true;
356 return false;
357 }
358
scsi_target_is_busy(struct scsi_target * starget)359 static inline bool scsi_target_is_busy(struct scsi_target *starget)
360 {
361 if (starget->can_queue > 0) {
362 if (atomic_read(&starget->target_busy) >= starget->can_queue)
363 return true;
364 if (atomic_read(&starget->target_blocked) > 0)
365 return true;
366 }
367 return false;
368 }
369
scsi_host_is_busy(struct Scsi_Host * shost)370 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
371 {
372 if (atomic_read(&shost->host_blocked) > 0)
373 return true;
374 if (shost->host_self_blocked)
375 return true;
376 return false;
377 }
378
scsi_starved_list_run(struct Scsi_Host * shost)379 static void scsi_starved_list_run(struct Scsi_Host *shost)
380 {
381 LIST_HEAD(starved_list);
382 struct scsi_device *sdev;
383 unsigned long flags;
384
385 spin_lock_irqsave(shost->host_lock, flags);
386 list_splice_init(&shost->starved_list, &starved_list);
387
388 while (!list_empty(&starved_list)) {
389 struct request_queue *slq;
390
391 /*
392 * As long as shost is accepting commands and we have
393 * starved queues, call blk_run_queue. scsi_request_fn
394 * drops the queue_lock and can add us back to the
395 * starved_list.
396 *
397 * host_lock protects the starved_list and starved_entry.
398 * scsi_request_fn must get the host_lock before checking
399 * or modifying starved_list or starved_entry.
400 */
401 if (scsi_host_is_busy(shost))
402 break;
403
404 sdev = list_entry(starved_list.next,
405 struct scsi_device, starved_entry);
406 list_del_init(&sdev->starved_entry);
407 if (scsi_target_is_busy(scsi_target(sdev))) {
408 list_move_tail(&sdev->starved_entry,
409 &shost->starved_list);
410 continue;
411 }
412
413 /*
414 * Once we drop the host lock, a racing scsi_remove_device()
415 * call may remove the sdev from the starved list and destroy
416 * it and the queue. Mitigate by taking a reference to the
417 * queue and never touching the sdev again after we drop the
418 * host lock. Note: if __scsi_remove_device() invokes
419 * blk_mq_destroy_queue() before the queue is run from this
420 * function then blk_run_queue() will return immediately since
421 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
422 */
423 slq = sdev->request_queue;
424 if (!blk_get_queue(slq))
425 continue;
426 spin_unlock_irqrestore(shost->host_lock, flags);
427
428 blk_mq_run_hw_queues(slq, false);
429 blk_put_queue(slq);
430
431 spin_lock_irqsave(shost->host_lock, flags);
432 }
433 /* put any unprocessed entries back */
434 list_splice(&starved_list, &shost->starved_list);
435 spin_unlock_irqrestore(shost->host_lock, flags);
436 }
437
438 /**
439 * scsi_run_queue - Select a proper request queue to serve next.
440 * @q: last request's queue
441 *
442 * The previous command was completely finished, start a new one if possible.
443 */
scsi_run_queue(struct request_queue * q)444 static void scsi_run_queue(struct request_queue *q)
445 {
446 struct scsi_device *sdev = q->queuedata;
447
448 if (scsi_target(sdev)->single_lun)
449 scsi_single_lun_run(sdev);
450 if (!list_empty(&sdev->host->starved_list))
451 scsi_starved_list_run(sdev->host);
452
453 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
454 blk_mq_kick_requeue_list(q);
455 }
456
scsi_requeue_run_queue(struct work_struct * work)457 void scsi_requeue_run_queue(struct work_struct *work)
458 {
459 struct scsi_device *sdev;
460 struct request_queue *q;
461
462 sdev = container_of(work, struct scsi_device, requeue_work);
463 q = sdev->request_queue;
464 scsi_run_queue(q);
465 }
466
scsi_run_host_queues(struct Scsi_Host * shost)467 void scsi_run_host_queues(struct Scsi_Host *shost)
468 {
469 struct scsi_device *sdev;
470
471 shost_for_each_device(sdev, shost)
472 scsi_run_queue(sdev->request_queue);
473 }
474
scsi_uninit_cmd(struct scsi_cmnd * cmd)475 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
476 {
477 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
478 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
479
480 if (drv->uninit_command)
481 drv->uninit_command(cmd);
482 }
483 }
484
scsi_free_sgtables(struct scsi_cmnd * cmd)485 void scsi_free_sgtables(struct scsi_cmnd *cmd)
486 {
487 if (cmd->sdb.table.nents)
488 sg_free_table_chained(&cmd->sdb.table,
489 SCSI_INLINE_SG_CNT);
490 if (scsi_prot_sg_count(cmd))
491 sg_free_table_chained(&cmd->prot_sdb->table,
492 SCSI_INLINE_PROT_SG_CNT);
493 }
494 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
495
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)496 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
497 {
498 scsi_free_sgtables(cmd);
499 scsi_uninit_cmd(cmd);
500 }
501
scsi_run_queue_async(struct scsi_device * sdev)502 static void scsi_run_queue_async(struct scsi_device *sdev)
503 {
504 if (scsi_host_in_recovery(sdev->host))
505 return;
506
507 if (scsi_target(sdev)->single_lun ||
508 !list_empty(&sdev->host->starved_list)) {
509 kblockd_schedule_work(&sdev->requeue_work);
510 } else {
511 /*
512 * smp_mb() present in sbitmap_queue_clear() or implied in
513 * .end_io is for ordering writing .device_busy in
514 * scsi_device_unbusy() and reading sdev->restarts.
515 */
516 int old = atomic_read(&sdev->restarts);
517
518 /*
519 * ->restarts has to be kept as non-zero if new budget
520 * contention occurs.
521 *
522 * No need to run queue when either another re-run
523 * queue wins in updating ->restarts or a new budget
524 * contention occurs.
525 */
526 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
527 blk_mq_run_hw_queues(sdev->request_queue, true);
528 }
529 }
530
531 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)532 static bool scsi_end_request(struct request *req, blk_status_t error,
533 unsigned int bytes)
534 {
535 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
536 struct scsi_device *sdev = cmd->device;
537 struct request_queue *q = sdev->request_queue;
538
539 if (blk_update_request(req, error, bytes))
540 return true;
541
542 // XXX:
543 if (blk_queue_add_random(q))
544 add_disk_randomness(req->q->disk);
545
546 if (!blk_rq_is_passthrough(req)) {
547 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
548 cmd->flags &= ~SCMD_INITIALIZED;
549 }
550
551 /*
552 * Calling rcu_barrier() is not necessary here because the
553 * SCSI error handler guarantees that the function called by
554 * call_rcu() has been called before scsi_end_request() is
555 * called.
556 */
557 destroy_rcu_head(&cmd->rcu);
558
559 /*
560 * In the MQ case the command gets freed by __blk_mq_end_request,
561 * so we have to do all cleanup that depends on it earlier.
562 *
563 * We also can't kick the queues from irq context, so we
564 * will have to defer it to a workqueue.
565 */
566 scsi_mq_uninit_cmd(cmd);
567
568 /*
569 * queue is still alive, so grab the ref for preventing it
570 * from being cleaned up during running queue.
571 */
572 percpu_ref_get(&q->q_usage_counter);
573
574 __blk_mq_end_request(req, error);
575
576 scsi_run_queue_async(sdev);
577
578 percpu_ref_put(&q->q_usage_counter);
579 return false;
580 }
581
582 /**
583 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
584 * @result: scsi error code
585 *
586 * Translate a SCSI result code into a blk_status_t value.
587 */
scsi_result_to_blk_status(int result)588 static blk_status_t scsi_result_to_blk_status(int result)
589 {
590 /*
591 * Check the scsi-ml byte first in case we converted a host or status
592 * byte.
593 */
594 switch (scsi_ml_byte(result)) {
595 case SCSIML_STAT_OK:
596 break;
597 case SCSIML_STAT_RESV_CONFLICT:
598 return BLK_STS_RESV_CONFLICT;
599 case SCSIML_STAT_NOSPC:
600 return BLK_STS_NOSPC;
601 case SCSIML_STAT_MED_ERROR:
602 return BLK_STS_MEDIUM;
603 case SCSIML_STAT_TGT_FAILURE:
604 return BLK_STS_TARGET;
605 case SCSIML_STAT_DL_TIMEOUT:
606 return BLK_STS_DURATION_LIMIT;
607 }
608
609 switch (host_byte(result)) {
610 case DID_OK:
611 if (scsi_status_is_good(result))
612 return BLK_STS_OK;
613 return BLK_STS_IOERR;
614 case DID_TRANSPORT_FAILFAST:
615 case DID_TRANSPORT_MARGINAL:
616 return BLK_STS_TRANSPORT;
617 default:
618 return BLK_STS_IOERR;
619 }
620 }
621
622 /**
623 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
624 * @rq: request to examine
625 *
626 * Description:
627 * A request could be merge of IOs which require different failure
628 * handling. This function determines the number of bytes which
629 * can be failed from the beginning of the request without
630 * crossing into area which need to be retried further.
631 *
632 * Return:
633 * The number of bytes to fail.
634 */
scsi_rq_err_bytes(const struct request * rq)635 static unsigned int scsi_rq_err_bytes(const struct request *rq)
636 {
637 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
638 unsigned int bytes = 0;
639 struct bio *bio;
640
641 if (!(rq->rq_flags & RQF_MIXED_MERGE))
642 return blk_rq_bytes(rq);
643
644 /*
645 * Currently the only 'mixing' which can happen is between
646 * different fastfail types. We can safely fail portions
647 * which have all the failfast bits that the first one has -
648 * the ones which are at least as eager to fail as the first
649 * one.
650 */
651 for (bio = rq->bio; bio; bio = bio->bi_next) {
652 if ((bio->bi_opf & ff) != ff)
653 break;
654 bytes += bio->bi_iter.bi_size;
655 }
656
657 /* this could lead to infinite loop */
658 BUG_ON(blk_rq_bytes(rq) && !bytes);
659 return bytes;
660 }
661
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)662 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
663 {
664 struct request *req = scsi_cmd_to_rq(cmd);
665 unsigned long wait_for;
666
667 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
668 return false;
669
670 wait_for = (cmd->allowed + 1) * req->timeout;
671 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
672 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
673 wait_for/HZ);
674 return true;
675 }
676 return false;
677 }
678
679 /*
680 * When ALUA transition state is returned, reprep the cmd to
681 * use the ALUA handler's transition timeout. Delay the reprep
682 * 1 sec to avoid aggressive retries of the target in that
683 * state.
684 */
685 #define ALUA_TRANSITION_REPREP_DELAY 1000
686
687 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)688 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
689 {
690 struct request *req = scsi_cmd_to_rq(cmd);
691 int level = 0;
692 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
693 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
694 struct scsi_sense_hdr sshdr;
695 bool sense_valid;
696 bool sense_current = true; /* false implies "deferred sense" */
697 blk_status_t blk_stat;
698
699 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
700 if (sense_valid)
701 sense_current = !scsi_sense_is_deferred(&sshdr);
702
703 blk_stat = scsi_result_to_blk_status(result);
704
705 if (host_byte(result) == DID_RESET) {
706 /* Third party bus reset or reset for error recovery
707 * reasons. Just retry the command and see what
708 * happens.
709 */
710 action = ACTION_RETRY;
711 } else if (sense_valid && sense_current) {
712 switch (sshdr.sense_key) {
713 case UNIT_ATTENTION:
714 if (cmd->device->removable) {
715 /* Detected disc change. Set a bit
716 * and quietly refuse further access.
717 */
718 cmd->device->changed = 1;
719 action = ACTION_FAIL;
720 } else {
721 /* Must have been a power glitch, or a
722 * bus reset. Could not have been a
723 * media change, so we just retry the
724 * command and see what happens.
725 */
726 action = ACTION_RETRY;
727 }
728 break;
729 case ILLEGAL_REQUEST:
730 /* If we had an ILLEGAL REQUEST returned, then
731 * we may have performed an unsupported
732 * command. The only thing this should be
733 * would be a ten byte read where only a six
734 * byte read was supported. Also, on a system
735 * where READ CAPACITY failed, we may have
736 * read past the end of the disk.
737 */
738 if ((cmd->device->use_10_for_rw &&
739 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
740 (cmd->cmnd[0] == READ_10 ||
741 cmd->cmnd[0] == WRITE_10)) {
742 /* This will issue a new 6-byte command. */
743 cmd->device->use_10_for_rw = 0;
744 action = ACTION_REPREP;
745 } else if (sshdr.asc == 0x10) /* DIX */ {
746 action = ACTION_FAIL;
747 blk_stat = BLK_STS_PROTECTION;
748 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
749 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
750 action = ACTION_FAIL;
751 blk_stat = BLK_STS_TARGET;
752 } else
753 action = ACTION_FAIL;
754 break;
755 case ABORTED_COMMAND:
756 action = ACTION_FAIL;
757 if (sshdr.asc == 0x10) /* DIF */
758 blk_stat = BLK_STS_PROTECTION;
759 break;
760 case NOT_READY:
761 /* If the device is in the process of becoming
762 * ready, or has a temporary blockage, retry.
763 */
764 if (sshdr.asc == 0x04) {
765 switch (sshdr.ascq) {
766 case 0x01: /* becoming ready */
767 case 0x04: /* format in progress */
768 case 0x05: /* rebuild in progress */
769 case 0x06: /* recalculation in progress */
770 case 0x07: /* operation in progress */
771 case 0x08: /* Long write in progress */
772 case 0x09: /* self test in progress */
773 case 0x11: /* notify (enable spinup) required */
774 case 0x14: /* space allocation in progress */
775 case 0x1a: /* start stop unit in progress */
776 case 0x1b: /* sanitize in progress */
777 case 0x1d: /* configuration in progress */
778 case 0x24: /* depopulation in progress */
779 action = ACTION_DELAYED_RETRY;
780 break;
781 case 0x0a: /* ALUA state transition */
782 action = ACTION_DELAYED_REPREP;
783 break;
784 default:
785 action = ACTION_FAIL;
786 break;
787 }
788 } else
789 action = ACTION_FAIL;
790 break;
791 case VOLUME_OVERFLOW:
792 /* See SSC3rXX or current. */
793 action = ACTION_FAIL;
794 break;
795 case DATA_PROTECT:
796 action = ACTION_FAIL;
797 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
798 (sshdr.asc == 0x55 &&
799 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
800 /* Insufficient zone resources */
801 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
802 }
803 break;
804 case COMPLETED:
805 fallthrough;
806 default:
807 action = ACTION_FAIL;
808 break;
809 }
810 } else
811 action = ACTION_FAIL;
812
813 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
814 action = ACTION_FAIL;
815
816 switch (action) {
817 case ACTION_FAIL:
818 /* Give up and fail the remainder of the request */
819 if (!(req->rq_flags & RQF_QUIET)) {
820 static DEFINE_RATELIMIT_STATE(_rs,
821 DEFAULT_RATELIMIT_INTERVAL,
822 DEFAULT_RATELIMIT_BURST);
823
824 if (unlikely(scsi_logging_level))
825 level =
826 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
827 SCSI_LOG_MLCOMPLETE_BITS);
828
829 /*
830 * if logging is enabled the failure will be printed
831 * in scsi_log_completion(), so avoid duplicate messages
832 */
833 if (!level && __ratelimit(&_rs)) {
834 scsi_print_result(cmd, NULL, FAILED);
835 if (sense_valid)
836 scsi_print_sense(cmd);
837 scsi_print_command(cmd);
838 }
839 }
840 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
841 return;
842 fallthrough;
843 case ACTION_REPREP:
844 scsi_mq_requeue_cmd(cmd, 0);
845 break;
846 case ACTION_DELAYED_REPREP:
847 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
848 break;
849 case ACTION_RETRY:
850 /* Retry the same command immediately */
851 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
852 break;
853 case ACTION_DELAYED_RETRY:
854 /* Retry the same command after a delay */
855 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
856 break;
857 }
858 }
859
860 /*
861 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
862 * new result that may suppress further error checking. Also modifies
863 * *blk_statp in some cases.
864 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)865 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
866 blk_status_t *blk_statp)
867 {
868 bool sense_valid;
869 bool sense_current = true; /* false implies "deferred sense" */
870 struct request *req = scsi_cmd_to_rq(cmd);
871 struct scsi_sense_hdr sshdr;
872
873 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
874 if (sense_valid)
875 sense_current = !scsi_sense_is_deferred(&sshdr);
876
877 if (blk_rq_is_passthrough(req)) {
878 if (sense_valid) {
879 /*
880 * SG_IO wants current and deferred errors
881 */
882 cmd->sense_len = min(8 + cmd->sense_buffer[7],
883 SCSI_SENSE_BUFFERSIZE);
884 }
885 if (sense_current)
886 *blk_statp = scsi_result_to_blk_status(result);
887 } else if (blk_rq_bytes(req) == 0 && sense_current) {
888 /*
889 * Flush commands do not transfers any data, and thus cannot use
890 * good_bytes != blk_rq_bytes(req) as the signal for an error.
891 * This sets *blk_statp explicitly for the problem case.
892 */
893 *blk_statp = scsi_result_to_blk_status(result);
894 }
895 /*
896 * Recovered errors need reporting, but they're always treated as
897 * success, so fiddle the result code here. For passthrough requests
898 * we already took a copy of the original into sreq->result which
899 * is what gets returned to the user
900 */
901 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
902 bool do_print = true;
903 /*
904 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
905 * skip print since caller wants ATA registers. Only occurs
906 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
907 */
908 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
909 do_print = false;
910 else if (req->rq_flags & RQF_QUIET)
911 do_print = false;
912 if (do_print)
913 scsi_print_sense(cmd);
914 result = 0;
915 /* for passthrough, *blk_statp may be set */
916 *blk_statp = BLK_STS_OK;
917 }
918 /*
919 * Another corner case: the SCSI status byte is non-zero but 'good'.
920 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
921 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
922 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
923 * intermediate statuses (both obsolete in SAM-4) as good.
924 */
925 if ((result & 0xff) && scsi_status_is_good(result)) {
926 result = 0;
927 *blk_statp = BLK_STS_OK;
928 }
929 return result;
930 }
931
932 /**
933 * scsi_io_completion - Completion processing for SCSI commands.
934 * @cmd: command that is finished.
935 * @good_bytes: number of processed bytes.
936 *
937 * We will finish off the specified number of sectors. If we are done, the
938 * command block will be released and the queue function will be goosed. If we
939 * are not done then we have to figure out what to do next:
940 *
941 * a) We can call scsi_mq_requeue_cmd(). The request will be
942 * unprepared and put back on the queue. Then a new command will
943 * be created for it. This should be used if we made forward
944 * progress, or if we want to switch from READ(10) to READ(6) for
945 * example.
946 *
947 * b) We can call scsi_io_completion_action(). The request will be
948 * put back on the queue and retried using the same command as
949 * before, possibly after a delay.
950 *
951 * c) We can call scsi_end_request() with blk_stat other than
952 * BLK_STS_OK, to fail the remainder of the request.
953 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)954 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
955 {
956 int result = cmd->result;
957 struct request *req = scsi_cmd_to_rq(cmd);
958 blk_status_t blk_stat = BLK_STS_OK;
959
960 if (unlikely(result)) /* a nz result may or may not be an error */
961 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
962
963 /*
964 * Next deal with any sectors which we were able to correctly
965 * handle.
966 */
967 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
968 "%u sectors total, %d bytes done.\n",
969 blk_rq_sectors(req), good_bytes));
970
971 /*
972 * Failed, zero length commands always need to drop down
973 * to retry code. Fast path should return in this block.
974 */
975 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
976 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
977 return; /* no bytes remaining */
978 }
979
980 /* Kill remainder if no retries. */
981 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
982 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
983 WARN_ONCE(true,
984 "Bytes remaining after failed, no-retry command");
985 return;
986 }
987
988 /*
989 * If there had been no error, but we have leftover bytes in the
990 * request just queue the command up again.
991 */
992 if (likely(result == 0))
993 scsi_mq_requeue_cmd(cmd, 0);
994 else
995 scsi_io_completion_action(cmd, result);
996 }
997
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)998 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
999 struct request *rq)
1000 {
1001 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1002 !op_is_write(req_op(rq)) &&
1003 sdev->host->hostt->dma_need_drain(rq);
1004 }
1005
1006 /**
1007 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1008 * @cmd: SCSI command data structure to initialize.
1009 *
1010 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1011 * for @cmd.
1012 *
1013 * Returns:
1014 * * BLK_STS_OK - on success
1015 * * BLK_STS_RESOURCE - if the failure is retryable
1016 * * BLK_STS_IOERR - if the failure is fatal
1017 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1018 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1019 {
1020 struct scsi_device *sdev = cmd->device;
1021 struct request *rq = scsi_cmd_to_rq(cmd);
1022 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1023 struct scatterlist *last_sg = NULL;
1024 blk_status_t ret;
1025 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1026 int count;
1027
1028 if (WARN_ON_ONCE(!nr_segs))
1029 return BLK_STS_IOERR;
1030
1031 /*
1032 * Make sure there is space for the drain. The driver must adjust
1033 * max_hw_segments to be prepared for this.
1034 */
1035 if (need_drain)
1036 nr_segs++;
1037
1038 /*
1039 * If sg table allocation fails, requeue request later.
1040 */
1041 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1042 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1043 return BLK_STS_RESOURCE;
1044
1045 /*
1046 * Next, walk the list, and fill in the addresses and sizes of
1047 * each segment.
1048 */
1049 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1050
1051 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1052 unsigned int pad_len =
1053 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1054
1055 last_sg->length += pad_len;
1056 cmd->extra_len += pad_len;
1057 }
1058
1059 if (need_drain) {
1060 sg_unmark_end(last_sg);
1061 last_sg = sg_next(last_sg);
1062 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1063 sg_mark_end(last_sg);
1064
1065 cmd->extra_len += sdev->dma_drain_len;
1066 count++;
1067 }
1068
1069 BUG_ON(count > cmd->sdb.table.nents);
1070 cmd->sdb.table.nents = count;
1071 cmd->sdb.length = blk_rq_payload_bytes(rq);
1072
1073 if (blk_integrity_rq(rq)) {
1074 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1075 int ivecs;
1076
1077 if (WARN_ON_ONCE(!prot_sdb)) {
1078 /*
1079 * This can happen if someone (e.g. multipath)
1080 * queues a command to a device on an adapter
1081 * that does not support DIX.
1082 */
1083 ret = BLK_STS_IOERR;
1084 goto out_free_sgtables;
1085 }
1086
1087 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1088
1089 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1090 prot_sdb->table.sgl,
1091 SCSI_INLINE_PROT_SG_CNT)) {
1092 ret = BLK_STS_RESOURCE;
1093 goto out_free_sgtables;
1094 }
1095
1096 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1097 prot_sdb->table.sgl);
1098 BUG_ON(count > ivecs);
1099 BUG_ON(count > queue_max_integrity_segments(rq->q));
1100
1101 cmd->prot_sdb = prot_sdb;
1102 cmd->prot_sdb->table.nents = count;
1103 }
1104
1105 return BLK_STS_OK;
1106 out_free_sgtables:
1107 scsi_free_sgtables(cmd);
1108 return ret;
1109 }
1110 EXPORT_SYMBOL(scsi_alloc_sgtables);
1111
1112 /**
1113 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1114 * @rq: Request associated with the SCSI command to be initialized.
1115 *
1116 * This function initializes the members of struct scsi_cmnd that must be
1117 * initialized before request processing starts and that won't be
1118 * reinitialized if a SCSI command is requeued.
1119 */
scsi_initialize_rq(struct request * rq)1120 static void scsi_initialize_rq(struct request *rq)
1121 {
1122 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1123
1124 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1125 cmd->cmd_len = MAX_COMMAND_SIZE;
1126 cmd->sense_len = 0;
1127 init_rcu_head(&cmd->rcu);
1128 cmd->jiffies_at_alloc = jiffies;
1129 cmd->retries = 0;
1130 }
1131
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1132 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1133 blk_mq_req_flags_t flags)
1134 {
1135 struct request *rq;
1136
1137 rq = blk_mq_alloc_request(q, opf, flags);
1138 if (!IS_ERR(rq))
1139 scsi_initialize_rq(rq);
1140 return rq;
1141 }
1142 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1143
1144 /*
1145 * Only called when the request isn't completed by SCSI, and not freed by
1146 * SCSI
1147 */
scsi_cleanup_rq(struct request * rq)1148 static void scsi_cleanup_rq(struct request *rq)
1149 {
1150 if (rq->rq_flags & RQF_DONTPREP) {
1151 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1152 rq->rq_flags &= ~RQF_DONTPREP;
1153 }
1154 }
1155
1156 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1157 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1158 {
1159 struct request *rq = scsi_cmd_to_rq(cmd);
1160
1161 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1162 cmd->flags |= SCMD_INITIALIZED;
1163 scsi_initialize_rq(rq);
1164 }
1165
1166 cmd->device = dev;
1167 INIT_LIST_HEAD(&cmd->eh_entry);
1168 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169 }
1170
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1171 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1172 struct request *req)
1173 {
1174 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1175
1176 /*
1177 * Passthrough requests may transfer data, in which case they must
1178 * a bio attached to them. Or they might contain a SCSI command
1179 * that does not transfer data, in which case they may optionally
1180 * submit a request without an attached bio.
1181 */
1182 if (req->bio) {
1183 blk_status_t ret = scsi_alloc_sgtables(cmd);
1184 if (unlikely(ret != BLK_STS_OK))
1185 return ret;
1186 } else {
1187 BUG_ON(blk_rq_bytes(req));
1188
1189 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1190 }
1191
1192 cmd->transfersize = blk_rq_bytes(req);
1193 return BLK_STS_OK;
1194 }
1195
1196 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1197 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1198 {
1199 switch (sdev->sdev_state) {
1200 case SDEV_CREATED:
1201 return BLK_STS_OK;
1202 case SDEV_OFFLINE:
1203 case SDEV_TRANSPORT_OFFLINE:
1204 /*
1205 * If the device is offline we refuse to process any
1206 * commands. The device must be brought online
1207 * before trying any recovery commands.
1208 */
1209 if (!sdev->offline_already) {
1210 sdev->offline_already = true;
1211 sdev_printk(KERN_ERR, sdev,
1212 "rejecting I/O to offline device\n");
1213 }
1214 return BLK_STS_IOERR;
1215 case SDEV_DEL:
1216 /*
1217 * If the device is fully deleted, we refuse to
1218 * process any commands as well.
1219 */
1220 sdev_printk(KERN_ERR, sdev,
1221 "rejecting I/O to dead device\n");
1222 return BLK_STS_IOERR;
1223 case SDEV_BLOCK:
1224 case SDEV_CREATED_BLOCK:
1225 return BLK_STS_RESOURCE;
1226 case SDEV_QUIESCE:
1227 /*
1228 * If the device is blocked we only accept power management
1229 * commands.
1230 */
1231 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1232 return BLK_STS_RESOURCE;
1233 return BLK_STS_OK;
1234 default:
1235 /*
1236 * For any other not fully online state we only allow
1237 * power management commands.
1238 */
1239 if (req && !(req->rq_flags & RQF_PM))
1240 return BLK_STS_OFFLINE;
1241 return BLK_STS_OK;
1242 }
1243 }
1244
1245 /*
1246 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1247 * and return the token else return -1.
1248 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1249 static inline int scsi_dev_queue_ready(struct request_queue *q,
1250 struct scsi_device *sdev)
1251 {
1252 int token;
1253
1254 token = sbitmap_get(&sdev->budget_map);
1255 if (atomic_read(&sdev->device_blocked)) {
1256 if (token < 0)
1257 goto out;
1258
1259 if (scsi_device_busy(sdev) > 1)
1260 goto out_dec;
1261
1262 /*
1263 * unblock after device_blocked iterates to zero
1264 */
1265 if (atomic_dec_return(&sdev->device_blocked) > 0)
1266 goto out_dec;
1267 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1268 "unblocking device at zero depth\n"));
1269 }
1270
1271 return token;
1272 out_dec:
1273 if (token >= 0)
1274 sbitmap_put(&sdev->budget_map, token);
1275 out:
1276 return -1;
1277 }
1278
1279 /*
1280 * scsi_target_queue_ready: checks if there we can send commands to target
1281 * @sdev: scsi device on starget to check.
1282 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1283 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1284 struct scsi_device *sdev)
1285 {
1286 struct scsi_target *starget = scsi_target(sdev);
1287 unsigned int busy;
1288
1289 if (starget->single_lun) {
1290 spin_lock_irq(shost->host_lock);
1291 if (starget->starget_sdev_user &&
1292 starget->starget_sdev_user != sdev) {
1293 spin_unlock_irq(shost->host_lock);
1294 return 0;
1295 }
1296 starget->starget_sdev_user = sdev;
1297 spin_unlock_irq(shost->host_lock);
1298 }
1299
1300 if (starget->can_queue <= 0)
1301 return 1;
1302
1303 busy = atomic_inc_return(&starget->target_busy) - 1;
1304 if (atomic_read(&starget->target_blocked) > 0) {
1305 if (busy)
1306 goto starved;
1307
1308 /*
1309 * unblock after target_blocked iterates to zero
1310 */
1311 if (atomic_dec_return(&starget->target_blocked) > 0)
1312 goto out_dec;
1313
1314 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1315 "unblocking target at zero depth\n"));
1316 }
1317
1318 if (busy >= starget->can_queue)
1319 goto starved;
1320
1321 return 1;
1322
1323 starved:
1324 spin_lock_irq(shost->host_lock);
1325 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1326 spin_unlock_irq(shost->host_lock);
1327 out_dec:
1328 if (starget->can_queue > 0)
1329 atomic_dec(&starget->target_busy);
1330 return 0;
1331 }
1332
1333 /*
1334 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1335 * return 0. We must end up running the queue again whenever 0 is
1336 * returned, else IO can hang.
1337 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1338 static inline int scsi_host_queue_ready(struct request_queue *q,
1339 struct Scsi_Host *shost,
1340 struct scsi_device *sdev,
1341 struct scsi_cmnd *cmd)
1342 {
1343 if (atomic_read(&shost->host_blocked) > 0) {
1344 if (scsi_host_busy(shost) > 0)
1345 goto starved;
1346
1347 /*
1348 * unblock after host_blocked iterates to zero
1349 */
1350 if (atomic_dec_return(&shost->host_blocked) > 0)
1351 goto out_dec;
1352
1353 SCSI_LOG_MLQUEUE(3,
1354 shost_printk(KERN_INFO, shost,
1355 "unblocking host at zero depth\n"));
1356 }
1357
1358 if (shost->host_self_blocked)
1359 goto starved;
1360
1361 /* We're OK to process the command, so we can't be starved */
1362 if (!list_empty(&sdev->starved_entry)) {
1363 spin_lock_irq(shost->host_lock);
1364 if (!list_empty(&sdev->starved_entry))
1365 list_del_init(&sdev->starved_entry);
1366 spin_unlock_irq(shost->host_lock);
1367 }
1368
1369 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1370
1371 return 1;
1372
1373 starved:
1374 spin_lock_irq(shost->host_lock);
1375 if (list_empty(&sdev->starved_entry))
1376 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1377 spin_unlock_irq(shost->host_lock);
1378 out_dec:
1379 scsi_dec_host_busy(shost, cmd);
1380 return 0;
1381 }
1382
1383 /*
1384 * Busy state exporting function for request stacking drivers.
1385 *
1386 * For efficiency, no lock is taken to check the busy state of
1387 * shost/starget/sdev, since the returned value is not guaranteed and
1388 * may be changed after request stacking drivers call the function,
1389 * regardless of taking lock or not.
1390 *
1391 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1392 * needs to return 'not busy'. Otherwise, request stacking drivers
1393 * may hold requests forever.
1394 */
scsi_mq_lld_busy(struct request_queue * q)1395 static bool scsi_mq_lld_busy(struct request_queue *q)
1396 {
1397 struct scsi_device *sdev = q->queuedata;
1398 struct Scsi_Host *shost;
1399
1400 if (blk_queue_dying(q))
1401 return false;
1402
1403 shost = sdev->host;
1404
1405 /*
1406 * Ignore host/starget busy state.
1407 * Since block layer does not have a concept of fairness across
1408 * multiple queues, congestion of host/starget needs to be handled
1409 * in SCSI layer.
1410 */
1411 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1412 return true;
1413
1414 return false;
1415 }
1416
1417 /*
1418 * Block layer request completion callback. May be called from interrupt
1419 * context.
1420 */
scsi_complete(struct request * rq)1421 static void scsi_complete(struct request *rq)
1422 {
1423 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1424 enum scsi_disposition disposition;
1425
1426 INIT_LIST_HEAD(&cmd->eh_entry);
1427
1428 atomic_inc(&cmd->device->iodone_cnt);
1429 if (cmd->result)
1430 atomic_inc(&cmd->device->ioerr_cnt);
1431
1432 disposition = scsi_decide_disposition(cmd);
1433 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1434 disposition = SUCCESS;
1435
1436 scsi_log_completion(cmd, disposition);
1437
1438 switch (disposition) {
1439 case SUCCESS:
1440 scsi_finish_command(cmd);
1441 break;
1442 case NEEDS_RETRY:
1443 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1444 break;
1445 case ADD_TO_MLQUEUE:
1446 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1447 break;
1448 default:
1449 scsi_eh_scmd_add(cmd);
1450 break;
1451 }
1452 }
1453
1454 /**
1455 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1456 * @cmd: command block we are dispatching.
1457 *
1458 * Return: nonzero return request was rejected and device's queue needs to be
1459 * plugged.
1460 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1461 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1462 {
1463 struct Scsi_Host *host = cmd->device->host;
1464 int rtn = 0;
1465
1466 atomic_inc(&cmd->device->iorequest_cnt);
1467
1468 /* check if the device is still usable */
1469 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1470 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1471 * returns an immediate error upwards, and signals
1472 * that the device is no longer present */
1473 cmd->result = DID_NO_CONNECT << 16;
1474 goto done;
1475 }
1476
1477 /* Check to see if the scsi lld made this device blocked. */
1478 if (unlikely(scsi_device_blocked(cmd->device))) {
1479 /*
1480 * in blocked state, the command is just put back on
1481 * the device queue. The suspend state has already
1482 * blocked the queue so future requests should not
1483 * occur until the device transitions out of the
1484 * suspend state.
1485 */
1486 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1487 "queuecommand : device blocked\n"));
1488 atomic_dec(&cmd->device->iorequest_cnt);
1489 return SCSI_MLQUEUE_DEVICE_BUSY;
1490 }
1491
1492 /* Store the LUN value in cmnd, if needed. */
1493 if (cmd->device->lun_in_cdb)
1494 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1495 (cmd->device->lun << 5 & 0xe0);
1496
1497 scsi_log_send(cmd);
1498
1499 /*
1500 * Before we queue this command, check if the command
1501 * length exceeds what the host adapter can handle.
1502 */
1503 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1504 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1505 "queuecommand : command too long. "
1506 "cdb_size=%d host->max_cmd_len=%d\n",
1507 cmd->cmd_len, cmd->device->host->max_cmd_len));
1508 cmd->result = (DID_ABORT << 16);
1509 goto done;
1510 }
1511
1512 if (unlikely(host->shost_state == SHOST_DEL)) {
1513 cmd->result = (DID_NO_CONNECT << 16);
1514 goto done;
1515
1516 }
1517
1518 trace_scsi_dispatch_cmd_start(cmd);
1519 rtn = host->hostt->queuecommand(host, cmd);
1520 if (rtn) {
1521 atomic_dec(&cmd->device->iorequest_cnt);
1522 trace_scsi_dispatch_cmd_error(cmd, rtn);
1523 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1524 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1525 rtn = SCSI_MLQUEUE_HOST_BUSY;
1526
1527 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1528 "queuecommand : request rejected\n"));
1529 }
1530
1531 return rtn;
1532 done:
1533 scsi_done(cmd);
1534 return 0;
1535 }
1536
1537 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1538 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1539 {
1540 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1541 sizeof(struct scatterlist);
1542 }
1543
scsi_prepare_cmd(struct request * req)1544 static blk_status_t scsi_prepare_cmd(struct request *req)
1545 {
1546 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1547 struct scsi_device *sdev = req->q->queuedata;
1548 struct Scsi_Host *shost = sdev->host;
1549 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1550 struct scatterlist *sg;
1551
1552 scsi_init_command(sdev, cmd);
1553
1554 cmd->eh_eflags = 0;
1555 cmd->prot_type = 0;
1556 cmd->prot_flags = 0;
1557 cmd->submitter = 0;
1558 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1559 cmd->underflow = 0;
1560 cmd->transfersize = 0;
1561 cmd->host_scribble = NULL;
1562 cmd->result = 0;
1563 cmd->extra_len = 0;
1564 cmd->state = 0;
1565 if (in_flight)
1566 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1567
1568 /*
1569 * Only clear the driver-private command data if the LLD does not supply
1570 * a function to initialize that data.
1571 */
1572 if (!shost->hostt->init_cmd_priv)
1573 memset(cmd + 1, 0, shost->hostt->cmd_size);
1574
1575 cmd->prot_op = SCSI_PROT_NORMAL;
1576 if (blk_rq_bytes(req))
1577 cmd->sc_data_direction = rq_dma_dir(req);
1578 else
1579 cmd->sc_data_direction = DMA_NONE;
1580
1581 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1582 cmd->sdb.table.sgl = sg;
1583
1584 if (scsi_host_get_prot(shost)) {
1585 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1586
1587 cmd->prot_sdb->table.sgl =
1588 (struct scatterlist *)(cmd->prot_sdb + 1);
1589 }
1590
1591 /*
1592 * Special handling for passthrough commands, which don't go to the ULP
1593 * at all:
1594 */
1595 if (blk_rq_is_passthrough(req))
1596 return scsi_setup_scsi_cmnd(sdev, req);
1597
1598 if (sdev->handler && sdev->handler->prep_fn) {
1599 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1600
1601 if (ret != BLK_STS_OK)
1602 return ret;
1603 }
1604
1605 /* Usually overridden by the ULP */
1606 cmd->allowed = 0;
1607 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1608 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1609 }
1610
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1611 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1612 {
1613 struct request *req = scsi_cmd_to_rq(cmd);
1614
1615 switch (cmd->submitter) {
1616 case SUBMITTED_BY_BLOCK_LAYER:
1617 break;
1618 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1619 return scsi_eh_done(cmd);
1620 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1621 return;
1622 }
1623
1624 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1625 return;
1626 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1627 return;
1628 trace_scsi_dispatch_cmd_done(cmd);
1629
1630 if (complete_directly)
1631 blk_mq_complete_request_direct(req, scsi_complete);
1632 else
1633 blk_mq_complete_request(req);
1634 }
1635
scsi_done(struct scsi_cmnd * cmd)1636 void scsi_done(struct scsi_cmnd *cmd)
1637 {
1638 scsi_done_internal(cmd, false);
1639 }
1640 EXPORT_SYMBOL(scsi_done);
1641
scsi_done_direct(struct scsi_cmnd * cmd)1642 void scsi_done_direct(struct scsi_cmnd *cmd)
1643 {
1644 scsi_done_internal(cmd, true);
1645 }
1646 EXPORT_SYMBOL(scsi_done_direct);
1647
scsi_mq_put_budget(struct request_queue * q,int budget_token)1648 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1649 {
1650 struct scsi_device *sdev = q->queuedata;
1651
1652 sbitmap_put(&sdev->budget_map, budget_token);
1653 }
1654
1655 /*
1656 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1657 * not change behaviour from the previous unplug mechanism, experimentation
1658 * may prove this needs changing.
1659 */
1660 #define SCSI_QUEUE_DELAY 3
1661
scsi_mq_get_budget(struct request_queue * q)1662 static int scsi_mq_get_budget(struct request_queue *q)
1663 {
1664 struct scsi_device *sdev = q->queuedata;
1665 int token = scsi_dev_queue_ready(q, sdev);
1666
1667 if (token >= 0)
1668 return token;
1669
1670 atomic_inc(&sdev->restarts);
1671
1672 /*
1673 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1674 * .restarts must be incremented before .device_busy is read because the
1675 * code in scsi_run_queue_async() depends on the order of these operations.
1676 */
1677 smp_mb__after_atomic();
1678
1679 /*
1680 * If all in-flight requests originated from this LUN are completed
1681 * before reading .device_busy, sdev->device_busy will be observed as
1682 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1683 * soon. Otherwise, completion of one of these requests will observe
1684 * the .restarts flag, and the request queue will be run for handling
1685 * this request, see scsi_end_request().
1686 */
1687 if (unlikely(scsi_device_busy(sdev) == 0 &&
1688 !scsi_device_blocked(sdev)))
1689 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1690 return -1;
1691 }
1692
scsi_mq_set_rq_budget_token(struct request * req,int token)1693 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1694 {
1695 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1696
1697 cmd->budget_token = token;
1698 }
1699
scsi_mq_get_rq_budget_token(struct request * req)1700 static int scsi_mq_get_rq_budget_token(struct request *req)
1701 {
1702 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1703
1704 return cmd->budget_token;
1705 }
1706
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1707 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1708 const struct blk_mq_queue_data *bd)
1709 {
1710 struct request *req = bd->rq;
1711 struct request_queue *q = req->q;
1712 struct scsi_device *sdev = q->queuedata;
1713 struct Scsi_Host *shost = sdev->host;
1714 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1715 blk_status_t ret;
1716 int reason;
1717
1718 WARN_ON_ONCE(cmd->budget_token < 0);
1719
1720 /*
1721 * If the device is not in running state we will reject some or all
1722 * commands.
1723 */
1724 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1725 ret = scsi_device_state_check(sdev, req);
1726 if (ret != BLK_STS_OK)
1727 goto out_put_budget;
1728 }
1729
1730 ret = BLK_STS_RESOURCE;
1731 if (!scsi_target_queue_ready(shost, sdev))
1732 goto out_put_budget;
1733 if (unlikely(scsi_host_in_recovery(shost))) {
1734 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1735 ret = BLK_STS_OFFLINE;
1736 goto out_dec_target_busy;
1737 }
1738 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1739 goto out_dec_target_busy;
1740
1741 if (!(req->rq_flags & RQF_DONTPREP)) {
1742 ret = scsi_prepare_cmd(req);
1743 if (ret != BLK_STS_OK)
1744 goto out_dec_host_busy;
1745 req->rq_flags |= RQF_DONTPREP;
1746 } else {
1747 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1748 }
1749
1750 cmd->flags &= SCMD_PRESERVED_FLAGS;
1751 if (sdev->simple_tags)
1752 cmd->flags |= SCMD_TAGGED;
1753 if (bd->last)
1754 cmd->flags |= SCMD_LAST;
1755
1756 scsi_set_resid(cmd, 0);
1757 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1758 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1759
1760 blk_mq_start_request(req);
1761 reason = scsi_dispatch_cmd(cmd);
1762 if (reason) {
1763 scsi_set_blocked(cmd, reason);
1764 ret = BLK_STS_RESOURCE;
1765 goto out_dec_host_busy;
1766 }
1767
1768 return BLK_STS_OK;
1769
1770 out_dec_host_busy:
1771 scsi_dec_host_busy(shost, cmd);
1772 out_dec_target_busy:
1773 if (scsi_target(sdev)->can_queue > 0)
1774 atomic_dec(&scsi_target(sdev)->target_busy);
1775 out_put_budget:
1776 scsi_mq_put_budget(q, cmd->budget_token);
1777 cmd->budget_token = -1;
1778 switch (ret) {
1779 case BLK_STS_OK:
1780 break;
1781 case BLK_STS_RESOURCE:
1782 case BLK_STS_ZONE_RESOURCE:
1783 if (scsi_device_blocked(sdev))
1784 ret = BLK_STS_DEV_RESOURCE;
1785 break;
1786 case BLK_STS_AGAIN:
1787 cmd->result = DID_BUS_BUSY << 16;
1788 if (req->rq_flags & RQF_DONTPREP)
1789 scsi_mq_uninit_cmd(cmd);
1790 break;
1791 default:
1792 if (unlikely(!scsi_device_online(sdev)))
1793 cmd->result = DID_NO_CONNECT << 16;
1794 else
1795 cmd->result = DID_ERROR << 16;
1796 /*
1797 * Make sure to release all allocated resources when
1798 * we hit an error, as we will never see this command
1799 * again.
1800 */
1801 if (req->rq_flags & RQF_DONTPREP)
1802 scsi_mq_uninit_cmd(cmd);
1803 scsi_run_queue_async(sdev);
1804 break;
1805 }
1806 return ret;
1807 }
1808
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1809 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1810 unsigned int hctx_idx, unsigned int numa_node)
1811 {
1812 struct Scsi_Host *shost = set->driver_data;
1813 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1814 struct scatterlist *sg;
1815 int ret = 0;
1816
1817 cmd->sense_buffer =
1818 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1819 if (!cmd->sense_buffer)
1820 return -ENOMEM;
1821
1822 if (scsi_host_get_prot(shost)) {
1823 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1824 shost->hostt->cmd_size;
1825 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1826 }
1827
1828 if (shost->hostt->init_cmd_priv) {
1829 ret = shost->hostt->init_cmd_priv(shost, cmd);
1830 if (ret < 0)
1831 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1832 }
1833
1834 return ret;
1835 }
1836
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1837 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1838 unsigned int hctx_idx)
1839 {
1840 struct Scsi_Host *shost = set->driver_data;
1841 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1842
1843 if (shost->hostt->exit_cmd_priv)
1844 shost->hostt->exit_cmd_priv(shost, cmd);
1845 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1846 }
1847
1848
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1849 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1850 {
1851 struct Scsi_Host *shost = hctx->driver_data;
1852
1853 if (shost->hostt->mq_poll)
1854 return shost->hostt->mq_poll(shost, hctx->queue_num);
1855
1856 return 0;
1857 }
1858
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1859 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1860 unsigned int hctx_idx)
1861 {
1862 struct Scsi_Host *shost = data;
1863
1864 hctx->driver_data = shost;
1865 return 0;
1866 }
1867
scsi_map_queues(struct blk_mq_tag_set * set)1868 static void scsi_map_queues(struct blk_mq_tag_set *set)
1869 {
1870 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1871
1872 if (shost->hostt->map_queues)
1873 return shost->hostt->map_queues(shost);
1874 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1875 }
1876
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1877 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1878 {
1879 struct device *dev = shost->dma_dev;
1880
1881 /*
1882 * this limit is imposed by hardware restrictions
1883 */
1884 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1885 SG_MAX_SEGMENTS));
1886
1887 if (scsi_host_prot_dma(shost)) {
1888 shost->sg_prot_tablesize =
1889 min_not_zero(shost->sg_prot_tablesize,
1890 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1891 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1892 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1893 }
1894
1895 blk_queue_max_hw_sectors(q, shost->max_sectors);
1896 blk_queue_segment_boundary(q, shost->dma_boundary);
1897 dma_set_seg_boundary(dev, shost->dma_boundary);
1898
1899 blk_queue_max_segment_size(q, shost->max_segment_size);
1900 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1901 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1902
1903 /*
1904 * Set a reasonable default alignment: The larger of 32-byte (dword),
1905 * which is a common minimum for HBAs, and the minimum DMA alignment,
1906 * which is set by the platform.
1907 *
1908 * Devices that require a bigger alignment can increase it later.
1909 */
1910 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1911 }
1912 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1913
1914 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1915 .get_budget = scsi_mq_get_budget,
1916 .put_budget = scsi_mq_put_budget,
1917 .queue_rq = scsi_queue_rq,
1918 .complete = scsi_complete,
1919 .timeout = scsi_timeout,
1920 #ifdef CONFIG_BLK_DEBUG_FS
1921 .show_rq = scsi_show_rq,
1922 #endif
1923 .init_request = scsi_mq_init_request,
1924 .exit_request = scsi_mq_exit_request,
1925 .cleanup_rq = scsi_cleanup_rq,
1926 .busy = scsi_mq_lld_busy,
1927 .map_queues = scsi_map_queues,
1928 .init_hctx = scsi_init_hctx,
1929 .poll = scsi_mq_poll,
1930 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1931 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1932 };
1933
1934
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1935 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1936 {
1937 struct Scsi_Host *shost = hctx->driver_data;
1938
1939 shost->hostt->commit_rqs(shost, hctx->queue_num);
1940 }
1941
1942 static const struct blk_mq_ops scsi_mq_ops = {
1943 .get_budget = scsi_mq_get_budget,
1944 .put_budget = scsi_mq_put_budget,
1945 .queue_rq = scsi_queue_rq,
1946 .commit_rqs = scsi_commit_rqs,
1947 .complete = scsi_complete,
1948 .timeout = scsi_timeout,
1949 #ifdef CONFIG_BLK_DEBUG_FS
1950 .show_rq = scsi_show_rq,
1951 #endif
1952 .init_request = scsi_mq_init_request,
1953 .exit_request = scsi_mq_exit_request,
1954 .cleanup_rq = scsi_cleanup_rq,
1955 .busy = scsi_mq_lld_busy,
1956 .map_queues = scsi_map_queues,
1957 .init_hctx = scsi_init_hctx,
1958 .poll = scsi_mq_poll,
1959 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1960 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1961 };
1962
scsi_mq_setup_tags(struct Scsi_Host * shost)1963 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1964 {
1965 unsigned int cmd_size, sgl_size;
1966 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1967
1968 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1969 scsi_mq_inline_sgl_size(shost));
1970 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1971 if (scsi_host_get_prot(shost))
1972 cmd_size += sizeof(struct scsi_data_buffer) +
1973 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1974
1975 memset(tag_set, 0, sizeof(*tag_set));
1976 if (shost->hostt->commit_rqs)
1977 tag_set->ops = &scsi_mq_ops;
1978 else
1979 tag_set->ops = &scsi_mq_ops_no_commit;
1980 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1981 tag_set->nr_maps = shost->nr_maps ? : 1;
1982 tag_set->queue_depth = shost->can_queue;
1983 tag_set->cmd_size = cmd_size;
1984 tag_set->numa_node = dev_to_node(shost->dma_dev);
1985 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1986 tag_set->flags |=
1987 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1988 if (shost->queuecommand_may_block)
1989 tag_set->flags |= BLK_MQ_F_BLOCKING;
1990 tag_set->driver_data = shost;
1991 if (shost->host_tagset)
1992 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1993
1994 return blk_mq_alloc_tag_set(tag_set);
1995 }
1996
scsi_mq_free_tags(struct kref * kref)1997 void scsi_mq_free_tags(struct kref *kref)
1998 {
1999 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2000 tagset_refcnt);
2001
2002 blk_mq_free_tag_set(&shost->tag_set);
2003 complete(&shost->tagset_freed);
2004 }
2005
2006 /**
2007 * scsi_device_from_queue - return sdev associated with a request_queue
2008 * @q: The request queue to return the sdev from
2009 *
2010 * Return the sdev associated with a request queue or NULL if the
2011 * request_queue does not reference a SCSI device.
2012 */
scsi_device_from_queue(struct request_queue * q)2013 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2014 {
2015 struct scsi_device *sdev = NULL;
2016
2017 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2018 q->mq_ops == &scsi_mq_ops)
2019 sdev = q->queuedata;
2020 if (!sdev || !get_device(&sdev->sdev_gendev))
2021 sdev = NULL;
2022
2023 return sdev;
2024 }
2025 /*
2026 * pktcdvd should have been integrated into the SCSI layers, but for historical
2027 * reasons like the old IDE driver it isn't. This export allows it to safely
2028 * probe if a given device is a SCSI one and only attach to that.
2029 */
2030 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2031 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2032 #endif
2033
2034 /**
2035 * scsi_block_requests - Utility function used by low-level drivers to prevent
2036 * further commands from being queued to the device.
2037 * @shost: host in question
2038 *
2039 * There is no timer nor any other means by which the requests get unblocked
2040 * other than the low-level driver calling scsi_unblock_requests().
2041 */
scsi_block_requests(struct Scsi_Host * shost)2042 void scsi_block_requests(struct Scsi_Host *shost)
2043 {
2044 shost->host_self_blocked = 1;
2045 }
2046 EXPORT_SYMBOL(scsi_block_requests);
2047
2048 /**
2049 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2050 * further commands to be queued to the device.
2051 * @shost: host in question
2052 *
2053 * There is no timer nor any other means by which the requests get unblocked
2054 * other than the low-level driver calling scsi_unblock_requests(). This is done
2055 * as an API function so that changes to the internals of the scsi mid-layer
2056 * won't require wholesale changes to drivers that use this feature.
2057 */
scsi_unblock_requests(struct Scsi_Host * shost)2058 void scsi_unblock_requests(struct Scsi_Host *shost)
2059 {
2060 shost->host_self_blocked = 0;
2061 scsi_run_host_queues(shost);
2062 }
2063 EXPORT_SYMBOL(scsi_unblock_requests);
2064
scsi_exit_queue(void)2065 void scsi_exit_queue(void)
2066 {
2067 kmem_cache_destroy(scsi_sense_cache);
2068 }
2069
2070 /**
2071 * scsi_mode_select - issue a mode select
2072 * @sdev: SCSI device to be queried
2073 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2074 * @sp: Save page bit (0 == don't save, 1 == save)
2075 * @buffer: request buffer (may not be smaller than eight bytes)
2076 * @len: length of request buffer.
2077 * @timeout: command timeout
2078 * @retries: number of retries before failing
2079 * @data: returns a structure abstracting the mode header data
2080 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2081 * must be SCSI_SENSE_BUFFERSIZE big.
2082 *
2083 * Returns zero if successful; negative error number or scsi
2084 * status on error
2085 *
2086 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2087 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2088 unsigned char *buffer, int len, int timeout, int retries,
2089 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090 {
2091 unsigned char cmd[10];
2092 unsigned char *real_buffer;
2093 const struct scsi_exec_args exec_args = {
2094 .sshdr = sshdr,
2095 };
2096 int ret;
2097
2098 memset(cmd, 0, sizeof(cmd));
2099 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2100
2101 /*
2102 * Use MODE SELECT(10) if the device asked for it or if the mode page
2103 * and the mode select header cannot fit within the maximumm 255 bytes
2104 * of the MODE SELECT(6) command.
2105 */
2106 if (sdev->use_10_for_ms ||
2107 len + 4 > 255 ||
2108 data->block_descriptor_length > 255) {
2109 if (len > 65535 - 8)
2110 return -EINVAL;
2111 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2112 if (!real_buffer)
2113 return -ENOMEM;
2114 memcpy(real_buffer + 8, buffer, len);
2115 len += 8;
2116 real_buffer[0] = 0;
2117 real_buffer[1] = 0;
2118 real_buffer[2] = data->medium_type;
2119 real_buffer[3] = data->device_specific;
2120 real_buffer[4] = data->longlba ? 0x01 : 0;
2121 real_buffer[5] = 0;
2122 put_unaligned_be16(data->block_descriptor_length,
2123 &real_buffer[6]);
2124
2125 cmd[0] = MODE_SELECT_10;
2126 put_unaligned_be16(len, &cmd[7]);
2127 } else {
2128 if (data->longlba)
2129 return -EINVAL;
2130
2131 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2132 if (!real_buffer)
2133 return -ENOMEM;
2134 memcpy(real_buffer + 4, buffer, len);
2135 len += 4;
2136 real_buffer[0] = 0;
2137 real_buffer[1] = data->medium_type;
2138 real_buffer[2] = data->device_specific;
2139 real_buffer[3] = data->block_descriptor_length;
2140
2141 cmd[0] = MODE_SELECT;
2142 cmd[4] = len;
2143 }
2144
2145 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2146 timeout, retries, &exec_args);
2147 kfree(real_buffer);
2148 return ret;
2149 }
2150 EXPORT_SYMBOL_GPL(scsi_mode_select);
2151
2152 /**
2153 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2154 * @sdev: SCSI device to be queried
2155 * @dbd: set to prevent mode sense from returning block descriptors
2156 * @modepage: mode page being requested
2157 * @subpage: sub-page of the mode page being requested
2158 * @buffer: request buffer (may not be smaller than eight bytes)
2159 * @len: length of request buffer.
2160 * @timeout: command timeout
2161 * @retries: number of retries before failing
2162 * @data: returns a structure abstracting the mode header data
2163 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2164 * must be SCSI_SENSE_BUFFERSIZE big.
2165 *
2166 * Returns zero if successful, or a negative error number on failure
2167 */
2168 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2169 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2170 unsigned char *buffer, int len, int timeout, int retries,
2171 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2172 {
2173 unsigned char cmd[12];
2174 int use_10_for_ms;
2175 int header_length;
2176 int result, retry_count = retries;
2177 struct scsi_sense_hdr my_sshdr;
2178 const struct scsi_exec_args exec_args = {
2179 /* caller might not be interested in sense, but we need it */
2180 .sshdr = sshdr ? : &my_sshdr,
2181 };
2182
2183 memset(data, 0, sizeof(*data));
2184 memset(&cmd[0], 0, 12);
2185
2186 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2187 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2188 cmd[2] = modepage;
2189 cmd[3] = subpage;
2190
2191 sshdr = exec_args.sshdr;
2192
2193 retry:
2194 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2195
2196 if (use_10_for_ms) {
2197 if (len < 8 || len > 65535)
2198 return -EINVAL;
2199
2200 cmd[0] = MODE_SENSE_10;
2201 put_unaligned_be16(len, &cmd[7]);
2202 header_length = 8;
2203 } else {
2204 if (len < 4)
2205 return -EINVAL;
2206
2207 cmd[0] = MODE_SENSE;
2208 cmd[4] = len;
2209 header_length = 4;
2210 }
2211
2212 memset(buffer, 0, len);
2213
2214 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2215 timeout, retries, &exec_args);
2216 if (result < 0)
2217 return result;
2218
2219 /* This code looks awful: what it's doing is making sure an
2220 * ILLEGAL REQUEST sense return identifies the actual command
2221 * byte as the problem. MODE_SENSE commands can return
2222 * ILLEGAL REQUEST if the code page isn't supported */
2223
2224 if (!scsi_status_is_good(result)) {
2225 if (scsi_sense_valid(sshdr)) {
2226 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2227 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2228 /*
2229 * Invalid command operation code: retry using
2230 * MODE SENSE(6) if this was a MODE SENSE(10)
2231 * request, except if the request mode page is
2232 * too large for MODE SENSE single byte
2233 * allocation length field.
2234 */
2235 if (use_10_for_ms) {
2236 if (len > 255)
2237 return -EIO;
2238 sdev->use_10_for_ms = 0;
2239 goto retry;
2240 }
2241 }
2242 if (scsi_status_is_check_condition(result) &&
2243 sshdr->sense_key == UNIT_ATTENTION &&
2244 retry_count) {
2245 retry_count--;
2246 goto retry;
2247 }
2248 }
2249 return -EIO;
2250 }
2251 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2252 (modepage == 6 || modepage == 8))) {
2253 /* Initio breakage? */
2254 header_length = 0;
2255 data->length = 13;
2256 data->medium_type = 0;
2257 data->device_specific = 0;
2258 data->longlba = 0;
2259 data->block_descriptor_length = 0;
2260 } else if (use_10_for_ms) {
2261 data->length = get_unaligned_be16(&buffer[0]) + 2;
2262 data->medium_type = buffer[2];
2263 data->device_specific = buffer[3];
2264 data->longlba = buffer[4] & 0x01;
2265 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2266 } else {
2267 data->length = buffer[0] + 1;
2268 data->medium_type = buffer[1];
2269 data->device_specific = buffer[2];
2270 data->block_descriptor_length = buffer[3];
2271 }
2272 data->header_length = header_length;
2273
2274 return 0;
2275 }
2276 EXPORT_SYMBOL(scsi_mode_sense);
2277
2278 /**
2279 * scsi_test_unit_ready - test if unit is ready
2280 * @sdev: scsi device to change the state of.
2281 * @timeout: command timeout
2282 * @retries: number of retries before failing
2283 * @sshdr: outpout pointer for decoded sense information.
2284 *
2285 * Returns zero if unsuccessful or an error if TUR failed. For
2286 * removable media, UNIT_ATTENTION sets ->changed flag.
2287 **/
2288 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2289 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2290 struct scsi_sense_hdr *sshdr)
2291 {
2292 char cmd[] = {
2293 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2294 };
2295 const struct scsi_exec_args exec_args = {
2296 .sshdr = sshdr,
2297 };
2298 int result;
2299
2300 /* try to eat the UNIT_ATTENTION if there are enough retries */
2301 do {
2302 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2303 timeout, 1, &exec_args);
2304 if (sdev->removable && scsi_sense_valid(sshdr) &&
2305 sshdr->sense_key == UNIT_ATTENTION)
2306 sdev->changed = 1;
2307 } while (scsi_sense_valid(sshdr) &&
2308 sshdr->sense_key == UNIT_ATTENTION && --retries);
2309
2310 return result;
2311 }
2312 EXPORT_SYMBOL(scsi_test_unit_ready);
2313
2314 /**
2315 * scsi_device_set_state - Take the given device through the device state model.
2316 * @sdev: scsi device to change the state of.
2317 * @state: state to change to.
2318 *
2319 * Returns zero if successful or an error if the requested
2320 * transition is illegal.
2321 */
2322 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2323 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2324 {
2325 enum scsi_device_state oldstate = sdev->sdev_state;
2326
2327 if (state == oldstate)
2328 return 0;
2329
2330 switch (state) {
2331 case SDEV_CREATED:
2332 switch (oldstate) {
2333 case SDEV_CREATED_BLOCK:
2334 break;
2335 default:
2336 goto illegal;
2337 }
2338 break;
2339
2340 case SDEV_RUNNING:
2341 switch (oldstate) {
2342 case SDEV_CREATED:
2343 case SDEV_OFFLINE:
2344 case SDEV_TRANSPORT_OFFLINE:
2345 case SDEV_QUIESCE:
2346 case SDEV_BLOCK:
2347 break;
2348 default:
2349 goto illegal;
2350 }
2351 break;
2352
2353 case SDEV_QUIESCE:
2354 switch (oldstate) {
2355 case SDEV_RUNNING:
2356 case SDEV_OFFLINE:
2357 case SDEV_TRANSPORT_OFFLINE:
2358 break;
2359 default:
2360 goto illegal;
2361 }
2362 break;
2363
2364 case SDEV_OFFLINE:
2365 case SDEV_TRANSPORT_OFFLINE:
2366 switch (oldstate) {
2367 case SDEV_CREATED:
2368 case SDEV_RUNNING:
2369 case SDEV_QUIESCE:
2370 case SDEV_BLOCK:
2371 break;
2372 default:
2373 goto illegal;
2374 }
2375 break;
2376
2377 case SDEV_BLOCK:
2378 switch (oldstate) {
2379 case SDEV_RUNNING:
2380 case SDEV_CREATED_BLOCK:
2381 case SDEV_QUIESCE:
2382 case SDEV_OFFLINE:
2383 break;
2384 default:
2385 goto illegal;
2386 }
2387 break;
2388
2389 case SDEV_CREATED_BLOCK:
2390 switch (oldstate) {
2391 case SDEV_CREATED:
2392 break;
2393 default:
2394 goto illegal;
2395 }
2396 break;
2397
2398 case SDEV_CANCEL:
2399 switch (oldstate) {
2400 case SDEV_CREATED:
2401 case SDEV_RUNNING:
2402 case SDEV_QUIESCE:
2403 case SDEV_OFFLINE:
2404 case SDEV_TRANSPORT_OFFLINE:
2405 break;
2406 default:
2407 goto illegal;
2408 }
2409 break;
2410
2411 case SDEV_DEL:
2412 switch (oldstate) {
2413 case SDEV_CREATED:
2414 case SDEV_RUNNING:
2415 case SDEV_OFFLINE:
2416 case SDEV_TRANSPORT_OFFLINE:
2417 case SDEV_CANCEL:
2418 case SDEV_BLOCK:
2419 case SDEV_CREATED_BLOCK:
2420 break;
2421 default:
2422 goto illegal;
2423 }
2424 break;
2425
2426 }
2427 sdev->offline_already = false;
2428 sdev->sdev_state = state;
2429 return 0;
2430
2431 illegal:
2432 SCSI_LOG_ERROR_RECOVERY(1,
2433 sdev_printk(KERN_ERR, sdev,
2434 "Illegal state transition %s->%s",
2435 scsi_device_state_name(oldstate),
2436 scsi_device_state_name(state))
2437 );
2438 return -EINVAL;
2439 }
2440 EXPORT_SYMBOL(scsi_device_set_state);
2441
2442 /**
2443 * scsi_evt_emit - emit a single SCSI device uevent
2444 * @sdev: associated SCSI device
2445 * @evt: event to emit
2446 *
2447 * Send a single uevent (scsi_event) to the associated scsi_device.
2448 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2449 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2450 {
2451 int idx = 0;
2452 char *envp[3];
2453
2454 switch (evt->evt_type) {
2455 case SDEV_EVT_MEDIA_CHANGE:
2456 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2457 break;
2458 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2459 scsi_rescan_device(sdev);
2460 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2461 break;
2462 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2463 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2464 break;
2465 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2466 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2467 break;
2468 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2469 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2470 break;
2471 case SDEV_EVT_LUN_CHANGE_REPORTED:
2472 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2473 break;
2474 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2475 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2476 break;
2477 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2478 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2479 break;
2480 default:
2481 /* do nothing */
2482 break;
2483 }
2484
2485 envp[idx++] = NULL;
2486
2487 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2488 }
2489
2490 /**
2491 * scsi_evt_thread - send a uevent for each scsi event
2492 * @work: work struct for scsi_device
2493 *
2494 * Dispatch queued events to their associated scsi_device kobjects
2495 * as uevents.
2496 */
scsi_evt_thread(struct work_struct * work)2497 void scsi_evt_thread(struct work_struct *work)
2498 {
2499 struct scsi_device *sdev;
2500 enum scsi_device_event evt_type;
2501 LIST_HEAD(event_list);
2502
2503 sdev = container_of(work, struct scsi_device, event_work);
2504
2505 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2506 if (test_and_clear_bit(evt_type, sdev->pending_events))
2507 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2508
2509 while (1) {
2510 struct scsi_event *evt;
2511 struct list_head *this, *tmp;
2512 unsigned long flags;
2513
2514 spin_lock_irqsave(&sdev->list_lock, flags);
2515 list_splice_init(&sdev->event_list, &event_list);
2516 spin_unlock_irqrestore(&sdev->list_lock, flags);
2517
2518 if (list_empty(&event_list))
2519 break;
2520
2521 list_for_each_safe(this, tmp, &event_list) {
2522 evt = list_entry(this, struct scsi_event, node);
2523 list_del(&evt->node);
2524 scsi_evt_emit(sdev, evt);
2525 kfree(evt);
2526 }
2527 }
2528 }
2529
2530 /**
2531 * sdev_evt_send - send asserted event to uevent thread
2532 * @sdev: scsi_device event occurred on
2533 * @evt: event to send
2534 *
2535 * Assert scsi device event asynchronously.
2536 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2537 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2538 {
2539 unsigned long flags;
2540
2541 #if 0
2542 /* FIXME: currently this check eliminates all media change events
2543 * for polled devices. Need to update to discriminate between AN
2544 * and polled events */
2545 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2546 kfree(evt);
2547 return;
2548 }
2549 #endif
2550
2551 spin_lock_irqsave(&sdev->list_lock, flags);
2552 list_add_tail(&evt->node, &sdev->event_list);
2553 schedule_work(&sdev->event_work);
2554 spin_unlock_irqrestore(&sdev->list_lock, flags);
2555 }
2556 EXPORT_SYMBOL_GPL(sdev_evt_send);
2557
2558 /**
2559 * sdev_evt_alloc - allocate a new scsi event
2560 * @evt_type: type of event to allocate
2561 * @gfpflags: GFP flags for allocation
2562 *
2563 * Allocates and returns a new scsi_event.
2564 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2565 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2566 gfp_t gfpflags)
2567 {
2568 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2569 if (!evt)
2570 return NULL;
2571
2572 evt->evt_type = evt_type;
2573 INIT_LIST_HEAD(&evt->node);
2574
2575 /* evt_type-specific initialization, if any */
2576 switch (evt_type) {
2577 case SDEV_EVT_MEDIA_CHANGE:
2578 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2579 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2580 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2581 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2582 case SDEV_EVT_LUN_CHANGE_REPORTED:
2583 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2584 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2585 default:
2586 /* do nothing */
2587 break;
2588 }
2589
2590 return evt;
2591 }
2592 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2593
2594 /**
2595 * sdev_evt_send_simple - send asserted event to uevent thread
2596 * @sdev: scsi_device event occurred on
2597 * @evt_type: type of event to send
2598 * @gfpflags: GFP flags for allocation
2599 *
2600 * Assert scsi device event asynchronously, given an event type.
2601 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2602 void sdev_evt_send_simple(struct scsi_device *sdev,
2603 enum scsi_device_event evt_type, gfp_t gfpflags)
2604 {
2605 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2606 if (!evt) {
2607 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2608 evt_type);
2609 return;
2610 }
2611
2612 sdev_evt_send(sdev, evt);
2613 }
2614 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2615
2616 /**
2617 * scsi_device_quiesce - Block all commands except power management.
2618 * @sdev: scsi device to quiesce.
2619 *
2620 * This works by trying to transition to the SDEV_QUIESCE state
2621 * (which must be a legal transition). When the device is in this
2622 * state, only power management requests will be accepted, all others will
2623 * be deferred.
2624 *
2625 * Must be called with user context, may sleep.
2626 *
2627 * Returns zero if unsuccessful or an error if not.
2628 */
2629 int
scsi_device_quiesce(struct scsi_device * sdev)2630 scsi_device_quiesce(struct scsi_device *sdev)
2631 {
2632 struct request_queue *q = sdev->request_queue;
2633 int err;
2634
2635 /*
2636 * It is allowed to call scsi_device_quiesce() multiple times from
2637 * the same context but concurrent scsi_device_quiesce() calls are
2638 * not allowed.
2639 */
2640 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2641
2642 if (sdev->quiesced_by == current)
2643 return 0;
2644
2645 blk_set_pm_only(q);
2646
2647 blk_mq_freeze_queue(q);
2648 /*
2649 * Ensure that the effect of blk_set_pm_only() will be visible
2650 * for percpu_ref_tryget() callers that occur after the queue
2651 * unfreeze even if the queue was already frozen before this function
2652 * was called. See also https://lwn.net/Articles/573497/.
2653 */
2654 synchronize_rcu();
2655 blk_mq_unfreeze_queue(q);
2656
2657 mutex_lock(&sdev->state_mutex);
2658 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2659 if (err == 0)
2660 sdev->quiesced_by = current;
2661 else
2662 blk_clear_pm_only(q);
2663 mutex_unlock(&sdev->state_mutex);
2664
2665 return err;
2666 }
2667 EXPORT_SYMBOL(scsi_device_quiesce);
2668
2669 /**
2670 * scsi_device_resume - Restart user issued commands to a quiesced device.
2671 * @sdev: scsi device to resume.
2672 *
2673 * Moves the device from quiesced back to running and restarts the
2674 * queues.
2675 *
2676 * Must be called with user context, may sleep.
2677 */
scsi_device_resume(struct scsi_device * sdev)2678 void scsi_device_resume(struct scsi_device *sdev)
2679 {
2680 /* check if the device state was mutated prior to resume, and if
2681 * so assume the state is being managed elsewhere (for example
2682 * device deleted during suspend)
2683 */
2684 mutex_lock(&sdev->state_mutex);
2685 if (sdev->sdev_state == SDEV_QUIESCE)
2686 scsi_device_set_state(sdev, SDEV_RUNNING);
2687 if (sdev->quiesced_by) {
2688 sdev->quiesced_by = NULL;
2689 blk_clear_pm_only(sdev->request_queue);
2690 }
2691 mutex_unlock(&sdev->state_mutex);
2692 }
2693 EXPORT_SYMBOL(scsi_device_resume);
2694
2695 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2696 device_quiesce_fn(struct scsi_device *sdev, void *data)
2697 {
2698 scsi_device_quiesce(sdev);
2699 }
2700
2701 void
scsi_target_quiesce(struct scsi_target * starget)2702 scsi_target_quiesce(struct scsi_target *starget)
2703 {
2704 starget_for_each_device(starget, NULL, device_quiesce_fn);
2705 }
2706 EXPORT_SYMBOL(scsi_target_quiesce);
2707
2708 static void
device_resume_fn(struct scsi_device * sdev,void * data)2709 device_resume_fn(struct scsi_device *sdev, void *data)
2710 {
2711 scsi_device_resume(sdev);
2712 }
2713
2714 void
scsi_target_resume(struct scsi_target * starget)2715 scsi_target_resume(struct scsi_target *starget)
2716 {
2717 starget_for_each_device(starget, NULL, device_resume_fn);
2718 }
2719 EXPORT_SYMBOL(scsi_target_resume);
2720
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2721 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2722 {
2723 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2724 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2725
2726 return 0;
2727 }
2728
scsi_start_queue(struct scsi_device * sdev)2729 void scsi_start_queue(struct scsi_device *sdev)
2730 {
2731 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2732 blk_mq_unquiesce_queue(sdev->request_queue);
2733 }
2734
scsi_stop_queue(struct scsi_device * sdev)2735 static void scsi_stop_queue(struct scsi_device *sdev)
2736 {
2737 /*
2738 * The atomic variable of ->queue_stopped covers that
2739 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2740 *
2741 * The caller needs to wait until quiesce is done.
2742 */
2743 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2744 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2745 }
2746
2747 /**
2748 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2749 * @sdev: device to block
2750 *
2751 * Pause SCSI command processing on the specified device. Does not sleep.
2752 *
2753 * Returns zero if successful or a negative error code upon failure.
2754 *
2755 * Notes:
2756 * This routine transitions the device to the SDEV_BLOCK state (which must be
2757 * a legal transition). When the device is in this state, command processing
2758 * is paused until the device leaves the SDEV_BLOCK state. See also
2759 * scsi_internal_device_unblock_nowait().
2760 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2761 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2762 {
2763 int ret = __scsi_internal_device_block_nowait(sdev);
2764
2765 /*
2766 * The device has transitioned to SDEV_BLOCK. Stop the
2767 * block layer from calling the midlayer with this device's
2768 * request queue.
2769 */
2770 if (!ret)
2771 scsi_stop_queue(sdev);
2772 return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2775
2776 /**
2777 * scsi_device_block - try to transition to the SDEV_BLOCK state
2778 * @sdev: device to block
2779 * @data: dummy argument, ignored
2780 *
2781 * Pause SCSI command processing on the specified device. Callers must wait
2782 * until all ongoing scsi_queue_rq() calls have finished after this function
2783 * returns.
2784 *
2785 * Note:
2786 * This routine transitions the device to the SDEV_BLOCK state (which must be
2787 * a legal transition). When the device is in this state, command processing
2788 * is paused until the device leaves the SDEV_BLOCK state. See also
2789 * scsi_internal_device_unblock().
2790 */
scsi_device_block(struct scsi_device * sdev,void * data)2791 static void scsi_device_block(struct scsi_device *sdev, void *data)
2792 {
2793 int err;
2794 enum scsi_device_state state;
2795
2796 mutex_lock(&sdev->state_mutex);
2797 err = __scsi_internal_device_block_nowait(sdev);
2798 state = sdev->sdev_state;
2799 if (err == 0)
2800 /*
2801 * scsi_stop_queue() must be called with the state_mutex
2802 * held. Otherwise a simultaneous scsi_start_queue() call
2803 * might unquiesce the queue before we quiesce it.
2804 */
2805 scsi_stop_queue(sdev);
2806
2807 mutex_unlock(&sdev->state_mutex);
2808
2809 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2810 __func__, dev_name(&sdev->sdev_gendev), state);
2811 }
2812
2813 /**
2814 * scsi_internal_device_unblock_nowait - resume a device after a block request
2815 * @sdev: device to resume
2816 * @new_state: state to set the device to after unblocking
2817 *
2818 * Restart the device queue for a previously suspended SCSI device. Does not
2819 * sleep.
2820 *
2821 * Returns zero if successful or a negative error code upon failure.
2822 *
2823 * Notes:
2824 * This routine transitions the device to the SDEV_RUNNING state or to one of
2825 * the offline states (which must be a legal transition) allowing the midlayer
2826 * to goose the queue for this device.
2827 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2828 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2829 enum scsi_device_state new_state)
2830 {
2831 switch (new_state) {
2832 case SDEV_RUNNING:
2833 case SDEV_TRANSPORT_OFFLINE:
2834 break;
2835 default:
2836 return -EINVAL;
2837 }
2838
2839 /*
2840 * Try to transition the scsi device to SDEV_RUNNING or one of the
2841 * offlined states and goose the device queue if successful.
2842 */
2843 switch (sdev->sdev_state) {
2844 case SDEV_BLOCK:
2845 case SDEV_TRANSPORT_OFFLINE:
2846 sdev->sdev_state = new_state;
2847 break;
2848 case SDEV_CREATED_BLOCK:
2849 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2850 new_state == SDEV_OFFLINE)
2851 sdev->sdev_state = new_state;
2852 else
2853 sdev->sdev_state = SDEV_CREATED;
2854 break;
2855 case SDEV_CANCEL:
2856 case SDEV_OFFLINE:
2857 break;
2858 default:
2859 return -EINVAL;
2860 }
2861 scsi_start_queue(sdev);
2862
2863 return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2866
2867 /**
2868 * scsi_internal_device_unblock - resume a device after a block request
2869 * @sdev: device to resume
2870 * @new_state: state to set the device to after unblocking
2871 *
2872 * Restart the device queue for a previously suspended SCSI device. May sleep.
2873 *
2874 * Returns zero if successful or a negative error code upon failure.
2875 *
2876 * Notes:
2877 * This routine transitions the device to the SDEV_RUNNING state or to one of
2878 * the offline states (which must be a legal transition) allowing the midlayer
2879 * to goose the queue for this device.
2880 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2881 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2882 enum scsi_device_state new_state)
2883 {
2884 int ret;
2885
2886 mutex_lock(&sdev->state_mutex);
2887 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2888 mutex_unlock(&sdev->state_mutex);
2889
2890 return ret;
2891 }
2892
2893 static int
target_block(struct device * dev,void * data)2894 target_block(struct device *dev, void *data)
2895 {
2896 if (scsi_is_target_device(dev))
2897 starget_for_each_device(to_scsi_target(dev), NULL,
2898 scsi_device_block);
2899 return 0;
2900 }
2901
2902 /**
2903 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2904 * @dev: a parent device of one or more scsi_target devices
2905 * @shost: the Scsi_Host to which this device belongs
2906 *
2907 * Iterate over all children of @dev, which should be scsi_target devices,
2908 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2909 * ongoing scsi_queue_rq() calls to finish. May sleep.
2910 *
2911 * Note:
2912 * @dev must not itself be a scsi_target device.
2913 */
2914 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)2915 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2916 {
2917 WARN_ON_ONCE(scsi_is_target_device(dev));
2918 device_for_each_child(dev, NULL, target_block);
2919 blk_mq_wait_quiesce_done(&shost->tag_set);
2920 }
2921 EXPORT_SYMBOL_GPL(scsi_block_targets);
2922
2923 static void
device_unblock(struct scsi_device * sdev,void * data)2924 device_unblock(struct scsi_device *sdev, void *data)
2925 {
2926 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2927 }
2928
2929 static int
target_unblock(struct device * dev,void * data)2930 target_unblock(struct device *dev, void *data)
2931 {
2932 if (scsi_is_target_device(dev))
2933 starget_for_each_device(to_scsi_target(dev), data,
2934 device_unblock);
2935 return 0;
2936 }
2937
2938 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2939 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2940 {
2941 if (scsi_is_target_device(dev))
2942 starget_for_each_device(to_scsi_target(dev), &new_state,
2943 device_unblock);
2944 else
2945 device_for_each_child(dev, &new_state, target_unblock);
2946 }
2947 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2948
2949 /**
2950 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2951 * @shost: device to block
2952 *
2953 * Pause SCSI command processing for all logical units associated with the SCSI
2954 * host and wait until pending scsi_queue_rq() calls have finished.
2955 *
2956 * Returns zero if successful or a negative error code upon failure.
2957 */
2958 int
scsi_host_block(struct Scsi_Host * shost)2959 scsi_host_block(struct Scsi_Host *shost)
2960 {
2961 struct scsi_device *sdev;
2962 int ret;
2963
2964 /*
2965 * Call scsi_internal_device_block_nowait so we can avoid
2966 * calling synchronize_rcu() for each LUN.
2967 */
2968 shost_for_each_device(sdev, shost) {
2969 mutex_lock(&sdev->state_mutex);
2970 ret = scsi_internal_device_block_nowait(sdev);
2971 mutex_unlock(&sdev->state_mutex);
2972 if (ret) {
2973 scsi_device_put(sdev);
2974 return ret;
2975 }
2976 }
2977
2978 /* Wait for ongoing scsi_queue_rq() calls to finish. */
2979 blk_mq_wait_quiesce_done(&shost->tag_set);
2980
2981 return 0;
2982 }
2983 EXPORT_SYMBOL_GPL(scsi_host_block);
2984
2985 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2986 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2987 {
2988 struct scsi_device *sdev;
2989 int ret = 0;
2990
2991 shost_for_each_device(sdev, shost) {
2992 ret = scsi_internal_device_unblock(sdev, new_state);
2993 if (ret) {
2994 scsi_device_put(sdev);
2995 break;
2996 }
2997 }
2998 return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3001
3002 /**
3003 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3004 * @sgl: scatter-gather list
3005 * @sg_count: number of segments in sg
3006 * @offset: offset in bytes into sg, on return offset into the mapped area
3007 * @len: bytes to map, on return number of bytes mapped
3008 *
3009 * Returns virtual address of the start of the mapped page
3010 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3011 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3012 size_t *offset, size_t *len)
3013 {
3014 int i;
3015 size_t sg_len = 0, len_complete = 0;
3016 struct scatterlist *sg;
3017 struct page *page;
3018
3019 WARN_ON(!irqs_disabled());
3020
3021 for_each_sg(sgl, sg, sg_count, i) {
3022 len_complete = sg_len; /* Complete sg-entries */
3023 sg_len += sg->length;
3024 if (sg_len > *offset)
3025 break;
3026 }
3027
3028 if (unlikely(i == sg_count)) {
3029 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3030 "elements %d\n",
3031 __func__, sg_len, *offset, sg_count);
3032 WARN_ON(1);
3033 return NULL;
3034 }
3035
3036 /* Offset starting from the beginning of first page in this sg-entry */
3037 *offset = *offset - len_complete + sg->offset;
3038
3039 /* Assumption: contiguous pages can be accessed as "page + i" */
3040 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3041 *offset &= ~PAGE_MASK;
3042
3043 /* Bytes in this sg-entry from *offset to the end of the page */
3044 sg_len = PAGE_SIZE - *offset;
3045 if (*len > sg_len)
3046 *len = sg_len;
3047
3048 return kmap_atomic(page);
3049 }
3050 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3051
3052 /**
3053 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3054 * @virt: virtual address to be unmapped
3055 */
scsi_kunmap_atomic_sg(void * virt)3056 void scsi_kunmap_atomic_sg(void *virt)
3057 {
3058 kunmap_atomic(virt);
3059 }
3060 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3061
sdev_disable_disk_events(struct scsi_device * sdev)3062 void sdev_disable_disk_events(struct scsi_device *sdev)
3063 {
3064 atomic_inc(&sdev->disk_events_disable_depth);
3065 }
3066 EXPORT_SYMBOL(sdev_disable_disk_events);
3067
sdev_enable_disk_events(struct scsi_device * sdev)3068 void sdev_enable_disk_events(struct scsi_device *sdev)
3069 {
3070 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3071 return;
3072 atomic_dec(&sdev->disk_events_disable_depth);
3073 }
3074 EXPORT_SYMBOL(sdev_enable_disk_events);
3075
designator_prio(const unsigned char * d)3076 static unsigned char designator_prio(const unsigned char *d)
3077 {
3078 if (d[1] & 0x30)
3079 /* not associated with LUN */
3080 return 0;
3081
3082 if (d[3] == 0)
3083 /* invalid length */
3084 return 0;
3085
3086 /*
3087 * Order of preference for lun descriptor:
3088 * - SCSI name string
3089 * - NAA IEEE Registered Extended
3090 * - EUI-64 based 16-byte
3091 * - EUI-64 based 12-byte
3092 * - NAA IEEE Registered
3093 * - NAA IEEE Extended
3094 * - EUI-64 based 8-byte
3095 * - SCSI name string (truncated)
3096 * - T10 Vendor ID
3097 * as longer descriptors reduce the likelyhood
3098 * of identification clashes.
3099 */
3100
3101 switch (d[1] & 0xf) {
3102 case 8:
3103 /* SCSI name string, variable-length UTF-8 */
3104 return 9;
3105 case 3:
3106 switch (d[4] >> 4) {
3107 case 6:
3108 /* NAA registered extended */
3109 return 8;
3110 case 5:
3111 /* NAA registered */
3112 return 5;
3113 case 4:
3114 /* NAA extended */
3115 return 4;
3116 case 3:
3117 /* NAA locally assigned */
3118 return 1;
3119 default:
3120 break;
3121 }
3122 break;
3123 case 2:
3124 switch (d[3]) {
3125 case 16:
3126 /* EUI64-based, 16 byte */
3127 return 7;
3128 case 12:
3129 /* EUI64-based, 12 byte */
3130 return 6;
3131 case 8:
3132 /* EUI64-based, 8 byte */
3133 return 3;
3134 default:
3135 break;
3136 }
3137 break;
3138 case 1:
3139 /* T10 vendor ID */
3140 return 1;
3141 default:
3142 break;
3143 }
3144
3145 return 0;
3146 }
3147
3148 /**
3149 * scsi_vpd_lun_id - return a unique device identification
3150 * @sdev: SCSI device
3151 * @id: buffer for the identification
3152 * @id_len: length of the buffer
3153 *
3154 * Copies a unique device identification into @id based
3155 * on the information in the VPD page 0x83 of the device.
3156 * The string will be formatted as a SCSI name string.
3157 *
3158 * Returns the length of the identification or error on failure.
3159 * If the identifier is longer than the supplied buffer the actual
3160 * identifier length is returned and the buffer is not zero-padded.
3161 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3162 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3163 {
3164 u8 cur_id_prio = 0;
3165 u8 cur_id_size = 0;
3166 const unsigned char *d, *cur_id_str;
3167 const struct scsi_vpd *vpd_pg83;
3168 int id_size = -EINVAL;
3169
3170 rcu_read_lock();
3171 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3172 if (!vpd_pg83) {
3173 rcu_read_unlock();
3174 return -ENXIO;
3175 }
3176
3177 /* The id string must be at least 20 bytes + terminating NULL byte */
3178 if (id_len < 21) {
3179 rcu_read_unlock();
3180 return -EINVAL;
3181 }
3182
3183 memset(id, 0, id_len);
3184 for (d = vpd_pg83->data + 4;
3185 d < vpd_pg83->data + vpd_pg83->len;
3186 d += d[3] + 4) {
3187 u8 prio = designator_prio(d);
3188
3189 if (prio == 0 || cur_id_prio > prio)
3190 continue;
3191
3192 switch (d[1] & 0xf) {
3193 case 0x1:
3194 /* T10 Vendor ID */
3195 if (cur_id_size > d[3])
3196 break;
3197 cur_id_prio = prio;
3198 cur_id_size = d[3];
3199 if (cur_id_size + 4 > id_len)
3200 cur_id_size = id_len - 4;
3201 cur_id_str = d + 4;
3202 id_size = snprintf(id, id_len, "t10.%*pE",
3203 cur_id_size, cur_id_str);
3204 break;
3205 case 0x2:
3206 /* EUI-64 */
3207 cur_id_prio = prio;
3208 cur_id_size = d[3];
3209 cur_id_str = d + 4;
3210 switch (cur_id_size) {
3211 case 8:
3212 id_size = snprintf(id, id_len,
3213 "eui.%8phN",
3214 cur_id_str);
3215 break;
3216 case 12:
3217 id_size = snprintf(id, id_len,
3218 "eui.%12phN",
3219 cur_id_str);
3220 break;
3221 case 16:
3222 id_size = snprintf(id, id_len,
3223 "eui.%16phN",
3224 cur_id_str);
3225 break;
3226 default:
3227 break;
3228 }
3229 break;
3230 case 0x3:
3231 /* NAA */
3232 cur_id_prio = prio;
3233 cur_id_size = d[3];
3234 cur_id_str = d + 4;
3235 switch (cur_id_size) {
3236 case 8:
3237 id_size = snprintf(id, id_len,
3238 "naa.%8phN",
3239 cur_id_str);
3240 break;
3241 case 16:
3242 id_size = snprintf(id, id_len,
3243 "naa.%16phN",
3244 cur_id_str);
3245 break;
3246 default:
3247 break;
3248 }
3249 break;
3250 case 0x8:
3251 /* SCSI name string */
3252 if (cur_id_size > d[3])
3253 break;
3254 /* Prefer others for truncated descriptor */
3255 if (d[3] > id_len) {
3256 prio = 2;
3257 if (cur_id_prio > prio)
3258 break;
3259 }
3260 cur_id_prio = prio;
3261 cur_id_size = id_size = d[3];
3262 cur_id_str = d + 4;
3263 if (cur_id_size >= id_len)
3264 cur_id_size = id_len - 1;
3265 memcpy(id, cur_id_str, cur_id_size);
3266 break;
3267 default:
3268 break;
3269 }
3270 }
3271 rcu_read_unlock();
3272
3273 return id_size;
3274 }
3275 EXPORT_SYMBOL(scsi_vpd_lun_id);
3276
3277 /*
3278 * scsi_vpd_tpg_id - return a target port group identifier
3279 * @sdev: SCSI device
3280 *
3281 * Returns the Target Port Group identifier from the information
3282 * froom VPD page 0x83 of the device.
3283 *
3284 * Returns the identifier or error on failure.
3285 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3286 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3287 {
3288 const unsigned char *d;
3289 const struct scsi_vpd *vpd_pg83;
3290 int group_id = -EAGAIN, rel_port = -1;
3291
3292 rcu_read_lock();
3293 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3294 if (!vpd_pg83) {
3295 rcu_read_unlock();
3296 return -ENXIO;
3297 }
3298
3299 d = vpd_pg83->data + 4;
3300 while (d < vpd_pg83->data + vpd_pg83->len) {
3301 switch (d[1] & 0xf) {
3302 case 0x4:
3303 /* Relative target port */
3304 rel_port = get_unaligned_be16(&d[6]);
3305 break;
3306 case 0x5:
3307 /* Target port group */
3308 group_id = get_unaligned_be16(&d[6]);
3309 break;
3310 default:
3311 break;
3312 }
3313 d += d[3] + 4;
3314 }
3315 rcu_read_unlock();
3316
3317 if (group_id >= 0 && rel_id && rel_port != -1)
3318 *rel_id = rel_port;
3319
3320 return group_id;
3321 }
3322 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3323
3324 /**
3325 * scsi_build_sense - build sense data for a command
3326 * @scmd: scsi command for which the sense should be formatted
3327 * @desc: Sense format (non-zero == descriptor format,
3328 * 0 == fixed format)
3329 * @key: Sense key
3330 * @asc: Additional sense code
3331 * @ascq: Additional sense code qualifier
3332 *
3333 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3334 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3335 {
3336 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3337 scmd->result = SAM_STAT_CHECK_CONDITION;
3338 }
3339 EXPORT_SYMBOL_GPL(scsi_build_sense);
3340