1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 /*
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
74 */
75 #define SCSI_QUEUE_DELAY 3
76
77 /*
78 * Function: scsi_unprep_request()
79 *
80 * Purpose: Remove all preparation done for a request, including its
81 * associated scsi_cmnd, so that it can be requeued.
82 *
83 * Arguments: req - request to unprepare
84 *
85 * Lock status: Assumed that no locks are held upon entry.
86 *
87 * Returns: Nothing.
88 */
scsi_unprep_request(struct request * req)89 static void scsi_unprep_request(struct request *req)
90 {
91 struct scsi_cmnd *cmd = req->special;
92
93 blk_unprep_request(req);
94 req->special = NULL;
95
96 scsi_put_command(cmd);
97 }
98
99 /**
100 * __scsi_queue_insert - private queue insertion
101 * @cmd: The SCSI command being requeued
102 * @reason: The reason for the requeue
103 * @unbusy: Whether the queue should be unbusied
104 *
105 * This is a private queue insertion. The public interface
106 * scsi_queue_insert() always assumes the queue should be unbusied
107 * because it's always called before the completion. This function is
108 * for a requeue after completion, which should only occur in this
109 * file.
110 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,int unbusy)111 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
112 {
113 struct Scsi_Host *host = cmd->device->host;
114 struct scsi_device *device = cmd->device;
115 struct scsi_target *starget = scsi_target(device);
116 struct request_queue *q = device->request_queue;
117 unsigned long flags;
118
119 SCSI_LOG_MLQUEUE(1,
120 printk("Inserting command %p into mlqueue\n", cmd));
121
122 /*
123 * Set the appropriate busy bit for the device/host.
124 *
125 * If the host/device isn't busy, assume that something actually
126 * completed, and that we should be able to queue a command now.
127 *
128 * Note that the prior mid-layer assumption that any host could
129 * always queue at least one command is now broken. The mid-layer
130 * will implement a user specifiable stall (see
131 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132 * if a command is requeued with no other commands outstanding
133 * either for the device or for the host.
134 */
135 switch (reason) {
136 case SCSI_MLQUEUE_HOST_BUSY:
137 host->host_blocked = host->max_host_blocked;
138 break;
139 case SCSI_MLQUEUE_DEVICE_BUSY:
140 device->device_blocked = device->max_device_blocked;
141 break;
142 case SCSI_MLQUEUE_TARGET_BUSY:
143 starget->target_blocked = starget->max_target_blocked;
144 break;
145 }
146
147 /*
148 * Decrement the counters, since these commands are no longer
149 * active on the host/device.
150 */
151 if (unbusy)
152 scsi_device_unbusy(device);
153
154 /*
155 * Requeue this command. It will go before all other commands
156 * that are already in the queue.
157 */
158 spin_lock_irqsave(q->queue_lock, flags);
159 blk_requeue_request(q, cmd->request);
160 spin_unlock_irqrestore(q->queue_lock, flags);
161
162 kblockd_schedule_work(q, &device->requeue_work);
163
164 return 0;
165 }
166
167 /*
168 * Function: scsi_queue_insert()
169 *
170 * Purpose: Insert a command in the midlevel queue.
171 *
172 * Arguments: cmd - command that we are adding to queue.
173 * reason - why we are inserting command to queue.
174 *
175 * Lock status: Assumed that lock is not held upon entry.
176 *
177 * Returns: Nothing.
178 *
179 * Notes: We do this for one of two cases. Either the host is busy
180 * and it cannot accept any more commands for the time being,
181 * or the device returned QUEUE_FULL and can accept no more
182 * commands.
183 * Notes: This could be called either from an interrupt context or a
184 * normal process context.
185 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)186 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
187 {
188 return __scsi_queue_insert(cmd, reason, 1);
189 }
190 /**
191 * scsi_execute - insert request and wait for the result
192 * @sdev: scsi device
193 * @cmd: scsi command
194 * @data_direction: data direction
195 * @buffer: data buffer
196 * @bufflen: len of buffer
197 * @sense: optional sense buffer
198 * @timeout: request timeout in seconds
199 * @retries: number of times to retry request
200 * @flags: or into request flags;
201 * @resid: optional residual length
202 *
203 * returns the req->errors value which is the scsi_cmnd result
204 * field.
205 */
scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,int timeout,int retries,int flags,int * resid)206 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207 int data_direction, void *buffer, unsigned bufflen,
208 unsigned char *sense, int timeout, int retries, int flags,
209 int *resid)
210 {
211 struct request *req;
212 int write = (data_direction == DMA_TO_DEVICE);
213 int ret = DRIVER_ERROR << 24;
214
215 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
216
217 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
218 buffer, bufflen, __GFP_WAIT))
219 goto out;
220
221 req->cmd_len = COMMAND_SIZE(cmd[0]);
222 memcpy(req->cmd, cmd, req->cmd_len);
223 req->sense = sense;
224 req->sense_len = 0;
225 req->retries = retries;
226 req->timeout = timeout;
227 req->cmd_type = REQ_TYPE_BLOCK_PC;
228 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
229
230 /*
231 * head injection *required* here otherwise quiesce won't work
232 */
233 blk_execute_rq(req->q, NULL, req, 1);
234
235 /*
236 * Some devices (USB mass-storage in particular) may transfer
237 * garbage data together with a residue indicating that the data
238 * is invalid. Prevent the garbage from being misinterpreted
239 * and prevent security leaks by zeroing out the excess data.
240 */
241 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
242 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
243
244 if (resid)
245 *resid = req->resid_len;
246 ret = req->errors;
247 out:
248 blk_put_request(req);
249
250 return ret;
251 }
252 EXPORT_SYMBOL(scsi_execute);
253
254
scsi_execute_req(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr,int timeout,int retries,int * resid)255 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
256 int data_direction, void *buffer, unsigned bufflen,
257 struct scsi_sense_hdr *sshdr, int timeout, int retries,
258 int *resid)
259 {
260 char *sense = NULL;
261 int result;
262
263 if (sshdr) {
264 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
265 if (!sense)
266 return DRIVER_ERROR << 24;
267 }
268 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
269 sense, timeout, retries, 0, resid);
270 if (sshdr)
271 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
272
273 kfree(sense);
274 return result;
275 }
276 EXPORT_SYMBOL(scsi_execute_req);
277
278 /*
279 * Function: scsi_init_cmd_errh()
280 *
281 * Purpose: Initialize cmd fields related to error handling.
282 *
283 * Arguments: cmd - command that is ready to be queued.
284 *
285 * Notes: This function has the job of initializing a number of
286 * fields related to error handling. Typically this will
287 * be called once for each command, as required.
288 */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)289 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
290 {
291 cmd->serial_number = 0;
292 scsi_set_resid(cmd, 0);
293 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
294 if (cmd->cmd_len == 0)
295 cmd->cmd_len = scsi_command_size(cmd->cmnd);
296 }
297
scsi_device_unbusy(struct scsi_device * sdev)298 void scsi_device_unbusy(struct scsi_device *sdev)
299 {
300 struct Scsi_Host *shost = sdev->host;
301 struct scsi_target *starget = scsi_target(sdev);
302 unsigned long flags;
303
304 spin_lock_irqsave(shost->host_lock, flags);
305 shost->host_busy--;
306 starget->target_busy--;
307 if (unlikely(scsi_host_in_recovery(shost) &&
308 (shost->host_failed || shost->host_eh_scheduled)))
309 scsi_eh_wakeup(shost);
310 spin_unlock(shost->host_lock);
311 spin_lock(sdev->request_queue->queue_lock);
312 sdev->device_busy--;
313 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
314 }
315
316 /*
317 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
318 * and call blk_run_queue for all the scsi_devices on the target -
319 * including current_sdev first.
320 *
321 * Called with *no* scsi locks held.
322 */
scsi_single_lun_run(struct scsi_device * current_sdev)323 static void scsi_single_lun_run(struct scsi_device *current_sdev)
324 {
325 struct Scsi_Host *shost = current_sdev->host;
326 struct scsi_device *sdev, *tmp;
327 struct scsi_target *starget = scsi_target(current_sdev);
328 unsigned long flags;
329
330 spin_lock_irqsave(shost->host_lock, flags);
331 starget->starget_sdev_user = NULL;
332 spin_unlock_irqrestore(shost->host_lock, flags);
333
334 /*
335 * Call blk_run_queue for all LUNs on the target, starting with
336 * current_sdev. We race with others (to set starget_sdev_user),
337 * but in most cases, we will be first. Ideally, each LU on the
338 * target would get some limited time or requests on the target.
339 */
340 blk_run_queue(current_sdev->request_queue);
341
342 spin_lock_irqsave(shost->host_lock, flags);
343 if (starget->starget_sdev_user)
344 goto out;
345 list_for_each_entry_safe(sdev, tmp, &starget->devices,
346 same_target_siblings) {
347 if (sdev == current_sdev)
348 continue;
349 if (scsi_device_get(sdev))
350 continue;
351
352 spin_unlock_irqrestore(shost->host_lock, flags);
353 blk_run_queue(sdev->request_queue);
354 spin_lock_irqsave(shost->host_lock, flags);
355
356 scsi_device_put(sdev);
357 }
358 out:
359 spin_unlock_irqrestore(shost->host_lock, flags);
360 }
361
scsi_device_is_busy(struct scsi_device * sdev)362 static inline int scsi_device_is_busy(struct scsi_device *sdev)
363 {
364 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
365 return 1;
366
367 return 0;
368 }
369
scsi_target_is_busy(struct scsi_target * starget)370 static inline int scsi_target_is_busy(struct scsi_target *starget)
371 {
372 return ((starget->can_queue > 0 &&
373 starget->target_busy >= starget->can_queue) ||
374 starget->target_blocked);
375 }
376
scsi_host_is_busy(struct Scsi_Host * shost)377 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
378 {
379 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
380 shost->host_blocked || shost->host_self_blocked)
381 return 1;
382
383 return 0;
384 }
385
386 /*
387 * Function: scsi_run_queue()
388 *
389 * Purpose: Select a proper request queue to serve next
390 *
391 * Arguments: q - last request's queue
392 *
393 * Returns: Nothing
394 *
395 * Notes: The previous command was completely finished, start
396 * a new one if possible.
397 */
scsi_run_queue(struct request_queue * q)398 static void scsi_run_queue(struct request_queue *q)
399 {
400 struct scsi_device *sdev = q->queuedata;
401 struct Scsi_Host *shost;
402 LIST_HEAD(starved_list);
403 unsigned long flags;
404
405 /* if the device is dead, sdev will be NULL, so no queue to run */
406 if (!sdev)
407 return;
408
409 shost = sdev->host;
410 if (scsi_target(sdev)->single_lun)
411 scsi_single_lun_run(sdev);
412
413 spin_lock_irqsave(shost->host_lock, flags);
414 list_splice_init(&shost->starved_list, &starved_list);
415
416 while (!list_empty(&starved_list)) {
417 /*
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
421 * starved_list.
422 *
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
426 */
427 if (scsi_host_is_busy(shost))
428 break;
429
430 sdev = list_entry(starved_list.next,
431 struct scsi_device, starved_entry);
432 list_del_init(&sdev->starved_entry);
433 if (scsi_target_is_busy(scsi_target(sdev))) {
434 list_move_tail(&sdev->starved_entry,
435 &shost->starved_list);
436 continue;
437 }
438
439 spin_unlock(shost->host_lock);
440 spin_lock(sdev->request_queue->queue_lock);
441 __blk_run_queue(sdev->request_queue);
442 spin_unlock(sdev->request_queue->queue_lock);
443 spin_lock(shost->host_lock);
444 }
445 /* put any unprocessed entries back */
446 list_splice(&starved_list, &shost->starved_list);
447 spin_unlock_irqrestore(shost->host_lock, flags);
448
449 blk_run_queue(q);
450 }
451
scsi_requeue_run_queue(struct work_struct * work)452 void scsi_requeue_run_queue(struct work_struct *work)
453 {
454 struct scsi_device *sdev;
455 struct request_queue *q;
456
457 sdev = container_of(work, struct scsi_device, requeue_work);
458 q = sdev->request_queue;
459 scsi_run_queue(q);
460 }
461
462 /*
463 * Function: scsi_requeue_command()
464 *
465 * Purpose: Handle post-processing of completed commands.
466 *
467 * Arguments: q - queue to operate on
468 * cmd - command that may need to be requeued.
469 *
470 * Returns: Nothing
471 *
472 * Notes: After command completion, there may be blocks left
473 * over which weren't finished by the previous command
474 * this can be for a number of reasons - the main one is
475 * I/O errors in the middle of the request, in which case
476 * we need to request the blocks that come after the bad
477 * sector.
478 * Notes: Upon return, cmd is a stale pointer.
479 */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)480 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
481 {
482 struct request *req = cmd->request;
483 unsigned long flags;
484
485 spin_lock_irqsave(q->queue_lock, flags);
486 scsi_unprep_request(req);
487 blk_requeue_request(q, req);
488 spin_unlock_irqrestore(q->queue_lock, flags);
489
490 scsi_run_queue(q);
491 }
492
scsi_next_command(struct scsi_cmnd * cmd)493 void scsi_next_command(struct scsi_cmnd *cmd)
494 {
495 struct scsi_device *sdev = cmd->device;
496 struct request_queue *q = sdev->request_queue;
497
498 /* need to hold a reference on the device before we let go of the cmd */
499 get_device(&sdev->sdev_gendev);
500
501 scsi_put_command(cmd);
502 scsi_run_queue(q);
503
504 /* ok to remove device now */
505 put_device(&sdev->sdev_gendev);
506 }
507
scsi_run_host_queues(struct Scsi_Host * shost)508 void scsi_run_host_queues(struct Scsi_Host *shost)
509 {
510 struct scsi_device *sdev;
511
512 shost_for_each_device(sdev, shost)
513 scsi_run_queue(sdev->request_queue);
514 }
515
516 static void __scsi_release_buffers(struct scsi_cmnd *, int);
517
518 /*
519 * Function: scsi_end_request()
520 *
521 * Purpose: Post-processing of completed commands (usually invoked at end
522 * of upper level post-processing and scsi_io_completion).
523 *
524 * Arguments: cmd - command that is complete.
525 * error - 0 if I/O indicates success, < 0 for I/O error.
526 * bytes - number of bytes of completed I/O
527 * requeue - indicates whether we should requeue leftovers.
528 *
529 * Lock status: Assumed that lock is not held upon entry.
530 *
531 * Returns: cmd if requeue required, NULL otherwise.
532 *
533 * Notes: This is called for block device requests in order to
534 * mark some number of sectors as complete.
535 *
536 * We are guaranteeing that the request queue will be goosed
537 * at some point during this call.
538 * Notes: If cmd was requeued, upon return it will be a stale pointer.
539 */
scsi_end_request(struct scsi_cmnd * cmd,int error,int bytes,int requeue)540 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
541 int bytes, int requeue)
542 {
543 struct request_queue *q = cmd->device->request_queue;
544 struct request *req = cmd->request;
545
546 /*
547 * If there are blocks left over at the end, set up the command
548 * to queue the remainder of them.
549 */
550 if (blk_end_request(req, error, bytes)) {
551 /* kill remainder if no retrys */
552 if (error && scsi_noretry_cmd(cmd))
553 blk_end_request_all(req, error);
554 else {
555 if (requeue) {
556 /*
557 * Bleah. Leftovers again. Stick the
558 * leftovers in the front of the
559 * queue, and goose the queue again.
560 */
561 scsi_release_buffers(cmd);
562 scsi_requeue_command(q, cmd);
563 cmd = NULL;
564 }
565 return cmd;
566 }
567 }
568
569 /*
570 * This will goose the queue request function at the end, so we don't
571 * need to worry about launching another command.
572 */
573 __scsi_release_buffers(cmd, 0);
574 scsi_next_command(cmd);
575 return NULL;
576 }
577
scsi_sgtable_index(unsigned short nents)578 static inline unsigned int scsi_sgtable_index(unsigned short nents)
579 {
580 unsigned int index;
581
582 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
583
584 if (nents <= 8)
585 index = 0;
586 else
587 index = get_count_order(nents) - 3;
588
589 return index;
590 }
591
scsi_sg_free(struct scatterlist * sgl,unsigned int nents)592 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
593 {
594 struct scsi_host_sg_pool *sgp;
595
596 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
597 mempool_free(sgl, sgp->pool);
598 }
599
scsi_sg_alloc(unsigned int nents,gfp_t gfp_mask)600 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
601 {
602 struct scsi_host_sg_pool *sgp;
603
604 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
605 return mempool_alloc(sgp->pool, gfp_mask);
606 }
607
scsi_alloc_sgtable(struct scsi_data_buffer * sdb,int nents,gfp_t gfp_mask)608 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
609 gfp_t gfp_mask)
610 {
611 int ret;
612
613 BUG_ON(!nents);
614
615 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
616 gfp_mask, scsi_sg_alloc);
617 if (unlikely(ret))
618 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
619 scsi_sg_free);
620
621 return ret;
622 }
623
scsi_free_sgtable(struct scsi_data_buffer * sdb)624 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
625 {
626 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
627 }
628
__scsi_release_buffers(struct scsi_cmnd * cmd,int do_bidi_check)629 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
630 {
631
632 if (cmd->sdb.table.nents)
633 scsi_free_sgtable(&cmd->sdb);
634
635 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
636
637 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
638 struct scsi_data_buffer *bidi_sdb =
639 cmd->request->next_rq->special;
640 scsi_free_sgtable(bidi_sdb);
641 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
642 cmd->request->next_rq->special = NULL;
643 }
644
645 if (scsi_prot_sg_count(cmd))
646 scsi_free_sgtable(cmd->prot_sdb);
647 }
648
649 /*
650 * Function: scsi_release_buffers()
651 *
652 * Purpose: Completion processing for block device I/O requests.
653 *
654 * Arguments: cmd - command that we are bailing.
655 *
656 * Lock status: Assumed that no lock is held upon entry.
657 *
658 * Returns: Nothing
659 *
660 * Notes: In the event that an upper level driver rejects a
661 * command, we must release resources allocated during
662 * the __init_io() function. Primarily this would involve
663 * the scatter-gather table, and potentially any bounce
664 * buffers.
665 */
scsi_release_buffers(struct scsi_cmnd * cmd)666 void scsi_release_buffers(struct scsi_cmnd *cmd)
667 {
668 __scsi_release_buffers(cmd, 1);
669 }
670 EXPORT_SYMBOL(scsi_release_buffers);
671
__scsi_error_from_host_byte(struct scsi_cmnd * cmd,int result)672 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
673 {
674 int error = 0;
675
676 switch(host_byte(result)) {
677 case DID_TRANSPORT_FAILFAST:
678 error = -ENOLINK;
679 break;
680 case DID_TARGET_FAILURE:
681 cmd->result |= (DID_OK << 16);
682 error = -EREMOTEIO;
683 break;
684 case DID_NEXUS_FAILURE:
685 cmd->result |= (DID_OK << 16);
686 error = -EBADE;
687 break;
688 default:
689 error = -EIO;
690 break;
691 }
692
693 return error;
694 }
695
696 /*
697 * Function: scsi_io_completion()
698 *
699 * Purpose: Completion processing for block device I/O requests.
700 *
701 * Arguments: cmd - command that is finished.
702 *
703 * Lock status: Assumed that no lock is held upon entry.
704 *
705 * Returns: Nothing
706 *
707 * Notes: This function is matched in terms of capabilities to
708 * the function that created the scatter-gather list.
709 * In other words, if there are no bounce buffers
710 * (the normal case for most drivers), we don't need
711 * the logic to deal with cleaning up afterwards.
712 *
713 * We must call scsi_end_request(). This will finish off
714 * the specified number of sectors. If we are done, the
715 * command block will be released and the queue function
716 * will be goosed. If we are not done then we have to
717 * figure out what to do next:
718 *
719 * a) We can call scsi_requeue_command(). The request
720 * will be unprepared and put back on the queue. Then
721 * a new command will be created for it. This should
722 * be used if we made forward progress, or if we want
723 * to switch from READ(10) to READ(6) for example.
724 *
725 * b) We can call scsi_queue_insert(). The request will
726 * be put back on the queue and retried using the same
727 * command as before, possibly after a delay.
728 *
729 * c) We can call blk_end_request() with -EIO to fail
730 * the remainder of the request.
731 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)732 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
733 {
734 int result = cmd->result;
735 struct request_queue *q = cmd->device->request_queue;
736 struct request *req = cmd->request;
737 int error = 0;
738 struct scsi_sense_hdr sshdr;
739 int sense_valid = 0;
740 int sense_deferred = 0;
741 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
742 ACTION_DELAYED_RETRY} action;
743 char *description = NULL;
744
745 if (result) {
746 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
747 if (sense_valid)
748 sense_deferred = scsi_sense_is_deferred(&sshdr);
749 }
750
751 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
752 req->errors = result;
753 if (result) {
754 if (sense_valid && req->sense) {
755 /*
756 * SG_IO wants current and deferred errors
757 */
758 int len = 8 + cmd->sense_buffer[7];
759
760 if (len > SCSI_SENSE_BUFFERSIZE)
761 len = SCSI_SENSE_BUFFERSIZE;
762 memcpy(req->sense, cmd->sense_buffer, len);
763 req->sense_len = len;
764 }
765 if (!sense_deferred)
766 error = __scsi_error_from_host_byte(cmd, result);
767 }
768
769 req->resid_len = scsi_get_resid(cmd);
770
771 if (scsi_bidi_cmnd(cmd)) {
772 /*
773 * Bidi commands Must be complete as a whole,
774 * both sides at once.
775 */
776 req->next_rq->resid_len = scsi_in(cmd)->resid;
777
778 scsi_release_buffers(cmd);
779 blk_end_request_all(req, 0);
780
781 scsi_next_command(cmd);
782 return;
783 }
784 }
785
786 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
787 BUG_ON(blk_bidi_rq(req));
788
789 /*
790 * Next deal with any sectors which we were able to correctly
791 * handle.
792 */
793 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
794 "%d bytes done.\n",
795 blk_rq_sectors(req), good_bytes));
796
797 /*
798 * Recovered errors need reporting, but they're always treated
799 * as success, so fiddle the result code here. For BLOCK_PC
800 * we already took a copy of the original into rq->errors which
801 * is what gets returned to the user
802 */
803 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
804 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
805 * print since caller wants ATA registers. Only occurs on
806 * SCSI ATA PASS_THROUGH commands when CK_COND=1
807 */
808 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
809 ;
810 else if (!(req->cmd_flags & REQ_QUIET))
811 scsi_print_sense("", cmd);
812 result = 0;
813 /* BLOCK_PC may have set error */
814 error = 0;
815 }
816
817 /*
818 * A number of bytes were successfully read. If there
819 * are leftovers and there is some kind of error
820 * (result != 0), retry the rest.
821 */
822 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
823 return;
824
825 error = __scsi_error_from_host_byte(cmd, result);
826
827 if (host_byte(result) == DID_RESET) {
828 /* Third party bus reset or reset for error recovery
829 * reasons. Just retry the command and see what
830 * happens.
831 */
832 action = ACTION_RETRY;
833 } else if (sense_valid && !sense_deferred) {
834 switch (sshdr.sense_key) {
835 case UNIT_ATTENTION:
836 if (cmd->device->removable) {
837 /* Detected disc change. Set a bit
838 * and quietly refuse further access.
839 */
840 cmd->device->changed = 1;
841 description = "Media Changed";
842 action = ACTION_FAIL;
843 } else {
844 /* Must have been a power glitch, or a
845 * bus reset. Could not have been a
846 * media change, so we just retry the
847 * command and see what happens.
848 */
849 action = ACTION_RETRY;
850 }
851 break;
852 case ILLEGAL_REQUEST:
853 /* If we had an ILLEGAL REQUEST returned, then
854 * we may have performed an unsupported
855 * command. The only thing this should be
856 * would be a ten byte read where only a six
857 * byte read was supported. Also, on a system
858 * where READ CAPACITY failed, we may have
859 * read past the end of the disk.
860 */
861 if ((cmd->device->use_10_for_rw &&
862 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
863 (cmd->cmnd[0] == READ_10 ||
864 cmd->cmnd[0] == WRITE_10)) {
865 /* This will issue a new 6-byte command. */
866 cmd->device->use_10_for_rw = 0;
867 action = ACTION_REPREP;
868 } else if (sshdr.asc == 0x10) /* DIX */ {
869 description = "Host Data Integrity Failure";
870 action = ACTION_FAIL;
871 error = -EILSEQ;
872 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
873 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
874 (cmd->cmnd[0] == UNMAP ||
875 cmd->cmnd[0] == WRITE_SAME_16 ||
876 cmd->cmnd[0] == WRITE_SAME)) {
877 description = "Discard failure";
878 action = ACTION_FAIL;
879 } else
880 action = ACTION_FAIL;
881 break;
882 case ABORTED_COMMAND:
883 action = ACTION_FAIL;
884 if (sshdr.asc == 0x10) { /* DIF */
885 description = "Target Data Integrity Failure";
886 error = -EILSEQ;
887 }
888 break;
889 case NOT_READY:
890 /* If the device is in the process of becoming
891 * ready, or has a temporary blockage, retry.
892 */
893 if (sshdr.asc == 0x04) {
894 switch (sshdr.ascq) {
895 case 0x01: /* becoming ready */
896 case 0x04: /* format in progress */
897 case 0x05: /* rebuild in progress */
898 case 0x06: /* recalculation in progress */
899 case 0x07: /* operation in progress */
900 case 0x08: /* Long write in progress */
901 case 0x09: /* self test in progress */
902 case 0x14: /* space allocation in progress */
903 action = ACTION_DELAYED_RETRY;
904 break;
905 default:
906 description = "Device not ready";
907 action = ACTION_FAIL;
908 break;
909 }
910 } else {
911 description = "Device not ready";
912 action = ACTION_FAIL;
913 }
914 break;
915 case VOLUME_OVERFLOW:
916 /* See SSC3rXX or current. */
917 action = ACTION_FAIL;
918 break;
919 default:
920 description = "Unhandled sense code";
921 action = ACTION_FAIL;
922 break;
923 }
924 } else {
925 description = "Unhandled error code";
926 action = ACTION_FAIL;
927 }
928
929 switch (action) {
930 case ACTION_FAIL:
931 /* Give up and fail the remainder of the request */
932 scsi_release_buffers(cmd);
933 if (!(req->cmd_flags & REQ_QUIET)) {
934 if (description)
935 scmd_printk(KERN_INFO, cmd, "%s\n",
936 description);
937 scsi_print_result(cmd);
938 if (driver_byte(result) & DRIVER_SENSE)
939 scsi_print_sense("", cmd);
940 scsi_print_command(cmd);
941 }
942 if (blk_end_request_err(req, error))
943 scsi_requeue_command(q, cmd);
944 else
945 scsi_next_command(cmd);
946 break;
947 case ACTION_REPREP:
948 /* Unprep the request and put it back at the head of the queue.
949 * A new command will be prepared and issued.
950 */
951 scsi_release_buffers(cmd);
952 scsi_requeue_command(q, cmd);
953 break;
954 case ACTION_RETRY:
955 /* Retry the same command immediately */
956 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
957 break;
958 case ACTION_DELAYED_RETRY:
959 /* Retry the same command after a delay */
960 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
961 break;
962 }
963 }
964
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb,gfp_t gfp_mask)965 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
966 gfp_t gfp_mask)
967 {
968 int count;
969
970 /*
971 * If sg table allocation fails, requeue request later.
972 */
973 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
974 gfp_mask))) {
975 return BLKPREP_DEFER;
976 }
977
978 req->buffer = NULL;
979
980 /*
981 * Next, walk the list, and fill in the addresses and sizes of
982 * each segment.
983 */
984 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
985 BUG_ON(count > sdb->table.nents);
986 sdb->table.nents = count;
987 sdb->length = blk_rq_bytes(req);
988 return BLKPREP_OK;
989 }
990
991 /*
992 * Function: scsi_init_io()
993 *
994 * Purpose: SCSI I/O initialize function.
995 *
996 * Arguments: cmd - Command descriptor we wish to initialize
997 *
998 * Returns: 0 on success
999 * BLKPREP_DEFER if the failure is retryable
1000 * BLKPREP_KILL if the failure is fatal
1001 */
scsi_init_io(struct scsi_cmnd * cmd,gfp_t gfp_mask)1002 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1003 {
1004 struct request *rq = cmd->request;
1005
1006 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1007 if (error)
1008 goto err_exit;
1009
1010 if (blk_bidi_rq(rq)) {
1011 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1012 scsi_sdb_cache, GFP_ATOMIC);
1013 if (!bidi_sdb) {
1014 error = BLKPREP_DEFER;
1015 goto err_exit;
1016 }
1017
1018 rq->next_rq->special = bidi_sdb;
1019 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1020 if (error)
1021 goto err_exit;
1022 }
1023
1024 if (blk_integrity_rq(rq)) {
1025 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1026 int ivecs, count;
1027
1028 BUG_ON(prot_sdb == NULL);
1029 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1030
1031 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1032 error = BLKPREP_DEFER;
1033 goto err_exit;
1034 }
1035
1036 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1037 prot_sdb->table.sgl);
1038 BUG_ON(unlikely(count > ivecs));
1039 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1040
1041 cmd->prot_sdb = prot_sdb;
1042 cmd->prot_sdb->table.nents = count;
1043 }
1044
1045 return BLKPREP_OK ;
1046
1047 err_exit:
1048 scsi_release_buffers(cmd);
1049 cmd->request->special = NULL;
1050 scsi_put_command(cmd);
1051 return error;
1052 }
1053 EXPORT_SYMBOL(scsi_init_io);
1054
scsi_get_cmd_from_req(struct scsi_device * sdev,struct request * req)1055 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1056 struct request *req)
1057 {
1058 struct scsi_cmnd *cmd;
1059
1060 if (!req->special) {
1061 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1062 if (unlikely(!cmd))
1063 return NULL;
1064 req->special = cmd;
1065 } else {
1066 cmd = req->special;
1067 }
1068
1069 /* pull a tag out of the request if we have one */
1070 cmd->tag = req->tag;
1071 cmd->request = req;
1072
1073 cmd->cmnd = req->cmd;
1074 cmd->prot_op = SCSI_PROT_NORMAL;
1075
1076 return cmd;
1077 }
1078
scsi_setup_blk_pc_cmnd(struct scsi_device * sdev,struct request * req)1079 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1080 {
1081 struct scsi_cmnd *cmd;
1082 int ret = scsi_prep_state_check(sdev, req);
1083
1084 if (ret != BLKPREP_OK)
1085 return ret;
1086
1087 cmd = scsi_get_cmd_from_req(sdev, req);
1088 if (unlikely(!cmd))
1089 return BLKPREP_DEFER;
1090
1091 /*
1092 * BLOCK_PC requests may transfer data, in which case they must
1093 * a bio attached to them. Or they might contain a SCSI command
1094 * that does not transfer data, in which case they may optionally
1095 * submit a request without an attached bio.
1096 */
1097 if (req->bio) {
1098 int ret;
1099
1100 BUG_ON(!req->nr_phys_segments);
1101
1102 ret = scsi_init_io(cmd, GFP_ATOMIC);
1103 if (unlikely(ret))
1104 return ret;
1105 } else {
1106 BUG_ON(blk_rq_bytes(req));
1107
1108 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1109 req->buffer = NULL;
1110 }
1111
1112 cmd->cmd_len = req->cmd_len;
1113 if (!blk_rq_bytes(req))
1114 cmd->sc_data_direction = DMA_NONE;
1115 else if (rq_data_dir(req) == WRITE)
1116 cmd->sc_data_direction = DMA_TO_DEVICE;
1117 else
1118 cmd->sc_data_direction = DMA_FROM_DEVICE;
1119
1120 cmd->transfersize = blk_rq_bytes(req);
1121 cmd->allowed = req->retries;
1122 return BLKPREP_OK;
1123 }
1124 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1125
1126 /*
1127 * Setup a REQ_TYPE_FS command. These are simple read/write request
1128 * from filesystems that still need to be translated to SCSI CDBs from
1129 * the ULD.
1130 */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1131 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1132 {
1133 struct scsi_cmnd *cmd;
1134 int ret = scsi_prep_state_check(sdev, req);
1135
1136 if (ret != BLKPREP_OK)
1137 return ret;
1138
1139 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1140 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1141 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1142 if (ret != BLKPREP_OK)
1143 return ret;
1144 }
1145
1146 /*
1147 * Filesystem requests must transfer data.
1148 */
1149 BUG_ON(!req->nr_phys_segments);
1150
1151 cmd = scsi_get_cmd_from_req(sdev, req);
1152 if (unlikely(!cmd))
1153 return BLKPREP_DEFER;
1154
1155 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1156 return scsi_init_io(cmd, GFP_ATOMIC);
1157 }
1158 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1159
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1160 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1161 {
1162 int ret = BLKPREP_OK;
1163
1164 /*
1165 * If the device is not in running state we will reject some
1166 * or all commands.
1167 */
1168 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1169 switch (sdev->sdev_state) {
1170 case SDEV_OFFLINE:
1171 /*
1172 * If the device is offline we refuse to process any
1173 * commands. The device must be brought online
1174 * before trying any recovery commands.
1175 */
1176 sdev_printk(KERN_ERR, sdev,
1177 "rejecting I/O to offline device\n");
1178 ret = BLKPREP_KILL;
1179 break;
1180 case SDEV_DEL:
1181 /*
1182 * If the device is fully deleted, we refuse to
1183 * process any commands as well.
1184 */
1185 sdev_printk(KERN_ERR, sdev,
1186 "rejecting I/O to dead device\n");
1187 ret = BLKPREP_KILL;
1188 break;
1189 case SDEV_QUIESCE:
1190 case SDEV_BLOCK:
1191 case SDEV_CREATED_BLOCK:
1192 /*
1193 * If the devices is blocked we defer normal commands.
1194 */
1195 if (!(req->cmd_flags & REQ_PREEMPT))
1196 ret = BLKPREP_DEFER;
1197 break;
1198 default:
1199 /*
1200 * For any other not fully online state we only allow
1201 * special commands. In particular any user initiated
1202 * command is not allowed.
1203 */
1204 if (!(req->cmd_flags & REQ_PREEMPT))
1205 ret = BLKPREP_KILL;
1206 break;
1207 }
1208 }
1209 return ret;
1210 }
1211 EXPORT_SYMBOL(scsi_prep_state_check);
1212
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1213 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1214 {
1215 struct scsi_device *sdev = q->queuedata;
1216
1217 switch (ret) {
1218 case BLKPREP_KILL:
1219 req->errors = DID_NO_CONNECT << 16;
1220 /* release the command and kill it */
1221 if (req->special) {
1222 struct scsi_cmnd *cmd = req->special;
1223 scsi_release_buffers(cmd);
1224 scsi_put_command(cmd);
1225 req->special = NULL;
1226 }
1227 break;
1228 case BLKPREP_DEFER:
1229 /*
1230 * If we defer, the blk_peek_request() returns NULL, but the
1231 * queue must be restarted, so we schedule a callback to happen
1232 * shortly.
1233 */
1234 if (sdev->device_busy == 0)
1235 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1236 break;
1237 default:
1238 req->cmd_flags |= REQ_DONTPREP;
1239 }
1240
1241 return ret;
1242 }
1243 EXPORT_SYMBOL(scsi_prep_return);
1244
scsi_prep_fn(struct request_queue * q,struct request * req)1245 int scsi_prep_fn(struct request_queue *q, struct request *req)
1246 {
1247 struct scsi_device *sdev = q->queuedata;
1248 int ret = BLKPREP_KILL;
1249
1250 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1251 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1252 return scsi_prep_return(q, req, ret);
1253 }
1254 EXPORT_SYMBOL(scsi_prep_fn);
1255
1256 /*
1257 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1258 * return 0.
1259 *
1260 * Called with the queue_lock held.
1261 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1262 static inline int scsi_dev_queue_ready(struct request_queue *q,
1263 struct scsi_device *sdev)
1264 {
1265 if (sdev->device_busy == 0 && sdev->device_blocked) {
1266 /*
1267 * unblock after device_blocked iterates to zero
1268 */
1269 if (--sdev->device_blocked == 0) {
1270 SCSI_LOG_MLQUEUE(3,
1271 sdev_printk(KERN_INFO, sdev,
1272 "unblocking device at zero depth\n"));
1273 } else {
1274 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1275 return 0;
1276 }
1277 }
1278 if (scsi_device_is_busy(sdev))
1279 return 0;
1280
1281 return 1;
1282 }
1283
1284
1285 /*
1286 * scsi_target_queue_ready: checks if there we can send commands to target
1287 * @sdev: scsi device on starget to check.
1288 *
1289 * Called with the host lock held.
1290 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1291 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1292 struct scsi_device *sdev)
1293 {
1294 struct scsi_target *starget = scsi_target(sdev);
1295
1296 if (starget->single_lun) {
1297 if (starget->starget_sdev_user &&
1298 starget->starget_sdev_user != sdev)
1299 return 0;
1300 starget->starget_sdev_user = sdev;
1301 }
1302
1303 if (starget->target_busy == 0 && starget->target_blocked) {
1304 /*
1305 * unblock after target_blocked iterates to zero
1306 */
1307 if (--starget->target_blocked == 0) {
1308 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1309 "unblocking target at zero depth\n"));
1310 } else
1311 return 0;
1312 }
1313
1314 if (scsi_target_is_busy(starget)) {
1315 if (list_empty(&sdev->starved_entry))
1316 list_add_tail(&sdev->starved_entry,
1317 &shost->starved_list);
1318 return 0;
1319 }
1320
1321 /* We're OK to process the command, so we can't be starved */
1322 if (!list_empty(&sdev->starved_entry))
1323 list_del_init(&sdev->starved_entry);
1324 return 1;
1325 }
1326
1327 /*
1328 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329 * return 0. We must end up running the queue again whenever 0 is
1330 * returned, else IO can hang.
1331 *
1332 * Called with host_lock held.
1333 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1334 static inline int scsi_host_queue_ready(struct request_queue *q,
1335 struct Scsi_Host *shost,
1336 struct scsi_device *sdev)
1337 {
1338 if (scsi_host_in_recovery(shost))
1339 return 0;
1340 if (shost->host_busy == 0 && shost->host_blocked) {
1341 /*
1342 * unblock after host_blocked iterates to zero
1343 */
1344 if (--shost->host_blocked == 0) {
1345 SCSI_LOG_MLQUEUE(3,
1346 printk("scsi%d unblocking host at zero depth\n",
1347 shost->host_no));
1348 } else {
1349 return 0;
1350 }
1351 }
1352 if (scsi_host_is_busy(shost)) {
1353 if (list_empty(&sdev->starved_entry))
1354 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1355 return 0;
1356 }
1357
1358 /* We're OK to process the command, so we can't be starved */
1359 if (!list_empty(&sdev->starved_entry))
1360 list_del_init(&sdev->starved_entry);
1361
1362 return 1;
1363 }
1364
1365 /*
1366 * Busy state exporting function for request stacking drivers.
1367 *
1368 * For efficiency, no lock is taken to check the busy state of
1369 * shost/starget/sdev, since the returned value is not guaranteed and
1370 * may be changed after request stacking drivers call the function,
1371 * regardless of taking lock or not.
1372 *
1373 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1374 * (e.g. !sdev), scsi needs to return 'not busy'.
1375 * Otherwise, request stacking drivers may hold requests forever.
1376 */
scsi_lld_busy(struct request_queue * q)1377 static int scsi_lld_busy(struct request_queue *q)
1378 {
1379 struct scsi_device *sdev = q->queuedata;
1380 struct Scsi_Host *shost;
1381 struct scsi_target *starget;
1382
1383 if (!sdev)
1384 return 0;
1385
1386 shost = sdev->host;
1387 starget = scsi_target(sdev);
1388
1389 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1390 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1391 return 1;
1392
1393 return 0;
1394 }
1395
1396 /*
1397 * Kill a request for a dead device
1398 */
scsi_kill_request(struct request * req,struct request_queue * q)1399 static void scsi_kill_request(struct request *req, struct request_queue *q)
1400 {
1401 struct scsi_cmnd *cmd = req->special;
1402 struct scsi_device *sdev;
1403 struct scsi_target *starget;
1404 struct Scsi_Host *shost;
1405
1406 blk_start_request(req);
1407
1408 sdev = cmd->device;
1409 starget = scsi_target(sdev);
1410 shost = sdev->host;
1411 scsi_init_cmd_errh(cmd);
1412 cmd->result = DID_NO_CONNECT << 16;
1413 atomic_inc(&cmd->device->iorequest_cnt);
1414
1415 /*
1416 * SCSI request completion path will do scsi_device_unbusy(),
1417 * bump busy counts. To bump the counters, we need to dance
1418 * with the locks as normal issue path does.
1419 */
1420 sdev->device_busy++;
1421 spin_unlock(sdev->request_queue->queue_lock);
1422 spin_lock(shost->host_lock);
1423 shost->host_busy++;
1424 starget->target_busy++;
1425 spin_unlock(shost->host_lock);
1426 spin_lock(sdev->request_queue->queue_lock);
1427
1428 blk_complete_request(req);
1429 }
1430
scsi_softirq_done(struct request * rq)1431 static void scsi_softirq_done(struct request *rq)
1432 {
1433 struct scsi_cmnd *cmd = rq->special;
1434 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1435 int disposition;
1436
1437 INIT_LIST_HEAD(&cmd->eh_entry);
1438
1439 atomic_inc(&cmd->device->iodone_cnt);
1440 if (cmd->result)
1441 atomic_inc(&cmd->device->ioerr_cnt);
1442
1443 disposition = scsi_decide_disposition(cmd);
1444 if (disposition != SUCCESS &&
1445 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1446 sdev_printk(KERN_ERR, cmd->device,
1447 "timing out command, waited %lus\n",
1448 wait_for/HZ);
1449 disposition = SUCCESS;
1450 }
1451
1452 scsi_log_completion(cmd, disposition);
1453
1454 switch (disposition) {
1455 case SUCCESS:
1456 scsi_finish_command(cmd);
1457 break;
1458 case NEEDS_RETRY:
1459 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1460 break;
1461 case ADD_TO_MLQUEUE:
1462 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1463 break;
1464 default:
1465 if (!scsi_eh_scmd_add(cmd, 0))
1466 scsi_finish_command(cmd);
1467 }
1468 }
1469
1470 /*
1471 * Function: scsi_request_fn()
1472 *
1473 * Purpose: Main strategy routine for SCSI.
1474 *
1475 * Arguments: q - Pointer to actual queue.
1476 *
1477 * Returns: Nothing
1478 *
1479 * Lock status: IO request lock assumed to be held when called.
1480 */
scsi_request_fn(struct request_queue * q)1481 static void scsi_request_fn(struct request_queue *q)
1482 {
1483 struct scsi_device *sdev = q->queuedata;
1484 struct Scsi_Host *shost;
1485 struct scsi_cmnd *cmd;
1486 struct request *req;
1487
1488 if (!sdev) {
1489 printk("scsi: killing requests for dead queue\n");
1490 while ((req = blk_peek_request(q)) != NULL)
1491 scsi_kill_request(req, q);
1492 return;
1493 }
1494
1495 if(!get_device(&sdev->sdev_gendev))
1496 /* We must be tearing the block queue down already */
1497 return;
1498
1499 /*
1500 * To start with, we keep looping until the queue is empty, or until
1501 * the host is no longer able to accept any more requests.
1502 */
1503 shost = sdev->host;
1504 for (;;) {
1505 int rtn;
1506 /*
1507 * get next queueable request. We do this early to make sure
1508 * that the request is fully prepared even if we cannot
1509 * accept it.
1510 */
1511 req = blk_peek_request(q);
1512 if (!req || !scsi_dev_queue_ready(q, sdev))
1513 break;
1514
1515 if (unlikely(!scsi_device_online(sdev))) {
1516 sdev_printk(KERN_ERR, sdev,
1517 "rejecting I/O to offline device\n");
1518 scsi_kill_request(req, q);
1519 continue;
1520 }
1521
1522
1523 /*
1524 * Remove the request from the request list.
1525 */
1526 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1527 blk_start_request(req);
1528 sdev->device_busy++;
1529
1530 spin_unlock(q->queue_lock);
1531 cmd = req->special;
1532 if (unlikely(cmd == NULL)) {
1533 printk(KERN_CRIT "impossible request in %s.\n"
1534 "please mail a stack trace to "
1535 "linux-scsi@vger.kernel.org\n",
1536 __func__);
1537 blk_dump_rq_flags(req, "foo");
1538 BUG();
1539 }
1540 spin_lock(shost->host_lock);
1541
1542 /*
1543 * We hit this when the driver is using a host wide
1544 * tag map. For device level tag maps the queue_depth check
1545 * in the device ready fn would prevent us from trying
1546 * to allocate a tag. Since the map is a shared host resource
1547 * we add the dev to the starved list so it eventually gets
1548 * a run when a tag is freed.
1549 */
1550 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1551 if (list_empty(&sdev->starved_entry))
1552 list_add_tail(&sdev->starved_entry,
1553 &shost->starved_list);
1554 goto not_ready;
1555 }
1556
1557 if (!scsi_target_queue_ready(shost, sdev))
1558 goto not_ready;
1559
1560 if (!scsi_host_queue_ready(q, shost, sdev))
1561 goto not_ready;
1562
1563 scsi_target(sdev)->target_busy++;
1564 shost->host_busy++;
1565
1566 /*
1567 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1568 * take the lock again.
1569 */
1570 spin_unlock_irq(shost->host_lock);
1571
1572 /*
1573 * Finally, initialize any error handling parameters, and set up
1574 * the timers for timeouts.
1575 */
1576 scsi_init_cmd_errh(cmd);
1577
1578 /*
1579 * Dispatch the command to the low-level driver.
1580 */
1581 rtn = scsi_dispatch_cmd(cmd);
1582 spin_lock_irq(q->queue_lock);
1583 if (rtn)
1584 goto out_delay;
1585 }
1586
1587 goto out;
1588
1589 not_ready:
1590 spin_unlock_irq(shost->host_lock);
1591
1592 /*
1593 * lock q, handle tag, requeue req, and decrement device_busy. We
1594 * must return with queue_lock held.
1595 *
1596 * Decrementing device_busy without checking it is OK, as all such
1597 * cases (host limits or settings) should run the queue at some
1598 * later time.
1599 */
1600 spin_lock_irq(q->queue_lock);
1601 blk_requeue_request(q, req);
1602 sdev->device_busy--;
1603 out_delay:
1604 if (sdev->device_busy == 0)
1605 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1606 out:
1607 /* must be careful here...if we trigger the ->remove() function
1608 * we cannot be holding the q lock */
1609 spin_unlock_irq(q->queue_lock);
1610 put_device(&sdev->sdev_gendev);
1611 spin_lock_irq(q->queue_lock);
1612 }
1613
scsi_calculate_bounce_limit(struct Scsi_Host * shost)1614 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1615 {
1616 struct device *host_dev;
1617 u64 bounce_limit = 0xffffffff;
1618
1619 if (shost->unchecked_isa_dma)
1620 return BLK_BOUNCE_ISA;
1621 /*
1622 * Platforms with virtual-DMA translation
1623 * hardware have no practical limit.
1624 */
1625 if (!PCI_DMA_BUS_IS_PHYS)
1626 return BLK_BOUNCE_ANY;
1627
1628 host_dev = scsi_get_device(shost);
1629 if (host_dev && host_dev->dma_mask)
1630 bounce_limit = *host_dev->dma_mask;
1631
1632 return bounce_limit;
1633 }
1634 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1635
__scsi_alloc_queue(struct Scsi_Host * shost,request_fn_proc * request_fn)1636 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1637 request_fn_proc *request_fn)
1638 {
1639 struct request_queue *q;
1640 struct device *dev = shost->shost_gendev.parent;
1641
1642 q = blk_init_queue(request_fn, NULL);
1643 if (!q)
1644 return NULL;
1645
1646 /*
1647 * this limit is imposed by hardware restrictions
1648 */
1649 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1650 SCSI_MAX_SG_CHAIN_SEGMENTS));
1651
1652 if (scsi_host_prot_dma(shost)) {
1653 shost->sg_prot_tablesize =
1654 min_not_zero(shost->sg_prot_tablesize,
1655 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1656 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1657 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1658 }
1659
1660 blk_queue_max_hw_sectors(q, shost->max_sectors);
1661 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1662 blk_queue_segment_boundary(q, shost->dma_boundary);
1663 dma_set_seg_boundary(dev, shost->dma_boundary);
1664
1665 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1666
1667 if (!shost->use_clustering)
1668 q->limits.cluster = 0;
1669
1670 /*
1671 * set a reasonable default alignment on word boundaries: the
1672 * host and device may alter it using
1673 * blk_queue_update_dma_alignment() later.
1674 */
1675 blk_queue_dma_alignment(q, 0x03);
1676
1677 return q;
1678 }
1679 EXPORT_SYMBOL(__scsi_alloc_queue);
1680
scsi_alloc_queue(struct scsi_device * sdev)1681 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1682 {
1683 struct request_queue *q;
1684
1685 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1686 if (!q)
1687 return NULL;
1688
1689 blk_queue_prep_rq(q, scsi_prep_fn);
1690 blk_queue_softirq_done(q, scsi_softirq_done);
1691 blk_queue_rq_timed_out(q, scsi_times_out);
1692 blk_queue_lld_busy(q, scsi_lld_busy);
1693 return q;
1694 }
1695
scsi_free_queue(struct request_queue * q)1696 void scsi_free_queue(struct request_queue *q)
1697 {
1698 blk_cleanup_queue(q);
1699 }
1700
1701 /*
1702 * Function: scsi_block_requests()
1703 *
1704 * Purpose: Utility function used by low-level drivers to prevent further
1705 * commands from being queued to the device.
1706 *
1707 * Arguments: shost - Host in question
1708 *
1709 * Returns: Nothing
1710 *
1711 * Lock status: No locks are assumed held.
1712 *
1713 * Notes: There is no timer nor any other means by which the requests
1714 * get unblocked other than the low-level driver calling
1715 * scsi_unblock_requests().
1716 */
scsi_block_requests(struct Scsi_Host * shost)1717 void scsi_block_requests(struct Scsi_Host *shost)
1718 {
1719 shost->host_self_blocked = 1;
1720 }
1721 EXPORT_SYMBOL(scsi_block_requests);
1722
1723 /*
1724 * Function: scsi_unblock_requests()
1725 *
1726 * Purpose: Utility function used by low-level drivers to allow further
1727 * commands from being queued to the device.
1728 *
1729 * Arguments: shost - Host in question
1730 *
1731 * Returns: Nothing
1732 *
1733 * Lock status: No locks are assumed held.
1734 *
1735 * Notes: There is no timer nor any other means by which the requests
1736 * get unblocked other than the low-level driver calling
1737 * scsi_unblock_requests().
1738 *
1739 * This is done as an API function so that changes to the
1740 * internals of the scsi mid-layer won't require wholesale
1741 * changes to drivers that use this feature.
1742 */
scsi_unblock_requests(struct Scsi_Host * shost)1743 void scsi_unblock_requests(struct Scsi_Host *shost)
1744 {
1745 shost->host_self_blocked = 0;
1746 scsi_run_host_queues(shost);
1747 }
1748 EXPORT_SYMBOL(scsi_unblock_requests);
1749
scsi_init_queue(void)1750 int __init scsi_init_queue(void)
1751 {
1752 int i;
1753
1754 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1755 sizeof(struct scsi_data_buffer),
1756 0, 0, NULL);
1757 if (!scsi_sdb_cache) {
1758 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1759 return -ENOMEM;
1760 }
1761
1762 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1763 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1764 int size = sgp->size * sizeof(struct scatterlist);
1765
1766 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1767 SLAB_HWCACHE_ALIGN, NULL);
1768 if (!sgp->slab) {
1769 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1770 sgp->name);
1771 goto cleanup_sdb;
1772 }
1773
1774 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1775 sgp->slab);
1776 if (!sgp->pool) {
1777 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1778 sgp->name);
1779 goto cleanup_sdb;
1780 }
1781 }
1782
1783 return 0;
1784
1785 cleanup_sdb:
1786 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1787 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1788 if (sgp->pool)
1789 mempool_destroy(sgp->pool);
1790 if (sgp->slab)
1791 kmem_cache_destroy(sgp->slab);
1792 }
1793 kmem_cache_destroy(scsi_sdb_cache);
1794
1795 return -ENOMEM;
1796 }
1797
scsi_exit_queue(void)1798 void scsi_exit_queue(void)
1799 {
1800 int i;
1801
1802 kmem_cache_destroy(scsi_sdb_cache);
1803
1804 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1805 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1806 mempool_destroy(sgp->pool);
1807 kmem_cache_destroy(sgp->slab);
1808 }
1809 }
1810
1811 /**
1812 * scsi_mode_select - issue a mode select
1813 * @sdev: SCSI device to be queried
1814 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1815 * @sp: Save page bit (0 == don't save, 1 == save)
1816 * @modepage: mode page being requested
1817 * @buffer: request buffer (may not be smaller than eight bytes)
1818 * @len: length of request buffer.
1819 * @timeout: command timeout
1820 * @retries: number of retries before failing
1821 * @data: returns a structure abstracting the mode header data
1822 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1823 * must be SCSI_SENSE_BUFFERSIZE big.
1824 *
1825 * Returns zero if successful; negative error number or scsi
1826 * status on error
1827 *
1828 */
1829 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)1830 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1831 unsigned char *buffer, int len, int timeout, int retries,
1832 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1833 {
1834 unsigned char cmd[10];
1835 unsigned char *real_buffer;
1836 int ret;
1837
1838 memset(cmd, 0, sizeof(cmd));
1839 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1840
1841 if (sdev->use_10_for_ms) {
1842 if (len > 65535)
1843 return -EINVAL;
1844 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1845 if (!real_buffer)
1846 return -ENOMEM;
1847 memcpy(real_buffer + 8, buffer, len);
1848 len += 8;
1849 real_buffer[0] = 0;
1850 real_buffer[1] = 0;
1851 real_buffer[2] = data->medium_type;
1852 real_buffer[3] = data->device_specific;
1853 real_buffer[4] = data->longlba ? 0x01 : 0;
1854 real_buffer[5] = 0;
1855 real_buffer[6] = data->block_descriptor_length >> 8;
1856 real_buffer[7] = data->block_descriptor_length;
1857
1858 cmd[0] = MODE_SELECT_10;
1859 cmd[7] = len >> 8;
1860 cmd[8] = len;
1861 } else {
1862 if (len > 255 || data->block_descriptor_length > 255 ||
1863 data->longlba)
1864 return -EINVAL;
1865
1866 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1867 if (!real_buffer)
1868 return -ENOMEM;
1869 memcpy(real_buffer + 4, buffer, len);
1870 len += 4;
1871 real_buffer[0] = 0;
1872 real_buffer[1] = data->medium_type;
1873 real_buffer[2] = data->device_specific;
1874 real_buffer[3] = data->block_descriptor_length;
1875
1876
1877 cmd[0] = MODE_SELECT;
1878 cmd[4] = len;
1879 }
1880
1881 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1882 sshdr, timeout, retries, NULL);
1883 kfree(real_buffer);
1884 return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(scsi_mode_select);
1887
1888 /**
1889 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1890 * @sdev: SCSI device to be queried
1891 * @dbd: set if mode sense will allow block descriptors to be returned
1892 * @modepage: mode page being requested
1893 * @buffer: request buffer (may not be smaller than eight bytes)
1894 * @len: length of request buffer.
1895 * @timeout: command timeout
1896 * @retries: number of retries before failing
1897 * @data: returns a structure abstracting the mode header data
1898 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1899 * must be SCSI_SENSE_BUFFERSIZE big.
1900 *
1901 * Returns zero if unsuccessful, or the header offset (either 4
1902 * or 8 depending on whether a six or ten byte command was
1903 * issued) if successful.
1904 */
1905 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)1906 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1907 unsigned char *buffer, int len, int timeout, int retries,
1908 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1909 {
1910 unsigned char cmd[12];
1911 int use_10_for_ms;
1912 int header_length;
1913 int result;
1914 struct scsi_sense_hdr my_sshdr;
1915
1916 memset(data, 0, sizeof(*data));
1917 memset(&cmd[0], 0, 12);
1918 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1919 cmd[2] = modepage;
1920
1921 /* caller might not be interested in sense, but we need it */
1922 if (!sshdr)
1923 sshdr = &my_sshdr;
1924
1925 retry:
1926 use_10_for_ms = sdev->use_10_for_ms;
1927
1928 if (use_10_for_ms) {
1929 if (len < 8)
1930 len = 8;
1931
1932 cmd[0] = MODE_SENSE_10;
1933 cmd[8] = len;
1934 header_length = 8;
1935 } else {
1936 if (len < 4)
1937 len = 4;
1938
1939 cmd[0] = MODE_SENSE;
1940 cmd[4] = len;
1941 header_length = 4;
1942 }
1943
1944 memset(buffer, 0, len);
1945
1946 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1947 sshdr, timeout, retries, NULL);
1948
1949 /* This code looks awful: what it's doing is making sure an
1950 * ILLEGAL REQUEST sense return identifies the actual command
1951 * byte as the problem. MODE_SENSE commands can return
1952 * ILLEGAL REQUEST if the code page isn't supported */
1953
1954 if (use_10_for_ms && !scsi_status_is_good(result) &&
1955 (driver_byte(result) & DRIVER_SENSE)) {
1956 if (scsi_sense_valid(sshdr)) {
1957 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1958 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1959 /*
1960 * Invalid command operation code
1961 */
1962 sdev->use_10_for_ms = 0;
1963 goto retry;
1964 }
1965 }
1966 }
1967
1968 if(scsi_status_is_good(result)) {
1969 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1970 (modepage == 6 || modepage == 8))) {
1971 /* Initio breakage? */
1972 header_length = 0;
1973 data->length = 13;
1974 data->medium_type = 0;
1975 data->device_specific = 0;
1976 data->longlba = 0;
1977 data->block_descriptor_length = 0;
1978 } else if(use_10_for_ms) {
1979 data->length = buffer[0]*256 + buffer[1] + 2;
1980 data->medium_type = buffer[2];
1981 data->device_specific = buffer[3];
1982 data->longlba = buffer[4] & 0x01;
1983 data->block_descriptor_length = buffer[6]*256
1984 + buffer[7];
1985 } else {
1986 data->length = buffer[0] + 1;
1987 data->medium_type = buffer[1];
1988 data->device_specific = buffer[2];
1989 data->block_descriptor_length = buffer[3];
1990 }
1991 data->header_length = header_length;
1992 }
1993
1994 return result;
1995 }
1996 EXPORT_SYMBOL(scsi_mode_sense);
1997
1998 /**
1999 * scsi_test_unit_ready - test if unit is ready
2000 * @sdev: scsi device to change the state of.
2001 * @timeout: command timeout
2002 * @retries: number of retries before failing
2003 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2004 * returning sense. Make sure that this is cleared before passing
2005 * in.
2006 *
2007 * Returns zero if unsuccessful or an error if TUR failed. For
2008 * removable media, UNIT_ATTENTION sets ->changed flag.
2009 **/
2010 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr_external)2011 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2012 struct scsi_sense_hdr *sshdr_external)
2013 {
2014 char cmd[] = {
2015 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2016 };
2017 struct scsi_sense_hdr *sshdr;
2018 int result;
2019
2020 if (!sshdr_external)
2021 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2022 else
2023 sshdr = sshdr_external;
2024
2025 /* try to eat the UNIT_ATTENTION if there are enough retries */
2026 do {
2027 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2028 timeout, retries, NULL);
2029 if (sdev->removable && scsi_sense_valid(sshdr) &&
2030 sshdr->sense_key == UNIT_ATTENTION)
2031 sdev->changed = 1;
2032 } while (scsi_sense_valid(sshdr) &&
2033 sshdr->sense_key == UNIT_ATTENTION && --retries);
2034
2035 if (!sshdr_external)
2036 kfree(sshdr);
2037 return result;
2038 }
2039 EXPORT_SYMBOL(scsi_test_unit_ready);
2040
2041 /**
2042 * scsi_device_set_state - Take the given device through the device state model.
2043 * @sdev: scsi device to change the state of.
2044 * @state: state to change to.
2045 *
2046 * Returns zero if unsuccessful or an error if the requested
2047 * transition is illegal.
2048 */
2049 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2050 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2051 {
2052 enum scsi_device_state oldstate = sdev->sdev_state;
2053
2054 if (state == oldstate)
2055 return 0;
2056
2057 switch (state) {
2058 case SDEV_CREATED:
2059 switch (oldstate) {
2060 case SDEV_CREATED_BLOCK:
2061 break;
2062 default:
2063 goto illegal;
2064 }
2065 break;
2066
2067 case SDEV_RUNNING:
2068 switch (oldstate) {
2069 case SDEV_CREATED:
2070 case SDEV_OFFLINE:
2071 case SDEV_QUIESCE:
2072 case SDEV_BLOCK:
2073 break;
2074 default:
2075 goto illegal;
2076 }
2077 break;
2078
2079 case SDEV_QUIESCE:
2080 switch (oldstate) {
2081 case SDEV_RUNNING:
2082 case SDEV_OFFLINE:
2083 break;
2084 default:
2085 goto illegal;
2086 }
2087 break;
2088
2089 case SDEV_OFFLINE:
2090 switch (oldstate) {
2091 case SDEV_CREATED:
2092 case SDEV_RUNNING:
2093 case SDEV_QUIESCE:
2094 case SDEV_BLOCK:
2095 break;
2096 default:
2097 goto illegal;
2098 }
2099 break;
2100
2101 case SDEV_BLOCK:
2102 switch (oldstate) {
2103 case SDEV_RUNNING:
2104 case SDEV_CREATED_BLOCK:
2105 break;
2106 default:
2107 goto illegal;
2108 }
2109 break;
2110
2111 case SDEV_CREATED_BLOCK:
2112 switch (oldstate) {
2113 case SDEV_CREATED:
2114 break;
2115 default:
2116 goto illegal;
2117 }
2118 break;
2119
2120 case SDEV_CANCEL:
2121 switch (oldstate) {
2122 case SDEV_CREATED:
2123 case SDEV_RUNNING:
2124 case SDEV_QUIESCE:
2125 case SDEV_OFFLINE:
2126 case SDEV_BLOCK:
2127 break;
2128 default:
2129 goto illegal;
2130 }
2131 break;
2132
2133 case SDEV_DEL:
2134 switch (oldstate) {
2135 case SDEV_CREATED:
2136 case SDEV_RUNNING:
2137 case SDEV_OFFLINE:
2138 case SDEV_CANCEL:
2139 break;
2140 default:
2141 goto illegal;
2142 }
2143 break;
2144
2145 }
2146 sdev->sdev_state = state;
2147 return 0;
2148
2149 illegal:
2150 SCSI_LOG_ERROR_RECOVERY(1,
2151 sdev_printk(KERN_ERR, sdev,
2152 "Illegal state transition %s->%s\n",
2153 scsi_device_state_name(oldstate),
2154 scsi_device_state_name(state))
2155 );
2156 return -EINVAL;
2157 }
2158 EXPORT_SYMBOL(scsi_device_set_state);
2159
2160 /**
2161 * sdev_evt_emit - emit a single SCSI device uevent
2162 * @sdev: associated SCSI device
2163 * @evt: event to emit
2164 *
2165 * Send a single uevent (scsi_event) to the associated scsi_device.
2166 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2167 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2168 {
2169 int idx = 0;
2170 char *envp[3];
2171
2172 switch (evt->evt_type) {
2173 case SDEV_EVT_MEDIA_CHANGE:
2174 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2175 break;
2176
2177 default:
2178 /* do nothing */
2179 break;
2180 }
2181
2182 envp[idx++] = NULL;
2183
2184 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2185 }
2186
2187 /**
2188 * sdev_evt_thread - send a uevent for each scsi event
2189 * @work: work struct for scsi_device
2190 *
2191 * Dispatch queued events to their associated scsi_device kobjects
2192 * as uevents.
2193 */
scsi_evt_thread(struct work_struct * work)2194 void scsi_evt_thread(struct work_struct *work)
2195 {
2196 struct scsi_device *sdev;
2197 LIST_HEAD(event_list);
2198
2199 sdev = container_of(work, struct scsi_device, event_work);
2200
2201 while (1) {
2202 struct scsi_event *evt;
2203 struct list_head *this, *tmp;
2204 unsigned long flags;
2205
2206 spin_lock_irqsave(&sdev->list_lock, flags);
2207 list_splice_init(&sdev->event_list, &event_list);
2208 spin_unlock_irqrestore(&sdev->list_lock, flags);
2209
2210 if (list_empty(&event_list))
2211 break;
2212
2213 list_for_each_safe(this, tmp, &event_list) {
2214 evt = list_entry(this, struct scsi_event, node);
2215 list_del(&evt->node);
2216 scsi_evt_emit(sdev, evt);
2217 kfree(evt);
2218 }
2219 }
2220 }
2221
2222 /**
2223 * sdev_evt_send - send asserted event to uevent thread
2224 * @sdev: scsi_device event occurred on
2225 * @evt: event to send
2226 *
2227 * Assert scsi device event asynchronously.
2228 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2229 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2230 {
2231 unsigned long flags;
2232
2233 #if 0
2234 /* FIXME: currently this check eliminates all media change events
2235 * for polled devices. Need to update to discriminate between AN
2236 * and polled events */
2237 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2238 kfree(evt);
2239 return;
2240 }
2241 #endif
2242
2243 spin_lock_irqsave(&sdev->list_lock, flags);
2244 list_add_tail(&evt->node, &sdev->event_list);
2245 schedule_work(&sdev->event_work);
2246 spin_unlock_irqrestore(&sdev->list_lock, flags);
2247 }
2248 EXPORT_SYMBOL_GPL(sdev_evt_send);
2249
2250 /**
2251 * sdev_evt_alloc - allocate a new scsi event
2252 * @evt_type: type of event to allocate
2253 * @gfpflags: GFP flags for allocation
2254 *
2255 * Allocates and returns a new scsi_event.
2256 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2257 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2258 gfp_t gfpflags)
2259 {
2260 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2261 if (!evt)
2262 return NULL;
2263
2264 evt->evt_type = evt_type;
2265 INIT_LIST_HEAD(&evt->node);
2266
2267 /* evt_type-specific initialization, if any */
2268 switch (evt_type) {
2269 case SDEV_EVT_MEDIA_CHANGE:
2270 default:
2271 /* do nothing */
2272 break;
2273 }
2274
2275 return evt;
2276 }
2277 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2278
2279 /**
2280 * sdev_evt_send_simple - send asserted event to uevent thread
2281 * @sdev: scsi_device event occurred on
2282 * @evt_type: type of event to send
2283 * @gfpflags: GFP flags for allocation
2284 *
2285 * Assert scsi device event asynchronously, given an event type.
2286 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2287 void sdev_evt_send_simple(struct scsi_device *sdev,
2288 enum scsi_device_event evt_type, gfp_t gfpflags)
2289 {
2290 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2291 if (!evt) {
2292 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2293 evt_type);
2294 return;
2295 }
2296
2297 sdev_evt_send(sdev, evt);
2298 }
2299 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2300
2301 /**
2302 * scsi_device_quiesce - Block user issued commands.
2303 * @sdev: scsi device to quiesce.
2304 *
2305 * This works by trying to transition to the SDEV_QUIESCE state
2306 * (which must be a legal transition). When the device is in this
2307 * state, only special requests will be accepted, all others will
2308 * be deferred. Since special requests may also be requeued requests,
2309 * a successful return doesn't guarantee the device will be
2310 * totally quiescent.
2311 *
2312 * Must be called with user context, may sleep.
2313 *
2314 * Returns zero if unsuccessful or an error if not.
2315 */
2316 int
scsi_device_quiesce(struct scsi_device * sdev)2317 scsi_device_quiesce(struct scsi_device *sdev)
2318 {
2319 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2320 if (err)
2321 return err;
2322
2323 scsi_run_queue(sdev->request_queue);
2324 while (sdev->device_busy) {
2325 msleep_interruptible(200);
2326 scsi_run_queue(sdev->request_queue);
2327 }
2328 return 0;
2329 }
2330 EXPORT_SYMBOL(scsi_device_quiesce);
2331
2332 /**
2333 * scsi_device_resume - Restart user issued commands to a quiesced device.
2334 * @sdev: scsi device to resume.
2335 *
2336 * Moves the device from quiesced back to running and restarts the
2337 * queues.
2338 *
2339 * Must be called with user context, may sleep.
2340 */
2341 void
scsi_device_resume(struct scsi_device * sdev)2342 scsi_device_resume(struct scsi_device *sdev)
2343 {
2344 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2345 return;
2346 scsi_run_queue(sdev->request_queue);
2347 }
2348 EXPORT_SYMBOL(scsi_device_resume);
2349
2350 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2351 device_quiesce_fn(struct scsi_device *sdev, void *data)
2352 {
2353 scsi_device_quiesce(sdev);
2354 }
2355
2356 void
scsi_target_quiesce(struct scsi_target * starget)2357 scsi_target_quiesce(struct scsi_target *starget)
2358 {
2359 starget_for_each_device(starget, NULL, device_quiesce_fn);
2360 }
2361 EXPORT_SYMBOL(scsi_target_quiesce);
2362
2363 static void
device_resume_fn(struct scsi_device * sdev,void * data)2364 device_resume_fn(struct scsi_device *sdev, void *data)
2365 {
2366 scsi_device_resume(sdev);
2367 }
2368
2369 void
scsi_target_resume(struct scsi_target * starget)2370 scsi_target_resume(struct scsi_target *starget)
2371 {
2372 starget_for_each_device(starget, NULL, device_resume_fn);
2373 }
2374 EXPORT_SYMBOL(scsi_target_resume);
2375
2376 /**
2377 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2378 * @sdev: device to block
2379 *
2380 * Block request made by scsi lld's to temporarily stop all
2381 * scsi commands on the specified device. Called from interrupt
2382 * or normal process context.
2383 *
2384 * Returns zero if successful or error if not
2385 *
2386 * Notes:
2387 * This routine transitions the device to the SDEV_BLOCK state
2388 * (which must be a legal transition). When the device is in this
2389 * state, all commands are deferred until the scsi lld reenables
2390 * the device with scsi_device_unblock or device_block_tmo fires.
2391 * This routine assumes the host_lock is held on entry.
2392 */
2393 int
scsi_internal_device_block(struct scsi_device * sdev)2394 scsi_internal_device_block(struct scsi_device *sdev)
2395 {
2396 struct request_queue *q = sdev->request_queue;
2397 unsigned long flags;
2398 int err = 0;
2399
2400 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2401 if (err) {
2402 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2403
2404 if (err)
2405 return err;
2406 }
2407
2408 /*
2409 * The device has transitioned to SDEV_BLOCK. Stop the
2410 * block layer from calling the midlayer with this device's
2411 * request queue.
2412 */
2413 spin_lock_irqsave(q->queue_lock, flags);
2414 blk_stop_queue(q);
2415 spin_unlock_irqrestore(q->queue_lock, flags);
2416
2417 return 0;
2418 }
2419 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2420
2421 /**
2422 * scsi_internal_device_unblock - resume a device after a block request
2423 * @sdev: device to resume
2424 *
2425 * Called by scsi lld's or the midlayer to restart the device queue
2426 * for the previously suspended scsi device. Called from interrupt or
2427 * normal process context.
2428 *
2429 * Returns zero if successful or error if not.
2430 *
2431 * Notes:
2432 * This routine transitions the device to the SDEV_RUNNING state
2433 * (which must be a legal transition) allowing the midlayer to
2434 * goose the queue for this device. This routine assumes the
2435 * host_lock is held upon entry.
2436 */
2437 int
scsi_internal_device_unblock(struct scsi_device * sdev)2438 scsi_internal_device_unblock(struct scsi_device *sdev)
2439 {
2440 struct request_queue *q = sdev->request_queue;
2441 unsigned long flags;
2442
2443 /*
2444 * Try to transition the scsi device to SDEV_RUNNING
2445 * and goose the device queue if successful.
2446 */
2447 if (sdev->sdev_state == SDEV_BLOCK)
2448 sdev->sdev_state = SDEV_RUNNING;
2449 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2450 sdev->sdev_state = SDEV_CREATED;
2451 else if (sdev->sdev_state != SDEV_CANCEL &&
2452 sdev->sdev_state != SDEV_OFFLINE)
2453 return -EINVAL;
2454
2455 spin_lock_irqsave(q->queue_lock, flags);
2456 blk_start_queue(q);
2457 spin_unlock_irqrestore(q->queue_lock, flags);
2458
2459 return 0;
2460 }
2461 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2462
2463 static void
device_block(struct scsi_device * sdev,void * data)2464 device_block(struct scsi_device *sdev, void *data)
2465 {
2466 scsi_internal_device_block(sdev);
2467 }
2468
2469 static int
target_block(struct device * dev,void * data)2470 target_block(struct device *dev, void *data)
2471 {
2472 if (scsi_is_target_device(dev))
2473 starget_for_each_device(to_scsi_target(dev), NULL,
2474 device_block);
2475 return 0;
2476 }
2477
2478 void
scsi_target_block(struct device * dev)2479 scsi_target_block(struct device *dev)
2480 {
2481 if (scsi_is_target_device(dev))
2482 starget_for_each_device(to_scsi_target(dev), NULL,
2483 device_block);
2484 else
2485 device_for_each_child(dev, NULL, target_block);
2486 }
2487 EXPORT_SYMBOL_GPL(scsi_target_block);
2488
2489 static void
device_unblock(struct scsi_device * sdev,void * data)2490 device_unblock(struct scsi_device *sdev, void *data)
2491 {
2492 scsi_internal_device_unblock(sdev);
2493 }
2494
2495 static int
target_unblock(struct device * dev,void * data)2496 target_unblock(struct device *dev, void *data)
2497 {
2498 if (scsi_is_target_device(dev))
2499 starget_for_each_device(to_scsi_target(dev), NULL,
2500 device_unblock);
2501 return 0;
2502 }
2503
2504 void
scsi_target_unblock(struct device * dev)2505 scsi_target_unblock(struct device *dev)
2506 {
2507 if (scsi_is_target_device(dev))
2508 starget_for_each_device(to_scsi_target(dev), NULL,
2509 device_unblock);
2510 else
2511 device_for_each_child(dev, NULL, target_unblock);
2512 }
2513 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2514
2515 /**
2516 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2517 * @sgl: scatter-gather list
2518 * @sg_count: number of segments in sg
2519 * @offset: offset in bytes into sg, on return offset into the mapped area
2520 * @len: bytes to map, on return number of bytes mapped
2521 *
2522 * Returns virtual address of the start of the mapped page
2523 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2524 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2525 size_t *offset, size_t *len)
2526 {
2527 int i;
2528 size_t sg_len = 0, len_complete = 0;
2529 struct scatterlist *sg;
2530 struct page *page;
2531
2532 WARN_ON(!irqs_disabled());
2533
2534 for_each_sg(sgl, sg, sg_count, i) {
2535 len_complete = sg_len; /* Complete sg-entries */
2536 sg_len += sg->length;
2537 if (sg_len > *offset)
2538 break;
2539 }
2540
2541 if (unlikely(i == sg_count)) {
2542 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2543 "elements %d\n",
2544 __func__, sg_len, *offset, sg_count);
2545 WARN_ON(1);
2546 return NULL;
2547 }
2548
2549 /* Offset starting from the beginning of first page in this sg-entry */
2550 *offset = *offset - len_complete + sg->offset;
2551
2552 /* Assumption: contiguous pages can be accessed as "page + i" */
2553 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2554 *offset &= ~PAGE_MASK;
2555
2556 /* Bytes in this sg-entry from *offset to the end of the page */
2557 sg_len = PAGE_SIZE - *offset;
2558 if (*len > sg_len)
2559 *len = sg_len;
2560
2561 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2562 }
2563 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2564
2565 /**
2566 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2567 * @virt: virtual address to be unmapped
2568 */
scsi_kunmap_atomic_sg(void * virt)2569 void scsi_kunmap_atomic_sg(void *virt)
2570 {
2571 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2572 }
2573 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2574