1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Message Protocol driver
4 *
5 * SCMI Message Protocol is used between the System Control Processor(SCP)
6 * and the Application Processors(AP). The Message Handling Unit(MHU)
7 * provides a mechanism for inter-processor communication between SCP's
8 * Cortex M3 and AP.
9 *
10 * SCP offers control and management of the core/cluster power states,
11 * various power domain DVFS including the core/cluster, certain system
12 * clocks configuration, thermal sensors and many others.
13 *
14 * Copyright (C) 2018-2021 ARM Ltd.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36
37 #include "common.h"
38 #include "notify.h"
39
40 #include "raw_mode.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/scmi.h>
44
45 static DEFINE_IDA(scmi_id);
46
47 static DEFINE_IDR(scmi_protocols);
48 static DEFINE_SPINLOCK(protocol_lock);
49
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56
57 static struct dentry *scmi_top_dentry;
58
59 /**
60 * struct scmi_xfers_info - Structure to manage transfer information
61 *
62 * @xfer_alloc_table: Bitmap table for allocated messages.
63 * Index of this bitmap table is also used for message
64 * sequence identifier.
65 * @xfer_lock: Protection for message allocation
66 * @max_msg: Maximum number of messages that can be pending
67 * @free_xfers: A free list for available to use xfers. It is initialized with
68 * a number of xfers equal to the maximum allowed in-flight
69 * messages.
70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71 * currently in-flight messages.
72 */
73 struct scmi_xfers_info {
74 unsigned long *xfer_alloc_table;
75 spinlock_t xfer_lock;
76 int max_msg;
77 struct hlist_head free_xfers;
78 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80
81 /**
82 * struct scmi_protocol_instance - Describe an initialized protocol instance.
83 * @handle: Reference to the SCMI handle associated to this protocol instance.
84 * @proto: A reference to the protocol descriptor.
85 * @gid: A reference for per-protocol devres management.
86 * @users: A refcount to track effective users of this protocol.
87 * @priv: Reference for optional protocol private data.
88 * @ph: An embedded protocol handle that will be passed down to protocol
89 * initialization code to identify this instance.
90 *
91 * Each protocol is initialized independently once for each SCMI platform in
92 * which is defined by DT and implemented by the SCMI server fw.
93 */
94 struct scmi_protocol_instance {
95 const struct scmi_handle *handle;
96 const struct scmi_protocol *proto;
97 void *gid;
98 refcount_t users;
99 void *priv;
100 struct scmi_protocol_handle ph;
101 };
102
103 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph)
104
105 /**
106 * struct scmi_debug_info - Debug common info
107 * @top_dentry: A reference to the top debugfs dentry
108 * @name: Name of this SCMI instance
109 * @type: Type of this SCMI instance
110 * @is_atomic: Flag to state if the transport of this instance is atomic
111 */
112 struct scmi_debug_info {
113 struct dentry *top_dentry;
114 const char *name;
115 const char *type;
116 bool is_atomic;
117 };
118
119 /**
120 * struct scmi_info - Structure representing a SCMI instance
121 *
122 * @id: A sequence number starting from zero identifying this instance
123 * @dev: Device pointer
124 * @desc: SoC description for this instance
125 * @version: SCMI revision information containing protocol version,
126 * implementation version and (sub-)vendor identification.
127 * @handle: Instance of SCMI handle to send to clients
128 * @tx_minfo: Universal Transmit Message management info
129 * @rx_minfo: Universal Receive Message management info
130 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
131 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
132 * @protocols: IDR for protocols' instance descriptors initialized for
133 * this SCMI instance: populated on protocol's first attempted
134 * usage.
135 * @protocols_mtx: A mutex to protect protocols instances initialization.
136 * @protocols_imp: List of protocols implemented, currently maximum of
137 * scmi_revision_info.num_protocols elements allocated by the
138 * base protocol
139 * @active_protocols: IDR storing device_nodes for protocols actually defined
140 * in the DT and confirmed as implemented by fw.
141 * @atomic_threshold: Optional system wide DT-configured threshold, expressed
142 * in microseconds, for atomic operations.
143 * Only SCMI synchronous commands reported by the platform
144 * to have an execution latency lesser-equal to the threshold
145 * should be considered for atomic mode operation: such
146 * decision is finally left up to the SCMI drivers.
147 * @notify_priv: Pointer to private data structure specific to notifications.
148 * @node: List head
149 * @users: Number of users of this instance
150 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
151 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
152 * bus
153 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
154 * @dbg: A pointer to debugfs related data (if any)
155 * @raw: An opaque reference handle used by SCMI Raw mode.
156 */
157 struct scmi_info {
158 int id;
159 struct device *dev;
160 const struct scmi_desc *desc;
161 struct scmi_revision_info version;
162 struct scmi_handle handle;
163 struct scmi_xfers_info tx_minfo;
164 struct scmi_xfers_info rx_minfo;
165 struct idr tx_idr;
166 struct idr rx_idr;
167 struct idr protocols;
168 /* Ensure mutual exclusive access to protocols instance array */
169 struct mutex protocols_mtx;
170 u8 *protocols_imp;
171 struct idr active_protocols;
172 unsigned int atomic_threshold;
173 void *notify_priv;
174 struct list_head node;
175 int users;
176 struct notifier_block bus_nb;
177 struct notifier_block dev_req_nb;
178 /* Serialize device creation process for this instance */
179 struct mutex devreq_mtx;
180 struct scmi_debug_info *dbg;
181 void *raw;
182 };
183
184 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
185 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb)
186 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb)
187
scmi_protocol_get(int protocol_id)188 static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
189 {
190 const struct scmi_protocol *proto;
191
192 proto = idr_find(&scmi_protocols, protocol_id);
193 if (!proto || !try_module_get(proto->owner)) {
194 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
195 return NULL;
196 }
197
198 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
199
200 return proto;
201 }
202
scmi_protocol_put(int protocol_id)203 static void scmi_protocol_put(int protocol_id)
204 {
205 const struct scmi_protocol *proto;
206
207 proto = idr_find(&scmi_protocols, protocol_id);
208 if (proto)
209 module_put(proto->owner);
210 }
211
scmi_protocol_register(const struct scmi_protocol * proto)212 int scmi_protocol_register(const struct scmi_protocol *proto)
213 {
214 int ret;
215
216 if (!proto) {
217 pr_err("invalid protocol\n");
218 return -EINVAL;
219 }
220
221 if (!proto->instance_init) {
222 pr_err("missing init for protocol 0x%x\n", proto->id);
223 return -EINVAL;
224 }
225
226 spin_lock(&protocol_lock);
227 ret = idr_alloc(&scmi_protocols, (void *)proto,
228 proto->id, proto->id + 1, GFP_ATOMIC);
229 spin_unlock(&protocol_lock);
230 if (ret != proto->id) {
231 pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
232 proto->id, ret);
233 return ret;
234 }
235
236 pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
237
238 return 0;
239 }
240 EXPORT_SYMBOL_GPL(scmi_protocol_register);
241
scmi_protocol_unregister(const struct scmi_protocol * proto)242 void scmi_protocol_unregister(const struct scmi_protocol *proto)
243 {
244 spin_lock(&protocol_lock);
245 idr_remove(&scmi_protocols, proto->id);
246 spin_unlock(&protocol_lock);
247
248 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
249 }
250 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
251
252 /**
253 * scmi_create_protocol_devices - Create devices for all pending requests for
254 * this SCMI instance.
255 *
256 * @np: The device node describing the protocol
257 * @info: The SCMI instance descriptor
258 * @prot_id: The protocol ID
259 * @name: The optional name of the device to be created: if not provided this
260 * call will lead to the creation of all the devices currently requested
261 * for the specified protocol.
262 */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)263 static void scmi_create_protocol_devices(struct device_node *np,
264 struct scmi_info *info,
265 int prot_id, const char *name)
266 {
267 struct scmi_device *sdev;
268
269 mutex_lock(&info->devreq_mtx);
270 sdev = scmi_device_create(np, info->dev, prot_id, name);
271 if (name && !sdev)
272 dev_err(info->dev,
273 "failed to create device for protocol 0x%X (%s)\n",
274 prot_id, name);
275 mutex_unlock(&info->devreq_mtx);
276 }
277
scmi_destroy_protocol_devices(struct scmi_info * info,int prot_id,const char * name)278 static void scmi_destroy_protocol_devices(struct scmi_info *info,
279 int prot_id, const char *name)
280 {
281 mutex_lock(&info->devreq_mtx);
282 scmi_device_destroy(info->dev, prot_id, name);
283 mutex_unlock(&info->devreq_mtx);
284 }
285
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)286 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
287 void *priv)
288 {
289 struct scmi_info *info = handle_to_scmi_info(handle);
290
291 info->notify_priv = priv;
292 /* Ensure updated protocol private date are visible */
293 smp_wmb();
294 }
295
scmi_notification_instance_data_get(const struct scmi_handle * handle)296 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
297 {
298 struct scmi_info *info = handle_to_scmi_info(handle);
299
300 /* Ensure protocols_private_data has been updated */
301 smp_rmb();
302 return info->notify_priv;
303 }
304
305 /**
306 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand
307 *
308 * @minfo: Pointer to Tx/Rx Message management info based on channel type
309 * @xfer: The xfer to act upon
310 *
311 * Pick the next unused monotonically increasing token and set it into
312 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
313 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
314 * of incorrect association of a late and expired xfer with a live in-flight
315 * transaction, both happening to re-use the same token identifier.
316 *
317 * Since platform is NOT required to answer our request in-order we should
318 * account for a few rare but possible scenarios:
319 *
320 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
321 * using find_next_zero_bit() starting from candidate next_token bit
322 *
323 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
324 * are plenty of free tokens at start, so try a second pass using
325 * find_next_zero_bit() and starting from 0.
326 *
327 * X = used in-flight
328 *
329 * Normal
330 * ------
331 *
332 * |- xfer_id picked
333 * -----------+----------------------------------------------------------
334 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
335 * ----------------------------------------------------------------------
336 * ^
337 * |- next_token
338 *
339 * Out-of-order pending at start
340 * -----------------------------
341 *
342 * |- xfer_id picked, last_token fixed
343 * -----+----------------------------------------------------------------
344 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
345 * ----------------------------------------------------------------------
346 * ^
347 * |- next_token
348 *
349 *
350 * Out-of-order pending at end
351 * ---------------------------
352 *
353 * |- xfer_id picked, last_token fixed
354 * -----+----------------------------------------------------------------
355 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
356 * ----------------------------------------------------------------------
357 * ^
358 * |- next_token
359 *
360 * Context: Assumes to be called with @xfer_lock already acquired.
361 *
362 * Return: 0 on Success or error
363 */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)364 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
365 struct scmi_xfer *xfer)
366 {
367 unsigned long xfer_id, next_token;
368
369 /*
370 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
371 * using the pre-allocated transfer_id as a base.
372 * Note that the global transfer_id is shared across all message types
373 * so there could be holes in the allocated set of monotonic sequence
374 * numbers, but that is going to limit the effectiveness of the
375 * mitigation only in very rare limit conditions.
376 */
377 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
378
379 /* Pick the next available xfer_id >= next_token */
380 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
381 MSG_TOKEN_MAX, next_token);
382 if (xfer_id == MSG_TOKEN_MAX) {
383 /*
384 * After heavily out-of-order responses, there are no free
385 * tokens ahead, but only at start of xfer_alloc_table so
386 * try again from the beginning.
387 */
388 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
389 MSG_TOKEN_MAX, 0);
390 /*
391 * Something is wrong if we got here since there can be a
392 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
393 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
394 */
395 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
396 return -ENOMEM;
397 }
398
399 /* Update +/- last_token accordingly if we skipped some hole */
400 if (xfer_id != next_token)
401 atomic_add((int)(xfer_id - next_token), &transfer_last_id);
402
403 xfer->hdr.seq = (u16)xfer_id;
404
405 return 0;
406 }
407
408 /**
409 * scmi_xfer_token_clear - Release the token
410 *
411 * @minfo: Pointer to Tx/Rx Message management info based on channel type
412 * @xfer: The xfer to act upon
413 */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)414 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
415 struct scmi_xfer *xfer)
416 {
417 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
418 }
419
420 /**
421 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight
422 *
423 * @xfer: The xfer to register
424 * @minfo: Pointer to Tx/Rx Message management info based on channel type
425 *
426 * Note that this helper assumes that the xfer to be registered as in-flight
427 * had been built using an xfer sequence number which still corresponds to a
428 * free slot in the xfer_alloc_table.
429 *
430 * Context: Assumes to be called with @xfer_lock already acquired.
431 */
432 static inline void
scmi_xfer_inflight_register_unlocked(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)433 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
434 struct scmi_xfers_info *minfo)
435 {
436 /* Set in-flight */
437 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
438 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
439 xfer->pending = true;
440 }
441
442 /**
443 * scmi_xfer_inflight_register - Try to register an xfer as in-flight
444 *
445 * @xfer: The xfer to register
446 * @minfo: Pointer to Tx/Rx Message management info based on channel type
447 *
448 * Note that this helper does NOT assume anything about the sequence number
449 * that was baked into the provided xfer, so it checks at first if it can
450 * be mapped to a free slot and fails with an error if another xfer with the
451 * same sequence number is currently still registered as in-flight.
452 *
453 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
454 * could not rbe mapped to a free slot in the xfer_alloc_table.
455 */
scmi_xfer_inflight_register(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)456 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
457 struct scmi_xfers_info *minfo)
458 {
459 int ret = 0;
460 unsigned long flags;
461
462 spin_lock_irqsave(&minfo->xfer_lock, flags);
463 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
464 scmi_xfer_inflight_register_unlocked(xfer, minfo);
465 else
466 ret = -EBUSY;
467 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
468
469 return ret;
470 }
471
472 /**
473 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in
474 * flight on the TX channel, if possible.
475 *
476 * @handle: Pointer to SCMI entity handle
477 * @xfer: The xfer to register
478 *
479 * Return: 0 on Success, error otherwise
480 */
scmi_xfer_raw_inflight_register(const struct scmi_handle * handle,struct scmi_xfer * xfer)481 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
482 struct scmi_xfer *xfer)
483 {
484 struct scmi_info *info = handle_to_scmi_info(handle);
485
486 return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
487 }
488
489 /**
490 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer
491 * as pending in-flight
492 *
493 * @xfer: The xfer to act upon
494 * @minfo: Pointer to Tx/Rx Message management info based on channel type
495 *
496 * Return: 0 on Success or error otherwise
497 */
scmi_xfer_pending_set(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)498 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
499 struct scmi_xfers_info *minfo)
500 {
501 int ret;
502 unsigned long flags;
503
504 spin_lock_irqsave(&minfo->xfer_lock, flags);
505 /* Set a new monotonic token as the xfer sequence number */
506 ret = scmi_xfer_token_set(minfo, xfer);
507 if (!ret)
508 scmi_xfer_inflight_register_unlocked(xfer, minfo);
509 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
510
511 return ret;
512 }
513
514 /**
515 * scmi_xfer_get() - Allocate one message
516 *
517 * @handle: Pointer to SCMI entity handle
518 * @minfo: Pointer to Tx/Rx Message management info based on channel type
519 *
520 * Helper function which is used by various message functions that are
521 * exposed to clients of this driver for allocating a message traffic event.
522 *
523 * Picks an xfer from the free list @free_xfers (if any available) and perform
524 * a basic initialization.
525 *
526 * Note that, at this point, still no sequence number is assigned to the
527 * allocated xfer, nor it is registered as a pending transaction.
528 *
529 * The successfully initialized xfer is refcounted.
530 *
531 * Context: Holds @xfer_lock while manipulating @free_xfers.
532 *
533 * Return: An initialized xfer if all went fine, else pointer error.
534 */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo)535 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
536 struct scmi_xfers_info *minfo)
537 {
538 unsigned long flags;
539 struct scmi_xfer *xfer;
540
541 spin_lock_irqsave(&minfo->xfer_lock, flags);
542 if (hlist_empty(&minfo->free_xfers)) {
543 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
544 return ERR_PTR(-ENOMEM);
545 }
546
547 /* grab an xfer from the free_list */
548 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
549 hlist_del_init(&xfer->node);
550
551 /*
552 * Allocate transfer_id early so that can be used also as base for
553 * monotonic sequence number generation if needed.
554 */
555 xfer->transfer_id = atomic_inc_return(&transfer_last_id);
556
557 refcount_set(&xfer->users, 1);
558 atomic_set(&xfer->busy, SCMI_XFER_FREE);
559 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
560
561 return xfer;
562 }
563
564 /**
565 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel
566 *
567 * @handle: Pointer to SCMI entity handle
568 *
569 * Note that xfer is taken from the TX channel structures.
570 *
571 * Return: A valid xfer on Success, or an error-pointer otherwise
572 */
scmi_xfer_raw_get(const struct scmi_handle * handle)573 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
574 {
575 struct scmi_xfer *xfer;
576 struct scmi_info *info = handle_to_scmi_info(handle);
577
578 xfer = scmi_xfer_get(handle, &info->tx_minfo);
579 if (!IS_ERR(xfer))
580 xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
581
582 return xfer;
583 }
584
585 /**
586 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel
587 * to use for a specific protocol_id Raw transaction.
588 *
589 * @handle: Pointer to SCMI entity handle
590 * @protocol_id: Identifier of the protocol
591 *
592 * Note that in a regular SCMI stack, usually, a protocol has to be defined in
593 * the DT to have an associated channel and be usable; but in Raw mode any
594 * protocol in range is allowed, re-using the Base channel, so as to enable
595 * fuzzing on any protocol without the need of a fully compiled DT.
596 *
597 * Return: A reference to the channel to use, or an ERR_PTR
598 */
599 struct scmi_chan_info *
scmi_xfer_raw_channel_get(const struct scmi_handle * handle,u8 protocol_id)600 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
601 {
602 struct scmi_chan_info *cinfo;
603 struct scmi_info *info = handle_to_scmi_info(handle);
604
605 cinfo = idr_find(&info->tx_idr, protocol_id);
606 if (!cinfo) {
607 if (protocol_id == SCMI_PROTOCOL_BASE)
608 return ERR_PTR(-EINVAL);
609 /* Use Base channel for protocols not defined for DT */
610 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
611 if (!cinfo)
612 return ERR_PTR(-EINVAL);
613 dev_warn_once(handle->dev,
614 "Using Base channel for protocol 0x%X\n",
615 protocol_id);
616 }
617
618 return cinfo;
619 }
620
621 /**
622 * __scmi_xfer_put() - Release a message
623 *
624 * @minfo: Pointer to Tx/Rx Message management info based on channel type
625 * @xfer: message that was reserved by scmi_xfer_get
626 *
627 * After refcount check, possibly release an xfer, clearing the token slot,
628 * removing xfer from @pending_xfers and putting it back into free_xfers.
629 *
630 * This holds a spinlock to maintain integrity of internal data structures.
631 */
632 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)633 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
634 {
635 unsigned long flags;
636
637 spin_lock_irqsave(&minfo->xfer_lock, flags);
638 if (refcount_dec_and_test(&xfer->users)) {
639 if (xfer->pending) {
640 scmi_xfer_token_clear(minfo, xfer);
641 hash_del(&xfer->node);
642 xfer->pending = false;
643 }
644 hlist_add_head(&xfer->node, &minfo->free_xfers);
645 }
646 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
647 }
648
649 /**
650 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get
651 *
652 * @handle: Pointer to SCMI entity handle
653 * @xfer: A reference to the xfer to put
654 *
655 * Note that as with other xfer_put() handlers the xfer is really effectively
656 * released only if there are no more users on the system.
657 */
scmi_xfer_raw_put(const struct scmi_handle * handle,struct scmi_xfer * xfer)658 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
659 {
660 struct scmi_info *info = handle_to_scmi_info(handle);
661
662 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
663 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
664 return __scmi_xfer_put(&info->tx_minfo, xfer);
665 }
666
667 /**
668 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id
669 *
670 * @minfo: Pointer to Tx/Rx Message management info based on channel type
671 * @xfer_id: Token ID to lookup in @pending_xfers
672 *
673 * Refcounting is untouched.
674 *
675 * Context: Assumes to be called with @xfer_lock already acquired.
676 *
677 * Return: A valid xfer on Success or error otherwise
678 */
679 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)680 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
681 {
682 struct scmi_xfer *xfer = NULL;
683
684 if (test_bit(xfer_id, minfo->xfer_alloc_table))
685 xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
686
687 return xfer ?: ERR_PTR(-EINVAL);
688 }
689
690 /**
691 * scmi_msg_response_validate - Validate message type against state of related
692 * xfer
693 *
694 * @cinfo: A reference to the channel descriptor.
695 * @msg_type: Message type to check
696 * @xfer: A reference to the xfer to validate against @msg_type
697 *
698 * This function checks if @msg_type is congruent with the current state of
699 * a pending @xfer; if an asynchronous delayed response is received before the
700 * related synchronous response (Out-of-Order Delayed Response) the missing
701 * synchronous response is assumed to be OK and completed, carrying on with the
702 * Delayed Response: this is done to address the case in which the underlying
703 * SCMI transport can deliver such out-of-order responses.
704 *
705 * Context: Assumes to be called with xfer->lock already acquired.
706 *
707 * Return: 0 on Success, error otherwise
708 */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)709 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
710 u8 msg_type,
711 struct scmi_xfer *xfer)
712 {
713 /*
714 * Even if a response was indeed expected on this slot at this point,
715 * a buggy platform could wrongly reply feeding us an unexpected
716 * delayed response we're not prepared to handle: bail-out safely
717 * blaming firmware.
718 */
719 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
720 dev_err(cinfo->dev,
721 "Delayed Response for %d not expected! Buggy F/W ?\n",
722 xfer->hdr.seq);
723 return -EINVAL;
724 }
725
726 switch (xfer->state) {
727 case SCMI_XFER_SENT_OK:
728 if (msg_type == MSG_TYPE_DELAYED_RESP) {
729 /*
730 * Delayed Response expected but delivered earlier.
731 * Assume message RESPONSE was OK and skip state.
732 */
733 xfer->hdr.status = SCMI_SUCCESS;
734 xfer->state = SCMI_XFER_RESP_OK;
735 complete(&xfer->done);
736 dev_warn(cinfo->dev,
737 "Received valid OoO Delayed Response for %d\n",
738 xfer->hdr.seq);
739 }
740 break;
741 case SCMI_XFER_RESP_OK:
742 if (msg_type != MSG_TYPE_DELAYED_RESP)
743 return -EINVAL;
744 break;
745 case SCMI_XFER_DRESP_OK:
746 /* No further message expected once in SCMI_XFER_DRESP_OK */
747 return -EINVAL;
748 }
749
750 return 0;
751 }
752
753 /**
754 * scmi_xfer_state_update - Update xfer state
755 *
756 * @xfer: A reference to the xfer to update
757 * @msg_type: Type of message being processed.
758 *
759 * Note that this message is assumed to have been already successfully validated
760 * by @scmi_msg_response_validate(), so here we just update the state.
761 *
762 * Context: Assumes to be called on an xfer exclusively acquired using the
763 * busy flag.
764 */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)765 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
766 {
767 xfer->hdr.type = msg_type;
768
769 /* Unknown command types were already discarded earlier */
770 if (xfer->hdr.type == MSG_TYPE_COMMAND)
771 xfer->state = SCMI_XFER_RESP_OK;
772 else
773 xfer->state = SCMI_XFER_DRESP_OK;
774 }
775
scmi_xfer_acquired(struct scmi_xfer * xfer)776 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
777 {
778 int ret;
779
780 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
781
782 return ret == SCMI_XFER_FREE;
783 }
784
785 /**
786 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer
787 *
788 * @cinfo: A reference to the channel descriptor.
789 * @msg_hdr: A message header to use as lookup key
790 *
791 * When a valid xfer is found for the sequence number embedded in the provided
792 * msg_hdr, reference counting is properly updated and exclusive access to this
793 * xfer is granted till released with @scmi_xfer_command_release.
794 *
795 * Return: A valid @xfer on Success or error otherwise.
796 */
797 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)798 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
799 {
800 int ret;
801 unsigned long flags;
802 struct scmi_xfer *xfer;
803 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
804 struct scmi_xfers_info *minfo = &info->tx_minfo;
805 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
806 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
807
808 /* Are we even expecting this? */
809 spin_lock_irqsave(&minfo->xfer_lock, flags);
810 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
811 if (IS_ERR(xfer)) {
812 dev_err(cinfo->dev,
813 "Message for %d type %d is not expected!\n",
814 xfer_id, msg_type);
815 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
816 return xfer;
817 }
818 refcount_inc(&xfer->users);
819 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
820
821 spin_lock_irqsave(&xfer->lock, flags);
822 ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
823 /*
824 * If a pending xfer was found which was also in a congruent state with
825 * the received message, acquire exclusive access to it setting the busy
826 * flag.
827 * Spins only on the rare limit condition of concurrent reception of
828 * RESP and DRESP for the same xfer.
829 */
830 if (!ret) {
831 spin_until_cond(scmi_xfer_acquired(xfer));
832 scmi_xfer_state_update(xfer, msg_type);
833 }
834 spin_unlock_irqrestore(&xfer->lock, flags);
835
836 if (ret) {
837 dev_err(cinfo->dev,
838 "Invalid message type:%d for %d - HDR:0x%X state:%d\n",
839 msg_type, xfer_id, msg_hdr, xfer->state);
840 /* On error the refcount incremented above has to be dropped */
841 __scmi_xfer_put(minfo, xfer);
842 xfer = ERR_PTR(-EINVAL);
843 }
844
845 return xfer;
846 }
847
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)848 static inline void scmi_xfer_command_release(struct scmi_info *info,
849 struct scmi_xfer *xfer)
850 {
851 atomic_set(&xfer->busy, SCMI_XFER_FREE);
852 __scmi_xfer_put(&info->tx_minfo, xfer);
853 }
854
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)855 static inline void scmi_clear_channel(struct scmi_info *info,
856 struct scmi_chan_info *cinfo)
857 {
858 if (info->desc->ops->clear_channel)
859 info->desc->ops->clear_channel(cinfo);
860 }
861
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)862 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
863 u32 msg_hdr, void *priv)
864 {
865 struct scmi_xfer *xfer;
866 struct device *dev = cinfo->dev;
867 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
868 struct scmi_xfers_info *minfo = &info->rx_minfo;
869 ktime_t ts;
870
871 ts = ktime_get_boottime();
872 xfer = scmi_xfer_get(cinfo->handle, minfo);
873 if (IS_ERR(xfer)) {
874 dev_err(dev, "failed to get free message slot (%ld)\n",
875 PTR_ERR(xfer));
876 scmi_clear_channel(info, cinfo);
877 return;
878 }
879
880 unpack_scmi_header(msg_hdr, &xfer->hdr);
881 if (priv)
882 /* Ensure order between xfer->priv store and following ops */
883 smp_store_mb(xfer->priv, priv);
884 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
885 xfer);
886
887 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
888 xfer->hdr.id, "NOTI", xfer->hdr.seq,
889 xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
890
891 scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
892 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
893
894 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
895 xfer->hdr.protocol_id, xfer->hdr.seq,
896 MSG_TYPE_NOTIFICATION);
897
898 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
899 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
900 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
901 cinfo->id);
902 }
903
904 __scmi_xfer_put(minfo, xfer);
905
906 scmi_clear_channel(info, cinfo);
907 }
908
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)909 static void scmi_handle_response(struct scmi_chan_info *cinfo,
910 u32 msg_hdr, void *priv)
911 {
912 struct scmi_xfer *xfer;
913 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
914
915 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
916 if (IS_ERR(xfer)) {
917 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
918 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
919
920 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
921 scmi_clear_channel(info, cinfo);
922 return;
923 }
924
925 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
926 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
927 xfer->rx.len = info->desc->max_msg_size;
928
929 if (priv)
930 /* Ensure order between xfer->priv store and following ops */
931 smp_store_mb(xfer->priv, priv);
932 info->desc->ops->fetch_response(cinfo, xfer);
933
934 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
935 xfer->hdr.id,
936 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
937 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
938 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
939 xfer->hdr.seq, xfer->hdr.status,
940 xfer->rx.buf, xfer->rx.len);
941
942 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
943 xfer->hdr.protocol_id, xfer->hdr.seq,
944 xfer->hdr.type);
945
946 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
947 scmi_clear_channel(info, cinfo);
948 complete(xfer->async_done);
949 } else {
950 complete(&xfer->done);
951 }
952
953 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
954 /*
955 * When in polling mode avoid to queue the Raw xfer on the IRQ
956 * RX path since it will be already queued at the end of the TX
957 * poll loop.
958 */
959 if (!xfer->hdr.poll_completion)
960 scmi_raw_message_report(info->raw, xfer,
961 SCMI_RAW_REPLY_QUEUE,
962 cinfo->id);
963 }
964
965 scmi_xfer_command_release(info, xfer);
966 }
967
968 /**
969 * scmi_rx_callback() - callback for receiving messages
970 *
971 * @cinfo: SCMI channel info
972 * @msg_hdr: Message header
973 * @priv: Transport specific private data.
974 *
975 * Processes one received message to appropriate transfer information and
976 * signals completion of the transfer.
977 *
978 * NOTE: This function will be invoked in IRQ context, hence should be
979 * as optimal as possible.
980 */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)981 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
982 {
983 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
984
985 switch (msg_type) {
986 case MSG_TYPE_NOTIFICATION:
987 scmi_handle_notification(cinfo, msg_hdr, priv);
988 break;
989 case MSG_TYPE_COMMAND:
990 case MSG_TYPE_DELAYED_RESP:
991 scmi_handle_response(cinfo, msg_hdr, priv);
992 break;
993 default:
994 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
995 break;
996 }
997 }
998
999 /**
1000 * xfer_put() - Release a transmit message
1001 *
1002 * @ph: Pointer to SCMI protocol handle
1003 * @xfer: message that was reserved by xfer_get_init
1004 */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1005 static void xfer_put(const struct scmi_protocol_handle *ph,
1006 struct scmi_xfer *xfer)
1007 {
1008 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1009 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1010
1011 __scmi_xfer_put(&info->tx_minfo, xfer);
1012 }
1013
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop)1014 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1015 struct scmi_xfer *xfer, ktime_t stop)
1016 {
1017 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1018
1019 /*
1020 * Poll also on xfer->done so that polling can be forcibly terminated
1021 * in case of out-of-order receptions of delayed responses
1022 */
1023 return info->desc->ops->poll_done(cinfo, xfer) ||
1024 try_wait_for_completion(&xfer->done) ||
1025 ktime_after(ktime_get(), stop);
1026 }
1027
scmi_wait_for_reply(struct device * dev,const struct scmi_desc * desc,struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1028 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1029 struct scmi_chan_info *cinfo,
1030 struct scmi_xfer *xfer, unsigned int timeout_ms)
1031 {
1032 int ret = 0;
1033
1034 if (xfer->hdr.poll_completion) {
1035 /*
1036 * Real polling is needed only if transport has NOT declared
1037 * itself to support synchronous commands replies.
1038 */
1039 if (!desc->sync_cmds_completed_on_ret) {
1040 /*
1041 * Poll on xfer using transport provided .poll_done();
1042 * assumes no completion interrupt was available.
1043 */
1044 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1045
1046 spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1047 xfer, stop));
1048 if (ktime_after(ktime_get(), stop)) {
1049 dev_err(dev,
1050 "timed out in resp(caller: %pS) - polling\n",
1051 (void *)_RET_IP_);
1052 ret = -ETIMEDOUT;
1053 }
1054 }
1055
1056 if (!ret) {
1057 unsigned long flags;
1058 struct scmi_info *info =
1059 handle_to_scmi_info(cinfo->handle);
1060
1061 /*
1062 * Do not fetch_response if an out-of-order delayed
1063 * response is being processed.
1064 */
1065 spin_lock_irqsave(&xfer->lock, flags);
1066 if (xfer->state == SCMI_XFER_SENT_OK) {
1067 desc->ops->fetch_response(cinfo, xfer);
1068 xfer->state = SCMI_XFER_RESP_OK;
1069 }
1070 spin_unlock_irqrestore(&xfer->lock, flags);
1071
1072 /* Trace polled replies. */
1073 trace_scmi_msg_dump(info->id, cinfo->id,
1074 xfer->hdr.protocol_id, xfer->hdr.id,
1075 !SCMI_XFER_IS_RAW(xfer) ?
1076 "RESP" : "resp",
1077 xfer->hdr.seq, xfer->hdr.status,
1078 xfer->rx.buf, xfer->rx.len);
1079
1080 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1081 struct scmi_info *info =
1082 handle_to_scmi_info(cinfo->handle);
1083
1084 scmi_raw_message_report(info->raw, xfer,
1085 SCMI_RAW_REPLY_QUEUE,
1086 cinfo->id);
1087 }
1088 }
1089 } else {
1090 /* And we wait for the response. */
1091 if (!wait_for_completion_timeout(&xfer->done,
1092 msecs_to_jiffies(timeout_ms))) {
1093 dev_err(dev, "timed out in resp(caller: %pS)\n",
1094 (void *)_RET_IP_);
1095 ret = -ETIMEDOUT;
1096 }
1097 }
1098
1099 return ret;
1100 }
1101
1102 /**
1103 * scmi_wait_for_message_response - An helper to group all the possible ways of
1104 * waiting for a synchronous message response.
1105 *
1106 * @cinfo: SCMI channel info
1107 * @xfer: Reference to the transfer being waited for.
1108 *
1109 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1110 * configuration flags like xfer->hdr.poll_completion.
1111 *
1112 * Return: 0 on Success, error otherwise.
1113 */
scmi_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer)1114 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1115 struct scmi_xfer *xfer)
1116 {
1117 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1118 struct device *dev = info->dev;
1119
1120 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1121 xfer->hdr.protocol_id, xfer->hdr.seq,
1122 info->desc->max_rx_timeout_ms,
1123 xfer->hdr.poll_completion);
1124
1125 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1126 info->desc->max_rx_timeout_ms);
1127 }
1128
1129 /**
1130 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message
1131 * reply to an xfer raw request on a specific channel for the required timeout.
1132 *
1133 * @cinfo: SCMI channel info
1134 * @xfer: Reference to the transfer being waited for.
1135 * @timeout_ms: The maximum timeout in milliseconds
1136 *
1137 * Return: 0 on Success, error otherwise.
1138 */
scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1139 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1140 struct scmi_xfer *xfer,
1141 unsigned int timeout_ms)
1142 {
1143 int ret;
1144 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1145 struct device *dev = info->dev;
1146
1147 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1148 if (ret)
1149 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1150 pack_scmi_header(&xfer->hdr));
1151
1152 return ret;
1153 }
1154
1155 /**
1156 * do_xfer() - Do one transfer
1157 *
1158 * @ph: Pointer to SCMI protocol handle
1159 * @xfer: Transfer to initiate and wait for response
1160 *
1161 * Return: -ETIMEDOUT in case of no response, if transmit error,
1162 * return corresponding error, else if all goes well,
1163 * return 0.
1164 */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1165 static int do_xfer(const struct scmi_protocol_handle *ph,
1166 struct scmi_xfer *xfer)
1167 {
1168 int ret;
1169 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1170 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1171 struct device *dev = info->dev;
1172 struct scmi_chan_info *cinfo;
1173
1174 /* Check for polling request on custom command xfers at first */
1175 if (xfer->hdr.poll_completion &&
1176 !is_transport_polling_capable(info->desc)) {
1177 dev_warn_once(dev,
1178 "Polling mode is not supported by transport.\n");
1179 return -EINVAL;
1180 }
1181
1182 cinfo = idr_find(&info->tx_idr, pi->proto->id);
1183 if (unlikely(!cinfo))
1184 return -EINVAL;
1185
1186 /* True ONLY if also supported by transport. */
1187 if (is_polling_enabled(cinfo, info->desc))
1188 xfer->hdr.poll_completion = true;
1189
1190 /*
1191 * Initialise protocol id now from protocol handle to avoid it being
1192 * overridden by mistake (or malice) by the protocol code mangling with
1193 * the scmi_xfer structure prior to this.
1194 */
1195 xfer->hdr.protocol_id = pi->proto->id;
1196 reinit_completion(&xfer->done);
1197
1198 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1199 xfer->hdr.protocol_id, xfer->hdr.seq,
1200 xfer->hdr.poll_completion);
1201
1202 /* Clear any stale status */
1203 xfer->hdr.status = SCMI_SUCCESS;
1204 xfer->state = SCMI_XFER_SENT_OK;
1205 /*
1206 * Even though spinlocking is not needed here since no race is possible
1207 * on xfer->state due to the monotonically increasing tokens allocation,
1208 * we must anyway ensure xfer->state initialization is not re-ordered
1209 * after the .send_message() to be sure that on the RX path an early
1210 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1211 */
1212 smp_mb();
1213
1214 ret = info->desc->ops->send_message(cinfo, xfer);
1215 if (ret < 0) {
1216 dev_dbg(dev, "Failed to send message %d\n", ret);
1217 return ret;
1218 }
1219
1220 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1221 xfer->hdr.id, "CMND", xfer->hdr.seq,
1222 xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1223
1224 ret = scmi_wait_for_message_response(cinfo, xfer);
1225 if (!ret && xfer->hdr.status)
1226 ret = scmi_to_linux_errno(xfer->hdr.status);
1227
1228 if (info->desc->ops->mark_txdone)
1229 info->desc->ops->mark_txdone(cinfo, ret, xfer);
1230
1231 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1232 xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1233
1234 return ret;
1235 }
1236
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1237 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1238 struct scmi_xfer *xfer)
1239 {
1240 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1241 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1242
1243 xfer->rx.len = info->desc->max_msg_size;
1244 }
1245
1246 /**
1247 * do_xfer_with_response() - Do one transfer and wait until the delayed
1248 * response is received
1249 *
1250 * @ph: Pointer to SCMI protocol handle
1251 * @xfer: Transfer to initiate and wait for response
1252 *
1253 * Using asynchronous commands in atomic/polling mode should be avoided since
1254 * it could cause long busy-waiting here, so ignore polling for the delayed
1255 * response and WARN if it was requested for this command transaction since
1256 * upper layers should refrain from issuing such kind of requests.
1257 *
1258 * The only other option would have been to refrain from using any asynchronous
1259 * command even if made available, when an atomic transport is detected, and
1260 * instead forcibly use the synchronous version (thing that can be easily
1261 * attained at the protocol layer), but this would also have led to longer
1262 * stalls of the channel for synchronous commands and possibly timeouts.
1263 * (in other words there is usually a good reason if a platform provides an
1264 * asynchronous version of a command and we should prefer to use it...just not
1265 * when using atomic/polling mode)
1266 *
1267 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1268 * return corresponding error, else if all goes well, return 0.
1269 */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1270 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1271 struct scmi_xfer *xfer)
1272 {
1273 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1274 DECLARE_COMPLETION_ONSTACK(async_response);
1275
1276 xfer->async_done = &async_response;
1277
1278 /*
1279 * Delayed responses should not be polled, so an async command should
1280 * not have been used when requiring an atomic/poll context; WARN and
1281 * perform instead a sleeping wait.
1282 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1283 */
1284 WARN_ON_ONCE(xfer->hdr.poll_completion);
1285
1286 ret = do_xfer(ph, xfer);
1287 if (!ret) {
1288 if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1289 dev_err(ph->dev,
1290 "timed out in delayed resp(caller: %pS)\n",
1291 (void *)_RET_IP_);
1292 ret = -ETIMEDOUT;
1293 } else if (xfer->hdr.status) {
1294 ret = scmi_to_linux_errno(xfer->hdr.status);
1295 }
1296 }
1297
1298 xfer->async_done = NULL;
1299 return ret;
1300 }
1301
1302 /**
1303 * xfer_get_init() - Allocate and initialise one message for transmit
1304 *
1305 * @ph: Pointer to SCMI protocol handle
1306 * @msg_id: Message identifier
1307 * @tx_size: transmit message size
1308 * @rx_size: receive message size
1309 * @p: pointer to the allocated and initialised message
1310 *
1311 * This function allocates the message using @scmi_xfer_get and
1312 * initialise the header.
1313 *
1314 * Return: 0 if all went fine with @p pointing to message, else
1315 * corresponding error.
1316 */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)1317 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1318 u8 msg_id, size_t tx_size, size_t rx_size,
1319 struct scmi_xfer **p)
1320 {
1321 int ret;
1322 struct scmi_xfer *xfer;
1323 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1324 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1325 struct scmi_xfers_info *minfo = &info->tx_minfo;
1326 struct device *dev = info->dev;
1327
1328 /* Ensure we have sane transfer sizes */
1329 if (rx_size > info->desc->max_msg_size ||
1330 tx_size > info->desc->max_msg_size)
1331 return -ERANGE;
1332
1333 xfer = scmi_xfer_get(pi->handle, minfo);
1334 if (IS_ERR(xfer)) {
1335 ret = PTR_ERR(xfer);
1336 dev_err(dev, "failed to get free message slot(%d)\n", ret);
1337 return ret;
1338 }
1339
1340 /* Pick a sequence number and register this xfer as in-flight */
1341 ret = scmi_xfer_pending_set(xfer, minfo);
1342 if (ret) {
1343 dev_err(pi->handle->dev,
1344 "Failed to get monotonic token %d\n", ret);
1345 __scmi_xfer_put(minfo, xfer);
1346 return ret;
1347 }
1348
1349 xfer->tx.len = tx_size;
1350 xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1351 xfer->hdr.type = MSG_TYPE_COMMAND;
1352 xfer->hdr.id = msg_id;
1353 xfer->hdr.poll_completion = false;
1354
1355 *p = xfer;
1356
1357 return 0;
1358 }
1359
1360 /**
1361 * version_get() - command to get the revision of the SCMI entity
1362 *
1363 * @ph: Pointer to SCMI protocol handle
1364 * @version: Holds returned version of protocol.
1365 *
1366 * Updates the SCMI information in the internal data structure.
1367 *
1368 * Return: 0 if all went fine, else return appropriate error.
1369 */
version_get(const struct scmi_protocol_handle * ph,u32 * version)1370 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1371 {
1372 int ret;
1373 __le32 *rev_info;
1374 struct scmi_xfer *t;
1375
1376 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1377 if (ret)
1378 return ret;
1379
1380 ret = do_xfer(ph, t);
1381 if (!ret) {
1382 rev_info = t->rx.buf;
1383 *version = le32_to_cpu(*rev_info);
1384 }
1385
1386 xfer_put(ph, t);
1387 return ret;
1388 }
1389
1390 /**
1391 * scmi_set_protocol_priv - Set protocol specific data at init time
1392 *
1393 * @ph: A reference to the protocol handle.
1394 * @priv: The private data to set.
1395 *
1396 * Return: 0 on Success
1397 */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv)1398 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1399 void *priv)
1400 {
1401 struct scmi_protocol_instance *pi = ph_to_pi(ph);
1402
1403 pi->priv = priv;
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * scmi_get_protocol_priv - Set protocol specific data at init time
1410 *
1411 * @ph: A reference to the protocol handle.
1412 *
1413 * Return: Protocol private data if any was set.
1414 */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)1415 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1416 {
1417 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1418
1419 return pi->priv;
1420 }
1421
1422 static const struct scmi_xfer_ops xfer_ops = {
1423 .version_get = version_get,
1424 .xfer_get_init = xfer_get_init,
1425 .reset_rx_to_maxsz = reset_rx_to_maxsz,
1426 .do_xfer = do_xfer,
1427 .do_xfer_with_response = do_xfer_with_response,
1428 .xfer_put = xfer_put,
1429 };
1430
1431 struct scmi_msg_resp_domain_name_get {
1432 __le32 flags;
1433 u8 name[SCMI_MAX_STR_SIZE];
1434 };
1435
1436 /**
1437 * scmi_common_extended_name_get - Common helper to get extended resources name
1438 * @ph: A protocol handle reference.
1439 * @cmd_id: The specific command ID to use.
1440 * @res_id: The specific resource ID to use.
1441 * @name: A pointer to the preallocated area where the retrieved name will be
1442 * stored as a NULL terminated string.
1443 * @len: The len in bytes of the @name char array.
1444 *
1445 * Return: 0 on Succcess
1446 */
scmi_common_extended_name_get(const struct scmi_protocol_handle * ph,u8 cmd_id,u32 res_id,char * name,size_t len)1447 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1448 u8 cmd_id, u32 res_id, char *name,
1449 size_t len)
1450 {
1451 int ret;
1452 struct scmi_xfer *t;
1453 struct scmi_msg_resp_domain_name_get *resp;
1454
1455 ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id),
1456 sizeof(*resp), &t);
1457 if (ret)
1458 goto out;
1459
1460 put_unaligned_le32(res_id, t->tx.buf);
1461 resp = t->rx.buf;
1462
1463 ret = ph->xops->do_xfer(ph, t);
1464 if (!ret)
1465 strscpy(name, resp->name, len);
1466
1467 ph->xops->xfer_put(ph, t);
1468 out:
1469 if (ret)
1470 dev_warn(ph->dev,
1471 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1472 res_id, ret, name);
1473 return ret;
1474 }
1475
1476 /**
1477 * struct scmi_iterator - Iterator descriptor
1478 * @msg: A reference to the message TX buffer; filled by @prepare_message with
1479 * a proper custom command payload for each multi-part command request.
1480 * @resp: A reference to the response RX buffer; used by @update_state and
1481 * @process_response to parse the multi-part replies.
1482 * @t: A reference to the underlying xfer initialized and used transparently by
1483 * the iterator internal routines.
1484 * @ph: A reference to the associated protocol handle to be used.
1485 * @ops: A reference to the custom provided iterator operations.
1486 * @state: The current iterator state; used and updated in turn by the iterators
1487 * internal routines and by the caller-provided @scmi_iterator_ops.
1488 * @priv: A reference to optional private data as provided by the caller and
1489 * passed back to the @@scmi_iterator_ops.
1490 */
1491 struct scmi_iterator {
1492 void *msg;
1493 void *resp;
1494 struct scmi_xfer *t;
1495 const struct scmi_protocol_handle *ph;
1496 struct scmi_iterator_ops *ops;
1497 struct scmi_iterator_state state;
1498 void *priv;
1499 };
1500
scmi_iterator_init(const struct scmi_protocol_handle * ph,struct scmi_iterator_ops * ops,unsigned int max_resources,u8 msg_id,size_t tx_size,void * priv)1501 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1502 struct scmi_iterator_ops *ops,
1503 unsigned int max_resources, u8 msg_id,
1504 size_t tx_size, void *priv)
1505 {
1506 int ret;
1507 struct scmi_iterator *i;
1508
1509 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1510 if (!i)
1511 return ERR_PTR(-ENOMEM);
1512
1513 i->ph = ph;
1514 i->ops = ops;
1515 i->priv = priv;
1516
1517 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1518 if (ret) {
1519 devm_kfree(ph->dev, i);
1520 return ERR_PTR(ret);
1521 }
1522
1523 i->state.max_resources = max_resources;
1524 i->msg = i->t->tx.buf;
1525 i->resp = i->t->rx.buf;
1526
1527 return i;
1528 }
1529
scmi_iterator_run(void * iter)1530 static int scmi_iterator_run(void *iter)
1531 {
1532 int ret = -EINVAL;
1533 struct scmi_iterator_ops *iops;
1534 const struct scmi_protocol_handle *ph;
1535 struct scmi_iterator_state *st;
1536 struct scmi_iterator *i = iter;
1537
1538 if (!i || !i->ops || !i->ph)
1539 return ret;
1540
1541 iops = i->ops;
1542 ph = i->ph;
1543 st = &i->state;
1544
1545 do {
1546 iops->prepare_message(i->msg, st->desc_index, i->priv);
1547 ret = ph->xops->do_xfer(ph, i->t);
1548 if (ret)
1549 break;
1550
1551 st->rx_len = i->t->rx.len;
1552 ret = iops->update_state(st, i->resp, i->priv);
1553 if (ret)
1554 break;
1555
1556 if (st->num_returned > st->max_resources - st->desc_index) {
1557 dev_err(ph->dev,
1558 "No. of resources can't exceed %d\n",
1559 st->max_resources);
1560 ret = -EINVAL;
1561 break;
1562 }
1563
1564 for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1565 st->loop_idx++) {
1566 ret = iops->process_response(ph, i->resp, st, i->priv);
1567 if (ret)
1568 goto out;
1569 }
1570
1571 st->desc_index += st->num_returned;
1572 ph->xops->reset_rx_to_maxsz(ph, i->t);
1573 /*
1574 * check for both returned and remaining to avoid infinite
1575 * loop due to buggy firmware
1576 */
1577 } while (st->num_returned && st->num_remaining);
1578
1579 out:
1580 /* Finalize and destroy iterator */
1581 ph->xops->xfer_put(ph, i->t);
1582 devm_kfree(ph->dev, i);
1583
1584 return ret;
1585 }
1586
1587 struct scmi_msg_get_fc_info {
1588 __le32 domain;
1589 __le32 message_id;
1590 };
1591
1592 struct scmi_msg_resp_desc_fc {
1593 __le32 attr;
1594 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0))
1595 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x))
1596 __le32 rate_limit;
1597 __le32 chan_addr_low;
1598 __le32 chan_addr_high;
1599 __le32 chan_size;
1600 __le32 db_addr_low;
1601 __le32 db_addr_high;
1602 __le32 db_set_lmask;
1603 __le32 db_set_hmask;
1604 __le32 db_preserve_lmask;
1605 __le32 db_preserve_hmask;
1606 };
1607
1608 static void
scmi_common_fastchannel_init(const struct scmi_protocol_handle * ph,u8 describe_id,u32 message_id,u32 valid_size,u32 domain,void __iomem ** p_addr,struct scmi_fc_db_info ** p_db)1609 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1610 u8 describe_id, u32 message_id, u32 valid_size,
1611 u32 domain, void __iomem **p_addr,
1612 struct scmi_fc_db_info **p_db)
1613 {
1614 int ret;
1615 u32 flags;
1616 u64 phys_addr;
1617 u8 size;
1618 void __iomem *addr;
1619 struct scmi_xfer *t;
1620 struct scmi_fc_db_info *db = NULL;
1621 struct scmi_msg_get_fc_info *info;
1622 struct scmi_msg_resp_desc_fc *resp;
1623 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1624
1625 if (!p_addr) {
1626 ret = -EINVAL;
1627 goto err_out;
1628 }
1629
1630 ret = ph->xops->xfer_get_init(ph, describe_id,
1631 sizeof(*info), sizeof(*resp), &t);
1632 if (ret)
1633 goto err_out;
1634
1635 info = t->tx.buf;
1636 info->domain = cpu_to_le32(domain);
1637 info->message_id = cpu_to_le32(message_id);
1638
1639 /*
1640 * Bail out on error leaving fc_info addresses zeroed; this includes
1641 * the case in which the requested domain/message_id does NOT support
1642 * fastchannels at all.
1643 */
1644 ret = ph->xops->do_xfer(ph, t);
1645 if (ret)
1646 goto err_xfer;
1647
1648 resp = t->rx.buf;
1649 flags = le32_to_cpu(resp->attr);
1650 size = le32_to_cpu(resp->chan_size);
1651 if (size != valid_size) {
1652 ret = -EINVAL;
1653 goto err_xfer;
1654 }
1655
1656 phys_addr = le32_to_cpu(resp->chan_addr_low);
1657 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1658 addr = devm_ioremap(ph->dev, phys_addr, size);
1659 if (!addr) {
1660 ret = -EADDRNOTAVAIL;
1661 goto err_xfer;
1662 }
1663
1664 *p_addr = addr;
1665
1666 if (p_db && SUPPORTS_DOORBELL(flags)) {
1667 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1668 if (!db) {
1669 ret = -ENOMEM;
1670 goto err_db;
1671 }
1672
1673 size = 1 << DOORBELL_REG_WIDTH(flags);
1674 phys_addr = le32_to_cpu(resp->db_addr_low);
1675 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1676 addr = devm_ioremap(ph->dev, phys_addr, size);
1677 if (!addr) {
1678 ret = -EADDRNOTAVAIL;
1679 goto err_db_mem;
1680 }
1681
1682 db->addr = addr;
1683 db->width = size;
1684 db->set = le32_to_cpu(resp->db_set_lmask);
1685 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1686 db->mask = le32_to_cpu(resp->db_preserve_lmask);
1687 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1688
1689 *p_db = db;
1690 }
1691
1692 ph->xops->xfer_put(ph, t);
1693
1694 dev_dbg(ph->dev,
1695 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1696 pi->proto->id, message_id, domain);
1697
1698 return;
1699
1700 err_db_mem:
1701 devm_kfree(ph->dev, db);
1702
1703 err_db:
1704 *p_addr = NULL;
1705
1706 err_xfer:
1707 ph->xops->xfer_put(ph, t);
1708
1709 err_out:
1710 dev_warn(ph->dev,
1711 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1712 pi->proto->id, message_id, domain, ret);
1713 }
1714
1715 #define SCMI_PROTO_FC_RING_DB(w) \
1716 do { \
1717 u##w val = 0; \
1718 \
1719 if (db->mask) \
1720 val = ioread##w(db->addr) & db->mask; \
1721 iowrite##w((u##w)db->set | val, db->addr); \
1722 } while (0)
1723
scmi_common_fastchannel_db_ring(struct scmi_fc_db_info * db)1724 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1725 {
1726 if (!db || !db->addr)
1727 return;
1728
1729 if (db->width == 1)
1730 SCMI_PROTO_FC_RING_DB(8);
1731 else if (db->width == 2)
1732 SCMI_PROTO_FC_RING_DB(16);
1733 else if (db->width == 4)
1734 SCMI_PROTO_FC_RING_DB(32);
1735 else /* db->width == 8 */
1736 #ifdef CONFIG_64BIT
1737 SCMI_PROTO_FC_RING_DB(64);
1738 #else
1739 {
1740 u64 val = 0;
1741
1742 if (db->mask)
1743 val = ioread64_hi_lo(db->addr) & db->mask;
1744 iowrite64_hi_lo(db->set | val, db->addr);
1745 }
1746 #endif
1747 }
1748
1749 static const struct scmi_proto_helpers_ops helpers_ops = {
1750 .extended_name_get = scmi_common_extended_name_get,
1751 .iter_response_init = scmi_iterator_init,
1752 .iter_response_run = scmi_iterator_run,
1753 .fastchannel_init = scmi_common_fastchannel_init,
1754 .fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1755 };
1756
1757 /**
1758 * scmi_revision_area_get - Retrieve version memory area.
1759 *
1760 * @ph: A reference to the protocol handle.
1761 *
1762 * A helper to grab the version memory area reference during SCMI Base protocol
1763 * initialization.
1764 *
1765 * Return: A reference to the version memory area associated to the SCMI
1766 * instance underlying this protocol handle.
1767 */
1768 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)1769 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1770 {
1771 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1772
1773 return pi->handle->version;
1774 }
1775
1776 /**
1777 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol
1778 * instance descriptor.
1779 * @info: The reference to the related SCMI instance.
1780 * @proto: The protocol descriptor.
1781 *
1782 * Allocate a new protocol instance descriptor, using the provided @proto
1783 * description, against the specified SCMI instance @info, and initialize it;
1784 * all resources management is handled via a dedicated per-protocol devres
1785 * group.
1786 *
1787 * Context: Assumes to be called with @protocols_mtx already acquired.
1788 * Return: A reference to a freshly allocated and initialized protocol instance
1789 * or ERR_PTR on failure. On failure the @proto reference is at first
1790 * put using @scmi_protocol_put() before releasing all the devres group.
1791 */
1792 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)1793 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1794 const struct scmi_protocol *proto)
1795 {
1796 int ret = -ENOMEM;
1797 void *gid;
1798 struct scmi_protocol_instance *pi;
1799 const struct scmi_handle *handle = &info->handle;
1800
1801 /* Protocol specific devres group */
1802 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1803 if (!gid) {
1804 scmi_protocol_put(proto->id);
1805 goto out;
1806 }
1807
1808 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1809 if (!pi)
1810 goto clean;
1811
1812 pi->gid = gid;
1813 pi->proto = proto;
1814 pi->handle = handle;
1815 pi->ph.dev = handle->dev;
1816 pi->ph.xops = &xfer_ops;
1817 pi->ph.hops = &helpers_ops;
1818 pi->ph.set_priv = scmi_set_protocol_priv;
1819 pi->ph.get_priv = scmi_get_protocol_priv;
1820 refcount_set(&pi->users, 1);
1821 /* proto->init is assured NON NULL by scmi_protocol_register */
1822 ret = pi->proto->instance_init(&pi->ph);
1823 if (ret)
1824 goto clean;
1825
1826 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1827 GFP_KERNEL);
1828 if (ret != proto->id)
1829 goto clean;
1830
1831 /*
1832 * Warn but ignore events registration errors since we do not want
1833 * to skip whole protocols if their notifications are messed up.
1834 */
1835 if (pi->proto->events) {
1836 ret = scmi_register_protocol_events(handle, pi->proto->id,
1837 &pi->ph,
1838 pi->proto->events);
1839 if (ret)
1840 dev_warn(handle->dev,
1841 "Protocol:%X - Events Registration Failed - err:%d\n",
1842 pi->proto->id, ret);
1843 }
1844
1845 devres_close_group(handle->dev, pi->gid);
1846 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1847
1848 return pi;
1849
1850 clean:
1851 /* Take care to put the protocol module's owner before releasing all */
1852 scmi_protocol_put(proto->id);
1853 devres_release_group(handle->dev, gid);
1854 out:
1855 return ERR_PTR(ret);
1856 }
1857
1858 /**
1859 * scmi_get_protocol_instance - Protocol initialization helper.
1860 * @handle: A reference to the SCMI platform instance.
1861 * @protocol_id: The protocol being requested.
1862 *
1863 * In case the required protocol has never been requested before for this
1864 * instance, allocate and initialize all the needed structures while handling
1865 * resource allocation with a dedicated per-protocol devres subgroup.
1866 *
1867 * Return: A reference to an initialized protocol instance or error on failure:
1868 * in particular returns -EPROBE_DEFER when the desired protocol could
1869 * NOT be found.
1870 */
1871 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)1872 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1873 {
1874 struct scmi_protocol_instance *pi;
1875 struct scmi_info *info = handle_to_scmi_info(handle);
1876
1877 mutex_lock(&info->protocols_mtx);
1878 pi = idr_find(&info->protocols, protocol_id);
1879
1880 if (pi) {
1881 refcount_inc(&pi->users);
1882 } else {
1883 const struct scmi_protocol *proto;
1884
1885 /* Fails if protocol not registered on bus */
1886 proto = scmi_protocol_get(protocol_id);
1887 if (proto)
1888 pi = scmi_alloc_init_protocol_instance(info, proto);
1889 else
1890 pi = ERR_PTR(-EPROBE_DEFER);
1891 }
1892 mutex_unlock(&info->protocols_mtx);
1893
1894 return pi;
1895 }
1896
1897 /**
1898 * scmi_protocol_acquire - Protocol acquire
1899 * @handle: A reference to the SCMI platform instance.
1900 * @protocol_id: The protocol being requested.
1901 *
1902 * Register a new user for the requested protocol on the specified SCMI
1903 * platform instance, possibly triggering its initialization on first user.
1904 *
1905 * Return: 0 if protocol was acquired successfully.
1906 */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)1907 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1908 {
1909 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
1910 }
1911
1912 /**
1913 * scmi_protocol_release - Protocol de-initialization helper.
1914 * @handle: A reference to the SCMI platform instance.
1915 * @protocol_id: The protocol being requested.
1916 *
1917 * Remove one user for the specified protocol and triggers de-initialization
1918 * and resources de-allocation once the last user has gone.
1919 */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)1920 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1921 {
1922 struct scmi_info *info = handle_to_scmi_info(handle);
1923 struct scmi_protocol_instance *pi;
1924
1925 mutex_lock(&info->protocols_mtx);
1926 pi = idr_find(&info->protocols, protocol_id);
1927 if (WARN_ON(!pi))
1928 goto out;
1929
1930 if (refcount_dec_and_test(&pi->users)) {
1931 void *gid = pi->gid;
1932
1933 if (pi->proto->events)
1934 scmi_deregister_protocol_events(handle, protocol_id);
1935
1936 if (pi->proto->instance_deinit)
1937 pi->proto->instance_deinit(&pi->ph);
1938
1939 idr_remove(&info->protocols, protocol_id);
1940
1941 scmi_protocol_put(protocol_id);
1942
1943 devres_release_group(handle->dev, gid);
1944 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
1945 protocol_id);
1946 }
1947
1948 out:
1949 mutex_unlock(&info->protocols_mtx);
1950 }
1951
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)1952 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1953 u8 *prot_imp)
1954 {
1955 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1956 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1957
1958 info->protocols_imp = prot_imp;
1959 }
1960
1961 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)1962 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
1963 {
1964 int i;
1965 struct scmi_info *info = handle_to_scmi_info(handle);
1966 struct scmi_revision_info *rev = handle->version;
1967
1968 if (!info->protocols_imp)
1969 return false;
1970
1971 for (i = 0; i < rev->num_protocols; i++)
1972 if (info->protocols_imp[i] == prot_id)
1973 return true;
1974 return false;
1975 }
1976
1977 struct scmi_protocol_devres {
1978 const struct scmi_handle *handle;
1979 u8 protocol_id;
1980 };
1981
scmi_devm_release_protocol(struct device * dev,void * res)1982 static void scmi_devm_release_protocol(struct device *dev, void *res)
1983 {
1984 struct scmi_protocol_devres *dres = res;
1985
1986 scmi_protocol_release(dres->handle, dres->protocol_id);
1987 }
1988
1989 static struct scmi_protocol_instance __must_check *
scmi_devres_protocol_instance_get(struct scmi_device * sdev,u8 protocol_id)1990 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
1991 {
1992 struct scmi_protocol_instance *pi;
1993 struct scmi_protocol_devres *dres;
1994
1995 dres = devres_alloc(scmi_devm_release_protocol,
1996 sizeof(*dres), GFP_KERNEL);
1997 if (!dres)
1998 return ERR_PTR(-ENOMEM);
1999
2000 pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2001 if (IS_ERR(pi)) {
2002 devres_free(dres);
2003 return pi;
2004 }
2005
2006 dres->handle = sdev->handle;
2007 dres->protocol_id = protocol_id;
2008 devres_add(&sdev->dev, dres);
2009
2010 return pi;
2011 }
2012
2013 /**
2014 * scmi_devm_protocol_get - Devres managed get protocol operations and handle
2015 * @sdev: A reference to an scmi_device whose embedded struct device is to
2016 * be used for devres accounting.
2017 * @protocol_id: The protocol being requested.
2018 * @ph: A pointer reference used to pass back the associated protocol handle.
2019 *
2020 * Get hold of a protocol accounting for its usage, eventually triggering its
2021 * initialization, and returning the protocol specific operations and related
2022 * protocol handle which will be used as first argument in most of the
2023 * protocols operations methods.
2024 * Being a devres based managed method, protocol hold will be automatically
2025 * released, and possibly de-initialized on last user, once the SCMI driver
2026 * owning the scmi_device is unbound from it.
2027 *
2028 * Return: A reference to the requested protocol operations or error.
2029 * Must be checked for errors by caller.
2030 */
2031 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)2032 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2033 struct scmi_protocol_handle **ph)
2034 {
2035 struct scmi_protocol_instance *pi;
2036
2037 if (!ph)
2038 return ERR_PTR(-EINVAL);
2039
2040 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2041 if (IS_ERR(pi))
2042 return pi;
2043
2044 *ph = &pi->ph;
2045
2046 return pi->proto->ops;
2047 }
2048
2049 /**
2050 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol
2051 * @sdev: A reference to an scmi_device whose embedded struct device is to
2052 * be used for devres accounting.
2053 * @protocol_id: The protocol being requested.
2054 *
2055 * Get hold of a protocol accounting for its usage, possibly triggering its
2056 * initialization but without getting access to its protocol specific operations
2057 * and handle.
2058 *
2059 * Being a devres based managed method, protocol hold will be automatically
2060 * released, and possibly de-initialized on last user, once the SCMI driver
2061 * owning the scmi_device is unbound from it.
2062 *
2063 * Return: 0 on SUCCESS
2064 */
scmi_devm_protocol_acquire(struct scmi_device * sdev,u8 protocol_id)2065 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2066 u8 protocol_id)
2067 {
2068 struct scmi_protocol_instance *pi;
2069
2070 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2071 if (IS_ERR(pi))
2072 return PTR_ERR(pi);
2073
2074 return 0;
2075 }
2076
scmi_devm_protocol_match(struct device * dev,void * res,void * data)2077 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2078 {
2079 struct scmi_protocol_devres *dres = res;
2080
2081 if (WARN_ON(!dres || !data))
2082 return 0;
2083
2084 return dres->protocol_id == *((u8 *)data);
2085 }
2086
2087 /**
2088 * scmi_devm_protocol_put - Devres managed put protocol operations and handle
2089 * @sdev: A reference to an scmi_device whose embedded struct device is to
2090 * be used for devres accounting.
2091 * @protocol_id: The protocol being requested.
2092 *
2093 * Explicitly release a protocol hold previously obtained calling the above
2094 * @scmi_devm_protocol_get.
2095 */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)2096 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2097 {
2098 int ret;
2099
2100 ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2101 scmi_devm_protocol_match, &protocol_id);
2102 WARN_ON(ret);
2103 }
2104
2105 /**
2106 * scmi_is_transport_atomic - Method to check if underlying transport for an
2107 * SCMI instance is configured as atomic.
2108 *
2109 * @handle: A reference to the SCMI platform instance.
2110 * @atomic_threshold: An optional return value for the system wide currently
2111 * configured threshold for atomic operations.
2112 *
2113 * Return: True if transport is configured as atomic
2114 */
scmi_is_transport_atomic(const struct scmi_handle * handle,unsigned int * atomic_threshold)2115 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2116 unsigned int *atomic_threshold)
2117 {
2118 bool ret;
2119 struct scmi_info *info = handle_to_scmi_info(handle);
2120
2121 ret = info->desc->atomic_enabled &&
2122 is_transport_polling_capable(info->desc);
2123 if (ret && atomic_threshold)
2124 *atomic_threshold = info->atomic_threshold;
2125
2126 return ret;
2127 }
2128
2129 /**
2130 * scmi_handle_get() - Get the SCMI handle for a device
2131 *
2132 * @dev: pointer to device for which we want SCMI handle
2133 *
2134 * NOTE: The function does not track individual clients of the framework
2135 * and is expected to be maintained by caller of SCMI protocol library.
2136 * scmi_handle_put must be balanced with successful scmi_handle_get
2137 *
2138 * Return: pointer to handle if successful, NULL on error
2139 */
scmi_handle_get(struct device * dev)2140 static struct scmi_handle *scmi_handle_get(struct device *dev)
2141 {
2142 struct list_head *p;
2143 struct scmi_info *info;
2144 struct scmi_handle *handle = NULL;
2145
2146 mutex_lock(&scmi_list_mutex);
2147 list_for_each(p, &scmi_list) {
2148 info = list_entry(p, struct scmi_info, node);
2149 if (dev->parent == info->dev) {
2150 info->users++;
2151 handle = &info->handle;
2152 break;
2153 }
2154 }
2155 mutex_unlock(&scmi_list_mutex);
2156
2157 return handle;
2158 }
2159
2160 /**
2161 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2162 *
2163 * @handle: handle acquired by scmi_handle_get
2164 *
2165 * NOTE: The function does not track individual clients of the framework
2166 * and is expected to be maintained by caller of SCMI protocol library.
2167 * scmi_handle_put must be balanced with successful scmi_handle_get
2168 *
2169 * Return: 0 is successfully released
2170 * if null was passed, it returns -EINVAL;
2171 */
scmi_handle_put(const struct scmi_handle * handle)2172 static int scmi_handle_put(const struct scmi_handle *handle)
2173 {
2174 struct scmi_info *info;
2175
2176 if (!handle)
2177 return -EINVAL;
2178
2179 info = handle_to_scmi_info(handle);
2180 mutex_lock(&scmi_list_mutex);
2181 if (!WARN_ON(!info->users))
2182 info->users--;
2183 mutex_unlock(&scmi_list_mutex);
2184
2185 return 0;
2186 }
2187
scmi_device_link_add(struct device * consumer,struct device * supplier)2188 static void scmi_device_link_add(struct device *consumer,
2189 struct device *supplier)
2190 {
2191 struct device_link *link;
2192
2193 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2194
2195 WARN_ON(!link);
2196 }
2197
scmi_set_handle(struct scmi_device * scmi_dev)2198 static void scmi_set_handle(struct scmi_device *scmi_dev)
2199 {
2200 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2201 if (scmi_dev->handle)
2202 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2203 }
2204
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)2205 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2206 struct scmi_xfers_info *info)
2207 {
2208 int i;
2209 struct scmi_xfer *xfer;
2210 struct device *dev = sinfo->dev;
2211 const struct scmi_desc *desc = sinfo->desc;
2212
2213 /* Pre-allocated messages, no more than what hdr.seq can support */
2214 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2215 dev_err(dev,
2216 "Invalid maximum messages %d, not in range [1 - %lu]\n",
2217 info->max_msg, MSG_TOKEN_MAX);
2218 return -EINVAL;
2219 }
2220
2221 hash_init(info->pending_xfers);
2222
2223 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2224 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2225 GFP_KERNEL);
2226 if (!info->xfer_alloc_table)
2227 return -ENOMEM;
2228
2229 /*
2230 * Preallocate a number of xfers equal to max inflight messages,
2231 * pre-initialize the buffer pointer to pre-allocated buffers and
2232 * attach all of them to the free list
2233 */
2234 INIT_HLIST_HEAD(&info->free_xfers);
2235 for (i = 0; i < info->max_msg; i++) {
2236 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2237 if (!xfer)
2238 return -ENOMEM;
2239
2240 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2241 GFP_KERNEL);
2242 if (!xfer->rx.buf)
2243 return -ENOMEM;
2244
2245 xfer->tx.buf = xfer->rx.buf;
2246 init_completion(&xfer->done);
2247 spin_lock_init(&xfer->lock);
2248
2249 /* Add initialized xfer to the free list */
2250 hlist_add_head(&xfer->node, &info->free_xfers);
2251 }
2252
2253 spin_lock_init(&info->xfer_lock);
2254
2255 return 0;
2256 }
2257
scmi_channels_max_msg_configure(struct scmi_info * sinfo)2258 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2259 {
2260 const struct scmi_desc *desc = sinfo->desc;
2261
2262 if (!desc->ops->get_max_msg) {
2263 sinfo->tx_minfo.max_msg = desc->max_msg;
2264 sinfo->rx_minfo.max_msg = desc->max_msg;
2265 } else {
2266 struct scmi_chan_info *base_cinfo;
2267
2268 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2269 if (!base_cinfo)
2270 return -EINVAL;
2271 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2272
2273 /* RX channel is optional so can be skipped */
2274 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2275 if (base_cinfo)
2276 sinfo->rx_minfo.max_msg =
2277 desc->ops->get_max_msg(base_cinfo);
2278 }
2279
2280 return 0;
2281 }
2282
scmi_xfer_info_init(struct scmi_info * sinfo)2283 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2284 {
2285 int ret;
2286
2287 ret = scmi_channels_max_msg_configure(sinfo);
2288 if (ret)
2289 return ret;
2290
2291 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2292 if (!ret && !idr_is_empty(&sinfo->rx_idr))
2293 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2294
2295 return ret;
2296 }
2297
scmi_chan_setup(struct scmi_info * info,struct device_node * of_node,int prot_id,bool tx)2298 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2299 int prot_id, bool tx)
2300 {
2301 int ret, idx;
2302 char name[32];
2303 struct scmi_chan_info *cinfo;
2304 struct idr *idr;
2305 struct scmi_device *tdev = NULL;
2306
2307 /* Transmit channel is first entry i.e. index 0 */
2308 idx = tx ? 0 : 1;
2309 idr = tx ? &info->tx_idr : &info->rx_idr;
2310
2311 if (!info->desc->ops->chan_available(of_node, idx)) {
2312 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2313 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2314 return -EINVAL;
2315 goto idr_alloc;
2316 }
2317
2318 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2319 if (!cinfo)
2320 return -ENOMEM;
2321
2322 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2323
2324 /* Create a unique name for this transport device */
2325 snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2326 idx ? "rx" : "tx", prot_id);
2327 /* Create a uniquely named, dedicated transport device for this chan */
2328 tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2329 if (!tdev) {
2330 dev_err(info->dev,
2331 "failed to create transport device (%s)\n", name);
2332 devm_kfree(info->dev, cinfo);
2333 return -EINVAL;
2334 }
2335 of_node_get(of_node);
2336
2337 cinfo->id = prot_id;
2338 cinfo->dev = &tdev->dev;
2339 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2340 if (ret) {
2341 of_node_put(of_node);
2342 scmi_device_destroy(info->dev, prot_id, name);
2343 devm_kfree(info->dev, cinfo);
2344 return ret;
2345 }
2346
2347 if (tx && is_polling_required(cinfo, info->desc)) {
2348 if (is_transport_polling_capable(info->desc))
2349 dev_info(&tdev->dev,
2350 "Enabled polling mode TX channel - prot_id:%d\n",
2351 prot_id);
2352 else
2353 dev_warn(&tdev->dev,
2354 "Polling mode NOT supported by transport.\n");
2355 }
2356
2357 idr_alloc:
2358 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2359 if (ret != prot_id) {
2360 dev_err(info->dev,
2361 "unable to allocate SCMI idr slot err %d\n", ret);
2362 /* Destroy channel and device only if created by this call. */
2363 if (tdev) {
2364 of_node_put(of_node);
2365 scmi_device_destroy(info->dev, prot_id, name);
2366 devm_kfree(info->dev, cinfo);
2367 }
2368 return ret;
2369 }
2370
2371 cinfo->handle = &info->handle;
2372 return 0;
2373 }
2374
2375 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device_node * of_node,int prot_id)2376 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2377 int prot_id)
2378 {
2379 int ret = scmi_chan_setup(info, of_node, prot_id, true);
2380
2381 if (!ret) {
2382 /* Rx is optional, report only memory errors */
2383 ret = scmi_chan_setup(info, of_node, prot_id, false);
2384 if (ret && ret != -ENOMEM)
2385 ret = 0;
2386 }
2387
2388 return ret;
2389 }
2390
2391 /**
2392 * scmi_channels_setup - Helper to initialize all required channels
2393 *
2394 * @info: The SCMI instance descriptor.
2395 *
2396 * Initialize all the channels found described in the DT against the underlying
2397 * configured transport using custom defined dedicated devices instead of
2398 * borrowing devices from the SCMI drivers; this way channels are initialized
2399 * upfront during core SCMI stack probing and are no more coupled with SCMI
2400 * devices used by SCMI drivers.
2401 *
2402 * Note that, even though a pair of TX/RX channels is associated to each
2403 * protocol defined in the DT, a distinct freshly initialized channel is
2404 * created only if the DT node for the protocol at hand describes a dedicated
2405 * channel: in all the other cases the common BASE protocol channel is reused.
2406 *
2407 * Return: 0 on Success
2408 */
scmi_channels_setup(struct scmi_info * info)2409 static int scmi_channels_setup(struct scmi_info *info)
2410 {
2411 int ret;
2412 struct device_node *child, *top_np = info->dev->of_node;
2413
2414 /* Initialize a common generic channel at first */
2415 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2416 if (ret)
2417 return ret;
2418
2419 for_each_available_child_of_node(top_np, child) {
2420 u32 prot_id;
2421
2422 if (of_property_read_u32(child, "reg", &prot_id))
2423 continue;
2424
2425 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2426 dev_err(info->dev,
2427 "Out of range protocol %d\n", prot_id);
2428
2429 ret = scmi_txrx_setup(info, child, prot_id);
2430 if (ret) {
2431 of_node_put(child);
2432 return ret;
2433 }
2434 }
2435
2436 return 0;
2437 }
2438
scmi_chan_destroy(int id,void * p,void * idr)2439 static int scmi_chan_destroy(int id, void *p, void *idr)
2440 {
2441 struct scmi_chan_info *cinfo = p;
2442
2443 if (cinfo->dev) {
2444 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2445 struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2446
2447 of_node_put(cinfo->dev->of_node);
2448 scmi_device_destroy(info->dev, id, sdev->name);
2449 cinfo->dev = NULL;
2450 }
2451
2452 idr_remove(idr, id);
2453
2454 return 0;
2455 }
2456
scmi_cleanup_channels(struct scmi_info * info,struct idr * idr)2457 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2458 {
2459 /* At first free all channels at the transport layer ... */
2460 idr_for_each(idr, info->desc->ops->chan_free, idr);
2461
2462 /* ...then destroy all underlying devices */
2463 idr_for_each(idr, scmi_chan_destroy, idr);
2464
2465 idr_destroy(idr);
2466 }
2467
scmi_cleanup_txrx_channels(struct scmi_info * info)2468 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2469 {
2470 scmi_cleanup_channels(info, &info->tx_idr);
2471
2472 scmi_cleanup_channels(info, &info->rx_idr);
2473 }
2474
scmi_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2475 static int scmi_bus_notifier(struct notifier_block *nb,
2476 unsigned long action, void *data)
2477 {
2478 struct scmi_info *info = bus_nb_to_scmi_info(nb);
2479 struct scmi_device *sdev = to_scmi_dev(data);
2480
2481 /* Skip transport devices and devices of different SCMI instances */
2482 if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2483 sdev->dev.parent != info->dev)
2484 return NOTIFY_DONE;
2485
2486 switch (action) {
2487 case BUS_NOTIFY_BIND_DRIVER:
2488 /* setup handle now as the transport is ready */
2489 scmi_set_handle(sdev);
2490 break;
2491 case BUS_NOTIFY_UNBOUND_DRIVER:
2492 scmi_handle_put(sdev->handle);
2493 sdev->handle = NULL;
2494 break;
2495 default:
2496 return NOTIFY_DONE;
2497 }
2498
2499 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2500 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2501 "about to be BOUND." : "UNBOUND.");
2502
2503 return NOTIFY_OK;
2504 }
2505
scmi_device_request_notifier(struct notifier_block * nb,unsigned long action,void * data)2506 static int scmi_device_request_notifier(struct notifier_block *nb,
2507 unsigned long action, void *data)
2508 {
2509 struct device_node *np;
2510 struct scmi_device_id *id_table = data;
2511 struct scmi_info *info = req_nb_to_scmi_info(nb);
2512
2513 np = idr_find(&info->active_protocols, id_table->protocol_id);
2514 if (!np)
2515 return NOTIFY_DONE;
2516
2517 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2518 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2519 id_table->name, id_table->protocol_id);
2520
2521 switch (action) {
2522 case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2523 scmi_create_protocol_devices(np, info, id_table->protocol_id,
2524 id_table->name);
2525 break;
2526 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2527 scmi_destroy_protocol_devices(info, id_table->protocol_id,
2528 id_table->name);
2529 break;
2530 default:
2531 return NOTIFY_DONE;
2532 }
2533
2534 return NOTIFY_OK;
2535 }
2536
scmi_debugfs_common_cleanup(void * d)2537 static void scmi_debugfs_common_cleanup(void *d)
2538 {
2539 struct scmi_debug_info *dbg = d;
2540
2541 if (!dbg)
2542 return;
2543
2544 debugfs_remove_recursive(dbg->top_dentry);
2545 kfree(dbg->name);
2546 kfree(dbg->type);
2547 }
2548
scmi_debugfs_common_setup(struct scmi_info * info)2549 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2550 {
2551 char top_dir[16];
2552 struct dentry *trans, *top_dentry;
2553 struct scmi_debug_info *dbg;
2554 const char *c_ptr = NULL;
2555
2556 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2557 if (!dbg)
2558 return NULL;
2559
2560 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2561 if (!dbg->name) {
2562 devm_kfree(info->dev, dbg);
2563 return NULL;
2564 }
2565
2566 of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2567 dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2568 if (!dbg->type) {
2569 kfree(dbg->name);
2570 devm_kfree(info->dev, dbg);
2571 return NULL;
2572 }
2573
2574 snprintf(top_dir, 16, "%d", info->id);
2575 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2576 trans = debugfs_create_dir("transport", top_dentry);
2577
2578 dbg->is_atomic = info->desc->atomic_enabled &&
2579 is_transport_polling_capable(info->desc);
2580
2581 debugfs_create_str("instance_name", 0400, top_dentry,
2582 (char **)&dbg->name);
2583
2584 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2585 &info->atomic_threshold);
2586
2587 debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2588
2589 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2590
2591 debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2592 (u32 *)&info->desc->max_rx_timeout_ms);
2593
2594 debugfs_create_u32("max_msg_size", 0400, trans,
2595 (u32 *)&info->desc->max_msg_size);
2596
2597 debugfs_create_u32("tx_max_msg", 0400, trans,
2598 (u32 *)&info->tx_minfo.max_msg);
2599
2600 debugfs_create_u32("rx_max_msg", 0400, trans,
2601 (u32 *)&info->rx_minfo.max_msg);
2602
2603 dbg->top_dentry = top_dentry;
2604
2605 if (devm_add_action_or_reset(info->dev,
2606 scmi_debugfs_common_cleanup, dbg)) {
2607 scmi_debugfs_common_cleanup(dbg);
2608 return NULL;
2609 }
2610
2611 return dbg;
2612 }
2613
scmi_debugfs_raw_mode_setup(struct scmi_info * info)2614 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2615 {
2616 int id, num_chans = 0, ret = 0;
2617 struct scmi_chan_info *cinfo;
2618 u8 channels[SCMI_MAX_CHANNELS] = {};
2619 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2620
2621 if (!info->dbg)
2622 return -EINVAL;
2623
2624 /* Enumerate all channels to collect their ids */
2625 idr_for_each_entry(&info->tx_idr, cinfo, id) {
2626 /*
2627 * Cannot happen, but be defensive.
2628 * Zero as num_chans is ok, warn and carry on.
2629 */
2630 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2631 dev_warn(info->dev,
2632 "SCMI RAW - Error enumerating channels\n");
2633 break;
2634 }
2635
2636 if (!test_bit(cinfo->id, protos)) {
2637 channels[num_chans++] = cinfo->id;
2638 set_bit(cinfo->id, protos);
2639 }
2640 }
2641
2642 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2643 info->id, channels, num_chans,
2644 info->desc, info->tx_minfo.max_msg);
2645 if (IS_ERR(info->raw)) {
2646 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2647 ret = PTR_ERR(info->raw);
2648 info->raw = NULL;
2649 }
2650
2651 return ret;
2652 }
2653
scmi_probe(struct platform_device * pdev)2654 static int scmi_probe(struct platform_device *pdev)
2655 {
2656 int ret;
2657 struct scmi_handle *handle;
2658 const struct scmi_desc *desc;
2659 struct scmi_info *info;
2660 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2661 struct device *dev = &pdev->dev;
2662 struct device_node *child, *np = dev->of_node;
2663
2664 desc = of_device_get_match_data(dev);
2665 if (!desc)
2666 return -EINVAL;
2667
2668 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2669 if (!info)
2670 return -ENOMEM;
2671
2672 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2673 if (info->id < 0)
2674 return info->id;
2675
2676 info->dev = dev;
2677 info->desc = desc;
2678 info->bus_nb.notifier_call = scmi_bus_notifier;
2679 info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2680 INIT_LIST_HEAD(&info->node);
2681 idr_init(&info->protocols);
2682 mutex_init(&info->protocols_mtx);
2683 idr_init(&info->active_protocols);
2684 mutex_init(&info->devreq_mtx);
2685
2686 platform_set_drvdata(pdev, info);
2687 idr_init(&info->tx_idr);
2688 idr_init(&info->rx_idr);
2689
2690 handle = &info->handle;
2691 handle->dev = info->dev;
2692 handle->version = &info->version;
2693 handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2694 handle->devm_protocol_get = scmi_devm_protocol_get;
2695 handle->devm_protocol_put = scmi_devm_protocol_put;
2696
2697 /* System wide atomic threshold for atomic ops .. if any */
2698 if (!of_property_read_u32(np, "atomic-threshold-us",
2699 &info->atomic_threshold))
2700 dev_info(dev,
2701 "SCMI System wide atomic threshold set to %d us\n",
2702 info->atomic_threshold);
2703 handle->is_transport_atomic = scmi_is_transport_atomic;
2704
2705 if (desc->ops->link_supplier) {
2706 ret = desc->ops->link_supplier(dev);
2707 if (ret)
2708 goto clear_ida;
2709 }
2710
2711 /* Setup all channels described in the DT at first */
2712 ret = scmi_channels_setup(info);
2713 if (ret)
2714 goto clear_ida;
2715
2716 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2717 if (ret)
2718 goto clear_txrx_setup;
2719
2720 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2721 &info->dev_req_nb);
2722 if (ret)
2723 goto clear_bus_notifier;
2724
2725 ret = scmi_xfer_info_init(info);
2726 if (ret)
2727 goto clear_dev_req_notifier;
2728
2729 if (scmi_top_dentry) {
2730 info->dbg = scmi_debugfs_common_setup(info);
2731 if (!info->dbg)
2732 dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2733
2734 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2735 ret = scmi_debugfs_raw_mode_setup(info);
2736 if (!coex) {
2737 if (ret)
2738 goto clear_dev_req_notifier;
2739
2740 /* Bail out anyway when coex disabled. */
2741 return 0;
2742 }
2743
2744 /* Coex enabled, carry on in any case. */
2745 dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2746 }
2747 }
2748
2749 if (scmi_notification_init(handle))
2750 dev_err(dev, "SCMI Notifications NOT available.\n");
2751
2752 if (info->desc->atomic_enabled &&
2753 !is_transport_polling_capable(info->desc))
2754 dev_err(dev,
2755 "Transport is not polling capable. Atomic mode not supported.\n");
2756
2757 /*
2758 * Trigger SCMI Base protocol initialization.
2759 * It's mandatory and won't be ever released/deinit until the
2760 * SCMI stack is shutdown/unloaded as a whole.
2761 */
2762 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2763 if (ret) {
2764 dev_err(dev, "unable to communicate with SCMI\n");
2765 if (coex)
2766 return 0;
2767 goto notification_exit;
2768 }
2769
2770 mutex_lock(&scmi_list_mutex);
2771 list_add_tail(&info->node, &scmi_list);
2772 mutex_unlock(&scmi_list_mutex);
2773
2774 for_each_available_child_of_node(np, child) {
2775 u32 prot_id;
2776
2777 if (of_property_read_u32(child, "reg", &prot_id))
2778 continue;
2779
2780 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2781 dev_err(dev, "Out of range protocol %d\n", prot_id);
2782
2783 if (!scmi_is_protocol_implemented(handle, prot_id)) {
2784 dev_err(dev, "SCMI protocol %d not implemented\n",
2785 prot_id);
2786 continue;
2787 }
2788
2789 /*
2790 * Save this valid DT protocol descriptor amongst
2791 * @active_protocols for this SCMI instance/
2792 */
2793 ret = idr_alloc(&info->active_protocols, child,
2794 prot_id, prot_id + 1, GFP_KERNEL);
2795 if (ret != prot_id) {
2796 dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2797 prot_id);
2798 continue;
2799 }
2800
2801 of_node_get(child);
2802 scmi_create_protocol_devices(child, info, prot_id, NULL);
2803 }
2804
2805 return 0;
2806
2807 notification_exit:
2808 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2809 scmi_raw_mode_cleanup(info->raw);
2810 scmi_notification_exit(&info->handle);
2811 clear_dev_req_notifier:
2812 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2813 &info->dev_req_nb);
2814 clear_bus_notifier:
2815 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2816 clear_txrx_setup:
2817 scmi_cleanup_txrx_channels(info);
2818 clear_ida:
2819 ida_free(&scmi_id, info->id);
2820 return ret;
2821 }
2822
scmi_remove(struct platform_device * pdev)2823 static int scmi_remove(struct platform_device *pdev)
2824 {
2825 int id;
2826 struct scmi_info *info = platform_get_drvdata(pdev);
2827 struct device_node *child;
2828
2829 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2830 scmi_raw_mode_cleanup(info->raw);
2831
2832 mutex_lock(&scmi_list_mutex);
2833 if (info->users)
2834 dev_warn(&pdev->dev,
2835 "Still active SCMI users will be forcibly unbound.\n");
2836 list_del(&info->node);
2837 mutex_unlock(&scmi_list_mutex);
2838
2839 scmi_notification_exit(&info->handle);
2840
2841 mutex_lock(&info->protocols_mtx);
2842 idr_destroy(&info->protocols);
2843 mutex_unlock(&info->protocols_mtx);
2844
2845 idr_for_each_entry(&info->active_protocols, child, id)
2846 of_node_put(child);
2847 idr_destroy(&info->active_protocols);
2848
2849 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2850 &info->dev_req_nb);
2851 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2852
2853 /* Safe to free channels since no more users */
2854 scmi_cleanup_txrx_channels(info);
2855
2856 ida_free(&scmi_id, info->id);
2857
2858 return 0;
2859 }
2860
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)2861 static ssize_t protocol_version_show(struct device *dev,
2862 struct device_attribute *attr, char *buf)
2863 {
2864 struct scmi_info *info = dev_get_drvdata(dev);
2865
2866 return sprintf(buf, "%u.%u\n", info->version.major_ver,
2867 info->version.minor_ver);
2868 }
2869 static DEVICE_ATTR_RO(protocol_version);
2870
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)2871 static ssize_t firmware_version_show(struct device *dev,
2872 struct device_attribute *attr, char *buf)
2873 {
2874 struct scmi_info *info = dev_get_drvdata(dev);
2875
2876 return sprintf(buf, "0x%x\n", info->version.impl_ver);
2877 }
2878 static DEVICE_ATTR_RO(firmware_version);
2879
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)2880 static ssize_t vendor_id_show(struct device *dev,
2881 struct device_attribute *attr, char *buf)
2882 {
2883 struct scmi_info *info = dev_get_drvdata(dev);
2884
2885 return sprintf(buf, "%s\n", info->version.vendor_id);
2886 }
2887 static DEVICE_ATTR_RO(vendor_id);
2888
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)2889 static ssize_t sub_vendor_id_show(struct device *dev,
2890 struct device_attribute *attr, char *buf)
2891 {
2892 struct scmi_info *info = dev_get_drvdata(dev);
2893
2894 return sprintf(buf, "%s\n", info->version.sub_vendor_id);
2895 }
2896 static DEVICE_ATTR_RO(sub_vendor_id);
2897
2898 static struct attribute *versions_attrs[] = {
2899 &dev_attr_firmware_version.attr,
2900 &dev_attr_protocol_version.attr,
2901 &dev_attr_vendor_id.attr,
2902 &dev_attr_sub_vendor_id.attr,
2903 NULL,
2904 };
2905 ATTRIBUTE_GROUPS(versions);
2906
2907 /* Each compatible listed below must have descriptor associated with it */
2908 static const struct of_device_id scmi_of_match[] = {
2909 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
2910 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
2911 #endif
2912 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
2913 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
2914 #endif
2915 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
2916 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
2917 { .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
2918 #endif
2919 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
2920 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2921 #endif
2922 { /* Sentinel */ },
2923 };
2924
2925 MODULE_DEVICE_TABLE(of, scmi_of_match);
2926
2927 static struct platform_driver scmi_driver = {
2928 .driver = {
2929 .name = "arm-scmi",
2930 .suppress_bind_attrs = true,
2931 .of_match_table = scmi_of_match,
2932 .dev_groups = versions_groups,
2933 },
2934 .probe = scmi_probe,
2935 .remove = scmi_remove,
2936 };
2937
2938 /**
2939 * __scmi_transports_setup - Common helper to call transport-specific
2940 * .init/.exit code if provided.
2941 *
2942 * @init: A flag to distinguish between init and exit.
2943 *
2944 * Note that, if provided, we invoke .init/.exit functions for all the
2945 * transports currently compiled in.
2946 *
2947 * Return: 0 on Success.
2948 */
__scmi_transports_setup(bool init)2949 static inline int __scmi_transports_setup(bool init)
2950 {
2951 int ret = 0;
2952 const struct of_device_id *trans;
2953
2954 for (trans = scmi_of_match; trans->data; trans++) {
2955 const struct scmi_desc *tdesc = trans->data;
2956
2957 if ((init && !tdesc->transport_init) ||
2958 (!init && !tdesc->transport_exit))
2959 continue;
2960
2961 if (init)
2962 ret = tdesc->transport_init();
2963 else
2964 tdesc->transport_exit();
2965
2966 if (ret) {
2967 pr_err("SCMI transport %s FAILED initialization!\n",
2968 trans->compatible);
2969 break;
2970 }
2971 }
2972
2973 return ret;
2974 }
2975
scmi_transports_init(void)2976 static int __init scmi_transports_init(void)
2977 {
2978 return __scmi_transports_setup(true);
2979 }
2980
scmi_transports_exit(void)2981 static void __exit scmi_transports_exit(void)
2982 {
2983 __scmi_transports_setup(false);
2984 }
2985
scmi_debugfs_init(void)2986 static struct dentry *scmi_debugfs_init(void)
2987 {
2988 struct dentry *d;
2989
2990 d = debugfs_create_dir("scmi", NULL);
2991 if (IS_ERR(d)) {
2992 pr_err("Could NOT create SCMI top dentry.\n");
2993 return NULL;
2994 }
2995
2996 return d;
2997 }
2998
scmi_driver_init(void)2999 static int __init scmi_driver_init(void)
3000 {
3001 int ret;
3002
3003 /* Bail out if no SCMI transport was configured */
3004 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3005 return -EINVAL;
3006
3007 /* Initialize any compiled-in transport which provided an init/exit */
3008 ret = scmi_transports_init();
3009 if (ret)
3010 return ret;
3011
3012 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3013 scmi_top_dentry = scmi_debugfs_init();
3014
3015 scmi_base_register();
3016
3017 scmi_clock_register();
3018 scmi_perf_register();
3019 scmi_power_register();
3020 scmi_reset_register();
3021 scmi_sensors_register();
3022 scmi_voltage_register();
3023 scmi_system_register();
3024 scmi_powercap_register();
3025
3026 return platform_driver_register(&scmi_driver);
3027 }
3028 module_init(scmi_driver_init);
3029
scmi_driver_exit(void)3030 static void __exit scmi_driver_exit(void)
3031 {
3032 scmi_base_unregister();
3033
3034 scmi_clock_unregister();
3035 scmi_perf_unregister();
3036 scmi_power_unregister();
3037 scmi_reset_unregister();
3038 scmi_sensors_unregister();
3039 scmi_voltage_unregister();
3040 scmi_system_unregister();
3041 scmi_powercap_unregister();
3042
3043 scmi_transports_exit();
3044
3045 platform_driver_unregister(&scmi_driver);
3046
3047 debugfs_remove_recursive(scmi_top_dentry);
3048 }
3049 module_exit(scmi_driver_exit);
3050
3051 MODULE_ALIAS("platform:arm-scmi");
3052 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3053 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3054 MODULE_LICENSE("GPL v2");
3055