1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * builtin-timechart.c - make an svg timechart of system activity
4 *
5 * (C) Copyright 2009 Intel Corporation
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 */
10
11 #include <errno.h>
12 #include <inttypes.h>
13
14 #include "builtin.h"
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
26
27 #include "perf.h"
28 #include "util/header.h"
29 #include <subcmd/pager.h>
30 #include <subcmd/parse-options.h>
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36 #include "util/data.h"
37 #include "util/debug.h"
38 #include "util/string2.h"
39 #include "util/tracepoint.h"
40 #include <linux/err.h>
41
42 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
43 FILE *open_memstream(char **ptr, size_t *sizeloc);
44 #endif
45
46 #define SUPPORT_OLD_POWER_EVENTS 1
47 #define PWR_EVENT_EXIT -1
48
49 struct per_pid;
50 struct power_event;
51 struct wake_event;
52
53 struct timechart {
54 struct perf_tool tool;
55 struct per_pid *all_data;
56 struct power_event *power_events;
57 struct wake_event *wake_events;
58 int proc_num;
59 unsigned int numcpus;
60 u64 min_freq, /* Lowest CPU frequency seen */
61 max_freq, /* Highest CPU frequency seen */
62 turbo_frequency,
63 first_time, last_time;
64 bool power_only,
65 tasks_only,
66 with_backtrace,
67 topology;
68 bool force;
69 /* IO related settings */
70 bool io_only,
71 skip_eagain;
72 u64 io_events;
73 u64 min_time,
74 merge_dist;
75 };
76
77 struct per_pidcomm;
78 struct cpu_sample;
79 struct io_sample;
80
81 /*
82 * Datastructure layout:
83 * We keep an list of "pid"s, matching the kernels notion of a task struct.
84 * Each "pid" entry, has a list of "comm"s.
85 * this is because we want to track different programs different, while
86 * exec will reuse the original pid (by design).
87 * Each comm has a list of samples that will be used to draw
88 * final graph.
89 */
90
91 struct per_pid {
92 struct per_pid *next;
93
94 int pid;
95 int ppid;
96
97 u64 start_time;
98 u64 end_time;
99 u64 total_time;
100 u64 total_bytes;
101 int display;
102
103 struct per_pidcomm *all;
104 struct per_pidcomm *current;
105 };
106
107
108 struct per_pidcomm {
109 struct per_pidcomm *next;
110
111 u64 start_time;
112 u64 end_time;
113 u64 total_time;
114 u64 max_bytes;
115 u64 total_bytes;
116
117 int Y;
118 int display;
119
120 long state;
121 u64 state_since;
122
123 char *comm;
124
125 struct cpu_sample *samples;
126 struct io_sample *io_samples;
127 };
128
129 struct sample_wrapper {
130 struct sample_wrapper *next;
131
132 u64 timestamp;
133 unsigned char data[];
134 };
135
136 #define TYPE_NONE 0
137 #define TYPE_RUNNING 1
138 #define TYPE_WAITING 2
139 #define TYPE_BLOCKED 3
140
141 struct cpu_sample {
142 struct cpu_sample *next;
143
144 u64 start_time;
145 u64 end_time;
146 int type;
147 int cpu;
148 const char *backtrace;
149 };
150
151 enum {
152 IOTYPE_READ,
153 IOTYPE_WRITE,
154 IOTYPE_SYNC,
155 IOTYPE_TX,
156 IOTYPE_RX,
157 IOTYPE_POLL,
158 };
159
160 struct io_sample {
161 struct io_sample *next;
162
163 u64 start_time;
164 u64 end_time;
165 u64 bytes;
166 int type;
167 int fd;
168 int err;
169 int merges;
170 };
171
172 #define CSTATE 1
173 #define PSTATE 2
174
175 struct power_event {
176 struct power_event *next;
177 int type;
178 int state;
179 u64 start_time;
180 u64 end_time;
181 int cpu;
182 };
183
184 struct wake_event {
185 struct wake_event *next;
186 int waker;
187 int wakee;
188 u64 time;
189 const char *backtrace;
190 };
191
192 struct process_filter {
193 char *name;
194 int pid;
195 struct process_filter *next;
196 };
197
198 static struct process_filter *process_filter;
199
200
find_create_pid(struct timechart * tchart,int pid)201 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
202 {
203 struct per_pid *cursor = tchart->all_data;
204
205 while (cursor) {
206 if (cursor->pid == pid)
207 return cursor;
208 cursor = cursor->next;
209 }
210 cursor = zalloc(sizeof(*cursor));
211 assert(cursor != NULL);
212 cursor->pid = pid;
213 cursor->next = tchart->all_data;
214 tchart->all_data = cursor;
215 return cursor;
216 }
217
create_pidcomm(struct per_pid * p)218 static struct per_pidcomm *create_pidcomm(struct per_pid *p)
219 {
220 struct per_pidcomm *c;
221
222 c = zalloc(sizeof(*c));
223 if (!c)
224 return NULL;
225 p->current = c;
226 c->next = p->all;
227 p->all = c;
228 return c;
229 }
230
pid_set_comm(struct timechart * tchart,int pid,char * comm)231 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
232 {
233 struct per_pid *p;
234 struct per_pidcomm *c;
235 p = find_create_pid(tchart, pid);
236 c = p->all;
237 while (c) {
238 if (c->comm && strcmp(c->comm, comm) == 0) {
239 p->current = c;
240 return;
241 }
242 if (!c->comm) {
243 c->comm = strdup(comm);
244 p->current = c;
245 return;
246 }
247 c = c->next;
248 }
249 c = create_pidcomm(p);
250 assert(c != NULL);
251 c->comm = strdup(comm);
252 }
253
pid_fork(struct timechart * tchart,int pid,int ppid,u64 timestamp)254 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
255 {
256 struct per_pid *p, *pp;
257 p = find_create_pid(tchart, pid);
258 pp = find_create_pid(tchart, ppid);
259 p->ppid = ppid;
260 if (pp->current && pp->current->comm && !p->current)
261 pid_set_comm(tchart, pid, pp->current->comm);
262
263 p->start_time = timestamp;
264 if (p->current && !p->current->start_time) {
265 p->current->start_time = timestamp;
266 p->current->state_since = timestamp;
267 }
268 }
269
pid_exit(struct timechart * tchart,int pid,u64 timestamp)270 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
271 {
272 struct per_pid *p;
273 p = find_create_pid(tchart, pid);
274 p->end_time = timestamp;
275 if (p->current)
276 p->current->end_time = timestamp;
277 }
278
pid_put_sample(struct timechart * tchart,int pid,int type,unsigned int cpu,u64 start,u64 end,const char * backtrace)279 static void pid_put_sample(struct timechart *tchart, int pid, int type,
280 unsigned int cpu, u64 start, u64 end,
281 const char *backtrace)
282 {
283 struct per_pid *p;
284 struct per_pidcomm *c;
285 struct cpu_sample *sample;
286
287 p = find_create_pid(tchart, pid);
288 c = p->current;
289 if (!c) {
290 c = create_pidcomm(p);
291 assert(c != NULL);
292 }
293
294 sample = zalloc(sizeof(*sample));
295 assert(sample != NULL);
296 sample->start_time = start;
297 sample->end_time = end;
298 sample->type = type;
299 sample->next = c->samples;
300 sample->cpu = cpu;
301 sample->backtrace = backtrace;
302 c->samples = sample;
303
304 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
305 c->total_time += (end-start);
306 p->total_time += (end-start);
307 }
308
309 if (c->start_time == 0 || c->start_time > start)
310 c->start_time = start;
311 if (p->start_time == 0 || p->start_time > start)
312 p->start_time = start;
313 }
314
315 #define MAX_CPUS 4096
316
317 static u64 cpus_cstate_start_times[MAX_CPUS];
318 static int cpus_cstate_state[MAX_CPUS];
319 static u64 cpus_pstate_start_times[MAX_CPUS];
320 static u64 cpus_pstate_state[MAX_CPUS];
321
process_comm_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)322 static int process_comm_event(struct perf_tool *tool,
323 union perf_event *event,
324 struct perf_sample *sample __maybe_unused,
325 struct machine *machine __maybe_unused)
326 {
327 struct timechart *tchart = container_of(tool, struct timechart, tool);
328 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
329 return 0;
330 }
331
process_fork_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)332 static int process_fork_event(struct perf_tool *tool,
333 union perf_event *event,
334 struct perf_sample *sample __maybe_unused,
335 struct machine *machine __maybe_unused)
336 {
337 struct timechart *tchart = container_of(tool, struct timechart, tool);
338 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
339 return 0;
340 }
341
process_exit_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)342 static int process_exit_event(struct perf_tool *tool,
343 union perf_event *event,
344 struct perf_sample *sample __maybe_unused,
345 struct machine *machine __maybe_unused)
346 {
347 struct timechart *tchart = container_of(tool, struct timechart, tool);
348 pid_exit(tchart, event->fork.pid, event->fork.time);
349 return 0;
350 }
351
352 #ifdef SUPPORT_OLD_POWER_EVENTS
353 static int use_old_power_events;
354 #endif
355
c_state_start(int cpu,u64 timestamp,int state)356 static void c_state_start(int cpu, u64 timestamp, int state)
357 {
358 cpus_cstate_start_times[cpu] = timestamp;
359 cpus_cstate_state[cpu] = state;
360 }
361
c_state_end(struct timechart * tchart,int cpu,u64 timestamp)362 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
363 {
364 struct power_event *pwr = zalloc(sizeof(*pwr));
365
366 if (!pwr)
367 return;
368
369 pwr->state = cpus_cstate_state[cpu];
370 pwr->start_time = cpus_cstate_start_times[cpu];
371 pwr->end_time = timestamp;
372 pwr->cpu = cpu;
373 pwr->type = CSTATE;
374 pwr->next = tchart->power_events;
375
376 tchart->power_events = pwr;
377 }
378
p_state_end(struct timechart * tchart,int cpu,u64 timestamp)379 static struct power_event *p_state_end(struct timechart *tchart, int cpu,
380 u64 timestamp)
381 {
382 struct power_event *pwr = zalloc(sizeof(*pwr));
383
384 if (!pwr)
385 return NULL;
386
387 pwr->state = cpus_pstate_state[cpu];
388 pwr->start_time = cpus_pstate_start_times[cpu];
389 pwr->end_time = timestamp;
390 pwr->cpu = cpu;
391 pwr->type = PSTATE;
392 pwr->next = tchart->power_events;
393 if (!pwr->start_time)
394 pwr->start_time = tchart->first_time;
395
396 tchart->power_events = pwr;
397 return pwr;
398 }
399
p_state_change(struct timechart * tchart,int cpu,u64 timestamp,u64 new_freq)400 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
401 {
402 struct power_event *pwr;
403
404 if (new_freq > 8000000) /* detect invalid data */
405 return;
406
407 pwr = p_state_end(tchart, cpu, timestamp);
408 if (!pwr)
409 return;
410
411 cpus_pstate_state[cpu] = new_freq;
412 cpus_pstate_start_times[cpu] = timestamp;
413
414 if ((u64)new_freq > tchart->max_freq)
415 tchart->max_freq = new_freq;
416
417 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
418 tchart->min_freq = new_freq;
419
420 if (new_freq == tchart->max_freq - 1000)
421 tchart->turbo_frequency = tchart->max_freq;
422 }
423
sched_wakeup(struct timechart * tchart,int cpu,u64 timestamp,int waker,int wakee,u8 flags,const char * backtrace)424 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
425 int waker, int wakee, u8 flags, const char *backtrace)
426 {
427 struct per_pid *p;
428 struct wake_event *we = zalloc(sizeof(*we));
429
430 if (!we)
431 return;
432
433 we->time = timestamp;
434 we->waker = waker;
435 we->backtrace = backtrace;
436
437 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
438 we->waker = -1;
439
440 we->wakee = wakee;
441 we->next = tchart->wake_events;
442 tchart->wake_events = we;
443 p = find_create_pid(tchart, we->wakee);
444
445 if (p && p->current && p->current->state == TYPE_NONE) {
446 p->current->state_since = timestamp;
447 p->current->state = TYPE_WAITING;
448 }
449 if (p && p->current && p->current->state == TYPE_BLOCKED) {
450 pid_put_sample(tchart, p->pid, p->current->state, cpu,
451 p->current->state_since, timestamp, NULL);
452 p->current->state_since = timestamp;
453 p->current->state = TYPE_WAITING;
454 }
455 }
456
sched_switch(struct timechart * tchart,int cpu,u64 timestamp,int prev_pid,int next_pid,u64 prev_state,const char * backtrace)457 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
458 int prev_pid, int next_pid, u64 prev_state,
459 const char *backtrace)
460 {
461 struct per_pid *p = NULL, *prev_p;
462
463 prev_p = find_create_pid(tchart, prev_pid);
464
465 p = find_create_pid(tchart, next_pid);
466
467 if (prev_p->current && prev_p->current->state != TYPE_NONE)
468 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
469 prev_p->current->state_since, timestamp,
470 backtrace);
471 if (p && p->current) {
472 if (p->current->state != TYPE_NONE)
473 pid_put_sample(tchart, next_pid, p->current->state, cpu,
474 p->current->state_since, timestamp,
475 backtrace);
476
477 p->current->state_since = timestamp;
478 p->current->state = TYPE_RUNNING;
479 }
480
481 if (prev_p->current) {
482 prev_p->current->state = TYPE_NONE;
483 prev_p->current->state_since = timestamp;
484 if (prev_state & 2)
485 prev_p->current->state = TYPE_BLOCKED;
486 if (prev_state == 0)
487 prev_p->current->state = TYPE_WAITING;
488 }
489 }
490
cat_backtrace(union perf_event * event,struct perf_sample * sample,struct machine * machine)491 static const char *cat_backtrace(union perf_event *event,
492 struct perf_sample *sample,
493 struct machine *machine)
494 {
495 struct addr_location al;
496 unsigned int i;
497 char *p = NULL;
498 size_t p_len;
499 u8 cpumode = PERF_RECORD_MISC_USER;
500 struct addr_location tal;
501 struct ip_callchain *chain = sample->callchain;
502 FILE *f = open_memstream(&p, &p_len);
503
504 if (!f) {
505 perror("open_memstream error");
506 return NULL;
507 }
508
509 if (!chain)
510 goto exit;
511
512 if (machine__resolve(machine, &al, sample) < 0) {
513 fprintf(stderr, "problem processing %d event, skipping it.\n",
514 event->header.type);
515 goto exit;
516 }
517
518 for (i = 0; i < chain->nr; i++) {
519 u64 ip;
520
521 if (callchain_param.order == ORDER_CALLEE)
522 ip = chain->ips[i];
523 else
524 ip = chain->ips[chain->nr - i - 1];
525
526 if (ip >= PERF_CONTEXT_MAX) {
527 switch (ip) {
528 case PERF_CONTEXT_HV:
529 cpumode = PERF_RECORD_MISC_HYPERVISOR;
530 break;
531 case PERF_CONTEXT_KERNEL:
532 cpumode = PERF_RECORD_MISC_KERNEL;
533 break;
534 case PERF_CONTEXT_USER:
535 cpumode = PERF_RECORD_MISC_USER;
536 break;
537 default:
538 pr_debug("invalid callchain context: "
539 "%"PRId64"\n", (s64) ip);
540
541 /*
542 * It seems the callchain is corrupted.
543 * Discard all.
544 */
545 zfree(&p);
546 goto exit_put;
547 }
548 continue;
549 }
550
551 tal.filtered = 0;
552 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
553 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
554 else
555 fprintf(f, "..... %016" PRIx64 "\n", ip);
556 }
557 exit_put:
558 addr_location__put(&al);
559 exit:
560 fclose(f);
561
562 return p;
563 }
564
565 typedef int (*tracepoint_handler)(struct timechart *tchart,
566 struct evsel *evsel,
567 struct perf_sample *sample,
568 const char *backtrace);
569
process_sample_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)570 static int process_sample_event(struct perf_tool *tool,
571 union perf_event *event,
572 struct perf_sample *sample,
573 struct evsel *evsel,
574 struct machine *machine)
575 {
576 struct timechart *tchart = container_of(tool, struct timechart, tool);
577
578 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
579 if (!tchart->first_time || tchart->first_time > sample->time)
580 tchart->first_time = sample->time;
581 if (tchart->last_time < sample->time)
582 tchart->last_time = sample->time;
583 }
584
585 if (evsel->handler != NULL) {
586 tracepoint_handler f = evsel->handler;
587 return f(tchart, evsel, sample,
588 cat_backtrace(event, sample, machine));
589 }
590
591 return 0;
592 }
593
594 static int
process_sample_cpu_idle(struct timechart * tchart __maybe_unused,struct evsel * evsel,struct perf_sample * sample,const char * backtrace __maybe_unused)595 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
596 struct evsel *evsel,
597 struct perf_sample *sample,
598 const char *backtrace __maybe_unused)
599 {
600 u32 state = evsel__intval(evsel, sample, "state");
601 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
602
603 if (state == (u32)PWR_EVENT_EXIT)
604 c_state_end(tchart, cpu_id, sample->time);
605 else
606 c_state_start(cpu_id, sample->time, state);
607 return 0;
608 }
609
610 static int
process_sample_cpu_frequency(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample,const char * backtrace __maybe_unused)611 process_sample_cpu_frequency(struct timechart *tchart,
612 struct evsel *evsel,
613 struct perf_sample *sample,
614 const char *backtrace __maybe_unused)
615 {
616 u32 state = evsel__intval(evsel, sample, "state");
617 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
618
619 p_state_change(tchart, cpu_id, sample->time, state);
620 return 0;
621 }
622
623 static int
process_sample_sched_wakeup(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample,const char * backtrace)624 process_sample_sched_wakeup(struct timechart *tchart,
625 struct evsel *evsel,
626 struct perf_sample *sample,
627 const char *backtrace)
628 {
629 u8 flags = evsel__intval(evsel, sample, "common_flags");
630 int waker = evsel__intval(evsel, sample, "common_pid");
631 int wakee = evsel__intval(evsel, sample, "pid");
632
633 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
634 return 0;
635 }
636
637 static int
process_sample_sched_switch(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample,const char * backtrace)638 process_sample_sched_switch(struct timechart *tchart,
639 struct evsel *evsel,
640 struct perf_sample *sample,
641 const char *backtrace)
642 {
643 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
644 int next_pid = evsel__intval(evsel, sample, "next_pid");
645 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
646
647 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
648 prev_state, backtrace);
649 return 0;
650 }
651
652 #ifdef SUPPORT_OLD_POWER_EVENTS
653 static int
process_sample_power_start(struct timechart * tchart __maybe_unused,struct evsel * evsel,struct perf_sample * sample,const char * backtrace __maybe_unused)654 process_sample_power_start(struct timechart *tchart __maybe_unused,
655 struct evsel *evsel,
656 struct perf_sample *sample,
657 const char *backtrace __maybe_unused)
658 {
659 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
660 u64 value = evsel__intval(evsel, sample, "value");
661
662 c_state_start(cpu_id, sample->time, value);
663 return 0;
664 }
665
666 static int
process_sample_power_end(struct timechart * tchart,struct evsel * evsel __maybe_unused,struct perf_sample * sample,const char * backtrace __maybe_unused)667 process_sample_power_end(struct timechart *tchart,
668 struct evsel *evsel __maybe_unused,
669 struct perf_sample *sample,
670 const char *backtrace __maybe_unused)
671 {
672 c_state_end(tchart, sample->cpu, sample->time);
673 return 0;
674 }
675
676 static int
process_sample_power_frequency(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample,const char * backtrace __maybe_unused)677 process_sample_power_frequency(struct timechart *tchart,
678 struct evsel *evsel,
679 struct perf_sample *sample,
680 const char *backtrace __maybe_unused)
681 {
682 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
683 u64 value = evsel__intval(evsel, sample, "value");
684
685 p_state_change(tchart, cpu_id, sample->time, value);
686 return 0;
687 }
688 #endif /* SUPPORT_OLD_POWER_EVENTS */
689
690 /*
691 * After the last sample we need to wrap up the current C/P state
692 * and close out each CPU for these.
693 */
end_sample_processing(struct timechart * tchart)694 static void end_sample_processing(struct timechart *tchart)
695 {
696 u64 cpu;
697 struct power_event *pwr;
698
699 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
700 /* C state */
701 #if 0
702 pwr = zalloc(sizeof(*pwr));
703 if (!pwr)
704 return;
705
706 pwr->state = cpus_cstate_state[cpu];
707 pwr->start_time = cpus_cstate_start_times[cpu];
708 pwr->end_time = tchart->last_time;
709 pwr->cpu = cpu;
710 pwr->type = CSTATE;
711 pwr->next = tchart->power_events;
712
713 tchart->power_events = pwr;
714 #endif
715 /* P state */
716
717 pwr = p_state_end(tchart, cpu, tchart->last_time);
718 if (!pwr)
719 return;
720
721 if (!pwr->state)
722 pwr->state = tchart->min_freq;
723 }
724 }
725
pid_begin_io_sample(struct timechart * tchart,int pid,int type,u64 start,int fd)726 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
727 u64 start, int fd)
728 {
729 struct per_pid *p = find_create_pid(tchart, pid);
730 struct per_pidcomm *c = p->current;
731 struct io_sample *sample;
732 struct io_sample *prev;
733
734 if (!c) {
735 c = create_pidcomm(p);
736 if (!c)
737 return -ENOMEM;
738 }
739
740 prev = c->io_samples;
741
742 if (prev && prev->start_time && !prev->end_time) {
743 pr_warning("Skip invalid start event: "
744 "previous event already started!\n");
745
746 /* remove previous event that has been started,
747 * we are not sure we will ever get an end for it */
748 c->io_samples = prev->next;
749 free(prev);
750 return 0;
751 }
752
753 sample = zalloc(sizeof(*sample));
754 if (!sample)
755 return -ENOMEM;
756 sample->start_time = start;
757 sample->type = type;
758 sample->fd = fd;
759 sample->next = c->io_samples;
760 c->io_samples = sample;
761
762 if (c->start_time == 0 || c->start_time > start)
763 c->start_time = start;
764
765 return 0;
766 }
767
pid_end_io_sample(struct timechart * tchart,int pid,int type,u64 end,long ret)768 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
769 u64 end, long ret)
770 {
771 struct per_pid *p = find_create_pid(tchart, pid);
772 struct per_pidcomm *c = p->current;
773 struct io_sample *sample, *prev;
774
775 if (!c) {
776 pr_warning("Invalid pidcomm!\n");
777 return -1;
778 }
779
780 sample = c->io_samples;
781
782 if (!sample) /* skip partially captured events */
783 return 0;
784
785 if (sample->end_time) {
786 pr_warning("Skip invalid end event: "
787 "previous event already ended!\n");
788 return 0;
789 }
790
791 if (sample->type != type) {
792 pr_warning("Skip invalid end event: invalid event type!\n");
793 return 0;
794 }
795
796 sample->end_time = end;
797 prev = sample->next;
798
799 /* we want to be able to see small and fast transfers, so make them
800 * at least min_time long, but don't overlap them */
801 if (sample->end_time - sample->start_time < tchart->min_time)
802 sample->end_time = sample->start_time + tchart->min_time;
803 if (prev && sample->start_time < prev->end_time) {
804 if (prev->err) /* try to make errors more visible */
805 sample->start_time = prev->end_time;
806 else
807 prev->end_time = sample->start_time;
808 }
809
810 if (ret < 0) {
811 sample->err = ret;
812 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
813 type == IOTYPE_TX || type == IOTYPE_RX) {
814
815 if ((u64)ret > c->max_bytes)
816 c->max_bytes = ret;
817
818 c->total_bytes += ret;
819 p->total_bytes += ret;
820 sample->bytes = ret;
821 }
822
823 /* merge two requests to make svg smaller and render-friendly */
824 if (prev &&
825 prev->type == sample->type &&
826 prev->err == sample->err &&
827 prev->fd == sample->fd &&
828 prev->end_time + tchart->merge_dist >= sample->start_time) {
829
830 sample->bytes += prev->bytes;
831 sample->merges += prev->merges + 1;
832
833 sample->start_time = prev->start_time;
834 sample->next = prev->next;
835 free(prev);
836
837 if (!sample->err && sample->bytes > c->max_bytes)
838 c->max_bytes = sample->bytes;
839 }
840
841 tchart->io_events++;
842
843 return 0;
844 }
845
846 static int
process_enter_read(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)847 process_enter_read(struct timechart *tchart,
848 struct evsel *evsel,
849 struct perf_sample *sample)
850 {
851 long fd = evsel__intval(evsel, sample, "fd");
852 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
853 sample->time, fd);
854 }
855
856 static int
process_exit_read(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)857 process_exit_read(struct timechart *tchart,
858 struct evsel *evsel,
859 struct perf_sample *sample)
860 {
861 long ret = evsel__intval(evsel, sample, "ret");
862 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
863 sample->time, ret);
864 }
865
866 static int
process_enter_write(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)867 process_enter_write(struct timechart *tchart,
868 struct evsel *evsel,
869 struct perf_sample *sample)
870 {
871 long fd = evsel__intval(evsel, sample, "fd");
872 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
873 sample->time, fd);
874 }
875
876 static int
process_exit_write(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)877 process_exit_write(struct timechart *tchart,
878 struct evsel *evsel,
879 struct perf_sample *sample)
880 {
881 long ret = evsel__intval(evsel, sample, "ret");
882 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
883 sample->time, ret);
884 }
885
886 static int
process_enter_sync(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)887 process_enter_sync(struct timechart *tchart,
888 struct evsel *evsel,
889 struct perf_sample *sample)
890 {
891 long fd = evsel__intval(evsel, sample, "fd");
892 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
893 sample->time, fd);
894 }
895
896 static int
process_exit_sync(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)897 process_exit_sync(struct timechart *tchart,
898 struct evsel *evsel,
899 struct perf_sample *sample)
900 {
901 long ret = evsel__intval(evsel, sample, "ret");
902 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
903 sample->time, ret);
904 }
905
906 static int
process_enter_tx(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)907 process_enter_tx(struct timechart *tchart,
908 struct evsel *evsel,
909 struct perf_sample *sample)
910 {
911 long fd = evsel__intval(evsel, sample, "fd");
912 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
913 sample->time, fd);
914 }
915
916 static int
process_exit_tx(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)917 process_exit_tx(struct timechart *tchart,
918 struct evsel *evsel,
919 struct perf_sample *sample)
920 {
921 long ret = evsel__intval(evsel, sample, "ret");
922 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
923 sample->time, ret);
924 }
925
926 static int
process_enter_rx(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)927 process_enter_rx(struct timechart *tchart,
928 struct evsel *evsel,
929 struct perf_sample *sample)
930 {
931 long fd = evsel__intval(evsel, sample, "fd");
932 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
933 sample->time, fd);
934 }
935
936 static int
process_exit_rx(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)937 process_exit_rx(struct timechart *tchart,
938 struct evsel *evsel,
939 struct perf_sample *sample)
940 {
941 long ret = evsel__intval(evsel, sample, "ret");
942 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
943 sample->time, ret);
944 }
945
946 static int
process_enter_poll(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)947 process_enter_poll(struct timechart *tchart,
948 struct evsel *evsel,
949 struct perf_sample *sample)
950 {
951 long fd = evsel__intval(evsel, sample, "fd");
952 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
953 sample->time, fd);
954 }
955
956 static int
process_exit_poll(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)957 process_exit_poll(struct timechart *tchart,
958 struct evsel *evsel,
959 struct perf_sample *sample)
960 {
961 long ret = evsel__intval(evsel, sample, "ret");
962 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
963 sample->time, ret);
964 }
965
966 /*
967 * Sort the pid datastructure
968 */
sort_pids(struct timechart * tchart)969 static void sort_pids(struct timechart *tchart)
970 {
971 struct per_pid *new_list, *p, *cursor, *prev;
972 /* sort by ppid first, then by pid, lowest to highest */
973
974 new_list = NULL;
975
976 while (tchart->all_data) {
977 p = tchart->all_data;
978 tchart->all_data = p->next;
979 p->next = NULL;
980
981 if (new_list == NULL) {
982 new_list = p;
983 p->next = NULL;
984 continue;
985 }
986 prev = NULL;
987 cursor = new_list;
988 while (cursor) {
989 if (cursor->ppid > p->ppid ||
990 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
991 /* must insert before */
992 if (prev) {
993 p->next = prev->next;
994 prev->next = p;
995 cursor = NULL;
996 continue;
997 } else {
998 p->next = new_list;
999 new_list = p;
1000 cursor = NULL;
1001 continue;
1002 }
1003 }
1004
1005 prev = cursor;
1006 cursor = cursor->next;
1007 if (!cursor)
1008 prev->next = p;
1009 }
1010 }
1011 tchart->all_data = new_list;
1012 }
1013
1014
draw_c_p_states(struct timechart * tchart)1015 static void draw_c_p_states(struct timechart *tchart)
1016 {
1017 struct power_event *pwr;
1018 pwr = tchart->power_events;
1019
1020 /*
1021 * two pass drawing so that the P state bars are on top of the C state blocks
1022 */
1023 while (pwr) {
1024 if (pwr->type == CSTATE)
1025 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1026 pwr = pwr->next;
1027 }
1028
1029 pwr = tchart->power_events;
1030 while (pwr) {
1031 if (pwr->type == PSTATE) {
1032 if (!pwr->state)
1033 pwr->state = tchart->min_freq;
1034 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1035 }
1036 pwr = pwr->next;
1037 }
1038 }
1039
draw_wakeups(struct timechart * tchart)1040 static void draw_wakeups(struct timechart *tchart)
1041 {
1042 struct wake_event *we;
1043 struct per_pid *p;
1044 struct per_pidcomm *c;
1045
1046 we = tchart->wake_events;
1047 while (we) {
1048 int from = 0, to = 0;
1049 char *task_from = NULL, *task_to = NULL;
1050
1051 /* locate the column of the waker and wakee */
1052 p = tchart->all_data;
1053 while (p) {
1054 if (p->pid == we->waker || p->pid == we->wakee) {
1055 c = p->all;
1056 while (c) {
1057 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1058 if (p->pid == we->waker && !from) {
1059 from = c->Y;
1060 task_from = strdup(c->comm);
1061 }
1062 if (p->pid == we->wakee && !to) {
1063 to = c->Y;
1064 task_to = strdup(c->comm);
1065 }
1066 }
1067 c = c->next;
1068 }
1069 c = p->all;
1070 while (c) {
1071 if (p->pid == we->waker && !from) {
1072 from = c->Y;
1073 task_from = strdup(c->comm);
1074 }
1075 if (p->pid == we->wakee && !to) {
1076 to = c->Y;
1077 task_to = strdup(c->comm);
1078 }
1079 c = c->next;
1080 }
1081 }
1082 p = p->next;
1083 }
1084
1085 if (!task_from) {
1086 task_from = malloc(40);
1087 sprintf(task_from, "[%i]", we->waker);
1088 }
1089 if (!task_to) {
1090 task_to = malloc(40);
1091 sprintf(task_to, "[%i]", we->wakee);
1092 }
1093
1094 if (we->waker == -1)
1095 svg_interrupt(we->time, to, we->backtrace);
1096 else if (from && to && abs(from - to) == 1)
1097 svg_wakeline(we->time, from, to, we->backtrace);
1098 else
1099 svg_partial_wakeline(we->time, from, task_from, to,
1100 task_to, we->backtrace);
1101 we = we->next;
1102
1103 free(task_from);
1104 free(task_to);
1105 }
1106 }
1107
draw_cpu_usage(struct timechart * tchart)1108 static void draw_cpu_usage(struct timechart *tchart)
1109 {
1110 struct per_pid *p;
1111 struct per_pidcomm *c;
1112 struct cpu_sample *sample;
1113 p = tchart->all_data;
1114 while (p) {
1115 c = p->all;
1116 while (c) {
1117 sample = c->samples;
1118 while (sample) {
1119 if (sample->type == TYPE_RUNNING) {
1120 svg_process(sample->cpu,
1121 sample->start_time,
1122 sample->end_time,
1123 p->pid,
1124 c->comm,
1125 sample->backtrace);
1126 }
1127
1128 sample = sample->next;
1129 }
1130 c = c->next;
1131 }
1132 p = p->next;
1133 }
1134 }
1135
draw_io_bars(struct timechart * tchart)1136 static void draw_io_bars(struct timechart *tchart)
1137 {
1138 const char *suf;
1139 double bytes;
1140 char comm[256];
1141 struct per_pid *p;
1142 struct per_pidcomm *c;
1143 struct io_sample *sample;
1144 int Y = 1;
1145
1146 p = tchart->all_data;
1147 while (p) {
1148 c = p->all;
1149 while (c) {
1150 if (!c->display) {
1151 c->Y = 0;
1152 c = c->next;
1153 continue;
1154 }
1155
1156 svg_box(Y, c->start_time, c->end_time, "process3");
1157 sample = c->io_samples;
1158 for (sample = c->io_samples; sample; sample = sample->next) {
1159 double h = (double)sample->bytes / c->max_bytes;
1160
1161 if (tchart->skip_eagain &&
1162 sample->err == -EAGAIN)
1163 continue;
1164
1165 if (sample->err)
1166 h = 1;
1167
1168 if (sample->type == IOTYPE_SYNC)
1169 svg_fbox(Y,
1170 sample->start_time,
1171 sample->end_time,
1172 1,
1173 sample->err ? "error" : "sync",
1174 sample->fd,
1175 sample->err,
1176 sample->merges);
1177 else if (sample->type == IOTYPE_POLL)
1178 svg_fbox(Y,
1179 sample->start_time,
1180 sample->end_time,
1181 1,
1182 sample->err ? "error" : "poll",
1183 sample->fd,
1184 sample->err,
1185 sample->merges);
1186 else if (sample->type == IOTYPE_READ)
1187 svg_ubox(Y,
1188 sample->start_time,
1189 sample->end_time,
1190 h,
1191 sample->err ? "error" : "disk",
1192 sample->fd,
1193 sample->err,
1194 sample->merges);
1195 else if (sample->type == IOTYPE_WRITE)
1196 svg_lbox(Y,
1197 sample->start_time,
1198 sample->end_time,
1199 h,
1200 sample->err ? "error" : "disk",
1201 sample->fd,
1202 sample->err,
1203 sample->merges);
1204 else if (sample->type == IOTYPE_RX)
1205 svg_ubox(Y,
1206 sample->start_time,
1207 sample->end_time,
1208 h,
1209 sample->err ? "error" : "net",
1210 sample->fd,
1211 sample->err,
1212 sample->merges);
1213 else if (sample->type == IOTYPE_TX)
1214 svg_lbox(Y,
1215 sample->start_time,
1216 sample->end_time,
1217 h,
1218 sample->err ? "error" : "net",
1219 sample->fd,
1220 sample->err,
1221 sample->merges);
1222 }
1223
1224 suf = "";
1225 bytes = c->total_bytes;
1226 if (bytes > 1024) {
1227 bytes = bytes / 1024;
1228 suf = "K";
1229 }
1230 if (bytes > 1024) {
1231 bytes = bytes / 1024;
1232 suf = "M";
1233 }
1234 if (bytes > 1024) {
1235 bytes = bytes / 1024;
1236 suf = "G";
1237 }
1238
1239
1240 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1241 svg_text(Y, c->start_time, comm);
1242
1243 c->Y = Y;
1244 Y++;
1245 c = c->next;
1246 }
1247 p = p->next;
1248 }
1249 }
1250
draw_process_bars(struct timechart * tchart)1251 static void draw_process_bars(struct timechart *tchart)
1252 {
1253 struct per_pid *p;
1254 struct per_pidcomm *c;
1255 struct cpu_sample *sample;
1256 int Y = 0;
1257
1258 Y = 2 * tchart->numcpus + 2;
1259
1260 p = tchart->all_data;
1261 while (p) {
1262 c = p->all;
1263 while (c) {
1264 if (!c->display) {
1265 c->Y = 0;
1266 c = c->next;
1267 continue;
1268 }
1269
1270 svg_box(Y, c->start_time, c->end_time, "process");
1271 sample = c->samples;
1272 while (sample) {
1273 if (sample->type == TYPE_RUNNING)
1274 svg_running(Y, sample->cpu,
1275 sample->start_time,
1276 sample->end_time,
1277 sample->backtrace);
1278 if (sample->type == TYPE_BLOCKED)
1279 svg_blocked(Y, sample->cpu,
1280 sample->start_time,
1281 sample->end_time,
1282 sample->backtrace);
1283 if (sample->type == TYPE_WAITING)
1284 svg_waiting(Y, sample->cpu,
1285 sample->start_time,
1286 sample->end_time,
1287 sample->backtrace);
1288 sample = sample->next;
1289 }
1290
1291 if (c->comm) {
1292 char comm[256];
1293 if (c->total_time > 5000000000) /* 5 seconds */
1294 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1295 else
1296 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1297
1298 svg_text(Y, c->start_time, comm);
1299 }
1300 c->Y = Y;
1301 Y++;
1302 c = c->next;
1303 }
1304 p = p->next;
1305 }
1306 }
1307
add_process_filter(const char * string)1308 static void add_process_filter(const char *string)
1309 {
1310 int pid = strtoull(string, NULL, 10);
1311 struct process_filter *filt = malloc(sizeof(*filt));
1312
1313 if (!filt)
1314 return;
1315
1316 filt->name = strdup(string);
1317 filt->pid = pid;
1318 filt->next = process_filter;
1319
1320 process_filter = filt;
1321 }
1322
passes_filter(struct per_pid * p,struct per_pidcomm * c)1323 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1324 {
1325 struct process_filter *filt;
1326 if (!process_filter)
1327 return 1;
1328
1329 filt = process_filter;
1330 while (filt) {
1331 if (filt->pid && p->pid == filt->pid)
1332 return 1;
1333 if (strcmp(filt->name, c->comm) == 0)
1334 return 1;
1335 filt = filt->next;
1336 }
1337 return 0;
1338 }
1339
determine_display_tasks_filtered(struct timechart * tchart)1340 static int determine_display_tasks_filtered(struct timechart *tchart)
1341 {
1342 struct per_pid *p;
1343 struct per_pidcomm *c;
1344 int count = 0;
1345
1346 p = tchart->all_data;
1347 while (p) {
1348 p->display = 0;
1349 if (p->start_time == 1)
1350 p->start_time = tchart->first_time;
1351
1352 /* no exit marker, task kept running to the end */
1353 if (p->end_time == 0)
1354 p->end_time = tchart->last_time;
1355
1356 c = p->all;
1357
1358 while (c) {
1359 c->display = 0;
1360
1361 if (c->start_time == 1)
1362 c->start_time = tchart->first_time;
1363
1364 if (passes_filter(p, c)) {
1365 c->display = 1;
1366 p->display = 1;
1367 count++;
1368 }
1369
1370 if (c->end_time == 0)
1371 c->end_time = tchart->last_time;
1372
1373 c = c->next;
1374 }
1375 p = p->next;
1376 }
1377 return count;
1378 }
1379
determine_display_tasks(struct timechart * tchart,u64 threshold)1380 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1381 {
1382 struct per_pid *p;
1383 struct per_pidcomm *c;
1384 int count = 0;
1385
1386 p = tchart->all_data;
1387 while (p) {
1388 p->display = 0;
1389 if (p->start_time == 1)
1390 p->start_time = tchart->first_time;
1391
1392 /* no exit marker, task kept running to the end */
1393 if (p->end_time == 0)
1394 p->end_time = tchart->last_time;
1395 if (p->total_time >= threshold)
1396 p->display = 1;
1397
1398 c = p->all;
1399
1400 while (c) {
1401 c->display = 0;
1402
1403 if (c->start_time == 1)
1404 c->start_time = tchart->first_time;
1405
1406 if (c->total_time >= threshold) {
1407 c->display = 1;
1408 count++;
1409 }
1410
1411 if (c->end_time == 0)
1412 c->end_time = tchart->last_time;
1413
1414 c = c->next;
1415 }
1416 p = p->next;
1417 }
1418 return count;
1419 }
1420
determine_display_io_tasks(struct timechart * timechart,u64 threshold)1421 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1422 {
1423 struct per_pid *p;
1424 struct per_pidcomm *c;
1425 int count = 0;
1426
1427 p = timechart->all_data;
1428 while (p) {
1429 /* no exit marker, task kept running to the end */
1430 if (p->end_time == 0)
1431 p->end_time = timechart->last_time;
1432
1433 c = p->all;
1434
1435 while (c) {
1436 c->display = 0;
1437
1438 if (c->total_bytes >= threshold) {
1439 c->display = 1;
1440 count++;
1441 }
1442
1443 if (c->end_time == 0)
1444 c->end_time = timechart->last_time;
1445
1446 c = c->next;
1447 }
1448 p = p->next;
1449 }
1450 return count;
1451 }
1452
1453 #define BYTES_THRESH (1 * 1024 * 1024)
1454 #define TIME_THRESH 10000000
1455
write_svg_file(struct timechart * tchart,const char * filename)1456 static void write_svg_file(struct timechart *tchart, const char *filename)
1457 {
1458 u64 i;
1459 int count;
1460 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1461
1462 if (tchart->power_only)
1463 tchart->proc_num = 0;
1464
1465 /* We'd like to show at least proc_num tasks;
1466 * be less picky if we have fewer */
1467 do {
1468 if (process_filter)
1469 count = determine_display_tasks_filtered(tchart);
1470 else if (tchart->io_events)
1471 count = determine_display_io_tasks(tchart, thresh);
1472 else
1473 count = determine_display_tasks(tchart, thresh);
1474 thresh /= 10;
1475 } while (!process_filter && thresh && count < tchart->proc_num);
1476
1477 if (!tchart->proc_num)
1478 count = 0;
1479
1480 if (tchart->io_events) {
1481 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1482
1483 svg_time_grid(0.5);
1484 svg_io_legenda();
1485
1486 draw_io_bars(tchart);
1487 } else {
1488 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1489
1490 svg_time_grid(0);
1491
1492 svg_legenda();
1493
1494 for (i = 0; i < tchart->numcpus; i++)
1495 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1496
1497 draw_cpu_usage(tchart);
1498 if (tchart->proc_num)
1499 draw_process_bars(tchart);
1500 if (!tchart->tasks_only)
1501 draw_c_p_states(tchart);
1502 if (tchart->proc_num)
1503 draw_wakeups(tchart);
1504 }
1505
1506 svg_close();
1507 }
1508
process_header(struct perf_file_section * section __maybe_unused,struct perf_header * ph,int feat,int fd __maybe_unused,void * data)1509 static int process_header(struct perf_file_section *section __maybe_unused,
1510 struct perf_header *ph,
1511 int feat,
1512 int fd __maybe_unused,
1513 void *data)
1514 {
1515 struct timechart *tchart = data;
1516
1517 switch (feat) {
1518 case HEADER_NRCPUS:
1519 tchart->numcpus = ph->env.nr_cpus_avail;
1520 break;
1521
1522 case HEADER_CPU_TOPOLOGY:
1523 if (!tchart->topology)
1524 break;
1525
1526 if (svg_build_topology_map(&ph->env))
1527 fprintf(stderr, "problem building topology\n");
1528 break;
1529
1530 default:
1531 break;
1532 }
1533
1534 return 0;
1535 }
1536
__cmd_timechart(struct timechart * tchart,const char * output_name)1537 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1538 {
1539 const struct evsel_str_handler power_tracepoints[] = {
1540 { "power:cpu_idle", process_sample_cpu_idle },
1541 { "power:cpu_frequency", process_sample_cpu_frequency },
1542 { "sched:sched_wakeup", process_sample_sched_wakeup },
1543 { "sched:sched_switch", process_sample_sched_switch },
1544 #ifdef SUPPORT_OLD_POWER_EVENTS
1545 { "power:power_start", process_sample_power_start },
1546 { "power:power_end", process_sample_power_end },
1547 { "power:power_frequency", process_sample_power_frequency },
1548 #endif
1549
1550 { "syscalls:sys_enter_read", process_enter_read },
1551 { "syscalls:sys_enter_pread64", process_enter_read },
1552 { "syscalls:sys_enter_readv", process_enter_read },
1553 { "syscalls:sys_enter_preadv", process_enter_read },
1554 { "syscalls:sys_enter_write", process_enter_write },
1555 { "syscalls:sys_enter_pwrite64", process_enter_write },
1556 { "syscalls:sys_enter_writev", process_enter_write },
1557 { "syscalls:sys_enter_pwritev", process_enter_write },
1558 { "syscalls:sys_enter_sync", process_enter_sync },
1559 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1560 { "syscalls:sys_enter_fsync", process_enter_sync },
1561 { "syscalls:sys_enter_msync", process_enter_sync },
1562 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1563 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1564 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1565 { "syscalls:sys_enter_sendto", process_enter_tx },
1566 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1567 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1568 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1569 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1570 { "syscalls:sys_enter_poll", process_enter_poll },
1571 { "syscalls:sys_enter_ppoll", process_enter_poll },
1572 { "syscalls:sys_enter_pselect6", process_enter_poll },
1573 { "syscalls:sys_enter_select", process_enter_poll },
1574
1575 { "syscalls:sys_exit_read", process_exit_read },
1576 { "syscalls:sys_exit_pread64", process_exit_read },
1577 { "syscalls:sys_exit_readv", process_exit_read },
1578 { "syscalls:sys_exit_preadv", process_exit_read },
1579 { "syscalls:sys_exit_write", process_exit_write },
1580 { "syscalls:sys_exit_pwrite64", process_exit_write },
1581 { "syscalls:sys_exit_writev", process_exit_write },
1582 { "syscalls:sys_exit_pwritev", process_exit_write },
1583 { "syscalls:sys_exit_sync", process_exit_sync },
1584 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1585 { "syscalls:sys_exit_fsync", process_exit_sync },
1586 { "syscalls:sys_exit_msync", process_exit_sync },
1587 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1588 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1589 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1590 { "syscalls:sys_exit_sendto", process_exit_tx },
1591 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1592 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1593 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1594 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1595 { "syscalls:sys_exit_poll", process_exit_poll },
1596 { "syscalls:sys_exit_ppoll", process_exit_poll },
1597 { "syscalls:sys_exit_pselect6", process_exit_poll },
1598 { "syscalls:sys_exit_select", process_exit_poll },
1599 };
1600 struct perf_data data = {
1601 .path = input_name,
1602 .mode = PERF_DATA_MODE_READ,
1603 .force = tchart->force,
1604 };
1605
1606 struct perf_session *session = perf_session__new(&data, &tchart->tool);
1607 int ret = -EINVAL;
1608
1609 if (IS_ERR(session))
1610 return PTR_ERR(session);
1611
1612 symbol__init(&session->header.env);
1613
1614 (void)perf_header__process_sections(&session->header,
1615 perf_data__fd(session->data),
1616 tchart,
1617 process_header);
1618
1619 if (!perf_session__has_traces(session, "timechart record"))
1620 goto out_delete;
1621
1622 if (perf_session__set_tracepoints_handlers(session,
1623 power_tracepoints)) {
1624 pr_err("Initializing session tracepoint handlers failed\n");
1625 goto out_delete;
1626 }
1627
1628 ret = perf_session__process_events(session);
1629 if (ret)
1630 goto out_delete;
1631
1632 end_sample_processing(tchart);
1633
1634 sort_pids(tchart);
1635
1636 write_svg_file(tchart, output_name);
1637
1638 pr_info("Written %2.1f seconds of trace to %s.\n",
1639 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1640 out_delete:
1641 perf_session__delete(session);
1642 return ret;
1643 }
1644
timechart__io_record(int argc,const char ** argv)1645 static int timechart__io_record(int argc, const char **argv)
1646 {
1647 unsigned int rec_argc, i;
1648 const char **rec_argv;
1649 const char **p;
1650 char *filter = NULL;
1651
1652 const char * const common_args[] = {
1653 "record", "-a", "-R", "-c", "1",
1654 };
1655 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1656
1657 const char * const disk_events[] = {
1658 "syscalls:sys_enter_read",
1659 "syscalls:sys_enter_pread64",
1660 "syscalls:sys_enter_readv",
1661 "syscalls:sys_enter_preadv",
1662 "syscalls:sys_enter_write",
1663 "syscalls:sys_enter_pwrite64",
1664 "syscalls:sys_enter_writev",
1665 "syscalls:sys_enter_pwritev",
1666 "syscalls:sys_enter_sync",
1667 "syscalls:sys_enter_sync_file_range",
1668 "syscalls:sys_enter_fsync",
1669 "syscalls:sys_enter_msync",
1670
1671 "syscalls:sys_exit_read",
1672 "syscalls:sys_exit_pread64",
1673 "syscalls:sys_exit_readv",
1674 "syscalls:sys_exit_preadv",
1675 "syscalls:sys_exit_write",
1676 "syscalls:sys_exit_pwrite64",
1677 "syscalls:sys_exit_writev",
1678 "syscalls:sys_exit_pwritev",
1679 "syscalls:sys_exit_sync",
1680 "syscalls:sys_exit_sync_file_range",
1681 "syscalls:sys_exit_fsync",
1682 "syscalls:sys_exit_msync",
1683 };
1684 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1685
1686 const char * const net_events[] = {
1687 "syscalls:sys_enter_recvfrom",
1688 "syscalls:sys_enter_recvmmsg",
1689 "syscalls:sys_enter_recvmsg",
1690 "syscalls:sys_enter_sendto",
1691 "syscalls:sys_enter_sendmsg",
1692 "syscalls:sys_enter_sendmmsg",
1693
1694 "syscalls:sys_exit_recvfrom",
1695 "syscalls:sys_exit_recvmmsg",
1696 "syscalls:sys_exit_recvmsg",
1697 "syscalls:sys_exit_sendto",
1698 "syscalls:sys_exit_sendmsg",
1699 "syscalls:sys_exit_sendmmsg",
1700 };
1701 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1702
1703 const char * const poll_events[] = {
1704 "syscalls:sys_enter_epoll_pwait",
1705 "syscalls:sys_enter_epoll_wait",
1706 "syscalls:sys_enter_poll",
1707 "syscalls:sys_enter_ppoll",
1708 "syscalls:sys_enter_pselect6",
1709 "syscalls:sys_enter_select",
1710
1711 "syscalls:sys_exit_epoll_pwait",
1712 "syscalls:sys_exit_epoll_wait",
1713 "syscalls:sys_exit_poll",
1714 "syscalls:sys_exit_ppoll",
1715 "syscalls:sys_exit_pselect6",
1716 "syscalls:sys_exit_select",
1717 };
1718 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1719
1720 rec_argc = common_args_nr +
1721 disk_events_nr * 4 +
1722 net_events_nr * 4 +
1723 poll_events_nr * 4 +
1724 argc;
1725 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1726
1727 if (rec_argv == NULL)
1728 return -ENOMEM;
1729
1730 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1731 free(rec_argv);
1732 return -ENOMEM;
1733 }
1734
1735 p = rec_argv;
1736 for (i = 0; i < common_args_nr; i++)
1737 *p++ = strdup(common_args[i]);
1738
1739 for (i = 0; i < disk_events_nr; i++) {
1740 if (!is_valid_tracepoint(disk_events[i])) {
1741 rec_argc -= 4;
1742 continue;
1743 }
1744
1745 *p++ = "-e";
1746 *p++ = strdup(disk_events[i]);
1747 *p++ = "--filter";
1748 *p++ = filter;
1749 }
1750 for (i = 0; i < net_events_nr; i++) {
1751 if (!is_valid_tracepoint(net_events[i])) {
1752 rec_argc -= 4;
1753 continue;
1754 }
1755
1756 *p++ = "-e";
1757 *p++ = strdup(net_events[i]);
1758 *p++ = "--filter";
1759 *p++ = filter;
1760 }
1761 for (i = 0; i < poll_events_nr; i++) {
1762 if (!is_valid_tracepoint(poll_events[i])) {
1763 rec_argc -= 4;
1764 continue;
1765 }
1766
1767 *p++ = "-e";
1768 *p++ = strdup(poll_events[i]);
1769 *p++ = "--filter";
1770 *p++ = filter;
1771 }
1772
1773 for (i = 0; i < (unsigned int)argc; i++)
1774 *p++ = argv[i];
1775
1776 return cmd_record(rec_argc, rec_argv);
1777 }
1778
1779
timechart__record(struct timechart * tchart,int argc,const char ** argv)1780 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1781 {
1782 unsigned int rec_argc, i, j;
1783 const char **rec_argv;
1784 const char **p;
1785 unsigned int record_elems;
1786
1787 const char * const common_args[] = {
1788 "record", "-a", "-R", "-c", "1",
1789 };
1790 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1791
1792 const char * const backtrace_args[] = {
1793 "-g",
1794 };
1795 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1796
1797 const char * const power_args[] = {
1798 "-e", "power:cpu_frequency",
1799 "-e", "power:cpu_idle",
1800 };
1801 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1802
1803 const char * const old_power_args[] = {
1804 #ifdef SUPPORT_OLD_POWER_EVENTS
1805 "-e", "power:power_start",
1806 "-e", "power:power_end",
1807 "-e", "power:power_frequency",
1808 #endif
1809 };
1810 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1811
1812 const char * const tasks_args[] = {
1813 "-e", "sched:sched_wakeup",
1814 "-e", "sched:sched_switch",
1815 };
1816 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1817
1818 #ifdef SUPPORT_OLD_POWER_EVENTS
1819 if (!is_valid_tracepoint("power:cpu_idle") &&
1820 is_valid_tracepoint("power:power_start")) {
1821 use_old_power_events = 1;
1822 power_args_nr = 0;
1823 } else {
1824 old_power_args_nr = 0;
1825 }
1826 #endif
1827
1828 if (tchart->power_only)
1829 tasks_args_nr = 0;
1830
1831 if (tchart->tasks_only) {
1832 power_args_nr = 0;
1833 old_power_args_nr = 0;
1834 }
1835
1836 if (!tchart->with_backtrace)
1837 backtrace_args_no = 0;
1838
1839 record_elems = common_args_nr + tasks_args_nr +
1840 power_args_nr + old_power_args_nr + backtrace_args_no;
1841
1842 rec_argc = record_elems + argc;
1843 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1844
1845 if (rec_argv == NULL)
1846 return -ENOMEM;
1847
1848 p = rec_argv;
1849 for (i = 0; i < common_args_nr; i++)
1850 *p++ = strdup(common_args[i]);
1851
1852 for (i = 0; i < backtrace_args_no; i++)
1853 *p++ = strdup(backtrace_args[i]);
1854
1855 for (i = 0; i < tasks_args_nr; i++)
1856 *p++ = strdup(tasks_args[i]);
1857
1858 for (i = 0; i < power_args_nr; i++)
1859 *p++ = strdup(power_args[i]);
1860
1861 for (i = 0; i < old_power_args_nr; i++)
1862 *p++ = strdup(old_power_args[i]);
1863
1864 for (j = 0; j < (unsigned int)argc; j++)
1865 *p++ = argv[j];
1866
1867 return cmd_record(rec_argc, rec_argv);
1868 }
1869
1870 static int
parse_process(const struct option * opt __maybe_unused,const char * arg,int __maybe_unused unset)1871 parse_process(const struct option *opt __maybe_unused, const char *arg,
1872 int __maybe_unused unset)
1873 {
1874 if (arg)
1875 add_process_filter(arg);
1876 return 0;
1877 }
1878
1879 static int
parse_highlight(const struct option * opt __maybe_unused,const char * arg,int __maybe_unused unset)1880 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1881 int __maybe_unused unset)
1882 {
1883 unsigned long duration = strtoul(arg, NULL, 0);
1884
1885 if (svg_highlight || svg_highlight_name)
1886 return -1;
1887
1888 if (duration)
1889 svg_highlight = duration;
1890 else
1891 svg_highlight_name = strdup(arg);
1892
1893 return 0;
1894 }
1895
1896 static int
parse_time(const struct option * opt,const char * arg,int __maybe_unused unset)1897 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1898 {
1899 char unit = 'n';
1900 u64 *value = opt->value;
1901
1902 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1903 switch (unit) {
1904 case 'm':
1905 *value *= NSEC_PER_MSEC;
1906 break;
1907 case 'u':
1908 *value *= NSEC_PER_USEC;
1909 break;
1910 case 'n':
1911 break;
1912 default:
1913 return -1;
1914 }
1915 }
1916
1917 return 0;
1918 }
1919
cmd_timechart(int argc,const char ** argv)1920 int cmd_timechart(int argc, const char **argv)
1921 {
1922 struct timechart tchart = {
1923 .tool = {
1924 .comm = process_comm_event,
1925 .fork = process_fork_event,
1926 .exit = process_exit_event,
1927 .sample = process_sample_event,
1928 .ordered_events = true,
1929 },
1930 .proc_num = 15,
1931 .min_time = NSEC_PER_MSEC,
1932 .merge_dist = 1000,
1933 };
1934 const char *output_name = "output.svg";
1935 const struct option timechart_common_options[] = {
1936 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1937 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1938 OPT_END()
1939 };
1940 const struct option timechart_options[] = {
1941 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1942 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1943 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1944 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1945 "highlight tasks. Pass duration in ns or process name.",
1946 parse_highlight),
1947 OPT_CALLBACK('p', "process", NULL, "process",
1948 "process selector. Pass a pid or process name.",
1949 parse_process),
1950 OPT_CALLBACK(0, "symfs", NULL, "directory",
1951 "Look for files with symbols relative to this directory",
1952 symbol__config_symfs),
1953 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1954 "min. number of tasks to print"),
1955 OPT_BOOLEAN('t', "topology", &tchart.topology,
1956 "sort CPUs according to topology"),
1957 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1958 "skip EAGAIN errors"),
1959 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1960 "all IO faster than min-time will visually appear longer",
1961 parse_time),
1962 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1963 "merge events that are merge-dist us apart",
1964 parse_time),
1965 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1966 OPT_PARENT(timechart_common_options),
1967 };
1968 const char * const timechart_subcommands[] = { "record", NULL };
1969 const char *timechart_usage[] = {
1970 "perf timechart [<options>] {record}",
1971 NULL
1972 };
1973 const struct option timechart_record_options[] = {
1974 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1975 "record only IO data"),
1976 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1977 OPT_PARENT(timechart_common_options),
1978 };
1979 const char * const timechart_record_usage[] = {
1980 "perf timechart record [<options>]",
1981 NULL
1982 };
1983 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1984 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1985
1986 if (tchart.power_only && tchart.tasks_only) {
1987 pr_err("-P and -T options cannot be used at the same time.\n");
1988 return -1;
1989 }
1990
1991 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1992 argc = parse_options(argc, argv, timechart_record_options,
1993 timechart_record_usage,
1994 PARSE_OPT_STOP_AT_NON_OPTION);
1995
1996 if (tchart.power_only && tchart.tasks_only) {
1997 pr_err("-P and -T options cannot be used at the same time.\n");
1998 return -1;
1999 }
2000
2001 if (tchart.io_only)
2002 return timechart__io_record(argc, argv);
2003 else
2004 return timechart__record(&tchart, argc, argv);
2005 } else if (argc)
2006 usage_with_options(timechart_usage, timechart_options);
2007
2008 setup_pager();
2009
2010 return __cmd_timechart(&tchart, output_name);
2011 }
2012